src/share/vm/utilities/taskqueue.hpp

Tue, 06 Aug 2013 20:01:40 -0400

author
vladidan
date
Tue, 06 Aug 2013 20:01:40 -0400
changeset 5483
cd25d3be91c5
parent 5259
ef57c43512d6
child 5555
61521bd65100
child 6461
bdd155477289
permissions
-rw-r--r--

8012144: multiple SIGSEGVs fails on staxf
Summary: Forward port of 7u change to add additional fence() on RMO platforms, with a load_acquire on all platforms
Reviewed-by: dholmes, kvn

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "utilities/stack.hpp"
    32 #ifdef TARGET_OS_ARCH_linux_x86
    33 # include "orderAccess_linux_x86.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_ARCH_linux_sparc
    36 # include "orderAccess_linux_sparc.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_ARCH_linux_zero
    39 # include "orderAccess_linux_zero.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_solaris_x86
    42 # include "orderAccess_solaris_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_solaris_sparc
    45 # include "orderAccess_solaris_sparc.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_windows_x86
    48 # include "orderAccess_windows_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_arm
    51 # include "orderAccess_linux_arm.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_linux_ppc
    54 # include "orderAccess_linux_ppc.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_bsd_x86
    57 # include "orderAccess_bsd_x86.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_bsd_zero
    60 # include "orderAccess_bsd_zero.inline.hpp"
    61 #endif
    63 // Simple TaskQueue stats that are collected by default in debug builds.
    65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    66 #define TASKQUEUE_STATS 1
    67 #elif !defined(TASKQUEUE_STATS)
    68 #define TASKQUEUE_STATS 0
    69 #endif
    71 #if TASKQUEUE_STATS
    72 #define TASKQUEUE_STATS_ONLY(code) code
    73 #else
    74 #define TASKQUEUE_STATS_ONLY(code)
    75 #endif // TASKQUEUE_STATS
    77 #if TASKQUEUE_STATS
    78 class TaskQueueStats {
    79 public:
    80   enum StatId {
    81     push,             // number of taskqueue pushes
    82     pop,              // number of taskqueue pops
    83     pop_slow,         // subset of taskqueue pops that were done slow-path
    84     steal_attempt,    // number of taskqueue steal attempts
    85     steal,            // number of taskqueue steals
    86     overflow,         // number of overflow pushes
    87     overflow_max_len, // max length of overflow stack
    88     last_stat_id
    89   };
    91 public:
    92   inline TaskQueueStats()       { reset(); }
    94   inline void record_push()     { ++_stats[push]; }
    95   inline void record_pop()      { ++_stats[pop]; }
    96   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    97   inline void record_steal(bool success);
    98   inline void record_overflow(size_t new_length);
   100   TaskQueueStats & operator +=(const TaskQueueStats & addend);
   102   inline size_t get(StatId id) const { return _stats[id]; }
   103   inline const size_t* get() const   { return _stats; }
   105   inline void reset();
   107   // Print the specified line of the header (does not include a line separator).
   108   static void print_header(unsigned int line, outputStream* const stream = tty,
   109                            unsigned int width = 10);
   110   // Print the statistics (does not include a line separator).
   111   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   113   DEBUG_ONLY(void verify() const;)
   115 private:
   116   size_t                    _stats[last_stat_id];
   117   static const char * const _names[last_stat_id];
   118 };
   120 void TaskQueueStats::record_steal(bool success) {
   121   ++_stats[steal_attempt];
   122   if (success) ++_stats[steal];
   123 }
   125 void TaskQueueStats::record_overflow(size_t new_len) {
   126   ++_stats[overflow];
   127   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   128 }
   130 void TaskQueueStats::reset() {
   131   memset(_stats, 0, sizeof(_stats));
   132 }
   133 #endif // TASKQUEUE_STATS
   135 template <unsigned int N, MEMFLAGS F>
   136 class TaskQueueSuper: public CHeapObj<F> {
   137 protected:
   138   // Internal type for indexing the queue; also used for the tag.
   139   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   141   // The first free element after the last one pushed (mod N).
