src/os/windows/vm/os_windows.cpp

Fri, 06 Jul 2018 18:50:13 +0000

author
poonam
date
Fri, 06 Jul 2018 18:50:13 +0000
changeset 9348
cb9634ab2906
parent 9342
5792d995ed26
child 9417
65409bcab2ad
child 9478
f3108e56b502
permissions
-rw-r--r--

8146115: Improve docker container detection and resource configuration usage
Reviewed-by: bobv, dbuck

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/orderAccess.inline.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/thread.inline.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "services/runtimeService.hpp"
    66 #include "utilities/decoder.hpp"
    67 #include "utilities/defaultStream.hpp"
    68 #include "utilities/events.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 #ifdef _DEBUG
    73 #include <crtdbg.h>
    74 #endif
    77 #include <windows.h>
    78 #include <sys/types.h>
    79 #include <sys/stat.h>
    80 #include <sys/timeb.h>
    81 #include <objidl.h>
    82 #include <shlobj.h>
    84 #include <malloc.h>
    85 #include <signal.h>
    86 #include <direct.h>
    87 #include <errno.h>
    88 #include <fcntl.h>
    89 #include <io.h>
    90 #include <process.h>              // For _beginthreadex(), _endthreadex()
    91 #include <imagehlp.h>             // For os::dll_address_to_function_name
    92 /* for enumerating dll libraries */
    93 #include <vdmdbg.h>
    95 // for timer info max values which include all bits
    96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    98 // For DLL loading/load error detection
    99 // Values of PE COFF
   100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   103 static HANDLE main_process;
   104 static HANDLE main_thread;
   105 static int    main_thread_id;
   107 static FILETIME process_creation_time;
   108 static FILETIME process_exit_time;
   109 static FILETIME process_user_time;
   110 static FILETIME process_kernel_time;
   112 #ifdef _M_IA64
   113   #define __CPU__ ia64
   114 #else
   115   #ifdef _M_AMD64
   116     #define __CPU__ amd64
   117   #else
   118     #define __CPU__ i486
   119   #endif
   120 #endif
   122 // save DLL module handle, used by GetModuleFileName
   124 HINSTANCE vm_lib_handle;
   126 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   127   switch (reason) {
   128     case DLL_PROCESS_ATTACH:
   129       vm_lib_handle = hinst;
   130       if(ForceTimeHighResolution)
   131         timeBeginPeriod(1L);
   132       break;
   133     case DLL_PROCESS_DETACH:
   134       if(ForceTimeHighResolution)
   135         timeEndPeriod(1L);
   137       break;
   138     default:
   139       break;
   140   }
   141   return true;
   142 }
   144 static inline double fileTimeAsDouble(FILETIME* time) {
   145   const double high  = (double) ((unsigned int) ~0);
   146   const double split = 10000000.0;
   147   double result = (time->dwLowDateTime / split) +
   148                    time->dwHighDateTime * (high/split);
   149   return result;
   150 }
   152 // Implementation of os
   154 bool os::getenv(const char* name, char* buffer, int len) {
   155  int result = GetEnvironmentVariable(name, buffer, len);
   156  return result > 0 && result < len;
   157 }
   159 bool os::unsetenv(const char* name) {
   160   assert(name != NULL, "Null pointer");
   161   return (SetEnvironmentVariable(name, NULL) == TRUE);
   162 }
   164 // No setuid programs under Windows.
   165 bool os::have_special_privileges() {
   166   return false;
   167 }
   170 // This method is  a periodic task to check for misbehaving JNI applications
   171 // under CheckJNI, we can add any periodic checks here.
   172 // For Windows at the moment does nothing
   173 void os::run_periodic_checks() {
   174   return;
   175 }
   177 #ifndef _WIN64
   178 // previous UnhandledExceptionFilter, if there is one
   179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   182 #endif
   183 void os::init_system_properties_values() {
   184   /* sysclasspath, java_home, dll_dir */
   185   {
   186       char *home_path;
   187       char *dll_path;
   188       char *pslash;
   189       char *bin = "\\bin";
   190       char home_dir[MAX_PATH];
   192       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   193           os::jvm_path(home_dir, sizeof(home_dir));
   194           // Found the full path to jvm.dll.
   195           // Now cut the path to <java_home>/jre if we can.
   196           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   197           pslash = strrchr(home_dir, '\\');
   198           if (pslash != NULL) {
   199               *pslash = '\0';                 /* get rid of \{client|server} */
   200               pslash = strrchr(home_dir, '\\');
   201               if (pslash != NULL)
   202                   *pslash = '\0';             /* get rid of \bin */
   203           }
   204       }
   206       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   207       if (home_path == NULL)
   208           return;
   209       strcpy(home_path, home_dir);
   210       Arguments::set_java_home(home_path);
   212       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   213       if (dll_path == NULL)
   214           return;
   215       strcpy(dll_path, home_dir);
   216       strcat(dll_path, bin);
   217       Arguments::set_dll_dir(dll_path);
   219       if (!set_boot_path('\\', ';'))
   220           return;
   221   }
   223   /* library_path */
   224   #define EXT_DIR "\\lib\\ext"
   225   #define BIN_DIR "\\bin"
   226   #define PACKAGE_DIR "\\Sun\\Java"
   227   {
   228     /* Win32 library search order (See the documentation for LoadLibrary):
   229      *
   230      * 1. The directory from which application is loaded.
   231      * 2. The system wide Java Extensions directory (Java only)
   232      * 3. System directory (GetSystemDirectory)
   233      * 4. Windows directory (GetWindowsDirectory)
   234      * 5. The PATH environment variable
   235      * 6. The current directory
   236      */
   238     char *library_path;
   239     char tmp[MAX_PATH];
   240     char *path_str = ::getenv("PATH");
   242     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   243         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   245     library_path[0] = '\0';
   247     GetModuleFileName(NULL, tmp, sizeof(tmp));
   248     *(strrchr(tmp, '\\')) = '\0';
   249     strcat(library_path, tmp);
   251     GetWindowsDirectory(tmp, sizeof(tmp));
   252     strcat(library_path, ";");
   253     strcat(library_path, tmp);
   254     strcat(library_path, PACKAGE_DIR BIN_DIR);
   256     GetSystemDirectory(tmp, sizeof(tmp));
   257     strcat(library_path, ";");
   258     strcat(library_path, tmp);
   260     GetWindowsDirectory(tmp, sizeof(tmp));
   261     strcat(library_path, ";");
   262     strcat(library_path, tmp);
   264     if (path_str) {
   265         strcat(library_path, ";");
   266         strcat(library_path, path_str);
   267     }
   269     strcat(library_path, ";.");
   271     Arguments::set_library_path(library_path);
   272     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   273   }
   275   /* Default extensions directory */
   276   {
   277     char path[MAX_PATH];
   278     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   279     GetWindowsDirectory(path, MAX_PATH);
   280     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   281         path, PACKAGE_DIR, EXT_DIR);
   282     Arguments::set_ext_dirs(buf);
   283   }
   284   #undef EXT_DIR
   285   #undef BIN_DIR
   286   #undef PACKAGE_DIR
   288   /* Default endorsed standards directory. */
   289   {
   290     #define ENDORSED_DIR "\\lib\\endorsed"
   291     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   292     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   293     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   294     Arguments::set_endorsed_dirs(buf);
   295     #undef ENDORSED_DIR
   296   }
   298 #ifndef _WIN64
   299   // set our UnhandledExceptionFilter and save any previous one
   300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   301 #endif
   303   // Done
   304   return;
   305 }
   307 void os::breakpoint() {
   308   DebugBreak();
   309 }
   311 // Invoked from the BREAKPOINT Macro
   312 extern "C" void breakpoint() {
   313   os::breakpoint();
   314 }
   316 /*
   317  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   318  * So far, this method is only used by Native Memory Tracking, which is
   319  * only supported on Windows XP or later.
   320  */
   322 int os::get_native_stack(address* stack, int frames, int toSkip) {
   323 #ifdef _NMT_NOINLINE_
   324   toSkip ++;
   325 #endif
   326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
   327     (PVOID*)stack, NULL);
   328   for (int index = captured; index < frames; index ++) {
   329     stack[index] = NULL;
   330   }
   331   return captured;
   332 }
   335 // os::current_stack_base()
   336 //
   337 //   Returns the base of the stack, which is the stack's
   338 //   starting address.  This function must be called
   339 //   while running on the stack of the thread being queried.
   341 address os::current_stack_base() {
   342   MEMORY_BASIC_INFORMATION minfo;
   343   address stack_bottom;
   344   size_t stack_size;
   346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   347   stack_bottom =  (address)minfo.AllocationBase;
   348   stack_size = minfo.RegionSize;
   350   // Add up the sizes of all the regions with the same
   351   // AllocationBase.
   352   while( 1 )
   353   {
   354     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   355     if ( stack_bottom == (address)minfo.AllocationBase )
   356       stack_size += minfo.RegionSize;
   357     else
   358       break;
   359   }
   361 #ifdef _M_IA64
   362   // IA64 has memory and register stacks
   363   //
   364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   366   // growing downwards, 2MB summed up)
   367   //
   368   // ...
   369   // ------- top of stack (high address) -----
   370   // |
   371   // |      1MB
   372   // |      Backing Store (Register Stack)
   373   // |
   374   // |         / \
   375   // |          |
   376   // |          |
   377   // |          |
   378   // ------------------------ stack base -----
   379   // |      1MB
   380   // |      Memory Stack
   381   // |
   382   // |          |
   383   // |          |
   384   // |          |
   385   // |         \ /
   386   // |
   387   // ----- bottom of stack (low address) -----
   388   // ...
   390   stack_size = stack_size / 2;
   391 #endif
   392   return stack_bottom + stack_size;
   393 }
   395 size_t os::current_stack_size() {
   396   size_t sz;
   397   MEMORY_BASIC_INFORMATION minfo;
   398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   400   return sz;
   401 }
   403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   404   const struct tm* time_struct_ptr = localtime(clock);
   405   if (time_struct_ptr != NULL) {
   406     *res = *time_struct_ptr;
   407     return res;
   408   }
   409   return NULL;
   410 }
   412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   414 // Thread start routine for all new Java threads
   415 static unsigned __stdcall java_start(Thread* thread) {
   416   // Try to randomize the cache line index of hot stack frames.
   417   // This helps when threads of the same stack traces evict each other's
   418   // cache lines. The threads can be either from the same JVM instance, or
   419   // from different JVM instances. The benefit is especially true for
   420   // processors with hyperthreading technology.
   421   static int counter = 0;
   422   int pid = os::current_process_id();
   423   _alloca(((pid ^ counter++) & 7) * 128);
   425   OSThread* osthr = thread->osthread();
   426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   428   if (UseNUMA) {
   429     int lgrp_id = os::numa_get_group_id();
   430     if (lgrp_id != -1) {
   431       thread->set_lgrp_id(lgrp_id);
   432     }
   433   }
   436   // Install a win32 structured exception handler around every thread created
   437   // by VM, so VM can genrate error dump when an exception occurred in non-
   438   // Java thread (e.g. VM thread).
   439   __try {
   440      thread->run();
   441   } __except(topLevelExceptionFilter(
   442              (_EXCEPTION_POINTERS*)_exception_info())) {
   443       // Nothing to do.
   444   }
   446   // One less thread is executing
   447   // When the VMThread gets here, the main thread may have already exited
   448   // which frees the CodeHeap containing the Atomic::add code
   449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   451   }
   453   return 0;
   454 }
   456 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   457   // Allocate the OSThread object
   458   OSThread* osthread = new OSThread(NULL, NULL);
   459   if (osthread == NULL) return NULL;
   461   // Initialize support for Java interrupts
   462   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   463   if (interrupt_event == NULL) {
   464     delete osthread;
   465     return NULL;
   466   }
   467   osthread->set_interrupt_event(interrupt_event);
   469   // Store info on the Win32 thread into the OSThread
   470   osthread->set_thread_handle(thread_handle);
   471   osthread->set_thread_id(thread_id);
   473   if (UseNUMA) {
   474     int lgrp_id = os::numa_get_group_id();
   475     if (lgrp_id != -1) {
   476       thread->set_lgrp_id(lgrp_id);
   477     }
   478   }
   480   // Initial thread state is INITIALIZED, not SUSPENDED
   481   osthread->set_state(INITIALIZED);
   483   return osthread;
   484 }
   487 bool os::create_attached_thread(JavaThread* thread) {
   488 #ifdef ASSERT
   489   thread->verify_not_published();
   490 #endif
   491   HANDLE thread_h;
   492   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   493                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   494     fatal("DuplicateHandle failed\n");
   495   }
   496   OSThread* osthread = create_os_thread(thread, thread_h,
   497                                         (int)current_thread_id());
   498   if (osthread == NULL) {
   499      return false;
   500   }
   502   // Initial thread state is RUNNABLE
   503   osthread->set_state(RUNNABLE);
   505   thread->set_osthread(osthread);
   506   return true;
   507 }
   509 bool os::create_main_thread(JavaThread* thread) {
   510 #ifdef ASSERT
   511   thread->verify_not_published();
   512 #endif
   513   if (_starting_thread == NULL) {
   514     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   515      if (_starting_thread == NULL) {
   516         return false;
   517      }
   518   }
   520   // The primordial thread is runnable from the start)
   521   _starting_thread->set_state(RUNNABLE);
   523   thread->set_osthread(_starting_thread);
   524   return true;
   525 }
   527 // Allocate and initialize a new OSThread
   528 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   529   unsigned thread_id;
   531   // Allocate the OSThread object
   532   OSThread* osthread = new OSThread(NULL, NULL);
   533   if (osthread == NULL) {
   534     return false;
   535   }
   537   // Initialize support for Java interrupts
   538   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   539   if (interrupt_event == NULL) {
   540     delete osthread;
   541     return NULL;
   542   }
   543   osthread->set_interrupt_event(interrupt_event);
   544   osthread->set_interrupted(false);
   546   thread->set_osthread(osthread);
   548   if (stack_size == 0) {
   549     switch (thr_type) {
   550     case os::java_thread:
   551       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   552       if (JavaThread::stack_size_at_create() > 0)
   553         stack_size = JavaThread::stack_size_at_create();
   554       break;
   555     case os::compiler_thread:
   556       if (CompilerThreadStackSize > 0) {
   557         stack_size = (size_t)(CompilerThreadStackSize * K);
   558         break;
   559       } // else fall through:
   560         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   561     case os::vm_thread:
   562     case os::pgc_thread:
   563     case os::cgc_thread:
   564     case os::watcher_thread:
   565       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   566       break;
   567     }
   568   }
   570   // Create the Win32 thread
   571   //
   572   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   573   // does not specify stack size. Instead, it specifies the size of
   574   // initially committed space. The stack size is determined by
   575   // PE header in the executable. If the committed "stack_size" is larger
   576   // than default value in the PE header, the stack is rounded up to the
   577   // nearest multiple of 1MB. For example if the launcher has default
   578   // stack size of 320k, specifying any size less than 320k does not
   579   // affect the actual stack size at all, it only affects the initial
   580   // commitment. On the other hand, specifying 'stack_size' larger than
   581   // default value may cause significant increase in memory usage, because
   582   // not only the stack space will be rounded up to MB, but also the
   583   // entire space is committed upfront.
   584   //
   585   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   586   // for CreateThread() that can treat 'stack_size' as stack size. However we
   587   // are not supposed to call CreateThread() directly according to MSDN
   588   // document because JVM uses C runtime library. The good news is that the
   589   // flag appears to work with _beginthredex() as well.
   591 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   592 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   593 #endif
   595   HANDLE thread_handle =
   596     (HANDLE)_beginthreadex(NULL,
   597                            (unsigned)stack_size,
   598                            (unsigned (__stdcall *)(void*)) java_start,
   599                            thread,
   600                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   601                            &thread_id);
   602   if (thread_handle == NULL) {
   603     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   604     // without the flag.
   605     thread_handle =
   606     (HANDLE)_beginthreadex(NULL,
   607                            (unsigned)stack_size,
   608                            (unsigned (__stdcall *)(void*)) java_start,
   609                            thread,
   610                            CREATE_SUSPENDED,
   611                            &thread_id);
   612   }
   613   if (thread_handle == NULL) {
   614     // Need to clean up stuff we've allocated so far
   615     CloseHandle(osthread->interrupt_event());
   616     thread->set_osthread(NULL);
   617     delete osthread;
   618     return NULL;
   619   }
   621   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   623   // Store info on the Win32 thread into the OSThread
   624   osthread->set_thread_handle(thread_handle);
   625   osthread->set_thread_id(thread_id);
   627   // Initial thread state is INITIALIZED, not SUSPENDED
   628   osthread->set_state(INITIALIZED);
   630   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   631   return true;
   632 }
   635 // Free Win32 resources related to the OSThread
   636 void os::free_thread(OSThread* osthread) {
   637   assert(osthread != NULL, "osthread not set");
   638   CloseHandle(osthread->thread_handle());
   639   CloseHandle(osthread->interrupt_event());
   640   delete osthread;
   641 }
   644 static int    has_performance_count = 0;
   645 static jlong first_filetime;
   646 static jlong initial_performance_count;
   647 static jlong performance_frequency;
   650 jlong as_long(LARGE_INTEGER x) {
   651   jlong result = 0; // initialization to avoid warning
   652   set_high(&result, x.HighPart);
   653   set_low(&result,  x.LowPart);
   654   return result;
   655 }
   658 jlong os::elapsed_counter() {
   659   LARGE_INTEGER count;
   660   if (has_performance_count) {
   661     QueryPerformanceCounter(&count);
   662     return as_long(count) - initial_performance_count;
   663   } else {
   664     FILETIME wt;
   665     GetSystemTimeAsFileTime(&wt);
   666     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   667   }
   668 }
   671 jlong os::elapsed_frequency() {
   672   if (has_performance_count) {
   673     return performance_frequency;
   674   } else {
   675    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   676    return 10000000;
   677   }
   678 }
   681 julong os::available_memory() {
   682   return win32::available_memory();
   683 }
   685 julong os::win32::available_memory() {
   686   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   687   // value if total memory is larger than 4GB
   688   MEMORYSTATUSEX ms;
   689   ms.dwLength = sizeof(ms);
   690   GlobalMemoryStatusEx(&ms);
   692   return (julong)ms.ullAvailPhys;
   693 }
   695 julong os::physical_memory() {
   696   return win32::physical_memory();
   697 }
   699 bool os::has_allocatable_memory_limit(julong* limit) {
   700   MEMORYSTATUSEX ms;
   701   ms.dwLength = sizeof(ms);
   702   GlobalMemoryStatusEx(&ms);
   703 #ifdef _LP64
   704   *limit = (julong)ms.ullAvailVirtual;
   705   return true;
   706 #else
   707   // Limit to 1400m because of the 2gb address space wall
   708   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   709   return true;
   710 #endif
   711 }
   713 // VC6 lacks DWORD_PTR
   714 #if _MSC_VER < 1300
   715 typedef UINT_PTR DWORD_PTR;
   716 #endif
   718 int os::active_processor_count() {
   719   // User has overridden the number of active processors
   720   if (ActiveProcessorCount > 0) {
   721     if (PrintActiveCpus) {
   722       tty->print_cr("active_processor_count: "
   723                     "active processor count set by user : %d",
   724                      ActiveProcessorCount);
   725     }
   726     return ActiveProcessorCount;
   727   }
   729   DWORD_PTR lpProcessAffinityMask = 0;
   730   DWORD_PTR lpSystemAffinityMask = 0;
   731   int proc_count = processor_count();
   732   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   733       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   734     // Nof active processors is number of bits in process affinity mask
   735     int bitcount = 0;
   736     while (lpProcessAffinityMask != 0) {
   737       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   738       bitcount++;
   739     }
   740     return bitcount;
   741   } else {
   742     return proc_count;
   743   }
   744 }
   746 void os::set_native_thread_name(const char *name) {
   747   // Not yet implemented.
