src/share/vm/opto/library_call.cpp

Fri, 27 Sep 2013 08:39:19 +0200

author
rbackman
date
Fri, 27 Sep 2013 08:39:19 +0200
changeset 5791
c9ccd7b85f20
parent 5763
1b64d46620a3
child 5798
29bdcf12457c
permissions
-rw-r--r--

8024924: Intrinsify java.lang.Math.addExact
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   vmIntrinsics::ID _intrinsic_id;
    52  public:
    53   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    54     : InlineCallGenerator(m),
    55       _is_virtual(is_virtual),
    56       _is_predicted(is_predicted),
    57       _intrinsic_id(id)
    58   {
    59   }
    60   virtual bool is_intrinsic() const { return true; }
    61   virtual bool is_virtual()   const { return _is_virtual; }
    62   virtual bool is_predicted()   const { return _is_predicted; }
    63   virtual JVMState* generate(JVMState* jvms);
    64   virtual Node* generate_predicate(JVMState* jvms);
    65   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    66 };
    69 // Local helper class for LibraryIntrinsic:
    70 class LibraryCallKit : public GraphKit {
    71  private:
    72   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    73   Node*             _result;        // the result node, if any
    74   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    76   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    78  public:
    79   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    80     : GraphKit(jvms),
    81       _intrinsic(intrinsic),
    82       _result(NULL)
    83   {
    84     // Check if this is a root compile.  In that case we don't have a caller.
    85     if (!jvms->has_method()) {
    86       _reexecute_sp = sp();
    87     } else {
    88       // Find out how many arguments the interpreter needs when deoptimizing
    89       // and save the stack pointer value so it can used by uncommon_trap.
    90       // We find the argument count by looking at the declared signature.
    91       bool ignored_will_link;
    92       ciSignature* declared_signature = NULL;
    93       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    94       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    95       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    96     }
    97   }
    99   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   101   ciMethod*         caller()    const    { return jvms()->method(); }
   102   int               bci()       const    { return jvms()->bci(); }
   103   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   104   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   105   ciMethod*         callee()    const    { return _intrinsic->method(); }
   107   bool try_to_inline();
   108   Node* try_to_predicate();
   110   void push_result() {
   111     // Push the result onto the stack.
   112     if (!stopped() && result() != NULL) {
   113       BasicType bt = result()->bottom_type()->basic_type();
   114       push_node(bt, result());
   115     }
   116   }
   118  private:
   119   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   120     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   121   }
   123   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   124   void  set_result(RegionNode* region, PhiNode* value);
   125   Node*     result() { return _result; }
   127   virtual int reexecute_sp() { return _reexecute_sp; }
   129   // Helper functions to inline natives
   130   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   131   Node* generate_slow_guard(Node* test, RegionNode* region);
   132   Node* generate_fair_guard(Node* test, RegionNode* region);
   133   Node* generate_negative_guard(Node* index, RegionNode* region,
   134                                 // resulting CastII of index:
   135                                 Node* *pos_index = NULL);
   136   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   137                                    // resulting CastII of index:
   138                                    Node* *pos_index = NULL);
   139   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   140                              Node* array_length,
   141                              RegionNode* region);
   142   Node* generate_current_thread(Node* &tls_output);
   143   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   144                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   145   Node* load_mirror_from_klass(Node* klass);
   146   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   147                                       RegionNode* region, int null_path,
   148                                       int offset);
   149   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   150                                RegionNode* region, int null_path) {
   151     int offset = java_lang_Class::klass_offset_in_bytes();
   152     return load_klass_from_mirror_common(mirror, never_see_null,
   153                                          region, null_path,
   154                                          offset);
   155   }
   156   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   157                                      RegionNode* region, int null_path) {
   158     int offset = java_lang_Class::array_klass_offset_in_bytes();
   159     return load_klass_from_mirror_common(mirror, never_see_null,
   160                                          region, null_path,
   161                                          offset);
   162   }
   163   Node* generate_access_flags_guard(Node* kls,
   164                                     int modifier_mask, int modifier_bits,
   165                                     RegionNode* region);
   166   Node* generate_interface_guard(Node* kls, RegionNode* region);
   167   Node* generate_array_guard(Node* kls, RegionNode* region) {
   168     return generate_array_guard_common(kls, region, false, false);
   169   }
   170   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, true);
   172   }
   173   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, true, false);
   175   }
   176   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, true);
   178   }
   179   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   180                                     bool obj_array, bool not_array);
   181   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   182   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   183                                      bool is_virtual = false, bool is_static = false);
   184   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   185     return generate_method_call(method_id, false, true);
   186   }
   187   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, true, false);
   189   }
   190   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   192   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   193   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   194   bool inline_string_compareTo();
   195   bool inline_string_indexOf();
   196   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   197   bool inline_string_equals();
   198   Node* round_double_node(Node* n);
   199   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   200   bool inline_math_native(vmIntrinsics::ID id);
   201   bool inline_trig(vmIntrinsics::ID id);
   202   bool inline_math(vmIntrinsics::ID id);
   203   bool inline_math_mathExact(Node* math);
   204   bool inline_math_addExact();
   205   bool inline_exp();
   206   bool inline_pow();
   207   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   208   bool inline_min_max(vmIntrinsics::ID id);
   209   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   210   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   211   int classify_unsafe_addr(Node* &base, Node* &offset);
   212   Node* make_unsafe_address(Node* base, Node* offset);
   213   // Helper for inline_unsafe_access.
   214   // Generates the guards that check whether the result of
   215   // Unsafe.getObject should be recorded in an SATB log buffer.
   216   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   217   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   218   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   219   static bool klass_needs_init_guard(Node* kls);
   220   bool inline_unsafe_allocate();
   221   bool inline_unsafe_copyMemory();
   222   bool inline_native_currentThread();
   223 #ifdef TRACE_HAVE_INTRINSICS
   224   bool inline_native_classID();
   225   bool inline_native_threadID();
   226 #endif
   227   bool inline_native_time_funcs(address method, const char* funcName);
   228   bool inline_native_isInterrupted();
   229   bool inline_native_Class_query(vmIntrinsics::ID id);
   230   bool inline_native_subtype_check();
   232   bool inline_native_newArray();
   233   bool inline_native_getLength();
   234   bool inline_array_copyOf(bool is_copyOfRange);
   235   bool inline_array_equals();
   236   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   237   bool inline_native_clone(bool is_virtual);
   238   bool inline_native_Reflection_getCallerClass();
   239   // Helper function for inlining native object hash method
   240   bool inline_native_hashcode(bool is_virtual, bool is_static);
   241   bool inline_native_getClass();
   243   // Helper functions for inlining arraycopy
   244   bool inline_arraycopy();
   245   void generate_arraycopy(const TypePtr* adr_type,
   246                           BasicType basic_elem_type,
   247                           Node* src,  Node* src_offset,
   248                           Node* dest, Node* dest_offset,
   249                           Node* copy_length,
   250                           bool disjoint_bases = false,
   251                           bool length_never_negative = false,
   252                           RegionNode* slow_region = NULL);
   253   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   254                                                 RegionNode* slow_region);
   255   void generate_clear_array(const TypePtr* adr_type,
   256                             Node* dest,
   257                             BasicType basic_elem_type,
   258                             Node* slice_off,
   259                             Node* slice_len,
   260                             Node* slice_end);
   261   bool generate_block_arraycopy(const TypePtr* adr_type,
   262                                 BasicType basic_elem_type,
   263                                 AllocateNode* alloc,
   264                                 Node* src,  Node* src_offset,
   265                                 Node* dest, Node* dest_offset,
   266                                 Node* dest_size, bool dest_uninitialized);
   267   void generate_slow_arraycopy(const TypePtr* adr_type,
   268                                Node* src,  Node* src_offset,
   269                                Node* dest, Node* dest_offset,
   270                                Node* copy_length, bool dest_uninitialized);
   271   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   272                                      Node* dest_elem_klass,
   273                                      Node* src,  Node* src_offset,
   274                                      Node* dest, Node* dest_offset,
   275                                      Node* copy_length, bool dest_uninitialized);
   276   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   277                                    Node* src,  Node* src_offset,
   278                                    Node* dest, Node* dest_offset,
   279                                    Node* copy_length, bool dest_uninitialized);
   280   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   281                                     BasicType basic_elem_type,
   282                                     bool disjoint_bases,
   283                                     Node* src,  Node* src_offset,
   284                                     Node* dest, Node* dest_offset,
   285                                     Node* copy_length, bool dest_uninitialized);
   286   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   287   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   288   bool inline_unsafe_ordered_store(BasicType type);
   289   bool inline_unsafe_fence(vmIntrinsics::ID id);
   290   bool inline_fp_conversions(vmIntrinsics::ID id);
   291   bool inline_number_methods(vmIntrinsics::ID id);
   292   bool inline_reference_get();
   293   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   294   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   295   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   296   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   297   bool inline_encodeISOArray();
   298   bool inline_updateCRC32();
   299   bool inline_updateBytesCRC32();
   300   bool inline_updateByteBufferCRC32();
   301 };
   304 //---------------------------make_vm_intrinsic----------------------------
   305 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   306   vmIntrinsics::ID id = m->intrinsic_id();
   307   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   309   if (DisableIntrinsic[0] != '\0'
   310       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   311     // disabled by a user request on the command line:
   312     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   313     return NULL;
   314   }
   316   if (!m->is_loaded()) {
   317     // do not attempt to inline unloaded methods
   318     return NULL;
   319   }
   321   // Only a few intrinsics implement a virtual dispatch.
   322   // They are expensive calls which are also frequently overridden.