   142   volatile uint _bottom;
   144   enum { MOD_N_MASK = N - 1 };
   146   class Age {
   147   public:
   148     Age(size_t data = 0)         { _data = data; }
   149     Age(const Age& age)          { _data = age._data; }
   150     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   152     Age   get()        const volatile { return _data; }
   153     void  set(Age age) volatile       { _data = age._data; }
   155     idx_t top()        const volatile { return _fields._top; }
   156     idx_t tag()        const volatile { return _fields._tag; }
   158     // Increment top; if it wraps, increment tag also.
   159     void increment() {
   160       _fields._top = increment_index(_fields._top);
   161       if (_fields._top == 0) ++_fields._tag;
   162     }
   164     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   165       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   166                                           (volatile intptr_t *)&_data,
   167                                           (intptr_t)old_age._data);
   168     }
   170     bool operator ==(const Age& other) const { return _data == other._data; }
   172   private:
   173     struct fields {
   174       idx_t _top;
   175       idx_t _tag;
   176     };
   177     union {
   178       size_t _data;
   179       fields _fields;
   180     };
   181   };
   183   volatile Age _age;
   185   // These both operate mod N.
   186   static uint increment_index(uint ind) {
   187     return (ind + 1) & MOD_N_MASK;
   188   }
   189   static uint decrement_index(uint ind) {
   190     return (ind - 1) & MOD_N_MASK;
   191   }
   193   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   194   // interpreted as 0.
   195   uint dirty_size(uint bot, uint top) const {
   196     return (bot - top) & MOD_N_MASK;
   197   }
   199   // Returns the size corresponding to the given "bot" and "top".
   200   uint size(uint bot, uint top) const {
   201     uint sz = dirty_size(bot, top);
   202     // Has the queue "wrapped", so that bottom is less than top?  There's a
   203     // complicated special case here.  A pair of threads could perform pop_local
   204     // and pop_global operations concurrently, starting from a state in which
   205     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   206     // and the pop_global in incrementing _top (in which case the pop_global
   207     // will be awarded the contested queue element.)  The resulting state must
   208     // be interpreted as an empty queue.  (We only need to worry about one such
   209     // event: only the queue owner performs pop_local's, and several concurrent
   210     // threads attempting to perform the pop_global will all perform the same
   211     // CAS, and only one can succeed.)  Any stealing thread that reads after
   212     // either the increment or decrement will see an empty queue, and will not
   213     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   214     // modified by concurrent queues, so the owner thread can reset the state to
   215     // _bottom == top so subsequent pushes will be performed normally.
   216     return (sz == N - 1) ? 0 : sz;
   217   }
   219 public:
   220   TaskQueueSuper() : _bottom(0), _age() {}
   222   // Return true if the TaskQueue contains/does not contain any tasks.
   223   bool peek()     const { return _bottom != _age.top(); }
   224   bool is_empty() const { return size() == 0; }
   226   // Return an estimate of the number of elements in the queue.
   227   // The "careful" version admits the possibility of pop_local/pop_global
   228   // races.
   229   uint size() const {
   230     return size(_bottom, _age.top());
   231   }
   233   uint dirty_size() const {
   234     return dirty_size(_bottom, _age.top());
   235   }
   237   void set_empty() {
   238     _bottom = 0;
   239     _age.set(0);
   240   }
   242   // Maximum number of elements allowed in the queue.  This is two less
   243   // than the actual queue size, for somewhat complicated reasons.
   244   uint max_elems() const { return N - 2; }
   246   // Total size of queue.
   247   static const uint total_size() { return N; }
   249   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   250 };
   254 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   255 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   256   ArrayAllocator<E, F> _array_allocator;
   257 protected:
   258   typedef typename TaskQueueSuper<N, F>::Age Age;
   259   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   261   using TaskQueueSuper<N, F>::_bottom;
   262   using TaskQueueSuper<N, F>::_age;
   263   using TaskQueueSuper<N, F>::increment_index;
   264   using TaskQueueSuper<N, F>::decrement_index;
   265   using TaskQueueSuper<N, F>::dirty_size;
   267 public:
   268   using TaskQueueSuper<N, F>::max_elems;
   269   using TaskQueueSuper<N, F>::size;
   271 #if  TASKQUEUE_STATS
   272   using TaskQueueSuper<N, F>::stats;
   273 #endif
   275 private:
   276   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   277   bool push_slow(E t, uint dirty_n_elems);
   278   bool pop_local_slow(uint localBot, Age oldAge);
   280 public:
   281   typedef E element_type;
   283   // Initializes the queue to empty.