   748   return;
   749 }
   751 bool os::distribute_processes(uint length, uint* distribution) {
   752   // Not yet implemented.
   753   return false;
   754 }
   756 bool os::bind_to_processor(uint processor_id) {
   757   // Not yet implemented.
   758   return false;
   759 }
   761 static void initialize_performance_counter() {
   762   LARGE_INTEGER count;
   763   if (QueryPerformanceFrequency(&count)) {
   764     has_performance_count = 1;
   765     performance_frequency = as_long(count);
   766     QueryPerformanceCounter(&count);
   767     initial_performance_count = as_long(count);
   768   } else {
   769     has_performance_count = 0;
   770     FILETIME wt;
   771     GetSystemTimeAsFileTime(&wt);
   772     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   773   }
   774 }
   777 double os::elapsedTime() {
   778   return (double) elapsed_counter() / (double) elapsed_frequency();
   779 }
   782 // Windows format:
   783 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   784 // Java format:
   785 //   Java standards require the number of milliseconds since 1/1/1970
   787 // Constant offset - calculated using offset()
   788 static jlong  _offset   = 116444736000000000;
   789 // Fake time counter for reproducible results when debugging
   790 static jlong  fake_time = 0;
   792 #ifdef ASSERT
   793 // Just to be safe, recalculate the offset in debug mode
   794 static jlong _calculated_offset = 0;
   795 static int   _has_calculated_offset = 0;
   797 jlong offset() {
   798   if (_has_calculated_offset) return _calculated_offset;
   799   SYSTEMTIME java_origin;
   800   java_origin.wYear          = 1970;
   801   java_origin.wMonth         = 1;
   802   java_origin.wDayOfWeek     = 0; // ignored
   803   java_origin.wDay           = 1;
   804   java_origin.wHour          = 0;
   805   java_origin.wMinute        = 0;
   806   java_origin.wSecond        = 0;
   807   java_origin.wMilliseconds  = 0;
   808   FILETIME jot;
   809   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   810     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   811   }
   812   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   813   _has_calculated_offset = 1;
   814   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   815   return _calculated_offset;
   816 }
   817 #else
   818 jlong offset() {
   819   return _offset;
   820 }
   821 #endif
   823 jlong windows_to_java_time(FILETIME wt) {
   824   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   825   return (a - offset()) / 10000;
   826 }
   828 FILETIME java_to_windows_time(jlong l) {
   829   jlong a = (l * 10000) + offset();
   830   FILETIME result;
   831   result.dwHighDateTime = high(a);
   832   result.dwLowDateTime  = low(a);
   833   return result;
   834 }
   836 bool os::supports_vtime() { return true; }
   837 bool os::enable_vtime() { return false; }
   838 bool os::vtime_enabled() { return false; }
   840 double os::elapsedVTime() {
   841   FILETIME created;
   842   FILETIME exited;
   843   FILETIME kernel;
   844   FILETIME user;
   845   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   846     // the resolution of windows_to_java_time() should be sufficient (ms)
   847     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   848   } else {
   849     return elapsedTime();
   850   }
   851 }
   853 jlong os::javaTimeMillis() {
   854   if (UseFakeTimers) {
   855     return fake_time++;
   856   } else {
   857     FILETIME wt;
   858     GetSystemTimeAsFileTime(&wt);
   859     return windows_to_java_time(wt);
   860   }
   861 }
   863 jlong os::javaTimeNanos() {
   864   if (!has_performance_count) {
   865     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   866   } else {
   867     LARGE_INTEGER current_count;
   868     QueryPerformanceCounter(&current_count);
   869     double current = as_long(current_count);
   870     double freq = performance_frequency;
   871     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   872     return time;
   873   }
   874 }
   876 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   877   if (!has_performance_count) {
   878     // javaTimeMillis() doesn't have much percision,
   879     // but it is not going to wrap -- so all 64 bits
   880     info_ptr->max_value = ALL_64_BITS;
   882     // this is a wall clock timer, so may skip
   883     info_ptr->may_skip_backward = true;
   884     info_ptr->may_skip_forward = true;
   885   } else {
   886     jlong freq = performance_frequency;
   887     if (freq < NANOSECS_PER_SEC) {
   888       // the performance counter is 64 bits and we will
   889       // be multiplying it -- so no wrap in 64 bits
   890       info_ptr->max_value = ALL_64_BITS;
   891     } else if (freq > NANOSECS_PER_SEC) {
   892       // use the max value the counter can reach to
   893       // determine the max value which could be returned
   894       julong max_counter = (julong)ALL_64_BITS;
   895       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   896     } else {
   897       // the performance counter is 64 bits and we will
   898       // be using it directly -- so no wrap in 64 bits
   899       info_ptr->max_value = ALL_64_BITS;
   900     }
   902     // using a counter, so no skipping
   903     info_ptr->may_skip_backward = false;
   904     info_ptr->may_skip_forward = false;
   905   }
   906   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   907 }
   909 char* os::local_time_string(char *buf, size_t buflen) {
   910   SYSTEMTIME st;
   911   GetLocalTime(&st);
   912   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   913                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   914   return buf;
   915 }
   917 bool os::getTimesSecs(double* process_real_time,
   918                      double* process_user_time,
   919                      double* process_system_time) {
   920   HANDLE h_process = GetCurrentProcess();
   921   FILETIME create_time, exit_time, kernel_time, user_time;
   922   BOOL result = GetProcessTimes(h_process,
   923                                &create_time,
   924                                &exit_time,
   925                                &kernel_time,
   926                                &user_time);
   927   if (result != 0) {
   928     FILETIME wt;
   929     GetSystemTimeAsFileTime(&wt);
   930     jlong rtc_millis = windows_to_java_time(wt);
   931     jlong user_millis = windows_to_java_time(user_time);
   932     jlong system_millis = windows_to_java_time(kernel_time);
   933     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   934     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   935     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   936     return true;
   937   } else {
   938     return false;
   939   }
   940 }
   942 void os::shutdown() {
   944   // allow PerfMemory to attempt cleanup of any persistent resources
   945   perfMemory_exit();
   947   // flush buffered output, finish log files
   948   ostream_abort();
   950   // Check for abort hook
   951   abort_hook_t abort_hook = Arguments::abort_hook();
   952   if (abort_hook != NULL) {
   953     abort_hook();
   954   }
   955 }
   958 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   959                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   961 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   962   HINSTANCE dbghelp;
   963   EXCEPTION_POINTERS ep;
   964   MINIDUMP_EXCEPTION_INFORMATION mei;
   965   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   967   HANDLE hProcess = GetCurrentProcess();
   968   DWORD processId = GetCurrentProcessId();
   969   HANDLE dumpFile;
   970   MINIDUMP_TYPE dumpType;
   971   static const char* cwd;
   973 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   974 #ifndef ASSERT
   975   // If running on a client version of Windows and user has not explicitly enabled dumping
   976   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   977     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   978     return;
   979     // If running on a server version of Windows and user has explictly disabled dumping
   980   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   981     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   982     return;
   983   }
   984 #else
   985   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   986     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   987     return;
   988   }
   989 #endif
   991   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   993   if (dbghelp == NULL) {
   994     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   995     return;
   996   }
   998   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   999     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
  1000     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
  1001     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
  1003   if (_MiniDumpWriteDump == NULL) {
  1004     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
  1005     return;
  1008   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
  1010 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
  1011 // API_VERSION_NUMBER 11 or higher contains the ones we want though
  1012 #if API_VERSION_NUMBER >= 11
  1013   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
  1014     MiniDumpWithUnloadedModules);
  1015 #endif
  1017   cwd = get_current_directory(NULL, 0);
  1018   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
  1019   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1021   if (dumpFile == INVALID_HANDLE_VALUE) {
  1022     VMError::report_coredump_status("Failed to create file for dumping", false);
  1023     return;
  1025   if (exceptionRecord != NULL && contextRecord != NULL) {
  1026     ep.ContextRecord = (PCONTEXT) contextRecord;
  1027     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1029     mei.ThreadId = GetCurrentThreadId();
  1030     mei.ExceptionPointers = &ep;
  1031     pmei = &mei;
  1032   } else {
  1033     pmei = NULL;
  1037   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1038   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1039   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1040       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1041         DWORD error = GetLastError();
  1042         LPTSTR msgbuf = NULL;
  1044         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1045                       FORMAT_MESSAGE_FROM_SYSTEM |
  1046                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1047                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1049           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1050           LocalFree(msgbuf);
  1051         } else {
  1052           // Call to FormatMessage failed, just include the result from GetLastError
  1053           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1055         VMError::report_coredump_status(buffer, false);
  1056   } else {
  1057     VMError::report_coredump_status(buffer, true);
  1060   CloseHandle(dumpFile);
  1065 void os::abort(bool dump_core)
  1067   os::shutdown();
  1068   // no core dump on Windows
  1069   ::exit(1);
  1072 // Die immediately, no exit hook, no abort hook, no cleanup.
  1073 void os::die() {
  1074   _exit(-1);
  1077 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1078 //  * dirent_md.c       1.15 00/02/02
  1079 //
  1080 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1082 /* Caller must have already run dirname through JVM_NativePath, which removes
  1083    duplicate slashes and converts all instances of '/' into '\\'. */
  1085 DIR *
  1086 os::opendir(const char *dirname)
  1088     assert(dirname != NULL, "just checking");   // hotspot change
  1089     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1090     DWORD fattr;                                // hotspot change
  1091     char alt_dirname[4] = { 0, 0, 0, 0 };
  1093     if (dirp == 0) {
  1094         errno = ENOMEM;
  1095         return 0;
  1098     /*
  1099      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1100      * as a directory in FindFirstFile().  We detect this case here and
  1101      * prepend the current drive name.
  1102      */
  1103     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1104         alt_dirname[0] = _getdrive() + 'A' - 1;
  1105         alt_dirname[1] = ':';
  1106         alt_dirname[2] = '\\';
  1107         alt_dirname[3] = '\0';
  1108         dirname = alt_dirname;
  1111     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1112     if (dirp->path == 0) {
  1113         free(dirp, mtInternal);
  1114         errno = ENOMEM;
  1115         return 0;
  1117     strcpy(dirp->path, dirname);
  1119     fattr = GetFileAttributes(dirp->path);
  1120     if (fattr == 0xffffffff) {
  1121         free(dirp->path, mtInternal);
  1122         free(dirp, mtInternal);
  1123         errno = ENOENT;
  1124         return 0;
  1125     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1126         free(dirp->path, mtInternal);
  1127         free(dirp, mtInternal);
  1128         errno = ENOTDIR;
  1129         return 0;
  1132     /* Append "*.*", or possibly "\\*.*", to path */
  1133     if (dirp->path[1] == ':'
  1134         && (dirp->path[2] == '\0'
  1135             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1136         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1137         strcat(dirp->path, "*.*");
  1138     } else {
  1139         strcat(dirp->path, "\\*.*");
  1142     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1143     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1144         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1145             free(dirp->path, mtInternal);
  1146             free(dirp, mtInternal);
  1147             errno = EACCES;
  1148             return 0;
  1151     return dirp;
  1154 /* parameter dbuf unused on Windows */
  1156 struct dirent *
  1157 os::readdir(DIR *dirp, dirent *dbuf)
  1159     assert(dirp != NULL, "just checking");      // hotspot change
  1160     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1161         return 0;
  1164     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1166     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1167         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1168             errno = EBADF;
  1169             return 0;
  1171         FindClose(dirp->handle);
  1172         dirp->handle = INVALID_HANDLE_VALUE;
  1175     return &dirp->dirent;
  1178 int
  1179 os::closedir(DIR *dirp)
  1181     assert(dirp != NULL, "just checking");      // hotspot change
  1182     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1183         if (!FindClose(dirp->handle)) {
  1184             errno = EBADF;
  1185             return -1;
  1187         dirp->handle = INVALID_HANDLE_VALUE;
  1189     free(dirp->path, mtInternal);
  1190     free(dirp, mtInternal);
  1191     return 0;
  1194 // This must be hard coded because it's the system's temporary
  1195 // directory not the java application's temp directory, ala java.io.tmpdir.
  1196 const char* os::get_temp_directory() {
  1197   static char path_buf[MAX_PATH];
  1198   if (GetTempPath(MAX_PATH, path_buf)>0)
  1199     return path_buf;
  1200   else{
  1201     path_buf[0]='\0';
  1202     return path_buf;
  1206 static bool file_exists(const char* filename) {
  1207   if (filename == NULL || strlen(filename) == 0) {
  1208     return false;
  1210   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1213 bool os::dll_build_name(char *buffer, size_t buflen,
  1214                         const char* pname, const char* fname) {
  1215   bool retval = false;
  1216   const size_t pnamelen = pname ? strlen(pname) : 0;
  1217   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1219   // Return error on buffer overflow.
  1220   if (pnamelen + strlen(fname) + 10 > buflen) {
  1221     return retval;
  1224   if (pnamelen == 0) {
  1225     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1226     retval = true;
  1227   } else if (c == ':' || c == '\\') {
  1228     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1229     retval = true;
  1230   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1231     int n;
  1232     char** pelements = split_path(pname, &n);
  1233     if (pelements == NULL) {
  1234       return false;
  1236     for (int i = 0 ; i < n ; i++) {
  1237       char* path = pelements[i];
  1238       // Really shouldn't be NULL, but check can't hurt
  1239       size_t plen = (path == NULL) ? 0 : strlen(path);
  1240       if (plen == 0) {
  1241         continue; // skip the empty path values
  1243       const char lastchar = path[plen - 1];
  1244       if (lastchar == ':' || lastchar == '\\') {
  1245         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1246       } else {
  1247         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1249       if (file_exists(buffer)) {
  1250         retval = true;
  1251         break;
  1254     // release the storage
  1255     for (int i = 0 ; i < n ; i++) {
  1256       if (pelements[i] != NULL) {
  1257         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1260     if (pelements != NULL) {
  1261       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1263   } else {
  1264     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1265     retval = true;
  1267   return retval;
  1270 // Needs to be in os specific directory because windows requires another
  1271 // header file <direct.h>
  1272 const char* os::get_current_directory(char *buf, size_t buflen) {
  1273   int n = static_cast<int>(buflen);
  1274   if (buflen > INT_MAX)  n = INT_MAX;
  1275   return _getcwd(buf, n);
  1278 //-----------------------------------------------------------
  1279 // Helper functions for fatal error handler
  1280 #ifdef _WIN64
  1281 // Helper routine which returns true if address in
  1282 // within the NTDLL address space.
  1283 //
  1284 static bool _addr_in_ntdll( address addr )
  1286   HMODULE hmod;
  1287   MODULEINFO minfo;
  1289   hmod = GetModuleHandle("NTDLL.DLL");
  1290   if ( hmod == NULL ) return false;
  1291   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1292                                &minfo, sizeof(MODULEINFO)) )
  1293     return false;
  1295   if ( (addr >= minfo.lpBaseOfDll) &&
  1296        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1297     return true;
  1298   else
  1299     return false;
  1301 #endif
  1304 // Enumerate all modules for a given process ID
  1305 //
  1306 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1307 // different API for doing this. We use PSAPI.DLL on NT based
  1308 // Windows and ToolHelp on 95/98/Me.
  1310 // Callback function that is called by enumerate_modules() on
  1311 // every DLL module.
  1312 // Input parameters:
  1313 //    int       pid,
  1314 //    char*     module_file_name,
  1315 //    address   module_base_addr,
  1316 //    unsigned  module_size,
  1317 //    void*     param
  1318 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1320 // enumerate_modules for Windows NT, using PSAPI
  1321 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1323   HANDLE   hProcess ;
  1325 # define MAX_NUM_MODULES 128
  1326   HMODULE     modules[MAX_NUM_MODULES];
  1327   static char filename[ MAX_PATH ];
  1328   int         result = 0;
  1330   if (!os::PSApiDll::PSApiAvailable()) {
  1331     return 0;
  1334   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1335                          FALSE, pid ) ;
  1336   if (hProcess == NULL) return 0;
  1338   DWORD size_needed;
  1339   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1340                            sizeof(modules), &size_needed)) {
  1341       CloseHandle( hProcess );
  1342       return 0;
  1345   // number of modules that are currently loaded
  1346   int num_modules = size_needed / sizeof(HMODULE);
  1348   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1349     // Get Full pathname:
  1350     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1351                              filename, sizeof(filename))) {
  1352         filename[0] = '\0';
  1355     MODULEINFO modinfo;
  1356     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1357                                &modinfo, sizeof(modinfo))) {
  1358         modinfo.lpBaseOfDll = NULL;
  1359         modinfo.SizeOfImage = 0;
  1362     // Invoke callback function
  1363     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1364                   modinfo.SizeOfImage, param);
  1365     if (result) break;
  1368   CloseHandle( hProcess ) ;
  1369   return result;
  1373 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1374 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1376   HANDLE                hSnapShot ;
  1377   static MODULEENTRY32  modentry ;
  1378   int                   result = 0;
  1380   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1381     return 0;
  1384   // Get a handle to a Toolhelp snapshot of the system
  1385   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1386   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1387       return FALSE ;
  1390   // iterate through all modules
  1391   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1392   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1394   while( not_done ) {
  1395     // invoke the callback
  1396     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1397                 modentry.modBaseSize, param);
  1398     if (result) break;
  1400     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1401     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1404   CloseHandle(hSnapShot);
  1405   return result;
  1408 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1410   // Get current process ID if caller doesn't provide it.
  1411   if (!pid) pid = os::current_process_id();
  1413   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1414   else                    return _enumerate_modules_windows(pid, func, param);
  1417 struct _modinfo {
  1418    address addr;
  1419    char*   full_path;   // point to a char buffer
  1420    int     buflen;      // size of the buffer
  1421    address base_addr;
  1422 };
  1424 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1425                                   unsigned size, void * param) {
  1426    struct _modinfo *pmod = (struct _modinfo *)param;
  1427    if (!pmod) return -1;
  1429    if (base_addr     <= pmod->addr &&
  1430        base_addr+size > pmod->addr) {
  1431      // if a buffer is provided, copy path name to the buffer
  1432      if (pmod->full_path) {
  1433        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1435      pmod->base_addr = base_addr;
  1436      return 1;
  1438    return 0;
  1441 bool os::dll_address_to_library_name(address addr, char* buf,
  1442                                      int buflen, int* offset) {
  1443   // buf is not optional, but offset is optional
  1444   assert(buf != NULL, "sanity check");
  1446 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1447 //       return the full path to the DLL file, sometimes it returns path
  1448 //       to the corresponding PDB file (debug info); sometimes it only
  1449 //       returns partial path, which makes life painful.
