src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 29 Apr 2013 09:31:59 +0200

author
mgerdin
date
Mon, 29 Apr 2013 09:31:59 +0200
changeset 5022
caac22686b17
parent 5018
b06ac540229e
child 5025
d58c62b7447d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/g1MarkSweep.hpp"
    39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    41 #include "gc_implementation/g1/heapRegion.inline.hpp"
    42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    44 #include "gc_implementation/g1/vm_operations_g1.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "memory/gcLocker.inline.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/generationSpec.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "oops/oop.pcgc.inline.hpp"
    52 #include "runtime/aprofiler.hpp"
    53 #include "runtime/vmThread.hpp"
    55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    57 // turn it on so that the contents of the young list (scan-only /
    58 // to-be-collected) are printed at "strategic" points before / during
    59 // / after the collection --- this is useful for debugging
    60 #define YOUNG_LIST_VERBOSE 0
    61 // CURRENT STATUS
    62 // This file is under construction.  Search for "FIXME".
    64 // INVARIANTS/NOTES
    65 //
    66 // All allocation activity covered by the G1CollectedHeap interface is
    67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    68 // and allocate_new_tlab, which are the "entry" points to the
    69 // allocation code from the rest of the JVM.  (Note that this does not
    70 // apply to TLAB allocation, which is not part of this interface: it
    71 // is done by clients of this interface.)
    73 // Notes on implementation of parallelism in different tasks.
    74 //
    75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    77 // It does use run_task() which sets _n_workers in the task.
    78 // G1ParTask executes g1_process_strong_roots() ->
    79 // SharedHeap::process_strong_roots() which calls eventuall to
    80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    83 //
    85 // Local to this file.
    87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    88   SuspendibleThreadSet* _sts;
    89   G1RemSet* _g1rs;
    90   ConcurrentG1Refine* _cg1r;
    91   bool _concurrent;
    92 public:
    93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    94                               G1RemSet* g1rs,
    95                               ConcurrentG1Refine* cg1r) :
    96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    97   {}
    98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
   100     // This path is executed by the concurrent refine or mutator threads,
   101     // concurrently, and so we do not care if card_ptr contains references
   102     // that point into the collection set.
   103     assert(!oops_into_cset, "should be");
   105     if (_concurrent && _sts->should_yield()) {
   106       // Caller will actually yield.
   107       return false;
   108     }
   109     // Otherwise, we finished successfully; return true.
   110     return true;
   111   }
   112   void set_concurrent(bool b) { _concurrent = b; }
   113 };
   116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   117   int _calls;
   118   G1CollectedHeap* _g1h;
   119   CardTableModRefBS* _ctbs;
   120   int _histo[256];
   121 public:
   122   ClearLoggedCardTableEntryClosure() :
   123     _calls(0)
   124   {
   125     _g1h = G1CollectedHeap::heap();
   126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   127     for (int i = 0; i < 256; i++) _histo[i] = 0;
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       unsigned char* ujb = (unsigned char*)card_ptr;
   133       int ind = (int)(*ujb);
   134       _histo[ind]++;
   135       *card_ptr = -1;
   136     }
   137     return true;
   138   }
   139   int calls() { return _calls; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   151   int _calls;
   152   G1CollectedHeap* _g1h;
   153   CardTableModRefBS* _ctbs;
   154 public:
   155   RedirtyLoggedCardTableEntryClosure() :
   156     _calls(0)
   157   {
   158     _g1h = G1CollectedHeap::heap();
   159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   160   }
   161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   163       _calls++;
   164       *card_ptr = 0;
   165     }
   166     return true;
   167   }
   168   int calls() { return _calls; }
   169 };
   171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   172 public:
   173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   174     *card_ptr = CardTableModRefBS::dirty_card_val();
   175     return true;
   176   }
   177 };
   179 YoungList::YoungList(G1CollectedHeap* g1h) :
   180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   182   guarantee(check_list_empty(false), "just making sure...");
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   uint length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   344   _head   = _survivor_head;
   345   _length = _survivor_length;
   346   if (_survivor_head != NULL) {
   347     assert(_survivor_tail != NULL, "cause it shouldn't be");
   348     assert(_survivor_length > 0, "invariant");
   349     _survivor_tail->set_next_young_region(NULL);
   350   }
   352   // Don't clear the survivor list handles until the start of
   353   // the next evacuation pause - we need it in order to re-tag
   354   // the survivor regions from this evacuation pause as 'young'
   355   // at the start of the next.
   357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   359   assert(check_list_well_formed(), "young list should be well formed");
   360 }
   362 void YoungList::print() {
   363   HeapRegion* lists[] = {_head,   _survivor_head};
   364   const char* names[] = {"YOUNG", "SURVIVOR"};
   366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   368     HeapRegion *curr = lists[list];
   369     if (curr == NULL)
   370       gclog_or_tty->print_cr("  empty");
   371     while (curr != NULL) {
   372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   373                              HR_FORMAT_PARAMS(curr),
   374                              curr->prev_top_at_mark_start(),
   375                              curr->next_top_at_mark_start(),
   376                              curr->age_in_surv_rate_group_cond());
   377       curr = curr->get_next_young_region();
   378     }
   379   }
   381   gclog_or_tty->print_cr("");
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 void G1CollectedHeap::stop_conc_gc_threads() {
   438   _cg1r->stop();
   439   _cmThread->stop();
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   HeapRegion* hr = heap_region_containing(p);
   455   return hr != NULL && hr->in_collection_set();
   456 }
   457 #endif
   459 // Returns true if the reference points to an object that
   460 // can move in an incremental collecction.
   461 bool G1CollectedHeap::is_scavengable(const void* p) {
   462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   463   G1CollectorPolicy* g1p = g1h->g1_policy();
   464   HeapRegion* hr = heap_region_containing(p);
   465   if (hr == NULL) {
   466      // null
   467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   468      return false;
   469   } else {
   470     return !hr->isHumongous();
   471   }
   472 }
   474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   478   // Count the dirty cards at the start.
   479   CountNonCleanMemRegionClosure count1(this);
   480   ct_bs->mod_card_iterate(&count1);
   481   int orig_count = count1.n();
   483   // First clear the logged cards.
   484   ClearLoggedCardTableEntryClosure clear;
   485   dcqs.set_closure(&clear);
   486   dcqs.apply_closure_to_all_completed_buffers();
   487   dcqs.iterate_closure_all_threads(false);
   488   clear.print_histo();
   490   // Now ensure that there's no dirty cards.
   491   CountNonCleanMemRegionClosure count2(this);
   492   ct_bs->mod_card_iterate(&count2);
   493   if (count2.n() != 0) {
   494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   495                            count2.n(), orig_count);
   496   }
   497   guarantee(count2.n() == 0, "Card table should be clean.");
   499   RedirtyLoggedCardTableEntryClosure redirty;
   500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   501   dcqs.apply_closure_to_all_completed_buffers();
   502   dcqs.iterate_closure_all_threads(false);
   503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   504                          clear.calls(), orig_count);
   505   guarantee(redirty.calls() == clear.calls(),
   506             "Or else mechanism is broken.");
   508   CountNonCleanMemRegionClosure count3(this);
   509   ct_bs->mod_card_iterate(&count3);
   510   if (count3.n() != orig_count) {
   511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   512                            orig_count, count3.n());
   513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   514   }
   516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   517 }
   519 // Private class members.
   521 G1CollectedHeap* G1CollectedHeap::_g1h;
   523 // Private methods.
   525 HeapRegion*
   526 G1CollectedHeap::new_region_try_secondary_free_list() {
   527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   529     if (!_secondary_free_list.is_empty()) {
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "secondary_free_list has %u entries",
   533                                _secondary_free_list.length());
   534       }
   535       // It looks as if there are free regions available on the
   536       // secondary_free_list. Let's move them to the free_list and try
   537       // again to allocate from it.
   538       append_secondary_free_list();
   540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   541              "empty we should have moved at least one entry to the free_list");
   542       HeapRegion* res = _free_list.remove_head();
   543       if (G1ConcRegionFreeingVerbose) {
   544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   545                                "allocated "HR_FORMAT" from secondary_free_list",
   546                                HR_FORMAT_PARAMS(res));
   547       }
   548       return res;
   549     }
   551     // Wait here until we get notifed either when (a) there are no
   552     // more free regions coming or (b) some regions have been moved on
   553     // the secondary_free_list.
   554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   555   }
   557   if (G1ConcRegionFreeingVerbose) {
   558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   559                            "could not allocate from secondary_free_list");
   560   }
   561   return NULL;
   562 }
   564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   566          "the only time we use this to allocate a humongous region is "
   567          "when we are allocating a single humongous region");
   569   HeapRegion* res;
   570   if (G1StressConcRegionFreeing) {
   571     if (!_secondary_free_list.is_empty()) {
   572       if (G1ConcRegionFreeingVerbose) {
   573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   574                                "forced to look at the secondary_free_list");
   575       }
   576       res = new_region_try_secondary_free_list();
   577       if (res != NULL) {
   578         return res;
   579       }
   580     }
   581   }
   582   res = _free_list.remove_head_or_null();
   583   if (res == NULL) {
   584     if (G1ConcRegionFreeingVerbose) {
   585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   586                              "res == NULL, trying the secondary_free_list");
   587     }
   588     res = new_region_try_secondary_free_list();
   589   }
   590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   591     // Currently, only attempts to allocate GC alloc regions set
   592     // do_expand to true. So, we should only reach here during a
   593     // safepoint. If this assumption changes we might have to
   594     // reconsider the use of _expand_heap_after_alloc_failure.
   595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   597     ergo_verbose1(ErgoHeapSizing,
   598                   "attempt heap expansion",
   599                   ergo_format_reason("region allocation request failed")
   600                   ergo_format_byte("allocation request"),
   601                   word_size * HeapWordSize);
   602     if (expand(word_size * HeapWordSize)) {
   603       // Given that expand() succeeded in expanding the heap, and we
   604       // always expand the heap by an amount aligned to the heap
   605       // region size, the free list should in theory not be empty. So
   606       // it would probably be OK to use remove_head(). But the extra
   607       // check for NULL is unlikely to be a performance issue here (we
   608       // just expanded the heap!) so let's just be conservative and
   609       // use remove_head_or_null().
   610       res = _free_list.remove_head_or_null();
   611     } else {
   612       _expand_heap_after_alloc_failure = false;
   613     }
   614   }
   615   return res;
   616 }
   618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   619                                                         size_t word_size) {
   620   assert(isHumongous(word_size), "word_size should be humongous");
   621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   623   uint first = G1_NULL_HRS_INDEX;
   624   if (num_regions == 1) {
   625     // Only one region to allocate, no need to go through the slower
   626     // path. The caller will attempt the expasion if this fails, so
   627     // let's not try to expand here too.
   628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   629     if (hr != NULL) {
   630       first = hr->hrs_index();
   631     } else {
   632       first = G1_NULL_HRS_INDEX;
   633     }
   634   } else {
   635     // We can't allocate humongous regions while cleanupComplete() is
   636     // running, since some of the regions we find to be empty might not
   637     // yet be added to the free list and it is not straightforward to
   638     // know which list they are on so that we can remove them. Note
   639     // that we only need to do this if we need to allocate more than
   640     // one region to satisfy the current humongous allocation
   641     // request. If we are only allocating one region we use the common
   642     // region allocation code (see above).
   643     wait_while_free_regions_coming();
   644     append_secondary_free_list_if_not_empty_with_lock();
   646     if (free_regions() >= num_regions) {
   647       first = _hrs.find_contiguous(num_regions);
   648       if (first != G1_NULL_HRS_INDEX) {
   649         for (uint i = first; i < first + num_regions; ++i) {
   650           HeapRegion* hr = region_at(i);
   651           assert(hr->is_empty(), "sanity");
   652           assert(is_on_master_free_list(hr), "sanity");
   653           hr->set_pending_removal(true);
   654         }
   655         _free_list.remove_all_pending(num_regions);
   656       }
   657     }
   658   }
   659   return first;
   660 }
   662 HeapWord*
   663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   664                                                            uint num_regions,
   665                                                            size_t word_size) {
   666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   667   assert(isHumongous(word_size), "word_size should be humongous");
   668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   670   // Index of last region in the series + 1.
   671   uint last = first + num_regions;
   673   // We need to initialize the region(s) we just discovered. This is
   674   // a bit tricky given that it can happen concurrently with
   675   // refinement threads refining cards on these regions and
   676   // potentially wanting to refine the BOT as they are scanning
   677   // those cards (this can happen shortly after a cleanup; see CR
   678   // 6991377). So we have to set up the region(s) carefully and in
   679   // a specific order.
   681   // The word size sum of all the regions we will allocate.
   682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   683   assert(word_size <= word_size_sum, "sanity");
   685   // This will be the "starts humongous" region.
   686   HeapRegion* first_hr = region_at(first);
   687   // The header of the new object will be placed at the bottom of
   688   // the first region.
   689   HeapWord* new_obj = first_hr->bottom();
   690   // This will be the new end of the first region in the series that
   691   // should also match the end of the last region in the seriers.
   692   HeapWord* new_end = new_obj + word_size_sum;
   693   // This will be the new top of the first region that will reflect
   694   // this allocation.
   695   HeapWord* new_top = new_obj + word_size;
   697   // First, we need to zero the header of the space that we will be
   698   // allocating. When we update top further down, some refinement
   699   // threads might try to scan the region. By zeroing the header we
   700   // ensure that any thread that will try to scan the region will
   701   // come across the zero klass word and bail out.
   702   //
   703   // NOTE: It would not have been correct to have used
   704   // CollectedHeap::fill_with_object() and make the space look like
   705   // an int array. The thread that is doing the allocation will
   706   // later update the object header to a potentially different array
   707   // type and, for a very short period of time, the klass and length
   708   // fields will be inconsistent. This could cause a refinement
   709   // thread to calculate the object size incorrectly.
   710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   712   // We will set up the first region as "starts humongous". This
   713   // will also update the BOT covering all the regions to reflect
   714   // that there is a single object that starts at the bottom of the
   715   // first region.
   716   first_hr->set_startsHumongous(new_top, new_end);
   718   // Then, if there are any, we will set up the "continues
   719   // humongous" regions.
   720   HeapRegion* hr = NULL;
   721   for (uint i = first + 1; i < last; ++i) {
   722     hr = region_at(i);
   723     hr->set_continuesHumongous(first_hr);
   724   }
   725   // If we have "continues humongous" regions (hr != NULL), then the
   726   // end of the last one should match new_end.
   727   assert(hr == NULL || hr->end() == new_end, "sanity");
   729   // Up to this point no concurrent thread would have been able to
   730   // do any scanning on any region in this series. All the top
   731   // fields still point to bottom, so the intersection between
   732   // [bottom,top] and [card_start,card_end] will be empty. Before we
   733   // update the top fields, we'll do a storestore to make sure that
   734   // no thread sees the update to top before the zeroing of the
   735   // object header and the BOT initialization.
   736   OrderAccess::storestore();
   738   // Now that the BOT and the object header have been initialized,
   739   // we can update top of the "starts humongous" region.
   740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   741          "new_top should be in this region");
   742   first_hr->set_top(new_top);
   743   if (_hr_printer.is_active()) {
   744     HeapWord* bottom = first_hr->bottom();
   745     HeapWord* end = first_hr->orig_end();
   746     if ((first + 1) == last) {
   747       // the series has a single humongous region
   748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   749     } else {
   750       // the series has more than one humongous regions
   751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   752     }
   753   }
   755   // Now, we will update the top fields of the "continues humongous"
   756   // regions. The reason we need to do this is that, otherwise,
   757   // these regions would look empty and this will confuse parts of
   758   // G1. For example, the code that looks for a consecutive number
   759   // of empty regions will consider them empty and try to
   760   // re-allocate them. We can extend is_empty() to also include
   761   // !continuesHumongous(), but it is easier to just update the top
   762   // fields here. The way we set top for all regions (i.e., top ==
   763   // end for all regions but the last one, top == new_top for the
   764   // last one) is actually used when we will free up the humongous
   765   // region in free_humongous_region().
   766   hr = NULL;
   767   for (uint i = first + 1; i < last; ++i) {
   768     hr = region_at(i);
   769     if ((i + 1) == last) {
   770       // last continues humongous region
   771       assert(hr->bottom() < new_top && new_top <= hr->end(),
   772              "new_top should fall on this region");
   773       hr->set_top(new_top);
   774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   775     } else {
   776       // not last one
   777       assert(new_top > hr->end(), "new_top should be above this region");
   778       hr->set_top(hr->end());
   779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   780     }
   781   }
   782   // If we have continues humongous regions (hr != NULL), then the
   783   // end of the last one should match new_end and its top should
   784   // match new_top.
   785   assert(hr == NULL ||
   786          (hr->end() == new_end && hr->top() == new_top), "sanity");
   788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   789   _summary_bytes_used += first_hr->used();
   790   _humongous_set.add(first_hr);
   792   return new_obj;
   793 }
   795 // If could fit into free regions w/o expansion, try.
   796 // Otherwise, if can expand, do so.
   797 // Otherwise, if using ex regions might help, try with ex given back.
   798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   801   verify_region_sets_optional();
   803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   805   uint x_num = expansion_regions();
   806   uint fs = _hrs.free_suffix();
   807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   808   if (first == G1_NULL_HRS_INDEX) {
   809     // The only thing we can do now is attempt expansion.
   810     if (fs + x_num >= num_regions) {
   811       // If the number of regions we're trying to allocate for this
   812       // object is at most the number of regions in the free suffix,
   813       // then the call to humongous_obj_allocate_find_first() above
   814       // should have succeeded and we wouldn't be here.
   815       //
   816       // We should only be trying to expand when the free suffix is
   817       // not sufficient for the object _and_ we have some expansion
   818       // room available.
   819       assert(num_regions > fs, "earlier allocation should have succeeded");
   821       ergo_verbose1(ErgoHeapSizing,
   822                     "attempt heap expansion",
   823                     ergo_format_reason("humongous allocation request failed")
   824                     ergo_format_byte("allocation request"),
   825                     word_size * HeapWordSize);
   826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   827         // Even though the heap was expanded, it might not have
   828         // reached the desired size. So, we cannot assume that the
   829         // allocation will succeed.
   830         first = humongous_obj_allocate_find_first(num_regions, word_size);
   831       }
   832     }
   833   }
   835   HeapWord* result = NULL;
   836   if (first != G1_NULL_HRS_INDEX) {
   837     result =
   838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   839     assert(result != NULL, "it should always return a valid result");
   841     // A successful humongous object allocation changes the used space
   842     // information of the old generation so we need to recalculate the
   843     // sizes and update the jstat counters here.
   844     g1mm()->update_sizes();
   845   }
   847   verify_region_sets_optional();
   849   return result;
   850 }
   852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   853   assert_heap_not_locked_and_not_at_safepoint();
   854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   856   unsigned int dummy_gc_count_before;
   857   int dummy_gclocker_retry_count = 0;
   858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   859 }
   861 HeapWord*
   862 G1CollectedHeap::mem_allocate(size_t word_size,
   863                               bool*  gc_overhead_limit_was_exceeded) {
   864   assert_heap_not_locked_and_not_at_safepoint();
   866   // Loop until the allocation is satisified, or unsatisfied after GC.
   867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   868     unsigned int gc_count_before;
   870     HeapWord* result = NULL;
   871     if (!isHumongous(word_size)) {
   872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   873     } else {
   874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   875     }
   876     if (result != NULL) {
   877       return result;
   878     }
   880     // Create the garbage collection operation...
   881     VM_G1CollectForAllocation op(gc_count_before, word_size);
   882     // ...and get the VM thread to execute it.
   883     VMThread::execute(&op);
   885     if (op.prologue_succeeded() && op.pause_succeeded()) {
   886       // If the operation was successful we'll return the result even
   887       // if it is NULL. If the allocation attempt failed immediately
   888       // after a Full GC, it's unlikely we'll be able to allocate now.
   889       HeapWord* result = op.result();
   890       if (result != NULL && !isHumongous(word_size)) {
   891         // Allocations that take place on VM operations do not do any
   892         // card dirtying and we have to do it here. We only have to do
   893         // this for non-humongous allocations, though.
   894         dirty_young_block(result, word_size);
   895       }
   896       return result;
   897     } else {
   898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   899         return NULL;
   900       }
   901       assert(op.result() == NULL,
   902              "the result should be NULL if the VM op did not succeed");
   903     }
   905     // Give a warning if we seem to be looping forever.
   906     if ((QueuedAllocationWarningCount > 0) &&
   907         (try_count % QueuedAllocationWarningCount == 0)) {
   908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   909     }
   910   }
   912   ShouldNotReachHere();
   913   return NULL;
   914 }
   916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   917                                            unsigned int *gc_count_before_ret,
   918                                            int* gclocker_retry_count_ret) {
   919   // Make sure you read the note in attempt_allocation_humongous().
   921   assert_heap_not_locked_and_not_at_safepoint();
   922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   923          "be called for humongous allocation requests");
   925   // We should only get here after the first-level allocation attempt
   926   // (attempt_allocation()) failed to allocate.
   928   // We will loop until a) we manage to successfully perform the
   929   // allocation or b) we successfully schedule a collection which
   930   // fails to perform the allocation. b) is the only case when we'll
   931   // return NULL.
   932   HeapWord* result = NULL;
   933   for (int try_count = 1; /* we'll return */; try_count += 1) {
   934     bool should_try_gc;
   935     unsigned int gc_count_before;
   937     {
   938       MutexLockerEx x(Heap_lock);
   940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   941                                                       false /* bot_updates */);
   942       if (result != NULL) {
   943         return result;
   944       }
   946       // If we reach here, attempt_allocation_locked() above failed to
   947       // allocate a new region. So the mutator alloc region should be NULL.
   948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   950       if (GC_locker::is_active_and_needs_gc()) {
   951         if (g1_policy()->can_expand_young_list()) {
   952           // No need for an ergo verbose message here,
   953           // can_expand_young_list() does this when it returns true.
   954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   955                                                       false /* bot_updates */);
   956           if (result != NULL) {
   957             return result;
   958           }
   959         }
   960         should_try_gc = false;
   961       } else {
   962         // The GCLocker may not be active but the GCLocker initiated
   963         // GC may not yet have been performed (GCLocker::needs_gc()
   964         // returns true). In this case we do not try this GC and
   965         // wait until the GCLocker initiated GC is performed, and
   966         // then retry the allocation.
   967         if (GC_locker::needs_gc()) {
   968           should_try_gc = false;
   969         } else {
   970           // Read the GC count while still holding the Heap_lock.
   971           gc_count_before = total_collections();
   972           should_try_gc = true;
   973         }
   974       }
   975     }
   977     if (should_try_gc) {
   978       bool succeeded;
   979       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   980       if (result != NULL) {
   981         assert(succeeded, "only way to get back a non-NULL result");
   982         return result;
   983       }
   985       if (succeeded) {
   986         // If we get here we successfully scheduled a collection which
   987         // failed to allocate. No point in trying to allocate
   988         // further. We'll just return NULL.
   989         MutexLockerEx x(Heap_lock);
   990         *gc_count_before_ret = total_collections();
   991         return NULL;
   992       }
   993     } else {
   994       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   995         MutexLockerEx x(Heap_lock);
   996         *gc_count_before_ret = total_collections();
   997         return NULL;
   998       }
   999       // The GCLocker is either active or the GCLocker initiated
  1000       // GC has not yet been performed. Stall until it is and
  1001       // then retry the allocation.