   284   GenericTaskQueue();
   286   void initialize();
   288   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   289   inline bool push(E t);
   291   // Attempts to claim a task from the "local" end of the queue (the most
   292   // recently pushed).  If successful, returns true and sets t to the task;
   293   // otherwise, returns false (the queue is empty).
   294   inline bool pop_local(E& t);
   296   // Like pop_local(), but uses the "global" end of the queue (the least
   297   // recently pushed).
   298   bool pop_global(E& t);
   300   // Delete any resource associated with the queue.
   301   ~GenericTaskQueue();
   303   // apply the closure to all elements in the task queue
   304   void oops_do(OopClosure* f);
   306 private:
   307   // Element array.
   308   volatile E* _elems;
   309 };
   311 template<class E, MEMFLAGS F, unsigned int N>
   312 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   313   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   314 }
   316 template<class E, MEMFLAGS F, unsigned int N>
   317 void GenericTaskQueue<E, F, N>::initialize() {
   318   _elems = _array_allocator.allocate(N);
   319 }
   321 template<class E, MEMFLAGS F, unsigned int N>
   322 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   323   // tty->print_cr("START OopTaskQueue::oops_do");
   324   uint iters = size();
   325   uint index = _bottom;
   326   for (uint i = 0; i < iters; ++i) {
   327     index = decrement_index(index);
   328     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   329     //            index, &_elems[index], _elems[index]);
   330     E* t = (E*)&_elems[index];      // cast away volatility
   331     oop* p = (oop*)t;
   332     assert((*t)->is_oop_or_null(), "Not an oop or null");
   333     f->do_oop(p);
   334   }
   335   // tty->print_cr("END OopTaskQueue::oops_do");
   336 }
   338 template<class E, MEMFLAGS F, unsigned int N>
   339 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   340   if (dirty_n_elems == N - 1) {
   341     // Actually means 0, so do the push.
   342     uint localBot = _bottom;
   343     // g++ complains if the volatile result of the assignment is
   344     // unused, so we cast the volatile away.  We cannot cast directly
   345     // to void, because gcc treats that as not using the result of the
   346     // assignment.  However, casting to E& means that we trigger an
   347     // unused-value warning.  So, we cast the E& to void.
   348     (void)const_cast<E&>(_elems[localBot] = t);
   349     OrderAccess::release_store(&_bottom, increment_index(localBot));
   350     TASKQUEUE_STATS_ONLY(stats.record_push());
   351     return true;
   352   }
   353   return false;
   354 }
   356 // pop_local_slow() is done by the owning thread and is trying to
   357 // get the last task in the queue.  It will compete with pop_global()
   358 // that will be used by other threads.  The tag age is incremented
   359 // whenever the queue goes empty which it will do here if this thread
   360 // gets the last task or in pop_global() if the queue wraps (top == 0
   361 // and pop_global() succeeds, see pop_global()).
   362 template<class E, MEMFLAGS F, unsigned int N>
   363 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   364   // This queue was observed to contain exactly one element; either this
   365   // thread will claim it, or a competing "pop_global".  In either case,
   366   // the queue will be logically empty afterwards.  Create a new Age value
   367   // that represents the empty queue for the given value of "_bottom".  (We
   368   // must also increment "tag" because of the case where "bottom == 1",
   369   // "top == 0".  A pop_global could read the queue element in that case,
   370   // then have the owner thread do a pop followed by another push.  Without
   371   // the incrementing of "tag", the pop_global's CAS could succeed,
   372   // allowing it to believe it has claimed the stale element.)
   373   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   374   // Perhaps a competing pop_global has already incremented "top", in which
   375   // case it wins the element.
   376   if (localBot == oldAge.top()) {
   377     // No competing pop_global has yet incremented "top"; we'll try to
   378     // install new_age, thus claiming the element.
   379     Age tempAge = _age.cmpxchg(newAge, oldAge);
   380     if (tempAge == oldAge) {
   381       // We win.