  1451   struct _modinfo mi;
  1452   mi.addr      = addr;
  1453   mi.full_path = buf;
  1454   mi.buflen    = buflen;
  1455   int pid = os::current_process_id();
  1456   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1457     // buf already contains path name
  1458     if (offset) *offset = addr - mi.base_addr;
  1459     return true;
  1462   buf[0] = '\0';
  1463   if (offset) *offset = -1;
  1464   return false;
  1467 bool os::dll_address_to_function_name(address addr, char *buf,
  1468                                       int buflen, int *offset) {
  1469   // buf is not optional, but offset is optional
  1470   assert(buf != NULL, "sanity check");
  1472   if (Decoder::decode(addr, buf, buflen, offset)) {
  1473     return true;
  1475   if (offset != NULL)  *offset  = -1;
  1476   buf[0] = '\0';
  1477   return false;
  1480 // save the start and end address of jvm.dll into param[0] and param[1]
  1481 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1482                     unsigned size, void * param) {
  1483    if (!param) return -1;
  1485    if (base_addr     <= (address)_locate_jvm_dll &&
  1486        base_addr+size > (address)_locate_jvm_dll) {
  1487          ((address*)param)[0] = base_addr;
  1488          ((address*)param)[1] = base_addr + size;
  1489          return 1;
  1491    return 0;
  1494 address vm_lib_location[2];    // start and end address of jvm.dll
  1496 // check if addr is inside jvm.dll
  1497 bool os::address_is_in_vm(address addr) {
  1498   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1499     int pid = os::current_process_id();
  1500     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1501       assert(false, "Can't find jvm module.");
  1502       return false;
  1506   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1509 // print module info; param is outputStream*
  1510 static int _print_module(int pid, char* fname, address base,
  1511                          unsigned size, void* param) {
  1512    if (!param) return -1;
  1514    outputStream* st = (outputStream*)param;
  1516    address end_addr = base + size;
  1517    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1518    return 0;
  1521 // Loads .dll/.so and
  1522 // in case of error it checks if .dll/.so was built for the
  1523 // same architecture as Hotspot is running on
  1524 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1526   void * result = LoadLibrary(name);
  1527   if (result != NULL)
  1529     return result;
  1532   DWORD errcode = GetLastError();
  1533   if (errcode == ERROR_MOD_NOT_FOUND) {
  1534     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1535     ebuf[ebuflen-1]='\0';
  1536     return NULL;
  1539   // Parsing dll below
  1540   // If we can read dll-info and find that dll was built
  1541   // for an architecture other than Hotspot is running in
  1542   // - then print to buffer "DLL was built for a different architecture"
  1543   // else call os::lasterror to obtain system error message
  1545   // Read system error message into ebuf
  1546   // It may or may not be overwritten below (in the for loop and just above)
  1547   lasterror(ebuf, (size_t) ebuflen);
  1548   ebuf[ebuflen-1]='\0';
  1549   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1550   if (file_descriptor<0)
  1552     return NULL;
  1555   uint32_t signature_offset;
  1556   uint16_t lib_arch=0;
  1557   bool failed_to_get_lib_arch=
  1559     //Go to position 3c in the dll
  1560     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1561     ||
  1562     // Read loacation of signature
  1563     (sizeof(signature_offset)!=
  1564       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1565     ||
  1566     //Go to COFF File Header in dll
  1567     //that is located after"signature" (4 bytes long)
  1568     (os::seek_to_file_offset(file_descriptor,
  1569       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1570     ||
  1571     //Read field that contains code of architecture
  1572     // that dll was build for
  1573     (sizeof(lib_arch)!=
  1574       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1575   );
  1577   ::close(file_descriptor);
  1578   if (failed_to_get_lib_arch)
  1580     // file i/o error - report os::lasterror(...) msg
  1581     return NULL;
  1584   typedef struct
  1586     uint16_t arch_code;
  1587     char* arch_name;
  1588   } arch_t;
  1590   static const arch_t arch_array[]={
  1591     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1592     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1593     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1594   };
  1595   #if   (defined _M_IA64)
  1596     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1597   #elif (defined _M_AMD64)
  1598     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1599   #elif (defined _M_IX86)
  1600     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1601   #else
  1602     #error Method os::dll_load requires that one of following \
  1603            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1604   #endif
  1607   // Obtain a string for printf operation
  1608   // lib_arch_str shall contain string what platform this .dll was built for
  1609   // running_arch_str shall string contain what platform Hotspot was built for
  1610   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1611   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1613     if (lib_arch==arch_array[i].arch_code)
  1614       lib_arch_str=arch_array[i].arch_name;
  1615     if (running_arch==arch_array[i].arch_code)
  1616       running_arch_str=arch_array[i].arch_name;
  1619   assert(running_arch_str,
  1620     "Didn't find runing architecture code in arch_array");
  1622   // If the architure is right
  1623   // but some other error took place - report os::lasterror(...) msg
  1624   if (lib_arch == running_arch)
  1626     return NULL;
  1629   if (lib_arch_str!=NULL)
  1631     ::_snprintf(ebuf, ebuflen-1,
  1632       "Can't load %s-bit .dll on a %s-bit platform",
  1633       lib_arch_str,running_arch_str);
  1635   else
  1637     // don't know what architecture this dll was build for
  1638     ::_snprintf(ebuf, ebuflen-1,
  1639       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1640       lib_arch,running_arch_str);
  1643   return NULL;
  1647 void os::print_dll_info(outputStream *st) {
  1648    int pid = os::current_process_id();
  1649    st->print_cr("Dynamic libraries:");
  1650    enumerate_modules(pid, _print_module, (void *)st);
  1653 void os::print_os_info_brief(outputStream* st) {
  1654   os::print_os_info(st);
  1657 void os::print_os_info(outputStream* st) {
  1658   st->print("OS:");
  1660   os::win32::print_windows_version(st);
  1663 void os::win32::print_windows_version(outputStream* st) {
  1664   OSVERSIONINFOEX osvi;
  1665   VS_FIXEDFILEINFO *file_info;
  1666   TCHAR kernel32_path[MAX_PATH];
  1667   UINT len, ret;
  1669   // Use the GetVersionEx information to see if we're on a server or
  1670   // workstation edition of Windows. Starting with Windows 8.1 we can't
  1671   // trust the OS version information returned by this API.
  1672   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1673   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1674   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1675     st->print_cr("Call to GetVersionEx failed");
  1676     return;
  1678   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
  1680   // Get the full path to \Windows\System32\kernel32.dll and use that for
  1681   // determining what version of Windows we're running on.
  1682   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
  1683   ret = GetSystemDirectory(kernel32_path, len);
  1684   if (ret == 0 || ret > len) {
  1685     st->print_cr("Call to GetSystemDirectory failed");
  1686     return;
  1688   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
  1690   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
  1691   if (version_size == 0) {
  1692     st->print_cr("Call to GetFileVersionInfoSize failed");
  1693     return;
  1696   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
  1697   if (version_info == NULL) {
  1698     st->print_cr("Failed to allocate version_info");
  1699     return;
  1702   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
  1703     os::free(version_info);
  1704     st->print_cr("Call to GetFileVersionInfo failed");
  1705     return;
  1708   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
  1709     os::free(version_info);
  1710     st->print_cr("Call to VerQueryValue failed");
  1711     return;
  1714   int major_version = HIWORD(file_info->dwProductVersionMS);
  1715   int minor_version = LOWORD(file_info->dwProductVersionMS);
  1716   int build_number = HIWORD(file_info->dwProductVersionLS);
  1717   int build_minor = LOWORD(file_info->dwProductVersionLS);
  1718   int os_vers = major_version * 1000 + minor_version;
  1719   os::free(version_info);
  1721   st->print(" Windows ");
  1722   switch (os_vers) {
  1724   case 6000:
  1725     if (is_workstation) {
  1726       st->print("Vista");
  1727     } else {
  1728       st->print("Server 2008");
  1730     break;
  1732   case 6001:
  1733     if (is_workstation) {
  1734       st->print("7");
  1735     } else {
  1736       st->print("Server 2008 R2");
  1738     break;
  1740   case 6002:
  1741     if (is_workstation) {
  1742       st->print("8");
  1743     } else {
  1744       st->print("Server 2012");
  1746     break;
  1748   case 6003:
  1749     if (is_workstation) {
  1750       st->print("8.1");
  1751     } else {
  1752       st->print("Server 2012 R2");
  1754     break;
  1756   case 6004:
  1757     if (is_workstation) {
  1758       st->print("10");
  1759     } else {
  1760       st->print("Server 2016");
  1762     break;
  1764   default:
  1765     // Unrecognized windows, print out its major and minor versions
  1766     st->print("%d.%d", major_version, minor_version);
  1767     break;
  1770   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1771   // find out whether we are running on 64 bit processor or not
  1772   SYSTEM_INFO si;
  1773   ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1774   os::Kernel32Dll::GetNativeSystemInfo(&si);
  1775   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
  1776     st->print(" , 64 bit");
  1779   st->print(" Build %d", build_number);
  1780   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
  1781   st->cr();
  1784 void os::pd_print_cpu_info(outputStream* st) {
  1785   // Nothing to do for now.
  1788 void os::print_memory_info(outputStream* st) {
  1789   st->print("Memory:");
  1790   st->print(" %dk page", os::vm_page_size()>>10);
  1792   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1793   // value if total memory is larger than 4GB
  1794   MEMORYSTATUSEX ms;
  1795   ms.dwLength = sizeof(ms);
  1796   GlobalMemoryStatusEx(&ms);
  1798   st->print(", physical %uk", os::physical_memory() >> 10);
  1799   st->print("(%uk free)", os::available_memory() >> 10);
  1801   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1802   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1803   st->cr();
  1806 void os::print_siginfo(outputStream *st, void *siginfo) {
  1807   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1808   st->print("siginfo:");
  1809   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1811   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1812       er->NumberParameters >= 2) {
  1813       switch (er->ExceptionInformation[0]) {
  1814       case 0: st->print(", reading address"); break;
  1815       case 1: st->print(", writing address"); break;
  1816       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1817                             er->ExceptionInformation[0]);
  1819       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1820   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1821              er->NumberParameters >= 2 && UseSharedSpaces) {
  1822     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1823     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1824       st->print("\n\nError accessing class data sharing archive."       \
  1825                 " Mapped file inaccessible during execution, "          \
  1826                 " possible disk/network problem.");
  1828   } else {
  1829     int num = er->NumberParameters;
  1830     if (num > 0) {
  1831       st->print(", ExceptionInformation=");
  1832       for (int i = 0; i < num; i++) {
  1833         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1837   st->cr();
  1840 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1841   // do nothing
  1844 static char saved_jvm_path[MAX_PATH] = {0};
  1846 // Find the full path to the current module, jvm.dll
  1847 void os::jvm_path(char *buf, jint buflen) {
  1848   // Error checking.
  1849   if (buflen < MAX_PATH) {
  1850     assert(false, "must use a large-enough buffer");
  1851     buf[0] = '\0';
  1852     return;
  1854   // Lazy resolve the path to current module.
  1855   if (saved_jvm_path[0] != 0) {
  1856     strcpy(buf, saved_jvm_path);
  1857     return;
  1860   buf[0] = '\0';
  1861   if (Arguments::created_by_gamma_launcher()) {
  1862      // Support for the gamma launcher. Check for an
  1863      // JAVA_HOME environment variable
  1864      // and fix up the path so it looks like
  1865      // libjvm.so is installed there (append a fake suffix
  1866      // hotspot/libjvm.so).
  1867      char* java_home_var = ::getenv("JAVA_HOME");
  1868      if (java_home_var != NULL && java_home_var[0] != 0 &&
  1869          strlen(java_home_var) < (size_t)buflen) {
  1871         strncpy(buf, java_home_var, buflen);
  1873         // determine if this is a legacy image or modules image
  1874         // modules image doesn't have "jre" subdirectory
  1875         size_t len = strlen(buf);
  1876         char* jrebin_p = buf + len;
  1877         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1878         if (0 != _access(buf, 0)) {
  1879           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1881         len = strlen(buf);
  1882         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1886   if(buf[0] == '\0') {
  1887     GetModuleFileName(vm_lib_handle, buf, buflen);
  1889   strncpy(saved_jvm_path, buf, MAX_PATH);
  1893 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1894 #ifndef _WIN64
  1895   st->print("_");
  1896 #endif
  1900 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1901 #ifndef _WIN64
  1902   st->print("@%d", args_size  * sizeof(int));
  1903 #endif
  1906 // This method is a copy of JDK's sysGetLastErrorString
  1907 // from src/windows/hpi/src/system_md.c
  1909 size_t os::lasterror(char* buf, size_t len) {
  1910   DWORD errval;
  1912   if ((errval = GetLastError()) != 0) {
  1913     // DOS error
  1914     size_t n = (size_t)FormatMessage(
  1915           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1916           NULL,
  1917           errval,
  1918           0,
  1919           buf,
  1920           (DWORD)len,
  1921           NULL);
  1922     if (n > 3) {
  1923       // Drop final '.', CR, LF
  1924       if (buf[n - 1] == '\n') n--;
  1925       if (buf[n - 1] == '\r') n--;
  1926       if (buf[n - 1] == '.') n--;
  1927       buf[n] = '\0';
  1929     return n;
  1932   if (errno != 0) {
  1933     // C runtime error that has no corresponding DOS error code
  1934     const char* s = strerror(errno);
  1935     size_t n = strlen(s);
  1936     if (n >= len) n = len - 1;
  1937     strncpy(buf, s, n);
  1938     buf[n] = '\0';
  1939     return n;
  1942   return 0;
  1945 int os::get_last_error() {
  1946   DWORD error = GetLastError();
  1947   if (error == 0)
  1948     error = errno;
  1949   return (int)error;
  1952 // sun.misc.Signal
  1953 // NOTE that this is a workaround for an apparent kernel bug where if
  1954 // a signal handler for SIGBREAK is installed then that signal handler
  1955 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1956 // See bug 4416763.
  1957 static void (*sigbreakHandler)(int) = NULL;
  1959 static void UserHandler(int sig, void *siginfo, void *context) {
  1960   os::signal_notify(sig);
  1961   // We need to reinstate the signal handler each time...
  1962   os::signal(sig, (void*)UserHandler);
  1965 void* os::user_handler() {
  1966   return (void*) UserHandler;
  1969 void* os::signal(int signal_number, void* handler) {
  1970   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1971     void (*oldHandler)(int) = sigbreakHandler;
  1972     sigbreakHandler = (void (*)(int)) handler;
  1973     return (void*) oldHandler;
  1974   } else {
  1975     return (void*)::signal(signal_number, (void (*)(int))handler);
  1979 void os::signal_raise(int signal_number) {
  1980   raise(signal_number);
  1983 // The Win32 C runtime library maps all console control events other than ^C
  1984 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1985 // logoff, and shutdown events.  We therefore install our own console handler
  1986 // that raises SIGTERM for the latter cases.
  1987 //
  1988 static BOOL WINAPI consoleHandler(DWORD event) {
  1989   switch(event) {
  1990     case CTRL_C_EVENT:
  1991       if (is_error_reported()) {
  1992         // Ctrl-C is pressed during error reporting, likely because the error
  1993         // handler fails to abort. Let VM die immediately.
  1994         os::die();
  1997       os::signal_raise(SIGINT);
  1998       return TRUE;
  1999       break;
  2000     case CTRL_BREAK_EVENT:
  2001       if (sigbreakHandler != NULL) {
  2002         (*sigbreakHandler)(SIGBREAK);
  2004       return TRUE;
  2005       break;
  2006     case CTRL_LOGOFF_EVENT: {
  2007       // Don't terminate JVM if it is running in a non-interactive session,
  2008       // such as a service process.
  2009       USEROBJECTFLAGS flags;
  2010       HANDLE handle = GetProcessWindowStation();
  2011       if (handle != NULL &&
  2012           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  2013             sizeof( USEROBJECTFLAGS), NULL)) {
  2014         // If it is a non-interactive session, let next handler to deal
  2015         // with it.
  2016         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  2017           return FALSE;
  2021     case CTRL_CLOSE_EVENT:
  2022     case CTRL_SHUTDOWN_EVENT:
  2023       os::signal_raise(SIGTERM);
  2024       return TRUE;
  2025       break;
  2026     default:
  2027       break;
  2029   return FALSE;
  2032 /*
  2033  * The following code is moved from os.cpp for making this
  2034  * code platform specific, which it is by its very nature.
  2035  */
  2037 // Return maximum OS signal used + 1 for internal use only
  2038 // Used as exit signal for signal_thread
  2039 int os::sigexitnum_pd(){
  2040   return NSIG;
  2043 // a counter for each possible signal value, including signal_thread exit signal
  2044 static volatile jint pending_signals[NSIG+1] = { 0 };
  2045 static HANDLE sig_sem = NULL;
  2047 void os::signal_init_pd() {
  2048   // Initialize signal structures
  2049   memset((void*)pending_signals, 0, sizeof(pending_signals));
  2051   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  2053   // Programs embedding the VM do not want it to attempt to receive
  2054   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  2055   // shutdown hooks mechanism introduced in 1.3.  For example, when
  2056   // the VM is run as part of a Windows NT service (i.e., a servlet
  2057   // engine in a web server), the correct behavior is for any console
  2058   // control handler to return FALSE, not TRUE, because the OS's
  2059   // "final" handler for such events allows the process to continue if
  2060   // it is a service (while terminating it if it is not a service).
  2061   // To make this behavior uniform and the mechanism simpler, we
  2062   // completely disable the VM's usage of these console events if -Xrs
  2063   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2064   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2065   // case.  See bugs 4323062, 4345157, and related bugs.
  2067   if (!ReduceSignalUsage) {
  2068     // Add a CTRL-C handler
  2069     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2073 void os::signal_notify(int signal_number) {
  2074   BOOL ret;
  2075   if (sig_sem != NULL) {
  2076     Atomic::inc(&pending_signals[signal_number]);
  2077     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2078     assert(ret != 0, "ReleaseSemaphore() failed");
  2082 static int check_pending_signals(bool wait_for_signal) {
  2083   DWORD ret;
  2084   while (true) {
  2085     for (int i = 0; i < NSIG + 1; i++) {
  2086       jint n = pending_signals[i];
  2087       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2088         return i;
  2091     if (!wait_for_signal) {
  2092       return -1;
  2095     JavaThread *thread = JavaThread::current();
  2097     ThreadBlockInVM tbivm(thread);
  2099     bool threadIsSuspended;
  2100     do {
  2101       thread->set_suspend_equivalent();
  2102       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2103       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2104       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2106       // were we externally suspended while we were waiting?
  2107       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2108       if (threadIsSuspended) {
  2109         //
  2110         // The semaphore has been incremented, but while we were waiting
  2111         // another thread suspended us. We don't want to continue running
  2112         // while suspended because that would surprise the thread that
  2113         // suspended us.
  2114         //
  2115         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2116         assert(ret != 0, "ReleaseSemaphore() failed");
  2118         thread->java_suspend_self();
  2120     } while (threadIsSuspended);
  2124 int os::signal_lookup() {
  2125   return check_pending_signals(false);
  2128 int os::signal_wait() {
  2129   return check_pending_signals(true);
  2132 // Implicit OS exception handling
  2134 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2135   JavaThread* thread = JavaThread::current();
  2136   // Save pc in thread
  2137 #ifdef _M_IA64
  2138   // Do not blow up if no thread info available.
  2139   if (thread) {
  2140     // Saving PRECISE pc (with slot information) in thread.
  2141     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2142     // Convert precise PC into "Unix" format
  2143     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2144     thread->set_saved_exception_pc((address)precise_pc);
  2146   // Set pc to handler
  2147   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2148   // Clear out psr.ri (= Restart Instruction) in order to continue
  2149   // at the beginning of the target bundle.
  2150   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2151   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2152 #else
  2153   #ifdef _M_AMD64
  2154   // Do not blow up if no thread info available.
  2155   if (thread) {
  2156     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2158   // Set pc to handler
  2159   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2160   #else
  2161   // Do not blow up if no thread info available.
  2162   if (thread) {
  2163     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2165   // Set pc to handler
  2166   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2167   #endif
  2168 #endif
  2170   // Continue the execution
  2171   return EXCEPTION_CONTINUE_EXECUTION;
  2175 // Used for PostMortemDump
  2176 extern "C" void safepoints();
  2177 extern "C" void find(int x);
  2178 extern "C" void events();
  2180 // According to Windows API documentation, an illegal instruction sequence should generate
  2181 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2182 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2183 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2185 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2187 // From "Execution Protection in the Windows Operating System" draft 0.35
  2188 // Once a system header becomes available, the "real" define should be
  2189 // included or copied here.