   323   if (is_virtual) {
   324     switch (id) {
   325     case vmIntrinsics::_hashCode:
   326     case vmIntrinsics::_clone:
   327       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   328       break;
   329     default:
   330       return NULL;
   331     }
   332   }
   334   // -XX:-InlineNatives disables nearly all intrinsics:
   335   if (!InlineNatives) {
   336     switch (id) {
   337     case vmIntrinsics::_indexOf:
   338     case vmIntrinsics::_compareTo:
   339     case vmIntrinsics::_equals:
   340     case vmIntrinsics::_equalsC:
   341     case vmIntrinsics::_getAndAddInt:
   342     case vmIntrinsics::_getAndAddLong:
   343     case vmIntrinsics::_getAndSetInt:
   344     case vmIntrinsics::_getAndSetLong:
   345     case vmIntrinsics::_getAndSetObject:
   346     case vmIntrinsics::_loadFence:
   347     case vmIntrinsics::_storeFence:
   348     case vmIntrinsics::_fullFence:
   349       break;  // InlineNatives does not control String.compareTo
   350     case vmIntrinsics::_Reference_get:
   351       break;  // InlineNatives does not control Reference.get
   352     default:
   353       return NULL;
   354     }
   355   }
   357   bool is_predicted = false;
   359   switch (id) {
   360   case vmIntrinsics::_compareTo:
   361     if (!SpecialStringCompareTo)  return NULL;
   362     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   363     break;
   364   case vmIntrinsics::_indexOf:
   365     if (!SpecialStringIndexOf)  return NULL;
   366     break;
   367   case vmIntrinsics::_equals:
   368     if (!SpecialStringEquals)  return NULL;
   369     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   370     break;
   371   case vmIntrinsics::_equalsC:
   372     if (!SpecialArraysEquals)  return NULL;
   373     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   374     break;
   375   case vmIntrinsics::_arraycopy:
   376     if (!InlineArrayCopy)  return NULL;
   377     break;
   378   case vmIntrinsics::_copyMemory:
   379     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   380     if (!InlineArrayCopy)  return NULL;
   381     break;
   382   case vmIntrinsics::_hashCode:
   383     if (!InlineObjectHash)  return NULL;
   384     break;
   385   case vmIntrinsics::_clone:
   386   case vmIntrinsics::_copyOf:
   387   case vmIntrinsics::_copyOfRange:
   388     if (!InlineObjectCopy)  return NULL;
   389     // These also use the arraycopy intrinsic mechanism:
   390     if (!InlineArrayCopy)  return NULL;
   391     break;
   392   case vmIntrinsics::_encodeISOArray:
   393     if (!SpecialEncodeISOArray)  return NULL;
   394     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   395     break;
   396   case vmIntrinsics::_checkIndex:
   397     // We do not intrinsify this.  The optimizer does fine with it.
   398     return NULL;
   400   case vmIntrinsics::_getCallerClass:
   401     if (!UseNewReflection)  return NULL;
   402     if (!InlineReflectionGetCallerClass)  return NULL;
   403     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   404     break;
   406   case vmIntrinsics::_bitCount_i:
   407     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   408     break;
   410   case vmIntrinsics::_bitCount_l:
   411     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   412     break;
   414   case vmIntrinsics::_numberOfLeadingZeros_i:
   415     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   416     break;
   418   case vmIntrinsics::_numberOfLeadingZeros_l:
   419     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   420     break;
   422   case vmIntrinsics::_numberOfTrailingZeros_i:
   423     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   424     break;
   426   case vmIntrinsics::_numberOfTrailingZeros_l:
   427     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   428     break;
   430   case vmIntrinsics::_reverseBytes_c:
   431     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   432     break;
   433   case vmIntrinsics::_reverseBytes_s:
   434     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   435     break;
   436   case vmIntrinsics::_reverseBytes_i:
   437     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   438     break;
   439   case vmIntrinsics::_reverseBytes_l:
   440     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   441     break;
   443   case vmIntrinsics::_Reference_get:
   444     // Use the intrinsic version of Reference.get() so that the value in
   445     // the referent field can be registered by the G1 pre-barrier code.
   446     // Also add memory barrier to prevent commoning reads from this field
   447     // across safepoint since GC can change it value.
   448     break;
   450   case vmIntrinsics::_compareAndSwapObject:
   451 #ifdef _LP64
   452     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   453 #endif
   454     break;
   456   case vmIntrinsics::_compareAndSwapLong:
   457     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   458     break;
   460   case vmIntrinsics::_getAndAddInt:
   461     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   462     break;
   464   case vmIntrinsics::_getAndAddLong:
   465     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   466     break;
   468   case vmIntrinsics::_getAndSetInt:
   469     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   470     break;
   472   case vmIntrinsics::_getAndSetLong:
   473     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   474     break;
   476   case vmIntrinsics::_getAndSetObject:
   477 #ifdef _LP64
   478     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   479     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   480     break;
   481 #else
   482     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   483     break;
   484 #endif
   486   case vmIntrinsics::_aescrypt_encryptBlock:
   487   case vmIntrinsics::_aescrypt_decryptBlock:
   488     if (!UseAESIntrinsics) return NULL;
   489     break;
   491   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   492   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   493     if (!UseAESIntrinsics) return NULL;
   494     // these two require the predicated logic
   495     is_predicted = true;
   496     break;
   498   case vmIntrinsics::_updateCRC32:
   499   case vmIntrinsics::_updateBytesCRC32:
   500   case vmIntrinsics::_updateByteBufferCRC32:
   501     if (!UseCRC32Intrinsics) return NULL;
   502     break;
   504   case vmIntrinsics::_addExact:
   505     if (!Matcher::match_rule_supported(Op_AddExactI)) {
   506       return NULL;
   507     }
   508     if (!UseMathExactIntrinsics) {
   509       return NULL;
   510     }
   511     break;
   513  default:
   514     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   515     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   516     break;
   517   }
   519   // -XX:-InlineClassNatives disables natives from the Class class.
   520   // The flag applies to all reflective calls, notably Array.newArray
   521   // (visible to Java programmers as Array.newInstance).
   522   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   523       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   524     if (!InlineClassNatives)  return NULL;
   525   }
   527   // -XX:-InlineThreadNatives disables natives from the Thread class.
   528   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   529     if (!InlineThreadNatives)  return NULL;
   530   }
   532   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   533   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   534       m->holder()->name() == ciSymbol::java_lang_Float() ||
   535       m->holder()->name() == ciSymbol::java_lang_Double()) {
   536     if (!InlineMathNatives)  return NULL;
   537   }
   539   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   540   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   541     if (!InlineUnsafeOps)  return NULL;
   542   }
   544   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   545 }
   547 //----------------------register_library_intrinsics-----------------------
   548 // Initialize this file's data structures, for each Compile instance.
   549 void Compile::register_library_intrinsics() {
   550   // Nothing to do here.
   551 }
   553 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   554   LibraryCallKit kit(jvms, this);
   555   Compile* C = kit.C;
   556   int nodes = C->unique();
   557 #ifndef PRODUCT
   558   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   559     char buf[1000];
   560     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   561     tty->print_cr("Intrinsic %s", str);
   562   }
   563 #endif
   564   ciMethod* callee = kit.callee();
   565   const int bci    = kit.bci();
   567   // Try to inline the intrinsic.
   568   if (kit.try_to_inline()) {
   569     if (C->print_intrinsics() || C->print_inlining()) {
   570       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   571     }
   572     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   573     if (C->log()) {
   574       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   575                      vmIntrinsics::name_at(intrinsic_id()),
   576                      (is_virtual() ? " virtual='1'" : ""),
   577                      C->unique() - nodes);
   578     }
   579     // Push the result from the inlined method onto the stack.
   580     kit.push_result();
   581     return kit.transfer_exceptions_into_jvms();
   582   }
   584   // The intrinsic bailed out
   585   if (C->print_intrinsics() || C->print_inlining()) {
   586     if (jvms->has_method()) {
   587       // Not a root compile.
   588       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   589       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   590     } else {
   591       // Root compile
   592       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   593                vmIntrinsics::name_at(intrinsic_id()),
   594                (is_virtual() ? " (virtual)" : ""), bci);
   595     }
   596   }
   597   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   598   return NULL;
   599 }
   601 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   602   LibraryCallKit kit(jvms, this);
   603   Compile* C = kit.C;
   604   int nodes = C->unique();
   605 #ifndef PRODUCT
   606   assert(is_predicted(), "sanity");
   607   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   608     char buf[1000];
   609     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   610     tty->print_cr("Predicate for intrinsic %s", str);
   611   }
   612 #endif
   613   ciMethod* callee = kit.callee();
   614   const int bci    = kit.bci();
   616   Node* slow_ctl = kit.try_to_predicate();
   617   if (!kit.failing()) {
   618     if (C->print_intrinsics() || C->print_inlining()) {
   619       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   620     }
   621     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   622     if (C->log()) {
   623       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   624                      vmIntrinsics::name_at(intrinsic_id()),
   625                      (is_virtual() ? " virtual='1'" : ""),
   626                      C->unique() - nodes);
   627     }
   628     return slow_ctl; // Could be NULL if the check folds.
   629   }
   631   // The intrinsic bailed out
   632   if (C->print_intrinsics() || C->print_inlining()) {
   633     if (jvms->has_method()) {
   634       // Not a root compile.
   635       const char* msg = "failed to generate predicate for intrinsic";
   636       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   637     } else {
   638       // Root compile
   639       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   640                                         vmIntrinsics::name_at(intrinsic_id()),
   641                                         (is_virtual() ? " (virtual)" : ""), bci);
   642     }
   643   }
   644   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   645   return NULL;
   646 }
   648 bool LibraryCallKit::try_to_inline() {
   649   // Handle symbolic names for otherwise undistinguished boolean switches:
   650   const bool is_store       = true;
   651   const bool is_native_ptr  = true;
   652   const bool is_static      = true;
   653   const bool is_volatile    = true;
   655   if (!jvms()->has_method()) {
   656     // Root JVMState has a null method.