   382       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   383       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   384       return true;
   385     }
   386   }
   387   // We lose; a completing pop_global gets the element.  But the queue is empty
   388   // and top is greater than bottom.  Fix this representation of the empty queue
   389   // to become the canonical one.
   390   _age.set(newAge);
   391   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   392   return false;
   393 }
   395 template<class E, MEMFLAGS F, unsigned int N>
   396 bool GenericTaskQueue<E, F, N>::pop_global(E& t) {
   397   Age oldAge = _age.get();
   398   // Architectures with weak memory model require a barrier here
   399   // to guarantee that bottom is not older than age,
   400   // which is crucial for the correctness of the algorithm.
   401 #if !(defined SPARC || defined IA32 || defined AMD64)
   402   OrderAccess::fence();
   403 #endif
   404   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   405   uint n_elems = size(localBot, oldAge.top());
   406   if (n_elems == 0) {
   407     return false;
   408   }
   410   // g++ complains if the volatile result of the assignment is
   411   // unused, so we cast the volatile away.  We cannot cast directly
   412   // to void, because gcc treats that as not using the result of the
   413   // assignment.  However, casting to E& means that we trigger an
   414   // unused-value warning.  So, we cast the E& to void.
   415   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   416   Age newAge(oldAge);
   417   newAge.increment();
   418   Age resAge = _age.cmpxchg(newAge, oldAge);
   420   // Note that using "_bottom" here might fail, since a pop_local might
   421   // have decremented it.
   422   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   423   return resAge == oldAge;
   424 }
   426 template<class E, MEMFLAGS F, unsigned int N>
   427 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   428   FREE_C_HEAP_ARRAY(E, _elems, F);
   429 }
   431 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   432 // elements that do not fit in the TaskQueue.
   433 //
   434 // This class hides two methods from super classes:
   435 //
   436 // push() - push onto the task queue or, if that fails, onto the overflow stack
   437 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   438 //
   439 // Note that size() is not hidden--it returns the number of elements in the
   440 // TaskQueue, and does not include the size of the overflow stack.  This
   441 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   442 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   443 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   444 {
   445 public:
   446   typedef Stack<E, F>               overflow_t;
   447   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   449   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   451   // Push task t onto the queue or onto the overflow stack.  Return true.
   452   inline bool push(E t);
   454   // Attempt to pop from the overflow stack; return true if anything was popped.
   455   inline bool pop_overflow(E& t);
   457   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   459   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   460   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   461   inline bool is_empty()        const {
   462     return taskqueue_empty() && overflow_empty();
   463   }
   465 private:
   466   overflow_t _overflow_stack;
   467 };
   469 template <class E, MEMFLAGS F, unsigned int N>
   470 bool OverflowTaskQueue<E, F, N>::push(E t)
   471 {
   472   if (!taskqueue_t::push(t)) {
   473     overflow_stack()->push(t);
   474     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   475   }
   476   return true;
   477 }
   479 template <class E, MEMFLAGS F, unsigned int N>
   480 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   481 {
   482   if (overflow_empty()) return false;
   483   t = overflow_stack()->pop();
   484   return true;
   485 }
   487 class TaskQueueSetSuper {
   488 protected:
   489   static int randomParkAndMiller(int* seed0);
   490 public:
   491   // Returns "true" if some TaskQueue in the set contains a task.
   492   virtual bool peek() = 0;
   493 };
   495 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   496 };
   498 template<class T, MEMFLAGS F>
   499 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   500 private:
   501   uint _n;
   502   T** _queues;
   504 public:
   505   typedef typename T::element_type E;
   507   GenericTaskQueueSet(int n) : _n(n) {
   508     typedef T* GenericTaskQueuePtr;
   509     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   510     for (int i = 0; i < n; i++) {
   511       _queues[i] = NULL;
   512     }
   513   }
   515   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   517   void register_queue(uint i, T* q);
   519   T* queue(uint n);
   521   // The thread with queue number "queue_num" (and whose random number seed is
   522   // at "seed") is trying to steal a task from some other queue.  (It may try
   523   // several queues, according to some configuration parameter.)  If some steal
   524   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   525   // false.