  2190 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2192 // Handle NAT Bit consumption on IA64.
  2193 #ifdef _M_IA64
  2194 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2195 #endif
  2197 // Windows Vista/2008 heap corruption check
  2198 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2200 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2201 // C++ compiler contain this error code. Because this is a compiler-generated
  2202 // error, the code is not listed in the Win32 API header files.
  2203 // The code is actually a cryptic mnemonic device, with the initial "E"
  2204 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2205 // ASCII values of "msc".
  2207 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2209 #define def_excpt(val) { #val, (val) }
  2211 static const struct { char* name; uint number; } exceptlabels[] = {
  2212     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2213     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2214     def_excpt(EXCEPTION_BREAKPOINT),
  2215     def_excpt(EXCEPTION_SINGLE_STEP),
  2216     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2217     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2218     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2219     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2220     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2221     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2222     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2223     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2224     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2225     def_excpt(EXCEPTION_INT_OVERFLOW),
  2226     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2227     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2228     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2229     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2230     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2231     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2232     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2233     def_excpt(EXCEPTION_GUARD_PAGE),
  2234     def_excpt(EXCEPTION_INVALID_HANDLE),
  2235     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2236     def_excpt(EXCEPTION_HEAP_CORRUPTION)
  2237 #ifdef _M_IA64
  2238     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
  2239 #endif
  2240 };
  2242 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2243   uint code = static_cast<uint>(exception_code);
  2244   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
  2245     if (exceptlabels[i].number == code) {
  2246        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2247        return buf;
  2251   return NULL;
  2254 //-----------------------------------------------------------------------------
  2255 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2256   // handle exception caused by idiv; should only happen for -MinInt/-1
  2257   // (division by zero is handled explicitly)
  2258 #ifdef _M_IA64
  2259   assert(0, "Fix Handle_IDiv_Exception");
  2260 #else
  2261   #ifdef  _M_AMD64
  2262   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2263   address pc = (address)ctx->Rip;
  2264   assert(pc[0] == 0xF7, "not an idiv opcode");
  2265   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2266   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2267   // set correct result values and continue after idiv instruction
  2268   ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
  2269   ctx->Rax = (DWORD64)min_jint;      // result
  2270   ctx->Rdx = (DWORD64)0;             // remainder
  2271   // Continue the execution
  2272   #else
  2273   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2274   address pc = (address)ctx->Eip;
  2275   assert(pc[0] == 0xF7, "not an idiv opcode");
  2276   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2277   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2278   // set correct result values and continue after idiv instruction
  2279   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2280   ctx->Eax = (DWORD)min_jint;      // result
  2281   ctx->Edx = (DWORD)0;             // remainder
  2282   // Continue the execution
  2283   #endif
  2284 #endif
  2285   return EXCEPTION_CONTINUE_EXECUTION;
  2288 #ifndef  _WIN64
  2289 //-----------------------------------------------------------------------------
  2290 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2291   // handle exception caused by native method modifying control word
  2292   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2293   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2295   switch (exception_code) {
  2296     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2297     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2298     case EXCEPTION_FLT_INEXACT_RESULT:
  2299     case EXCEPTION_FLT_INVALID_OPERATION:
  2300     case EXCEPTION_FLT_OVERFLOW:
  2301     case EXCEPTION_FLT_STACK_CHECK:
  2302     case EXCEPTION_FLT_UNDERFLOW:
  2303       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2304       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2305         // Restore FPCW and mask out FLT exceptions
  2306         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2307         // Mask out pending FLT exceptions
  2308         ctx->FloatSave.StatusWord &=  0xffffff00;
  2309         return EXCEPTION_CONTINUE_EXECUTION;
  2313   if (prev_uef_handler != NULL) {
  2314     // We didn't handle this exception so pass it to the previous
  2315     // UnhandledExceptionFilter.
  2316     return (prev_uef_handler)(exceptionInfo);
  2319   return EXCEPTION_CONTINUE_SEARCH;
  2321 #else //_WIN64
  2322 /*
  2323   On Windows, the mxcsr control bits are non-volatile across calls
  2324   See also CR 6192333
  2325   If EXCEPTION_FLT_* happened after some native method modified
  2326   mxcsr - it is not a jvm fault.
  2327   However should we decide to restore of mxcsr after a faulty
  2328   native method we can uncomment following code
  2329       jint MxCsr = INITIAL_MXCSR;
  2330         // we can't use StubRoutines::addr_mxcsr_std()
  2331         // because in Win64 mxcsr is not saved there
  2332       if (MxCsr != ctx->MxCsr) {
  2333         ctx->MxCsr = MxCsr;
  2334         return EXCEPTION_CONTINUE_EXECUTION;
  2337 */
  2338 #endif // _WIN64
  2341 static inline void report_error(Thread* t, DWORD exception_code,
  2342                                 address addr, void* siginfo, void* context) {
  2343   VMError err(t, exception_code, addr, siginfo, context);
  2344   err.report_and_die();
  2346   // If UseOsErrorReporting, this will return here and save the error file
  2347   // somewhere where we can find it in the minidump.
  2350 //-----------------------------------------------------------------------------
  2351 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2352   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2353   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2354 #ifdef _M_IA64
  2355   // On Itanium, we need the "precise pc", which has the slot number coded
  2356   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2357   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2358   // Convert the pc to "Unix format", which has the slot number coded
  2359   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2360   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2361   // information is saved in the Unix format.
  2362   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2363 #else
  2364   #ifdef _M_AMD64
  2365   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2366   #else
  2367   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2368   #endif
  2369 #endif
  2370   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2372   // Handle SafeFetch32 and SafeFetchN exceptions.
  2373   if (StubRoutines::is_safefetch_fault(pc)) {
  2374     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2377 #ifndef _WIN64
  2378   // Execution protection violation - win32 running on AMD64 only
  2379   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2380   // This is safe to do because we have a new/unique ExceptionInformation
  2381   // code for this condition.
  2382   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2383     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2384     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2385     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2387     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2388       int page_size = os::vm_page_size();
  2390       // Make sure the pc and the faulting address are sane.
  2391       //
  2392       // If an instruction spans a page boundary, and the page containing
  2393       // the beginning of the instruction is executable but the following
  2394       // page is not, the pc and the faulting address might be slightly
  2395       // different - we still want to unguard the 2nd page in this case.
  2396       //
  2397       // 15 bytes seems to be a (very) safe value for max instruction size.
  2398       bool pc_is_near_addr =
  2399         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2400       bool instr_spans_page_boundary =
  2401         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2402                          (intptr_t) page_size) > 0);
  2404       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2405         static volatile address last_addr =
  2406           (address) os::non_memory_address_word();
  2408         // In conservative mode, don't unguard unless the address is in the VM
  2409         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2410             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2412           // Set memory to RWX and retry
  2413           address page_start =
  2414             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2415           bool res = os::protect_memory((char*) page_start, page_size,
  2416                                         os::MEM_PROT_RWX);
  2418           if (PrintMiscellaneous && Verbose) {
  2419             char buf[256];
  2420             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2421                          "at " INTPTR_FORMAT
  2422                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2423                          page_start, (res ? "success" : strerror(errno)));
  2424             tty->print_raw_cr(buf);
  2427           // Set last_addr so if we fault again at the same address, we don't
  2428           // end up in an endless loop.
  2429           //
  2430           // There are two potential complications here.  Two threads trapping
  2431           // at the same address at the same time could cause one of the
  2432           // threads to think it already unguarded, and abort the VM.  Likely
  2433           // very rare.
  2434           //
  2435           // The other race involves two threads alternately trapping at
  2436           // different addresses and failing to unguard the page, resulting in
  2437           // an endless loop.  This condition is probably even more unlikely
  2438           // than the first.
  2439           //
  2440           // Although both cases could be avoided by using locks or thread
  2441           // local last_addr, these solutions are unnecessary complication:
  2442           // this handler is a best-effort safety net, not a complete solution.
  2443           // It is disabled by default and should only be used as a workaround
  2444           // in case we missed any no-execute-unsafe VM code.
  2446           last_addr = addr;
  2448           return EXCEPTION_CONTINUE_EXECUTION;
  2452       // Last unguard failed or not unguarding
  2453       tty->print_raw_cr("Execution protection violation");
  2454       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2455                    exceptionInfo->ContextRecord);
  2456       return EXCEPTION_CONTINUE_SEARCH;
  2459 #endif // _WIN64
  2461   // Check to see if we caught the safepoint code in the
  2462   // process of write protecting the memory serialization page.
  2463   // It write enables the page immediately after protecting it
  2464   // so just return.
  2465   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2466     JavaThread* thread = (JavaThread*) t;
  2467     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2468     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2469     if ( os::is_memory_serialize_page(thread, addr) ) {
  2470       // Block current thread until the memory serialize page permission restored.
  2471       os::block_on_serialize_page_trap();
  2472       return EXCEPTION_CONTINUE_EXECUTION;
  2476   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
  2477       VM_Version::is_cpuinfo_segv_addr(pc)) {
  2478     // Verify that OS save/restore AVX registers.
  2479     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
  2482   if (t != NULL && t->is_Java_thread()) {
  2483     JavaThread* thread = (JavaThread*) t;
  2484     bool in_java = thread->thread_state() == _thread_in_Java;
  2486     // Handle potential stack overflows up front.
  2487     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2488       if (os::uses_stack_guard_pages()) {
  2489 #ifdef _M_IA64
  2490         // Use guard page for register stack.
  2491         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2492         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2493         // Check for a register stack overflow on Itanium
  2494         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2495           // Fatal red zone violation happens if the Java program
  2496           // catches a StackOverflow error and does so much processing
  2497           // that it runs beyond the unprotected yellow guard zone. As
  2498           // a result, we are out of here.
  2499           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2500         } else if(thread->addr_inside_register_stack(addr)) {
  2501           // Disable the yellow zone which sets the state that
  2502           // we've got a stack overflow problem.
  2503           if (thread->stack_yellow_zone_enabled()) {
  2504             thread->disable_stack_yellow_zone();
  2506           // Give us some room to process the exception.
  2507           thread->disable_register_stack_guard();
  2508           // Tracing with +Verbose.
  2509           if (Verbose) {
  2510             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2511             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2512             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2513             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2514                           thread->register_stack_base(),
  2515                           thread->register_stack_base() + thread->stack_size());
  2518           // Reguard the permanent register stack red zone just to be sure.
  2519           // We saw Windows silently disabling this without telling us.
  2520           thread->enable_register_stack_red_zone();
  2522           return Handle_Exception(exceptionInfo,
  2523             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2525 #endif
  2526         if (thread->stack_yellow_zone_enabled()) {
  2527           // Yellow zone violation.  The o/s has unprotected the first yellow
  2528           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2529           // update the enabled status, even if the zone contains only one page.
  2530           thread->disable_stack_yellow_zone();
  2531           // If not in java code, return and hope for the best.
  2532           return in_java ? Handle_Exception(exceptionInfo,
  2533             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2534             :  EXCEPTION_CONTINUE_EXECUTION;
  2535         } else {
  2536           // Fatal red zone violation.
  2537           thread->disable_stack_red_zone();
  2538           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2539           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2540                        exceptionInfo->ContextRecord);
  2541           return EXCEPTION_CONTINUE_SEARCH;
  2543       } else if (in_java) {
  2544         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2545         // a one-time-only guard page, which it has released to us.  The next
  2546         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2547         return Handle_Exception(exceptionInfo,
  2548           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2549       } else {
  2550         // Can only return and hope for the best.  Further stack growth will
  2551         // result in an ACCESS_VIOLATION.
  2552         return EXCEPTION_CONTINUE_EXECUTION;
  2554     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2555       // Either stack overflow or null pointer exception.
  2556       if (in_java) {
  2557         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2558         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2559         address stack_end = thread->stack_base() - thread->stack_size();
  2560         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2561           // Stack overflow.
  2562           assert(!os::uses_stack_guard_pages(),
  2563             "should be caught by red zone code above.");
  2564           return Handle_Exception(exceptionInfo,
  2565             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2567         //
  2568         // Check for safepoint polling and implicit null
  2569         // We only expect null pointers in the stubs (vtable)
  2570         // the rest are checked explicitly now.
  2571         //
  2572         CodeBlob* cb = CodeCache::find_blob(pc);
  2573         if (cb != NULL) {
  2574           if (os::is_poll_address(addr)) {
  2575             address stub = SharedRuntime::get_poll_stub(pc);
  2576             return Handle_Exception(exceptionInfo, stub);
  2580 #ifdef _WIN64
  2581           //
  2582           // If it's a legal stack address map the entire region in
  2583           //
  2584           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2585           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2586           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2587                   addr = (address)((uintptr_t)addr &
  2588                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2589                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2590                                     !ExecMem);
  2591                   return EXCEPTION_CONTINUE_EXECUTION;
  2593           else
  2594 #endif
  2596             // Null pointer exception.
  2597 #ifdef _M_IA64
  2598             // Process implicit null checks in compiled code. Note: Implicit null checks
  2599             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2600             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2601               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2602               // Handle implicit null check in UEP method entry
  2603               if (cb && (cb->is_frame_complete_at(pc) ||
  2604                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2605                 if (Verbose) {
  2606                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2607                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2608                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2609                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2610                                 *(bundle_start + 1), *bundle_start);
  2612                 return Handle_Exception(exceptionInfo,
  2613                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2617             // Implicit null checks were processed above.  Hence, we should not reach
  2618             // here in the usual case => die!
  2619             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2620             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2621                          exceptionInfo->ContextRecord);
  2622             return EXCEPTION_CONTINUE_SEARCH;
  2624 #else // !IA64
  2626             // Windows 98 reports faulting addresses incorrectly
  2627             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2628                 !os::win32::is_nt()) {
  2629               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2630               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2632             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2633                          exceptionInfo->ContextRecord);
  2634             return EXCEPTION_CONTINUE_SEARCH;
  2635 #endif
  2640 #ifdef _WIN64
  2641       // Special care for fast JNI field accessors.
  2642       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2643       // in and the heap gets shrunk before the field access.
  2644       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2645         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2646         if (addr != (address)-1) {
  2647           return Handle_Exception(exceptionInfo, addr);
  2650 #endif
  2652       // Stack overflow or null pointer exception in native code.
  2653       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2654                    exceptionInfo->ContextRecord);
  2655       return EXCEPTION_CONTINUE_SEARCH;
  2656     } // /EXCEPTION_ACCESS_VIOLATION
  2657     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2658 #if defined _M_IA64
  2659     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2660               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2661       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2663       // Compiled method patched to be non entrant? Following conditions must apply:
  2664       // 1. must be first instruction in bundle
  2665       // 2. must be a break instruction with appropriate code
  2666       if((((uint64_t) pc & 0x0F) == 0) &&
  2667          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2668         return Handle_Exception(exceptionInfo,
  2669                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2671     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2672 #endif
  2675     if (in_java) {
  2676       switch (exception_code) {
  2677       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2678         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2680       case EXCEPTION_INT_OVERFLOW:
  2681         return Handle_IDiv_Exception(exceptionInfo);
  2683       } // switch
  2685 #ifndef _WIN64
  2686     if (((thread->thread_state() == _thread_in_Java) ||
  2687         (thread->thread_state() == _thread_in_native)) &&
  2688         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2690       LONG result=Handle_FLT_Exception(exceptionInfo);
  2691       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2693 #endif //_WIN64
  2696   if (exception_code != EXCEPTION_BREAKPOINT) {
  2697     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2698                  exceptionInfo->ContextRecord);
  2700   return EXCEPTION_CONTINUE_SEARCH;
  2703 #ifndef _WIN64
  2704 // Special care for fast JNI accessors.
  2705 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2706 // the heap gets shrunk before the field access.
  2707 // Need to install our own structured exception handler since native code may
  2708 // install its own.
  2709 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2710   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2711   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2712     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2713     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2714     if (addr != (address)-1) {
  2715       return Handle_Exception(exceptionInfo, addr);
  2718   return EXCEPTION_CONTINUE_SEARCH;
  2721 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2722 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2723   __try { \
  2724     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2725   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2726   } \
  2727   return 0; \
  2730 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2731 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2732 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2733 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2734 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2735 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2736 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2737 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2739 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2740   switch (type) {
  2741     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2742     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2743     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2744     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2745     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2746     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2747     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2748     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2749     default:        ShouldNotReachHere();
  2751   return (address)-1;
  2753 #endif
  2755 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2756   // Install a win32 structured exception handler around the test
  2757   // function call so the VM can generate an error dump if needed.
  2758   __try {
  2759     (*funcPtr)();
  2760   } __except(topLevelExceptionFilter(
  2761              (_EXCEPTION_POINTERS*)_exception_info())) {
  2762     // Nothing to do.
  2766 // Virtual Memory
  2768 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2769 int os::vm_allocation_granularity() {
  2770   return os::win32::vm_allocation_granularity();
  2773 // Windows large page support is available on Windows 2003. In order to use
  2774 // large page memory, the administrator must first assign additional privilege
  2775 // to the user:
  2776 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2777 //   + select Local Policies -> User Rights Assignment
  2778 //   + double click "Lock pages in memory", add users and/or groups
  2779 //   + reboot
  2780 // Note the above steps are needed for administrator as well, as administrators
  2781 // by default do not have the privilege to lock pages in memory.
  2782 //
  2783 // Note about Windows 2003: although the API supports committing large page
  2784 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2785 // scenario, I found through experiment it only uses large page if the entire
  2786 // memory region is reserved and committed in a single VirtualAlloc() call.
  2787 // This makes Windows large page support more or less like Solaris ISM, in
  2788 // that the entire heap must be committed upfront. This probably will change
  2789 // in the future, if so the code below needs to be revisited.
  2791 #ifndef MEM_LARGE_PAGES
  2792 #define MEM_LARGE_PAGES 0x20000000
  2793 #endif
  2795 static HANDLE    _hProcess;
  2796 static HANDLE    _hToken;
  2798 // Container for NUMA node list info
  2799 class NUMANodeListHolder {
  2800 private:
  2801   int *_numa_used_node_list;  // allocated below
  2802   int _numa_used_node_count;
  2804   void free_node_list() {
  2805     if (_numa_used_node_list != NULL) {
  2806       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2810 public:
  2811   NUMANodeListHolder() {
  2812     _numa_used_node_count = 0;
  2813     _numa_used_node_list = NULL;
  2814     // do rest of initialization in build routine (after function pointers are set up)
  2817   ~NUMANodeListHolder() {
  2818     free_node_list();
  2821   bool build() {
  2822     DWORD_PTR proc_aff_mask;
  2823     DWORD_PTR sys_aff_mask;
  2824     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2825     ULONG highest_node_number;
  2826     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2827     free_node_list();
  2828     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2829     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2830       ULONGLONG proc_mask_numa_node;
  2831       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2832       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2833         _numa_used_node_list[_numa_used_node_count++] = i;
  2836     return (_numa_used_node_count > 1);
  2839   int get_count() {return _numa_used_node_count;}
  2840   int get_node_list_entry(int n) {
  2841     // for indexes out of range, returns -1
  2842     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2845 } numa_node_list_holder;
  2849 static size_t _large_page_size = 0;
  2851 static bool resolve_functions_for_large_page_init() {
  2852   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2853     os::Advapi32Dll::AdvapiAvailable();
  2856 static bool request_lock_memory_privilege() {
  2857   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2858                                 os::current_process_id());
  2860   LUID luid;
  2861   if (_hProcess != NULL &&
  2862       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2863       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2865     TOKEN_PRIVILEGES tp;
  2866     tp.PrivilegeCount = 1;
  2867     tp.Privileges[0].Luid = luid;
  2868     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2870     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2871     // privilege. Check GetLastError() too. See MSDN document.