  1002       GC_locker::stall_until_clear();
  1003       (*gclocker_retry_count_ret) += 1;
  1006     // We can reach here if we were unsuccessul in scheduling a
  1007     // collection (because another thread beat us to it) or if we were
  1008     // stalled due to the GC locker. In either can we should retry the
  1009     // allocation attempt in case another thread successfully
  1010     // performed a collection and reclaimed enough space. We do the
  1011     // first attempt (without holding the Heap_lock) here and the
  1012     // follow-on attempt will be at the start of the next loop
  1013     // iteration (after taking the Heap_lock).
  1014     result = _mutator_alloc_region.attempt_allocation(word_size,
  1015                                                       false /* bot_updates */);
  1016     if (result != NULL) {
  1017       return result;
  1020     // Give a warning if we seem to be looping forever.
  1021     if ((QueuedAllocationWarningCount > 0) &&
  1022         (try_count % QueuedAllocationWarningCount == 0)) {
  1023       warning("G1CollectedHeap::attempt_allocation_slow() "
  1024               "retries %d times", try_count);
  1028   ShouldNotReachHere();
  1029   return NULL;
  1032 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1033                                           unsigned int * gc_count_before_ret,
  1034                                           int* gclocker_retry_count_ret) {
  1035   // The structure of this method has a lot of similarities to
  1036   // attempt_allocation_slow(). The reason these two were not merged
  1037   // into a single one is that such a method would require several "if
  1038   // allocation is not humongous do this, otherwise do that"
  1039   // conditional paths which would obscure its flow. In fact, an early
  1040   // version of this code did use a unified method which was harder to
  1041   // follow and, as a result, it had subtle bugs that were hard to
  1042   // track down. So keeping these two methods separate allows each to
  1043   // be more readable. It will be good to keep these two in sync as
  1044   // much as possible.
  1046   assert_heap_not_locked_and_not_at_safepoint();
  1047   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1048          "should only be called for humongous allocations");
  1050   // Humongous objects can exhaust the heap quickly, so we should check if we
  1051   // need to start a marking cycle at each humongous object allocation. We do
  1052   // the check before we do the actual allocation. The reason for doing it
  1053   // before the allocation is that we avoid having to keep track of the newly
  1054   // allocated memory while we do a GC.
  1055   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1056                                            word_size)) {
  1057     collect(GCCause::_g1_humongous_allocation);
  1060   // We will loop until a) we manage to successfully perform the
  1061   // allocation or b) we successfully schedule a collection which
  1062   // fails to perform the allocation. b) is the only case when we'll
  1063   // return NULL.
  1064   HeapWord* result = NULL;
  1065   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1066     bool should_try_gc;
  1067     unsigned int gc_count_before;
  1070       MutexLockerEx x(Heap_lock);
  1072       // Given that humongous objects are not allocated in young
  1073       // regions, we'll first try to do the allocation without doing a
  1074       // collection hoping that there's enough space in the heap.
  1075       result = humongous_obj_allocate(word_size);
  1076       if (result != NULL) {
  1077         return result;
  1080       if (GC_locker::is_active_and_needs_gc()) {
  1081         should_try_gc = false;
  1082       } else {
  1083          // The GCLocker may not be active but the GCLocker initiated
  1084         // GC may not yet have been performed (GCLocker::needs_gc()
  1085         // returns true). In this case we do not try this GC and
  1086         // wait until the GCLocker initiated GC is performed, and
  1087         // then retry the allocation.
  1088         if (GC_locker::needs_gc()) {
  1089           should_try_gc = false;
  1090         } else {
  1091           // Read the GC count while still holding the Heap_lock.
  1092           gc_count_before = total_collections();
  1093           should_try_gc = true;
  1098     if (should_try_gc) {
  1099       // If we failed to allocate the humongous object, we should try to
  1100       // do a collection pause (if we're allowed) in case it reclaims
  1101       // enough space for the allocation to succeed after the pause.
  1103       bool succeeded;
  1104       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1105       if (result != NULL) {
  1106         assert(succeeded, "only way to get back a non-NULL result");
  1107         return result;
  1110       if (succeeded) {
  1111         // If we get here we successfully scheduled a collection which
  1112         // failed to allocate. No point in trying to allocate
  1113         // further. We'll just return NULL.
  1114         MutexLockerEx x(Heap_lock);
  1115         *gc_count_before_ret = total_collections();
  1116         return NULL;
  1118     } else {
  1119       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1120         MutexLockerEx x(Heap_lock);
  1121         *gc_count_before_ret = total_collections();
  1122         return NULL;
  1124       // The GCLocker is either active or the GCLocker initiated
  1125       // GC has not yet been performed. Stall until it is and
  1126       // then retry the allocation.
  1127       GC_locker::stall_until_clear();
  1128       (*gclocker_retry_count_ret) += 1;
  1131     // We can reach here if we were unsuccessul in scheduling a
  1132     // collection (because another thread beat us to it) or if we were
  1133     // stalled due to the GC locker. In either can we should retry the
  1134     // allocation attempt in case another thread successfully
  1135     // performed a collection and reclaimed enough space.  Give a
  1136     // warning if we seem to be looping forever.
  1138     if ((QueuedAllocationWarningCount > 0) &&
  1139         (try_count % QueuedAllocationWarningCount == 0)) {
  1140       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1141               "retries %d times", try_count);
  1145   ShouldNotReachHere();
  1146   return NULL;
  1149 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1150                                        bool expect_null_mutator_alloc_region) {
  1151   assert_at_safepoint(true /* should_be_vm_thread */);
  1152   assert(_mutator_alloc_region.get() == NULL ||
  1153                                              !expect_null_mutator_alloc_region,
  1154          "the current alloc region was unexpectedly found to be non-NULL");
  1156   if (!isHumongous(word_size)) {
  1157     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1158                                                       false /* bot_updates */);
  1159   } else {
  1160     HeapWord* result = humongous_obj_allocate(word_size);
  1161     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1162       g1_policy()->set_initiate_conc_mark_if_possible();
  1164     return result;
  1167   ShouldNotReachHere();
  1170 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1171   G1CollectedHeap* _g1h;
  1172   ModRefBarrierSet* _mr_bs;
  1173 public:
  1174   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1175     _g1h(g1h), _mr_bs(mr_bs) { }
  1176   bool doHeapRegion(HeapRegion* r) {
  1177     if (r->continuesHumongous()) {
  1178       return false;
  1180     _g1h->reset_gc_time_stamps(r);
  1181     HeapRegionRemSet* hrrs = r->rem_set();
  1182     if (hrrs != NULL) hrrs->clear();
  1183     // You might think here that we could clear just the cards
  1184     // corresponding to the used region.  But no: if we leave a dirty card
  1185     // in a region we might allocate into, then it would prevent that card
  1186     // from being enqueued, and cause it to be missed.
  1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1189     return false;
  1191 };
  1193 void G1CollectedHeap::clear_rsets_post_compaction() {
  1194   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1195   heap_region_iterate(&rs_clear);
  1198 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1199   G1CollectedHeap*   _g1h;
  1200   UpdateRSOopClosure _cl;
  1201   int                _worker_i;
  1202 public:
  1203   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1204     _cl(g1->g1_rem_set(), worker_i),
  1205     _worker_i(worker_i),
  1206     _g1h(g1)
  1207   { }
  1209   bool doHeapRegion(HeapRegion* r) {
  1210     if (!r->continuesHumongous()) {
  1211       _cl.set_from(r);
  1212       r->oop_iterate(&_cl);
  1214     return false;
  1216 };
  1218 class ParRebuildRSTask: public AbstractGangTask {
  1219   G1CollectedHeap* _g1;
  1220 public:
  1221   ParRebuildRSTask(G1CollectedHeap* g1)
  1222     : AbstractGangTask("ParRebuildRSTask"),
  1223       _g1(g1)
  1224   { }
  1226   void work(uint worker_id) {
  1227     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1228     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1229                                           _g1->workers()->active_workers(),
  1230                                          HeapRegion::RebuildRSClaimValue);
  1232 };
  1234 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1235 private:
  1236   G1HRPrinter* _hr_printer;
  1237 public:
  1238   bool doHeapRegion(HeapRegion* hr) {
  1239     assert(!hr->is_young(), "not expecting to find young regions");
  1240     // We only generate output for non-empty regions.
  1241     if (!hr->is_empty()) {
  1242       if (!hr->isHumongous()) {
  1243         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1244       } else if (hr->startsHumongous()) {
  1245         if (hr->region_num() == 1) {
  1246           // single humongous region
  1247           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1248         } else {
  1249           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1251       } else {
  1252         assert(hr->continuesHumongous(), "only way to get here");
  1253         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1256     return false;
  1259   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1260     : _hr_printer(hr_printer) { }
  1261 };
  1263 void G1CollectedHeap::print_hrs_post_compaction() {
  1264   PostCompactionPrinterClosure cl(hr_printer());
  1265   heap_region_iterate(&cl);
  1268 double G1CollectedHeap::verify(bool guard, const char* msg) {
  1269   double verify_time_ms = 0.0;
  1271   if (guard && total_collections() >= VerifyGCStartAt) {
  1272     double verify_start = os::elapsedTime();
  1273     HandleMark hm;  // Discard invalid handles created during verification
  1274     prepare_for_verify();
  1275     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  1276     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  1279   return verify_time_ms;
  1282 void G1CollectedHeap::verify_before_gc() {
  1283   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  1284   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  1287 void G1CollectedHeap::verify_after_gc() {
  1288   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  1289   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  1292 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1293                                     bool clear_all_soft_refs,
  1294                                     size_t word_size) {
  1295   assert_at_safepoint(true /* should_be_vm_thread */);
  1297   if (GC_locker::check_active_before_gc()) {
  1298     return false;
  1301   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1302   ResourceMark rm;
  1304   print_heap_before_gc();
  1306   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
  1308   HRSPhaseSetter x(HRSPhaseFullGC);
  1309   verify_region_sets_optional();
  1311   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1312                            collector_policy()->should_clear_all_soft_refs();
  1314   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1317     IsGCActiveMark x;
  1319     // Timing
  1320     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1321     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1322     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1325       TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1326       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1327       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1329       double start = os::elapsedTime();
  1330       g1_policy()->record_full_collection_start();
  1332       // Note: When we have a more flexible GC logging framework that
  1333       // allows us to add optional attributes to a GC log record we
  1334       // could consider timing and reporting how long we wait in the
  1335       // following two methods.
  1336       wait_while_free_regions_coming();
  1337       // If we start the compaction before the CM threads finish
  1338       // scanning the root regions we might trip them over as we'll
  1339       // be moving objects / updating references. So let's wait until
  1340       // they are done. By telling them to abort, they should complete
  1341       // early.
  1342       _cm->root_regions()->abort();
  1343       _cm->root_regions()->wait_until_scan_finished();
  1344       append_secondary_free_list_if_not_empty_with_lock();
  1346       gc_prologue(true);
  1347       increment_total_collections(true /* full gc */);
  1348       increment_old_marking_cycles_started();
  1350       assert(used() == recalculate_used(), "Should be equal");
  1352       verify_before_gc();
  1354       pre_full_gc_dump();
  1356       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1358       // Disable discovery and empty the discovered lists
  1359       // for the CM ref processor.
  1360       ref_processor_cm()->disable_discovery();
  1361       ref_processor_cm()->abandon_partial_discovery();
  1362       ref_processor_cm()->verify_no_references_recorded();
  1364       // Abandon current iterations of concurrent marking and concurrent
  1365       // refinement, if any are in progress. We have to do this before
  1366       // wait_until_scan_finished() below.
  1367       concurrent_mark()->abort();
  1369       // Make sure we'll choose a new allocation region afterwards.
  1370       release_mutator_alloc_region();
  1371       abandon_gc_alloc_regions();
  1372       g1_rem_set()->cleanupHRRS();
  1374       // We should call this after we retire any currently active alloc
  1375       // regions so that all the ALLOC / RETIRE events are generated
  1376       // before the start GC event.
  1377       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1379       // We may have added regions to the current incremental collection
  1380       // set between the last GC or pause and now. We need to clear the
  1381       // incremental collection set and then start rebuilding it afresh
  1382       // after this full GC.
  1383       abandon_collection_set(g1_policy()->inc_cset_head());
  1384       g1_policy()->clear_incremental_cset();
  1385       g1_policy()->stop_incremental_cset_building();
  1387       tear_down_region_sets(false /* free_list_only */);
  1388       g1_policy()->set_gcs_are_young(true);
  1390       // See the comments in g1CollectedHeap.hpp and
  1391       // G1CollectedHeap::ref_processing_init() about
  1392       // how reference processing currently works in G1.
  1394       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1395       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1397       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1398       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1400       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1401       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1403       // Do collection work
  1405         HandleMark hm;  // Discard invalid handles created during gc
  1406         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1409       assert(free_regions() == 0, "we should not have added any free regions");
  1410       rebuild_region_sets(false /* free_list_only */);
  1412       // Enqueue any discovered reference objects that have
  1413       // not been removed from the discovered lists.
  1414       ref_processor_stw()->enqueue_discovered_references();
  1416       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1418       MemoryService::track_memory_usage();
  1420       verify_after_gc();
  1422       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1423       ref_processor_stw()->verify_no_references_recorded();
  1425       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1426       ClassLoaderDataGraph::purge();
  1427     MetaspaceAux::verify_metrics();
  1429       // Note: since we've just done a full GC, concurrent
  1430       // marking is no longer active. Therefore we need not
  1431       // re-enable reference discovery for the CM ref processor.
  1432       // That will be done at the start of the next marking cycle.
  1433       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1434       ref_processor_cm()->verify_no_references_recorded();
  1436       reset_gc_time_stamp();
  1437       // Since everything potentially moved, we will clear all remembered
  1438       // sets, and clear all cards.  Later we will rebuild remebered
  1439       // sets. We will also reset the GC time stamps of the regions.
  1440       clear_rsets_post_compaction();
  1441       check_gc_time_stamps();
  1443       // Resize the heap if necessary.
  1444       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1446       if (_hr_printer.is_active()) {
  1447         // We should do this after we potentially resize the heap so
  1448         // that all the COMMIT / UNCOMMIT events are generated before
  1449         // the end GC event.
  1451         print_hrs_post_compaction();
  1452         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1455       if (_cg1r->use_cache()) {
  1456         _cg1r->clear_and_record_card_counts();
  1457         _cg1r->clear_hot_cache();
  1460       // Rebuild remembered sets of all regions.
  1461       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1462         uint n_workers =
  1463           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1464                                                   workers()->active_workers(),
  1465                                                   Threads::number_of_non_daemon_threads());
  1466         assert(UseDynamicNumberOfGCThreads ||
  1467                n_workers == workers()->total_workers(),
  1468                "If not dynamic should be using all the  workers");
  1469         workers()->set_active_workers(n_workers);
  1470         // Set parallel threads in the heap (_n_par_threads) only
  1471         // before a parallel phase and always reset it to 0 after
  1472         // the phase so that the number of parallel threads does
  1473         // no get carried forward to a serial phase where there
  1474         // may be code that is "possibly_parallel".
  1475         set_par_threads(n_workers);
  1477         ParRebuildRSTask rebuild_rs_task(this);
  1478         assert(check_heap_region_claim_values(
  1479                HeapRegion::InitialClaimValue), "sanity check");
  1480         assert(UseDynamicNumberOfGCThreads ||
  1481                workers()->active_workers() == workers()->total_workers(),
  1482                "Unless dynamic should use total workers");
  1483         // Use the most recent number of  active workers
  1484         assert(workers()->active_workers() > 0,
  1485                "Active workers not properly set");
  1486         set_par_threads(workers()->active_workers());
  1487         workers()->run_task(&rebuild_rs_task);
  1488         set_par_threads(0);
  1489         assert(check_heap_region_claim_values(
  1490                HeapRegion::RebuildRSClaimValue), "sanity check");
  1491         reset_heap_region_claim_values();
  1492       } else {
  1493         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1494         heap_region_iterate(&rebuild_rs);
  1497       if (true) { // FIXME
  1498         MetaspaceGC::compute_new_size();
  1501 #ifdef TRACESPINNING
  1502       ParallelTaskTerminator::print_termination_counts();
  1503 #endif
  1505       // Discard all rset updates
  1506       JavaThread::dirty_card_queue_set().abandon_logs();
  1507       assert(!G1DeferredRSUpdate
  1508              || (G1DeferredRSUpdate &&
  1509                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1511       _young_list->reset_sampled_info();
  1512       // At this point there should be no regions in the
  1513       // entire heap tagged as young.
  1514       assert(check_young_list_empty(true /* check_heap */),
  1515              "young list should be empty at this point");
  1517       // Update the number of full collections that have been completed.
  1518       increment_old_marking_cycles_completed(false /* concurrent */);
  1520       _hrs.verify_optional();
  1521       verify_region_sets_optional();
  1523       // Start a new incremental collection set for the next pause
  1524       assert(g1_policy()->collection_set() == NULL, "must be");
  1525       g1_policy()->start_incremental_cset_building();
  1527       // Clear the _cset_fast_test bitmap in anticipation of adding
  1528       // regions to the incremental collection set for the next
  1529       // evacuation pause.
  1530       clear_cset_fast_test();
  1532       init_mutator_alloc_region();
  1534       double end = os::elapsedTime();
  1535       g1_policy()->record_full_collection_end();
  1537       if (G1Log::fine()) {
  1538         g1_policy()->print_heap_transition();
  1541       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1542       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1543       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1544       // before any GC notifications are raised.
  1545       g1mm()->update_sizes();
  1547       gc_epilogue(true);
  1550     if (G1Log::finer()) {
  1551       g1_policy()->print_detailed_heap_transition();
  1554     print_heap_after_gc();
  1556     post_full_gc_dump();
  1559   return true;
  1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1563   // do_collection() will return whether it succeeded in performing
  1564   // the GC. Currently, there is no facility on the
  1565   // do_full_collection() API to notify the caller than the collection
  1566   // did not succeed (e.g., because it was locked out by the GC
  1567   // locker). So, right now, we'll ignore the return value.
  1568   bool dummy = do_collection(true,                /* explicit_gc */
  1569                              clear_all_soft_refs,
  1570                              0                    /* word_size */);
  1573 // This code is mostly copied from TenuredGeneration.
  1574 void
  1575 G1CollectedHeap::
  1576 resize_if_necessary_after_full_collection(size_t word_size) {
  1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1579   // Include the current allocation, if any, and bytes that will be
  1580   // pre-allocated to support collections, as "used".
  1581   const size_t used_after_gc = used();
  1582   const size_t capacity_after_gc = capacity();
  1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1585   // This is enforced in arguments.cpp.
  1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1587          "otherwise the code below doesn't make sense");
  1589   // We don't have floating point command-line arguments
  1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1598   // We have to be careful here as these two calculations can overflow
  1599   // 32-bit size_t's.
  1600   double used_after_gc_d = (double) used_after_gc;
  1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1604   // Let's make sure that they are both under the max heap size, which
  1605   // by default will make them fit into a size_t.
  1606   double desired_capacity_upper_bound = (double) max_heap_size;
  1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1608                                     desired_capacity_upper_bound);
  1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1610                                     desired_capacity_upper_bound);
  1612   // We can now safely turn them into size_t's.
  1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1616   // This assert only makes sense here, before we adjust them
  1617   // with respect to the min and max heap size.
  1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1620                  "maximum_desired_capacity = "SIZE_FORMAT,
  1621                  minimum_desired_capacity, maximum_desired_capacity));
  1623   // Should not be greater than the heap max size. No need to adjust
  1624   // it with respect to the heap min size as it's a lower bound (i.e.,
  1625   // we'll try to make the capacity larger than it, not smaller).
  1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1627   // Should not be less than the heap min size. No need to adjust it
  1628   // with respect to the heap max size as it's an upper bound (i.e.,
  1629   // we'll try to make the capacity smaller than it, not greater).
  1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1632   if (capacity_after_gc < minimum_desired_capacity) {
  1633     // Don't expand unless it's significant
  1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1635     ergo_verbose4(ErgoHeapSizing,
  1636                   "attempt heap expansion",
  1637                   ergo_format_reason("capacity lower than "
  1638                                      "min desired capacity after Full GC")
  1639                   ergo_format_byte("capacity")
  1640                   ergo_format_byte("occupancy")
  1641                   ergo_format_byte_perc("min desired capacity"),
  1642                   capacity_after_gc, used_after_gc,
  1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1644     expand(expand_bytes);
  1646     // No expansion, now see if we want to shrink
  1647   } else if (capacity_after_gc > maximum_desired_capacity) {
  1648     // Capacity too large, compute shrinking size
  1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1650     ergo_verbose4(ErgoHeapSizing,
  1651                   "attempt heap shrinking",
  1652                   ergo_format_reason("capacity higher than "
  1653                                      "max desired capacity after Full GC")
  1654                   ergo_format_byte("capacity")
  1655                   ergo_format_byte("occupancy")
  1656                   ergo_format_byte_perc("max desired capacity"),
  1657                   capacity_after_gc, used_after_gc,
  1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1659     shrink(shrink_bytes);
  1664 HeapWord*
  1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1666                                            bool* succeeded) {
  1667   assert_at_safepoint(true /* should_be_vm_thread */);
  1669   *succeeded = true;
  1670   // Let's attempt the allocation first.
  1671   HeapWord* result =
  1672     attempt_allocation_at_safepoint(word_size,
  1673                                  false /* expect_null_mutator_alloc_region */);
  1674   if (result != NULL) {
  1675     assert(*succeeded, "sanity");
  1676     return result;
  1679   // In a G1 heap, we're supposed to keep allocation from failing by
  1680   // incremental pauses.  Therefore, at least for now, we'll favor
  1681   // expansion over collection.  (This might change in the future if we can
  1682   // do something smarter than full collection to satisfy a failed alloc.)
  1683   result = expand_and_allocate(word_size);
  1684   if (result != NULL) {
  1685     assert(*succeeded, "sanity");
  1686     return result;
  1689   // Expansion didn't work, we'll try to do a Full GC.
  1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1691                                     false, /* clear_all_soft_refs */
  1692                                     word_size);
  1693   if (!gc_succeeded) {
  1694     *succeeded = false;
  1695     return NULL;
  1698   // Retry the allocation
  1699   result = attempt_allocation_at_safepoint(word_size,
  1700                                   true /* expect_null_mutator_alloc_region */);
  1701   if (result != NULL) {
  1702     assert(*succeeded, "sanity");
  1703     return result;
  1706   // Then, try a Full GC that will collect all soft references.
  1707   gc_succeeded = do_collection(false, /* explicit_gc */
  1708                                true,  /* clear_all_soft_refs */
  1709                                word_size);
  1710   if (!gc_succeeded) {
  1711     *succeeded = false;
  1712     return NULL;
  1715   // Retry the allocation once more
  1716   result = attempt_allocation_at_safepoint(word_size,
  1717                                   true /* expect_null_mutator_alloc_region */);
  1718   if (result != NULL) {
  1719     assert(*succeeded, "sanity");
  1720     return result;
  1723   assert(!collector_policy()->should_clear_all_soft_refs(),
  1724          "Flag should have been handled and cleared prior to this point");
  1726   // What else?  We might try synchronous finalization later.  If the total
  1727   // space available is large enough for the allocation, then a more
  1728   // complete compaction phase than we've tried so far might be
  1729   // appropriate.
  1730   assert(*succeeded, "sanity");
  1731   return NULL;
  1734 // Attempting to expand the heap sufficiently
  1735 // to support an allocation of the given "word_size".  If
  1736 // successful, perform the allocation and return the address of the
  1737 // allocated block, or else "NULL".
  1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1740   assert_at_safepoint(true /* should_be_vm_thread */);
  1742   verify_region_sets_optional();
  1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1745   ergo_verbose1(ErgoHeapSizing,
  1746                 "attempt heap expansion",
  1747                 ergo_format_reason("allocation request failed")
  1748                 ergo_format_byte("allocation request"),
  1749                 word_size * HeapWordSize);
  1750   if (expand(expand_bytes)) {
  1751     _hrs.verify_optional();
  1752     verify_region_sets_optional();
  1753     return attempt_allocation_at_safepoint(word_size,
  1754                                  false /* expect_null_mutator_alloc_region */);
  1756   return NULL;
  1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1760                                              HeapWord* new_end) {
  1761   assert(old_end != new_end, "don't call this otherwise");
  1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1764   // Update the committed mem region.