   526   bool steal(uint queue_num, int* seed, E& t);
   528   bool peek();
   529 };
   531 template<class T, MEMFLAGS F> void
   532 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   533   assert(i < _n, "index out of range.");
   534   _queues[i] = q;
   535 }
   537 template<class T, MEMFLAGS F> T*
   538 GenericTaskQueueSet<T, F>::queue(uint i) {
   539   return _queues[i];
   540 }
   542 template<class T, MEMFLAGS F> bool
   543 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   544   for (uint i = 0; i < 2 * _n; i++) {
   545     if (steal_best_of_2(queue_num, seed, t)) {
   546       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   547       return true;
   548     }
   549   }
   550   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   551   return false;
   552 }
   554 template<class T, MEMFLAGS F> bool
   555 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   556   if (_n > 2) {
   557     uint k1 = queue_num;
   558     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   559     uint k2 = queue_num;
   560     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   561     // Sample both and try the larger.
   562     uint sz1 = _queues[k1]->size();
   563     uint sz2 = _queues[k2]->size();
   564     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   565     else return _queues[k1]->pop_global(t);
   566   } else if (_n == 2) {
   567     // Just try the other one.
   568     uint k = (queue_num + 1) % 2;
   569     return _queues[k]->pop_global(t);
   570   } else {
   571     assert(_n == 1, "can't be zero.");
   572     return false;
   573   }
   574 }
   576 template<class T, MEMFLAGS F>
   577 bool GenericTaskQueueSet<T, F>::peek() {
   578   // Try all the queues.
   579   for (uint j = 0; j < _n; j++) {
   580     if (_queues[j]->peek())
   581       return true;
   582   }
   583   return false;
   584 }
   586 // When to terminate from the termination protocol.
   587 class TerminatorTerminator: public CHeapObj<mtInternal> {
   588 public:
   589   virtual bool should_exit_termination() = 0;
   590 };
   592 // A class to aid in the termination of a set of parallel tasks using
   593 // TaskQueueSet's for work stealing.
   595 #undef TRACESPINNING
   597 class ParallelTaskTerminator: public StackObj {
   598 private:
   599   int _n_threads;
   600   TaskQueueSetSuper* _queue_set;
   601   int _offered_termination;
   603 #ifdef TRACESPINNING
   604   static uint _total_yields;
   605   static uint _total_spins;
   606   static uint _total_peeks;
   607 #endif
   609   bool peek_in_queue_set();
   610 protected:
   611   virtual void yield();
   612   void sleep(uint millis);
   614 public:
   616   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   617   // queue sets of work queues of other threads.
   618   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   620   // The current thread has no work, and is ready to terminate if everyone
   621   // else is.  If returns "true", all threads are terminated.  If returns
   622   // "false", available work has been observed in one of the task queues,
   623   // so the global task is not complete.
   624   bool offer_termination() {
   625     return offer_termination(NULL);
   626   }
   628   // As above, but it also terminates if the should_exit_termination()
   629   // method of the terminator parameter returns true. If terminator is
   630   // NULL, then it is ignored.
   631   bool offer_termination(TerminatorTerminator* terminator);
   633   // Reset the terminator, so that it may be reused again.
   634   // The caller is responsible for ensuring that this is done
   635   // in an MT-safe manner, once the previous round of use of
   636   // the terminator is finished.
   637   void reset_for_reuse();
   638   // Same as above but the number of parallel threads is set to the
   639   // given number.
   640   void reset_for_reuse(int n_threads);
   642 #ifdef TRACESPINNING
   643   static uint total_yields() { return _total_yields; }
   644   static uint total_spins() { return _total_spins; }
   645   static uint total_peeks() { return _total_peeks; }
   646   static void print_termination_counts();
   647 #endif
   648 };
   650 template<class E, MEMFLAGS F, unsigned int N> inline bool
   651 GenericTaskQueue<E, F, N>::push(E t) {
   652   uint localBot = _bottom;
   653   assert(localBot < N, "_bottom out of range.");
   654   idx_t top = _age.top();
   655   uint dirty_n_elems = dirty_size(localBot, top);
   656   assert(dirty_n_elems < N, "n_elems out of range.");
   657   if (dirty_n_elems < max_elems()) {
   658     // g++ complains if the volatile result of the assignment is
   659     // unused, so we cast the volatile away.  We cannot cast directly
   660     // to void, because gcc treats that as not using the result of the
   661     // assignment.  However, casting to E& means that we trigger an
   662     // unused-value warning.  So, we cast the E& to void.