  2872     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2873         (GetLastError() == ERROR_SUCCESS)) {
  2874       return true;
  2878   return false;
  2881 static void cleanup_after_large_page_init() {
  2882   if (_hProcess) CloseHandle(_hProcess);
  2883   _hProcess = NULL;
  2884   if (_hToken) CloseHandle(_hToken);
  2885   _hToken = NULL;
  2888 static bool numa_interleaving_init() {
  2889   bool success = false;
  2890   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2892   // print a warning if UseNUMAInterleaving flag is specified on command line
  2893   bool warn_on_failure = use_numa_interleaving_specified;
  2894 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2896   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2897   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2898   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2900   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2901     if (numa_node_list_holder.build()) {
  2902       if (PrintMiscellaneous && Verbose) {
  2903         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2904         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2905           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2907         tty->print("\n");
  2909       success = true;
  2910     } else {
  2911       WARN("Process does not cover multiple NUMA nodes.");
  2913   } else {
  2914     WARN("NUMA Interleaving is not supported by the operating system.");
  2916   if (!success) {
  2917     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2919   return success;
  2920 #undef WARN
  2923 // this routine is used whenever we need to reserve a contiguous VA range
  2924 // but we need to make separate VirtualAlloc calls for each piece of the range
  2925 // Reasons for doing this:
  2926 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2927 //  * UseNUMAInterleaving requires a separate node for each piece
  2928 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2929                                          bool should_inject_error=false) {
  2930   char * p_buf;
  2931   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2932   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2933   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2935   // first reserve enough address space in advance since we want to be
  2936   // able to break a single contiguous virtual address range into multiple
  2937   // large page commits but WS2003 does not allow reserving large page space
  2938   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2939   // address space. then we will deallocate that reservation, and re alloc
  2940   // using large pages
  2941   const size_t size_of_reserve = bytes + chunk_size;
  2942   if (bytes > size_of_reserve) {
  2943     // Overflowed.
  2944     return NULL;
  2946   p_buf = (char *) VirtualAlloc(addr,
  2947                                 size_of_reserve,  // size of Reserve
  2948                                 MEM_RESERVE,
  2949                                 PAGE_READWRITE);
  2950   // If reservation failed, return NULL
  2951   if (p_buf == NULL) return NULL;
  2952   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
  2953   os::release_memory(p_buf, bytes + chunk_size);
  2955   // we still need to round up to a page boundary (in case we are using large pages)
  2956   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2957   // instead we handle this in the bytes_to_rq computation below
  2958   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2960   // now go through and allocate one chunk at a time until all bytes are
  2961   // allocated
  2962   size_t  bytes_remaining = bytes;
  2963   // An overflow of align_size_up() would have been caught above
  2964   // in the calculation of size_of_reserve.
  2965   char * next_alloc_addr = p_buf;
  2966   HANDLE hProc = GetCurrentProcess();
  2968 #ifdef ASSERT
  2969   // Variable for the failure injection
  2970   long ran_num = os::random();
  2971   size_t fail_after = ran_num % bytes;
  2972 #endif
  2974   int count=0;
  2975   while (bytes_remaining) {
  2976     // select bytes_to_rq to get to the next chunk_size boundary
  2978     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2979     // Note allocate and commit
  2980     char * p_new;
  2982 #ifdef ASSERT
  2983     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2984 #else
  2985     const bool inject_error_now = false;
  2986 #endif
  2988     if (inject_error_now) {
  2989       p_new = NULL;
  2990     } else {
  2991       if (!UseNUMAInterleaving) {
  2992         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2993                                       bytes_to_rq,
  2994                                       flags,
  2995                                       prot);
  2996       } else {
  2997         // get the next node to use from the used_node_list
  2998         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2999         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  3000         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  3001                                                             next_alloc_addr,
  3002                                                             bytes_to_rq,
  3003                                                             flags,
  3004                                                             prot,
  3005                                                             node);
  3009     if (p_new == NULL) {
  3010       // Free any allocated pages
  3011       if (next_alloc_addr > p_buf) {
  3012         // Some memory was committed so release it.
  3013         size_t bytes_to_release = bytes - bytes_remaining;
  3014         // NMT has yet to record any individual blocks, so it
  3015         // need to create a dummy 'reserve' record to match
  3016         // the release.
  3017         MemTracker::record_virtual_memory_reserve((address)p_buf,
  3018           bytes_to_release, CALLER_PC);
  3019         os::release_memory(p_buf, bytes_to_release);
  3021 #ifdef ASSERT
  3022       if (should_inject_error) {
  3023         if (TracePageSizes && Verbose) {
  3024           tty->print_cr("Reserving pages individually failed.");
  3027 #endif
  3028       return NULL;
  3031     bytes_remaining -= bytes_to_rq;
  3032     next_alloc_addr += bytes_to_rq;
  3033     count++;
  3035   // Although the memory is allocated individually, it is returned as one.
  3036   // NMT records it as one block.
  3037   if ((flags & MEM_COMMIT) != 0) {
  3038     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
  3039   } else {
  3040     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
  3043   // made it this far, success
  3044   return p_buf;
  3049 void os::large_page_init() {
  3050   if (!UseLargePages) return;
  3052   // print a warning if any large page related flag is specified on command line
  3053   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3054                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3055   bool success = false;
  3057 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3058   if (resolve_functions_for_large_page_init()) {
  3059     if (request_lock_memory_privilege()) {
  3060       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3061       if (s) {
  3062 #if defined(IA32) || defined(AMD64)
  3063         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3064           WARN("JVM cannot use large pages bigger than 4mb.");
  3065         } else {
  3066 #endif
  3067           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3068             _large_page_size = LargePageSizeInBytes;
  3069           } else {
  3070             _large_page_size = s;
  3072           success = true;
  3073 #if defined(IA32) || defined(AMD64)
  3075 #endif
  3076       } else {
  3077         WARN("Large page is not supported by the processor.");
  3079     } else {
  3080       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3082   } else {
  3083     WARN("Large page is not supported by the operating system.");
  3085 #undef WARN
  3087   const size_t default_page_size = (size_t) vm_page_size();
  3088   if (success && _large_page_size > default_page_size) {
  3089     _page_sizes[0] = _large_page_size;
  3090     _page_sizes[1] = default_page_size;
  3091     _page_sizes[2] = 0;
  3094   cleanup_after_large_page_init();
  3095   UseLargePages = success;
  3098 // On win32, one cannot release just a part of reserved memory, it's an
  3099 // all or nothing deal.  When we split a reservation, we must break the
  3100 // reservation into two reservations.
  3101 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3102                               bool realloc) {
  3103   if (size > 0) {
  3104     release_memory(base, size);
  3105     if (realloc) {
  3106       reserve_memory(split, base);
  3108     if (size != split) {
  3109       reserve_memory(size - split, base + split);
  3114 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3115 // virtual space to get requested alignment, like posix-like os's.
  3116 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3117 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3118   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3119       "Alignment must be a multiple of allocation granularity (page size)");
  3120   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3122   size_t extra_size = size + alignment;
  3123   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3125   char* aligned_base = NULL;
  3127   do {
  3128     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3129     if (extra_base == NULL) {
  3130       return NULL;
  3132     // Do manual alignment
  3133     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3135     os::release_memory(extra_base, extra_size);
  3137     aligned_base = os::reserve_memory(size, aligned_base);
  3139   } while (aligned_base == NULL);
  3141   return aligned_base;
  3144 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3145   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3146          "reserve alignment");
  3147   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3148   char* res;
  3149   // note that if UseLargePages is on, all the areas that require interleaving
  3150   // will go thru reserve_memory_special rather than thru here.
  3151   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3152   if (!use_individual) {
  3153     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3154   } else {
  3155     elapsedTimer reserveTimer;
  3156     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3157     // in numa interleaving, we have to allocate pages individually
  3158     // (well really chunks of NUMAInterleaveGranularity size)
  3159     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3160     if (res == NULL) {
  3161       warning("NUMA page allocation failed");
  3163     if( Verbose && PrintMiscellaneous ) {
  3164       reserveTimer.stop();
  3165       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3166                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3169   assert(res == NULL || addr == NULL || addr == res,
  3170          "Unexpected address from reserve.");
  3172   return res;
  3175 // Reserve memory at an arbitrary address, only if that area is
  3176 // available (and not reserved for something else).
  3177 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3178   // Windows os::reserve_memory() fails of the requested address range is
  3179   // not avilable.
  3180   return reserve_memory(bytes, requested_addr);
  3183 size_t os::large_page_size() {
  3184   return _large_page_size;
  3187 bool os::can_commit_large_page_memory() {
  3188   // Windows only uses large page memory when the entire region is reserved
  3189   // and committed in a single VirtualAlloc() call. This may change in the
  3190   // future, but with Windows 2003 it's not possible to commit on demand.
  3191   return false;
  3194 bool os::can_execute_large_page_memory() {
  3195   return true;
  3198 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
  3199   assert(UseLargePages, "only for large pages");
  3201   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3202     return NULL; // Fallback to small pages.
  3205   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3206   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3208   // with large pages, there are two cases where we need to use Individual Allocation
  3209   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3210   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3211   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3212     if (TracePageSizes && Verbose) {
  3213        tty->print_cr("Reserving large pages individually.");
  3215     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3216     if (p_buf == NULL) {
  3217       // give an appropriate warning message
  3218       if (UseNUMAInterleaving) {
  3219         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3221       if (UseLargePagesIndividualAllocation) {
  3222         warning("Individually allocated large pages failed, "
  3223                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3225       return NULL;
  3228     return p_buf;
  3230   } else {
  3231     if (TracePageSizes && Verbose) {
  3232        tty->print_cr("Reserving large pages in a single large chunk.");
  3234     // normal policy just allocate it all at once
  3235     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3236     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
  3237     if (res != NULL) {
  3238       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
  3241     return res;
  3245 bool os::release_memory_special(char* base, size_t bytes) {
  3246   assert(base != NULL, "Sanity check");
  3247   return release_memory(base, bytes);
  3250 void os::print_statistics() {
  3253 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3254   int err = os::get_last_error();
  3255   char buf[256];
  3256   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3257   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3258           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3259           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3262 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3263   if (bytes == 0) {
  3264     // Don't bother the OS with noops.
  3265     return true;
  3267   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3268   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3269   // Don't attempt to print anything if the OS call fails. We're
  3270   // probably low on resources, so the print itself may cause crashes.
  3272   // unless we have NUMAInterleaving enabled, the range of a commit
  3273   // is always within a reserve covered by a single VirtualAlloc
  3274   // in that case we can just do a single commit for the requested size
  3275   if (!UseNUMAInterleaving) {
  3276     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3277       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3278       return false;
  3280     if (exec) {
  3281       DWORD oldprot;
  3282       // Windows doc says to use VirtualProtect to get execute permissions
  3283       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3284         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3285         return false;
  3288     return true;
  3289   } else {
  3291     // when NUMAInterleaving is enabled, the commit might cover a range that
  3292     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3293     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3294     // returns represents the number of bytes that can be committed in one step.
  3295     size_t bytes_remaining = bytes;
  3296     char * next_alloc_addr = addr;
  3297     while (bytes_remaining > 0) {
  3298       MEMORY_BASIC_INFORMATION alloc_info;
  3299       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3300       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3301       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3302                        PAGE_READWRITE) == NULL) {
  3303         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3304                                             exec);)
  3305         return false;
  3307       if (exec) {
  3308         DWORD oldprot;
  3309         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3310                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3311           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3312                                               exec);)
  3313           return false;
  3316       bytes_remaining -= bytes_to_rq;
  3317       next_alloc_addr += bytes_to_rq;
  3320   // if we made it this far, return true
  3321   return true;
  3324 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3325                        bool exec) {
  3326   // alignment_hint is ignored on this OS
  3327   return pd_commit_memory(addr, size, exec);
  3330 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3331                                   const char* mesg) {
  3332   assert(mesg != NULL, "mesg must be specified");
  3333   if (!pd_commit_memory(addr, size, exec)) {
  3334     warn_fail_commit_memory(addr, size, exec);
  3335     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3339 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3340                                   size_t alignment_hint, bool exec,
  3341                                   const char* mesg) {
  3342   // alignment_hint is ignored on this OS
  3343   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3346 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3347   if (bytes == 0) {
  3348     // Don't bother the OS with noops.
  3349     return true;
  3351   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3352   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3353   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3356 bool os::pd_release_memory(char* addr, size_t bytes) {
  3357   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3360 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3361   return os::commit_memory(addr, size, !ExecMem);
  3364 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3365   return os::uncommit_memory(addr, size);
  3368 // Set protections specified
  3369 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3370                         bool is_committed) {
  3371   unsigned int p = 0;
  3372   switch (prot) {
  3373   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3374   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3375   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3376   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3377   default:
  3378     ShouldNotReachHere();
  3381   DWORD old_status;
  3383   // Strange enough, but on Win32 one can change protection only for committed
  3384   // memory, not a big deal anyway, as bytes less or equal than 64K
  3385   if (!is_committed) {
  3386     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3387                           "cannot commit protection page");
  3389   // One cannot use os::guard_memory() here, as on Win32 guard page
  3390   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3391   //
  3392   // Pages in the region become guard pages. Any attempt to access a guard page
  3393   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3394   // the guard page status. Guard pages thus act as a one-time access alarm.
  3395   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3398 bool os::guard_memory(char* addr, size_t bytes) {
  3399   DWORD old_status;
  3400   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3403 bool os::unguard_memory(char* addr, size_t bytes) {
  3404   DWORD old_status;
  3405   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3408 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3409 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3410 void os::numa_make_global(char *addr, size_t bytes)    { }
  3411 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3412 bool os::numa_topology_changed()                       { return false; }
  3413 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3414 int os::numa_get_group_id()                            { return 0; }
  3415 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3416   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3417     // Provide an answer for UMA systems
  3418     ids[0] = 0;
  3419     return 1;
  3420   } else {
  3421     // check for size bigger than actual groups_num
  3422     size = MIN2(size, numa_get_groups_num());
  3423     for (int i = 0; i < (int)size; i++) {
  3424       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3426     return size;
  3430 bool os::get_page_info(char *start, page_info* info) {
  3431   return false;
  3434 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3435   return end;
  3438 char* os::non_memory_address_word() {
  3439   // Must never look like an address returned by reserve_memory,
  3440   // even in its subfields (as defined by the CPU immediate fields,
  3441   // if the CPU splits constants across multiple instructions).
  3442   return (char*)-1;
  3445 #define MAX_ERROR_COUNT 100
  3446 #define SYS_THREAD_ERROR 0xffffffffUL
  3448 void os::pd_start_thread(Thread* thread) {
  3449   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3450   // Returns previous suspend state:
  3451   // 0:  Thread was not suspended
  3452   // 1:  Thread is running now
  3453   // >1: Thread is still suspended.
  3454   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3457 class HighResolutionInterval : public CHeapObj<mtThread> {
  3458   // The default timer resolution seems to be 10 milliseconds.
  3459   // (Where is this written down?)
  3460   // If someone wants to sleep for only a fraction of the default,
  3461   // then we set the timer resolution down to 1 millisecond for
  3462   // the duration of their interval.
  3463   // We carefully set the resolution back, since otherwise we
  3464   // seem to incur an overhead (3%?) that we don't need.
  3465   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3466   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3467   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3468   // timeBeginPeriod() if the relative error exceeded some threshold.
  3469   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3470   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3471   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3472   // resolution timers running.
  3473 private:
  3474     jlong resolution;
  3475 public:
  3476   HighResolutionInterval(jlong ms) {
  3477     resolution = ms % 10L;
  3478     if (resolution != 0) {
  3479       MMRESULT result = timeBeginPeriod(1L);
  3482   ~HighResolutionInterval() {
  3483     if (resolution != 0) {
  3484       MMRESULT result = timeEndPeriod(1L);
  3486     resolution = 0L;
  3488 };
  3490 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3491   jlong limit = (jlong) MAXDWORD;
  3493   while(ms > limit) {
  3494     int res;
  3495     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3496       return res;
  3497     ms -= limit;
  3500   assert(thread == Thread::current(),  "thread consistency check");
  3501   OSThread* osthread = thread->osthread();
  3502   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3503   int result;
  3504   if (interruptable) {
  3505     assert(thread->is_Java_thread(), "must be java thread");
  3506     JavaThread *jt = (JavaThread *) thread;
  3507     ThreadBlockInVM tbivm(jt);
  3509     jt->set_suspend_equivalent();
  3510     // cleared by handle_special_suspend_equivalent_condition() or
  3511     // java_suspend_self() via check_and_wait_while_suspended()
  3513     HANDLE events[1];
  3514     events[0] = osthread->interrupt_event();
  3515     HighResolutionInterval *phri=NULL;
  3516     if(!ForceTimeHighResolution)
  3517       phri = new HighResolutionInterval( ms );
  3518     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3519       result = OS_TIMEOUT;
  3520     } else {
  3521       ResetEvent(osthread->interrupt_event());
  3522       osthread->set_interrupted(false);
  3523       result = OS_INTRPT;
  3525     delete phri; //if it is NULL, harmless
  3527     // were we externally suspended while we were waiting?
  3528     jt->check_and_wait_while_suspended();
  3529   } else {
  3530     assert(!thread->is_Java_thread(), "must not be java thread");
  3531     Sleep((long) ms);
  3532     result = OS_TIMEOUT;
  3534   return result;
  3537 //
  3538 // Short sleep, direct OS call.
  3539 //
  3540 // ms = 0, means allow others (if any) to run.
  3541 //
  3542 void os::naked_short_sleep(jlong ms) {
  3543   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3544   Sleep(ms);
  3547 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3548 void os::infinite_sleep() {
  3549   while (true) {    // sleep forever ...
  3550     Sleep(100000);  // ... 100 seconds at a time
  3554 typedef BOOL (WINAPI * STTSignature)(void) ;
  3556 os::YieldResult os::NakedYield() {
  3557   // Use either SwitchToThread() or Sleep(0)
  3558   // Consider passing back the return value from SwitchToThread().
  3559   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3560     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3561   } else {
  3562     Sleep(0);
  3564   return os::YIELD_UNKNOWN ;
  3567 void os::yield() {  os::NakedYield(); }
  3569 void os::yield_all(int attempts) {
  3570   // Yields to all threads, including threads with lower priorities
  3571   Sleep(1);
  3574 // Win32 only gives you access to seven real priorities at a time,
  3575 // so we compress Java's ten down to seven.  It would be better
  3576 // if we dynamically adjusted relative priorities.
  3578 int os::java_to_os_priority[CriticalPriority + 1] = {
  3579   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3580   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3581   THREAD_PRIORITY_LOWEST,                       // 2
  3582   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3583   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3584   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3585   THREAD_PRIORITY_NORMAL,                       // 6
  3586   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3587   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3588   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3589   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3590   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3591 };
  3593 int prio_policy1[CriticalPriority + 1] = {
  3594   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3595   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3596   THREAD_PRIORITY_LOWEST,                       // 2
  3597   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3598   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3599   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3600   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3601   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3602   THREAD_PRIORITY_HIGHEST,                      // 8
  3603   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3604   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3605   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3606 };
  3608 static int prio_init() {
  3609   // If ThreadPriorityPolicy is 1, switch tables
  3610   if (ThreadPriorityPolicy == 1) {
  3611     int i;
  3612     for (i = 0; i < CriticalPriority + 1; i++) {
  3613       os::java_to_os_priority[i] = prio_policy1[i];
  3616   if (UseCriticalJavaThreadPriority) {
  3617     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3619   return 0;
  3622 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3623   if (!UseThreadPriorities) return OS_OK;
  3624   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3625   return ret ? OS_OK : OS_ERR;
  3628 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3629   if ( !UseThreadPriorities ) {
  3630     *priority_ptr = java_to_os_priority[NormPriority];
  3631     return OS_OK;
  3633   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3634   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3635     assert(false, "GetThreadPriority failed");
  3636     return OS_ERR;
  3638   *priority_ptr = os_prio;
  3639   return OS_OK;
  3643 // Hint to the underlying OS that a task switch would not be good.