  1765   _g1_committed.set_end(new_end);
  1766   // Tell the card table about the update.
  1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1768   // Tell the BOT about the update.
  1769   _bot_shared->resize(_g1_committed.word_size());
  1772 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1773   size_t old_mem_size = _g1_storage.committed_size();
  1774   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1775   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1776                                        HeapRegion::GrainBytes);
  1777   ergo_verbose2(ErgoHeapSizing,
  1778                 "expand the heap",
  1779                 ergo_format_byte("requested expansion amount")
  1780                 ergo_format_byte("attempted expansion amount"),
  1781                 expand_bytes, aligned_expand_bytes);
  1783   // First commit the memory.
  1784   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1785   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1786   if (successful) {
  1787     // Then propagate this update to the necessary data structures.
  1788     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1789     update_committed_space(old_end, new_end);
  1791     FreeRegionList expansion_list("Local Expansion List");
  1792     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1793     assert(mr.start() == old_end, "post-condition");
  1794     // mr might be a smaller region than what was requested if
  1795     // expand_by() was unable to allocate the HeapRegion instances
  1796     assert(mr.end() <= new_end, "post-condition");
  1798     size_t actual_expand_bytes = mr.byte_size();
  1799     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1800     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1801            "post-condition");
  1802     if (actual_expand_bytes < aligned_expand_bytes) {
  1803       // We could not expand _hrs to the desired size. In this case we
  1804       // need to shrink the committed space accordingly.
  1805       assert(mr.end() < new_end, "invariant");
  1807       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1808       // First uncommit the memory.
  1809       _g1_storage.shrink_by(diff_bytes);
  1810       // Then propagate this update to the necessary data structures.
  1811       update_committed_space(new_end, mr.end());
  1813     _free_list.add_as_tail(&expansion_list);
  1815     if (_hr_printer.is_active()) {
  1816       HeapWord* curr = mr.start();
  1817       while (curr < mr.end()) {
  1818         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1819         _hr_printer.commit(curr, curr_end);
  1820         curr = curr_end;
  1822       assert(curr == mr.end(), "post-condition");
  1824     g1_policy()->record_new_heap_size(n_regions());
  1825   } else {
  1826     ergo_verbose0(ErgoHeapSizing,
  1827                   "did not expand the heap",
  1828                   ergo_format_reason("heap expansion operation failed"));
  1829     // The expansion of the virtual storage space was unsuccessful.
  1830     // Let's see if it was because we ran out of swap.
  1831     if (G1ExitOnExpansionFailure &&
  1832         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1833       // We had head room...
  1834       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1837   return successful;
  1840 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1841   size_t old_mem_size = _g1_storage.committed_size();
  1842   size_t aligned_shrink_bytes =
  1843     ReservedSpace::page_align_size_down(shrink_bytes);
  1844   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1845                                          HeapRegion::GrainBytes);
  1846   uint num_regions_deleted = 0;
  1847   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1848   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1849   assert(mr.end() == old_end, "post-condition");
  1851   ergo_verbose3(ErgoHeapSizing,
  1852                 "shrink the heap",
  1853                 ergo_format_byte("requested shrinking amount")
  1854                 ergo_format_byte("aligned shrinking amount")
  1855                 ergo_format_byte("attempted shrinking amount"),
  1856                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1857   if (mr.byte_size() > 0) {
  1858     if (_hr_printer.is_active()) {
  1859       HeapWord* curr = mr.end();
  1860       while (curr > mr.start()) {
  1861         HeapWord* curr_end = curr;
  1862         curr -= HeapRegion::GrainWords;
  1863         _hr_printer.uncommit(curr, curr_end);
  1865       assert(curr == mr.start(), "post-condition");
  1868     _g1_storage.shrink_by(mr.byte_size());
  1869     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1870     assert(mr.start() == new_end, "post-condition");
  1872     _expansion_regions += num_regions_deleted;
  1873     update_committed_space(old_end, new_end);
  1874     HeapRegionRemSet::shrink_heap(n_regions());
  1875     g1_policy()->record_new_heap_size(n_regions());
  1876   } else {
  1877     ergo_verbose0(ErgoHeapSizing,
  1878                   "did not shrink the heap",
  1879                   ergo_format_reason("heap shrinking operation failed"));
  1883 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1884   verify_region_sets_optional();
  1886   // We should only reach here at the end of a Full GC which means we
  1887   // should not not be holding to any GC alloc regions. The method
  1888   // below will make sure of that and do any remaining clean up.
  1889   abandon_gc_alloc_regions();
  1891   // Instead of tearing down / rebuilding the free lists here, we
  1892   // could instead use the remove_all_pending() method on free_list to
  1893   // remove only the ones that we need to remove.
  1894   tear_down_region_sets(true /* free_list_only */);
  1895   shrink_helper(shrink_bytes);
  1896   rebuild_region_sets(true /* free_list_only */);
  1898   _hrs.verify_optional();
  1899   verify_region_sets_optional();
  1902 // Public methods.
  1904 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1905 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1906 #endif // _MSC_VER
  1909 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1910   SharedHeap(policy_),
  1911   _g1_policy(policy_),
  1912   _dirty_card_queue_set(false),
  1913   _into_cset_dirty_card_queue_set(false),
  1914   _is_alive_closure_cm(this),
  1915   _is_alive_closure_stw(this),
  1916   _ref_processor_cm(NULL),
  1917   _ref_processor_stw(NULL),
  1918   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1919   _bot_shared(NULL),
  1920   _evac_failure_scan_stack(NULL) ,
  1921   _mark_in_progress(false),
  1922   _cg1r(NULL), _summary_bytes_used(0),
  1923   _g1mm(NULL),
  1924   _refine_cte_cl(NULL),
  1925   _full_collection(false),
  1926   _free_list("Master Free List"),
  1927   _secondary_free_list("Secondary Free List"),
  1928   _old_set("Old Set"),
  1929   _humongous_set("Master Humongous Set"),
  1930   _free_regions_coming(false),
  1931   _young_list(new YoungList(this)),
  1932   _gc_time_stamp(0),
  1933   _retained_old_gc_alloc_region(NULL),
  1934   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1935   _old_plab_stats(OldPLABSize, PLABWeight),
  1936   _expand_heap_after_alloc_failure(true),
  1937   _surviving_young_words(NULL),
  1938   _old_marking_cycles_started(0),
  1939   _old_marking_cycles_completed(0),
  1940   _in_cset_fast_test(NULL),
  1941   _in_cset_fast_test_base(NULL),
  1942   _dirty_cards_region_list(NULL),
  1943   _worker_cset_start_region(NULL),
  1944   _worker_cset_start_region_time_stamp(NULL) {
  1945   _g1h = this; // To catch bugs.
  1946   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1947     vm_exit_during_initialization("Failed necessary allocation.");
  1950   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1952   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1953   _task_queues = new RefToScanQueueSet(n_queues);
  1955   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1956   assert(n_rem_sets > 0, "Invariant.");
  1958   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1959   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1961   for (int i = 0; i < n_queues; i++) {
  1962     RefToScanQueue* q = new RefToScanQueue();
  1963     q->initialize();
  1964     _task_queues->register_queue(i, q);
  1967   clear_cset_start_regions();
  1969   // Initialize the G1EvacuationFailureALot counters and flags.
  1970   NOT_PRODUCT(reset_evacuation_should_fail();)
  1972   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1975 jint G1CollectedHeap::initialize() {
  1976   CollectedHeap::pre_initialize();
  1977   os::enable_vtime();
  1979   G1Log::init();
  1981   // Necessary to satisfy locking discipline assertions.
  1983   MutexLocker x(Heap_lock);
  1985   // We have to initialize the printer before committing the heap, as
  1986   // it will be used then.
  1987   _hr_printer.set_active(G1PrintHeapRegions);
  1989   // While there are no constraints in the GC code that HeapWordSize
  1990   // be any particular value, there are multiple other areas in the
  1991   // system which believe this to be true (e.g. oop->object_size in some
  1992   // cases incorrectly returns the size in wordSize units rather than
  1993   // HeapWordSize).
  1994   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1996   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1997   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1999   // Ensure that the sizes are properly aligned.
  2000   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2001   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2003   _cg1r = new ConcurrentG1Refine();
  2005   // Reserve the maximum.
  2007   // When compressed oops are enabled, the preferred heap base
  2008   // is calculated by subtracting the requested size from the
  2009   // 32Gb boundary and using the result as the base address for
  2010   // heap reservation. If the requested size is not aligned to
  2011   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2012   // into the ReservedHeapSpace constructor) then the actual
  2013   // base of the reserved heap may end up differing from the
  2014   // address that was requested (i.e. the preferred heap base).
  2015   // If this happens then we could end up using a non-optimal
  2016   // compressed oops mode.
  2018   // Since max_byte_size is aligned to the size of a heap region (checked
  2019   // above).
  2020   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2022   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2023                                                  HeapRegion::GrainBytes);
  2025   // It is important to do this in a way such that concurrent readers can't
  2026   // temporarily think somethings in the heap.  (I've actually seen this
  2027   // happen in asserts: DLD.)
  2028   _reserved.set_word_size(0);
  2029   _reserved.set_start((HeapWord*)heap_rs.base());
  2030   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2032   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2034   // Create the gen rem set (and barrier set) for the entire reserved region.
  2035   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2036   set_barrier_set(rem_set()->bs());
  2037   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2038     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2039   } else {
  2040     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2041     return JNI_ENOMEM;
  2044   // Also create a G1 rem set.
  2045   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2046     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2047   } else {
  2048     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2049     return JNI_ENOMEM;
  2052   // Carve out the G1 part of the heap.
  2054   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2055   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2056                            g1_rs.size()/HeapWordSize);
  2058   _g1_storage.initialize(g1_rs, 0);
  2059   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2060   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2061                   (HeapWord*) _g1_reserved.end(),
  2062                   _expansion_regions);
  2064   // 6843694 - ensure that the maximum region index can fit
  2065   // in the remembered set structures.
  2066   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2067   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2069   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2070   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2071   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2072             "too many cards per region");
  2074   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2076   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2077                                              heap_word_size(init_byte_size));
  2079   _g1h = this;
  2081    _in_cset_fast_test_length = max_regions();
  2082    _in_cset_fast_test_base =
  2083                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2085    // We're biasing _in_cset_fast_test to avoid subtracting the
  2086    // beginning of the heap every time we want to index; basically
  2087    // it's the same with what we do with the card table.
  2088    _in_cset_fast_test = _in_cset_fast_test_base -
  2089                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2091    // Clear the _cset_fast_test bitmap in anticipation of adding
  2092    // regions to the incremental collection set for the first
  2093    // evacuation pause.
  2094    clear_cset_fast_test();
  2096   // Create the ConcurrentMark data structure and thread.
  2097   // (Must do this late, so that "max_regions" is defined.)
  2098   _cm = new ConcurrentMark(this, heap_rs);
  2099   if (_cm == NULL || !_cm->completed_initialization()) {
  2100     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2101     return JNI_ENOMEM;
  2103   _cmThread = _cm->cmThread();
  2105   // Initialize the from_card cache structure of HeapRegionRemSet.
  2106   HeapRegionRemSet::init_heap(max_regions());
  2108   // Now expand into the initial heap size.
  2109   if (!expand(init_byte_size)) {
  2110     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2111     return JNI_ENOMEM;
  2114   // Perform any initialization actions delegated to the policy.
  2115   g1_policy()->init();
  2117   _refine_cte_cl =
  2118     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2119                                     g1_rem_set(),
  2120                                     concurrent_g1_refine());
  2121   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2123   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2124                                                SATB_Q_FL_lock,
  2125                                                G1SATBProcessCompletedThreshold,
  2126                                                Shared_SATB_Q_lock);
  2128   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2129                                                 DirtyCardQ_FL_lock,
  2130                                                 concurrent_g1_refine()->yellow_zone(),
  2131                                                 concurrent_g1_refine()->red_zone(),
  2132                                                 Shared_DirtyCardQ_lock);
  2134   if (G1DeferredRSUpdate) {
  2135     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2136                                       DirtyCardQ_FL_lock,
  2137                                       -1, // never trigger processing
  2138                                       -1, // no limit on length
  2139                                       Shared_DirtyCardQ_lock,
  2140                                       &JavaThread::dirty_card_queue_set());
  2143   // Initialize the card queue set used to hold cards containing
  2144   // references into the collection set.
  2145   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2146                                              DirtyCardQ_FL_lock,
  2147                                              -1, // never trigger processing
  2148                                              -1, // no limit on length
  2149                                              Shared_DirtyCardQ_lock,
  2150                                              &JavaThread::dirty_card_queue_set());
  2152   // In case we're keeping closure specialization stats, initialize those
  2153   // counts and that mechanism.
  2154   SpecializationStats::clear();
  2156   // Do later initialization work for concurrent refinement.
  2157   _cg1r->init();
  2159   // Here we allocate the dummy full region that is required by the
  2160   // G1AllocRegion class. If we don't pass an address in the reserved
  2161   // space here, lots of asserts fire.
  2163   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2164                                              _g1_reserved.start());
  2165   // We'll re-use the same region whether the alloc region will
  2166   // require BOT updates or not and, if it doesn't, then a non-young
  2167   // region will complain that it cannot support allocations without
  2168   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2169   dummy_region->set_young();
  2170   // Make sure it's full.
  2171   dummy_region->set_top(dummy_region->end());
  2172   G1AllocRegion::setup(this, dummy_region);
  2174   init_mutator_alloc_region();
  2176   // Do create of the monitoring and management support so that
  2177   // values in the heap have been properly initialized.
  2178   _g1mm = new G1MonitoringSupport(this);
  2180   return JNI_OK;
  2183 void G1CollectedHeap::ref_processing_init() {
  2184   // Reference processing in G1 currently works as follows:
  2185   //
  2186   // * There are two reference processor instances. One is
  2187   //   used to record and process discovered references
  2188   //   during concurrent marking; the other is used to
  2189   //   record and process references during STW pauses
  2190   //   (both full and incremental).
  2191   // * Both ref processors need to 'span' the entire heap as
  2192   //   the regions in the collection set may be dotted around.
  2193   //
  2194   // * For the concurrent marking ref processor:
  2195   //   * Reference discovery is enabled at initial marking.
  2196   //   * Reference discovery is disabled and the discovered
  2197   //     references processed etc during remarking.
  2198   //   * Reference discovery is MT (see below).
  2199   //   * Reference discovery requires a barrier (see below).
  2200   //   * Reference processing may or may not be MT
  2201   //     (depending on the value of ParallelRefProcEnabled
  2202   //     and ParallelGCThreads).
  2203   //   * A full GC disables reference discovery by the CM
  2204   //     ref processor and abandons any entries on it's
  2205   //     discovered lists.
  2206   //
  2207   // * For the STW processor:
  2208   //   * Non MT discovery is enabled at the start of a full GC.
  2209   //   * Processing and enqueueing during a full GC is non-MT.
  2210   //   * During a full GC, references are processed after marking.
  2211   //
  2212   //   * Discovery (may or may not be MT) is enabled at the start
  2213   //     of an incremental evacuation pause.
  2214   //   * References are processed near the end of a STW evacuation pause.
  2215   //   * For both types of GC:
  2216   //     * Discovery is atomic - i.e. not concurrent.
  2217   //     * Reference discovery will not need a barrier.
  2219   SharedHeap::ref_processing_init();
  2220   MemRegion mr = reserved_region();
  2222   // Concurrent Mark ref processor
  2223   _ref_processor_cm =
  2224     new ReferenceProcessor(mr,    // span
  2225                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2226                                 // mt processing
  2227                            (int) ParallelGCThreads,
  2228                                 // degree of mt processing
  2229                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2230                                 // mt discovery
  2231                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2232                                 // degree of mt discovery
  2233                            false,
  2234                                 // Reference discovery is not atomic
  2235                            &_is_alive_closure_cm,
  2236                                 // is alive closure
  2237                                 // (for efficiency/performance)
  2238                            true);
  2239                                 // Setting next fields of discovered
  2240                                 // lists requires a barrier.
  2242   // STW ref processor
  2243   _ref_processor_stw =
  2244     new ReferenceProcessor(mr,    // span
  2245                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2246                                 // mt processing
  2247                            MAX2((int)ParallelGCThreads, 1),
  2248                                 // degree of mt processing
  2249                            (ParallelGCThreads > 1),
  2250                                 // mt discovery
  2251                            MAX2((int)ParallelGCThreads, 1),
  2252                                 // degree of mt discovery
  2253                            true,
  2254                                 // Reference discovery is atomic
  2255                            &_is_alive_closure_stw,
  2256                                 // is alive closure
  2257                                 // (for efficiency/performance)
  2258                            false);
  2259                                 // Setting next fields of discovered
  2260                                 // lists requires a barrier.
  2263 size_t G1CollectedHeap::capacity() const {
  2264   return _g1_committed.byte_size();
  2267 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2268   assert(!hr->continuesHumongous(), "pre-condition");
  2269   hr->reset_gc_time_stamp();
  2270   if (hr->startsHumongous()) {
  2271     uint first_index = hr->hrs_index() + 1;
  2272     uint last_index = hr->last_hc_index();
  2273     for (uint i = first_index; i < last_index; i += 1) {
  2274       HeapRegion* chr = region_at(i);
  2275       assert(chr->continuesHumongous(), "sanity");
  2276       chr->reset_gc_time_stamp();
  2281 #ifndef PRODUCT
  2282 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2283 private:
  2284   unsigned _gc_time_stamp;
  2285   bool _failures;
  2287 public:
  2288   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2289     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2291   virtual bool doHeapRegion(HeapRegion* hr) {
  2292     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2293     if (_gc_time_stamp != region_gc_time_stamp) {
  2294       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2295                              "expected %d", HR_FORMAT_PARAMS(hr),
  2296                              region_gc_time_stamp, _gc_time_stamp);
  2297       _failures = true;
  2299     return false;
  2302   bool failures() { return _failures; }
  2303 };
  2305 void G1CollectedHeap::check_gc_time_stamps() {
  2306   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2307   heap_region_iterate(&cl);
  2308   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2310 #endif // PRODUCT
  2312 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2313                                                  DirtyCardQueue* into_cset_dcq,
  2314                                                  bool concurrent,
  2315                                                  int worker_i) {
  2316   // Clean cards in the hot card cache
  2317   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2319   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2320   int n_completed_buffers = 0;
  2321   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2322     n_completed_buffers++;
  2324   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2325   dcqs.clear_n_completed_buffers();
  2326   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2330 // Computes the sum of the storage used by the various regions.
  2332 size_t G1CollectedHeap::used() const {
  2333   assert(Heap_lock->owner() != NULL,
  2334          "Should be owned on this thread's behalf.");
  2335   size_t result = _summary_bytes_used;
  2336   // Read only once in case it is set to NULL concurrently
  2337   HeapRegion* hr = _mutator_alloc_region.get();
  2338   if (hr != NULL)
  2339     result += hr->used();
  2340   return result;
  2343 size_t G1CollectedHeap::used_unlocked() const {
  2344   size_t result = _summary_bytes_used;
  2345   return result;
  2348 class SumUsedClosure: public HeapRegionClosure {
  2349   size_t _used;
  2350 public:
  2351   SumUsedClosure() : _used(0) {}
  2352   bool doHeapRegion(HeapRegion* r) {
  2353     if (!r->continuesHumongous()) {
  2354       _used += r->used();
  2356     return false;
  2358   size_t result() { return _used; }
  2359 };
  2361 size_t G1CollectedHeap::recalculate_used() const {
  2362   SumUsedClosure blk;
  2363   heap_region_iterate(&blk);
  2364   return blk.result();
  2367 size_t G1CollectedHeap::unsafe_max_alloc() {
  2368   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2369   // otherwise, is there space in the current allocation region?
  2371   // We need to store the current allocation region in a local variable
  2372   // here. The problem is that this method doesn't take any locks and
  2373   // there may be other threads which overwrite the current allocation
  2374   // region field. attempt_allocation(), for example, sets it to NULL
  2375   // and this can happen *after* the NULL check here but before the call
  2376   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2377   // to be a problem in the optimized build, since the two loads of the
  2378   // current allocation region field are optimized away.
  2379   HeapRegion* hr = _mutator_alloc_region.get();
  2380   if (hr == NULL) {
  2381     return 0;
  2383   return hr->free();
  2386 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2387   switch (cause) {
  2388     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2389     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2390     case GCCause::_g1_humongous_allocation: return true;
  2391     default:                                return false;
  2395 #ifndef PRODUCT
  2396 void G1CollectedHeap::allocate_dummy_regions() {
  2397   // Let's fill up most of the region
  2398   size_t word_size = HeapRegion::GrainWords - 1024;
  2399   // And as a result the region we'll allocate will be humongous.
  2400   guarantee(isHumongous(word_size), "sanity");
  2402   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2403     // Let's use the existing mechanism for the allocation
  2404     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2405     if (dummy_obj != NULL) {
  2406       MemRegion mr(dummy_obj, word_size);
  2407       CollectedHeap::fill_with_object(mr);
  2408     } else {
  2409       // If we can't allocate once, we probably cannot allocate
  2410       // again. Let's get out of the loop.
  2411       break;
  2415 #endif // !PRODUCT
  2417 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2418   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2419     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2420     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2421     _old_marking_cycles_started, _old_marking_cycles_completed));
  2423   _old_marking_cycles_started++;
  2426 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2427   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2429   // We assume that if concurrent == true, then the caller is a
  2430   // concurrent thread that was joined the Suspendible Thread
  2431   // Set. If there's ever a cheap way to check this, we should add an
  2432   // assert here.
  2434   // Given that this method is called at the end of a Full GC or of a
  2435   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2436   // interrupt a concurrent cycle), the number of full collections
  2437   // completed should be either one (in the case where there was no
  2438   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2439   // behind the number of full collections started.
  2441   // This is the case for the inner caller, i.e. a Full GC.
  2442   assert(concurrent ||
  2443          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2444          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2445          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2446                  "is inconsistent with _old_marking_cycles_completed = %u",
  2447                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2449   // This is the case for the outer caller, i.e. the concurrent cycle.
  2450   assert(!concurrent ||
  2451          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2452          err_msg("for outer caller (concurrent cycle): "
  2453                  "_old_marking_cycles_started = %u "
  2454                  "is inconsistent with _old_marking_cycles_completed = %u",
  2455                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2457   _old_marking_cycles_completed += 1;
  2459   // We need to clear the "in_progress" flag in the CM thread before
  2460   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2461   // is set) so that if a waiter requests another System.gc() it doesn't
  2462   // incorrectly see that a marking cyle is still in progress.
  2463   if (concurrent) {
  2464     _cmThread->clear_in_progress();
  2467   // This notify_all() will ensure that a thread that called
  2468   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2469   // and it's waiting for a full GC to finish will be woken up. It is
  2470   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2471   FullGCCount_lock->notify_all();
  2474 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2475   assert_heap_not_locked();
  2477   unsigned int gc_count_before;
  2478   unsigned int old_marking_count_before;
  2479   bool retry_gc;
  2481   do {
  2482     retry_gc = false;
  2485       MutexLocker ml(Heap_lock);
  2487       // Read the GC count while holding the Heap_lock
  2488       gc_count_before = total_collections();
  2489       old_marking_count_before = _old_marking_cycles_started;
  2492     if (should_do_concurrent_full_gc(cause)) {
  2493       // Schedule an initial-mark evacuation pause that will start a
  2494       // concurrent cycle. We're setting word_size to 0 which means that
  2495       // we are not requesting a post-GC allocation.