   663     (void) const_cast<E&>(_elems[localBot] = t);
   664     OrderAccess::release_store(&_bottom, increment_index(localBot));
   665     TASKQUEUE_STATS_ONLY(stats.record_push());
   666     return true;
   667   } else {
   668     return push_slow(t, dirty_n_elems);
   669   }
   670 }
   672 template<class E, MEMFLAGS F, unsigned int N> inline bool
   673 GenericTaskQueue<E, F, N>::pop_local(E& t) {
   674   uint localBot = _bottom;
   675   // This value cannot be N-1.  That can only occur as a result of
   676   // the assignment to bottom in this method.  If it does, this method
   677   // resets the size to 0 before the next call (which is sequential,
   678   // since this is pop_local.)
   679   uint dirty_n_elems = dirty_size(localBot, _age.top());
   680   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   681   if (dirty_n_elems == 0) return false;
   682   localBot = decrement_index(localBot);
   683   _bottom = localBot;
   684   // This is necessary to prevent any read below from being reordered
   685   // before the store just above.
   686   OrderAccess::fence();
   687   // g++ complains if the volatile result of the assignment is
   688   // unused, so we cast the volatile away.  We cannot cast directly
   689   // to void, because gcc treats that as not using the result of the
   690   // assignment.  However, casting to E& means that we trigger an
   691   // unused-value warning.  So, we cast the E& to void.
   692   (void) const_cast<E&>(t = _elems[localBot]);
   693   // This is a second read of "age"; the "size()" above is the first.
   694   // If there's still at least one element in the queue, based on the
   695   // "_bottom" and "age" we've read, then there can be no interference with
   696   // a "pop_global" operation, and we're done.
   697   idx_t tp = _age.top();    // XXX
   698   if (size(localBot, tp) > 0) {
   699     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   700     TASKQUEUE_STATS_ONLY(stats.record_pop());
   701     return true;
   702   } else {
   703     // Otherwise, the queue contained exactly one element; we take the slow
   704     // path.
   705     return pop_local_slow(localBot, _age.get());
   706   }
   707 }
   709 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   710 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   712 #ifdef _MSC_VER
   713 #pragma warning(push)
   714 // warning C4522: multiple assignment operators specified
   715 #pragma warning(disable:4522)
   716 #endif
   718 // This is a container class for either an oop* or a narrowOop*.
   719 // Both are pushed onto a task queue and the consumer will test is_narrow()
   720 // to determine which should be processed.
   721 class StarTask {
   722   void*  _holder;        // either union oop* or narrowOop*
   724   enum { COMPRESSED_OOP_MASK = 1 };
   726  public:
   727   StarTask(narrowOop* p) {
   728     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   729     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   730   }
   731   StarTask(oop* p)       {
   732     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   733     _holder = (void*)p;
   734   }
   735   StarTask()             { _holder = NULL; }
   736   operator oop*()        { return (oop*)_holder; }
   737   operator narrowOop*()  {
   738     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   739   }
   741   StarTask& operator=(const StarTask& t) {
   742     _holder = t._holder;
   743     return *this;
   744   }
   745   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   746     _holder = t._holder;
   747     return *this;
   748   }
   750   bool is_narrow() const {
   751     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   752   }
   753 };
   755 class ObjArrayTask
   756 {
   757 public:
   758   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   759   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   760     assert(idx <= size_t(max_jint), "too big");
   761   }
   762   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   764   ObjArrayTask& operator =(const ObjArrayTask& t) {
   765     _obj = t._obj;
   766     _index = t._index;
   767     return *this;
   768   }
   769   volatile ObjArrayTask&
   770   operator =(const volatile ObjArrayTask& t) volatile {
   771     _obj = t._obj;
   772     _index = t._index;
   773     return *this;
   774   }
   776   inline oop obj()   const { return _obj; }
   777   inline int index() const { return _index; }
   779   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   781 private:
   782   oop _obj;
   783   int _index;
   784 };
   786 #ifdef _MSC_VER
   787 #pragma warning(pop)
   788 #endif
   790 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   791 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   793 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   794 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   797 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial