src/share/vm/opto/output.cpp

Thu, 02 Oct 2008 08:37:44 -0700

author
kvn
date
Thu, 02 Oct 2008 08:37:44 -0700
changeset 835
cc80376deb0c
parent 766
cecd8eb4e0ca
child 850
4d9884b01ba6
permissions
-rw-r--r--

6667595: Set probability FAIR for pre-, post- loops and ALWAYS for main loop
Summary: Fix loop's probability. Add optimizations to avoid spilling. Change InlineSmallCode to product flag.
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    51   if (failing())  return; // Out of memory
    53   // Make sure I can find the Start Node
    54   Block_Array& bbs = _cfg->_bbs;
    55   Block *entry = _cfg->_blocks[1];
    56   Block *broot = _cfg->_broot;
    58   const StartNode *start = entry->_nodes[0]->as_Start();
    60   // Replace StartNode with prolog
    61   MachPrologNode *prolog = new (this) MachPrologNode();
    62   entry->_nodes.map( 0, prolog );
    63   bbs.map( prolog->_idx, entry );
    64   bbs.map( start->_idx, NULL ); // start is no longer in any block
    66   // Virtual methods need an unverified entry point
    68   if( is_osr_compilation() ) {
    69     if( PoisonOSREntry ) {
    70       // TODO: Should use a ShouldNotReachHereNode...
    71       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    72     }
    73   } else {
    74     if( _method && !_method->flags().is_static() ) {
    75       // Insert unvalidated entry point
    76       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    77     }
    79   }
    82   // Break before main entry point
    83   if( (_method && _method->break_at_execute())
    84 #ifndef PRODUCT
    85     ||(OptoBreakpoint && is_method_compilation())
    86     ||(OptoBreakpointOSR && is_osr_compilation())
    87     ||(OptoBreakpointC2R && !_method)
    88 #endif
    89     ) {
    90     // checking for _method means that OptoBreakpoint does not apply to
    91     // runtime stubs or frame converters
    92     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
    93   }
    95   // Insert epilogs before every return
    96   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    97     Block *b = _cfg->_blocks[i];
    98     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
    99       Node *m = b->end();
   100       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   101         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   102         b->add_inst( epilog );
   103         bbs.map(epilog->_idx, b);
   104         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   105       }
   106     }
   107   }
   109 # ifdef ENABLE_ZAP_DEAD_LOCALS
   110   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   111 # endif
   113   ScheduleAndBundle();
   115 #ifndef PRODUCT
   116   if (trace_opto_output()) {
   117     tty->print("\n---- After ScheduleAndBundle ----\n");
   118     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   119       tty->print("\nBB#%03d:\n", i);
   120       Block *bb = _cfg->_blocks[i];
   121       for (uint j = 0; j < bb->_nodes.size(); j++) {
   122         Node *n = bb->_nodes[j];
   123         OptoReg::Name reg = _regalloc->get_reg_first(n);
   124         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   125         n->dump();
   126       }
   127     }
   128   }
   129 #endif
   131   if (failing())  return;
   133   BuildOopMaps();
   135   if (failing())  return;
   137   Fill_buffer();
   138 }
   140 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   141   // Determine if we need to generate a stack overflow check.
   142   // Do it if the method is not a stub function and
   143   // has java calls or has frame size > vm_page_size/8.
   144   return (stub_function() == NULL &&
   145           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   146 }
   148 bool Compile::need_register_stack_bang() const {
   149   // Determine if we need to generate a register stack overflow check.
   150   // This is only used on architectures which have split register
   151   // and memory stacks (ie. IA64).
   152   // Bang if the method is not a stub function and has java calls
   153   return (stub_function() == NULL && has_java_calls());
   154 }
   156 # ifdef ENABLE_ZAP_DEAD_LOCALS
   159 // In order to catch compiler oop-map bugs, we have implemented
   160 // a debugging mode called ZapDeadCompilerLocals.
   161 // This mode causes the compiler to insert a call to a runtime routine,
   162 // "zap_dead_locals", right before each place in compiled code
   163 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   164 // The runtime routine checks that locations mapped as oops are really
   165 // oops, that locations mapped as values do not look like oops,
   166 // and that locations mapped as dead are not used later
   167 // (by zapping them to an invalid address).
   169 int Compile::_CompiledZap_count = 0;
   171 void Compile::Insert_zap_nodes() {
   172   bool skip = false;
   175   // Dink with static counts because code code without the extra
   176   // runtime calls is MUCH faster for debugging purposes
   178        if ( CompileZapFirst  ==  0  ) ; // nothing special
   179   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   180   else if ( CompileZapFirst  == CompiledZap_count() )
   181     warning("starting zap compilation after skipping");
   183        if ( CompileZapLast  ==  -1  ) ; // nothing special
   184   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   185   else if ( CompileZapLast  ==  CompiledZap_count() )
   186     warning("about to compile last zap");
   188   ++_CompiledZap_count; // counts skipped zaps, too
   190   if ( skip )  return;
   193   if ( _method == NULL )
   194     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   196   // Insert call to zap runtime stub before every node with an oop map
   197   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   198     Block *b = _cfg->_blocks[i];
   199     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   200       Node *n = b->_nodes[j];
   202       // Determining if we should insert a zap-a-lot node in output.
   203       // We do that for all nodes that has oopmap info, except for calls
   204       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   205       // and expect the C code to reset it.  Hence, there can be no safepoints between
   206       // the inlined-allocation and the call to new_Java, etc.
   207       // We also cannot zap monitor calls, as they must hold the microlock
   208       // during the call to Zap, which also wants to grab the microlock.
   209       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   210       if ( insert ) { // it is MachSafePoint
   211         if ( !n->is_MachCall() ) {
   212           insert = false;
   213         } else if ( n->is_MachCall() ) {
   214           MachCallNode* call = n->as_MachCall();
   215           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   216               call->entry_point() == OptoRuntime::new_array_Java() ||
   217               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   218               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   219               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   220               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   221               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   222               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   223               ) {
   224             insert = false;
   225           }
   226         }
   227         if (insert) {
   228           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   229           b->_nodes.insert( j, zap );
   230           _cfg->_bbs.map( zap->_idx, b );
   231           ++j;
   232         }
   233       }
   234     }
   235   }
   236 }
   239 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   240   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   241   CallStaticJavaNode* ideal_node =
   242     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   243          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   244                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   245   // We need to copy the OopMap from the site we're zapping at.
   246   // We have to make a copy, because the zap site might not be
   247   // a call site, and zap_dead is a call site.
   248   OopMap* clone = node_to_check->oop_map()->deep_copy();
   250   // Add the cloned OopMap to the zap node
   251   ideal_node->set_oop_map(clone);
   252   return _matcher->match_sfpt(ideal_node);
   253 }
   255 //------------------------------is_node_getting_a_safepoint--------------------
   256 bool Compile::is_node_getting_a_safepoint( Node* n) {
   257   // This code duplicates the logic prior to the call of add_safepoint
   258   // below in this file.
   259   if( n->is_MachSafePoint() ) return true;
   260   return false;
   261 }
   263 # endif // ENABLE_ZAP_DEAD_LOCALS
   265 //------------------------------compute_loop_first_inst_sizes------------------
   266 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   267 // of a loop. When aligning a loop we need to provide enough instructions
   268 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   269 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   270 // By default, the size is set to 999999 by Block's constructor so that
   271 // a loop will be aligned if the size is not reset here.
   272 //
   273 // Note: Mach instructions could contain several HW instructions
   274 // so the size is estimated only.
   275 //
   276 void Compile::compute_loop_first_inst_sizes() {
   277   // The next condition is used to gate the loop alignment optimization.
   278   // Don't aligned a loop if there are enough instructions at the head of a loop
   279   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   280   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   281   // equal to 11 bytes which is the largest address NOP instruction.
   282   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   283     uint last_block = _cfg->_num_blocks-1;
   284     for( uint i=1; i <= last_block; i++ ) {
   285       Block *b = _cfg->_blocks[i];
   286       // Check the first loop's block which requires an alignment.
   287       if( b->head()->is_Loop() &&
   288           b->code_alignment() > (uint)relocInfo::addr_unit() ) {
   289         uint sum_size = 0;
   290         uint inst_cnt = NumberOfLoopInstrToAlign;
   291         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
   292                                               _regalloc);
   293         // Check the next fallthrough block if first loop's block does not have
   294         // enough instructions.
   295         if( inst_cnt > 0 && i < last_block ) {
   296           // First, check if the first loop's block contains whole loop.
   297           // LoopNode::LoopBackControl == 2.
   298           Block *bx = _cfg->_bbs[b->pred(2)->_idx];
   299           // Skip connector blocks (with limit in case of irreducible loops).
   300           int search_limit = 16;
   301           while( bx->is_connector() && search_limit-- > 0) {
   302             bx = _cfg->_bbs[bx->pred(1)->_idx];
   303           }
   304           if( bx != b ) { // loop body is in several blocks.
   305             Block *nb = NULL;
   306             while( inst_cnt > 0 && i < last_block && nb != bx &&
   307                   !_cfg->_blocks[i+1]->head()->is_Loop() ) {
   308               i++;
   309               nb = _cfg->_blocks[i];
   310               inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt,
   311                                                       _regalloc);
   312             } // while( inst_cnt > 0 && i < last_block  )
   313           } // if( bx != b )
   314         } // if( inst_cnt > 0 && i < last_block )
   315         b->set_first_inst_size(sum_size);
   316       } // f( b->head()->is_Loop() )
   317     } // for( i <= last_block )
   318   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   319 }
   321 //----------------------Shorten_branches---------------------------------------
   322 // The architecture description provides short branch variants for some long
   323 // branch instructions. Replace eligible long branches with short branches.
   324 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   326   // fill in the nop array for bundling computations
   327   MachNode *_nop_list[Bundle::_nop_count];
   328   Bundle::initialize_nops(_nop_list, this);
   330   // ------------------
   331   // Compute size of each block, method size, and relocation information size
   332   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   333   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   334   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   335   blk_starts[0]    = 0;
   337   // Initialize the sizes to 0
   338   code_size  = 0;          // Size in bytes of generated code
   339   stub_size  = 0;          // Size in bytes of all stub entries
   340   // Size in bytes of all relocation entries, including those in local stubs.
   341   // Start with 2-bytes of reloc info for the unvalidated entry point
   342   reloc_size = 1;          // Number of relocation entries
   343   const_size = 0;          // size of fp constants in words
   345   // Make three passes.  The first computes pessimistic blk_starts,
   346   // relative jmp_end, reloc_size and const_size information.
   347   // The second performs short branch substitution using the pessimistic
   348   // sizing. The third inserts nops where needed.
   350   Node *nj; // tmp
   352   // Step one, perform a pessimistic sizing pass.