  2496       VM_G1IncCollectionPause op(gc_count_before,
  2497                                  0,     /* word_size */
  2498                                  true,  /* should_initiate_conc_mark */
  2499                                  g1_policy()->max_pause_time_ms(),
  2500                                  cause);
  2502       VMThread::execute(&op);
  2503       if (!op.pause_succeeded()) {
  2504         if (old_marking_count_before == _old_marking_cycles_started) {
  2505           retry_gc = op.should_retry_gc();
  2506         } else {
  2507           // A Full GC happened while we were trying to schedule the
  2508           // initial-mark GC. No point in starting a new cycle given
  2509           // that the whole heap was collected anyway.
  2512         if (retry_gc) {
  2513           if (GC_locker::is_active_and_needs_gc()) {
  2514             GC_locker::stall_until_clear();
  2518     } else {
  2519       if (cause == GCCause::_gc_locker
  2520           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2522         // Schedule a standard evacuation pause. We're setting word_size
  2523         // to 0 which means that we are not requesting a post-GC allocation.
  2524         VM_G1IncCollectionPause op(gc_count_before,
  2525                                    0,     /* word_size */
  2526                                    false, /* should_initiate_conc_mark */
  2527                                    g1_policy()->max_pause_time_ms(),
  2528                                    cause);
  2529         VMThread::execute(&op);
  2530       } else {
  2531         // Schedule a Full GC.
  2532         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2533         VMThread::execute(&op);
  2536   } while (retry_gc);
  2539 bool G1CollectedHeap::is_in(const void* p) const {
  2540   if (_g1_committed.contains(p)) {
  2541     // Given that we know that p is in the committed space,
  2542     // heap_region_containing_raw() should successfully
  2543     // return the containing region.
  2544     HeapRegion* hr = heap_region_containing_raw(p);
  2545     return hr->is_in(p);
  2546   } else {
  2547     return false;
  2551 // Iteration functions.
  2553 // Iterates an OopClosure over all ref-containing fields of objects
  2554 // within a HeapRegion.
  2556 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2557   MemRegion _mr;
  2558   ExtendedOopClosure* _cl;
  2559 public:
  2560   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2561     : _mr(mr), _cl(cl) {}
  2562   bool doHeapRegion(HeapRegion* r) {
  2563     if (!r->continuesHumongous()) {
  2564       r->oop_iterate(_cl);
  2566     return false;
  2568 };
  2570 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2571   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2572   heap_region_iterate(&blk);
  2575 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2576   IterateOopClosureRegionClosure blk(mr, cl);
  2577   heap_region_iterate(&blk);
  2580 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2582 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2583   ObjectClosure* _cl;
  2584 public:
  2585   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2586   bool doHeapRegion(HeapRegion* r) {
  2587     if (! r->continuesHumongous()) {
  2588       r->object_iterate(_cl);
  2590     return false;
  2592 };
  2594 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2595   IterateObjectClosureRegionClosure blk(cl);
  2596   heap_region_iterate(&blk);
  2599 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2600   // FIXME: is this right?
  2601   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2604 // Calls a SpaceClosure on a HeapRegion.
  2606 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2607   SpaceClosure* _cl;
  2608 public:
  2609   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2610   bool doHeapRegion(HeapRegion* r) {
  2611     _cl->do_space(r);
  2612     return false;
  2614 };
  2616 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2617   SpaceClosureRegionClosure blk(cl);
  2618   heap_region_iterate(&blk);
  2621 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2622   _hrs.iterate(cl);
  2625 void
  2626 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2627                                                  uint worker_id,
  2628                                                  uint no_of_par_workers,
  2629                                                  jint claim_value) {
  2630   const uint regions = n_regions();
  2631   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2632                              no_of_par_workers :
  2633                              1);
  2634   assert(UseDynamicNumberOfGCThreads ||
  2635          no_of_par_workers == workers()->total_workers(),
  2636          "Non dynamic should use fixed number of workers");
  2637   // try to spread out the starting points of the workers
  2638   const HeapRegion* start_hr =
  2639                         start_region_for_worker(worker_id, no_of_par_workers);
  2640   const uint start_index = start_hr->hrs_index();
  2642   // each worker will actually look at all regions
  2643   for (uint count = 0; count < regions; ++count) {
  2644     const uint index = (start_index + count) % regions;
  2645     assert(0 <= index && index < regions, "sanity");
  2646     HeapRegion* r = region_at(index);
  2647     // we'll ignore "continues humongous" regions (we'll process them
  2648     // when we come across their corresponding "start humongous"
  2649     // region) and regions already claimed
  2650     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2651       continue;
  2653     // OK, try to claim it
  2654     if (r->claimHeapRegion(claim_value)) {
  2655       // success!
  2656       assert(!r->continuesHumongous(), "sanity");
  2657       if (r->startsHumongous()) {
  2658         // If the region is "starts humongous" we'll iterate over its
  2659         // "continues humongous" first; in fact we'll do them
  2660         // first. The order is important. In on case, calling the
  2661         // closure on the "starts humongous" region might de-allocate
  2662         // and clear all its "continues humongous" regions and, as a
  2663         // result, we might end up processing them twice. So, we'll do
  2664         // them first (notice: most closures will ignore them anyway) and
  2665         // then we'll do the "starts humongous" region.
  2666         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2667           HeapRegion* chr = region_at(ch_index);
  2669           // if the region has already been claimed or it's not
  2670           // "continues humongous" we're done
  2671           if (chr->claim_value() == claim_value ||
  2672               !chr->continuesHumongous()) {
  2673             break;
  2676           // Noone should have claimed it directly. We can given
  2677           // that we claimed its "starts humongous" region.
  2678           assert(chr->claim_value() != claim_value, "sanity");
  2679           assert(chr->humongous_start_region() == r, "sanity");
  2681           if (chr->claimHeapRegion(claim_value)) {
  2682             // we should always be able to claim it; noone else should
  2683             // be trying to claim this region
  2685             bool res2 = cl->doHeapRegion(chr);
  2686             assert(!res2, "Should not abort");
  2688             // Right now, this holds (i.e., no closure that actually
  2689             // does something with "continues humongous" regions
  2690             // clears them). We might have to weaken it in the future,
  2691             // but let's leave these two asserts here for extra safety.
  2692             assert(chr->continuesHumongous(), "should still be the case");
  2693             assert(chr->humongous_start_region() == r, "sanity");
  2694           } else {
  2695             guarantee(false, "we should not reach here");
  2700       assert(!r->continuesHumongous(), "sanity");
  2701       bool res = cl->doHeapRegion(r);
  2702       assert(!res, "Should not abort");
  2707 class ResetClaimValuesClosure: public HeapRegionClosure {
  2708 public:
  2709   bool doHeapRegion(HeapRegion* r) {
  2710     r->set_claim_value(HeapRegion::InitialClaimValue);
  2711     return false;
  2713 };
  2715 void G1CollectedHeap::reset_heap_region_claim_values() {
  2716   ResetClaimValuesClosure blk;
  2717   heap_region_iterate(&blk);
  2720 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2721   ResetClaimValuesClosure blk;
  2722   collection_set_iterate(&blk);
  2725 #ifdef ASSERT
  2726 // This checks whether all regions in the heap have the correct claim
  2727 // value. I also piggy-backed on this a check to ensure that the
  2728 // humongous_start_region() information on "continues humongous"
  2729 // regions is correct.
  2731 class CheckClaimValuesClosure : public HeapRegionClosure {
  2732 private:
  2733   jint _claim_value;
  2734   uint _failures;
  2735   HeapRegion* _sh_region;
  2737 public:
  2738   CheckClaimValuesClosure(jint claim_value) :
  2739     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2740   bool doHeapRegion(HeapRegion* r) {
  2741     if (r->claim_value() != _claim_value) {
  2742       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2743                              "claim value = %d, should be %d",
  2744                              HR_FORMAT_PARAMS(r),
  2745                              r->claim_value(), _claim_value);
  2746       ++_failures;
  2748     if (!r->isHumongous()) {
  2749       _sh_region = NULL;
  2750     } else if (r->startsHumongous()) {
  2751       _sh_region = r;
  2752     } else if (r->continuesHumongous()) {
  2753       if (r->humongous_start_region() != _sh_region) {
  2754         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2755                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2756                                HR_FORMAT_PARAMS(r),
  2757                                r->humongous_start_region(),
  2758                                _sh_region);
  2759         ++_failures;
  2762     return false;
  2764   uint failures() { return _failures; }
  2765 };
  2767 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2768   CheckClaimValuesClosure cl(claim_value);
  2769   heap_region_iterate(&cl);
  2770   return cl.failures() == 0;
  2773 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2774 private:
  2775   jint _claim_value;
  2776   uint _failures;
  2778 public:
  2779   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2780     _claim_value(claim_value), _failures(0) { }
  2782   uint failures() { return _failures; }
  2784   bool doHeapRegion(HeapRegion* hr) {
  2785     assert(hr->in_collection_set(), "how?");
  2786     assert(!hr->isHumongous(), "H-region in CSet");
  2787     if (hr->claim_value() != _claim_value) {
  2788       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2789                              "claim value = %d, should be %d",
  2790                              HR_FORMAT_PARAMS(hr),
  2791                              hr->claim_value(), _claim_value);
  2792       _failures += 1;
  2794     return false;
  2796 };
  2798 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2799   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2800   collection_set_iterate(&cl);
  2801   return cl.failures() == 0;
  2803 #endif // ASSERT
  2805 // Clear the cached CSet starting regions and (more importantly)
  2806 // the time stamps. Called when we reset the GC time stamp.
  2807 void G1CollectedHeap::clear_cset_start_regions() {
  2808   assert(_worker_cset_start_region != NULL, "sanity");
  2809   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2811   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2812   for (int i = 0; i < n_queues; i++) {
  2813     _worker_cset_start_region[i] = NULL;
  2814     _worker_cset_start_region_time_stamp[i] = 0;
  2818 // Given the id of a worker, obtain or calculate a suitable
  2819 // starting region for iterating over the current collection set.
  2820 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2821   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2823   HeapRegion* result = NULL;
  2824   unsigned gc_time_stamp = get_gc_time_stamp();
  2826   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2827     // Cached starting region for current worker was set
  2828     // during the current pause - so it's valid.
  2829     // Note: the cached starting heap region may be NULL
  2830     // (when the collection set is empty).
  2831     result = _worker_cset_start_region[worker_i];
  2832     assert(result == NULL || result->in_collection_set(), "sanity");
  2833     return result;
  2836   // The cached entry was not valid so let's calculate
  2837   // a suitable starting heap region for this worker.
  2839   // We want the parallel threads to start their collection
  2840   // set iteration at different collection set regions to
  2841   // avoid contention.
  2842   // If we have:
  2843   //          n collection set regions
  2844   //          p threads
  2845   // Then thread t will start at region floor ((t * n) / p)
  2847   result = g1_policy()->collection_set();
  2848   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2849     uint cs_size = g1_policy()->cset_region_length();
  2850     uint active_workers = workers()->active_workers();
  2851     assert(UseDynamicNumberOfGCThreads ||
  2852              active_workers == workers()->total_workers(),
  2853              "Unless dynamic should use total workers");
  2855     uint end_ind   = (cs_size * worker_i) / active_workers;
  2856     uint start_ind = 0;
  2858     if (worker_i > 0 &&
  2859         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2860       // Previous workers starting region is valid
  2861       // so let's iterate from there
  2862       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2863       result = _worker_cset_start_region[worker_i - 1];
  2866     for (uint i = start_ind; i < end_ind; i++) {
  2867       result = result->next_in_collection_set();
  2871   // Note: the calculated starting heap region may be NULL
  2872   // (when the collection set is empty).
  2873   assert(result == NULL || result->in_collection_set(), "sanity");
  2874   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2875          "should be updated only once per pause");
  2876   _worker_cset_start_region[worker_i] = result;
  2877   OrderAccess::storestore();
  2878   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2879   return result;
  2882 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2883                                                      uint no_of_par_workers) {
  2884   uint worker_num =
  2885            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2886   assert(UseDynamicNumberOfGCThreads ||
  2887          no_of_par_workers == workers()->total_workers(),
  2888          "Non dynamic should use fixed number of workers");
  2889   const uint start_index = n_regions() * worker_i / worker_num;
  2890   return region_at(start_index);
  2893 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2894   HeapRegion* r = g1_policy()->collection_set();
  2895   while (r != NULL) {
  2896     HeapRegion* next = r->next_in_collection_set();
  2897     if (cl->doHeapRegion(r)) {
  2898       cl->incomplete();
  2899       return;
  2901     r = next;
  2905 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2906                                                   HeapRegionClosure *cl) {
  2907   if (r == NULL) {
  2908     // The CSet is empty so there's nothing to do.
  2909     return;
  2912   assert(r->in_collection_set(),
  2913          "Start region must be a member of the collection set.");
  2914   HeapRegion* cur = r;
  2915   while (cur != NULL) {
  2916     HeapRegion* next = cur->next_in_collection_set();
  2917     if (cl->doHeapRegion(cur) && false) {
  2918       cl->incomplete();
  2919       return;
  2921     cur = next;
  2923   cur = g1_policy()->collection_set();
  2924   while (cur != r) {
  2925     HeapRegion* next = cur->next_in_collection_set();
  2926     if (cl->doHeapRegion(cur) && false) {
  2927       cl->incomplete();
  2928       return;
  2930     cur = next;
  2934 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2935   return n_regions() > 0 ? region_at(0) : NULL;
  2939 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2940   Space* res = heap_region_containing(addr);
  2941   return res;
  2944 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2945   Space* sp = space_containing(addr);
  2946   if (sp != NULL) {
  2947     return sp->block_start(addr);
  2949   return NULL;
  2952 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2953   Space* sp = space_containing(addr);
  2954   assert(sp != NULL, "block_size of address outside of heap");
  2955   return sp->block_size(addr);
  2958 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2959   Space* sp = space_containing(addr);
  2960   return sp->block_is_obj(addr);
  2963 bool G1CollectedHeap::supports_tlab_allocation() const {
  2964   return true;
  2967 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2968   return HeapRegion::GrainBytes;
  2971 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2972   // Return the remaining space in the cur alloc region, but not less than
  2973   // the min TLAB size.
  2975   // Also, this value can be at most the humongous object threshold,
  2976   // since we can't allow tlabs to grow big enough to accomodate
  2977   // humongous objects.
  2979   HeapRegion* hr = _mutator_alloc_region.get();
  2980   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2981   if (hr == NULL) {
  2982     return max_tlab_size;
  2983   } else {
  2984     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2988 size_t G1CollectedHeap::max_capacity() const {
  2989   return _g1_reserved.byte_size();
  2992 jlong G1CollectedHeap::millis_since_last_gc() {
  2993   // assert(false, "NYI");
  2994   return 0;
  2997 void G1CollectedHeap::prepare_for_verify() {
  2998   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2999     ensure_parsability(false);
  3001   g1_rem_set()->prepare_for_verify();
  3004 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3005                                               VerifyOption vo) {
  3006   switch (vo) {
  3007   case VerifyOption_G1UsePrevMarking:
  3008     return hr->obj_allocated_since_prev_marking(obj);
  3009   case VerifyOption_G1UseNextMarking:
  3010     return hr->obj_allocated_since_next_marking(obj);
  3011   case VerifyOption_G1UseMarkWord:
  3012     return false;
  3013   default:
  3014     ShouldNotReachHere();
  3016   return false; // keep some compilers happy
  3019 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3020   switch (vo) {
  3021   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3022   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3023   case VerifyOption_G1UseMarkWord:    return NULL;
  3024   default:                            ShouldNotReachHere();
  3026   return NULL; // keep some compilers happy
  3029 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3030   switch (vo) {
  3031   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3032   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3033   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3034   default:                            ShouldNotReachHere();
  3036   return false; // keep some compilers happy
  3039 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3040   switch (vo) {
  3041   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3042   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3043   case VerifyOption_G1UseMarkWord:    return "NONE";
  3044   default:                            ShouldNotReachHere();
  3046   return NULL; // keep some compilers happy
  3049 class VerifyLivenessOopClosure: public OopClosure {
  3050   G1CollectedHeap* _g1h;
  3051   VerifyOption _vo;
  3052 public:
  3053   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3054     _g1h(g1h), _vo(vo)
  3055   { }
  3056   void do_oop(narrowOop *p) { do_oop_work(p); }
  3057   void do_oop(      oop *p) { do_oop_work(p); }
  3059   template <class T> void do_oop_work(T *p) {
  3060     oop obj = oopDesc::load_decode_heap_oop(p);
  3061     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3062               "Dead object referenced by a not dead object");
  3064 };
  3066 class VerifyObjsInRegionClosure: public ObjectClosure {
  3067 private:
  3068   G1CollectedHeap* _g1h;
  3069   size_t _live_bytes;
  3070   HeapRegion *_hr;
  3071   VerifyOption _vo;
  3072 public:
  3073   // _vo == UsePrevMarking -> use "prev" marking information,
  3074   // _vo == UseNextMarking -> use "next" marking information,
  3075   // _vo == UseMarkWord    -> use mark word from object header.
  3076   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3077     : _live_bytes(0), _hr(hr), _vo(vo) {
  3078     _g1h = G1CollectedHeap::heap();
  3080   void do_object(oop o) {
  3081     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3082     assert(o != NULL, "Huh?");
  3083     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3084       // If the object is alive according to the mark word,
  3085       // then verify that the marking information agrees.
  3086       // Note we can't verify the contra-positive of the
  3087       // above: if the object is dead (according to the mark
  3088       // word), it may not be marked, or may have been marked
  3089       // but has since became dead, or may have been allocated
  3090       // since the last marking.
  3091       if (_vo == VerifyOption_G1UseMarkWord) {
  3092         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3095       o->oop_iterate_no_header(&isLive);
  3096       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3097         size_t obj_size = o->size();    // Make sure we don't overflow
  3098         _live_bytes += (obj_size * HeapWordSize);
  3102   size_t live_bytes() { return _live_bytes; }
  3103 };
  3105 class PrintObjsInRegionClosure : public ObjectClosure {
  3106   HeapRegion *_hr;
  3107   G1CollectedHeap *_g1;
  3108 public:
  3109   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3110     _g1 = G1CollectedHeap::heap();
  3111   };
  3113   void do_object(oop o) {
  3114     if (o != NULL) {
  3115       HeapWord *start = (HeapWord *) o;
  3116       size_t word_sz = o->size();
  3117       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3118                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3119                           (void*) o, word_sz,
  3120                           _g1->isMarkedPrev(o),
  3121                           _g1->isMarkedNext(o),
  3122                           _hr->obj_allocated_since_prev_marking(o));
  3123       HeapWord *end = start + word_sz;
  3124       HeapWord *cur;
  3125       int *val;
  3126       for (cur = start; cur < end; cur++) {
  3127         val = (int *) cur;
  3128         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3132 };
  3134 class VerifyRegionClosure: public HeapRegionClosure {
  3135 private:
  3136   bool             _par;
  3137   VerifyOption     _vo;
  3138   bool             _failures;
  3139 public:
  3140   // _vo == UsePrevMarking -> use "prev" marking information,
  3141   // _vo == UseNextMarking -> use "next" marking information,
  3142   // _vo == UseMarkWord    -> use mark word from object header.
  3143   VerifyRegionClosure(bool par, VerifyOption vo)
  3144     : _par(par),
  3145       _vo(vo),
  3146       _failures(false) {}
  3148   bool failures() {
  3149     return _failures;
  3152   bool doHeapRegion(HeapRegion* r) {
  3153     if (!r->continuesHumongous()) {
  3154       bool failures = false;
  3155       r->verify(_vo, &failures);
  3156       if (failures) {
  3157         _failures = true;
  3158       } else {
  3159         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3160         r->object_iterate(&not_dead_yet_cl);
  3161         if (_vo != VerifyOption_G1UseNextMarking) {
  3162           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3163             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3164                                    "max_live_bytes "SIZE_FORMAT" "
  3165                                    "< calculated "SIZE_FORMAT,
  3166                                    r->bottom(), r->end(),
  3167                                    r->max_live_bytes(),
  3168                                  not_dead_yet_cl.live_bytes());
  3169             _failures = true;
  3171         } else {
  3172           // When vo == UseNextMarking we cannot currently do a sanity
  3173           // check on the live bytes as the calculation has not been
  3174           // finalized yet.
  3178     return false; // stop the region iteration if we hit a failure
  3180 };
  3182 class YoungRefCounterClosure : public OopClosure {
  3183   G1CollectedHeap* _g1h;
  3184   int              _count;
  3185  public:
  3186   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3187   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3188   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3190   int count() { return _count; }
  3191   void reset_count() { _count = 0; };
  3192 };
  3194 class VerifyKlassClosure: public KlassClosure {
  3195   YoungRefCounterClosure _young_ref_counter_closure;
  3196   OopClosure *_oop_closure;
  3197  public:
  3198   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3199   void do_klass(Klass* k) {
  3200     k->oops_do(_oop_closure);
  3202     _young_ref_counter_closure.reset_count();
  3203     k->oops_do(&_young_ref_counter_closure);
  3204     if (_young_ref_counter_closure.count() > 0) {
  3205       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3208 };
  3210 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
  3211 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
  3212 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
  3213 //       we can change this closure to extend the simpler OopClosure.
  3214 class VerifyRootsClosure: public OopsInGenClosure {
  3215 private:
  3216   G1CollectedHeap* _g1h;
  3217   VerifyOption     _vo;
  3218   bool             _failures;
  3219 public:
  3220   // _vo == UsePrevMarking -> use "prev" marking information,
  3221   // _vo == UseNextMarking -> use "next" marking information,
  3222   // _vo == UseMarkWord    -> use mark word from object header.
  3223   VerifyRootsClosure(VerifyOption vo) :
  3224     _g1h(G1CollectedHeap::heap()),
  3225     _vo(vo),
  3226     _failures(false) { }
  3228   bool failures() { return _failures; }
  3230   template <class T> void do_oop_nv(T* p) {
  3231     T heap_oop = oopDesc::load_heap_oop(p);
  3232     if (!oopDesc::is_null(heap_oop)) {
  3233       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3234       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3235         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3236                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3237         if (_vo == VerifyOption_G1UseMarkWord) {
  3238           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3240         obj->print_on(gclog_or_tty);
  3241         _failures = true;
  3246   void do_oop(oop* p)       { do_oop_nv(p); }
  3247   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3248 };
  3250 // This is the task used for parallel heap verification.
  3252 class G1ParVerifyTask: public AbstractGangTask {
  3253 private:
  3254   G1CollectedHeap* _g1h;
  3255   VerifyOption     _vo;
  3256   bool             _failures;
  3258 public:
  3259   // _vo == UsePrevMarking -> use "prev" marking information,
  3260   // _vo == UseNextMarking -> use "next" marking information,
  3261   // _vo == UseMarkWord    -> use mark word from object header.
  3262   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3263     AbstractGangTask("Parallel verify task"),
  3264     _g1h(g1h),
  3265     _vo(vo),
  3266     _failures(false) { }
  3268   bool failures() {
  3269     return _failures;
  3272   void work(uint worker_id) {
  3273     HandleMark hm;
  3274     VerifyRegionClosure blk(true, _vo);
  3275     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3276                                           _g1h->workers()->active_workers(),
  3277                                           HeapRegion::ParVerifyClaimValue);
  3278     if (blk.failures()) {
  3279       _failures = true;
  3282 };
  3284 void G1CollectedHeap::verify(bool silent) {
  3285   verify(silent, VerifyOption_G1UsePrevMarking);
  3288 void G1CollectedHeap::verify(bool silent,
  3289                              VerifyOption vo) {
  3290   if (SafepointSynchronize::is_at_safepoint()) {
  3291     if (!silent) { gclog_or_tty->print("Roots "); }
  3292     VerifyRootsClosure rootsCl(vo);
  3294     assert(Thread::current()->is_VM_thread(),
  3295            "Expected to be executed serially by the VM thread at this point");
  3297     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3298     VerifyKlassClosure klassCl(this, &rootsCl);
  3300     // We apply the relevant closures to all the oops in the
  3301     // system dictionary, the string table and the code cache.