  3644 // Void return because it's a hint and can fail.
  3645 void os::hint_no_preempt() {}
  3647 void os::interrupt(Thread* thread) {
  3648   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3649          "possibility of dangling Thread pointer");
  3651   OSThread* osthread = thread->osthread();
  3652   osthread->set_interrupted(true);
  3653   // More than one thread can get here with the same value of osthread,
  3654   // resulting in multiple notifications.  We do, however, want the store
  3655   // to interrupted() to be visible to other threads before we post
  3656   // the interrupt event.
  3657   OrderAccess::release();
  3658   SetEvent(osthread->interrupt_event());
  3659   // For JSR166:  unpark after setting status
  3660   if (thread->is_Java_thread())
  3661     ((JavaThread*)thread)->parker()->unpark();
  3663   ParkEvent * ev = thread->_ParkEvent ;
  3664   if (ev != NULL) ev->unpark() ;
  3669 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3670   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3671          "possibility of dangling Thread pointer");
  3673   OSThread* osthread = thread->osthread();
  3674   // There is no synchronization between the setting of the interrupt
  3675   // and it being cleared here. It is critical - see 6535709 - that
  3676   // we only clear the interrupt state, and reset the interrupt event,
  3677   // if we are going to report that we were indeed interrupted - else
  3678   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3679   // depending on the timing. By checking thread interrupt event to see
  3680   // if the thread gets real interrupt thus prevent spurious wakeup.
  3681   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
  3682   if (interrupted && clear_interrupted) {
  3683     osthread->set_interrupted(false);
  3684     ResetEvent(osthread->interrupt_event());
  3685   } // Otherwise leave the interrupted state alone
  3687   return interrupted;
  3690 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3691 ExtendedPC os::get_thread_pc(Thread* thread) {
  3692   CONTEXT context;
  3693   context.ContextFlags = CONTEXT_CONTROL;
  3694   HANDLE handle = thread->osthread()->thread_handle();
  3695 #ifdef _M_IA64
  3696   assert(0, "Fix get_thread_pc");
  3697   return ExtendedPC(NULL);
  3698 #else
  3699   if (GetThreadContext(handle, &context)) {
  3700 #ifdef _M_AMD64
  3701     return ExtendedPC((address) context.Rip);
  3702 #else
  3703     return ExtendedPC((address) context.Eip);
  3704 #endif
  3705   } else {
  3706     return ExtendedPC(NULL);
  3708 #endif
  3711 // GetCurrentThreadId() returns DWORD
  3712 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3714 static int _initial_pid = 0;
  3716 int os::current_process_id()
  3718   return (_initial_pid ? _initial_pid : _getpid());
  3721 int    os::win32::_vm_page_size       = 0;
  3722 int    os::win32::_vm_allocation_granularity = 0;
  3723 int    os::win32::_processor_type     = 0;
  3724 // Processor level is not available on non-NT systems, use vm_version instead
  3725 int    os::win32::_processor_level    = 0;
  3726 julong os::win32::_physical_memory    = 0;
  3727 size_t os::win32::_default_stack_size = 0;
  3729          intx os::win32::_os_thread_limit    = 0;
  3730 volatile intx os::win32::_os_thread_count    = 0;
  3732 bool   os::win32::_is_nt              = false;
  3733 bool   os::win32::_is_windows_2003    = false;
  3734 bool   os::win32::_is_windows_server  = false;
  3736 void os::win32::initialize_system_info() {
  3737   SYSTEM_INFO si;
  3738   GetSystemInfo(&si);
  3739   _vm_page_size    = si.dwPageSize;
  3740   _vm_allocation_granularity = si.dwAllocationGranularity;
  3741   _processor_type  = si.dwProcessorType;
  3742   _processor_level = si.wProcessorLevel;
  3743   set_processor_count(si.dwNumberOfProcessors);
  3745   MEMORYSTATUSEX ms;
  3746   ms.dwLength = sizeof(ms);
  3748   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3749   // dwMemoryLoad (% of memory in use)
  3750   GlobalMemoryStatusEx(&ms);
  3751   _physical_memory = ms.ullTotalPhys;
  3753   OSVERSIONINFOEX oi;
  3754   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3755   GetVersionEx((OSVERSIONINFO*)&oi);
  3756   switch(oi.dwPlatformId) {
  3757     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3758     case VER_PLATFORM_WIN32_NT:
  3759       _is_nt = true;
  3761         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3762         if (os_vers == 5002) {
  3763           _is_windows_2003 = true;
  3765         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3766           oi.wProductType == VER_NT_SERVER) {
  3767             _is_windows_server = true;
  3770       break;
  3771     default: fatal("Unknown platform");
  3774   _default_stack_size = os::current_stack_size();
  3775   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3776   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3777     "stack size not a multiple of page size");
  3779   initialize_performance_counter();
  3781   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3782   // known to deadlock the system, if the VM issues to thread operations with
  3783   // a too high frequency, e.g., such as changing the priorities.
  3784   // The 6000 seems to work well - no deadlocks has been notices on the test
  3785   // programs that we have seen experience this problem.
  3786   if (!os::win32::is_nt()) {
  3787     StarvationMonitorInterval = 6000;
  3792 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3793   char path[MAX_PATH];
  3794   DWORD size;
  3795   DWORD pathLen = (DWORD)sizeof(path);
  3796   HINSTANCE result = NULL;
  3798   // only allow library name without path component
  3799   assert(strchr(name, '\\') == NULL, "path not allowed");
  3800   assert(strchr(name, ':') == NULL, "path not allowed");
  3801   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3802     jio_snprintf(ebuf, ebuflen,
  3803       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3804     return NULL;
  3807   // search system directory
  3808   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3809     strcat(path, "\\");
  3810     strcat(path, name);
  3811     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3812       return result;
  3816   // try Windows directory
  3817   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3818     strcat(path, "\\");
  3819     strcat(path, name);
  3820     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3821       return result;
  3825   jio_snprintf(ebuf, ebuflen,
  3826     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3827   return NULL;
  3830 void os::win32::setmode_streams() {
  3831   _setmode(_fileno(stdin), _O_BINARY);
  3832   _setmode(_fileno(stdout), _O_BINARY);
  3833   _setmode(_fileno(stderr), _O_BINARY);
  3837 bool os::is_debugger_attached() {
  3838   return IsDebuggerPresent() ? true : false;
  3842 void os::wait_for_keypress_at_exit(void) {
  3843   if (PauseAtExit) {
  3844     fprintf(stderr, "Press any key to continue...\n");
  3845     fgetc(stdin);
  3850 int os::message_box(const char* title, const char* message) {
  3851   int result = MessageBox(NULL, message, title,
  3852                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3853   return result == IDYES;
  3856 int os::allocate_thread_local_storage() {
  3857   return TlsAlloc();
  3861 void os::free_thread_local_storage(int index) {
  3862   TlsFree(index);
  3866 void os::thread_local_storage_at_put(int index, void* value) {
  3867   TlsSetValue(index, value);
  3868   assert(thread_local_storage_at(index) == value, "Just checking");
  3872 void* os::thread_local_storage_at(int index) {
  3873   return TlsGetValue(index);
  3877 #ifndef PRODUCT
  3878 #ifndef _WIN64
  3879 // Helpers to check whether NX protection is enabled
  3880 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3881   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3882       pex->ExceptionRecord->NumberParameters > 0 &&
  3883       pex->ExceptionRecord->ExceptionInformation[0] ==
  3884       EXCEPTION_INFO_EXEC_VIOLATION) {
  3885     return EXCEPTION_EXECUTE_HANDLER;
  3887   return EXCEPTION_CONTINUE_SEARCH;
  3890 void nx_check_protection() {
  3891   // If NX is enabled we'll get an exception calling into code on the stack
  3892   char code[] = { (char)0xC3 }; // ret
  3893   void *code_ptr = (void *)code;
  3894   __try {
  3895     __asm call code_ptr
  3896   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3897     tty->print_raw_cr("NX protection detected.");
  3900 #endif // _WIN64
  3901 #endif // PRODUCT
  3903 // this is called _before_ the global arguments have been parsed
  3904 void os::init(void) {
  3905   _initial_pid = _getpid();
  3907   init_random(1234567);
  3909   win32::initialize_system_info();
  3910   win32::setmode_streams();
  3911   init_page_sizes((size_t) win32::vm_page_size());
  3913   // For better scalability on MP systems (must be called after initialize_system_info)
  3914 #ifndef PRODUCT
  3915   if (is_MP()) {
  3916     NoYieldsInMicrolock = true;
  3918 #endif
  3919   // This may be overridden later when argument processing is done.
  3920   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3921     os::win32::is_windows_2003());
  3923   // Initialize main_process and main_thread
  3924   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3925  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3926                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3927     fatal("DuplicateHandle failed\n");
  3929   main_thread_id = (int) GetCurrentThreadId();
  3932 // To install functions for atexit processing
  3933 extern "C" {
  3934   static void perfMemory_exit_helper() {
  3935     perfMemory_exit();
  3939 static jint initSock();
  3941 // this is called _after_ the global arguments have been parsed
  3942 jint os::init_2(void) {
  3943   // Allocate a single page and mark it as readable for safepoint polling
  3944   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3945   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3947   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3948   guarantee( return_page != NULL, "Commit Failed for polling page");
  3950   os::set_polling_page( polling_page );
  3952 #ifndef PRODUCT
  3953   if( Verbose && PrintMiscellaneous )
  3954     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3955 #endif
  3957   if (!UseMembar) {
  3958     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3959     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3961     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3962     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3964     os::set_memory_serialize_page( mem_serialize_page );
  3966 #ifndef PRODUCT
  3967     if(Verbose && PrintMiscellaneous)
  3968       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3969 #endif
  3972   // Setup Windows Exceptions
  3974   // for debugging float code generation bugs
  3975   if (ForceFloatExceptions) {
  3976 #ifndef  _WIN64
  3977     static long fp_control_word = 0;
  3978     __asm { fstcw fp_control_word }
  3979     // see Intel PPro Manual, Vol. 2, p 7-16
  3980     const long precision = 0x20;
  3981     const long underflow = 0x10;
  3982     const long overflow  = 0x08;
  3983     const long zero_div  = 0x04;
  3984     const long denorm    = 0x02;
  3985     const long invalid   = 0x01;
  3986     fp_control_word |= invalid;
  3987     __asm { fldcw fp_control_word }
  3988 #endif
  3991   // If stack_commit_size is 0, windows will reserve the default size,
  3992   // but only commit a small portion of it.
  3993   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3994   size_t default_reserve_size = os::win32::default_stack_size();
  3995   size_t actual_reserve_size = stack_commit_size;
  3996   if (stack_commit_size < default_reserve_size) {
  3997     // If stack_commit_size == 0, we want this too
  3998     actual_reserve_size = default_reserve_size;
  4001   // Check minimum allowable stack size for thread creation and to initialize
  4002   // the java system classes, including StackOverflowError - depends on page
  4003   // size.  Add a page for compiler2 recursion in main thread.
  4004   // Add in 2*BytesPerWord times page size to account for VM stack during
  4005   // class initialization depending on 32 or 64 bit VM.
  4006   size_t min_stack_allowed =
  4007             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4008             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  4009   if (actual_reserve_size < min_stack_allowed) {
  4010     tty->print_cr("\nThe stack size specified is too small, "
  4011                   "Specify at least %dk",
  4012                   min_stack_allowed / K);
  4013     return JNI_ERR;
  4016   JavaThread::set_stack_size_at_create(stack_commit_size);
  4018   // Calculate theoretical max. size of Threads to guard gainst artifical
  4019   // out-of-memory situations, where all available address-space has been
  4020   // reserved by thread stacks.
  4021   assert(actual_reserve_size != 0, "Must have a stack");
  4023   // Calculate the thread limit when we should start doing Virtual Memory
  4024   // banging. Currently when the threads will have used all but 200Mb of space.
  4025   //
  4026   // TODO: consider performing a similar calculation for commit size instead
  4027   // as reserve size, since on a 64-bit platform we'll run into that more
  4028   // often than running out of virtual memory space.  We can use the
  4029   // lower value of the two calculations as the os_thread_limit.
  4030   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  4031   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  4033   // at exit methods are called in the reverse order of their registration.
  4034   // there is no limit to the number of functions registered. atexit does
  4035   // not set errno.
  4037   if (PerfAllowAtExitRegistration) {
  4038     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4039     // atexit functions can be delayed until process exit time, which
  4040     // can be problematic for embedded VM situations. Embedded VMs should
  4041     // call DestroyJavaVM() to assure that VM resources are released.
  4043     // note: perfMemory_exit_helper atexit function may be removed in
  4044     // the future if the appropriate cleanup code can be added to the
  4045     // VM_Exit VMOperation's doit method.
  4046     if (atexit(perfMemory_exit_helper) != 0) {
  4047       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4051 #ifndef _WIN64
  4052   // Print something if NX is enabled (win32 on AMD64)
  4053   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  4054 #endif
  4056   // initialize thread priority policy
  4057   prio_init();
  4059   if (UseNUMA && !ForceNUMA) {
  4060     UseNUMA = false; // We don't fully support this yet
  4063   if (UseNUMAInterleaving) {
  4064     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  4065     bool success = numa_interleaving_init();
  4066     if (!success) UseNUMAInterleaving = false;
  4069   if (initSock() != JNI_OK) {
  4070     return JNI_ERR;
  4073   return JNI_OK;
  4076 // Mark the polling page as unreadable
  4077 void os::make_polling_page_unreadable(void) {
  4078   DWORD old_status;
  4079   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4080     fatal("Could not disable polling page");
  4081 };
  4083 // Mark the polling page as readable
  4084 void os::make_polling_page_readable(void) {
  4085   DWORD old_status;
  4086   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4087     fatal("Could not enable polling page");
  4088 };
  4091 int os::stat(const char *path, struct stat *sbuf) {
  4092   char pathbuf[MAX_PATH];
  4093   if (strlen(path) > MAX_PATH - 1) {
  4094     errno = ENAMETOOLONG;
  4095     return -1;
  4097   os::native_path(strcpy(pathbuf, path));
  4098   int ret = ::stat(pathbuf, sbuf);
  4099   if (sbuf != NULL && UseUTCFileTimestamp) {
  4100     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4101     // the system timezone and so can return different values for the
  4102     // same file if/when daylight savings time changes.  This adjustment
  4103     // makes sure the same timestamp is returned regardless of the TZ.
  4104     //
  4105     // See:
  4106     // http://msdn.microsoft.com/library/
  4107     //   default.asp?url=/library/en-us/sysinfo/base/
  4108     //   time_zone_information_str.asp
  4109     // and
  4110     // http://msdn.microsoft.com/library/default.asp?url=
  4111     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4112     //
  4113     // NOTE: there is a insidious bug here:  If the timezone is changed
  4114     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4115     // the adjustment we do here will be wrong and we'll return the wrong
  4116     // value (which will likely end up creating an invalid class data
  4117     // archive).  Absent a better API for this, or some time zone locking
  4118     // mechanism, we'll have to live with this risk.
  4119     TIME_ZONE_INFORMATION tz;
  4120     DWORD tzid = GetTimeZoneInformation(&tz);
  4121     int daylightBias =
  4122       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4123     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4125   return ret;
  4129 #define FT2INT64(ft) \
  4130   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4133 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4134 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4135 // of a thread.
  4136 //
  4137 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4138 // the fast estimate available on the platform.
  4140 // current_thread_cpu_time() is not optimized for Windows yet
  4141 jlong os::current_thread_cpu_time() {
  4142   // return user + sys since the cost is the same
  4143   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4146 jlong os::thread_cpu_time(Thread* thread) {
  4147   // consistent with what current_thread_cpu_time() returns.
  4148   return os::thread_cpu_time(thread, true /* user+sys */);
  4151 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4152   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4155 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4156   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4157   // If this function changes, os::is_thread_cpu_time_supported() should too
  4158   if (os::win32::is_nt()) {
  4159     FILETIME CreationTime;
  4160     FILETIME ExitTime;
  4161     FILETIME KernelTime;
  4162     FILETIME UserTime;
  4164     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4165                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4166       return -1;
  4167     else
  4168       if (user_sys_cpu_time) {
  4169         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4170       } else {
  4171         return FT2INT64(UserTime) * 100;
  4173   } else {
  4174     return (jlong) timeGetTime() * 1000000;
  4178 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4179   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4180   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4181   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4182   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4185 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4186   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4187   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4188   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4189   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4192 bool os::is_thread_cpu_time_supported() {
  4193   // see os::thread_cpu_time
  4194   if (os::win32::is_nt()) {
  4195     FILETIME CreationTime;
  4196     FILETIME ExitTime;
  4197     FILETIME KernelTime;
  4198     FILETIME UserTime;
  4200     if ( GetThreadTimes(GetCurrentThread(),
  4201                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4202       return false;
  4203     else
  4204       return true;
  4205   } else {
  4206     return false;
  4210 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4211 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4212 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4213 // If we wanted to implement loadavg on Windows, we have a few options:
  4214 //
  4215 // a) Query CPU usage and run queue length and "fake" an answer by
  4216 //    returning the CPU usage if it's under 100%, and the run queue
  4217 //    length otherwise.  It turns out that querying is pretty slow
  4218 //    on Windows, on the order of 200 microseconds on a fast machine.
  4219 //    Note that on the Windows the CPU usage value is the % usage
  4220 //    since the last time the API was called (and the first call
  4221 //    returns 100%), so we'd have to deal with that as well.
  4222 //
  4223 // b) Sample the "fake" answer using a sampling thread and store
  4224 //    the answer in a global variable.  The call to loadavg would
  4225 //    just return the value of the global, avoiding the slow query.
  4226 //
  4227 // c) Sample a better answer using exponential decay to smooth the
  4228 //    value.  This is basically the algorithm used by UNIX kernels.
  4229 //
  4230 // Note that sampling thread starvation could affect both (b) and (c).
  4231 int os::loadavg(double loadavg[], int nelem) {
  4232   return -1;
  4236 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4237 bool os::dont_yield() {
  4238   return DontYieldALot;
  4241 // This method is a slightly reworked copy of JDK's sysOpen
  4242 // from src/windows/hpi/src/sys_api_md.c
  4244 int os::open(const char *path, int oflag, int mode) {
  4245   char pathbuf[MAX_PATH];
  4247   if (strlen(path) > MAX_PATH - 1) {
  4248     errno = ENAMETOOLONG;
  4249           return -1;
  4251   os::native_path(strcpy(pathbuf, path));
  4252   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4255 FILE* os::open(int fd, const char* mode) {
  4256   return ::_fdopen(fd, mode);
  4259 // Is a (classpath) directory empty?
  4260 bool os::dir_is_empty(const char* path) {
  4261   WIN32_FIND_DATA fd;
  4262   HANDLE f = FindFirstFile(path, &fd);
  4263   if (f == INVALID_HANDLE_VALUE) {
  4264     return true;
  4266   FindClose(f);
  4267   return false;
  4270 // create binary file, rewriting existing file if required
  4271 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4272   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4273   if (!rewrite_existing) {
  4274     oflags |= _O_EXCL;
  4276   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4279 // return current position of file pointer
  4280 jlong os::current_file_offset(int fd) {
  4281   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4284 // move file pointer to the specified offset
  4285 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4286   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4290 jlong os::lseek(int fd, jlong offset, int whence) {
  4291   return (jlong) ::_lseeki64(fd, offset, whence);
  4294 // This method is a slightly reworked copy of JDK's sysNativePath
  4295 // from src/windows/hpi/src/path_md.c
  4297 /* Convert a pathname to native format.  On win32, this involves forcing all
  4298    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4299    sometimes rejects '/') and removing redundant separators.  The input path is
  4300    assumed to have been converted into the character encoding used by the local
  4301    system.  Because this might be a double-byte encoding, care is taken to
  4302    treat double-byte lead characters correctly.
  4304    This procedure modifies the given path in place, as the result is never
  4305    longer than the original.  There is no error return; this operation always
  4306    succeeds. */
  4307 char * os::native_path(char *path) {
  4308   char *src = path, *dst = path, *end = path;
  4309   char *colon = NULL;           /* If a drive specifier is found, this will
  4310                                         point to the colon following the drive
  4311                                         letter */
  4313   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4314   assert(((!::IsDBCSLeadByte('/'))
  4315     && (!::IsDBCSLeadByte('\\'))
  4316     && (!::IsDBCSLeadByte(':'))),
  4317     "Illegal lead byte");
  4319   /* Check for leading separators */
  4320 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4321   while (isfilesep(*src)) {
  4322     src++;
  4325   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4326     /* Remove leading separators if followed by drive specifier.  This
  4327       hack is necessary to support file URLs containing drive
  4328       specifiers (e.g., "file://c:/path").  As a side effect,
  4329       "/c:/path" can be used as an alternative to "c:/path". */
  4330     *dst++ = *src++;
  4331     colon = dst;
  4332     *dst++ = ':';
  4333     src++;
  4334   } else {
  4335     src = path;
  4336     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4337       /* UNC pathname: Retain first separator; leave src pointed at
  4338          second separator so that further separators will be collapsed
  4339          into the second separator.  The result will be a pathname
  4340          beginning with "\\\\" followed (most likely) by a host name. */
  4341       src = dst = path + 1;
  4342       path[0] = '\\';     /* Force first separator to '\\' */
  4346   end = dst;
  4348   /* Remove redundant separators from remainder of path, forcing all
  4349       separators to be '\\' rather than '/'. Also, single byte space
  4350       characters are removed from the end of the path because those
  4351       are not legal ending characters on this operating system.
  4352   */
  4353   while (*src != '\0') {
  4354     if (isfilesep(*src)) {
  4355       *dst++ = '\\'; src++;
  4356       while (isfilesep(*src)) src++;
  4357       if (*src == '\0') {
  4358         /* Check for trailing separator */
  4359         end = dst;
  4360         if (colon == dst - 2) break;                      /* "z:\\" */
  4361         if (dst == path + 1) break;                       /* "\\" */
  4362         if (dst == path + 2 && isfilesep(path[0])) {
  4363           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4364             beginning of a UNC pathname.  Even though it is not, by
  4365             itself, a valid UNC pathname, we leave it as is in order
  4366             to be consistent with the path canonicalizer as well
  4367             as the win32 APIs, which treat this case as an invalid
  4368             UNC pathname rather than as an alias for the root
  4369             directory of the current drive. */
  4370           break;
  4372         end = --dst;  /* Path does not denote a root directory, so
  4373                                     remove trailing separator */
  4374         break;
  4376       end = dst;
  4377     } else {
  4378       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4379         *dst++ = *src++;
  4380         if (*src) *dst++ = *src++;
  4381         end = dst;
  4382       } else {         /* Copy a single-byte character */
  4383         char c = *src++;
  4384         *dst++ = c;
  4385         /* Space is not a legal ending character */
  4386         if (c != ' ') end = dst;
  4391   *end = '\0';
  4393   /* For "z:", add "." to work around a bug in the C runtime library */
  4394   if (colon == dst - 1) {
  4395           path[2] = '.';
  4396           path[3] = '\0';
  4399   return path;
  4402 // This code is a copy of JDK's sysSetLength
  4403 // from src/windows/hpi/src/sys_api_md.c
  4405 int os::ftruncate(int fd, jlong length) {
  4406   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4407   long high = (long)(length >> 32);
  4408   DWORD ret;
  4410   if (h == (HANDLE)(-1)) {
  4411     return -1;
  4414   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4415   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4416       return -1;
  4419   if (::SetEndOfFile(h) == FALSE) {
  4420     return -1;
  4423   return 0;
  4427 // This code is a copy of JDK's sysSync
  4428 // from src/windows/hpi/src/sys_api_md.c
  4429 // except for the legacy workaround for a bug in Win 98
  4431 int os::fsync(int fd) {
  4432   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4434   if ( (!::FlushFileBuffers(handle)) &&
  4435          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4436     /* from winerror.h */
  4437     return -1;
  4439   return 0;
  4442 static int nonSeekAvailable(int, long *);
  4443 static int stdinAvailable(int, long *);
  4445 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4446 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4448 // This code is a copy of JDK's sysAvailable
  4449 // from src/windows/hpi/src/sys_api_md.c
  4451 int os::available(int fd, jlong *bytes) {
  4452   jlong cur, end;
  4453   struct _stati64 stbuf64;
  4455   if (::_fstati64(fd, &stbuf64) >= 0) {
  4456     int mode = stbuf64.st_mode;
  4457     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4458       int ret;
  4459       long lpbytes;
  4460       if (fd == 0) {
  4461         ret = stdinAvailable(fd, &lpbytes);
  4462       } else {
  4463         ret = nonSeekAvailable(fd, &lpbytes);
  4465       (*bytes) = (jlong)(lpbytes);
  4466       return ret;
  4468     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4469       return FALSE;
  4470     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4471       return FALSE;
  4472     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4473       return FALSE;
  4475     *bytes = end - cur;
  4476     return TRUE;
  4477   } else {
  4478     return FALSE;
  4482 // This code is a copy of JDK's nonSeekAvailable
  4483 // from src/windows/hpi/src/sys_api_md.c
  4485 static int nonSeekAvailable(int fd, long *pbytes) {
  4486   /* This is used for available on non-seekable devices
  4487     * (like both named and anonymous pipes, such as pipes
  4488     *  connected to an exec'd process).
  4489     * Standard Input is a special case.
  4491     */
  4492   HANDLE han;
  4494   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4495     return FALSE;
  4498   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4499         /* PeekNamedPipe fails when at EOF.  In that case we
  4500          * simply make *pbytes = 0 which is consistent with the
  4501          * behavior we get on Solaris when an fd is at EOF.
  4502          * The only alternative is to raise an Exception,
  4503          * which isn't really warranted.
  4504          */
  4505     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4506       return FALSE;
  4508     *pbytes = 0;
  4510   return TRUE;
  4513 #define MAX_INPUT_EVENTS 2000
  4515 // This code is a copy of JDK's stdinAvailable
  4516 // from src/windows/hpi/src/sys_api_md.c
  4518 static int stdinAvailable(int fd, long *pbytes) {
  4519   HANDLE han;
  4520   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4521   DWORD numEvents = 0;  /* Number of events in buffer */
  4522   DWORD i = 0;          /* Loop index */
  4523   DWORD curLength = 0;  /* Position marker */
  4524   DWORD actualLength = 0;       /* Number of bytes readable */
  4525   BOOL error = FALSE;         /* Error holder */
  4526   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4528   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4529         return FALSE;
  4532   /* Construct an array of input records in the console buffer */
  4533   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4534   if (error == 0) {
  4535     return nonSeekAvailable(fd, pbytes);
  4538   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4539   if (numEvents > MAX_INPUT_EVENTS) {
  4540     numEvents = MAX_INPUT_EVENTS;
  4543   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4544   if (lpBuffer == NULL) {
  4545     return FALSE;
  4548   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4549   if (error == 0) {
  4550     os::free(lpBuffer, mtInternal);
  4551     return FALSE;
  4554   /* Examine input records for the number of bytes available */
  4555   for(i=0; i<numEvents; i++) {
  4556     if (lpBuffer[i].EventType == KEY_EVENT) {
  4558       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4559                                       &(lpBuffer[i].Event);
  4560       if (keyRecord->bKeyDown == TRUE) {
  4561         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4562         curLength++;
  4563         if (*keyPressed == '\r') {
  4564           actualLength = curLength;
  4570   if(lpBuffer != NULL) {
  4571     os::free(lpBuffer, mtInternal);
  4574   *pbytes = (long) actualLength;
  4575   return TRUE;
  4578 // Map a block of memory.
  4579 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4580                      char *addr, size_t bytes, bool read_only,
  4581                      bool allow_exec) {
  4582   HANDLE hFile;
  4583   char* base;
  4585   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4586                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4587   if (hFile == NULL) {
  4588     if (PrintMiscellaneous && Verbose) {
  4589       DWORD err = GetLastError();
  4590       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4592     return NULL;
  4595   if (allow_exec) {
  4596     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4597     // unless it comes from a PE image (which the shared archive is not.)
  4598     // Even VirtualProtect refuses to give execute access to mapped memory
  4599     // that was not previously executable.
  4600     //
  4601     // Instead, stick the executable region in anonymous memory.  Yuck.
  4602     // Penalty is that ~4 pages will not be shareable - in the future
  4603     // we might consider DLLizing the shared archive with a proper PE
  4604     // header so that mapping executable + sharing is possible.
  4606     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4607                                 PAGE_READWRITE);
  4608     if (base == NULL) {
  4609       if (PrintMiscellaneous && Verbose) {
  4610         DWORD err = GetLastError();
  4611         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4613       CloseHandle(hFile);
  4614       return NULL;
  4617     DWORD bytes_read;
  4618     OVERLAPPED overlapped;
  4619     overlapped.Offset = (DWORD)file_offset;
  4620     overlapped.OffsetHigh = 0;
  4621     overlapped.hEvent = NULL;
  4622     // ReadFile guarantees that if the return value is true, the requested
  4623     // number of bytes were read before returning.
  4624     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4625     if (!res) {
  4626       if (PrintMiscellaneous && Verbose) {
  4627         DWORD err = GetLastError();
  4628         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4630       release_memory(base, bytes);
  4631       CloseHandle(hFile);
  4632       return NULL;
  4634   } else {
  4635     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4636                                     NULL /*file_name*/);
  4637     if (hMap == NULL) {
  4638       if (PrintMiscellaneous && Verbose) {
  4639         DWORD err = GetLastError();
  4640         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4642       CloseHandle(hFile);
  4643       return NULL;
  4646     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4647     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4648                                   (DWORD)bytes, addr);
  4649     if (base == NULL) {
  4650       if (PrintMiscellaneous && Verbose) {
  4651         DWORD err = GetLastError();
  4652         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4654       CloseHandle(hMap);
  4655       CloseHandle(hFile);
  4656       return NULL;
  4659     if (CloseHandle(hMap) == 0) {
  4660       if (PrintMiscellaneous && Verbose) {
  4661         DWORD err = GetLastError();
  4662         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4664       CloseHandle(hFile);
  4665       return base;
  4669   if (allow_exec) {
  4670     DWORD old_protect;
  4671     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4672     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4674     if (!res) {
  4675       if (PrintMiscellaneous && Verbose) {
  4676         DWORD err = GetLastError();
  4677         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4679       // Don't consider this a hard error, on IA32 even if the
  4680       // VirtualProtect fails, we should still be able to execute
  4681       CloseHandle(hFile);
  4682       return base;
  4686   if (CloseHandle(hFile) == 0) {
  4687     if (PrintMiscellaneous && Verbose) {
  4688       DWORD err = GetLastError();
  4689       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4691     return base;
  4694   return base;
  4698 // Remap a block of memory.
  4699 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4700                        char *addr, size_t bytes, bool read_only,
  4701                        bool allow_exec) {
  4702   // This OS does not allow existing memory maps to be remapped so we
  4703   // have to unmap the memory before we remap it.
  4704   if (!os::unmap_memory(addr, bytes)) {
  4705     return NULL;
  4708   // There is a very small theoretical window between the unmap_memory()
  4709   // call above and the map_memory() call below where a thread in native
  4710   // code may be able to access an address that is no longer mapped.
  4712   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4713            read_only, allow_exec);
  4717 // Unmap a block of memory.
  4718 // Returns true=success, otherwise false.
  4720 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4721   BOOL result = UnmapViewOfFile(addr);
  4722   if (result == 0) {
  4723     if (PrintMiscellaneous && Verbose) {
  4724       DWORD err = GetLastError();
  4725       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4727     return false;
  4729   return true;
  4732 void os::pause() {
  4733   char filename[MAX_PATH];
  4734   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4735     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4736   } else {
  4737     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4740   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4741   if (fd != -1) {
  4742     struct stat buf;
  4743     ::close(fd);
  4744     while (::stat(filename, &buf) == 0) {
  4745       Sleep(100);
  4747   } else {
  4748     jio_fprintf(stderr,
  4749       "Could not open pause file '%s', continuing immediately.\n", filename);
  4753 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  4754   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
  4757 /*
  4758  * See the caveats for this class in os_windows.hpp
  4759  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4760  * into this method and returns false. If no OS EXCEPTION was raised, returns
  4761  * true.
  4762  * The callback is supposed to provide the method that should be protected.
  4763  */
  4764 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4765   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  4766   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
  4767       "crash_protection already set?");
  4769   bool success = true;
  4770   __try {
  4771     WatcherThread::watcher_thread()->set_crash_protection(this);
  4772     cb.call();
  4773   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4774     // only for protection, nothing to do
  4775     success = false;
  4777   WatcherThread::watcher_thread()->set_crash_protection(NULL);
  4778   return success;
  4781 // An Event wraps a win32 "CreateEvent" kernel handle.
  4782 //
  4783 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4784 //
  4785 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4786 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4787 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4788 //     In addition, an unpark() operation might fetch the handle field, but the
  4789 //     event could recycle between the fetch and the SetEvent() operation.
  4790 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4791 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4792 //     on an stale but recycled handle would be harmless, but in practice this might
  4793 //     confuse other non-Sun code, so it's not a viable approach.
  4794 //
  4795 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4796 //     with the Event.  The event handle is never closed.  This could be construed
  4797 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4798 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4799 //     permit a process to have hundreds of thousands of open handles.
  4800 //
  4801 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4802 //     and release unused handles.
  4803 //
  4804 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4805 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4806 //
  4807 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4808 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4809 //
  4810 // We use (2).
  4811 //
  4812 // TODO-FIXME:
  4813 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4814 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4815 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4816 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4817 //     into a single win32 CreateEvent() handle.
  4818 //
  4819 // _Event transitions in park()
  4820 //   -1 => -1 : illegal
  4821 //    1 =>  0 : pass - return immediately
  4822 //    0 => -1 : block
  4823 //
  4824 // _Event serves as a restricted-range semaphore :
  4825 //    -1 : thread is blocked
  4826 //     0 : neutral  - thread is running or ready
  4827 //     1 : signaled - thread is running or ready
  4828 //
  4829 // Another possible encoding of _Event would be
  4830 // with explicit "PARKED" and "SIGNALED" bits.
  4832 int os::PlatformEvent::park (jlong Millis) {
  4833     guarantee (_ParkHandle != NULL , "Invariant") ;
  4834     guarantee (Millis > 0          , "Invariant") ;
  4835     int v ;
  4837     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4838     // the initial park() operation.
  4840     for (;;) {
  4841         v = _Event ;
  4842         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4844     guarantee ((v == 0) || (v == 1), "invariant") ;
  4845     if (v != 0) return OS_OK ;
  4847     // Do this the hard way by blocking ...
  4848     // TODO: consider a brief spin here, gated on the success of recent
  4849     // spin attempts by this thread.
  4850     //
  4851     // We decompose long timeouts into series of shorter timed waits.
  4852     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4853     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4854     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4855     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4856     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4857     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4858     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4859     // for the already waited time.  This policy does not admit any new outcomes.
  4860     // In the future, however, we might want to track the accumulated wait time and
  4861     // adjust Millis accordingly if we encounter a spurious wakeup.
  4863     const int MAXTIMEOUT = 0x10000000 ;
  4864     DWORD rv = WAIT_TIMEOUT ;
  4865     while (_Event < 0 && Millis > 0) {
  4866        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4867        if (Millis > MAXTIMEOUT) {
  4868           prd = MAXTIMEOUT ;
  4870        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4871        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4872        if (rv == WAIT_TIMEOUT) {
  4873            Millis -= prd ;
  4876     v = _Event ;
  4877     _Event = 0 ;
  4878     // see comment at end of os::PlatformEvent::park() below:
  4879     OrderAccess::fence() ;
  4880     // If we encounter a nearly simultanous timeout expiry and unpark()
  4881     // we return OS_OK indicating we awoke via unpark().
  4882     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4883     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4886 void os::PlatformEvent::park () {
  4887     guarantee (_ParkHandle != NULL, "Invariant") ;
  4888     // Invariant: Only the thread associated with the Event/PlatformEvent
  4889     // may call park().
  4890     int v ;
  4891     for (;;) {
  4892         v = _Event ;
  4893         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4895     guarantee ((v == 0) || (v == 1), "invariant") ;
  4896     if (v != 0) return ;
  4898     // Do this the hard way by blocking ...
  4899     // TODO: consider a brief spin here, gated on the success of recent
  4900     // spin attempts by this thread.
  4901     while (_Event < 0) {
  4902        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4903        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4906     // Usually we'll find _Event == 0 at this point, but as
  4907     // an optional optimization we clear it, just in case can
  4908     // multiple unpark() operations drove _Event up to 1.
  4909     _Event = 0 ;
  4910     OrderAccess::fence() ;
  4911     guarantee (_Event >= 0, "invariant") ;
  4914 void os::PlatformEvent::unpark() {
  4915   guarantee (_ParkHandle != NULL, "Invariant") ;
  4917   // Transitions for _Event:
  4918   //    0 :=> 1
  4919   //    1 :=> 1
  4920   //   -1 :=> either 0 or 1; must signal target thread
  4921   //          That is, we can safely transition _Event from -1 to either
  4922   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4923   //          unpark() calls.
  4924   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4925   //
  4926   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4927   // that it will take two back-to-back park() calls for the owning
  4928   // thread to block. This has the benefit of forcing a spurious return
  4929   // from the first park() call after an unpark() call which will help
  4930   // shake out uses of park() and unpark() without condition variables.
  4932   if (Atomic::xchg(1, &_Event) >= 0) return;
  4934   ::SetEvent(_ParkHandle);
  4938 // JSR166
  4939 // -------------------------------------------------------
  4941 /*
  4942  * The Windows implementation of Park is very straightforward: Basic
  4943  * operations on Win32 Events turn out to have the right semantics to
  4944  * use them directly. We opportunistically resuse the event inherited
  4945  * from Monitor.
  4946  */
  4949 void Parker::park(bool isAbsolute, jlong time) {
  4950   guarantee (_ParkEvent != NULL, "invariant") ;
  4951   // First, demultiplex/decode time arguments
  4952   if (time < 0) { // don't wait
  4953     return;
  4955   else if (time == 0 && !isAbsolute) {
  4956     time = INFINITE;
  4958   else if  (isAbsolute) {
  4959     time -= os::javaTimeMillis(); // convert to relative time
  4960     if (time <= 0) // already elapsed
  4961       return;
  4963   else { // relative
  4964     time /= 1000000; // Must coarsen from nanos to millis
  4965     if (time == 0)   // Wait for the minimal time unit if zero
  4966       time = 1;
  4969   JavaThread* thread = (JavaThread*)(Thread::current());
  4970   assert(thread->is_Java_thread(), "Must be JavaThread");
  4971   JavaThread *jt = (JavaThread *)thread;
  4973   // Don't wait if interrupted or already triggered
  4974   if (Thread::is_interrupted(thread, false) ||
  4975     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4976     ResetEvent(_ParkEvent);
  4977     return;
  4979   else {
  4980     ThreadBlockInVM tbivm(jt);
  4981     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4982     jt->set_suspend_equivalent();
  4984     WaitForSingleObject(_ParkEvent,  time);
  4985     ResetEvent(_ParkEvent);
  4987     // If externally suspended while waiting, re-suspend
  4988     if (jt->handle_special_suspend_equivalent_condition()) {
  4989       jt->java_suspend_self();
  4994 void Parker::unpark() {
  4995   guarantee (_ParkEvent != NULL, "invariant") ;
  4996   SetEvent(_ParkEvent);
  4999 // Run the specified command in a separate process. Return its exit value,
  5000 // or -1 on failure (e.g. can't create a new process).