   353   uint i;
   354   uint min_offset_from_last_call = 1;  // init to a positive value
   355   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   356   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   357     Block *b = _cfg->_blocks[i];
   359     // Sum all instruction sizes to compute block size
   360     uint last_inst = b->_nodes.size();
   361     uint blk_size = 0;
   362     for( uint j = 0; j<last_inst; j++ ) {
   363       nj = b->_nodes[j];
   364       uint inst_size = nj->size(_regalloc);
   365       blk_size += inst_size;
   366       // Handle machine instruction nodes
   367       if( nj->is_Mach() ) {
   368         MachNode *mach = nj->as_Mach();
   369         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   370         reloc_size += mach->reloc();
   371         const_size += mach->const_size();
   372         if( mach->is_MachCall() ) {
   373           MachCallNode *mcall = mach->as_MachCall();
   374           // This destination address is NOT PC-relative
   376           mcall->method_set((intptr_t)mcall->entry_point());
   378           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   379             stub_size  += size_java_to_interp();
   380             reloc_size += reloc_java_to_interp();
   381           }
   382         } else if (mach->is_MachSafePoint()) {
   383           // If call/safepoint are adjacent, account for possible
   384           // nop to disambiguate the two safepoints.
   385           if (min_offset_from_last_call == 0) {
   386             blk_size += nop_size;
   387           }
   388         }
   389       }
   390       min_offset_from_last_call += inst_size;
   391       // Remember end of call offset
   392       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   393         min_offset_from_last_call = 0;
   394       }
   395     }
   397     // During short branch replacement, we store the relative (to blk_starts)
   398     // end of jump in jmp_end, rather than the absolute end of jump.  This
   399     // is so that we do not need to recompute sizes of all nodes when we compute
   400     // correct blk_starts in our next sizing pass.
   401     jmp_end[i] = blk_size;
   402     DEBUG_ONLY( jmp_target[i] = 0; )
   404     // When the next block starts a loop, we may insert pad NOP
   405     // instructions.  Since we cannot know our future alignment,
   406     // assume the worst.
   407     if( i<_cfg->_num_blocks-1 ) {
   408       Block *nb = _cfg->_blocks[i+1];
   409       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   410       if( max_loop_pad > 0 ) {
   411         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   412         blk_size += max_loop_pad;
   413       }
   414     }
   416     // Save block size; update total method size
   417     blk_starts[i+1] = blk_starts[i]+blk_size;
   418   }
   420   // Step two, replace eligible long jumps.
   422   // Note: this will only get the long branches within short branch
   423   //   range. Another pass might detect more branches that became
   424   //   candidates because the shortening in the first pass exposed
   425   //   more opportunities. Unfortunately, this would require
   426   //   recomputing the starting and ending positions for the blocks
   427   for( i=0; i<_cfg->_num_blocks; i++ ) {
   428     Block *b = _cfg->_blocks[i];
   430     int j;
   431     // Find the branch; ignore trailing NOPs.
   432     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   433       nj = b->_nodes[j];
   434       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   435         break;
   436     }
   438     if (j >= 0) {
   439       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   440         MachNode *mach = nj->as_Mach();
   441         // This requires the TRUE branch target be in succs[0]
   442         uint bnum = b->non_connector_successor(0)->_pre_order;
   443         uintptr_t target = blk_starts[bnum];
   444         if( mach->is_pc_relative() ) {
   445           int offset = target-(blk_starts[i] + jmp_end[i]);
   446           if (_matcher->is_short_branch_offset(offset)) {
   447             // We've got a winner.  Replace this branch.
   448             MachNode *replacement = mach->short_branch_version(this);
   449             b->_nodes.map(j, replacement);
   450             mach->subsume_by(replacement);
   452             // Update the jmp_end size to save time in our
   453             // next pass.
   454             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   455             DEBUG_ONLY( jmp_target[i] = bnum; );
   456           }
   457         } else {
   458 #ifndef PRODUCT
   459           mach->dump(3);
   460 #endif
   461           Unimplemented();
   462         }
   463       }
   464     }
   465   }
   467   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   468   // of a loop. It is used to determine the padding for loop alignment.
   469   compute_loop_first_inst_sizes();
   471   // Step 3, compute the offsets of all the labels
   472   uint last_call_adr = max_uint;
   473   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   474     // copy the offset of the beginning to the corresponding label
   475     assert(labels[i].is_unused(), "cannot patch at this point");
   476     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   478     // insert padding for any instructions that need it
   479     Block *b = _cfg->_blocks[i];
   480     uint last_inst = b->_nodes.size();
   481     uint adr = blk_starts[i];
   482     for( uint j = 0; j<last_inst; j++ ) {
   483       nj = b->_nodes[j];
   484       if( nj->is_Mach() ) {
   485         int padding = nj->as_Mach()->compute_padding(adr);
   486         // If call/safepoint are adjacent insert a nop (5010568)
   487         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   488             adr == last_call_adr ) {
   489           padding = nop_size;
   490         }
   491         if(padding > 0) {
   492           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   493           int nops_cnt = padding / nop_size;
   494           MachNode *nop = new (this) MachNopNode(nops_cnt);
   495           b->_nodes.insert(j++, nop);
   496           _cfg->_bbs.map( nop->_idx, b );
   497           adr += padding;
   498           last_inst++;
   499         }
   500       }
   501       adr += nj->size(_regalloc);
   503       // Remember end of call offset
   504       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   505         last_call_adr = adr;
   506       }
   507     }
   509     if ( i != _cfg->_num_blocks-1) {
   510       // Get the size of the block
   511       uint blk_size = adr - blk_starts[i];
   513       // When the next block starts a loop, we may insert pad NOP
   514       // instructions.
   515       Block *nb = _cfg->_blocks[i+1];
   516       int current_offset = blk_starts[i] + blk_size;
   517       current_offset += nb->alignment_padding(current_offset);
   518       // Save block size; update total method size
   519       blk_starts[i+1] = current_offset;
   520     }
   521   }
   523 #ifdef ASSERT
   524   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   525     if( jmp_target[i] != 0 ) {
   526       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   527       if (!_matcher->is_short_branch_offset(offset)) {
   528         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   529       }
   530       assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
   531     }
   532   }
   533 #endif
   535   // ------------------
   536   // Compute size for code buffer
   537   code_size   = blk_starts[i-1] + jmp_end[i-1];
   539   // Relocation records
   540   reloc_size += 1;              // Relo entry for exception handler
   542   // Adjust reloc_size to number of record of relocation info
   543   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   544   // a relocation index.
   545   // The CodeBuffer will expand the locs array if this estimate is too low.
   546   reloc_size   *= 10 / sizeof(relocInfo);
   548   // Adjust const_size to number of bytes
   549   const_size   *= 2*jintSize; // both float and double take two words per entry
   551 }
   553 //------------------------------FillLocArray-----------------------------------
   554 // Create a bit of debug info and append it to the array.  The mapping is from
   555 // Java local or expression stack to constant, register or stack-slot.  For
   556 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   557 // entry has been taken care of and caller should skip it).
   558 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   559   // This should never have accepted Bad before
   560   assert(OptoReg::is_valid(regnum), "location must be valid");
   561   return (OptoReg::is_reg(regnum))
   562     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   563     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   564 }
   567 ObjectValue*
   568 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   569   for (int i = 0; i < objs->length(); i++) {
   570     assert(objs->at(i)->is_object(), "corrupt object cache");
   571     ObjectValue* sv = (ObjectValue*) objs->at(i);
   572     if (sv->id() == id) {
   573       return sv;
   574     }
   575   }
   576   // Otherwise..
   577   return NULL;
   578 }
   580 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   581                                      ObjectValue* sv ) {
   582   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   583   objs->append(sv);
   584 }
   587 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   588                             GrowableArray<ScopeValue*> *array,
   589                             GrowableArray<ScopeValue*> *objs ) {
   590   assert( local, "use _top instead of null" );
   591   if (array->length() != idx) {
   592     assert(array->length() == idx + 1, "Unexpected array count");
   593     // Old functionality:
   594     //   return
   595     // New functionality:
   596     //   Assert if the local is not top. In product mode let the new node
   597     //   override the old entry.
   598     assert(local == top(), "LocArray collision");
   599     if (local == top()) {
   600       return;
   601     }
   602     array->pop();
   603   }
   604   const Type *t = local->bottom_type();
   606   // Is it a safepoint scalar object node?
   607   if (local->is_SafePointScalarObject()) {
   608     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   610     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   611     if (sv == NULL) {
   612       ciKlass* cik = t->is_oopptr()->klass();
   613       assert(cik->is_instance_klass() ||
   614              cik->is_array_klass(), "Not supported allocation.");
   615       sv = new ObjectValue(spobj->_idx,
   616                            new ConstantOopWriteValue(cik->encoding()));
   617       Compile::set_sv_for_object_node(objs, sv);
   619       uint first_ind = spobj->first_index();
   620       for (uint i = 0; i < spobj->n_fields(); i++) {
   621         Node* fld_node = sfpt->in(first_ind+i);
   622         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   623       }
   624     }
   625     array->append(sv);
   626     return;
   627   }
   629   // Grab the register number for the local
   630   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   631   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   632     // Record the double as two float registers.
   633     // The register mask for such a value always specifies two adjacent
   634     // float registers, with the lower register number even.
   635     // Normally, the allocation of high and low words to these registers
   636     // is irrelevant, because nearly all operations on register pairs
   637     // (e.g., StoreD) treat them as a single unit.
   638     // Here, we assume in addition that the words in these two registers
   639     // stored "naturally" (by operations like StoreD and double stores
   640     // within the interpreter) such that the lower-numbered register
   641     // is written to the lower memory address.  This may seem like
   642     // a machine dependency, but it is not--it is a requirement on
   643     // the author of the <arch>.ad file to ensure that, for every
   644     // even/odd double-register pair to which a double may be allocated,
   645     // the word in the even single-register is stored to the first
   646     // memory word.  (Note that register numbers are completely
   647     // arbitrary, and are not tied to any machine-level encodings.)
   648 #ifdef _LP64
   649     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   650       array->append(new ConstantIntValue(0));
   651       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   652     } else if ( t->base() == Type::Long ) {
   653       array->append(new ConstantIntValue(0));
   654       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   655     } else if ( t->base() == Type::RawPtr ) {
   656       // jsr/ret return address which must be restored into a the full
   657       // width 64-bit stack slot.
   658       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   659     }
   660 #else //_LP64
   661 #ifdef SPARC
   662     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   663       // For SPARC we have to swap high and low words for
   664       // long values stored in a single-register (g0-g7).
   665       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   666       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   667     } else
   668 #endif //SPARC
   669     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   670       // Repack the double/long as two jints.
   671       // The convention the interpreter uses is that the second local
   672       // holds the first raw word of the native double representation.
   673       // This is actually reasonable, since locals and stack arrays
   674       // grow downwards in all implementations.
   675       // (If, on some machine, the interpreter's Java locals or stack
   676       // were to grow upwards, the embedded doubles would be word-swapped.)
   677       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   678       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   679     }
   680 #endif //_LP64
   681     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   682                OptoReg::is_reg(regnum) ) {
   683       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
   684                                    ? Location::float_in_dbl : Location::normal ));
   685     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   686       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   687                                    ? Location::int_in_long : Location::normal ));
   688     } else if( t->base() == Type::NarrowOop ) {
   689       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   690     } else {
   691       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   692     }
   693     return;
   694   }
   696   // No register.  It must be constant data.
   697   switch (t->base()) {
   698   case Type::Half:              // Second half of a double
   699     ShouldNotReachHere();       // Caller should skip 2nd halves
   700     break;
   701   case Type::AnyPtr:
   702     array->append(new ConstantOopWriteValue(NULL));
   703     break;
   704   case Type::AryPtr:
   705   case Type::InstPtr:
   706   case Type::KlassPtr:          // fall through
   707     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
   708     break;
   709   case Type::NarrowOop:
   710     if (t == TypeNarrowOop::NULL_PTR) {
   711       array->append(new ConstantOopWriteValue(NULL));
   712     } else {
   713       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->encoding()));
   714     }
   715     break;
   716   case Type::Int:
   717     array->append(new ConstantIntValue(t->is_int()->get_con()));
   718     break;
   719   case Type::RawPtr:
   720     // A return address (T_ADDRESS).
   721     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   722 #ifdef _LP64
   723     // Must be restored to the full-width 64-bit stack slot.
   724     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   725 #else
   726     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   727 #endif
   728     break;
   729   case Type::FloatCon: {
   730     float f = t->is_float_constant()->getf();
   731     array->append(new ConstantIntValue(jint_cast(f)));
   732     break;
   733   }
   734   case Type::DoubleCon: {
   735     jdouble d = t->is_double_constant()->getd();
   736 #ifdef _LP64
   737     array->append(new ConstantIntValue(0));
   738     array->append(new ConstantDoubleValue(d));
   739 #else
   740     // Repack the double as two jints.
   741     // The convention the interpreter uses is that the second local
   742     // holds the first raw word of the native double representation.
   743     // This is actually reasonable, since locals and stack arrays
   744     // grow downwards in all implementations.
   745     // (If, on some machine, the interpreter's Java locals or stack
   746     // were to grow upwards, the embedded doubles would be word-swapped.)
   747     jint   *dp = (jint*)&d;
   748     array->append(new ConstantIntValue(dp[1]));
   749     array->append(new ConstantIntValue(dp[0]));
   750 #endif
   751     break;
   752   }
   753   case Type::Long: {
   754     jlong d = t->is_long()->get_con();
   755 #ifdef _LP64
   756     array->append(new ConstantIntValue(0));
   757     array->append(new ConstantLongValue(d));
   758 #else
   759     // Repack the long as two jints.
   760     // The convention the interpreter uses is that the second local
   761     // holds the first raw word of the native double representation.
   762     // This is actually reasonable, since locals and stack arrays
   763     // grow downwards in all implementations.
   764     // (If, on some machine, the interpreter's Java locals or stack
   765     // were to grow upwards, the embedded doubles would be word-swapped.)
   766     jint *dp = (jint*)&d;
   767     array->append(new ConstantIntValue(dp[1]));
   768     array->append(new ConstantIntValue(dp[0]));
   769 #endif
   770     break;
   771   }
   772   case Type::Top:               // Add an illegal value here
   773     array->append(new LocationValue(Location()));
   774     break;
   775   default:
   776     ShouldNotReachHere();
   777     break;
   778   }
   779 }
   781 // Determine if this node starts a bundle
   782 bool Compile::starts_bundle(const Node *n) const {
   783   return (_node_bundling_limit > n->_idx &&
   784           _node_bundling_base[n->_idx].starts_bundle());
   785 }
   787 //--------------------------Process_OopMap_Node--------------------------------
   788 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   790   // Handle special safepoint nodes for synchronization
   791   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   792   MachCallNode      *mcall;
   794 #ifdef ENABLE_ZAP_DEAD_LOCALS
   795   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   796 #endif
   798   int safepoint_pc_offset = current_offset;
   800   // Add the safepoint in the DebugInfoRecorder
   801   if( !mach->is_MachCall() ) {
   802     mcall = NULL;
   803     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   804   } else {
   805     mcall = mach->as_MachCall();
   806     safepoint_pc_offset += mcall->ret_addr_offset();
   807     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   808   }
   810   // Loop over the JVMState list to add scope information
   811   // Do not skip safepoints with a NULL method, they need monitor info
   812   JVMState* youngest_jvms = sfn->jvms();
   813   int max_depth = youngest_jvms->depth();
   815   // Allocate the object pool for scalar-replaced objects -- the map from
   816   // small-integer keys (which can be recorded in the local and ostack
   817   // arrays) to descriptions of the object state.
   818   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   820   // Visit scopes from oldest to youngest.
   821   for (int depth = 1; depth <= max_depth; depth++) {
   822     JVMState* jvms = youngest_jvms->of_depth(depth);
   823     int idx;
   824     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   825     // Safepoints that do not have method() set only provide oop-map and monitor info
   826     // to support GC; these do not support deoptimization.
   827     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   828     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   829     int num_mon  = jvms->nof_monitors();
   830     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   831            "JVMS local count must match that of the method");
   833     // Add Local and Expression Stack Information
   835     // Insert locals into the locarray
   836     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   837     for( idx = 0; idx < num_locs; idx++ ) {
   838       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   839     }
   841     // Insert expression stack entries into the exparray
   842     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   843     for( idx = 0; idx < num_exps; idx++ ) {
   844       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   845     }
   847     // Add in mappings of the monitors
   848     assert( !method ||
   849             !method->is_synchronized() ||
   850             method->is_native() ||
   851             num_mon > 0 ||
   852             !GenerateSynchronizationCode,
   853             "monitors must always exist for synchronized methods");
   855     // Build the growable array of ScopeValues for exp stack
   856     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   858     // Loop over monitors and insert into array
   859     for(idx = 0; idx < num_mon; idx++) {
   860       // Grab the node that defines this monitor
   861       Node* box_node;
   862       Node* obj_node;
   863       box_node = sfn->monitor_box(jvms, idx);
   864       obj_node = sfn->monitor_obj(jvms, idx);
   866       // Create ScopeValue for object
   867       ScopeValue *scval = NULL;
   869       if( obj_node->is_SafePointScalarObject() ) {
   870         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   871         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   872         if (scval == NULL) {
   873           const Type *t = obj_node->bottom_type();
   874           ciKlass* cik = t->is_oopptr()->klass();
   875           assert(cik->is_instance_klass() ||
   876                  cik->is_array_klass(), "Not supported allocation.");
   877           ObjectValue* sv = new ObjectValue(spobj->_idx,
   878                                 new ConstantOopWriteValue(cik->encoding()));
   879           Compile::set_sv_for_object_node(objs, sv);
   881           uint first_ind = spobj->first_index();
   882           for (uint i = 0; i < spobj->n_fields(); i++) {
   883             Node* fld_node = sfn->in(first_ind+i);
   884             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   885           }
   886           scval = sv;
   887         }
   888       } else if( !obj_node->is_Con() ) {
   889         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   890         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   891           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   892         } else {
   893           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   894         }
   895       } else {
   896         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   897         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->encoding());
   898       }
   900       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   901       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   902       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   903     }
   905     // We dump the object pool first, since deoptimization reads it in first.
   906     debug_info()->dump_object_pool(objs);
   908     // Build first class objects to pass to scope
   909     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   910     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   911     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   913     // Make method available for all Safepoints
   914     ciMethod* scope_method = method ? method : _method;
   915     // Describe the scope here
   916     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   917     // Now we can describe the scope.
   918     debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
   919   } // End jvms loop
   921   // Mark the end of the scope set.
   922   debug_info()->end_safepoint(safepoint_pc_offset);
   923 }
   927 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   928 class NonSafepointEmitter {
   929   Compile*  C;
   930   JVMState* _pending_jvms;
   931   int       _pending_offset;
   933   void emit_non_safepoint();
   935  public:
   936   NonSafepointEmitter(Compile* compile) {
   937     this->C = compile;
   938     _pending_jvms = NULL;
   939     _pending_offset = 0;
   940   }
   942   void observe_instruction(Node* n, int pc_offset) {
   943     if (!C->debug_info()->recording_non_safepoints())  return;
   945     Node_Notes* nn = C->node_notes_at(n->_idx);
   946     if (nn == NULL || nn->jvms() == NULL)  return;
   947     if (_pending_jvms != NULL &&
   948         _pending_jvms->same_calls_as(nn->jvms())) {
   949       // Repeated JVMS?  Stretch it up here.
   950       _pending_offset = pc_offset;
   951     } else {
   952       if (_pending_jvms != NULL &&
   953           _pending_offset < pc_offset) {
   954         emit_non_safepoint();
   955       }
   956       _pending_jvms = NULL;
   957       if (pc_offset > C->debug_info()->last_pc_offset()) {
   958         // This is the only way _pending_jvms can become non-NULL:
   959         _pending_jvms = nn->jvms();
   960         _pending_offset = pc_offset;
   961       }
   962     }
   963   }
   965   // Stay out of the way of real safepoints:
   966   void observe_safepoint(JVMState* jvms, int pc_offset) {
   967     if (_pending_jvms != NULL &&
   968         !_pending_jvms->same_calls_as(jvms) &&
   969         _pending_offset < pc_offset) {
   970       emit_non_safepoint();
   971     }
   972     _pending_jvms = NULL;
   973   }
   975   void flush_at_end() {
   976     if (_pending_jvms != NULL) {
   977       emit_non_safepoint();
   978     }
   979     _pending_jvms = NULL;
   980   }
   981 };
   983 void NonSafepointEmitter::emit_non_safepoint() {
   984   JVMState* youngest_jvms = _pending_jvms;
   985   int       pc_offset     = _pending_offset;
   987   // Clear it now:
   988   _pending_jvms = NULL;
   990   DebugInformationRecorder* debug_info = C->debug_info();
   991   assert(debug_info->recording_non_safepoints(), "sanity");
   993   debug_info->add_non_safepoint(pc_offset);
   994   int max_depth = youngest_jvms->depth();
   996   // Visit scopes from oldest to youngest.
   997   for (int depth = 1; depth <= max_depth; depth++) {
   998     JVMState* jvms = youngest_jvms->of_depth(depth);
   999     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1000     debug_info->describe_scope(pc_offset, method, jvms->bci());
  1003   // Mark the end of the scope set.