  3302     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3304     // Need cleared claim bits for the strong roots processing
  3305     ClassLoaderDataGraph::clear_claimed_marks();
  3307     process_strong_roots(true,      // activate StrongRootsScope
  3308                          false,     // we set "is scavenging" to false,
  3309                                     // so we don't reset the dirty cards.
  3310                          ScanningOption(so),  // roots scanning options
  3311                          &rootsCl,
  3312                          &blobsCl,
  3313                          &klassCl
  3314                          );
  3316     bool failures = rootsCl.failures();
  3318     if (vo != VerifyOption_G1UseMarkWord) {
  3319       // If we're verifying during a full GC then the region sets
  3320       // will have been torn down at the start of the GC. Therefore
  3321       // verifying the region sets will fail. So we only verify
  3322       // the region sets when not in a full GC.
  3323       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3324       verify_region_sets();
  3327     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3328     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3329       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3330              "sanity check");
  3332       G1ParVerifyTask task(this, vo);
  3333       assert(UseDynamicNumberOfGCThreads ||
  3334         workers()->active_workers() == workers()->total_workers(),
  3335         "If not dynamic should be using all the workers");
  3336       int n_workers = workers()->active_workers();
  3337       set_par_threads(n_workers);
  3338       workers()->run_task(&task);
  3339       set_par_threads(0);
  3340       if (task.failures()) {
  3341         failures = true;
  3344       // Checks that the expected amount of parallel work was done.
  3345       // The implication is that n_workers is > 0.
  3346       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3347              "sanity check");
  3349       reset_heap_region_claim_values();
  3351       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3352              "sanity check");
  3353     } else {
  3354       VerifyRegionClosure blk(false, vo);
  3355       heap_region_iterate(&blk);
  3356       if (blk.failures()) {
  3357         failures = true;
  3360     if (!silent) gclog_or_tty->print("RemSet ");
  3361     rem_set()->verify();
  3363     if (failures) {
  3364       gclog_or_tty->print_cr("Heap:");
  3365       // It helps to have the per-region information in the output to
  3366       // help us track down what went wrong. This is why we call
  3367       // print_extended_on() instead of print_on().
  3368       print_extended_on(gclog_or_tty);
  3369       gclog_or_tty->print_cr("");
  3370 #ifndef PRODUCT
  3371       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3372         concurrent_mark()->print_reachable("at-verification-failure",
  3373                                            vo, false /* all */);
  3375 #endif
  3376       gclog_or_tty->flush();
  3378     guarantee(!failures, "there should not have been any failures");
  3379   } else {
  3380     if (!silent)
  3381       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
  3385 class PrintRegionClosure: public HeapRegionClosure {
  3386   outputStream* _st;
  3387 public:
  3388   PrintRegionClosure(outputStream* st) : _st(st) {}
  3389   bool doHeapRegion(HeapRegion* r) {
  3390     r->print_on(_st);
  3391     return false;
  3393 };
  3395 void G1CollectedHeap::print_on(outputStream* st) const {
  3396   st->print(" %-20s", "garbage-first heap");
  3397   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3398             capacity()/K, used_unlocked()/K);
  3399   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3400             _g1_storage.low_boundary(),
  3401             _g1_storage.high(),
  3402             _g1_storage.high_boundary());
  3403   st->cr();
  3404   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3405   uint young_regions = _young_list->length();
  3406   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3407             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3408   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3409   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3410             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3411   st->cr();
  3412   MetaspaceAux::print_on(st);
  3415 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3416   print_on(st);
  3418   // Print the per-region information.
  3419   st->cr();
  3420   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3421                "HS=humongous(starts), HC=humongous(continues), "
  3422                "CS=collection set, F=free, TS=gc time stamp, "
  3423                "PTAMS=previous top-at-mark-start, "
  3424                "NTAMS=next top-at-mark-start)");
  3425   PrintRegionClosure blk(st);
  3426   heap_region_iterate(&blk);
  3429 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3430   this->CollectedHeap::print_on_error(st);
  3432   if (_cm != NULL) {
  3433     st->cr();
  3434     _cm->print_on_error(st);
  3438 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3439   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3440     workers()->print_worker_threads_on(st);
  3442   _cmThread->print_on(st);
  3443   st->cr();
  3444   _cm->print_worker_threads_on(st);
  3445   _cg1r->print_worker_threads_on(st);
  3448 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3449   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3450     workers()->threads_do(tc);
  3452   tc->do_thread(_cmThread);
  3453   _cg1r->threads_do(tc);
  3456 void G1CollectedHeap::print_tracing_info() const {
  3457   // We'll overload this to mean "trace GC pause statistics."
  3458   if (TraceGen0Time || TraceGen1Time) {
  3459     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3460     // to that.
  3461     g1_policy()->print_tracing_info();
  3463   if (G1SummarizeRSetStats) {
  3464     g1_rem_set()->print_summary_info();
  3466   if (G1SummarizeConcMark) {
  3467     concurrent_mark()->print_summary_info();
  3469   g1_policy()->print_yg_surv_rate_info();
  3470   SpecializationStats::print();
  3473 #ifndef PRODUCT
  3474 // Helpful for debugging RSet issues.
  3476 class PrintRSetsClosure : public HeapRegionClosure {
  3477 private:
  3478   const char* _msg;
  3479   size_t _occupied_sum;
  3481 public:
  3482   bool doHeapRegion(HeapRegion* r) {
  3483     HeapRegionRemSet* hrrs = r->rem_set();
  3484     size_t occupied = hrrs->occupied();
  3485     _occupied_sum += occupied;
  3487     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3488                            HR_FORMAT_PARAMS(r));
  3489     if (occupied == 0) {
  3490       gclog_or_tty->print_cr("  RSet is empty");
  3491     } else {
  3492       hrrs->print();
  3494     gclog_or_tty->print_cr("----------");
  3495     return false;
  3498   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3499     gclog_or_tty->cr();
  3500     gclog_or_tty->print_cr("========================================");
  3501     gclog_or_tty->print_cr(msg);
  3502     gclog_or_tty->cr();
  3505   ~PrintRSetsClosure() {
  3506     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3507     gclog_or_tty->print_cr("========================================");
  3508     gclog_or_tty->cr();
  3510 };
  3512 void G1CollectedHeap::print_cset_rsets() {
  3513   PrintRSetsClosure cl("Printing CSet RSets");
  3514   collection_set_iterate(&cl);
  3517 void G1CollectedHeap::print_all_rsets() {
  3518   PrintRSetsClosure cl("Printing All RSets");;
  3519   heap_region_iterate(&cl);
  3521 #endif // PRODUCT
  3523 G1CollectedHeap* G1CollectedHeap::heap() {
  3524   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3525          "not a garbage-first heap");
  3526   return _g1h;
  3529 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3530   // always_do_update_barrier = false;
  3531   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3532   // Call allocation profiler
  3533   AllocationProfiler::iterate_since_last_gc();
  3534   // Fill TLAB's and such
  3535   ensure_parsability(true);
  3538 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3539   // FIXME: what is this about?
  3540   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3541   // is set.
  3542   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3543                         "derived pointer present"));
  3544   // always_do_update_barrier = true;
  3546   // We have just completed a GC. Update the soft reference
  3547   // policy with the new heap occupancy
  3548   Universe::update_heap_info_at_gc();
  3551 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3552                                                unsigned int gc_count_before,
  3553                                                bool* succeeded) {
  3554   assert_heap_not_locked_and_not_at_safepoint();
  3555   g1_policy()->record_stop_world_start();
  3556   VM_G1IncCollectionPause op(gc_count_before,
  3557                              word_size,
  3558                              false, /* should_initiate_conc_mark */
  3559                              g1_policy()->max_pause_time_ms(),
  3560                              GCCause::_g1_inc_collection_pause);
  3561   VMThread::execute(&op);
  3563   HeapWord* result = op.result();
  3564   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3565   assert(result == NULL || ret_succeeded,
  3566          "the result should be NULL if the VM did not succeed");
  3567   *succeeded = ret_succeeded;
  3569   assert_heap_not_locked();
  3570   return result;
  3573 void
  3574 G1CollectedHeap::doConcurrentMark() {
  3575   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3576   if (!_cmThread->in_progress()) {
  3577     _cmThread->set_started();
  3578     CGC_lock->notify();
  3582 size_t G1CollectedHeap::pending_card_num() {
  3583   size_t extra_cards = 0;
  3584   JavaThread *curr = Threads::first();
  3585   while (curr != NULL) {
  3586     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3587     extra_cards += dcq.size();
  3588     curr = curr->next();
  3590   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3591   size_t buffer_size = dcqs.buffer_size();
  3592   size_t buffer_num = dcqs.completed_buffers_num();
  3594   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3595   // in bytes - not the number of 'entries'. We need to convert
  3596   // into a number of cards.
  3597   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3600 size_t G1CollectedHeap::cards_scanned() {
  3601   return g1_rem_set()->cardsScanned();
  3604 void
  3605 G1CollectedHeap::setup_surviving_young_words() {
  3606   assert(_surviving_young_words == NULL, "pre-condition");
  3607   uint array_length = g1_policy()->young_cset_region_length();
  3608   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3609   if (_surviving_young_words == NULL) {
  3610     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3611                           "Not enough space for young surv words summary.");
  3613   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3614 #ifdef ASSERT
  3615   for (uint i = 0;  i < array_length; ++i) {
  3616     assert( _surviving_young_words[i] == 0, "memset above" );
  3618 #endif // !ASSERT
  3621 void
  3622 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3623   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3624   uint array_length = g1_policy()->young_cset_region_length();
  3625   for (uint i = 0; i < array_length; ++i) {
  3626     _surviving_young_words[i] += surv_young_words[i];
  3630 void
  3631 G1CollectedHeap::cleanup_surviving_young_words() {
  3632   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3633   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3634   _surviving_young_words = NULL;
  3637 #ifdef ASSERT
  3638 class VerifyCSetClosure: public HeapRegionClosure {
  3639 public:
  3640   bool doHeapRegion(HeapRegion* hr) {
  3641     // Here we check that the CSet region's RSet is ready for parallel
  3642     // iteration. The fields that we'll verify are only manipulated
  3643     // when the region is part of a CSet and is collected. Afterwards,
  3644     // we reset these fields when we clear the region's RSet (when the
  3645     // region is freed) so they are ready when the region is
  3646     // re-allocated. The only exception to this is if there's an
  3647     // evacuation failure and instead of freeing the region we leave
  3648     // it in the heap. In that case, we reset these fields during
  3649     // evacuation failure handling.
  3650     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3652     // Here's a good place to add any other checks we'd like to
  3653     // perform on CSet regions.
  3654     return false;
  3656 };
  3657 #endif // ASSERT
  3659 #if TASKQUEUE_STATS
  3660 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3661   st->print_raw_cr("GC Task Stats");
  3662   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3663   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3666 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3667   print_taskqueue_stats_hdr(st);
  3669   TaskQueueStats totals;
  3670   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3671   for (int i = 0; i < n; ++i) {
  3672     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3673     totals += task_queue(i)->stats;
  3675   st->print_raw("tot "); totals.print(st); st->cr();
  3677   DEBUG_ONLY(totals.verify());
  3680 void G1CollectedHeap::reset_taskqueue_stats() {
  3681   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3682   for (int i = 0; i < n; ++i) {
  3683     task_queue(i)->stats.reset();
  3686 #endif // TASKQUEUE_STATS
  3688 void G1CollectedHeap::log_gc_header() {
  3689   if (!G1Log::fine()) {
  3690     return;
  3693   gclog_or_tty->date_stamp(PrintGCDateStamps);
  3694   gclog_or_tty->stamp(PrintGCTimeStamps);
  3696   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3697     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3698     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3700   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3703 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3704   if (!G1Log::fine()) {
  3705     return;
  3708   if (G1Log::finer()) {
  3709     if (evacuation_failed()) {
  3710       gclog_or_tty->print(" (to-space exhausted)");
  3712     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3713     g1_policy()->phase_times()->note_gc_end();
  3714     g1_policy()->phase_times()->print(pause_time_sec);
  3715     g1_policy()->print_detailed_heap_transition();
  3716   } else {
  3717     if (evacuation_failed()) {
  3718       gclog_or_tty->print("--");
  3720     g1_policy()->print_heap_transition();
  3721     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3723   gclog_or_tty->flush();
  3726 bool
  3727 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3728   assert_at_safepoint(true /* should_be_vm_thread */);
  3729   guarantee(!is_gc_active(), "collection is not reentrant");
  3731   if (GC_locker::check_active_before_gc()) {
  3732     return false;
  3735   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3736   ResourceMark rm;
  3738   print_heap_before_gc();
  3740   HRSPhaseSetter x(HRSPhaseEvacuation);
  3741   verify_region_sets_optional();
  3742   verify_dirty_young_regions();
  3744   // This call will decide whether this pause is an initial-mark
  3745   // pause. If it is, during_initial_mark_pause() will return true
  3746   // for the duration of this pause.
  3747   g1_policy()->decide_on_conc_mark_initiation();
  3749   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3750   assert(!g1_policy()->during_initial_mark_pause() ||
  3751           g1_policy()->gcs_are_young(), "sanity");
  3753   // We also do not allow mixed GCs during marking.
  3754   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3756   // Record whether this pause is an initial mark. When the current
  3757   // thread has completed its logging output and it's safe to signal
  3758   // the CM thread, the flag's value in the policy has been reset.
  3759   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3761   // Inner scope for scope based logging, timers, and stats collection
  3763     if (g1_policy()->during_initial_mark_pause()) {
  3764       // We are about to start a marking cycle, so we increment the
  3765       // full collection counter.
  3766       increment_old_marking_cycles_started();
  3768     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3770     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3771                                 workers()->active_workers() : 1);
  3772     double pause_start_sec = os::elapsedTime();
  3773     g1_policy()->phase_times()->note_gc_start(active_workers);
  3774     log_gc_header();
  3776     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3777     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3779     // If the secondary_free_list is not empty, append it to the
  3780     // free_list. No need to wait for the cleanup operation to finish;
  3781     // the region allocation code will check the secondary_free_list
  3782     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3783     // set, skip this step so that the region allocation code has to
  3784     // get entries from the secondary_free_list.
  3785     if (!G1StressConcRegionFreeing) {
  3786       append_secondary_free_list_if_not_empty_with_lock();
  3789     assert(check_young_list_well_formed(),
  3790       "young list should be well formed");
  3792     // Don't dynamically change the number of GC threads this early.  A value of
  3793     // 0 is used to indicate serial work.  When parallel work is done,
  3794     // it will be set.
  3796     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3797       IsGCActiveMark x;
  3799       gc_prologue(false);
  3800       increment_total_collections(false /* full gc */);
  3801       increment_gc_time_stamp();
  3803       verify_before_gc();
  3805       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3807       // Please see comment in g1CollectedHeap.hpp and
  3808       // G1CollectedHeap::ref_processing_init() to see how
  3809       // reference processing currently works in G1.
  3811       // Enable discovery in the STW reference processor
  3812       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3813                                             true /*verify_no_refs*/);
  3816         // We want to temporarily turn off discovery by the
  3817         // CM ref processor, if necessary, and turn it back on
  3818         // on again later if we do. Using a scoped
  3819         // NoRefDiscovery object will do this.
  3820         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3822         // Forget the current alloc region (we might even choose it to be part
  3823         // of the collection set!).
  3824         release_mutator_alloc_region();
  3826         // We should call this after we retire the mutator alloc
  3827         // region(s) so that all the ALLOC / RETIRE events are generated
  3828         // before the start GC event.
  3829         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3831         // This timing is only used by the ergonomics to handle our pause target.
  3832         // It is unclear why this should not include the full pause. We will
  3833         // investigate this in CR 7178365.
  3834         //
  3835         // Preserving the old comment here if that helps the investigation:
  3836         //
  3837         // The elapsed time induced by the start time below deliberately elides
  3838         // the possible verification above.
  3839         double sample_start_time_sec = os::elapsedTime();
  3841 #if YOUNG_LIST_VERBOSE
  3842         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3843         _young_list->print();
  3844         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3845 #endif // YOUNG_LIST_VERBOSE
  3847         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3849         double scan_wait_start = os::elapsedTime();
  3850         // We have to wait until the CM threads finish scanning the
  3851         // root regions as it's the only way to ensure that all the
  3852         // objects on them have been correctly scanned before we start
  3853         // moving them during the GC.
  3854         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3855         double wait_time_ms = 0.0;
  3856         if (waited) {
  3857           double scan_wait_end = os::elapsedTime();
  3858           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3860         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3862 #if YOUNG_LIST_VERBOSE
  3863         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3864         _young_list->print();
  3865 #endif // YOUNG_LIST_VERBOSE
  3867         if (g1_policy()->during_initial_mark_pause()) {
  3868           concurrent_mark()->checkpointRootsInitialPre();
  3871 #if YOUNG_LIST_VERBOSE
  3872         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3873         _young_list->print();
  3874         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3875 #endif // YOUNG_LIST_VERBOSE
  3877         g1_policy()->finalize_cset(target_pause_time_ms);
  3879         _cm->note_start_of_gc();
  3880         // We should not verify the per-thread SATB buffers given that
  3881         // we have not filtered them yet (we'll do so during the
  3882         // GC). We also call this after finalize_cset() to
  3883         // ensure that the CSet has been finalized.
  3884         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3885                                  true  /* verify_enqueued_buffers */,
  3886                                  false /* verify_thread_buffers */,
  3887                                  true  /* verify_fingers */);
  3889         if (_hr_printer.is_active()) {
  3890           HeapRegion* hr = g1_policy()->collection_set();
  3891           while (hr != NULL) {
  3892             G1HRPrinter::RegionType type;
  3893             if (!hr->is_young()) {
  3894               type = G1HRPrinter::Old;
  3895             } else if (hr->is_survivor()) {
  3896               type = G1HRPrinter::Survivor;
  3897             } else {
  3898               type = G1HRPrinter::Eden;
  3900             _hr_printer.cset(hr);
  3901             hr = hr->next_in_collection_set();
  3905 #ifdef ASSERT
  3906         VerifyCSetClosure cl;
  3907         collection_set_iterate(&cl);
  3908 #endif // ASSERT
  3910         setup_surviving_young_words();
  3912         // Initialize the GC alloc regions.
  3913         init_gc_alloc_regions();
  3915         // Actually do the work...
  3916         evacuate_collection_set();
  3918         // We do this to mainly verify the per-thread SATB buffers
  3919         // (which have been filtered by now) since we didn't verify
  3920         // them earlier. No point in re-checking the stacks / enqueued
  3921         // buffers given that the CSet has not changed since last time
  3922         // we checked.
  3923         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3924                                  false /* verify_enqueued_buffers */,
  3925                                  true  /* verify_thread_buffers */,
  3926                                  true  /* verify_fingers */);
  3928         free_collection_set(g1_policy()->collection_set());
  3929         g1_policy()->clear_collection_set();
  3931         cleanup_surviving_young_words();
  3933         // Start a new incremental collection set for the next pause.
  3934         g1_policy()->start_incremental_cset_building();
  3936         // Clear the _cset_fast_test bitmap in anticipation of adding
  3937         // regions to the incremental collection set for the next
  3938         // evacuation pause.
  3939         clear_cset_fast_test();
  3941         _young_list->reset_sampled_info();
  3943         // Don't check the whole heap at this point as the
  3944         // GC alloc regions from this pause have been tagged
  3945         // as survivors and moved on to the survivor list.
  3946         // Survivor regions will fail the !is_young() check.
  3947         assert(check_young_list_empty(false /* check_heap */),
  3948           "young list should be empty");
  3950 #if YOUNG_LIST_VERBOSE
  3951         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3952         _young_list->print();
  3953 #endif // YOUNG_LIST_VERBOSE
  3955         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3956                                             _young_list->first_survivor_region(),
  3957                                             _young_list->last_survivor_region());
  3959         _young_list->reset_auxilary_lists();
  3961         if (evacuation_failed()) {
  3962           _summary_bytes_used = recalculate_used();
  3963         } else {
  3964           // The "used" of the the collection set have already been subtracted
  3965           // when they were freed.  Add in the bytes evacuated.
  3966           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3969         if (g1_policy()->during_initial_mark_pause()) {
  3970           // We have to do this before we notify the CM threads that
  3971           // they can start working to make sure that all the
  3972           // appropriate initialization is done on the CM object.
  3973           concurrent_mark()->checkpointRootsInitialPost();
  3974           set_marking_started();
  3975           // Note that we don't actually trigger the CM thread at
  3976           // this point. We do that later when we're sure that
  3977           // the current thread has completed its logging output.
  3980         allocate_dummy_regions();
  3982 #if YOUNG_LIST_VERBOSE
  3983         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3984         _young_list->print();
  3985         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3986 #endif // YOUNG_LIST_VERBOSE
  3988         init_mutator_alloc_region();
  3991           size_t expand_bytes = g1_policy()->expansion_amount();
  3992           if (expand_bytes > 0) {
  3993             size_t bytes_before = capacity();
  3994             // No need for an ergo verbose message here,
  3995             // expansion_amount() does this when it returns a value > 0.
  3996             if (!expand(expand_bytes)) {
  3997               // We failed to expand the heap so let's verify that
  3998               // committed/uncommitted amount match the backing store
  3999               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4000               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4005         // We redo the verificaiton but now wrt to the new CSet which
  4006         // has just got initialized after the previous CSet was freed.
  4007         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4008                                  true  /* verify_enqueued_buffers */,
  4009                                  true  /* verify_thread_buffers */,
  4010                                  true  /* verify_fingers */);
  4011         _cm->note_end_of_gc();
  4013         // This timing is only used by the ergonomics to handle our pause target.
  4014         // It is unclear why this should not include the full pause. We will
  4015         // investigate this in CR 7178365.
  4016         double sample_end_time_sec = os::elapsedTime();
  4017         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4018         g1_policy()->record_collection_pause_end(pause_time_ms);
  4020         MemoryService::track_memory_usage();
  4022         // In prepare_for_verify() below we'll need to scan the deferred
  4023         // update buffers to bring the RSets up-to-date if
  4024         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4025         // the update buffers we'll probably need to scan cards on the
  4026         // regions we just allocated to (i.e., the GC alloc
  4027         // regions). However, during the last GC we called
  4028         // set_saved_mark() on all the GC alloc regions, so card
  4029         // scanning might skip the [saved_mark_word()...top()] area of
  4030         // those regions (i.e., the area we allocated objects into
  4031         // during the last GC). But it shouldn't. Given that
  4032         // saved_mark_word() is conditional on whether the GC time stamp
  4033         // on the region is current or not, by incrementing the GC time
  4034         // stamp here we invalidate all the GC time stamps on all the
  4035         // regions and saved_mark_word() will simply return top() for
  4036         // all the regions. This is a nicer way of ensuring this rather
  4037         // than iterating over the regions and fixing them. In fact, the
  4038         // GC time stamp increment here also ensures that
  4039         // saved_mark_word() will return top() between pauses, i.e.,
  4040         // during concurrent refinement. So we don't need the
  4041         // is_gc_active() check to decided which top to use when
  4042         // scanning cards (see CR 7039627).