   657     assert(map()->memory()->Opcode() == Op_Parm, "");
   658     // Insert the memory aliasing node
   659     set_all_memory(reset_memory());
   660   }
   661   assert(merged_memory(), "");
   664   switch (intrinsic_id()) {
   665   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   666   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   667   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   669   case vmIntrinsics::_dsin:
   670   case vmIntrinsics::_dcos:
   671   case vmIntrinsics::_dtan:
   672   case vmIntrinsics::_dabs:
   673   case vmIntrinsics::_datan2:
   674   case vmIntrinsics::_dsqrt:
   675   case vmIntrinsics::_dexp:
   676   case vmIntrinsics::_dlog:
   677   case vmIntrinsics::_dlog10:
   678   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   680   case vmIntrinsics::_min:
   681   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   683   case vmIntrinsics::_addExact:                 return inline_math_addExact();
   685   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   687   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   688   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   689   case vmIntrinsics::_equals:                   return inline_string_equals();
   691   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   692   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   693   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   694   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   695   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   696   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   697   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   698   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   699   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   701   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   702   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   703   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   704   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   705   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   706   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   707   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   708   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   709   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   711   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   712   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   713   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   714   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   715   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   716   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   717   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   718   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   720   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   721   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   722   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   723   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   724   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   725   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   726   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   727   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   729   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   730   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   731   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   732   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   733   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   734   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   735   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   736   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   737   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   739   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   740   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   741   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   742   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   743   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   744   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   745   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   746   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   747   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   749   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   750   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   751   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   752   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   754   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   755   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   756   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   758   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   759   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   760   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   762   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   763   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   764   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   765   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   766   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   768   case vmIntrinsics::_loadFence:
   769   case vmIntrinsics::_storeFence:
   770   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   772   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   773   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   775 #ifdef TRACE_HAVE_INTRINSICS
   776   case vmIntrinsics::_classID:                  return inline_native_classID();
   777   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   778   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   779 #endif
   780   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   781   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   782   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   783   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   784   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   785   case vmIntrinsics::_getLength:                return inline_native_getLength();
   786   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   787   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   788   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   789   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   791   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   793   case vmIntrinsics::_isInstance:
   794   case vmIntrinsics::_getModifiers:
   795   case vmIntrinsics::_isInterface:
   796   case vmIntrinsics::_isArray:
   797   case vmIntrinsics::_isPrimitive:
   798   case vmIntrinsics::_getSuperclass:
   799   case vmIntrinsics::_getComponentType:
   800   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   802   case vmIntrinsics::_floatToRawIntBits:
   803   case vmIntrinsics::_floatToIntBits:
   804   case vmIntrinsics::_intBitsToFloat:
   805   case vmIntrinsics::_doubleToRawLongBits:
   806   case vmIntrinsics::_doubleToLongBits:
   807   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   809   case vmIntrinsics::_numberOfLeadingZeros_i:
   810   case vmIntrinsics::_numberOfLeadingZeros_l:
   811   case vmIntrinsics::_numberOfTrailingZeros_i:
   812   case vmIntrinsics::_numberOfTrailingZeros_l:
   813   case vmIntrinsics::_bitCount_i:
   814   case vmIntrinsics::_bitCount_l:
   815   case vmIntrinsics::_reverseBytes_i:
   816   case vmIntrinsics::_reverseBytes_l:
   817   case vmIntrinsics::_reverseBytes_s:
   818   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   820   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   822   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   824   case vmIntrinsics::_aescrypt_encryptBlock:
   825   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   827   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   828   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   829     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   831   case vmIntrinsics::_encodeISOArray:
   832     return inline_encodeISOArray();
   834   case vmIntrinsics::_updateCRC32:
   835     return inline_updateCRC32();
   836   case vmIntrinsics::_updateBytesCRC32:
   837     return inline_updateBytesCRC32();
   838   case vmIntrinsics::_updateByteBufferCRC32:
   839     return inline_updateByteBufferCRC32();
   841   default:
   842     // If you get here, it may be that someone has added a new intrinsic
   843     // to the list in vmSymbols.hpp without implementing it here.
   844 #ifndef PRODUCT
   845     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   846       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   847                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   848     }
   849 #endif
   850     return false;
   851   }
   852 }
   854 Node* LibraryCallKit::try_to_predicate() {
   855   if (!jvms()->has_method()) {
   856     // Root JVMState has a null method.
   857     assert(map()->memory()->Opcode() == Op_Parm, "");
   858     // Insert the memory aliasing node
   859     set_all_memory(reset_memory());
   860   }
   861   assert(merged_memory(), "");
   863   switch (intrinsic_id()) {
   864   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   865     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   866   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   867     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   869   default:
   870     // If you get here, it may be that someone has added a new intrinsic
   871     // to the list in vmSymbols.hpp without implementing it here.
   872 #ifndef PRODUCT
   873     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   874       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   875                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   876     }
   877 #endif
   878     Node* slow_ctl = control();
   879     set_control(top()); // No fast path instrinsic
   880     return slow_ctl;
   881   }
   882 }
   884 //------------------------------set_result-------------------------------
   885 // Helper function for finishing intrinsics.
   886 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   887   record_for_igvn(region);
   888   set_control(_gvn.transform(region));
   889   set_result( _gvn.transform(value));
   890   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   891 }
   893 //------------------------------generate_guard---------------------------
   894 // Helper function for generating guarded fast-slow graph structures.
   895 // The given 'test', if true, guards a slow path.  If the test fails
   896 // then a fast path can be taken.  (We generally hope it fails.)
   897 // In all cases, GraphKit::control() is updated to the fast path.
   898 // The returned value represents the control for the slow path.
   899 // The return value is never 'top'; it is either a valid control
   900 // or NULL if it is obvious that the slow path can never be taken.
   901 // Also, if region and the slow control are not NULL, the slow edge
   902 // is appended to the region.
   903 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   904   if (stopped()) {
   905     // Already short circuited.
   906     return NULL;
   907   }
   909   // Build an if node and its projections.
   910   // If test is true we take the slow path, which we assume is uncommon.
   911   if (_gvn.type(test) == TypeInt::ZERO) {
   912     // The slow branch is never taken.  No need to build this guard.
   913     return NULL;
   914   }
   916   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   918   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   919   if (if_slow == top()) {
   920     // The slow branch is never taken.  No need to build this guard.
   921     return NULL;
   922   }
   924   if (region != NULL)
   925     region->add_req(if_slow);
   927   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   928   set_control(if_fast);
   930   return if_slow;
   931 }
   933 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   934   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   935 }
   936 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   937   return generate_guard(test, region, PROB_FAIR);
   938 }
   940 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   941                                                      Node* *pos_index) {
   942   if (stopped())
   943     return NULL;                // already stopped
   944   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   945     return NULL;                // index is already adequately typed
   946   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   947   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   948   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   949   if (is_neg != NULL && pos_index != NULL) {
   950     // Emulate effect of Parse::adjust_map_after_if.
   951     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   952     ccast->set_req(0, control());
   953     (*pos_index) = _gvn.transform(ccast);
   954   }
   955   return is_neg;
   956 }
   958 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   959                                                         Node* *pos_index) {
   960   if (stopped())
   961     return NULL;                // already stopped
   962   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   963     return NULL;                // index is already adequately typed
   964   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   965   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   966   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
   967   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   968   if (is_notp != NULL && pos_index != NULL) {
   969     // Emulate effect of Parse::adjust_map_after_if.
   970     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   971     ccast->set_req(0, control());
   972     (*pos_index) = _gvn.transform(ccast);
   973   }
   974   return is_notp;
   975 }
   977 // Make sure that 'position' is a valid limit index, in [0..length].
   978 // There are two equivalent plans for checking this:
   979 //   A. (offset + copyLength)  unsigned<=  arrayLength
   980 //   B. offset  <=  (arrayLength - copyLength)
   981 // We require that all of the values above, except for the sum and
   982 // difference, are already known to be non-negative.
   983 // Plan A is robust in the face of overflow, if offset and copyLength
   984 // are both hugely positive.
   985 //
   986 // Plan B is less direct and intuitive, but it does not overflow at
   987 // all, since the difference of two non-negatives is always
   988 // representable.  Whenever Java methods must perform the equivalent
   989 // check they generally use Plan B instead of Plan A.
   990 // For the moment we use Plan A.
   991 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   992                                                   Node* subseq_length,
   993                                                   Node* array_length,
   994                                                   RegionNode* region) {
   995   if (stopped())
   996     return NULL;                // already stopped
   997   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   998   if (zero_offset && subseq_length->eqv_uncast(array_length))
   999     return NULL;                // common case of whole-array copy
  1000   Node* last = subseq_length;
  1001   if (!zero_offset)             // last += offset
  1002     last = _gvn.transform(new (C) AddINode(last, offset));
  1003   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1004   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1005   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1006   return is_over;
  1010 //--------------------------generate_current_thread--------------------
  1011 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1012   ciKlass*    thread_klass = env()->Thread_klass();
  1013   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1014   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1015   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1016   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  1017   tls_output = thread;
  1018   return threadObj;
  1022 //------------------------------make_string_method_node------------------------
  1023 // Helper method for String intrinsic functions. This version is called
  1024 // with str1 and str2 pointing to String object nodes.
  1025 //
  1026 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1027   Node* no_ctrl = NULL;
  1029   // Get start addr of string
  1030   Node* str1_value   = load_String_value(no_ctrl, str1);
  1031   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1032   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1034   // Get length of string 1
  1035   Node* str1_len  = load_String_length(no_ctrl, str1);
  1037   Node* str2_value   = load_String_value(no_ctrl, str2);
  1038   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1039   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1041   Node* str2_len = NULL;
  1042   Node* result = NULL;
  1044   switch (opcode) {
  1045   case Op_StrIndexOf:
  1046     // Get length of string 2
  1047     str2_len = load_String_length(no_ctrl, str2);
  1049     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1050                                  str1_start, str1_len, str2_start, str2_len);
  1051     break;
  1052   case Op_StrComp:
  1053     // Get length of string 2
  1054     str2_len = load_String_length(no_ctrl, str2);
  1056     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1057                                  str1_start, str1_len, str2_start, str2_len);
  1058     break;
  1059   case Op_StrEquals:
  1060     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1061                                str1_start, str2_start, str1_len);
  1062     break;
  1063   default:
  1064     ShouldNotReachHere();
  1065     return NULL;
  1068   // All these intrinsics have checks.
  1069   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1071   return _gvn.transform(result);
  1074 // Helper method for String intrinsic functions. This version is called
  1075 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1076 // to Int nodes containing the lenghts of str1 and str2.
  1077 //
  1078 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1079   Node* result = NULL;
  1080   switch (opcode) {
  1081   case Op_StrIndexOf:
  1082     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1083                                  str1_start, cnt1, str2_start, cnt2);
  1084     break;
  1085   case Op_StrComp:
  1086     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1087                                  str1_start, cnt1, str2_start, cnt2);
  1088     break;
  1089   case Op_StrEquals:
  1090     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1091                                  str1_start, str2_start, cnt1);
  1092     break;
  1093   default:
  1094     ShouldNotReachHere();
  1095     return NULL;
  1098   // All these intrinsics have checks.
  1099   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1101   return _gvn.transform(result);
  1104 //------------------------------inline_string_compareTo------------------------
  1105 // public int java.lang.String.compareTo(String anotherString);
  1106 bool LibraryCallKit::inline_string_compareTo() {
  1107   Node* receiver = null_check(argument(0));
  1108   Node* arg      = null_check(argument(1));
  1109   if (stopped()) {
  1110     return true;
  1112   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1113   return true;
  1116 //------------------------------inline_string_equals------------------------
  1117 bool LibraryCallKit::inline_string_equals() {
  1118   Node* receiver = null_check_receiver();
  1119   // NOTE: Do not null check argument for String.equals() because spec
  1120   // allows to specify NULL as argument.
  1121   Node* argument = this->argument(1);
  1122   if (stopped()) {
  1123     return true;
  1126   // paths (plus control) merge
  1127   RegionNode* region = new (C) RegionNode(5);
  1128   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1130   // does source == target string?
  1131   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1132   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1134   Node* if_eq = generate_slow_guard(bol, NULL);
  1135   if (if_eq != NULL) {
  1136     // receiver == argument
  1137     phi->init_req(2, intcon(1));
  1138     region->init_req(2, if_eq);
  1141   // get String klass for instanceOf
  1142   ciInstanceKlass* klass = env()->String_klass();
  1144   if (!stopped()) {
  1145     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1146     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1147     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1149     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1150     //instanceOf == true, fallthrough
  1152     if (inst_false != NULL) {
  1153       phi->init_req(3, intcon(0));
  1154       region->init_req(3, inst_false);
  1158   if (!stopped()) {
  1159     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1161     // Properly cast the argument to String
  1162     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1163     // This path is taken only when argument's type is String:NotNull.
  1164     argument = cast_not_null(argument, false);
  1166     Node* no_ctrl = NULL;
  1168     // Get start addr of receiver
  1169     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1170     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1171     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1173     // Get length of receiver
  1174     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1176     // Get start addr of argument
  1177     Node* argument_val    = load_String_value(no_ctrl, argument);
  1178     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1179     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1181     // Get length of argument
  1182     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1184     // Check for receiver count != argument count
  1185     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1186     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1187     Node* if_ne = generate_slow_guard(bol, NULL);
  1188     if (if_ne != NULL) {
  1189       phi->init_req(4, intcon(0));
  1190       region->init_req(4, if_ne);
  1193     // Check for count == 0 is done by assembler code for StrEquals.
  1195     if (!stopped()) {
  1196       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1197       phi->init_req(1, equals);
  1198       region->init_req(1, control());
  1202   // post merge
  1203   set_control(_gvn.transform(region));
  1204   record_for_igvn(region);
  1206   set_result(_gvn.transform(phi));
  1207   return true;
  1210 //------------------------------inline_array_equals----------------------------
  1211 bool LibraryCallKit::inline_array_equals() {
  1212   Node* arg1 = argument(0);
  1213   Node* arg2 = argument(1);
  1214   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1215   return true;
  1218 // Java version of String.indexOf(constant string)
  1219 // class StringDecl {
  1220 //   StringDecl(char[] ca) {
  1221 //     offset = 0;
  1222 //     count = ca.length;
  1223 //     value = ca;
  1224 //   }
  1225 //   int offset;
  1226 //   int count;
  1227 //   char[] value;
  1228 // }
  1229 //
  1230 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1231 //                             int targetOffset, int cache_i, int md2) {
  1232 //   int cache = cache_i;
  1233 //   int sourceOffset = string_object.offset;
  1234 //   int sourceCount = string_object.count;
  1235 //   int targetCount = target_object.length;
  1236 //
  1237 //   int targetCountLess1 = targetCount - 1;
  1238 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1239 //
  1240 //   char[] source = string_object.value;
  1241 //   char[] target = target_object;
  1242 //   int lastChar = target[targetCountLess1];
  1243 //
  1244 //  outer_loop:
  1245 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1246 //     int src = source[i + targetCountLess1];
  1247 //     if (src == lastChar) {
  1248 //       // With random strings and a 4-character alphabet,
  1249 //       // reverse matching at this point sets up 0.8% fewer
  1250 //       // frames, but (paradoxically) makes 0.3% more probes.
  1251 //       // Since those probes are nearer the lastChar probe,
  1252 //       // there is may be a net D$ win with reverse matching.
  1253 //       // But, reversing loop inhibits unroll of inner loop
  1254 //       // for unknown reason.  So, does running outer loop from
  1255 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1256 //       for (int j = 0; j < targetCountLess1; j++) {
  1257 //         if (target[targetOffset + j] != source[i+j]) {
  1258 //           if ((cache & (1 << source[i+j])) == 0) {
  1259 //             if (md2 < j+1) {
  1260 //               i += j+1;
  1261 //               continue outer_loop;
  1262 //             }
  1263 //           }
  1264 //           i += md2;
  1265 //           continue outer_loop;
  1266 //         }
  1267 //       }
  1268 //       return i - sourceOffset;
  1269 //     }
  1270 //     if ((cache & (1 << src)) == 0) {
  1271 //       i += targetCountLess1;
  1272 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1273 //     i++;
  1274 //   }
  1275 //   return -1;
  1276 // }
  1278 //------------------------------string_indexOf------------------------
  1279 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1280                                      jint cache_i, jint md2_i) {
  1282   Node* no_ctrl  = NULL;
  1283   float likely   = PROB_LIKELY(0.9);
  1284   float unlikely = PROB_UNLIKELY(0.9);
  1286   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1288   Node* source        = load_String_value(no_ctrl, string_object);
  1289   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1290   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1292   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1293   jint target_length = target_array->length();
  1294   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1295   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1297   // String.value field is known to be @Stable.
  1298   if (UseImplicitStableValues) {
  1299     target = cast_array_to_stable(target, target_type);
  1302   IdealKit kit(this, false, true);
  1303 #define __ kit.
  1304   Node* zero             = __ ConI(0);
  1305   Node* one              = __ ConI(1);
  1306   Node* cache            = __ ConI(cache_i);
  1307   Node* md2              = __ ConI(md2_i);
  1308   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1309   Node* targetCount      = __ ConI(target_length);
  1310   Node* targetCountLess1 = __ ConI(target_length - 1);
  1311   Node* targetOffset     = __ ConI(targetOffset_i);
  1312   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1314   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1315   Node* outer_loop = __ make_label(2 /* goto */);
  1316   Node* return_    = __ make_label(1);
  1318   __ set(rtn,__ ConI(-1));
  1319   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1320        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1321        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1322        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1323        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1324          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1325               Node* tpj = __ AddI(targetOffset, __ value(j));
  1326               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1327               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1328               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1329               __ if_then(targ, BoolTest::ne, src2); {
  1330                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1331                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1332                     __ increment(i, __ AddI(__ value(j), one));
  1333                     __ goto_(outer_loop);
  1334                   } __ end_if(); __ dead(j);
  1335                 }__ end_if(); __ dead(j);
  1336                 __ increment(i, md2);
  1337                 __ goto_(outer_loop);
  1338               }__ end_if();
  1339               __ increment(j, one);
  1340          }__ end_loop(); __ dead(j);
  1341          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1342          __ goto_(return_);
  1343        }__ end_if();
  1344        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1345          __ increment(i, targetCountLess1);
  1346        }__ end_if();
  1347        __ increment(i, one);
  1348        __ bind(outer_loop);
  1349   }__ end_loop(); __ dead(i);
  1350   __ bind(return_);
  1352   // Final sync IdealKit and GraphKit.
  1353   final_sync(kit);
  1354   Node* result = __ value(rtn);
  1355 #undef __
  1356   C->set_has_loops(true);
  1357   return result;
  1360 //------------------------------inline_string_indexOf------------------------
  1361 bool LibraryCallKit::inline_string_indexOf() {
  1362   Node* receiver = argument(0);
  1363   Node* arg      = argument(1);
  1365   Node* result;
  1366   // Disable the use of pcmpestri until it can be guaranteed that
  1367   // the load doesn't cross into the uncommited space.
  1368   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1369       UseSSE42Intrinsics) {
  1370     // Generate SSE4.2 version of indexOf
  1371     // We currently only have match rules that use SSE4.2
  1373     receiver = null_check(receiver);
  1374     arg      = null_check(arg);
  1375     if (stopped()) {
  1376       return true;
  1379     ciInstanceKlass* str_klass = env()->String_klass();
  1380     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1382     // Make the merge point
  1383     RegionNode* result_rgn = new (C) RegionNode(4);
  1384     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1385     Node* no_ctrl  = NULL;
  1387     // Get start addr of source string
  1388     Node* source = load_String_value(no_ctrl, receiver);
  1389     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1390     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1392     // Get length of source string
  1393     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1395     // Get start addr of substring
  1396     Node* substr = load_String_value(no_ctrl, arg);
  1397     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1398     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1400     // Get length of source string
  1401     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1403     // Check for substr count > string count
  1404     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1405     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1406     Node* if_gt = generate_slow_guard(bol, NULL);
  1407     if (if_gt != NULL) {
  1408       result_phi->init_req(2, intcon(-1));
  1409       result_rgn->init_req(2, if_gt);
  1412     if (!stopped()) {
  1413       // Check for substr count == 0
  1414       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1415       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1416       Node* if_zero = generate_slow_guard(bol, NULL);
  1417       if (if_zero != NULL) {
  1418         result_phi->init_req(3, intcon(0));
  1419         result_rgn->init_req(3, if_zero);
  1423     if (!stopped()) {
  1424       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1425       result_phi->init_req(1, result);
  1426       result_rgn->init_req(1, control());
  1428     set_control(_gvn.transform(result_rgn));
  1429     record_for_igvn(result_rgn);
  1430     result = _gvn.transform(result_phi);
  1432   } else { // Use LibraryCallKit::string_indexOf
  1433     // don't intrinsify if argument isn't a constant string.