  1004   debug_info->end_non_safepoint(pc_offset);
  1009 // helper for Fill_buffer bailout logic
  1010 static void turn_off_compiler(Compile* C) {
  1011   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
  1012     // Do not turn off compilation if a single giant method has
  1013     // blown the code cache size.
  1014     C->record_failure("excessive request to CodeCache");
  1015   } else {
  1016     // Let CompilerBroker disable further compilations.
  1017     C->record_failure("CodeCache is full");
  1022 //------------------------------Fill_buffer------------------------------------
  1023 void Compile::Fill_buffer() {
  1025   // Set the initially allocated size
  1026   int  code_req   = initial_code_capacity;
  1027   int  locs_req   = initial_locs_capacity;
  1028   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1029   int  const_req  = initial_const_capacity;
  1030   bool labels_not_set = true;
  1032   int  pad_req    = NativeCall::instruction_size;
  1033   // The extra spacing after the code is necessary on some platforms.
  1034   // Sometimes we need to patch in a jump after the last instruction,
  1035   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1037   uint i;
  1038   // Compute the byte offset where we can store the deopt pc.
  1039   if (fixed_slots() != 0) {
  1040     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1043   // Compute prolog code size
  1044   _method_size = 0;
  1045   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1046 #ifdef IA64
  1047   if (save_argument_registers()) {
  1048     // 4815101: this is a stub with implicit and unknown precision fp args.
  1049     // The usual spill mechanism can only generate stfd's in this case, which
  1050     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1051     // Instead, we hack around the normal spill mechanism using stfspill's and
  1052     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1053     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1054     //
  1055     // If we ever implement 16-byte 'registers' == stack slots, we can
  1056     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1057     // instead of stfd/stfs/ldfd/ldfs.
  1058     _frame_slots += 8*(16/BytesPerInt);
  1060 #endif
  1061   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1063   // Create an array of unused labels, one for each basic block
  1064   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1066   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1067     blk_labels[i].init();
  1070   // If this machine supports different size branch offsets, then pre-compute
  1071   // the length of the blocks
  1072   if( _matcher->is_short_branch_offset(0) ) {
  1073     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
  1074     labels_not_set = false;
  1077   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1078   int exception_handler_req = size_exception_handler();
  1079   int deopt_handler_req = size_deopt_handler();
  1080   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1081   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1082   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1083   code_req += MAX_inst_size;    // ensure per-instruction margin
  1084   if (StressCodeBuffers)
  1085     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1086   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
  1087   CodeBuffer* cb = code_buffer();
  1088   cb->initialize(total_req, locs_req);
  1090   // Have we run out of code space?
  1091   if (cb->blob() == NULL) {
  1092     turn_off_compiler(this);
  1093     return;
  1095   // Configure the code buffer.
  1096   cb->initialize_consts_size(const_req);
  1097   cb->initialize_stubs_size(stub_req);
  1098   cb->initialize_oop_recorder(env()->oop_recorder());
  1100   // fill in the nop array for bundling computations
  1101   MachNode *_nop_list[Bundle::_nop_count];
  1102   Bundle::initialize_nops(_nop_list, this);
  1104   // Create oopmap set.
  1105   _oop_map_set = new OopMapSet();
  1107   // !!!!! This preserves old handling of oopmaps for now
  1108   debug_info()->set_oopmaps(_oop_map_set);
  1110   // Count and start of implicit null check instructions
  1111   uint inct_cnt = 0;
  1112   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1114   // Count and start of calls
  1115   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1117   uint  return_offset = 0;
  1118   MachNode *nop = new (this) MachNopNode();
  1120   int previous_offset = 0;
  1121   int current_offset  = 0;
  1122   int last_call_offset = -1;
  1124   // Create an array of unused labels, one for each basic block, if printing is enabled
  1125 #ifndef PRODUCT
  1126   int *node_offsets      = NULL;
  1127   uint  node_offset_limit = unique();
  1130   if ( print_assembly() )
  1131     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1132 #endif
  1134   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1136   // ------------------
  1137   // Now fill in the code buffer
  1138   Node *delay_slot = NULL;
  1140   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1141     Block *b = _cfg->_blocks[i];
  1143     Node *head = b->head();
  1145     // If this block needs to start aligned (i.e, can be reached other
  1146     // than by falling-thru from the previous block), then force the
  1147     // start of a new bundle.
  1148     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1149       cb->flush_bundle(true);
  1151     // Define the label at the beginning of the basic block
  1152     if( labels_not_set )
  1153       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1155     else
  1156       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1157               "label position does not match code offset" );
  1159     uint last_inst = b->_nodes.size();
  1161     // Emit block normally, except for last instruction.
  1162     // Emit means "dump code bits into code buffer".
  1163     for( uint j = 0; j<last_inst; j++ ) {
  1165       // Get the node
  1166       Node* n = b->_nodes[j];
  1168       // See if delay slots are supported
  1169       if (valid_bundle_info(n) &&
  1170           node_bundling(n)->used_in_unconditional_delay()) {
  1171         assert(delay_slot == NULL, "no use of delay slot node");
  1172         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1174         delay_slot = n;
  1175         continue;
  1178       // If this starts a new instruction group, then flush the current one
  1179       // (but allow split bundles)
  1180       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1181         cb->flush_bundle(false);
  1183       // The following logic is duplicated in the code ifdeffed for
  1184       // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
  1185       // should be factored out.  Or maybe dispersed to the nodes?
  1187       // Special handling for SafePoint/Call Nodes
  1188       bool is_mcall = false;
  1189       if( n->is_Mach() ) {
  1190         MachNode *mach = n->as_Mach();
  1191         is_mcall = n->is_MachCall();
  1192         bool is_sfn = n->is_MachSafePoint();
  1194         // If this requires all previous instructions be flushed, then do so
  1195         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1196           cb->flush_bundle(true);
  1197           current_offset = cb->code_size();
  1200         // align the instruction if necessary
  1201         int nop_size = nop->size(_regalloc);
  1202         int padding = mach->compute_padding(current_offset);
  1203         // Make sure safepoint node for polling is distinct from a call's
  1204         // return by adding a nop if needed.
  1205         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1206           padding = nop_size;
  1208         assert( labels_not_set || padding == 0, "instruction should already be aligned")
  1210         if(padding > 0) {
  1211           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1212           int nops_cnt = padding / nop_size;
  1213           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1214           b->_nodes.insert(j++, nop);
  1215           last_inst++;
  1216           _cfg->_bbs.map( nop->_idx, b );
  1217           nop->emit(*cb, _regalloc);
  1218           cb->flush_bundle(true);
  1219           current_offset = cb->code_size();
  1222         // Remember the start of the last call in a basic block
  1223         if (is_mcall) {
  1224           MachCallNode *mcall = mach->as_MachCall();
  1226           // This destination address is NOT PC-relative
  1227           mcall->method_set((intptr_t)mcall->entry_point());
  1229           // Save the return address
  1230           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1232           if (!mcall->is_safepoint_node()) {
  1233             is_mcall = false;
  1234             is_sfn = false;
  1238         // sfn will be valid whenever mcall is valid now because of inheritance
  1239         if( is_sfn || is_mcall ) {
  1241           // Handle special safepoint nodes for synchronization
  1242           if( !is_mcall ) {
  1243             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1244             // !!!!! Stubs only need an oopmap right now, so bail out
  1245             if( sfn->jvms()->method() == NULL) {
  1246               // Write the oopmap directly to the code blob??!!
  1247 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1248               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1249 #             endif
  1250               continue;
  1252           } // End synchronization
  1254           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1255                                            current_offset);
  1256           Process_OopMap_Node(mach, current_offset);
  1257         } // End if safepoint
  1259         // If this is a null check, then add the start of the previous instruction to the list
  1260         else if( mach->is_MachNullCheck() ) {
  1261           inct_starts[inct_cnt++] = previous_offset;
  1264         // If this is a branch, then fill in the label with the target BB's label
  1265         else if ( mach->is_Branch() ) {
  1267           if ( mach->ideal_Opcode() == Op_Jump ) {
  1268             for (uint h = 0; h < b->_num_succs; h++ ) {
  1269               Block* succs_block = b->_succs[h];
  1270               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1271                 Node* jpn = succs_block->pred(j);
  1272                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1273                   uint block_num = succs_block->non_connector()->_pre_order;
  1274                   Label *blkLabel = &blk_labels[block_num];
  1275                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1279           } else {
  1280             // For Branchs
  1281             // This requires the TRUE branch target be in succs[0]
  1282             uint block_num = b->non_connector_successor(0)->_pre_order;
  1283             mach->label_set( blk_labels[block_num], block_num );
  1287 #ifdef ASSERT
  1288         // Check that oop-store preceeds the card-mark
  1289         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1290           uint storeCM_idx = j;
  1291           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1292           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1293           uint i4;
  1294           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1295             if( b->_nodes[i4] == oop_store ) break;
  1297           // Note: This test can provide a false failure if other precedence
  1298           // edges have been added to the storeCMNode.
  1299           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1301 #endif
  1303         else if( !n->is_Proj() ) {
  1304           // Remember the begining of the previous instruction, in case
  1305           // it's followed by a flag-kill and a null-check.  Happens on
  1306           // Intel all the time, with add-to-memory kind of opcodes.
  1307           previous_offset = current_offset;
  1311       // Verify that there is sufficient space remaining
  1312       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1313       if (cb->blob() == NULL) {
  1314         turn_off_compiler(this);
  1315         return;
  1318       // Save the offset for the listing
  1319 #ifndef PRODUCT
  1320       if( node_offsets && n->_idx < node_offset_limit )
  1321         node_offsets[n->_idx] = cb->code_size();
  1322 #endif
  1324       // "Normal" instruction case
  1325       n->emit(*cb, _regalloc);
  1326       current_offset  = cb->code_size();
  1327       non_safepoints.observe_instruction(n, current_offset);
  1329       // mcall is last "call" that can be a safepoint
  1330       // record it so we can see if a poll will directly follow it
  1331       // in which case we'll need a pad to make the PcDesc sites unique
  1332       // see  5010568. This can be slightly inaccurate but conservative
  1333       // in the case that return address is not actually at current_offset.
  1334       // This is a small price to pay.
  1336       if (is_mcall) {
  1337         last_call_offset = current_offset;
  1340       // See if this instruction has a delay slot
  1341       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1342         assert(delay_slot != NULL, "expecting delay slot node");
  1344         // Back up 1 instruction
  1345         cb->set_code_end(
  1346           cb->code_end()-Pipeline::instr_unit_size());
  1348         // Save the offset for the listing
  1349 #ifndef PRODUCT
  1350         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1351           node_offsets[delay_slot->_idx] = cb->code_size();
  1352 #endif
  1354         // Support a SafePoint in the delay slot
  1355         if( delay_slot->is_MachSafePoint() ) {
  1356           MachNode *mach = delay_slot->as_Mach();
  1357           // !!!!! Stubs only need an oopmap right now, so bail out
  1358           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1359             // Write the oopmap directly to the code blob??!!
  1360 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1361             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1362 #           endif
  1363             delay_slot = NULL;
  1364             continue;
  1367           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1368           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1369                                            adjusted_offset);
  1370           // Generate an OopMap entry
  1371           Process_OopMap_Node(mach, adjusted_offset);
  1374         // Insert the delay slot instruction
  1375         delay_slot->emit(*cb, _regalloc);
  1377         // Don't reuse it
  1378         delay_slot = NULL;
  1381     } // End for all instructions in block
  1383     // If the next block _starts_ a loop, pad this block out to align
  1384     // the loop start a little. Helps prevent pipe stalls at loop starts
  1385     int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1386     if( i<_cfg->_num_blocks-1 ) {
  1387       Block *nb = _cfg->_blocks[i+1];
  1388       uint padding = nb->alignment_padding(current_offset);
  1389       if( padding > 0 ) {
  1390         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1391         b->_nodes.insert( b->_nodes.size(), nop );
  1392         _cfg->_bbs.map( nop->_idx, b );
  1393         nop->emit(*cb, _regalloc);
  1394         current_offset = cb->code_size();
  1398   } // End of for all blocks
  1400   non_safepoints.flush_at_end();
  1402   // Offset too large?
  1403   if (failing())  return;
  1405   // Define a pseudo-label at the end of the code
  1406   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1408   // Compute the size of the first block
  1409   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1411   assert(cb->code_size() < 500000, "method is unreasonably large");
  1413   // ------------------
  1415 #ifndef PRODUCT
  1416   // Information on the size of the method, without the extraneous code
  1417   Scheduling::increment_method_size(cb->code_size());
  1418 #endif
  1420   // ------------------
  1421   // Fill in exception table entries.
  1422   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1424   // Only java methods have exception handlers and deopt handlers
  1425   if (_method) {
  1426     // Emit the exception handler code.
  1427     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1428     // Emit the deopt handler code.
  1429     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1432   // One last check for failed CodeBuffer::expand:
  1433   if (cb->blob() == NULL) {
  1434     turn_off_compiler(this);
  1435     return;
  1438 #ifndef PRODUCT
  1439   // Dump the assembly code, including basic-block numbers
  1440   if (print_assembly()) {
  1441     ttyLocker ttyl;  // keep the following output all in one block
  1442     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1443       // This output goes directly to the tty, not the compiler log.
  1444       // To enable tools to match it up with the compilation activity,
  1445       // be sure to tag this tty output with the compile ID.
  1446       if (xtty != NULL) {
  1447         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1448                    is_osr_compilation()    ? " compile_kind='osr'" :
  1449                    "");
  1451       if (method() != NULL) {
  1452         method()->print_oop();
  1453         print_codes();
  1455       dump_asm(node_offsets, node_offset_limit);
  1456       if (xtty != NULL) {
  1457         xtty->tail("opto_assembly");
  1461 #endif
  1465 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1466   _inc_table.set_size(cnt);
  1468   uint inct_cnt = 0;
  1469   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1470     Block *b = _cfg->_blocks[i];
  1471     Node *n = NULL;
  1472     int j;
  1474     // Find the branch; ignore trailing NOPs.
  1475     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1476       n = b->_nodes[j];
  1477       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1478         break;
  1481     // If we didn't find anything, continue
  1482     if( j < 0 ) continue;
  1484     // Compute ExceptionHandlerTable subtable entry and add it
  1485     // (skip empty blocks)
  1486     if( n->is_Catch() ) {
  1488       // Get the offset of the return from the call
  1489       uint call_return = call_returns[b->_pre_order];
  1490 #ifdef ASSERT
  1491       assert( call_return > 0, "no call seen for this basic block" );
  1492       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1493       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1494 #endif
  1495       // last instruction is a CatchNode, find it's CatchProjNodes
  1496       int nof_succs = b->_num_succs;
  1497       // allocate space
  1498       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1499       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1500       // iterate through all successors
  1501       for (int j = 0; j < nof_succs; j++) {
  1502         Block* s = b->_succs[j];
  1503         bool found_p = false;
  1504         for( uint k = 1; k < s->num_preds(); k++ ) {
  1505           Node *pk = s->pred(k);
  1506           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1507             const CatchProjNode* p = pk->as_CatchProj();
  1508             found_p = true;
  1509             // add the corresponding handler bci & pco information
  1510             if( p->_con != CatchProjNode::fall_through_index ) {
  1511               // p leads to an exception handler (and is not fall through)
  1512               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1513               // no duplicates, please
  1514               if( !handler_bcis.contains(p->handler_bci()) ) {
  1515                 uint block_num = s->non_connector()->_pre_order;
  1516                 handler_bcis.append(p->handler_bci());
  1517                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1522         assert(found_p, "no matching predecessor found");
  1523         // Note:  Due to empty block removal, one block may have
  1524         // several CatchProj inputs, from the same Catch.
  1527       // Set the offset of the return from the call
  1528       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1529       continue;
  1532     // Handle implicit null exception table updates
  1533     if( n->is_MachNullCheck() ) {
  1534       uint block_num = b->non_connector_successor(0)->_pre_order;
  1535       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1536       continue;
  1538   } // End of for all blocks fill in exception table entries
  1541 // Static Variables
  1542 #ifndef PRODUCT
  1543 uint Scheduling::_total_nop_size = 0;
  1544 uint Scheduling::_total_method_size = 0;
  1545 uint Scheduling::_total_branches = 0;
  1546 uint Scheduling::_total_unconditional_delays = 0;
  1547 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1548 #endif
  1550 // Initializer for class Scheduling
  1552 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1553   : _arena(arena),
  1554     _cfg(compile.cfg()),
  1555     _bbs(compile.cfg()->_bbs),
  1556     _regalloc(compile.regalloc()),
  1557     _reg_node(arena),
  1558     _bundle_instr_count(0),
  1559     _bundle_cycle_number(0),
  1560     _scheduled(arena),
  1561     _available(arena),
  1562     _next_node(NULL),
  1563     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1564     _pinch_free_list(arena)
  1565 #ifndef PRODUCT
  1566   , _branches(0)
  1567   , _unconditional_delays(0)
  1568 #endif
  1570   // Create a MachNopNode
  1571   _nop = new (&compile) MachNopNode();
  1573   // Now that the nops are in the array, save the count
  1574   // (but allow entries for the nops)
  1575   _node_bundling_limit = compile.unique();
  1576   uint node_max = _regalloc->node_regs_max_index();
  1578   compile.set_node_bundling_limit(_node_bundling_limit);
  1580   // This one is persistant within the Compile class
  1581   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1583   // Allocate space for fixed-size arrays
  1584   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1585   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1586   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1588   // Clear the arrays
  1589   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1590   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1591   memset(_uses,               0, node_max * sizeof(short));
  1592   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1594   // Clear the bundling information
  1595   memcpy(_bundle_use_elements,
  1596     Pipeline_Use::elaborated_elements,
  1597     sizeof(Pipeline_Use::elaborated_elements));
  1599   // Get the last node
  1600   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1602   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1605 #ifndef PRODUCT
  1606 // Scheduling destructor
  1607 Scheduling::~Scheduling() {
  1608   _total_branches             += _branches;
  1609   _total_unconditional_delays += _unconditional_delays;
  1611 #endif
  1613 // Step ahead "i" cycles
  1614 void Scheduling::step(uint i) {
  1616   Bundle *bundle = node_bundling(_next_node);
  1617   bundle->set_starts_bundle();
  1619   // Update the bundle record, but leave the flags information alone
  1620   if (_bundle_instr_count > 0) {
  1621     bundle->set_instr_count(_bundle_instr_count);
  1622     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1625   // Update the state information
  1626   _bundle_instr_count = 0;
  1627   _bundle_cycle_number += i;
  1628   _bundle_use.step(i);
  1631 void Scheduling::step_and_clear() {
  1632   Bundle *bundle = node_bundling(_next_node);
  1633   bundle->set_starts_bundle();
  1635   // Update the bundle record
  1636   if (_bundle_instr_count > 0) {
  1637     bundle->set_instr_count(_bundle_instr_count);
  1638     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1640     _bundle_cycle_number += 1;
  1643   // Clear the bundling information
  1644   _bundle_instr_count = 0;
  1645   _bundle_use.reset();
  1647   memcpy(_bundle_use_elements,
  1648     Pipeline_Use::elaborated_elements,
  1649     sizeof(Pipeline_Use::elaborated_elements));
  1652 //------------------------------ScheduleAndBundle------------------------------
  1653 // Perform instruction scheduling and bundling over the sequence of
  1654 // instructions in backwards order.
  1655 void Compile::ScheduleAndBundle() {
  1657   // Don't optimize this if it isn't a method
  1658   if (!_method)
  1659     return;
  1661   // Don't optimize this if scheduling is disabled
  1662   if (!do_scheduling())
  1663     return;
  1665   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1667   // Create a data structure for all the scheduling information
  1668   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1670   // Walk backwards over each basic block, computing the needed alignment
  1671   // Walk over all the basic blocks
  1672   scheduling.DoScheduling();
  1675 //------------------------------ComputeLocalLatenciesForward-------------------
  1676 // Compute the latency of all the instructions.  This is fairly simple,
  1677 // because we already have a legal ordering.  Walk over the instructions
  1678 // from first to last, and compute the latency of the instruction based
  1679 // on the latency of the preceeding instruction(s).
  1680 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1681 #ifndef PRODUCT
  1682   if (_cfg->C->trace_opto_output())
  1683     tty->print("# -> ComputeLocalLatenciesForward\n");
  1684 #endif
  1686   // Walk over all the schedulable instructions
  1687   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1689     // This is a kludge, forcing all latency calculations to start at 1.
  1690     // Used to allow latency 0 to force an instruction to the beginning
  1691     // of the bb
  1692     uint latency = 1;
  1693     Node *use = bb->_nodes[j];
  1694     uint nlen = use->len();
  1696     // Walk over all the inputs
  1697     for ( uint k=0; k < nlen; k++ ) {
  1698       Node *def = use->in(k);
  1699       if (!def)
  1700         continue;
  1702       uint l = _node_latency[def->_idx] + use->latency(k);
  1703       if (latency < l)
  1704         latency = l;
  1707     _node_latency[use->_idx] = latency;
  1709 #ifndef PRODUCT
  1710     if (_cfg->C->trace_opto_output()) {
  1711       tty->print("# latency %4d: ", latency);
  1712       use->dump();
  1714 #endif
  1717 #ifndef PRODUCT
  1718   if (_cfg->C->trace_opto_output())
  1719     tty->print("# <- ComputeLocalLatenciesForward\n");
  1720 #endif
  1722 } // end ComputeLocalLatenciesForward
  1724 // See if this node fits into the present instruction bundle
  1725 bool Scheduling::NodeFitsInBundle(Node *n) {
  1726   uint n_idx = n->_idx;
  1728   // If this is the unconditional delay instruction, then it fits
  1729   if (n == _unconditional_delay_slot) {
  1730 #ifndef PRODUCT
  1731     if (_cfg->C->trace_opto_output())
  1732       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1733 #endif
  1734     return (true);
  1737   // If the node cannot be scheduled this cycle, skip it
  1738   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1739 #ifndef PRODUCT
  1740     if (_cfg->C->trace_opto_output())
  1741       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1742         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1743 #endif
  1744     return (false);
  1747   const Pipeline *node_pipeline = n->pipeline();
  1749   uint instruction_count = node_pipeline->instructionCount();
  1750   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1751     instruction_count = 0;
  1752   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1753     instruction_count++;
  1755   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1756 #ifndef PRODUCT
  1757     if (_cfg->C->trace_opto_output())
  1758       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1759         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1760 #endif
  1761     return (false);
  1764   // Don't allow non-machine nodes to be handled this way
  1765   if (!n->is_Mach() && instruction_count == 0)
  1766     return (false);
  1768   // See if there is any overlap
  1769   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1771   if (delay > 0) {
  1772 #ifndef PRODUCT
  1773     if (_cfg->C->trace_opto_output())
  1774       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1775 #endif
  1776     return false;
  1779 #ifndef PRODUCT
  1780   if (_cfg->C->trace_opto_output())
  1781     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1782 #endif
  1784   return true;
  1787 Node * Scheduling::ChooseNodeToBundle() {
  1788   uint siz = _available.size();
  1790   if (siz == 0) {
  1792 #ifndef PRODUCT
  1793     if (_cfg->C->trace_opto_output())
  1794       tty->print("#   ChooseNodeToBundle: NULL\n");
  1795 #endif
  1796     return (NULL);
  1799   // Fast path, if only 1 instruction in the bundle
  1800   if (siz == 1) {
  1801 #ifndef PRODUCT
  1802     if (_cfg->C->trace_opto_output()) {
  1803       tty->print("#   ChooseNodeToBundle (only 1): ");
  1804       _available[0]->dump();
  1806 #endif
  1807     return (_available[0]);
  1810   // Don't bother, if the bundle is already full
  1811   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1812     for ( uint i = 0; i < siz; i++ ) {
  1813       Node *n = _available[i];
  1815       // Skip projections, we'll handle them another way
  1816       if (n->is_Proj())
  1817         continue;
  1819       // This presupposed that instructions are inserted into the
  1820       // available list in a legality order; i.e. instructions that
  1821       // must be inserted first are at the head of the list
  1822       if (NodeFitsInBundle(n)) {
  1823 #ifndef PRODUCT
  1824         if (_cfg->C->trace_opto_output()) {
  1825           tty->print("#   ChooseNodeToBundle: ");
  1826           n->dump();
  1828 #endif
  1829         return (n);
  1834   // Nothing fits in this bundle, choose the highest priority
  1835 #ifndef PRODUCT
  1836   if (_cfg->C->trace_opto_output()) {
  1837     tty->print("#   ChooseNodeToBundle: ");
  1838     _available[0]->dump();
  1840 #endif
  1842   return _available[0];
  1845 //------------------------------AddNodeToAvailableList-------------------------
  1846 void Scheduling::AddNodeToAvailableList(Node *n) {
  1847   assert( !n->is_Proj(), "projections never directly made available" );
  1848 #ifndef PRODUCT
  1849   if (_cfg->C->trace_opto_output()) {
  1850     tty->print("#   AddNodeToAvailableList: ");
  1851     n->dump();
  1853 #endif
  1855   int latency = _current_latency[n->_idx];
  1857   // Insert in latency order (insertion sort)
  1858   uint i;
  1859   for ( i=0; i < _available.size(); i++ )
  1860     if (_current_latency[_available[i]->_idx] > latency)
  1861       break;
  1863   // Special Check for compares following branches
  1864   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1865     int op = n->as_Mach()->ideal_Opcode();
  1866     Node *last = _scheduled[0];
  1867     if( last->is_MachIf() && last->in(1) == n &&
  1868         ( op == Op_CmpI ||
  1869           op == Op_CmpU ||
  1870           op == Op_CmpP ||
  1871           op == Op_CmpF ||
  1872           op == Op_CmpD ||
  1873           op == Op_CmpL ) ) {
  1875       // Recalculate position, moving to front of same latency
  1876       for ( i=0 ; i < _available.size(); i++ )
  1877         if (_current_latency[_available[i]->_idx] >= latency)
  1878           break;
  1882   // Insert the node in the available list
  1883   _available.insert(i, n);
  1885 #ifndef PRODUCT
  1886   if (_cfg->C->trace_opto_output())
  1887     dump_available();
  1888 #endif
  1891 //------------------------------DecrementUseCounts-----------------------------
  1892 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1893   for ( uint i=0; i < n->len(); i++ ) {
  1894     Node *def = n->in(i);
  1895     if (!def) continue;
  1896     if( def->is_Proj() )        // If this is a machine projection, then
  1897       def = def->in(0);         // propagate usage thru to the base instruction
  1899     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1900       continue;
  1902     // Compute the latency
  1903     uint l = _bundle_cycle_number + n->latency(i);
  1904     if (_current_latency[def->_idx] < l)
  1905       _current_latency[def->_idx] = l;
  1907     // If this does not have uses then schedule it
  1908     if ((--_uses[def->_idx]) == 0)
  1909       AddNodeToAvailableList(def);
  1913 //------------------------------AddNodeToBundle--------------------------------
  1914 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1915 #ifndef PRODUCT
  1916   if (_cfg->C->trace_opto_output()) {
  1917     tty->print("#   AddNodeToBundle: ");
  1918     n->dump();
  1920 #endif
  1922   // Remove this from the available list
  1923   uint i;
  1924   for (i = 0; i < _available.size(); i++)
  1925     if (_available[i] == n)
  1926       break;
  1927   assert(i < _available.size(), "entry in _available list not found");
  1928   _available.remove(i);
  1930   // See if this fits in the current bundle
  1931   const Pipeline *node_pipeline = n->pipeline();
  1932   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1934   // Check for instructions to be placed in the delay slot. We
  1935   // do this before we actually schedule the current instruction,
  1936   // because the delay slot follows the current instruction.
  1937   if (Pipeline::_branch_has_delay_slot &&
  1938       node_pipeline->hasBranchDelay() &&
  1939       !_unconditional_delay_slot) {
  1941     uint siz = _available.size();
  1943     // Conditional branches can support an instruction that
  1944     // is unconditionally executed and not dependant by the
  1945     // branch, OR a conditionally executed instruction if
  1946     // the branch is taken.  In practice, this means that
  1947     // the first instruction at the branch target is
  1948     // copied to the delay slot, and the branch goes to
  1949     // the instruction after that at the branch target
  1950     if ( n->is_Mach() && n->is_Branch() ) {
  1952       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1953       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1955 #ifndef PRODUCT
  1956       _branches++;
  1957 #endif
  1959       // At least 1 instruction is on the available list
  1960       // that is not dependant on the branch
  1961       for (uint i = 0; i < siz; i++) {
  1962         Node *d = _available[i];
  1963         const Pipeline *avail_pipeline = d->pipeline();
  1965         // Don't allow safepoints in the branch shadow, that will
  1966         // cause a number of difficulties
  1967         if ( avail_pipeline->instructionCount() == 1 &&
  1968             !avail_pipeline->hasMultipleBundles() &&
  1969             !avail_pipeline->hasBranchDelay() &&
  1970             Pipeline::instr_has_unit_size() &&
  1971             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  1972             NodeFitsInBundle(d) &&
  1973             !node_bundling(d)->used_in_delay()) {
  1975           if (d->is_Mach() && !d->is_MachSafePoint()) {
  1976             // A node that fits in the delay slot was found, so we need to
  1977             // set the appropriate bits in the bundle pipeline information so
  1978             // that it correctly indicates resource usage.  Later, when we
  1979             // attempt to add this instruction to the bundle, we will skip
  1980             // setting the resource usage.
  1981             _unconditional_delay_slot = d;
  1982             node_bundling(n)->set_use_unconditional_delay();
  1983             node_bundling(d)->set_used_in_unconditional_delay();
  1984             _bundle_use.add_usage(avail_pipeline->resourceUse());
  1985             _current_latency[d->_idx] = _bundle_cycle_number;
  1986             _next_node = d;
  1987             ++_bundle_instr_count;
  1988 #ifndef PRODUCT
  1989             _unconditional_delays++;
  1990 #endif
  1991             break;
  1997     // No delay slot, add a nop to the usage
  1998     if (!_unconditional_delay_slot) {
  1999       // See if adding an instruction in the delay slot will overflow
  2000       // the bundle.
  2001       if (!NodeFitsInBundle(_nop)) {
  2002 #ifndef PRODUCT
  2003         if (_cfg->C->trace_opto_output())
  2004           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2005 #endif
  2006         step(1);
  2009       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2010       _next_node = _nop;
  2011       ++_bundle_instr_count;
  2014     // See if the instruction in the delay slot requires a
  2015     // step of the bundles
  2016     if (!NodeFitsInBundle(n)) {
  2017 #ifndef PRODUCT
  2018         if (_cfg->C->trace_opto_output())
  2019           tty->print("#  *** STEP(branch won't fit) ***\n");
  2020 #endif
  2021         // Update the state information
  2022         _bundle_instr_count = 0;
  2023         _bundle_cycle_number += 1;
  2024         _bundle_use.step(1);
  2028   // Get the number of instructions
  2029   uint instruction_count = node_pipeline->instructionCount();
  2030   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2031     instruction_count = 0;
  2033   // Compute the latency information
  2034   uint delay = 0;
  2036   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2037     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2038     if (relative_latency < 0)
  2039       relative_latency = 0;
  2041     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2043     // Does not fit in this bundle, start a new one
  2044     if (delay > 0) {
  2045       step(delay);
  2047 #ifndef PRODUCT
  2048       if (_cfg->C->trace_opto_output())
  2049         tty->print("#  *** STEP(%d) ***\n", delay);
  2050 #endif
  2054   // If this was placed in the delay slot, ignore it
  2055   if (n != _unconditional_delay_slot) {
  2057     if (delay == 0) {
  2058       if (node_pipeline->hasMultipleBundles()) {
  2059 #ifndef PRODUCT
  2060         if (_cfg->C->trace_opto_output())
  2061           tty->print("#  *** STEP(multiple instructions) ***\n");
  2062 #endif
  2063         step(1);
  2066       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2067 #ifndef PRODUCT
  2068         if (_cfg->C->trace_opto_output())
  2069           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2070             instruction_count + _bundle_instr_count,
  2071             Pipeline::_max_instrs_per_cycle);
  2072 #endif
  2073         step(1);
  2077     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2078       _bundle_instr_count++;
  2080     // Set the node's latency
  2081     _current_latency[n->_idx] = _bundle_cycle_number;
  2083     // Now merge the functional unit information
  2084     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2085       _bundle_use.add_usage(node_usage);
  2087     // Increment the number of instructions in this bundle
  2088     _bundle_instr_count += instruction_count;
  2090     // Remember this node for later
  2091     if (n->is_Mach())
  2092       _next_node = n;
  2095   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2096   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2097   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2098   // into the block.  All other scheduled nodes get put in the schedule here.
  2099   int op = n->Opcode();
  2100   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2101       (op != Op_Node &&         // Not an unused antidepedence node and
  2102        // not an unallocated boxlock
  2103        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2105     // Push any trailing projections
  2106     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2107       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2108         Node *foi = n->fast_out(i);
  2109         if( foi->is_Proj() )
  2110           _scheduled.push(foi);
  2114     // Put the instruction in the schedule list
  2115     _scheduled.push(n);
  2118 #ifndef PRODUCT
  2119   if (_cfg->C->trace_opto_output())
  2120     dump_available();
  2121 #endif
  2123   // Walk all the definitions, decrementing use counts, and
  2124   // if a definition has a 0 use count, place it in the available list.
  2125   DecrementUseCounts(n,bb);
  2128 //------------------------------ComputeUseCount--------------------------------
  2129 // This method sets the use count within a basic block.  We will ignore all
  2130 // uses outside the current basic block.  As we are doing a backwards walk,
  2131 // any node we reach that has a use count of 0 may be scheduled.  This also
  2132 // avoids the problem of cyclic references from phi nodes, as long as phi
  2133 // nodes are at the front of the basic block.  This method also initializes
  2134 // the available list to the set of instructions that have no uses within this
  2135 // basic block.
  2136 void Scheduling::ComputeUseCount(const Block *bb) {
  2137 #ifndef PRODUCT
  2138   if (_cfg->C->trace_opto_output())
  2139     tty->print("# -> ComputeUseCount\n");
  2140 #endif
  2142   // Clear the list of available and scheduled instructions, just in case
  2143   _available.clear();
  2144   _scheduled.clear();
  2146   // No delay slot specified
  2147   _unconditional_delay_slot = NULL;
  2149 #ifdef ASSERT
  2150   for( uint i=0; i < bb->_nodes.size(); i++ )
  2151     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2152 #endif
  2154   // Force the _uses count to never go to zero for unscheduable pieces
  2155   // of the block
  2156   for( uint k = 0; k < _bb_start; k++ )
  2157     _uses[bb->_nodes[k]->_idx] = 1;
  2158   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2159     _uses[bb->_nodes[l]->_idx] = 1;
  2161   // Iterate backwards over the instructions in the block.  Don't count the
  2162   // branch projections at end or the block header instructions.
  2163   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2164     Node *n = bb->_nodes[j];
  2165     if( n->is_Proj() ) continue; // Projections handled another way
  2167     // Account for all uses
  2168     for ( uint k = 0; k < n->len(); k++ ) {
  2169       Node *inp = n->in(k);
  2170       if (!inp) continue;
  2171       assert(inp != n, "no cycles allowed" );
  2172       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2173         if( inp->is_Proj() )    // Skip through Proj's
  2174           inp = inp->in(0);
  2175         ++_uses[inp->_idx];     // Count 1 block-local use
  2179     // If this instruction has a 0 use count, then it is available
  2180     if (!_uses[n->_idx]) {
  2181       _current_latency[n->_idx] = _bundle_cycle_number;
  2182       AddNodeToAvailableList(n);
  2185 #ifndef PRODUCT
  2186     if (_cfg->C->trace_opto_output()) {
  2187       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2188       n->dump();
  2190 #endif
  2193 #ifndef PRODUCT
  2194   if (_cfg->C->trace_opto_output())
  2195     tty->print("# <- ComputeUseCount\n");
  2196 #endif
  2199 // This routine performs scheduling on each basic block in reverse order,
  2200 // using instruction latencies and taking into account function unit
  2201 // availability.
  2202 void Scheduling::DoScheduling() {
  2203 #ifndef PRODUCT
  2204   if (_cfg->C->trace_opto_output())
  2205     tty->print("# -> DoScheduling\n");
  2206 #endif
  2208   Block *succ_bb = NULL;
  2209   Block *bb;
  2211   // Walk over all the basic blocks in reverse order
  2212   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2213     bb = _cfg->_blocks[i];
  2215 #ifndef PRODUCT
  2216     if (_cfg->C->trace_opto_output()) {
  2217       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2218       for (uint j = 0; j < bb->_nodes.size(); j++)
  2219         bb->_nodes[j]->dump();
  2221 #endif
  2223     // On the head node, skip processing
  2224     if( bb == _cfg->_broot )
  2225       continue;
  2227     // Skip empty, connector blocks
  2228     if (bb->is_connector())
  2229       continue;
  2231     // If the following block is not the sole successor of
  2232     // this one, then reset the pipeline information
  2233     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2234 #ifndef PRODUCT
  2235       if (_cfg->C->trace_opto_output()) {
  2236         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2237                    _next_node->_idx, _bundle_instr_count);
  2239 #endif
  2240       step_and_clear();
  2243     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2244     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2245     _bb_end = bb->_nodes.size()-1;
  2246     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2247       Node *n = bb->_nodes[_bb_start];
  2248       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2249       // Also, MachIdealNodes do not get scheduled
  2250       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2251       MachNode *mach = n->as_Mach();
  2252       int iop = mach->ideal_Opcode();
  2253       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2254       if( iop == Op_Con ) continue;      // Do not schedule Top
  2255       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2256           mach->pipeline() == MachNode::pipeline_class() &&
  2257           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2258         continue;
  2259       break;                    // Funny loop structure to be sure...
  2261     // Compute last "interesting" instruction in block - last instruction we
  2262     // might schedule.  _bb_end points just after last schedulable inst.  We
  2263     // normally schedule conditional branches (despite them being forced last
  2264     // in the block), because they have delay slots we can fill.  Calls all
  2265     // have their delay slots filled in the template expansions, so we don't
  2266     // bother scheduling them.
  2267     Node *last = bb->_nodes[_bb_end];
  2268     if( last->is_Catch() ||
  2269        (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2270       // There must be a prior call.  Skip it.
  2271       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2272         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2274     } else if( last->is_MachNullCheck() ) {
  2275       // Backup so the last null-checked memory instruction is
  2276       // outside the schedulable range. Skip over the nullcheck,
  2277       // projection, and the memory nodes.
  2278       Node *mem = last->in(1);
  2279       do {
  2280         _bb_end--;
  2281       } while (mem != bb->_nodes[_bb_end]);
  2282     } else {
  2283       // Set _bb_end to point after last schedulable inst.
  2284       _bb_end++;
  2287     assert( _bb_start <= _bb_end, "inverted block ends" );
  2289     // Compute the register antidependencies for the basic block
  2290     ComputeRegisterAntidependencies(bb);
  2291     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2293     // Compute intra-bb latencies for the nodes
  2294     ComputeLocalLatenciesForward(bb);
  2296     // Compute the usage within the block, and set the list of all nodes
  2297     // in the block that have no uses within the block.
  2298     ComputeUseCount(bb);
  2300     // Schedule the remaining instructions in the block
  2301     while ( _available.size() > 0 ) {
  2302       Node *n = ChooseNodeToBundle();
  2303       AddNodeToBundle(n,bb);
  2306     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2307 #ifdef ASSERT
  2308     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2309       Node *n = bb->_nodes[l];
  2310       uint m;
  2311       for( m = 0; m < _bb_end-_bb_start; m++ )
  2312         if( _scheduled[m] == n )
  2313           break;
  2314       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2316 #endif
  2318     // Now copy the instructions (in reverse order) back to the block
  2319     for ( uint k = _bb_start; k < _bb_end; k++ )
  2320       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2322 #ifndef PRODUCT
  2323     if (_cfg->C->trace_opto_output()) {
  2324       tty->print("#  Schedule BB#%03d (final)\n", i);
  2325       uint current = 0;
  2326       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2327         Node *n = bb->_nodes[j];
  2328         if( valid_bundle_info(n) ) {
  2329           Bundle *bundle = node_bundling(n);
  2330           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2331             tty->print("*** Bundle: ");
  2332             bundle->dump();
  2334           n->dump();
  2338 #endif
  2339 #ifdef ASSERT
  2340   verify_good_schedule(bb,"after block local scheduling");
  2341 #endif
  2344 #ifndef PRODUCT
  2345   if (_cfg->C->trace_opto_output())
  2346     tty->print("# <- DoScheduling\n");
  2347 #endif
  2349   // Record final node-bundling array location
  2350   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2352 } // end DoScheduling
  2354 //------------------------------verify_good_schedule---------------------------
  2355 // Verify that no live-range used in the block is killed in the block by a
  2356 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2358 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2359 static bool edge_from_to( Node *from, Node *to ) {
  2360   for( uint i=0; i<from->len(); i++ )
  2361     if( from->in(i) == to )
  2362       return true;
  2363   return false;
  2366 #ifdef ASSERT
  2367 //------------------------------verify_do_def----------------------------------
  2368 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2369   // Check for bad kills
  2370   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2371     Node *prior_use = _reg_node[def];
  2372     if( prior_use && !edge_from_to(prior_use,n) ) {
  2373       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2374       n->dump();
  2375       tty->print_cr("...");
  2376       prior_use->dump();
  2377       assert_msg(edge_from_to(prior_use,n),msg);
  2379     _reg_node.map(def,NULL); // Kill live USEs
  2383 //------------------------------verify_good_schedule---------------------------
  2384 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2386   // Zap to something reasonable for the verify code
  2387   _reg_node.clear();
  2389   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2390   // kill a live value (other than the one it's supposed to).  Add each
  2391   // USE to the live set.
  2392   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2393     Node *n = b->_nodes[i];
  2394     int n_op = n->Opcode();
  2395     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2396       // Fat-proj kills a slew of registers
  2397       RegMask rm = n->out_RegMask();// Make local copy
  2398       while( rm.is_NotEmpty() ) {
  2399         OptoReg::Name kill = rm.find_first_elem();
  2400         rm.Remove(kill);
  2401         verify_do_def( n, kill, msg );
  2403     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2404       // Get DEF'd registers the normal way
  2405       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2406       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2409     // Now make all USEs live
  2410     for( uint i=1; i<n->req(); i++ ) {
  2411       Node *def = n->in(i);
  2412       assert(def != 0, "input edge required");
  2413       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2414       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2415       if( OptoReg::is_valid(reg_lo) ) {
  2416         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
  2417         _reg_node.map(reg_lo,n);
  2419       if( OptoReg::is_valid(reg_hi) ) {
  2420         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
  2421         _reg_node.map(reg_hi,n);
  2427   // Zap to something reasonable for the Antidependence code
  2428   _reg_node.clear();
  2430 #endif
  2432 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2433 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2434   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2435     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2436     from = from->in(0);
  2438   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2439       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2440     from->add_prec(to);
  2443 //------------------------------anti_do_def------------------------------------
  2444 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2445   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2446     return;
  2448   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2449   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2450       is_def ) {    // Check for a true def (not a kill)
  2451     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2452     return;
  2455   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2456   debug_only( def = (Node*)0xdeadbeef; )
  2458   // After some number of kills there _may_ be a later def
  2459   Node *later_def = NULL;
  2461   // Finding a kill requires a real pinch-point.
  2462   // Check for not already having a pinch-point.
  2463   // Pinch points are Op_Node's.
  2464   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2465     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2466     if ( _pinch_free_list.size() > 0) {
  2467       pinch = _pinch_free_list.pop();
  2468     } else {
  2469       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2471     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2472       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2473       return;
  2475     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2476     _reg_node.map(def_reg,pinch); // Record pinch-point
  2477     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2478     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2479       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2480       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2481       later_def = NULL;           // and no later def
  2483     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2484   } else {                        // Else have valid pinch point
  2485     if( pinch->in(0) )            // If there is a later-def
  2486       later_def = pinch->in(0);   // Get it
  2489   // Add output-dependence edge from later def to kill
  2490   if( later_def )               // If there is some original def
  2491     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2493   // See if current kill is also a use, and so is forced to be the pinch-point.
  2494   if( pinch->Opcode() == Op_Node ) {
  2495     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2496     for( uint i=1; i<uses->req(); i++ ) {
  2497       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2498           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2499         // Yes, found a use/kill pinch-point
  2500         pinch->set_req(0,NULL);  //
  2501         pinch->replace_by(kill); // Move anti-dep edges up
  2502         pinch = kill;
  2503         _reg_node.map(def_reg,pinch);
  2504         return;
  2509   // Add edge from kill to pinch-point
  2510   add_prec_edge_from_to(kill,pinch);
  2513 //------------------------------anti_do_use------------------------------------
  2514 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2515   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2516     return;
  2517   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2518   // Check for no later def_reg/kill in block
  2519   if( pinch && _bbs[pinch->_idx] == b &&
  2520       // Use has to be block-local as well
  2521       _bbs[use->_idx] == b ) {
  2522     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2523         pinch->req() == 1 ) {   // pinch not yet in block?
  2524       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2525       // Insert the pinch-point in the block just after the last use
  2526       b->_nodes.insert(b->find_node(use)+1,pinch);
  2527       _bb_end++;                // Increase size scheduled region in block
  2530     add_prec_edge_from_to(pinch,use);
  2534 //------------------------------ComputeRegisterAntidependences-----------------
  2535 // We insert antidependences between the reads and following write of
  2536 // allocated registers to prevent illegal code motion. Hopefully, the
  2537 // number of added references should be fairly small, especially as we
  2538 // are only adding references within the current basic block.
  2539 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2541 #ifdef ASSERT
  2542   verify_good_schedule(b,"before block local scheduling");
  2543 #endif
  2545   // A valid schedule, for each register independently, is an endless cycle
  2546   // of: a def, then some uses (connected to the def by true dependencies),
  2547   // then some kills (defs with no uses), finally the cycle repeats with a new
  2548   // def.  The uses are allowed to float relative to each other, as are the
  2549   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2550   // antidependencies between all uses of a single def and all kills that
  2551   // follow, up to the next def.  More edges are redundant, because later defs
  2552   // & kills are already serialized with true or antidependencies.  To keep
  2553   // the edge count down, we add a 'pinch point' node if there's more than
  2554   // one use or more than one kill/def.
  2556   // We add dependencies in one bottom-up pass.
  2558   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2560   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2561   // register.  If not, we record the DEF/KILL in _reg_node, the
  2562   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2563   // "pinch point", a new Node that's in the graph but not in the block.
  2564   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2565   // We put the pinch point in _reg_node.  If there's already a pinch point
  2566   // we merely add an edge from the current DEF/KILL to the pinch point.
  2568   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2569   // put an edge from the pinch point to the USE.
  2571   // To be expedient, the _reg_node array is pre-allocated for the whole
  2572   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2573   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2574   // block.  Leftover node from some prior block is treated like a NULL (no
  2575   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2576   // it being in the current block.
  2577   bool fat_proj_seen = false;
  2578   uint last_safept = _bb_end-1;
  2579   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2580   Node* last_safept_node = end_node;
  2581   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2582     Node *n = b->_nodes[i];
  2583     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2584     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2585       // Fat-proj kills a slew of registers
  2586       // This can add edges to 'n' and obscure whether or not it was a def,
  2587       // hence the is_def flag.
  2588       fat_proj_seen = true;
  2589       RegMask rm = n->out_RegMask();// Make local copy
  2590       while( rm.is_NotEmpty() ) {
  2591         OptoReg::Name kill = rm.find_first_elem();
  2592         rm.Remove(kill);
  2593         anti_do_def( b, n, kill, is_def );
  2595     } else {
  2596       // Get DEF'd registers the normal way
  2597       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2598       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2601     // Check each register used by this instruction for a following DEF/KILL
  2602     // that must occur afterward and requires an anti-dependence edge.
  2603     for( uint j=0; j<n->req(); j++ ) {
  2604       Node *def = n->in(j);
  2605       if( def ) {
  2606         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2607         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2608         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2611     // Do not allow defs of new derived values to float above GC
  2612     // points unless the base is definitely available at the GC point.
  2614     Node *m = b->_nodes[i];
  2616     // Add precedence edge from following safepoint to use of derived pointer
  2617     if( last_safept_node != end_node &&
  2618         m != last_safept_node) {
  2619       for (uint k = 1; k < m->req(); k++) {
  2620         const Type *t = m->in(k)->bottom_type();
  2621         if( t->isa_oop_ptr() &&
  2622             t->is_ptr()->offset() != 0 ) {
  2623           last_safept_node->add_prec( m );
  2624           break;
  2629     if( n->jvms() ) {           // Precedence edge from derived to safept
  2630       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2631       if( b->_nodes[last_safept] != last_safept_node ) {
  2632         last_safept = b->find_node(last_safept_node);
  2634       for( uint j=last_safept; j > i; j-- ) {
  2635         Node *mach = b->_nodes[j];
  2636         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2637           mach->add_prec( n );
  2639       last_safept = i;
  2640       last_safept_node = m;
  2644   if (fat_proj_seen) {
  2645     // Garbage collect pinch nodes that were not consumed.
  2646     // They are usually created by a fat kill MachProj for a call.
  2647     garbage_collect_pinch_nodes();
  2651 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2653 // Garbage collect pinch nodes for reuse by other blocks.
  2654 //
  2655 // The block scheduler's insertion of anti-dependence
  2656 // edges creates many pinch nodes when the block contains
  2657 // 2 or more Calls.  A pinch node is used to prevent a
  2658 // combinatorial explosion of edges.  If a set of kills for a
  2659 // register is anti-dependent on a set of uses (or defs), rather
  2660 // than adding an edge in the graph between each pair of kill
  2661 // and use (or def), a pinch is inserted between them:
  2662 //
  2663 //            use1   use2  use3
  2664 //                \   |   /
  2665 //                 \  |  /
  2666 //                  pinch
  2667 //                 /  |  \
  2668 //                /   |   \
  2669 //            kill1 kill2 kill3
  2670 //
  2671 // One pinch node is created per register killed when
  2672 // the second call is encountered during a backwards pass
  2673 // over the block.  Most of these pinch nodes are never
  2674 // wired into the graph because the register is never
  2675 // used or def'ed in the block.
  2676 //
  2677 void Scheduling::garbage_collect_pinch_nodes() {
  2678 #ifndef PRODUCT
  2679     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2680 #endif
  2681     int trace_cnt = 0;
  2682     for (uint k = 0; k < _reg_node.Size(); k++) {
  2683       Node* pinch = _reg_node[k];
  2684       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2685           // no predecence input edges
  2686           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2687         cleanup_pinch(pinch);
  2688         _pinch_free_list.push(pinch);
  2689         _reg_node.map(k, NULL);
  2690 #ifndef PRODUCT
  2691         if (_cfg->C->trace_opto_output()) {
  2692           trace_cnt++;
  2693           if (trace_cnt > 40) {
  2694             tty->print("\n");
  2695             trace_cnt = 0;
  2697           tty->print(" %d", pinch->_idx);
  2699 #endif
  2702 #ifndef PRODUCT
  2703     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2704 #endif
  2707 // Clean up a pinch node for reuse.
  2708 void Scheduling::cleanup_pinch( Node *pinch ) {
  2709   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2711   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2712     Node* use = pinch->last_out(i);
  2713     uint uses_found = 0;
  2714     for (uint j = use->req(); j < use->len(); j++) {
  2715       if (use->in(j) == pinch) {
  2716         use->rm_prec(j);
  2717         uses_found++;
  2720     assert(uses_found > 0, "must be a precedence edge");
  2721     i -= uses_found;    // we deleted 1 or more copies of this edge
  2723   // May have a later_def entry
  2724   pinch->set_req(0, NULL);
  2727 //------------------------------print_statistics-------------------------------
  2728 #ifndef PRODUCT
  2730 void Scheduling::dump_available() const {
  2731   tty->print("#Availist  ");
  2732   for (uint i = 0; i < _available.size(); i++)
  2733     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2734   tty->cr();
  2737 // Print Scheduling Statistics
  2738 void Scheduling::print_statistics() {
  2739   // Print the size added by nops for bundling
  2740   tty->print("Nops added %d bytes to total of %d bytes",
  2741     _total_nop_size, _total_method_size);
  2742   if (_total_method_size > 0)
  2743     tty->print(", for %.2f%%",
  2744       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2745   tty->print("\n");
  2747   // Print the number of branch shadows filled
  2748   if (Pipeline::_branch_has_delay_slot) {
  2749     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2750       _total_branches, _total_unconditional_delays);
  2751     if (_total_branches > 0)
  2752       tty->print(", for %.2f%%",
  2753         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2754     tty->print("\n");
  2757   uint total_instructions = 0, total_bundles = 0;
  2759   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2760     uint bundle_count   = _total_instructions_per_bundle[i];
  2761     total_instructions += bundle_count * i;
  2762     total_bundles      += bundle_count;
  2765   if (total_bundles > 0)
  2766     tty->print("Average ILP (excluding nops) is %.2f\n",
  2767       ((double)total_instructions) / ((double)total_bundles));
  2769 #endif

mercurial