  4043         increment_gc_time_stamp();
  4045         verify_after_gc();
  4047         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4048         ref_processor_stw()->verify_no_references_recorded();
  4050         // CM reference discovery will be re-enabled if necessary.
  4053       // We should do this after we potentially expand the heap so
  4054       // that all the COMMIT events are generated before the end GC
  4055       // event, and after we retire the GC alloc regions so that all
  4056       // RETIRE events are generated before the end GC event.
  4057       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4059       if (mark_in_progress()) {
  4060         concurrent_mark()->update_g1_committed();
  4063 #ifdef TRACESPINNING
  4064       ParallelTaskTerminator::print_termination_counts();
  4065 #endif
  4067       gc_epilogue(false);
  4070     // Print the remainder of the GC log output.
  4071     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4073     // It is not yet to safe to tell the concurrent mark to
  4074     // start as we have some optional output below. We don't want the
  4075     // output from the concurrent mark thread interfering with this
  4076     // logging output either.
  4078     _hrs.verify_optional();
  4079     verify_region_sets_optional();
  4081     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4082     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4084     print_heap_after_gc();
  4086     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4087     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4088     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4089     // before any GC notifications are raised.
  4090     g1mm()->update_sizes();
  4093   if (G1SummarizeRSetStats &&
  4094       (G1SummarizeRSetStatsPeriod > 0) &&
  4095       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  4096     g1_rem_set()->print_summary_info();
  4099   // It should now be safe to tell the concurrent mark thread to start
  4100   // without its logging output interfering with the logging output
  4101   // that came from the pause.
  4103   if (should_start_conc_mark) {
  4104     // CAUTION: after the doConcurrentMark() call below,
  4105     // the concurrent marking thread(s) could be running
  4106     // concurrently with us. Make sure that anything after
  4107     // this point does not assume that we are the only GC thread
  4108     // running. Note: of course, the actual marking work will
  4109     // not start until the safepoint itself is released in
  4110     // ConcurrentGCThread::safepoint_desynchronize().
  4111     doConcurrentMark();
  4114   return true;
  4117 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4119   size_t gclab_word_size;
  4120   switch (purpose) {
  4121     case GCAllocForSurvived:
  4122       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4123       break;
  4124     case GCAllocForTenured:
  4125       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4126       break;
  4127     default:
  4128       assert(false, "unknown GCAllocPurpose");
  4129       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4130       break;
  4133   // Prevent humongous PLAB sizes for two reasons:
  4134   // * PLABs are allocated using a similar paths as oops, but should
  4135   //   never be in a humongous region
  4136   // * Allowing humongous PLABs needlessly churns the region free lists
  4137   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4140 void G1CollectedHeap::init_mutator_alloc_region() {
  4141   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4142   _mutator_alloc_region.init();
  4145 void G1CollectedHeap::release_mutator_alloc_region() {
  4146   _mutator_alloc_region.release();
  4147   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4150 void G1CollectedHeap::init_gc_alloc_regions() {
  4151   assert_at_safepoint(true /* should_be_vm_thread */);
  4153   _survivor_gc_alloc_region.init();
  4154   _old_gc_alloc_region.init();
  4155   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4156   _retained_old_gc_alloc_region = NULL;
  4158   // We will discard the current GC alloc region if:
  4159   // a) it's in the collection set (it can happen!),
  4160   // b) it's already full (no point in using it),
  4161   // c) it's empty (this means that it was emptied during
  4162   // a cleanup and it should be on the free list now), or
  4163   // d) it's humongous (this means that it was emptied
  4164   // during a cleanup and was added to the free list, but
  4165   // has been subseqently used to allocate a humongous
  4166   // object that may be less than the region size).
  4167   if (retained_region != NULL &&
  4168       !retained_region->in_collection_set() &&
  4169       !(retained_region->top() == retained_region->end()) &&
  4170       !retained_region->is_empty() &&
  4171       !retained_region->isHumongous()) {
  4172     retained_region->set_saved_mark();
  4173     // The retained region was added to the old region set when it was
  4174     // retired. We have to remove it now, since we don't allow regions
  4175     // we allocate to in the region sets. We'll re-add it later, when
  4176     // it's retired again.
  4177     _old_set.remove(retained_region);
  4178     bool during_im = g1_policy()->during_initial_mark_pause();
  4179     retained_region->note_start_of_copying(during_im);
  4180     _old_gc_alloc_region.set(retained_region);
  4181     _hr_printer.reuse(retained_region);
  4185 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
  4186   _survivor_gc_alloc_region.release();
  4187   // If we have an old GC alloc region to release, we'll save it in
  4188   // _retained_old_gc_alloc_region. If we don't
  4189   // _retained_old_gc_alloc_region will become NULL. This is what we
  4190   // want either way so no reason to check explicitly for either
  4191   // condition.
  4192   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4194   if (ResizePLAB) {
  4195     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4196     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4200 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4201   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4202   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4203   _retained_old_gc_alloc_region = NULL;
  4206 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4207   _drain_in_progress = false;
  4208   set_evac_failure_closure(cl);
  4209   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4212 void G1CollectedHeap::finalize_for_evac_failure() {
  4213   assert(_evac_failure_scan_stack != NULL &&
  4214          _evac_failure_scan_stack->length() == 0,
  4215          "Postcondition");
  4216   assert(!_drain_in_progress, "Postcondition");
  4217   delete _evac_failure_scan_stack;
  4218   _evac_failure_scan_stack = NULL;
  4221 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4222   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4224   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4226   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4227     set_par_threads();
  4228     workers()->run_task(&rsfp_task);
  4229     set_par_threads(0);
  4230   } else {
  4231     rsfp_task.work(0);
  4234   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4236   // Reset the claim values in the regions in the collection set.
  4237   reset_cset_heap_region_claim_values();
  4239   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4241   // Now restore saved marks, if any.
  4242   assert(_objs_with_preserved_marks.size() ==
  4243             _preserved_marks_of_objs.size(), "Both or none.");
  4244   while (!_objs_with_preserved_marks.is_empty()) {
  4245     oop obj = _objs_with_preserved_marks.pop();
  4246     markOop m = _preserved_marks_of_objs.pop();
  4247     obj->set_mark(m);
  4249   _objs_with_preserved_marks.clear(true);
  4250   _preserved_marks_of_objs.clear(true);
  4253 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4254   _evac_failure_scan_stack->push(obj);
  4257 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4258   assert(_evac_failure_scan_stack != NULL, "precondition");
  4260   while (_evac_failure_scan_stack->length() > 0) {
  4261      oop obj = _evac_failure_scan_stack->pop();
  4262      _evac_failure_closure->set_region(heap_region_containing(obj));
  4263      obj->oop_iterate_backwards(_evac_failure_closure);
  4267 oop
  4268 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4269                                                oop old) {
  4270   assert(obj_in_cs(old),
  4271          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4272                  (HeapWord*) old));
  4273   markOop m = old->mark();
  4274   oop forward_ptr = old->forward_to_atomic(old);
  4275   if (forward_ptr == NULL) {
  4276     // Forward-to-self succeeded.
  4278     if (_evac_failure_closure != cl) {
  4279       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4280       assert(!_drain_in_progress,
  4281              "Should only be true while someone holds the lock.");
  4282       // Set the global evac-failure closure to the current thread's.
  4283       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4284       set_evac_failure_closure(cl);
  4285       // Now do the common part.
  4286       handle_evacuation_failure_common(old, m);
  4287       // Reset to NULL.
  4288       set_evac_failure_closure(NULL);
  4289     } else {
  4290       // The lock is already held, and this is recursive.
  4291       assert(_drain_in_progress, "This should only be the recursive case.");
  4292       handle_evacuation_failure_common(old, m);
  4294     return old;
  4295   } else {
  4296     // Forward-to-self failed. Either someone else managed to allocate
  4297     // space for this object (old != forward_ptr) or they beat us in
  4298     // self-forwarding it (old == forward_ptr).
  4299     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4300            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4301                    "should not be in the CSet",
  4302                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4303     return forward_ptr;
  4307 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4308   set_evacuation_failed(true);
  4310   preserve_mark_if_necessary(old, m);
  4312   HeapRegion* r = heap_region_containing(old);
  4313   if (!r->evacuation_failed()) {
  4314     r->set_evacuation_failed(true);
  4315     _hr_printer.evac_failure(r);
  4318   push_on_evac_failure_scan_stack(old);
  4320   if (!_drain_in_progress) {
  4321     // prevent recursion in copy_to_survivor_space()
  4322     _drain_in_progress = true;
  4323     drain_evac_failure_scan_stack();
  4324     _drain_in_progress = false;
  4328 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4329   assert(evacuation_failed(), "Oversaving!");
  4330   // We want to call the "for_promotion_failure" version only in the
  4331   // case of a promotion failure.
  4332   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4333     _objs_with_preserved_marks.push(obj);
  4334     _preserved_marks_of_objs.push(m);
  4338 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4339                                                   size_t word_size) {
  4340   if (purpose == GCAllocForSurvived) {
  4341     HeapWord* result = survivor_attempt_allocation(word_size);
  4342     if (result != NULL) {
  4343       return result;
  4344     } else {
  4345       // Let's try to allocate in the old gen in case we can fit the
  4346       // object there.
  4347       return old_attempt_allocation(word_size);
  4349   } else {
  4350     assert(purpose ==  GCAllocForTenured, "sanity");
  4351     HeapWord* result = old_attempt_allocation(word_size);
  4352     if (result != NULL) {
  4353       return result;
  4354     } else {
  4355       // Let's try to allocate in the survivors in case we can fit the
  4356       // object there.
  4357       return survivor_attempt_allocation(word_size);
  4361   ShouldNotReachHere();
  4362   // Trying to keep some compilers happy.
  4363   return NULL;
  4366 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4367   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4369 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4370   : _g1h(g1h),
  4371     _refs(g1h->task_queue(queue_num)),
  4372     _dcq(&g1h->dirty_card_queue_set()),
  4373     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4374     _g1_rem(g1h->g1_rem_set()),
  4375     _hash_seed(17), _queue_num(queue_num),
  4376     _term_attempts(0),
  4377     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4378     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4379     _age_table(false),
  4380     _strong_roots_time(0), _term_time(0),
  4381     _alloc_buffer_waste(0), _undo_waste(0) {
  4382   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4383   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4384   // non-young regions (where the age is -1)
  4385   // We also add a few elements at the beginning and at the end in
  4386   // an attempt to eliminate cache contention
  4387   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4388   uint array_length = PADDING_ELEM_NUM +
  4389                       real_length +
  4390                       PADDING_ELEM_NUM;
  4391   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4392   if (_surviving_young_words_base == NULL)
  4393     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4394                           "Not enough space for young surv histo.");
  4395   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4396   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4398   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4399   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4401   _start = os::elapsedTime();
  4404 void
  4405 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4407   st->print_raw_cr("GC Termination Stats");
  4408   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4409                    " ------waste (KiB)------");
  4410   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4411                    "  total   alloc    undo");
  4412   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4413                    " ------- ------- -------");
  4416 void
  4417 G1ParScanThreadState::print_termination_stats(int i,
  4418                                               outputStream* const st) const
  4420   const double elapsed_ms = elapsed_time() * 1000.0;
  4421   const double s_roots_ms = strong_roots_time() * 1000.0;
  4422   const double term_ms    = term_time() * 1000.0;
  4423   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4424                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4425                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4426                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4427                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4428                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4429                alloc_buffer_waste() * HeapWordSize / K,
  4430                undo_waste() * HeapWordSize / K);
  4433 #ifdef ASSERT
  4434 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4435   assert(ref != NULL, "invariant");
  4436   assert(UseCompressedOops, "sanity");
  4437   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4438   oop p = oopDesc::load_decode_heap_oop(ref);
  4439   assert(_g1h->is_in_g1_reserved(p),
  4440          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4441   return true;
  4444 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4445   assert(ref != NULL, "invariant");
  4446   if (has_partial_array_mask(ref)) {
  4447     // Must be in the collection set--it's already been copied.
  4448     oop p = clear_partial_array_mask(ref);
  4449     assert(_g1h->obj_in_cs(p),
  4450            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4451   } else {
  4452     oop p = oopDesc::load_decode_heap_oop(ref);
  4453     assert(_g1h->is_in_g1_reserved(p),
  4454            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4456   return true;
  4459 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4460   if (ref.is_narrow()) {
  4461     return verify_ref((narrowOop*) ref);
  4462   } else {
  4463     return verify_ref((oop*) ref);
  4466 #endif // ASSERT
  4468 void G1ParScanThreadState::trim_queue() {
  4469   assert(_evac_cl != NULL, "not set");
  4470   assert(_evac_failure_cl != NULL, "not set");
  4471   assert(_partial_scan_cl != NULL, "not set");
  4473   StarTask ref;
  4474   do {
  4475     // Drain the overflow stack first, so other threads can steal.
  4476     while (refs()->pop_overflow(ref)) {
  4477       deal_with_reference(ref);
  4480     while (refs()->pop_local(ref)) {
  4481       deal_with_reference(ref);
  4483   } while (!refs()->is_empty());
  4486 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4487                                      G1ParScanThreadState* par_scan_state) :
  4488   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4489   _par_scan_state(par_scan_state),
  4490   _worker_id(par_scan_state->queue_num()),
  4491   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4492   _mark_in_progress(_g1->mark_in_progress()) { }
  4494 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4495 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4496 #ifdef ASSERT
  4497   HeapRegion* hr = _g1->heap_region_containing(obj);
  4498   assert(hr != NULL, "sanity");
  4499   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4500 #endif // ASSERT
  4502   // We know that the object is not moving so it's safe to read its size.
  4503   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4506 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4507 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4508   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4509 #ifdef ASSERT
  4510   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4511   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4512   assert(from_obj != to_obj, "should not be self-forwarded");
  4514   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4515   assert(from_hr != NULL, "sanity");
  4516   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4518   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4519   assert(to_hr != NULL, "sanity");
  4520   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4521 #endif // ASSERT
  4523   // The object might be in the process of being copied by another
  4524   // worker so we cannot trust that its to-space image is
  4525   // well-formed. So we have to read its size from its from-space
  4526   // image which we know should not be changing.
  4527   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4530 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4531 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4532   ::copy_to_survivor_space(oop old) {
  4533   size_t word_sz = old->size();
  4534   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4535   // +1 to make the -1 indexes valid...
  4536   int       young_index = from_region->young_index_in_cset()+1;
  4537   assert( (from_region->is_young() && young_index >  0) ||
  4538          (!from_region->is_young() && young_index == 0), "invariant" );
  4539   G1CollectorPolicy* g1p = _g1->g1_policy();
  4540   markOop m = old->mark();
  4541   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4542                                            : m->age();
  4543   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4544                                                              word_sz);
  4545   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4546 #ifndef PRODUCT
  4547   // Should this evacuation fail?
  4548   if (_g1->evacuation_should_fail()) {
  4549     if (obj_ptr != NULL) {
  4550       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4551       obj_ptr = NULL;
  4554 #endif // !PRODUCT
  4556   if (obj_ptr == NULL) {
  4557     // This will either forward-to-self, or detect that someone else has
  4558     // installed a forwarding pointer.
  4559     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4560     return _g1->handle_evacuation_failure_par(cl, old);
  4563   oop obj = oop(obj_ptr);
  4565   // We're going to allocate linearly, so might as well prefetch ahead.
  4566   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4568   oop forward_ptr = old->forward_to_atomic(obj);
  4569   if (forward_ptr == NULL) {
  4570     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4571     if (g1p->track_object_age(alloc_purpose)) {
  4572       // We could simply do obj->incr_age(). However, this causes a
  4573       // performance issue. obj->incr_age() will first check whether
  4574       // the object has a displaced mark by checking its mark word;
  4575       // getting the mark word from the new location of the object
  4576       // stalls. So, given that we already have the mark word and we
  4577       // are about to install it anyway, it's better to increase the
  4578       // age on the mark word, when the object does not have a
  4579       // displaced mark word. We're not expecting many objects to have
  4580       // a displaced marked word, so that case is not optimized
  4581       // further (it could be...) and we simply call obj->incr_age().
  4583       if (m->has_displaced_mark_helper()) {
  4584         // in this case, we have to install the mark word first,
  4585         // otherwise obj looks to be forwarded (the old mark word,
  4586         // which contains the forward pointer, was copied)
  4587         obj->set_mark(m);
  4588         obj->incr_age();
  4589       } else {
  4590         m = m->incr_age();
  4591         obj->set_mark(m);
  4593       _par_scan_state->age_table()->add(obj, word_sz);
  4594     } else {
  4595       obj->set_mark(m);
  4598     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4599     surv_young_words[young_index] += word_sz;
  4601     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4602       // We keep track of the next start index in the length field of
  4603       // the to-space object. The actual length can be found in the
  4604       // length field of the from-space object.
  4605       arrayOop(obj)->set_length(0);
  4606       oop* old_p = set_partial_array_mask(old);
  4607       _par_scan_state->push_on_queue(old_p);
  4608     } else {
  4609       // No point in using the slower heap_region_containing() method,
  4610       // given that we know obj is in the heap.
  4611       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4612       obj->oop_iterate_backwards(&_scanner);
  4614   } else {
  4615     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4616     obj = forward_ptr;
  4618   return obj;
  4621 template <class T>
  4622 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4623   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4624     _scanned_klass->record_modified_oops();
  4628 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4629 template <class T>
  4630 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4631 ::do_oop_work(T* p) {
  4632   oop obj = oopDesc::load_decode_heap_oop(p);
  4633   assert(barrier != G1BarrierRS || obj != NULL,
  4634          "Precondition: G1BarrierRS implies obj is non-NULL");
  4636   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4638   // here the null check is implicit in the cset_fast_test() test
  4639   if (_g1->in_cset_fast_test(obj)) {
  4640     oop forwardee;
  4641     if (obj->is_forwarded()) {
  4642       forwardee = obj->forwardee();
  4643     } else {
  4644       forwardee = copy_to_survivor_space(obj);
  4646     assert(forwardee != NULL, "forwardee should not be NULL");
  4647     oopDesc::encode_store_heap_oop(p, forwardee);
  4648     if (do_mark_object && forwardee != obj) {
  4649       // If the object is self-forwarded we don't need to explicitly
  4650       // mark it, the evacuation failure protocol will do so.
  4651       mark_forwarded_object(obj, forwardee);
  4654     // When scanning the RS, we only care about objs in CS.
  4655     if (barrier == G1BarrierRS) {
  4656       _par_scan_state->update_rs(_from, p, _worker_id);
  4657     } else if (barrier == G1BarrierKlass) {
  4658       do_klass_barrier(p, forwardee);
  4660   } else {
  4661     // The object is not in collection set. If we're a root scanning
  4662     // closure during an initial mark pause (i.e. do_mark_object will
  4663     // be true) then attempt to mark the object.
  4664     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4665       mark_object(obj);
  4669   if (barrier == G1BarrierEvac && obj != NULL) {
  4670     _par_scan_state->update_rs(_from, p, _worker_id);
  4673   if (do_gen_barrier && obj != NULL) {
  4674     par_do_barrier(p);
  4678 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4679 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4681 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4682   assert(has_partial_array_mask(p), "invariant");
  4683   oop from_obj = clear_partial_array_mask(p);
  4685   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4686   assert(from_obj->is_objArray(), "must be obj array");
  4687   objArrayOop from_obj_array = objArrayOop(from_obj);
  4688   // The from-space object contains the real length.
  4689   int length                 = from_obj_array->length();
  4691   assert(from_obj->is_forwarded(), "must be forwarded");
  4692   oop to_obj                 = from_obj->forwardee();
  4693   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4694   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4695   // We keep track of the next start index in the length field of the
  4696   // to-space object.
  4697   int next_index             = to_obj_array->length();
  4698   assert(0 <= next_index && next_index < length,
  4699          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4701   int start                  = next_index;
  4702   int end                    = length;
  4703   int remainder              = end - start;
  4704   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4705   if (remainder > 2 * ParGCArrayScanChunk) {
  4706     end = start + ParGCArrayScanChunk;
  4707     to_obj_array->set_length(end);
  4708     // Push the remainder before we process the range in case another
  4709     // worker has run out of things to do and can steal it.
  4710     oop* from_obj_p = set_partial_array_mask(from_obj);
  4711     _par_scan_state->push_on_queue(from_obj_p);
  4712   } else {
  4713     assert(length == end, "sanity");
  4714     // We'll process the final range for this object. Restore the length
  4715     // so that the heap remains parsable in case of evacuation failure.
  4716     to_obj_array->set_length(end);
  4718   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4719   // Process indexes [start,end). It will also process the header
  4720   // along with the first chunk (i.e., the chunk with start == 0).
  4721   // Note that at this point the length field of to_obj_array is not
  4722   // correct given that we are using it to keep track of the next
  4723   // start index. oop_iterate_range() (thankfully!) ignores the length
  4724   // field and only relies on the start / end parameters.  It does
  4725   // however return the size of the object which will be incorrect. So
  4726   // we have to ignore it even if we wanted to use it.
  4727   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4730 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4731 protected:
  4732   G1CollectedHeap*              _g1h;
  4733   G1ParScanThreadState*         _par_scan_state;
  4734   RefToScanQueueSet*            _queues;
  4735   ParallelTaskTerminator*       _terminator;
  4737   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4738   RefToScanQueueSet*      queues()         { return _queues; }
  4739   ParallelTaskTerminator* terminator()     { return _terminator; }
  4741 public:
  4742   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4743                                 G1ParScanThreadState* par_scan_state,
  4744                                 RefToScanQueueSet* queues,
  4745                                 ParallelTaskTerminator* terminator)
  4746     : _g1h(g1h), _par_scan_state(par_scan_state),
  4747       _queues(queues), _terminator(terminator) {}
  4749   void do_void();
  4751 private:
  4752   inline bool offer_termination();
  4753 };
  4755 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4756   G1ParScanThreadState* const pss = par_scan_state();
  4757   pss->start_term_time();
  4758   const bool res = terminator()->offer_termination();
  4759   pss->end_term_time();
  4760   return res;
  4763 void G1ParEvacuateFollowersClosure::do_void() {
  4764   StarTask stolen_task;
  4765   G1ParScanThreadState* const pss = par_scan_state();
  4766   pss->trim_queue();
  4768   do {
  4769     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4770       assert(pss->verify_task(stolen_task), "sanity");
  4771       if (stolen_task.is_narrow()) {
  4772         pss->deal_with_reference((narrowOop*) stolen_task);
  4773       } else {
  4774         pss->deal_with_reference((oop*) stolen_task);
  4777       // We've just processed a reference and we might have made
  4778       // available new entries on the queues. So we have to make sure
  4779       // we drain the queues as necessary.
  4780       pss->trim_queue();
  4782   } while (!offer_termination());
  4784   pss->retire_alloc_buffers();
  4787 class G1KlassScanClosure : public KlassClosure {
  4788  G1ParCopyHelper* _closure;
  4789  bool             _process_only_dirty;
  4790  int              _count;
  4791  public:
  4792   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4793       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4794   void do_klass(Klass* klass) {
  4795     // If the klass has not been dirtied we know that there's
  4796     // no references into  the young gen and we can skip it.
  4797    if (!_process_only_dirty || klass->has_modified_oops()) {
  4798       // Clean the klass since we're going to scavenge all the metadata.
  4799       klass->clear_modified_oops();
  4801       // Tell the closure that this klass is the Klass to scavenge
  4802       // and is the one to dirty if oops are left pointing into the young gen.