  1434     if (!arg->is_Con()) {
  1435      return false;
  1437     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1438     if (str_type == NULL) {
  1439       return false;
  1441     ciInstanceKlass* klass = env()->String_klass();
  1442     ciObject* str_const = str_type->const_oop();
  1443     if (str_const == NULL || str_const->klass() != klass) {
  1444       return false;
  1446     ciInstance* str = str_const->as_instance();
  1447     assert(str != NULL, "must be instance");
  1449     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1450     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1452     int o;
  1453     int c;
  1454     if (java_lang_String::has_offset_field()) {
  1455       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1456       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1457     } else {
  1458       o = 0;
  1459       c = pat->length();
  1462     // constant strings have no offset and count == length which
  1463     // simplifies the resulting code somewhat so lets optimize for that.
  1464     if (o != 0 || c != pat->length()) {
  1465      return false;
  1468     receiver = null_check(receiver, T_OBJECT);
  1469     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1470     if (stopped()) {
  1471       return true;
  1474     // The null string as a pattern always returns 0 (match at beginning of string)
  1475     if (c == 0) {
  1476       set_result(intcon(0));
  1477       return true;
  1480     // Generate default indexOf
  1481     jchar lastChar = pat->char_at(o + (c - 1));
  1482     int cache = 0;
  1483     int i;
  1484     for (i = 0; i < c - 1; i++) {
  1485       assert(i < pat->length(), "out of range");
  1486       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1489     int md2 = c;
  1490     for (i = 0; i < c - 1; i++) {
  1491       assert(i < pat->length(), "out of range");
  1492       if (pat->char_at(o + i) == lastChar) {
  1493         md2 = (c - 1) - i;
  1497     result = string_indexOf(receiver, pat, o, cache, md2);
  1499   set_result(result);
  1500   return true;
  1503 //--------------------------round_double_node--------------------------------
  1504 // Round a double node if necessary.
  1505 Node* LibraryCallKit::round_double_node(Node* n) {
  1506   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1507     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1508   return n;
  1511 //------------------------------inline_math-----------------------------------
  1512 // public static double Math.abs(double)
  1513 // public static double Math.sqrt(double)
  1514 // public static double Math.log(double)
  1515 // public static double Math.log10(double)
  1516 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1517   Node* arg = round_double_node(argument(0));
  1518   Node* n;
  1519   switch (id) {
  1520   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1521   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1522   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1523   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1524   default:  fatal_unexpected_iid(id);  break;
  1526   set_result(_gvn.transform(n));
  1527   return true;
  1530 //------------------------------inline_trig----------------------------------
  1531 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1532 // argument reduction which will turn into a fast/slow diamond.
  1533 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1534   Node* arg = round_double_node(argument(0));
  1535   Node* n = NULL;
  1537   switch (id) {
  1538   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1539   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1540   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1541   default:  fatal_unexpected_iid(id);  break;
  1543   n = _gvn.transform(n);
  1545   // Rounding required?  Check for argument reduction!
  1546   if (Matcher::strict_fp_requires_explicit_rounding) {
  1547     static const double     pi_4 =  0.7853981633974483;
  1548     static const double neg_pi_4 = -0.7853981633974483;
  1549     // pi/2 in 80-bit extended precision
  1550     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1551     // -pi/2 in 80-bit extended precision
  1552     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1553     // Cutoff value for using this argument reduction technique
  1554     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1555     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1557     // Pseudocode for sin:
  1558     // if (x <= Math.PI / 4.0) {
  1559     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1560     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1561     // } else {
  1562     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1563     // }
  1564     // return StrictMath.sin(x);
  1566     // Pseudocode for cos:
  1567     // if (x <= Math.PI / 4.0) {
  1568     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1569     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1570     // } else {
  1571     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1572     // }
  1573     // return StrictMath.cos(x);
  1575     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1576     // requires a special machine instruction to load it.  Instead we'll try
  1577     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1578     // probably do the math inside the SIN encoding.
  1580     // Make the merge point
  1581     RegionNode* r = new (C) RegionNode(3);
  1582     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1584     // Flatten arg so we need only 1 test
  1585     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1586     // Node for PI/4 constant
  1587     Node *pi4 = makecon(TypeD::make(pi_4));
  1588     // Check PI/4 : abs(arg)
  1589     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1590     // Check: If PI/4 < abs(arg) then go slow
  1591     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1592     // Branch either way
  1593     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1594     set_control(opt_iff(r,iff));
  1596     // Set fast path result
  1597     phi->init_req(2, n);
  1599     // Slow path - non-blocking leaf call
  1600     Node* call = NULL;
  1601     switch (id) {
  1602     case vmIntrinsics::_dsin:
  1603       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1604                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1605                                "Sin", NULL, arg, top());
  1606       break;
  1607     case vmIntrinsics::_dcos:
  1608       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1609                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1610                                "Cos", NULL, arg, top());
  1611       break;
  1612     case vmIntrinsics::_dtan:
  1613       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1614                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1615                                "Tan", NULL, arg, top());
  1616       break;
  1618     assert(control()->in(0) == call, "");
  1619     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1620     r->init_req(1, control());
  1621     phi->init_req(1, slow_result);
  1623     // Post-merge
  1624     set_control(_gvn.transform(r));
  1625     record_for_igvn(r);
  1626     n = _gvn.transform(phi);
  1628     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1630   set_result(n);
  1631   return true;
  1634 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1635   //-------------------
  1636   //result=(result.isNaN())? funcAddr():result;
  1637   // Check: If isNaN() by checking result!=result? then either trap
  1638   // or go to runtime
  1639   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1640   // Build the boolean node
  1641   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1643   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1644     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1645       // The pow or exp intrinsic returned a NaN, which requires a call
  1646       // to the runtime.  Recompile with the runtime call.
  1647       uncommon_trap(Deoptimization::Reason_intrinsic,
  1648                     Deoptimization::Action_make_not_entrant);
  1650     set_result(result);
  1651   } else {
  1652     // If this inlining ever returned NaN in the past, we compile a call
  1653     // to the runtime to properly handle corner cases
  1655     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1656     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1657     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1659     if (!if_slow->is_top()) {
  1660       RegionNode* result_region = new (C) RegionNode(3);
  1661       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1663       result_region->init_req(1, if_fast);
  1664       result_val->init_req(1, result);
  1666       set_control(if_slow);
  1668       const TypePtr* no_memory_effects = NULL;
  1669       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1670                                    no_memory_effects,
  1671                                    x, top(), y, y ? top() : NULL);
  1672       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1673 #ifdef ASSERT
  1674       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1675       assert(value_top == top(), "second value must be top");
  1676 #endif
  1678       result_region->init_req(2, control());
  1679       result_val->init_req(2, value);
  1680       set_result(result_region, result_val);
  1681     } else {
  1682       set_result(result);
  1687 //------------------------------inline_exp-------------------------------------
  1688 // Inline exp instructions, if possible.  The Intel hardware only misses
  1689 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1690 bool LibraryCallKit::inline_exp() {
  1691   Node* arg = round_double_node(argument(0));
  1692   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1694   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1696   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1697   return true;
  1700 //------------------------------inline_pow-------------------------------------
  1701 // Inline power instructions, if possible.
  1702 bool LibraryCallKit::inline_pow() {
  1703   // Pseudocode for pow
  1704   // if (x <= 0.0) {
  1705   //   long longy = (long)y;
  1706   //   if ((double)longy == y) { // if y is long
  1707   //     if (y + 1 == y) longy = 0; // huge number: even
  1708   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1709   //   } else {
  1710   //     result = NaN;
  1711   //   }
  1712   // } else {
  1713   //   result = DPow(x,y);
  1714   // }
  1715   // if (result != result)?  {
  1716   //   result = uncommon_trap() or runtime_call();
  1717   // }
  1718   // return result;
  1720   Node* x = round_double_node(argument(0));
  1721   Node* y = round_double_node(argument(2));
  1723   Node* result = NULL;
  1725   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1726     // Short form: skip the fancy tests and just check for NaN result.
  1727     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1728   } else {
  1729     // If this inlining ever returned NaN in the past, include all
  1730     // checks + call to the runtime.
  1732     // Set the merge point for If node with condition of (x <= 0.0)
  1733     // There are four possible paths to region node and phi node
  1734     RegionNode *r = new (C) RegionNode(4);
  1735     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1737     // Build the first if node: if (x <= 0.0)
  1738     // Node for 0 constant
  1739     Node *zeronode = makecon(TypeD::ZERO);
  1740     // Check x:0
  1741     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1742     // Check: If (x<=0) then go complex path
  1743     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1744     // Branch either way
  1745     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1746     // Fast path taken; set region slot 3
  1747     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1748     r->init_req(3,fast_taken); // Capture fast-control
  1750     // Fast path not-taken, i.e. slow path
  1751     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1753     // Set fast path result
  1754     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1755     phi->init_req(3, fast_result);
  1757     // Complex path
  1758     // Build the second if node (if y is long)
  1759     // Node for (long)y
  1760     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1761     // Node for (double)((long) y)
  1762     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1763     // Check (double)((long) y) : y
  1764     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1765     // Check if (y isn't long) then go to slow path
  1767     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1768     // Branch either way
  1769     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1770     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1772     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1774     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1775     // Node for constant 1
  1776     Node *conone = longcon(1);
  1777     // 1& (long)y
  1778     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1780     // A huge number is always even. Detect a huge number by checking
  1781     // if y + 1 == y and set integer to be tested for parity to 0.