  5001 int os::fork_and_exec(char* cmd) {
  5002   STARTUPINFO si;
  5003   PROCESS_INFORMATION pi;
  5005   memset(&si, 0, sizeof(si));
  5006   si.cb = sizeof(si);
  5007   memset(&pi, 0, sizeof(pi));
  5008   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  5009                             cmd,    // command line
  5010                             NULL,   // process security attribute
  5011                             NULL,   // thread security attribute
  5012                             TRUE,   // inherits system handles
  5013                             0,      // no creation flags
  5014                             NULL,   // use parent's environment block
  5015                             NULL,   // use parent's starting directory
  5016                             &si,    // (in) startup information
  5017                             &pi);   // (out) process information
  5019   if (rslt) {
  5020     // Wait until child process exits.
  5021     WaitForSingleObject(pi.hProcess, INFINITE);
  5023     DWORD exit_code;
  5024     GetExitCodeProcess(pi.hProcess, &exit_code);
  5026     // Close process and thread handles.
  5027     CloseHandle(pi.hProcess);
  5028     CloseHandle(pi.hThread);
  5030     return (int)exit_code;
  5031   } else {
  5032     return -1;
  5036 //--------------------------------------------------------------------------------------------------
  5037 // Non-product code
  5039 static int mallocDebugIntervalCounter = 0;
  5040 static int mallocDebugCounter = 0;
  5041 bool os::check_heap(bool force) {
  5042   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  5043   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  5044     // Note: HeapValidate executes two hardware breakpoints when it finds something
  5045     // wrong; at these points, eax contains the address of the offending block (I think).
  5046     // To get to the exlicit error message(s) below, just continue twice.
  5047     HANDLE heap = GetProcessHeap();
  5048     { HeapLock(heap);
  5049       PROCESS_HEAP_ENTRY phe;
  5050       phe.lpData = NULL;
  5051       while (HeapWalk(heap, &phe) != 0) {
  5052         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  5053             !HeapValidate(heap, 0, phe.lpData)) {
  5054           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  5055           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  5056           fatal("corrupted C heap");
  5059       DWORD err = GetLastError();
  5060       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  5061         fatal(err_msg("heap walk aborted with error %d", err));
  5063       HeapUnlock(heap);
  5065     mallocDebugIntervalCounter = 0;
  5067   return true;
  5071 bool os::find(address addr, outputStream* st) {
  5072   // Nothing yet
  5073   return false;
  5076 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  5077   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  5079   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  5080     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  5081     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  5082     address addr = (address) exceptionRecord->ExceptionInformation[1];
  5084     if (os::is_memory_serialize_page(thread, addr))
  5085       return EXCEPTION_CONTINUE_EXECUTION;
  5088   return EXCEPTION_CONTINUE_SEARCH;
  5091 // We don't build a headless jre for Windows
  5092 bool os::is_headless_jre() { return false; }
  5094 static jint initSock() {
  5095   WSADATA wsadata;
  5097   if (!os::WinSock2Dll::WinSock2Available()) {
  5098     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5099       ::GetLastError());
  5100     return JNI_ERR;
  5103   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5104     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5105       ::GetLastError());
  5106     return JNI_ERR;
  5108   return JNI_OK;
  5111 struct hostent* os::get_host_by_name(char* name) {
  5112   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5115 int os::socket_close(int fd) {
  5116   return ::closesocket(fd);
  5119 int os::socket_available(int fd, jint *pbytes) {
  5120   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5121   return (ret < 0) ? 0 : 1;
  5124 int os::socket(int domain, int type, int protocol) {
  5125   return ::socket(domain, type, protocol);
  5128 int os::listen(int fd, int count) {
  5129   return ::listen(fd, count);
  5132 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5133   return ::connect(fd, him, len);
  5136 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5137   return ::accept(fd, him, len);
  5140 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5141                struct sockaddr* to, socklen_t tolen) {
  5143   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5146 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5147                  sockaddr* from, socklen_t* fromlen) {
  5149   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5152 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5153   return ::recv(fd, buf, (int)nBytes, flags);
  5156 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5157   return ::send(fd, buf, (int)nBytes, flags);
  5160 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5161   return ::send(fd, buf, (int)nBytes, flags);
  5164 int os::timeout(int fd, long timeout) {
  5165   fd_set tbl;
  5166   struct timeval t;
  5168   t.tv_sec  = timeout / 1000;
  5169   t.tv_usec = (timeout % 1000) * 1000;
  5171   tbl.fd_count    = 1;
  5172   tbl.fd_array[0] = fd;
  5174   return ::select(1, &tbl, 0, 0, &t);
  5177 int os::get_host_name(char* name, int namelen) {
  5178   return ::gethostname(name, namelen);
  5181 int os::socket_shutdown(int fd, int howto) {
  5182   return ::shutdown(fd, howto);
  5185 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5186   return ::bind(fd, him, len);
  5189 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5190   return ::getsockname(fd, him, len);
  5193 int os::get_sock_opt(int fd, int level, int optname,
  5194                      char* optval, socklen_t* optlen) {
  5195   return ::getsockopt(fd, level, optname, optval, optlen);
  5198 int os::set_sock_opt(int fd, int level, int optname,
  5199                      const char* optval, socklen_t optlen) {
  5200   return ::setsockopt(fd, level, optname, optval, optlen);
  5203 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5204 #if defined(IA32)
  5205 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5206 #elif defined (AMD64)
  5207 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5208 #endif
  5210 // returns true if thread could be suspended,
  5211 // false otherwise
  5212 static bool do_suspend(HANDLE* h) {
  5213   if (h != NULL) {
  5214     if (SuspendThread(*h) != ~0) {
  5215       return true;
  5218   return false;
  5221 // resume the thread
  5222 // calling resume on an active thread is a no-op
  5223 static void do_resume(HANDLE* h) {
  5224   if (h != NULL) {
  5225     ResumeThread(*h);
  5229 // retrieve a suspend/resume context capable handle
  5230 // from the tid. Caller validates handle return value.
  5231 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5232   if (h != NULL) {
  5233     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5237 //
  5238 // Thread sampling implementation
  5239 //
  5240 void os::SuspendedThreadTask::internal_do_task() {
  5241   CONTEXT    ctxt;
  5242   HANDLE     h = NULL;
  5244   // get context capable handle for thread
  5245   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5247   // sanity
  5248   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5249     return;
  5252   // suspend the thread
  5253   if (do_suspend(&h)) {
  5254     ctxt.ContextFlags = sampling_context_flags;
  5255     // get thread context
  5256     GetThreadContext(h, &ctxt);
  5257     SuspendedThreadTaskContext context(_thread, &ctxt);
  5258     // pass context to Thread Sampling impl
  5259     do_task(context);
  5260     // resume thread
  5261     do_resume(&h);
  5264   // close handle
  5265   CloseHandle(h);
  5269 // Kernel32 API
  5270 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5271 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5272 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5273 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5274 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5276 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5277 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5278 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5279 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5280 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5283 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5284 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5285   assert(initialized && _GetLargePageMinimum != NULL,
  5286     "GetLargePageMinimumAvailable() not yet called");
  5287   return _GetLargePageMinimum();
  5290 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5291   if (!initialized) {
  5292     initialize();
  5294   return _GetLargePageMinimum != NULL;
  5297 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5298   if (!initialized) {
  5299     initialize();
  5301   return _VirtualAllocExNuma != NULL;
  5304 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5305   assert(initialized && _VirtualAllocExNuma != NULL,
  5306     "NUMACallsAvailable() not yet called");
  5308   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5311 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5312   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5313     "NUMACallsAvailable() not yet called");
  5315   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5318 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5319   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5320     "NUMACallsAvailable() not yet called");
  5322   return _GetNumaNodeProcessorMask(node, proc_mask);
  5325 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5326   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5327     if (!initialized) {
  5328       initialize();
  5331     if (_RtlCaptureStackBackTrace != NULL) {
  5332       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5333         BackTrace, BackTraceHash);
  5334     } else {
  5335       return 0;
  5339 void os::Kernel32Dll::initializeCommon() {
  5340   if (!initialized) {
  5341     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5342     assert(handle != NULL, "Just check");
  5343     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5344     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5345     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5346     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5347     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5348     initialized = TRUE;
  5354 #ifndef JDK6_OR_EARLIER
  5356 void os::Kernel32Dll::initialize() {
  5357   initializeCommon();
  5361 // Kernel32 API
  5362 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5363   return ::SwitchToThread();
  5366 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5367   return true;
  5370   // Help tools
  5371 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5372   return true;
  5375 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5376   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5379 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5380   return ::Module32First(hSnapshot, lpme);
  5383 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5384   return ::Module32Next(hSnapshot, lpme);
  5387 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5388   ::GetNativeSystemInfo(lpSystemInfo);
  5391 // PSAPI API
  5392 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5393   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5396 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5397   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5400 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5401   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5404 inline BOOL os::PSApiDll::PSApiAvailable() {
  5405   return true;
  5409 // WinSock2 API
  5410 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5411   return ::WSAStartup(wVersionRequested, lpWSAData);
  5414 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5415   return ::gethostbyname(name);
  5418 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5419   return true;
  5422 // Advapi API
  5423 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5424    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5425    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5426      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5427        BufferLength, PreviousState, ReturnLength);
  5430 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5431   PHANDLE TokenHandle) {
  5432     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5435 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5436   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5439 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5440   return true;
  5443 void* os::get_default_process_handle() {
  5444   return (void*)GetModuleHandle(NULL);
  5447 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
  5448 // which is used to find statically linked in agents.
  5449 // Additionally for windows, takes into account __stdcall names.
  5450 // Parameters:
  5451 //            sym_name: Symbol in library we are looking for
  5452 //            lib_name: Name of library to look in, NULL for shared libs.
  5453 //            is_absolute_path == true if lib_name is absolute path to agent
  5454 //                                     such as "C:/a/b/L.dll"
  5455 //            == false if only the base name of the library is passed in
  5456 //               such as "L"
  5457 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
  5458                                     bool is_absolute_path) {
  5459   char *agent_entry_name;
  5460   size_t len;
  5461   size_t name_len;
  5462   size_t prefix_len = strlen(JNI_LIB_PREFIX);
  5463   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  5464   const char *start;
  5466   if (lib_name != NULL) {
  5467     len = name_len = strlen(lib_name);
  5468     if (is_absolute_path) {
  5469       // Need to strip path, prefix and suffix
  5470       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
  5471         lib_name = ++start;
  5472       } else {
  5473         // Need to check for drive prefix
  5474         if ((start = strchr(lib_name, ':')) != NULL) {
  5475           lib_name = ++start;
  5478       if (len <= (prefix_len + suffix_len)) {
  5479         return NULL;
  5481       lib_name += prefix_len;
  5482       name_len = strlen(lib_name) - suffix_len;
  5485   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  5486   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  5487   if (agent_entry_name == NULL) {
  5488     return NULL;
  5490   if (lib_name != NULL) {
  5491     const char *p = strrchr(sym_name, '@');
  5492     if (p != NULL && p != sym_name) {
  5493       // sym_name == _Agent_OnLoad@XX
  5494       strncpy(agent_entry_name, sym_name, (p - sym_name));
  5495       agent_entry_name[(p-sym_name)] = '\0';
  5496       // agent_entry_name == _Agent_OnLoad
  5497       strcat(agent_entry_name, "_");
  5498       strncat(agent_entry_name, lib_name, name_len);
  5499       strcat(agent_entry_name, p);
  5500       // agent_entry_name == _Agent_OnLoad_lib_name@XX
  5501     } else {
  5502       strcpy(agent_entry_name, sym_name);
  5503       strcat(agent_entry_name, "_");
  5504       strncat(agent_entry_name, lib_name, name_len);
  5506   } else {
  5507     strcpy(agent_entry_name, sym_name);
  5509   return agent_entry_name;
  5512 #else
  5513 // Kernel32 API
  5514 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5515 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5516 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5517 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5518 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5520 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5521 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5522 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5523 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5524 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5526 void os::Kernel32Dll::initialize() {
  5527   if (!initialized) {
  5528     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5529     assert(handle != NULL, "Just check");
  5531     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5532     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5533       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5534     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5535     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5536     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5537     initializeCommon();  // resolve the functions that always need resolving
  5539     initialized = TRUE;
  5543 BOOL os::Kernel32Dll::SwitchToThread() {
  5544   assert(initialized && _SwitchToThread != NULL,
  5545     "SwitchToThreadAvailable() not yet called");
  5546   return _SwitchToThread();
  5550 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5551   if (!initialized) {
  5552     initialize();
  5554   return _SwitchToThread != NULL;
  5557 // Help tools
  5558 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5559   if (!initialized) {
  5560     initialize();
  5562   return _CreateToolhelp32Snapshot != NULL &&
  5563          _Module32First != NULL &&
  5564          _Module32Next != NULL;
  5567 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5568   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5569     "HelpToolsAvailable() not yet called");
  5571   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5574 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5575   assert(initialized && _Module32First != NULL,
  5576     "HelpToolsAvailable() not yet called");
  5578   return _Module32First(hSnapshot, lpme);
  5581 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5582   assert(initialized && _Module32Next != NULL,
  5583     "HelpToolsAvailable() not yet called");
  5585   return _Module32Next(hSnapshot, lpme);
  5589 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5590   if (!initialized) {
  5591     initialize();
  5593   return _GetNativeSystemInfo != NULL;
  5596 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5597   assert(initialized && _GetNativeSystemInfo != NULL,
  5598     "GetNativeSystemInfoAvailable() not yet called");
  5600   _GetNativeSystemInfo(lpSystemInfo);
  5603 // PSAPI API
  5606 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5607 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5608 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5610 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5611 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5612 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5613 BOOL                    os::PSApiDll::initialized = FALSE;
  5615 void os::PSApiDll::initialize() {
  5616   if (!initialized) {
  5617     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5618     if (handle != NULL) {
  5619       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5620         "EnumProcessModules");
  5621       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5622         "GetModuleFileNameExA");
  5623       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5624         "GetModuleInformation");
  5626     initialized = TRUE;
  5632 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5633   assert(initialized && _EnumProcessModules != NULL,
  5634     "PSApiAvailable() not yet called");
  5635   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5638 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5639   assert(initialized && _GetModuleFileNameEx != NULL,
  5640     "PSApiAvailable() not yet called");
  5641   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5644 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5645   assert(initialized && _GetModuleInformation != NULL,
  5646     "PSApiAvailable() not yet called");
  5647   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5650 BOOL os::PSApiDll::PSApiAvailable() {
  5651   if (!initialized) {
  5652     initialize();
  5654   return _EnumProcessModules != NULL &&
  5655     _GetModuleFileNameEx != NULL &&
  5656     _GetModuleInformation != NULL;
  5660 // WinSock2 API
  5661 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5662 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5664 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5665 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5666 BOOL             os::WinSock2Dll::initialized = FALSE;
  5668 void os::WinSock2Dll::initialize() {
  5669   if (!initialized) {
  5670     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5671     if (handle != NULL) {
  5672       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5673       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5675     initialized = TRUE;
  5680 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5681   assert(initialized && _WSAStartup != NULL,
  5682     "WinSock2Available() not yet called");
  5683   return _WSAStartup(wVersionRequested, lpWSAData);
  5686 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5687   assert(initialized && _gethostbyname != NULL,
  5688     "WinSock2Available() not yet called");
  5689   return _gethostbyname(name);
  5692 BOOL os::WinSock2Dll::WinSock2Available() {
  5693   if (!initialized) {
  5694     initialize();
  5696   return _WSAStartup != NULL &&
  5697     _gethostbyname != NULL;
  5700 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5701 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5702 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5704 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5705 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5706 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5707 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5709 void os::Advapi32Dll::initialize() {
  5710   if (!initialized) {
  5711     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5712     if (handle != NULL) {
  5713       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5714         "AdjustTokenPrivileges");
  5715       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5716         "OpenProcessToken");
  5717       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5718         "LookupPrivilegeValueA");
  5720     initialized = TRUE;
  5724 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5725    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5726    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5727    assert(initialized && _AdjustTokenPrivileges != NULL,
  5728      "AdvapiAvailable() not yet called");
  5729    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5730        BufferLength, PreviousState, ReturnLength);
  5733 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5734   PHANDLE TokenHandle) {
  5735    assert(initialized && _OpenProcessToken != NULL,
  5736      "AdvapiAvailable() not yet called");
  5737     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5740 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5741    assert(initialized && _LookupPrivilegeValue != NULL,
  5742      "AdvapiAvailable() not yet called");
  5743   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5746 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5747   if (!initialized) {
  5748     initialize();
  5750   return _AdjustTokenPrivileges != NULL &&
  5751     _OpenProcessToken != NULL &&
  5752     _LookupPrivilegeValue != NULL;
  5755 #endif
  5757 #ifndef PRODUCT
  5759 // test the code path in reserve_memory_special() that tries to allocate memory in a single
  5760 // contiguous memory block at a particular address.
  5761 // The test first tries to find a good approximate address to allocate at by using the same
  5762 // method to allocate some memory at any address. The test then tries to allocate memory in
  5763 // the vicinity (not directly after it to avoid possible by-chance use of that location)
  5764 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
  5765 // the previously allocated memory is available for allocation. The only actual failure
  5766 // that is reported is when the test tries to allocate at a particular location but gets a
  5767 // different valid one. A NULL return value at this point is not considered an error but may
  5768 // be legitimate.
  5769 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
  5770 void TestReserveMemorySpecial_test() {
  5771   if (!UseLargePages) {
  5772     if (VerboseInternalVMTests) {
  5773       gclog_or_tty->print("Skipping test because large pages are disabled");
  5775     return;
  5777   // save current value of globals
  5778   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
  5779   bool old_use_numa_interleaving = UseNUMAInterleaving;
  5781   // set globals to make sure we hit the correct code path
  5782   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
  5784   // do an allocation at an address selected by the OS to get a good one.
  5785   const size_t large_allocation_size = os::large_page_size() * 4;
  5786   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
  5787   if (result == NULL) {
  5788     if (VerboseInternalVMTests) {
  5789       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
  5790         large_allocation_size);
  5792   } else {
  5793     os::release_memory_special(result, large_allocation_size);
  5795     // allocate another page within the recently allocated memory area which seems to be a good location. At least
  5796     // we managed to get it once.
  5797     const size_t expected_allocation_size = os::large_page_size();
  5798     char* expected_location = result + os::large_page_size();
  5799     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
  5800     if (actual_location == NULL) {
  5801       if (VerboseInternalVMTests) {
  5802         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
  5803           expected_location, large_allocation_size);
  5805     } else {
  5806       // release memory
  5807       os::release_memory_special(actual_location, expected_allocation_size);
  5808       // only now check, after releasing any memory to avoid any leaks.
  5809       assert(actual_location == expected_location,
  5810         err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
  5811           expected_location, expected_allocation_size, actual_location));
  5815   // restore globals
  5816   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
  5817   UseNUMAInterleaving = old_use_numa_interleaving;
  5819 #endif // PRODUCT

mercurial