  4803       _closure->set_scanned_klass(klass);
  4805       klass->oops_do(_closure);
  4807       _closure->set_scanned_klass(NULL);
  4809     _count++;
  4811 };
  4813 class G1ParTask : public AbstractGangTask {
  4814 protected:
  4815   G1CollectedHeap*       _g1h;
  4816   RefToScanQueueSet      *_queues;
  4817   ParallelTaskTerminator _terminator;
  4818   uint _n_workers;
  4820   Mutex _stats_lock;
  4821   Mutex* stats_lock() { return &_stats_lock; }
  4823   size_t getNCards() {
  4824     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4825       / G1BlockOffsetSharedArray::N_bytes;
  4828 public:
  4829   G1ParTask(G1CollectedHeap* g1h,
  4830             RefToScanQueueSet *task_queues)
  4831     : AbstractGangTask("G1 collection"),
  4832       _g1h(g1h),
  4833       _queues(task_queues),
  4834       _terminator(0, _queues),
  4835       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4836   {}
  4838   RefToScanQueueSet* queues() { return _queues; }
  4840   RefToScanQueue *work_queue(int i) {
  4841     return queues()->queue(i);
  4844   ParallelTaskTerminator* terminator() { return &_terminator; }
  4846   virtual void set_for_termination(int active_workers) {
  4847     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4848     // in the young space (_par_seq_tasks) in the G1 heap
  4849     // for SequentialSubTasksDone.
  4850     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4851     // both of which need setting by set_n_termination().
  4852     _g1h->SharedHeap::set_n_termination(active_workers);
  4853     _g1h->set_n_termination(active_workers);
  4854     terminator()->reset_for_reuse(active_workers);
  4855     _n_workers = active_workers;
  4858   void work(uint worker_id) {
  4859     if (worker_id >= _n_workers) return;  // no work needed this round
  4861     double start_time_ms = os::elapsedTime() * 1000.0;
  4862     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4865       ResourceMark rm;
  4866       HandleMark   hm;
  4868       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4870       G1ParScanThreadState            pss(_g1h, worker_id);
  4871       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4872       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4873       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4875       pss.set_evac_closure(&scan_evac_cl);
  4876       pss.set_evac_failure_closure(&evac_failure_cl);
  4877       pss.set_partial_scan_closure(&partial_scan_cl);
  4879       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4880       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  4882       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4883       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  4885       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  4886       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  4887       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  4889       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4890       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  4892       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4893         // We also need to mark copied objects.
  4894         scan_root_cl = &scan_mark_root_cl;
  4895         scan_klasses_cl = &scan_mark_klasses_cl_s;
  4898       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4900       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  4902       pss.start_strong_roots();
  4903       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  4904                                     SharedHeap::ScanningOption(so),
  4905                                     scan_root_cl,
  4906                                     &push_heap_rs_cl,
  4907                                     scan_klasses_cl,
  4908                                     worker_id);
  4909       pss.end_strong_roots();
  4912         double start = os::elapsedTime();
  4913         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4914         evac.do_void();
  4915         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4916         double term_ms = pss.term_time()*1000.0;
  4917         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4918         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4920       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4921       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4923       if (ParallelGCVerbose) {
  4924         MutexLocker x(stats_lock());
  4925         pss.print_termination_stats(worker_id);
  4928       assert(pss.refs()->is_empty(), "should be empty");
  4930       // Close the inner scope so that the ResourceMark and HandleMark
  4931       // destructors are executed here and are included as part of the
  4932       // "GC Worker Time".
  4935     double end_time_ms = os::elapsedTime() * 1000.0;
  4936     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4938 };
  4940 // *** Common G1 Evacuation Stuff
  4942 // Closures that support the filtering of CodeBlobs scanned during
  4943 // external root scanning.
  4945 // Closure applied to reference fields in code blobs (specifically nmethods)
  4946 // to determine whether an nmethod contains references that point into
  4947 // the collection set. Used as a predicate when walking code roots so
  4948 // that only nmethods that point into the collection set are added to the
  4949 // 'marked' list.
  4951 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4953   class G1PointsIntoCSOopClosure : public OopClosure {
  4954     G1CollectedHeap* _g1;
  4955     bool _points_into_cs;
  4956   public:
  4957     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4958       _g1(g1), _points_into_cs(false) { }
  4960     bool points_into_cs() const { return _points_into_cs; }
  4962     template <class T>
  4963     void do_oop_nv(T* p) {
  4964       if (!_points_into_cs) {
  4965         T heap_oop = oopDesc::load_heap_oop(p);
  4966         if (!oopDesc::is_null(heap_oop) &&
  4967             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4968           _points_into_cs = true;
  4973     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4974     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4975   };
  4977   G1CollectedHeap* _g1;
  4979 public:
  4980   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4981     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4983   virtual void do_code_blob(CodeBlob* cb) {
  4984     nmethod* nm = cb->as_nmethod_or_null();
  4985     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4986       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4987       nm->oops_do(&predicate_cl);
  4989       if (predicate_cl.points_into_cs()) {
  4990         // At least one of the reference fields or the oop relocations
  4991         // in the nmethod points into the collection set. We have to
  4992         // 'mark' this nmethod.
  4993         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4994         // or MarkingCodeBlobClosure::do_code_blob() change.
  4995         if (!nm->test_set_oops_do_mark()) {
  4996           do_newly_marked_nmethod(nm);
  5001 };
  5003 // This method is run in a GC worker.
  5005 void
  5006 G1CollectedHeap::
  5007 g1_process_strong_roots(bool is_scavenging,
  5008                         ScanningOption so,
  5009                         OopClosure* scan_non_heap_roots,
  5010                         OopsInHeapRegionClosure* scan_rs,
  5011                         G1KlassScanClosure* scan_klasses,
  5012                         int worker_i) {
  5014   // First scan the strong roots
  5015   double ext_roots_start = os::elapsedTime();
  5016   double closure_app_time_sec = 0.0;
  5018   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  5020   // Walk the code cache w/o buffering, because StarTask cannot handle
  5021   // unaligned oop locations.
  5022   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  5024   process_strong_roots(false, // no scoping; this is parallel code
  5025                        is_scavenging, so,
  5026                        &buf_scan_non_heap_roots,
  5027                        &eager_scan_code_roots,
  5028                        scan_klasses
  5029                        );
  5031   // Now the CM ref_processor roots.
  5032   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  5033     // We need to treat the discovered reference lists of the
  5034     // concurrent mark ref processor as roots and keep entries
  5035     // (which are added by the marking threads) on them live
  5036     // until they can be processed at the end of marking.
  5037     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  5040   // Finish up any enqueued closure apps (attributed as object copy time).
  5041   buf_scan_non_heap_roots.done();
  5043   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  5045   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  5047   double ext_root_time_ms =
  5048     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  5050   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  5052   // During conc marking we have to filter the per-thread SATB buffers
  5053   // to make sure we remove any oops into the CSet (which will show up
  5054   // as implicitly live).
  5055   double satb_filtering_ms = 0.0;
  5056   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  5057     if (mark_in_progress()) {
  5058       double satb_filter_start = os::elapsedTime();
  5060       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  5062       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  5065   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5067   // Now scan the complement of the collection set.
  5068   if (scan_rs != NULL) {
  5069     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  5071   _process_strong_tasks->all_tasks_completed();
  5074 void
  5075 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
  5076   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5077   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
  5080 // Weak Reference Processing support
  5082 // An always "is_alive" closure that is used to preserve referents.
  5083 // If the object is non-null then it's alive.  Used in the preservation
  5084 // of referent objects that are pointed to by reference objects
  5085 // discovered by the CM ref processor.
  5086 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5087   G1CollectedHeap* _g1;
  5088 public:
  5089   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5090   void do_object(oop p) { assert(false, "Do not call."); }
  5091   bool do_object_b(oop p) {
  5092     if (p != NULL) {
  5093       return true;
  5095     return false;
  5097 };
  5099 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5100   // An object is reachable if it is outside the collection set,
  5101   // or is inside and copied.
  5102   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5105 // Non Copying Keep Alive closure
  5106 class G1KeepAliveClosure: public OopClosure {
  5107   G1CollectedHeap* _g1;
  5108 public:
  5109   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5110   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5111   void do_oop(      oop* p) {
  5112     oop obj = *p;
  5114     if (_g1->obj_in_cs(obj)) {
  5115       assert( obj->is_forwarded(), "invariant" );
  5116       *p = obj->forwardee();
  5119 };
  5121 // Copying Keep Alive closure - can be called from both
  5122 // serial and parallel code as long as different worker
  5123 // threads utilize different G1ParScanThreadState instances
  5124 // and different queues.
  5126 class G1CopyingKeepAliveClosure: public OopClosure {
  5127   G1CollectedHeap*         _g1h;
  5128   OopClosure*              _copy_non_heap_obj_cl;
  5129   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5130   G1ParScanThreadState*    _par_scan_state;
  5132 public:
  5133   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5134                             OopClosure* non_heap_obj_cl,
  5135                             OopsInHeapRegionClosure* metadata_obj_cl,
  5136                             G1ParScanThreadState* pss):
  5137     _g1h(g1h),
  5138     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5139     _copy_metadata_obj_cl(metadata_obj_cl),
  5140     _par_scan_state(pss)
  5141   {}
  5143   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5144   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5146   template <class T> void do_oop_work(T* p) {
  5147     oop obj = oopDesc::load_decode_heap_oop(p);
  5149     if (_g1h->obj_in_cs(obj)) {
  5150       // If the referent object has been forwarded (either copied
  5151       // to a new location or to itself in the event of an
  5152       // evacuation failure) then we need to update the reference
  5153       // field and, if both reference and referent are in the G1
  5154       // heap, update the RSet for the referent.
  5155       //
  5156       // If the referent has not been forwarded then we have to keep
  5157       // it alive by policy. Therefore we have copy the referent.
  5158       //
  5159       // If the reference field is in the G1 heap then we can push
  5160       // on the PSS queue. When the queue is drained (after each
  5161       // phase of reference processing) the object and it's followers
  5162       // will be copied, the reference field set to point to the
  5163       // new location, and the RSet updated. Otherwise we need to
  5164       // use the the non-heap or metadata closures directly to copy
  5165       // the refernt object and update the pointer, while avoiding
  5166       // updating the RSet.
  5168       if (_g1h->is_in_g1_reserved(p)) {
  5169         _par_scan_state->push_on_queue(p);
  5170       } else {
  5171         assert(!ClassLoaderDataGraph::contains((address)p),
  5172                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5173                               PTR_FORMAT, p));
  5174           _copy_non_heap_obj_cl->do_oop(p);
  5178 };
  5180 // Serial drain queue closure. Called as the 'complete_gc'
  5181 // closure for each discovered list in some of the
  5182 // reference processing phases.
  5184 class G1STWDrainQueueClosure: public VoidClosure {
  5185 protected:
  5186   G1CollectedHeap* _g1h;
  5187   G1ParScanThreadState* _par_scan_state;
  5189   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5191 public:
  5192   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5193     _g1h(g1h),
  5194     _par_scan_state(pss)
  5195   { }
  5197   void do_void() {
  5198     G1ParScanThreadState* const pss = par_scan_state();
  5199     pss->trim_queue();
  5201 };
  5203 // Parallel Reference Processing closures
  5205 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5206 // processing during G1 evacuation pauses.
  5208 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5209 private:
  5210   G1CollectedHeap*   _g1h;
  5211   RefToScanQueueSet* _queues;
  5212   FlexibleWorkGang*  _workers;
  5213   int                _active_workers;
  5215 public:
  5216   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5217                         FlexibleWorkGang* workers,
  5218                         RefToScanQueueSet *task_queues,
  5219                         int n_workers) :
  5220     _g1h(g1h),
  5221     _queues(task_queues),
  5222     _workers(workers),
  5223     _active_workers(n_workers)
  5225     assert(n_workers > 0, "shouldn't call this otherwise");
  5228   // Executes the given task using concurrent marking worker threads.
  5229   virtual void execute(ProcessTask& task);
  5230   virtual void execute(EnqueueTask& task);
  5231 };
  5233 // Gang task for possibly parallel reference processing
  5235 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5236   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5237   ProcessTask&     _proc_task;
  5238   G1CollectedHeap* _g1h;
  5239   RefToScanQueueSet *_task_queues;
  5240   ParallelTaskTerminator* _terminator;
  5242 public:
  5243   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5244                      G1CollectedHeap* g1h,
  5245                      RefToScanQueueSet *task_queues,
  5246                      ParallelTaskTerminator* terminator) :
  5247     AbstractGangTask("Process reference objects in parallel"),
  5248     _proc_task(proc_task),
  5249     _g1h(g1h),
  5250     _task_queues(task_queues),
  5251     _terminator(terminator)
  5252   {}
  5254   virtual void work(uint worker_id) {
  5255     // The reference processing task executed by a single worker.
  5256     ResourceMark rm;
  5257     HandleMark   hm;
  5259     G1STWIsAliveClosure is_alive(_g1h);
  5261     G1ParScanThreadState pss(_g1h, worker_id);
  5263     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5264     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5265     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5267     pss.set_evac_closure(&scan_evac_cl);
  5268     pss.set_evac_failure_closure(&evac_failure_cl);
  5269     pss.set_partial_scan_closure(&partial_scan_cl);
  5271     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5272     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5274     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5275     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5277     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5278     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5280     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5281       // We also need to mark copied objects.
  5282       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5283       copy_metadata_cl = &copy_mark_metadata_cl;
  5286     // Keep alive closure.
  5287     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5289     // Complete GC closure
  5290     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5292     // Call the reference processing task's work routine.
  5293     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5295     // Note we cannot assert that the refs array is empty here as not all
  5296     // of the processing tasks (specifically phase2 - pp2_work) execute
  5297     // the complete_gc closure (which ordinarily would drain the queue) so
  5298     // the queue may not be empty.
  5300 };
  5302 // Driver routine for parallel reference processing.
  5303 // Creates an instance of the ref processing gang
  5304 // task and has the worker threads execute it.
  5305 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5306   assert(_workers != NULL, "Need parallel worker threads.");
  5308   ParallelTaskTerminator terminator(_active_workers, _queues);
  5309   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5311   _g1h->set_par_threads(_active_workers);
  5312   _workers->run_task(&proc_task_proxy);
  5313   _g1h->set_par_threads(0);
  5316 // Gang task for parallel reference enqueueing.
  5318 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5319   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5320   EnqueueTask& _enq_task;
  5322 public:
  5323   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5324     AbstractGangTask("Enqueue reference objects in parallel"),
  5325     _enq_task(enq_task)
  5326   { }
  5328   virtual void work(uint worker_id) {
  5329     _enq_task.work(worker_id);
  5331 };
  5333 // Driver routine for parallel reference enqueing.
  5334 // Creates an instance of the ref enqueueing gang
  5335 // task and has the worker threads execute it.
  5337 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5338   assert(_workers != NULL, "Need parallel worker threads.");
  5340   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5342   _g1h->set_par_threads(_active_workers);
  5343   _workers->run_task(&enq_task_proxy);
  5344   _g1h->set_par_threads(0);
  5347 // End of weak reference support closures
  5349 // Abstract task used to preserve (i.e. copy) any referent objects
  5350 // that are in the collection set and are pointed to by reference
  5351 // objects discovered by the CM ref processor.
  5353 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5354 protected:
  5355   G1CollectedHeap* _g1h;
  5356   RefToScanQueueSet      *_queues;
  5357   ParallelTaskTerminator _terminator;
  5358   uint _n_workers;
  5360 public:
  5361   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5362     AbstractGangTask("ParPreserveCMReferents"),
  5363     _g1h(g1h),
  5364     _queues(task_queues),
  5365     _terminator(workers, _queues),
  5366     _n_workers(workers)
  5367   { }
  5369   void work(uint worker_id) {
  5370     ResourceMark rm;
  5371     HandleMark   hm;
  5373     G1ParScanThreadState            pss(_g1h, worker_id);
  5374     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5375     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5376     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5378     pss.set_evac_closure(&scan_evac_cl);
  5379     pss.set_evac_failure_closure(&evac_failure_cl);
  5380     pss.set_partial_scan_closure(&partial_scan_cl);
  5382     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5385     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5386     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5388     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5389     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5391     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5392     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5394     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5395       // We also need to mark copied objects.
  5396       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5397       copy_metadata_cl = &copy_mark_metadata_cl;
  5400     // Is alive closure
  5401     G1AlwaysAliveClosure always_alive(_g1h);
  5403     // Copying keep alive closure. Applied to referent objects that need
  5404     // to be copied.
  5405     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5407     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5409     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5410     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5412     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5413     // So this must be true - but assert just in case someone decides to
  5414     // change the worker ids.
  5415     assert(0 <= worker_id && worker_id < limit, "sanity");
  5416     assert(!rp->discovery_is_atomic(), "check this code");
  5418     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5419     for (uint idx = worker_id; idx < limit; idx += stride) {
  5420       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5422       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5423       while (iter.has_next()) {
  5424         // Since discovery is not atomic for the CM ref processor, we
  5425         // can see some null referent objects.
  5426         iter.load_ptrs(DEBUG_ONLY(true));
  5427         oop ref = iter.obj();
  5429         // This will filter nulls.
  5430         if (iter.is_referent_alive()) {
  5431           iter.make_referent_alive();
  5433         iter.move_to_next();
  5437     // Drain the queue - which may cause stealing
  5438     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5439     drain_queue.do_void();
  5440     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5441     assert(pss.refs()->is_empty(), "should be");
  5443 };
  5445 // Weak Reference processing during an evacuation pause (part 1).
  5446 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5447   double ref_proc_start = os::elapsedTime();
  5449   ReferenceProcessor* rp = _ref_processor_stw;
  5450   assert(rp->discovery_enabled(), "should have been enabled");
  5452   // Any reference objects, in the collection set, that were 'discovered'
  5453   // by the CM ref processor should have already been copied (either by
  5454   // applying the external root copy closure to the discovered lists, or
  5455   // by following an RSet entry).
  5456   //
  5457   // But some of the referents, that are in the collection set, that these
  5458   // reference objects point to may not have been copied: the STW ref
  5459   // processor would have seen that the reference object had already
  5460   // been 'discovered' and would have skipped discovering the reference,
  5461   // but would not have treated the reference object as a regular oop.
  5462   // As a reult the copy closure would not have been applied to the
  5463   // referent object.
  5464   //
  5465   // We need to explicitly copy these referent objects - the references
  5466   // will be processed at the end of remarking.
  5467   //
  5468   // We also need to do this copying before we process the reference
  5469   // objects discovered by the STW ref processor in case one of these
  5470   // referents points to another object which is also referenced by an
  5471   // object discovered by the STW ref processor.
  5473   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5474            no_of_gc_workers == workers()->active_workers(),
  5475            "Need to reset active GC workers");
  5477   set_par_threads(no_of_gc_workers);
  5478   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5479                                                  no_of_gc_workers,
  5480                                                  _task_queues);
  5482   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5483     workers()->run_task(&keep_cm_referents);
  5484   } else {
  5485     keep_cm_referents.work(0);
  5488   set_par_threads(0);
  5490   // Closure to test whether a referent is alive.
  5491   G1STWIsAliveClosure is_alive(this);
  5493   // Even when parallel reference processing is enabled, the processing
  5494   // of JNI refs is serial and performed serially by the current thread
  5495   // rather than by a worker. The following PSS will be used for processing
  5496   // JNI refs.
  5498   // Use only a single queue for this PSS.
  5499   G1ParScanThreadState pss(this, 0);
  5501   // We do not embed a reference processor in the copying/scanning
  5502   // closures while we're actually processing the discovered
  5503   // reference objects.
  5504   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5505   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5506   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5508   pss.set_evac_closure(&scan_evac_cl);
  5509   pss.set_evac_failure_closure(&evac_failure_cl);
  5510   pss.set_partial_scan_closure(&partial_scan_cl);
  5512   assert(pss.refs()->is_empty(), "pre-condition");
  5514   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5515   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5517   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5518   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5520   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5521   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5523   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5524     // We also need to mark copied objects.
  5525     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5526     copy_metadata_cl = &copy_mark_metadata_cl;
  5529   // Keep alive closure.
  5530   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5532   // Serial Complete GC closure
  5533   G1STWDrainQueueClosure drain_queue(this, &pss);
  5535   // Setup the soft refs policy...
  5536   rp->setup_policy(false);
  5538   if (!rp->processing_is_mt()) {
  5539     // Serial reference processing...
  5540     rp->process_discovered_references(&is_alive,
  5541                                       &keep_alive,
  5542                                       &drain_queue,
  5543                                       NULL);
  5544   } else {
  5545     // Parallel reference processing
  5546     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5547     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5549     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5550     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5553   // We have completed copying any necessary live referent objects
  5554   // (that were not copied during the actual pause) so we can
  5555   // retire any active alloc buffers
  5556   pss.retire_alloc_buffers();
  5557   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5559   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5560   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5563 // Weak Reference processing during an evacuation pause (part 2).
  5564 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5565   double ref_enq_start = os::elapsedTime();
  5567   ReferenceProcessor* rp = _ref_processor_stw;
  5568   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5570   // Now enqueue any remaining on the discovered lists on to
  5571   // the pending list.
  5572   if (!rp->processing_is_mt()) {
  5573     // Serial reference processing...
  5574     rp->enqueue_discovered_references();
  5575   } else {
  5576     // Parallel reference enqueuing
  5578     assert(no_of_gc_workers == workers()->active_workers(),
  5579            "Need to reset active workers");
  5580     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5581     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5583     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5584     rp->enqueue_discovered_references(&par_task_executor);
  5587   rp->verify_no_references_recorded();
  5588   assert(!rp->discovery_enabled(), "should have been disabled");
  5590   // FIXME
  5591   // CM's reference processing also cleans up the string and symbol tables.
  5592   // Should we do that here also? We could, but it is a serial operation
  5593   // and could signicantly increase the pause time.
  5595   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5596   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5599 void G1CollectedHeap::evacuate_collection_set() {
  5600   _expand_heap_after_alloc_failure = true;
  5601   set_evacuation_failed(false);
  5603   // Should G1EvacuationFailureALot be in effect for this GC?
  5604   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5606   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5607   concurrent_g1_refine()->set_use_cache(false);
  5608   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5610   uint n_workers;
  5611   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5612     n_workers =
  5613       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5614                                      workers()->active_workers(),
  5615                                      Threads::number_of_non_daemon_threads());
  5616     assert(UseDynamicNumberOfGCThreads ||
  5617            n_workers == workers()->total_workers(),
  5618            "If not dynamic should be using all the  workers");
  5619     workers()->set_active_workers(n_workers);
  5620     set_par_threads(n_workers);
  5621   } else {
  5622     assert(n_par_threads() == 0,
  5623            "Should be the original non-parallel value");
  5624     n_workers = 1;
  5627   G1ParTask g1_par_task(this, _task_queues);
  5629   init_for_evac_failure(NULL);
  5631   rem_set()->prepare_for_younger_refs_iterate(true);
  5633   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5634   double start_par_time_sec = os::elapsedTime();
  5635   double end_par_time_sec;
  5638     StrongRootsScope srs(this);
  5640     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5641       // The individual threads will set their evac-failure closures.
  5642       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5643       // These tasks use ShareHeap::_process_strong_tasks
  5644       assert(UseDynamicNumberOfGCThreads ||
  5645              workers()->active_workers() == workers()->total_workers(),
  5646              "If not dynamic should be using all the  workers");
  5647       workers()->run_task(&g1_par_task);
  5648     } else {
  5649       g1_par_task.set_for_termination(n_workers);
  5650       g1_par_task.work(0);
  5652     end_par_time_sec = os::elapsedTime();
  5654     // Closing the inner scope will execute the destructor
  5655     // for the StrongRootsScope object. We record the current
  5656     // elapsed time before closing the scope so that time
  5657     // taken for the SRS destructor is NOT included in the
  5658     // reported parallel time.
  5661   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5662   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5664   double code_root_fixup_time_ms =
  5665         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5666   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5668   set_par_threads(0);
  5670   // Process any discovered reference objects - we have
  5671   // to do this _before_ we retire the GC alloc regions
  5672   // as we may have to copy some 'reachable' referent
  5673   // objects (and their reachable sub-graphs) that were
  5674   // not copied during the pause.