  1782     // Required for corner case:
  1783     // (long)9.223372036854776E18 = max_jlong
  1784     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1785     // max_jlong is odd but 9.223372036854776E18 is even
  1786     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1787     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1788     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1789     Node* correctedsign = NULL;
  1790     if (ConditionalMoveLimit != 0) {
  1791       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1792     } else {
  1793       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1794       RegionNode *r = new (C) RegionNode(3);
  1795       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1796       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1797       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1798       phi->init_req(1, signnode);
  1799       phi->init_req(2, longcon(0));
  1800       correctedsign = _gvn.transform(phi);
  1801       ylong_path = _gvn.transform(r);
  1802       record_for_igvn(r);
  1805     // zero node
  1806     Node *conzero = longcon(0);
  1807     // Check (1&(long)y)==0?
  1808     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1809     // Check if (1&(long)y)!=0?, if so the result is negative
  1810     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1811     // abs(x)
  1812     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1813     // abs(x)^y
  1814     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1815     // -abs(x)^y
  1816     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1817     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1818     Node *signresult = NULL;
  1819     if (ConditionalMoveLimit != 0) {
  1820       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1821     } else {
  1822       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1823       RegionNode *r = new (C) RegionNode(3);
  1824       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1825       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1826       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1827       phi->init_req(1, absxpowy);
  1828       phi->init_req(2, negabsxpowy);
  1829       signresult = _gvn.transform(phi);
  1830       ylong_path = _gvn.transform(r);
  1831       record_for_igvn(r);
  1833     // Set complex path fast result
  1834     r->init_req(2, ylong_path);
  1835     phi->init_req(2, signresult);
  1837     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1838     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1839     r->init_req(1,slow_path);
  1840     phi->init_req(1,slow_result);
  1842     // Post merge
  1843     set_control(_gvn.transform(r));
  1844     record_for_igvn(r);
  1845     result = _gvn.transform(phi);
  1848   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1850   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1851   return true;
  1854 //------------------------------runtime_math-----------------------------
  1855 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1856   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1857          "must be (DD)D or (D)D type");
  1859   // Inputs
  1860   Node* a = round_double_node(argument(0));
  1861   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1863   const TypePtr* no_memory_effects = NULL;
  1864   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1865                                  no_memory_effects,
  1866                                  a, top(), b, b ? top() : NULL);
  1867   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1868 #ifdef ASSERT
  1869   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1870   assert(value_top == top(), "second value must be top");
  1871 #endif
  1873   set_result(value);
  1874   return true;
  1877 //------------------------------inline_math_native-----------------------------
  1878 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1879 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1880   switch (id) {
  1881     // These intrinsics are not properly supported on all hardware
  1882   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1883     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1884   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1885     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1886   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1887     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1889   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1890     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1891   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1892     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1894     // These intrinsics are supported on all hardware
  1895   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1896   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1898   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1899     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1900   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1901     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1902 #undef FN_PTR
  1904    // These intrinsics are not yet correctly implemented
  1905   case vmIntrinsics::_datan2:
  1906     return false;
  1908   default:
  1909     fatal_unexpected_iid(id);
  1910     return false;
  1914 static bool is_simple_name(Node* n) {
  1915   return (n->req() == 1         // constant
  1916           || (n->is_Type() && n->as_Type()->type()->singleton())
  1917           || n->is_Proj()       // parameter or return value
  1918           || n->is_Phi()        // local of some sort
  1919           );
  1922 //----------------------------inline_min_max-----------------------------------
  1923 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1924   set_result(generate_min_max(id, argument(0), argument(1)));
  1925   return true;
  1928 bool LibraryCallKit::inline_math_mathExact(Node* math) {
  1929   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
  1930   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
  1932   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
  1933   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1934   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1935   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1938     PreserveJVMState pjvms(this);
  1939     PreserveReexecuteState preexecs(this);
  1940     jvms()->set_should_reexecute(true);
  1942     set_control(slow_path);
  1943     set_i_o(i_o());
  1945     uncommon_trap(Deoptimization::Reason_intrinsic,
  1946                   Deoptimization::Action_none);
  1949   set_control(fast_path);
  1950   set_result(result);
  1951   return true;
  1954 bool LibraryCallKit::inline_math_addExact() {
  1955   Node* arg1 = argument(0);
  1956   Node* arg2 = argument(1);
  1958   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
  1959   if (add->Opcode() == Op_AddExactI) {
  1960     return inline_math_mathExact(add);
  1961   } else {
  1962     set_result(add);
  1964   return true;
  1967 Node*
  1968 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1969   // These are the candidate return value:
  1970   Node* xvalue = x0;
  1971   Node* yvalue = y0;
  1973   if (xvalue == yvalue) {
  1974     return xvalue;
  1977   bool want_max = (id == vmIntrinsics::_max);
  1979   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1980   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1981   if (txvalue == NULL || tyvalue == NULL)  return top();
  1982   // This is not really necessary, but it is consistent with a
  1983   // hypothetical MaxINode::Value method:
  1984   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1986   // %%% This folding logic should (ideally) be in a different place.
  1987   // Some should be inside IfNode, and there to be a more reliable
  1988   // transformation of ?: style patterns into cmoves.  We also want
  1989   // more powerful optimizations around cmove and min/max.
  1991   // Try to find a dominating comparison of these guys.
  1992   // It can simplify the index computation for Arrays.copyOf
  1993   // and similar uses of System.arraycopy.
  1994   // First, compute the normalized version of CmpI(x, y).
  1995   int   cmp_op = Op_CmpI;
  1996   Node* xkey = xvalue;
  1997   Node* ykey = yvalue;
  1998   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  1999   if (ideal_cmpxy->is_Cmp()) {
  2000     // E.g., if we have CmpI(length - offset, count),
  2001     // it might idealize to CmpI(length, count + offset)
  2002     cmp_op = ideal_cmpxy->Opcode();
  2003     xkey = ideal_cmpxy->in(1);
  2004     ykey = ideal_cmpxy->in(2);
  2007   // Start by locating any relevant comparisons.
  2008   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2009   Node* cmpxy = NULL;
  2010   Node* cmpyx = NULL;
  2011   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2012     Node* cmp = start_from->fast_out(k);
  2013     if (cmp->outcnt() > 0 &&            // must have prior uses
  2014         cmp->in(0) == NULL &&           // must be context-independent
  2015         cmp->Opcode() == cmp_op) {      // right kind of compare
  2016       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2017       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2021   const int NCMPS = 2;
  2022   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2023   int cmpn;
  2024   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2025     if (cmps[cmpn] != NULL)  break;     // find a result
  2027   if (cmpn < NCMPS) {
  2028     // Look for a dominating test that tells us the min and max.
  2029     int depth = 0;                // Limit search depth for speed
  2030     Node* dom = control();
  2031     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2032       if (++depth >= 100)  break;
  2033       Node* ifproj = dom;
  2034       if (!ifproj->is_Proj())  continue;
  2035       Node* iff = ifproj->in(0);
  2036       if (!iff->is_If())  continue;
  2037       Node* bol = iff->in(1);
  2038       if (!bol->is_Bool())  continue;
  2039       Node* cmp = bol->in(1);
  2040       if (cmp == NULL)  continue;
  2041       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2042         if (cmps[cmpn] == cmp)  break;
  2043       if (cmpn == NCMPS)  continue;
  2044       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2045       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2046       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2047       // At this point, we know that 'x btest y' is true.
  2048       switch (btest) {
  2049       case BoolTest::eq:
  2050         // They are proven equal, so we can collapse the min/max.
  2051         // Either value is the answer.  Choose the simpler.
  2052         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2053           return yvalue;
  2054         return xvalue;
  2055       case BoolTest::lt:          // x < y
  2056       case BoolTest::le:          // x <= y
  2057         return (want_max ? yvalue : xvalue);
  2058       case BoolTest::gt:          // x > y
  2059       case BoolTest::ge:          // x >= y
  2060         return (want_max ? xvalue : yvalue);
  2065   // We failed to find a dominating test.
  2066   // Let's pick a test that might GVN with prior tests.
  2067   Node*          best_bol   = NULL;
  2068   BoolTest::mask best_btest = BoolTest::illegal;
  2069   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2070     Node* cmp = cmps[cmpn];
  2071     if (cmp == NULL)  continue;
  2072     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2073       Node* bol = cmp->fast_out(j);
  2074       if (!bol->is_Bool())  continue;
  2075       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2076       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2077       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2078       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2079         best_bol   = bol->as_Bool();
  2080         best_btest = btest;
  2085   Node* answer_if_true  = NULL;
  2086   Node* answer_if_false = NULL;
  2087   switch (best_btest) {
  2088   default:
  2089     if (cmpxy == NULL)
  2090       cmpxy = ideal_cmpxy;
  2091     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2092     // and fall through:
  2093   case BoolTest::lt:          // x < y
  2094   case BoolTest::le:          // x <= y
  2095     answer_if_true  = (want_max ? yvalue : xvalue);
  2096     answer_if_false = (want_max ? xvalue : yvalue);
  2097     break;
  2098   case BoolTest::gt:          // x > y
  2099   case BoolTest::ge:          // x >= y
  2100     answer_if_true  = (want_max ? xvalue : yvalue);
  2101     answer_if_false = (want_max ? yvalue : xvalue);
  2102     break;
  2105   jint hi, lo;
  2106   if (want_max) {
  2107     // We can sharpen the minimum.
  2108     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2109     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2110   } else {
  2111     // We can sharpen the maximum.
  2112     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2113     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2116   // Use a flow-free graph structure, to avoid creating excess control edges
  2117   // which could hinder other optimizations.
  2118   // Since Math.min/max is often used with arraycopy, we want
  2119   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2120   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2121                                answer_if_false, answer_if_true,
  2122                                TypeInt::make(lo, hi, widen));
  2124   return _gvn.transform(cmov);
  2126   /*
  2127   // This is not as desirable as it may seem, since Min and Max
  2128   // nodes do not have a full set of optimizations.
  2129   // And they would interfere, anyway, with 'if' optimizations
  2130   // and with CMoveI canonical forms.
  2131   switch (id) {
  2132   case vmIntrinsics::_min:
  2133     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2134   case vmIntrinsics::_max:
  2135     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2136   default:
  2137     ShouldNotReachHere();
  2139   */
  2142 inline int
  2143 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2144   const TypePtr* base_type = TypePtr::NULL_PTR;
  2145   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2146   if (base_type == NULL) {
  2147     // Unknown type.