  5675   process_discovered_references(n_workers);
  5677   // Weak root processing.
  5678   // Note: when JSR 292 is enabled and code blobs can contain
  5679   // non-perm oops then we will need to process the code blobs
  5680   // here too.
  5682     G1STWIsAliveClosure is_alive(this);
  5683     G1KeepAliveClosure keep_alive(this);
  5684     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5687   release_gc_alloc_regions(n_workers);
  5688   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5690   concurrent_g1_refine()->clear_hot_cache();
  5691   concurrent_g1_refine()->set_use_cache(true);
  5693   finalize_for_evac_failure();
  5695   if (evacuation_failed()) {
  5696     remove_self_forwarding_pointers();
  5698     // Reset the G1EvacuationFailureALot counters and flags
  5699     // Note: the values are reset only when an actual
  5700     // evacuation failure occurs.
  5701     NOT_PRODUCT(reset_evacuation_should_fail();)
  5704   // Enqueue any remaining references remaining on the STW
  5705   // reference processor's discovered lists. We need to do
  5706   // this after the card table is cleaned (and verified) as
  5707   // the act of enqueuing entries on to the pending list
  5708   // will log these updates (and dirty their associated
  5709   // cards). We need these updates logged to update any
  5710   // RSets.
  5711   enqueue_discovered_references(n_workers);
  5713   if (G1DeferredRSUpdate) {
  5714     RedirtyLoggedCardTableEntryFastClosure redirty;
  5715     dirty_card_queue_set().set_closure(&redirty);
  5716     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5718     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5719     dcq.merge_bufferlists(&dirty_card_queue_set());
  5720     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5722   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5725 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5726                                      size_t* pre_used,
  5727                                      FreeRegionList* free_list,
  5728                                      OldRegionSet* old_proxy_set,
  5729                                      HumongousRegionSet* humongous_proxy_set,
  5730                                      HRRSCleanupTask* hrrs_cleanup_task,
  5731                                      bool par) {
  5732   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5733     if (hr->isHumongous()) {
  5734       assert(hr->startsHumongous(), "we should only see starts humongous");
  5735       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5736     } else {
  5737       _old_set.remove_with_proxy(hr, old_proxy_set);
  5738       free_region(hr, pre_used, free_list, par);
  5740   } else {
  5741     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5745 void G1CollectedHeap::free_region(HeapRegion* hr,
  5746                                   size_t* pre_used,
  5747                                   FreeRegionList* free_list,
  5748                                   bool par) {
  5749   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5750   assert(!hr->is_empty(), "the region should not be empty");
  5751   assert(free_list != NULL, "pre-condition");
  5753   *pre_used += hr->used();
  5754   hr->hr_clear(par, true /* clear_space */);
  5755   free_list->add_as_head(hr);
  5758 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5759                                      size_t* pre_used,
  5760                                      FreeRegionList* free_list,
  5761                                      HumongousRegionSet* humongous_proxy_set,
  5762                                      bool par) {
  5763   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5764   assert(free_list != NULL, "pre-condition");
  5765   assert(humongous_proxy_set != NULL, "pre-condition");
  5767   size_t hr_used = hr->used();
  5768   size_t hr_capacity = hr->capacity();
  5769   size_t hr_pre_used = 0;
  5770   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5771   // We need to read this before we make the region non-humongous,
  5772   // otherwise the information will be gone.
  5773   uint last_index = hr->last_hc_index();
  5774   hr->set_notHumongous();
  5775   free_region(hr, &hr_pre_used, free_list, par);
  5777   uint i = hr->hrs_index() + 1;
  5778   while (i < last_index) {
  5779     HeapRegion* curr_hr = region_at(i);
  5780     assert(curr_hr->continuesHumongous(), "invariant");
  5781     curr_hr->set_notHumongous();
  5782     free_region(curr_hr, &hr_pre_used, free_list, par);
  5783     i += 1;
  5785   assert(hr_pre_used == hr_used,
  5786          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5787                  "should be the same", hr_pre_used, hr_used));
  5788   *pre_used += hr_pre_used;
  5791 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5792                                        FreeRegionList* free_list,
  5793                                        OldRegionSet* old_proxy_set,
  5794                                        HumongousRegionSet* humongous_proxy_set,
  5795                                        bool par) {
  5796   if (pre_used > 0) {
  5797     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5798     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5799     assert(_summary_bytes_used >= pre_used,
  5800            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5801                    "should be >= pre_used: "SIZE_FORMAT,
  5802                    _summary_bytes_used, pre_used));
  5803     _summary_bytes_used -= pre_used;
  5805   if (free_list != NULL && !free_list->is_empty()) {
  5806     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5807     _free_list.add_as_head(free_list);
  5809   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5810     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5811     _old_set.update_from_proxy(old_proxy_set);
  5813   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5814     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5815     _humongous_set.update_from_proxy(humongous_proxy_set);
  5819 class G1ParCleanupCTTask : public AbstractGangTask {
  5820   CardTableModRefBS* _ct_bs;
  5821   G1CollectedHeap* _g1h;
  5822   HeapRegion* volatile _su_head;
  5823 public:
  5824   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5825                      G1CollectedHeap* g1h) :
  5826     AbstractGangTask("G1 Par Cleanup CT Task"),
  5827     _ct_bs(ct_bs), _g1h(g1h) { }
  5829   void work(uint worker_id) {
  5830     HeapRegion* r;
  5831     while (r = _g1h->pop_dirty_cards_region()) {
  5832       clear_cards(r);
  5836   void clear_cards(HeapRegion* r) {
  5837     // Cards of the survivors should have already been dirtied.
  5838     if (!r->is_survivor()) {
  5839       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5842 };
  5844 #ifndef PRODUCT
  5845 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5846   G1CollectedHeap* _g1h;
  5847   CardTableModRefBS* _ct_bs;
  5848 public:
  5849   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5850     : _g1h(g1h), _ct_bs(ct_bs) { }
  5851   virtual bool doHeapRegion(HeapRegion* r) {
  5852     if (r->is_survivor()) {
  5853       _g1h->verify_dirty_region(r);
  5854     } else {
  5855       _g1h->verify_not_dirty_region(r);
  5857     return false;
  5859 };
  5861 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5862   // All of the region should be clean.
  5863   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5864   MemRegion mr(hr->bottom(), hr->end());
  5865   ct_bs->verify_not_dirty_region(mr);
  5868 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5869   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5870   // dirty allocated blocks as they allocate them. The thread that
  5871   // retires each region and replaces it with a new one will do a
  5872   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5873   // not dirty that area (one less thing to have to do while holding
  5874   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5875   // is dirty.
  5876   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5877   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5878   ct_bs->verify_dirty_region(mr);
  5881 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5882   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5883   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5884     verify_dirty_region(hr);
  5888 void G1CollectedHeap::verify_dirty_young_regions() {
  5889   verify_dirty_young_list(_young_list->first_region());
  5891 #endif
  5893 void G1CollectedHeap::cleanUpCardTable() {
  5894   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5895   double start = os::elapsedTime();
  5898     // Iterate over the dirty cards region list.
  5899     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5901     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5902       set_par_threads();
  5903       workers()->run_task(&cleanup_task);
  5904       set_par_threads(0);
  5905     } else {
  5906       while (_dirty_cards_region_list) {
  5907         HeapRegion* r = _dirty_cards_region_list;
  5908         cleanup_task.clear_cards(r);
  5909         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5910         if (_dirty_cards_region_list == r) {
  5911           // The last region.
  5912           _dirty_cards_region_list = NULL;
  5914         r->set_next_dirty_cards_region(NULL);
  5917 #ifndef PRODUCT
  5918     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5919       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5920       heap_region_iterate(&cleanup_verifier);
  5922 #endif
  5925   double elapsed = os::elapsedTime() - start;
  5926   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5929 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5930   size_t pre_used = 0;
  5931   FreeRegionList local_free_list("Local List for CSet Freeing");
  5933   double young_time_ms     = 0.0;
  5934   double non_young_time_ms = 0.0;
  5936   // Since the collection set is a superset of the the young list,
  5937   // all we need to do to clear the young list is clear its
  5938   // head and length, and unlink any young regions in the code below
  5939   _young_list->clear();
  5941   G1CollectorPolicy* policy = g1_policy();
  5943   double start_sec = os::elapsedTime();
  5944   bool non_young = true;
  5946   HeapRegion* cur = cs_head;
  5947   int age_bound = -1;
  5948   size_t rs_lengths = 0;
  5950   while (cur != NULL) {
  5951     assert(!is_on_master_free_list(cur), "sanity");
  5952     if (non_young) {
  5953       if (cur->is_young()) {
  5954         double end_sec = os::elapsedTime();
  5955         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5956         non_young_time_ms += elapsed_ms;
  5958         start_sec = os::elapsedTime();
  5959         non_young = false;
  5961     } else {
  5962       if (!cur->is_young()) {
  5963         double end_sec = os::elapsedTime();
  5964         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5965         young_time_ms += elapsed_ms;
  5967         start_sec = os::elapsedTime();
  5968         non_young = true;
  5972     rs_lengths += cur->rem_set()->occupied();
  5974     HeapRegion* next = cur->next_in_collection_set();
  5975     assert(cur->in_collection_set(), "bad CS");
  5976     cur->set_next_in_collection_set(NULL);
  5977     cur->set_in_collection_set(false);
  5979     if (cur->is_young()) {
  5980       int index = cur->young_index_in_cset();
  5981       assert(index != -1, "invariant");
  5982       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5983       size_t words_survived = _surviving_young_words[index];
  5984       cur->record_surv_words_in_group(words_survived);
  5986       // At this point the we have 'popped' cur from the collection set
  5987       // (linked via next_in_collection_set()) but it is still in the
  5988       // young list (linked via next_young_region()). Clear the
  5989       // _next_young_region field.
  5990       cur->set_next_young_region(NULL);
  5991     } else {
  5992       int index = cur->young_index_in_cset();
  5993       assert(index == -1, "invariant");
  5996     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5997             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5998             "invariant" );
  6000     if (!cur->evacuation_failed()) {
  6001       MemRegion used_mr = cur->used_region();
  6003       // And the region is empty.
  6004       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6005       free_region(cur, &pre_used, &local_free_list, false /* par */);
  6006     } else {
  6007       cur->uninstall_surv_rate_group();
  6008       if (cur->is_young()) {
  6009         cur->set_young_index_in_cset(-1);
  6011       cur->set_not_young();
  6012       cur->set_evacuation_failed(false);
  6013       // The region is now considered to be old.
  6014       _old_set.add(cur);
  6016     cur = next;
  6019   policy->record_max_rs_lengths(rs_lengths);
  6020   policy->cset_regions_freed();
  6022   double end_sec = os::elapsedTime();
  6023   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6025   if (non_young) {
  6026     non_young_time_ms += elapsed_ms;
  6027   } else {
  6028     young_time_ms += elapsed_ms;
  6031   update_sets_after_freeing_regions(pre_used, &local_free_list,
  6032                                     NULL /* old_proxy_set */,
  6033                                     NULL /* humongous_proxy_set */,
  6034                                     false /* par */);
  6035   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6036   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6039 // This routine is similar to the above but does not record
  6040 // any policy statistics or update free lists; we are abandoning
  6041 // the current incremental collection set in preparation of a
  6042 // full collection. After the full GC we will start to build up
  6043 // the incremental collection set again.
  6044 // This is only called when we're doing a full collection
  6045 // and is immediately followed by the tearing down of the young list.
  6047 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6048   HeapRegion* cur = cs_head;
  6050   while (cur != NULL) {
  6051     HeapRegion* next = cur->next_in_collection_set();
  6052     assert(cur->in_collection_set(), "bad CS");
  6053     cur->set_next_in_collection_set(NULL);
  6054     cur->set_in_collection_set(false);
  6055     cur->set_young_index_in_cset(-1);
  6056     cur = next;
  6060 void G1CollectedHeap::set_free_regions_coming() {
  6061   if (G1ConcRegionFreeingVerbose) {
  6062     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6063                            "setting free regions coming");
  6066   assert(!free_regions_coming(), "pre-condition");
  6067   _free_regions_coming = true;
  6070 void G1CollectedHeap::reset_free_regions_coming() {
  6071   assert(free_regions_coming(), "pre-condition");
  6074     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6075     _free_regions_coming = false;
  6076     SecondaryFreeList_lock->notify_all();
  6079   if (G1ConcRegionFreeingVerbose) {
  6080     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6081                            "reset free regions coming");
  6085 void G1CollectedHeap::wait_while_free_regions_coming() {
  6086   // Most of the time we won't have to wait, so let's do a quick test
  6087   // first before we take the lock.
  6088   if (!free_regions_coming()) {
  6089     return;
  6092   if (G1ConcRegionFreeingVerbose) {
  6093     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6094                            "waiting for free regions");
  6098     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6099     while (free_regions_coming()) {
  6100       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6104   if (G1ConcRegionFreeingVerbose) {
  6105     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6106                            "done waiting for free regions");
  6110 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6111   assert(heap_lock_held_for_gc(),
  6112               "the heap lock should already be held by or for this thread");
  6113   _young_list->push_region(hr);
  6116 class NoYoungRegionsClosure: public HeapRegionClosure {
  6117 private:
  6118   bool _success;
  6119 public:
  6120   NoYoungRegionsClosure() : _success(true) { }
  6121   bool doHeapRegion(HeapRegion* r) {
  6122     if (r->is_young()) {
  6123       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6124                              r->bottom(), r->end());
  6125       _success = false;
  6127     return false;
  6129   bool success() { return _success; }
  6130 };
  6132 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6133   bool ret = _young_list->check_list_empty(check_sample);
  6135   if (check_heap) {
  6136     NoYoungRegionsClosure closure;
  6137     heap_region_iterate(&closure);
  6138     ret = ret && closure.success();
  6141   return ret;
  6144 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6145 private:
  6146   OldRegionSet *_old_set;
  6148 public:
  6149   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6151   bool doHeapRegion(HeapRegion* r) {
  6152     if (r->is_empty()) {
  6153       // We ignore empty regions, we'll empty the free list afterwards
  6154     } else if (r->is_young()) {
  6155       // We ignore young regions, we'll empty the young list afterwards
  6156     } else if (r->isHumongous()) {
  6157       // We ignore humongous regions, we're not tearing down the
  6158       // humongous region set
  6159     } else {
  6160       // The rest should be old
  6161       _old_set->remove(r);
  6163     return false;
  6166   ~TearDownRegionSetsClosure() {
  6167     assert(_old_set->is_empty(), "post-condition");
  6169 };
  6171 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6172   assert_at_safepoint(true /* should_be_vm_thread */);
  6174   if (!free_list_only) {
  6175     TearDownRegionSetsClosure cl(&_old_set);
  6176     heap_region_iterate(&cl);
  6178     // Need to do this after the heap iteration to be able to
  6179     // recognize the young regions and ignore them during the iteration.
  6180     _young_list->empty_list();
  6182   _free_list.remove_all();
  6185 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6186 private:
  6187   bool            _free_list_only;
  6188   OldRegionSet*   _old_set;
  6189   FreeRegionList* _free_list;
  6190   size_t          _total_used;
  6192 public:
  6193   RebuildRegionSetsClosure(bool free_list_only,
  6194                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6195     _free_list_only(free_list_only),
  6196     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6197     assert(_free_list->is_empty(), "pre-condition");
  6198     if (!free_list_only) {
  6199       assert(_old_set->is_empty(), "pre-condition");
  6203   bool doHeapRegion(HeapRegion* r) {
  6204     if (r->continuesHumongous()) {
  6205       return false;
  6208     if (r->is_empty()) {
  6209       // Add free regions to the free list
  6210       _free_list->add_as_tail(r);
  6211     } else if (!_free_list_only) {
  6212       assert(!r->is_young(), "we should not come across young regions");
  6214       if (r->isHumongous()) {
  6215         // We ignore humongous regions, we left the humongous set unchanged
  6216       } else {
  6217         // The rest should be old, add them to the old set
  6218         _old_set->add(r);
  6220       _total_used += r->used();
  6223     return false;
  6226   size_t total_used() {
  6227     return _total_used;
  6229 };
  6231 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6232   assert_at_safepoint(true /* should_be_vm_thread */);
  6234   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6235   heap_region_iterate(&cl);
  6237   if (!free_list_only) {
  6238     _summary_bytes_used = cl.total_used();
  6240   assert(_summary_bytes_used == recalculate_used(),
  6241          err_msg("inconsistent _summary_bytes_used, "
  6242                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6243                  _summary_bytes_used, recalculate_used()));
  6246 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6247   _refine_cte_cl->set_concurrent(concurrent);
  6250 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6251   HeapRegion* hr = heap_region_containing(p);
  6252   if (hr == NULL) {
  6253     return false;
  6254   } else {
  6255     return hr->is_in(p);
  6259 // Methods for the mutator alloc region
  6261 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6262                                                       bool force) {
  6263   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6264   assert(!force || g1_policy()->can_expand_young_list(),
  6265          "if force is true we should be able to expand the young list");
  6266   bool young_list_full = g1_policy()->is_young_list_full();
  6267   if (force || !young_list_full) {
  6268     HeapRegion* new_alloc_region = new_region(word_size,
  6269                                               false /* do_expand */);
  6270     if (new_alloc_region != NULL) {
  6271       set_region_short_lived_locked(new_alloc_region);
  6272       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6273       return new_alloc_region;
  6276   return NULL;
  6279 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6280                                                   size_t allocated_bytes) {
  6281   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6282   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6284   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6285   _summary_bytes_used += allocated_bytes;
  6286   _hr_printer.retire(alloc_region);
  6287   // We update the eden sizes here, when the region is retired,
  6288   // instead of when it's allocated, since this is the point that its
  6289   // used space has been recored in _summary_bytes_used.
  6290   g1mm()->update_eden_size();
  6293 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6294                                                     bool force) {
  6295   return _g1h->new_mutator_alloc_region(word_size, force);
  6298 void G1CollectedHeap::set_par_threads() {
  6299   // Don't change the number of workers.  Use the value previously set
  6300   // in the workgroup.
  6301   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6302   uint n_workers = workers()->active_workers();
  6303   assert(UseDynamicNumberOfGCThreads ||
  6304            n_workers == workers()->total_workers(),
  6305       "Otherwise should be using the total number of workers");
  6306   if (n_workers == 0) {
  6307     assert(false, "Should have been set in prior evacuation pause.");
  6308     n_workers = ParallelGCThreads;
  6309     workers()->set_active_workers(n_workers);
  6311   set_par_threads(n_workers);
  6314 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6315                                        size_t allocated_bytes) {
  6316   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6319 // Methods for the GC alloc regions
  6321 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6322                                                  uint count,
  6323                                                  GCAllocPurpose ap) {
  6324   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6326   if (count < g1_policy()->max_regions(ap)) {
  6327     HeapRegion* new_alloc_region = new_region(word_size,
  6328                                               true /* do_expand */);
  6329     if (new_alloc_region != NULL) {
  6330       // We really only need to do this for old regions given that we
  6331       // should never scan survivors. But it doesn't hurt to do it
  6332       // for survivors too.
  6333       new_alloc_region->set_saved_mark();
  6334       if (ap == GCAllocForSurvived) {
  6335         new_alloc_region->set_survivor();
  6336         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6337       } else {
  6338         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6340       bool during_im = g1_policy()->during_initial_mark_pause();
  6341       new_alloc_region->note_start_of_copying(during_im);
  6342       return new_alloc_region;
  6343     } else {
  6344       g1_policy()->note_alloc_region_limit_reached(ap);
  6347   return NULL;
  6350 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6351                                              size_t allocated_bytes,
  6352                                              GCAllocPurpose ap) {
  6353   bool during_im = g1_policy()->during_initial_mark_pause();
  6354   alloc_region->note_end_of_copying(during_im);
  6355   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6356   if (ap == GCAllocForSurvived) {
  6357     young_list()->add_survivor_region(alloc_region);
  6358   } else {
  6359     _old_set.add(alloc_region);
  6361   _hr_printer.retire(alloc_region);
  6364 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6365                                                        bool force) {
  6366   assert(!force, "not supported for GC alloc regions");
  6367   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6370 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6371                                           size_t allocated_bytes) {
  6372   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6373                                GCAllocForSurvived);
  6376 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6377                                                   bool force) {
  6378   assert(!force, "not supported for GC alloc regions");
  6379   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6382 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6383                                      size_t allocated_bytes) {
  6384   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6385                                GCAllocForTenured);
  6387 // Heap region set verification
  6389 class VerifyRegionListsClosure : public HeapRegionClosure {
  6390 private:
  6391   FreeRegionList*     _free_list;
  6392   OldRegionSet*       _old_set;
  6393   HumongousRegionSet* _humongous_set;
  6394   uint                _region_count;
  6396 public:
  6397   VerifyRegionListsClosure(OldRegionSet* old_set,
  6398                            HumongousRegionSet* humongous_set,
  6399                            FreeRegionList* free_list) :
  6400     _old_set(old_set), _humongous_set(humongous_set),
  6401     _free_list(free_list), _region_count(0) { }
  6403   uint region_count() { return _region_count; }
  6405   bool doHeapRegion(HeapRegion* hr) {
  6406     _region_count += 1;
  6408     if (hr->continuesHumongous()) {
  6409       return false;
  6412     if (hr->is_young()) {
  6413       // TODO
  6414     } else if (hr->startsHumongous()) {
  6415       _humongous_set->verify_next_region(hr);
  6416     } else if (hr->is_empty()) {
  6417       _free_list->verify_next_region(hr);
  6418     } else {
  6419       _old_set->verify_next_region(hr);
  6421     return false;
  6423 };
  6425 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6426                                              HeapWord* bottom) {
  6427   HeapWord* end = bottom + HeapRegion::GrainWords;
  6428   MemRegion mr(bottom, end);
  6429   assert(_g1_reserved.contains(mr), "invariant");
  6430   // This might return NULL if the allocation fails
  6431   return new HeapRegion(hrs_index, _bot_shared, mr);
  6434 void G1CollectedHeap::verify_region_sets() {
  6435   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6437   // First, check the explicit lists.
  6438   _free_list.verify();
  6440     // Given that a concurrent operation might be adding regions to
  6441     // the secondary free list we have to take the lock before
  6442     // verifying it.
  6443     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6444     _secondary_free_list.verify();
  6446   _old_set.verify();
  6447   _humongous_set.verify();
  6449   // If a concurrent region freeing operation is in progress it will
  6450   // be difficult to correctly attributed any free regions we come
  6451   // across to the correct free list given that they might belong to
  6452   // one of several (free_list, secondary_free_list, any local lists,
  6453   // etc.). So, if that's the case we will skip the rest of the
  6454   // verification operation. Alternatively, waiting for the concurrent
  6455   // operation to complete will have a non-trivial effect on the GC's
  6456   // operation (no concurrent operation will last longer than the
  6457   // interval between two calls to verification) and it might hide
  6458   // any issues that we would like to catch during testing.
  6459   if (free_regions_coming()) {
  6460     return;
  6463   // Make sure we append the secondary_free_list on the free_list so
  6464   // that all free regions we will come across can be safely
  6465   // attributed to the free_list.
  6466   append_secondary_free_list_if_not_empty_with_lock();
  6468   // Finally, make sure that the region accounting in the lists is
  6469   // consistent with what we see in the heap.
  6470   _old_set.verify_start();
  6471   _humongous_set.verify_start();
  6472   _free_list.verify_start();
  6474   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6475   heap_region_iterate(&cl);
  6477   _old_set.verify_end();
  6478   _humongous_set.verify_end();
  6479   _free_list.verify_end();

mercurial