  2148     return Type::AnyPtr;
  2149   } else if (base_type == TypePtr::NULL_PTR) {
  2150     // Since this is a NULL+long form, we have to switch to a rawptr.
  2151     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2152     offset = MakeConX(0);
  2153     return Type::RawPtr;
  2154   } else if (base_type->base() == Type::RawPtr) {
  2155     return Type::RawPtr;
  2156   } else if (base_type->isa_oopptr()) {
  2157     // Base is never null => always a heap address.
  2158     if (base_type->ptr() == TypePtr::NotNull) {
  2159       return Type::OopPtr;
  2161     // Offset is small => always a heap address.
  2162     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2163     if (offset_type != NULL &&
  2164         base_type->offset() == 0 &&     // (should always be?)
  2165         offset_type->_lo >= 0 &&
  2166         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2167       return Type::OopPtr;
  2169     // Otherwise, it might either be oop+off or NULL+addr.
  2170     return Type::AnyPtr;
  2171   } else {
  2172     // No information:
  2173     return Type::AnyPtr;
  2177 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2178   int kind = classify_unsafe_addr(base, offset);
  2179   if (kind == Type::RawPtr) {
  2180     return basic_plus_adr(top(), base, offset);
  2181   } else {
  2182     return basic_plus_adr(base, offset);
  2186 //--------------------------inline_number_methods-----------------------------
  2187 // inline int     Integer.numberOfLeadingZeros(int)
  2188 // inline int        Long.numberOfLeadingZeros(long)
  2189 //
  2190 // inline int     Integer.numberOfTrailingZeros(int)
  2191 // inline int        Long.numberOfTrailingZeros(long)
  2192 //
  2193 // inline int     Integer.bitCount(int)
  2194 // inline int        Long.bitCount(long)
  2195 //
  2196 // inline char  Character.reverseBytes(char)
  2197 // inline short     Short.reverseBytes(short)
  2198 // inline int     Integer.reverseBytes(int)
  2199 // inline long       Long.reverseBytes(long)
  2200 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2201   Node* arg = argument(0);
  2202   Node* n;
  2203   switch (id) {
  2204   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2205   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2206   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2207   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2208   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2209   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2210   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2211   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2212   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2213   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2214   default:  fatal_unexpected_iid(id);  break;
  2216   set_result(_gvn.transform(n));
  2217   return true;
  2220 //----------------------------inline_unsafe_access----------------------------
  2222 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2224 // Helper that guards and inserts a pre-barrier.
  2225 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2226                                         Node* pre_val, bool need_mem_bar) {
  2227   // We could be accessing the referent field of a reference object. If so, when G1
  2228   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2229   // This routine performs some compile time filters and generates suitable
  2230   // runtime filters that guard the pre-barrier code.
  2231   // Also add memory barrier for non volatile load from the referent field
  2232   // to prevent commoning of loads across safepoint.
  2233   if (!UseG1GC && !need_mem_bar)
  2234     return;
  2236   // Some compile time checks.
  2238   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2239   const TypeX* otype = offset->find_intptr_t_type();
  2240   if (otype != NULL && otype->is_con() &&
  2241       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2242     // Constant offset but not the reference_offset so just return
  2243     return;
  2246   // We only need to generate the runtime guards for instances.
  2247   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2248   if (btype != NULL) {
  2249     if (btype->isa_aryptr()) {
  2250       // Array type so nothing to do
  2251       return;
  2254     const TypeInstPtr* itype = btype->isa_instptr();
  2255     if (itype != NULL) {
  2256       // Can the klass of base_oop be statically determined to be
  2257       // _not_ a sub-class of Reference and _not_ Object?
  2258       ciKlass* klass = itype->klass();
  2259       if ( klass->is_loaded() &&
  2260           !klass->is_subtype_of(env()->Reference_klass()) &&
  2261           !env()->Object_klass()->is_subtype_of(klass)) {
  2262         return;
  2267   // The compile time filters did not reject base_oop/offset so
  2268   // we need to generate the following runtime filters
  2269   //
  2270   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2271   //   if (instance_of(base, java.lang.ref.Reference)) {
  2272   //     pre_barrier(_, pre_val, ...);
  2273   //   }
  2274   // }
  2276   float likely   = PROB_LIKELY(  0.999);
  2277   float unlikely = PROB_UNLIKELY(0.999);
  2279   IdealKit ideal(this);
  2280 #define __ ideal.
  2282   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2284   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2285       // Update graphKit memory and control from IdealKit.
  2286       sync_kit(ideal);
  2288       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2289       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2291       // Update IdealKit memory and control from graphKit.
  2292       __ sync_kit(this);
  2294       Node* one = __ ConI(1);
  2295       // is_instof == 0 if base_oop == NULL
  2296       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2298         // Update graphKit from IdeakKit.
  2299         sync_kit(ideal);
  2301         // Use the pre-barrier to record the value in the referent field
  2302         pre_barrier(false /* do_load */,
  2303                     __ ctrl(),
  2304                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2305                     pre_val /* pre_val */,
  2306                     T_OBJECT);
  2307         if (need_mem_bar) {
  2308           // Add memory barrier to prevent commoning reads from this field
  2309           // across safepoint since GC can change its value.
  2310           insert_mem_bar(Op_MemBarCPUOrder);
  2312         // Update IdealKit from graphKit.
  2313         __ sync_kit(this);
  2315       } __ end_if(); // _ref_type != ref_none
  2316   } __ end_if(); // offset == referent_offset
  2318   // Final sync IdealKit and GraphKit.
  2319   final_sync(ideal);
  2320 #undef __
  2324 // Interpret Unsafe.fieldOffset cookies correctly:
  2325 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2327 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2328   // Attempt to infer a sharper value type from the offset and base type.
  2329   ciKlass* sharpened_klass = NULL;
  2331   // See if it is an instance field, with an object type.
  2332   if (alias_type->field() != NULL) {
  2333     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2334     if (alias_type->field()->type()->is_klass()) {
  2335       sharpened_klass = alias_type->field()->type()->as_klass();
  2339   // See if it is a narrow oop array.
  2340   if (adr_type->isa_aryptr()) {
  2341     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2342       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2343       if (elem_type != NULL) {
  2344         sharpened_klass = elem_type->klass();
  2349   // The sharpened class might be unloaded if there is no class loader
  2350   // contraint in place.
  2351   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2352     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2354 #ifndef PRODUCT
  2355     if (C->print_intrinsics() || C->print_inlining()) {
  2356       tty->print("  from base type: ");  adr_type->dump();
  2357       tty->print("  sharpened value: ");  tjp->dump();
  2359 #endif
  2360     // Sharpen the value type.
  2361     return tjp;
  2363   return NULL;
  2366 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2367   if (callee()->is_static())  return false;  // caller must have the capability!
  2369 #ifndef PRODUCT
  2371     ResourceMark rm;
  2372     // Check the signatures.
  2373     ciSignature* sig = callee()->signature();
  2374 #ifdef ASSERT
  2375     if (!is_store) {
  2376       // Object getObject(Object base, int/long offset), etc.
  2377       BasicType rtype = sig->return_type()->basic_type();
  2378       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2379           rtype = T_ADDRESS;  // it is really a C void*
  2380       assert(rtype == type, "getter must return the expected value");
  2381       if (!is_native_ptr) {
  2382         assert(sig->count() == 2, "oop getter has 2 arguments");
  2383         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2384         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2385       } else {
  2386         assert(sig->count() == 1, "native getter has 1 argument");
  2387         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2389     } else {
  2390       // void putObject(Object base, int/long offset, Object x), etc.
  2391       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2392       if (!is_native_ptr) {
  2393         assert(sig->count() == 3, "oop putter has 3 arguments");
  2394         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2395         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2396       } else {
  2397         assert(sig->count() == 2, "native putter has 2 arguments");
  2398         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2400       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2401       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2402         vtype = T_ADDRESS;  // it is really a C void*
  2403       assert(vtype == type, "putter must accept the expected value");
  2405 #endif // ASSERT
  2407 #endif //PRODUCT
  2409   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2411   Node* receiver = argument(0);  // type: oop
  2413   // Build address expression.  See the code in inline_unsafe_prefetch.
  2414   Node* adr;
  2415   Node* heap_base_oop = top();
  2416   Node* offset = top();
  2417   Node* val;
  2419   if (!is_native_ptr) {
  2420     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2421     Node* base = argument(1);  // type: oop
  2422     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2423     offset = argument(2);  // type: long
  2424     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2425     // to be plain byte offsets, which are also the same as those accepted
  2426     // by oopDesc::field_base.
  2427     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2428            "fieldOffset must be byte-scaled");
  2429     // 32-bit machines ignore the high half!
  2430     offset = ConvL2X(offset);
  2431     adr = make_unsafe_address(base, offset);
  2432     heap_base_oop = base;
  2433     val = is_store ? argument(4) : NULL;
  2434   } else {
  2435     Node* ptr = argument(1);  // type: long
  2436     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2437     adr = make_unsafe_address(NULL, ptr);
  2438     val = is_store ? argument(3) : NULL;
  2441   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2443   // First guess at the value type.
  2444   const Type *value_type = Type::get_const_basic_type(type);
  2446   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2447   // there was not enough information to nail it down.
  2448   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2449   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2451   // We will need memory barriers unless we can determine a unique
  2452   // alias category for this reference.  (Note:  If for some reason
  2453   // the barriers get omitted and the unsafe reference begins to "pollute"
  2454   // the alias analysis of the rest of the graph, either Compile::can_alias
  2455   // or Compile::must_alias will throw a diagnostic assert.)
  2456   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2458   // If we are reading the value of the referent field of a Reference
  2459   // object (either by using Unsafe directly or through reflection)
  2460   // then, if G1 is enabled, we need to record the referent in an
  2461   // SATB log buffer using the pre-barrier mechanism.
  2462   // Also we need to add memory barrier to prevent commoning reads
  2463   // from this field across safepoint since GC can change its value.
  2464   bool need_read_barrier = !is_native_ptr && !is_store &&
  2465                            offset != top() && heap_base_oop != top();
  2467   if (!is_store && type == T_OBJECT) {
  2468     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2469     if (tjp != NULL) {
  2470       value_type = tjp;
  2474   receiver = null_check(receiver);
  2475   if (stopped()) {
  2476     return true;
  2478   // Heap pointers get a null-check from the interpreter,
  2479   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2480   // and it is not possible to fully distinguish unintended nulls
  2481   // from intended ones in this API.
  2483   if (is_volatile) {
  2484     // We need to emit leading and trailing CPU membars (see below) in
  2485     // addition to memory membars when is_volatile. This is a little
  2486     // too strong, but avoids the need to insert per-alias-type
  2487     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2488     // we cannot do effectively here because we probably only have a
  2489     // rough approximation of type.
  2490     need_mem_bar = true;
  2491     // For Stores, place a memory ordering barrier now.
  2492     if (is_store)
  2493       insert_mem_bar(Op_MemBarRelease);
  2496   // Memory barrier to prevent normal and 'unsafe' accesses from
  2497   // bypassing each other.  Happens after null checks, so the
  2498   // exception paths do not take memory state from the memory barrier,
  2499   // so there's no problems making a strong assert about mixing users
  2500   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2501   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2502   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2504   if (!is_store) {
  2505     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2506     // load value
  2507     switch (type) {
  2508     case T_BOOLEAN:
  2509     case T_CHAR:
  2510     case T_BYTE:
  2511     case T_SHORT:
  2512     case T_INT:
  2513     case T_LONG:
  2514     case T_FLOAT:
  2515     case T_DOUBLE:
  2516       break;
  2517     case T_OBJECT:
  2518       if (need_read_barrier) {
  2519         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2521       break;
  2522     case T_ADDRESS:
  2523       // Cast to an int type.
  2524       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2525       p = ConvX2L(p);
  2526       break;
  2527     default:
  2528       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2529       break;
  2531     // The load node has the control of the preceding MemBarCPUOrder.  All
  2532     // following nodes will have the control of the MemBarCPUOrder inserted at
  2533     // the end of this method.  So, pushing the load onto the stack at a later
  2534     // point is fine.
  2535     set_result(p);
  2536   } else {
  2537     // place effect of store into memory
  2538     switch (type) {
  2539     case T_DOUBLE:
  2540       val = dstore_rounding(val);
  2541       break;
  2542     case T_ADDRESS:
  2543       // Repackage the long as a pointer.
  2544       val = ConvL2X(val);
  2545       val = _gvn.transform(new (C) CastX2PNode(val));
  2546       break;
  2549     if (type != T_OBJECT ) {
  2550       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2551     } else {
  2552       // Possibly an oop being stored to Java heap or native memory
  2553       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2554         // oop to Java heap.
  2555         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2556       } else {
  2557         // We can't tell at compile time if we are storing in the Java heap or outside
  2558         // of it. So we need to emit code to conditionally do the proper type of
  2559         // store.
  2561         IdealKit ideal(this);
  2562 #define __ ideal.
  2563         // QQQ who knows what probability is here??
  2564         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2565           // Sync IdealKit and graphKit.
  2566           sync_kit(ideal);
  2567           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2568           // Update IdealKit memory.
  2569           __ sync_kit(this);
  2570         } __ else_(); {
  2571           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2572         } __ end_if();
  2573         // Final sync IdealKit and GraphKit.
  2574         final_sync(ideal);
  2575 #undef __
  2580   if (is_volatile) {
  2581     if (!is_store)
  2582       insert_mem_bar(Op_MemBarAcquire);
  2583     else
  2584       insert_mem_bar(Op_MemBarVolatile);
  2587   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2589   return true;
  2592 //----------------------------inline_unsafe_prefetch----------------------------
  2594 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2595 #ifndef PRODUCT
  2597     ResourceMark rm;
  2598     // Check the signatures.
  2599     ciSignature* sig = callee()->signature();
  2600 #ifdef ASSERT
  2601     // Object getObject(Object base, int/long offset), etc.
  2602     BasicType rtype = sig->return_type()->basic_type();
  2603     if (!is_native_ptr) {
  2604       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2605       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2606       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2607     } else {
  2608       assert(sig->count() == 1, "native prefetch has 1 argument");
  2609       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2611 #endif // ASSERT
  2613 #endif // !PRODUCT
  2615   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2617   const int idx = is_static ? 0 : 1;
  2618   if (!is_static) {
  2619     null_check_receiver();
  2620     if (stopped()) {
  2621       return true;
  2625   // Build address expression.  See the code in inline_unsafe_access.
  2626   Node *adr;
  2627   if (!is_native_ptr) {
  2628     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2629     Node* base   = argument(idx + 0);  // type: oop
  2630     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2631     Node* offset = argument(idx + 1);  // type: long
  2632     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2633     // to be plain byte offsets, which are also the same as those accepted
  2634     // by oopDesc::field_base.
  2635     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2636            "fieldOffset must be byte-scaled");
  2637     // 32-bit machines ignore the high half!
  2638     offset = ConvL2X(offset);
  2639     adr = make_unsafe_address(base, offset);
  2640   } else {
  2641     Node* ptr = argument(idx + 0);  // type: long
  2642     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2643     adr = make_unsafe_address(NULL, ptr);
  2646   // Generate the read or write prefetch
  2647   Node *prefetch;
  2648   if (is_store) {
  2649     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2650   } else {
  2651     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2653   prefetch->init_req(0, control());
  2654   set_i_o(_gvn.transform(prefetch));
  2656   return true;
  2659 //----------------------------inline_unsafe_load_store----------------------------
  2660 // This method serves a couple of different customers (depending on LoadStoreKind):
  2661 //
  2662 // LS_cmpxchg:
  2663 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2664 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2665 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2666 //
  2667 // LS_xadd:
  2668 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2669 //   public long getAndAddLong(Object o, long offset, long delta)
  2670 //
  2671 // LS_xchg:
  2672 //   int    getAndSet(Object o, long offset, int    newValue)
  2673 //   long   getAndSet(Object o, long offset, long   newValue)
  2674 //   Object getAndSet(Object o, long offset, Object newValue)
  2675 //
  2676 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2677   // This basic scheme here is the same as inline_unsafe_access, but
  2678   // differs in enough details that combining them would make the code
  2679   // overly confusing.  (This is a true fact! I originally combined
  2680   // them, but even I was confused by it!) As much code/comments as
  2681   // possible are retained from inline_unsafe_access though to make
  2682   // the correspondences clearer. - dl
  2684   if (callee()->is_static())  return false;  // caller must have the capability!
  2686 #ifndef PRODUCT
  2687   BasicType rtype;
  2689     ResourceMark rm;
  2690     // Check the signatures.
  2691     ciSignature* sig = callee()->signature();
  2692     rtype = sig->return_type()->basic_type();
  2693     if (kind == LS_xadd || kind == LS_xchg) {
  2694       // Check the signatures.
  2695 #ifdef ASSERT
  2696       assert(rtype == type, "get and set must return the expected type");
  2697       assert(sig->count() == 3, "get and set has 3 arguments");
  2698       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2699       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2700       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2701 #endif // ASSERT
  2702     } else if (kind == LS_cmpxchg) {
  2703       // Check the signatures.
  2704 #ifdef ASSERT
  2705       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2706       assert(sig->count() == 4, "CAS has 4 arguments");
  2707       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2708       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2709 #endif // ASSERT
  2710     } else {
  2711       ShouldNotReachHere();
  2714 #endif //PRODUCT
  2716   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2718   // Get arguments:
  2719   Node* receiver = NULL;
  2720   Node* base     = NULL;
  2721   Node* offset   = NULL;
  2722   Node* oldval   = NULL;
  2723   Node* newval   = NULL;
  2724   if (kind == LS_cmpxchg) {
  2725     const bool two_slot_type = type2size[type] == 2;
  2726     receiver = argument(0);  // type: oop
  2727     base     = argument(1);  // type: oop
  2728     offset   = argument(2);  // type: long
  2729     oldval   = argument(4);  // type: oop, int, or long
  2730     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2731   } else if (kind == LS_xadd || kind == LS_xchg){
  2732     receiver = argument(0);  // type: oop
  2733     base     = argument(1);  // type: oop
  2734     offset   = argument(2);  // type: long
  2735     oldval   = NULL;
  2736     newval   = argument(4);  // type: oop, int, or long
  2739   // Null check receiver.
  2740   receiver = null_check(receiver);
  2741   if (stopped()) {
  2742     return true;
  2745   // Build field offset expression.
  2746   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2747   // to be plain byte offsets, which are also the same as those accepted
  2748   // by oopDesc::field_base.
  2749   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2750   // 32-bit machines ignore the high half of long offsets
  2751   offset = ConvL2X(offset);
  2752   Node* adr = make_unsafe_address(base, offset);
  2753   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2755   // For CAS, unlike inline_unsafe_access, there seems no point in
  2756   // trying to refine types. Just use the coarse types here.
  2757   const Type *value_type = Type::get_const_basic_type(type);
  2758   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2759   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2761   if (kind == LS_xchg && type == T_OBJECT) {
  2762     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2763     if (tjp != NULL) {
  2764       value_type = tjp;
  2768   int alias_idx = C->get_alias_index(adr_type);
  2770   // Memory-model-wise, a LoadStore acts like a little synchronized
  2771   // block, so needs barriers on each side.  These don't translate
  2772   // into actual barriers on most machines, but we still need rest of
  2773   // compiler to respect ordering.
  2775   insert_mem_bar(Op_MemBarRelease);
  2776   insert_mem_bar(Op_MemBarCPUOrder);
  2778   // 4984716: MemBars must be inserted before this
  2779   //          memory node in order to avoid a false
  2780   //          dependency which will confuse the scheduler.
  2781   Node *mem = memory(alias_idx);
  2783   // For now, we handle only those cases that actually exist: ints,
  2784   // longs, and Object. Adding others should be straightforward.
  2785   Node* load_store;
  2786   switch(type) {
  2787   case T_INT:
  2788     if (kind == LS_xadd) {
  2789       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2790     } else if (kind == LS_xchg) {
  2791       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2792     } else if (kind == LS_cmpxchg) {
  2793       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2794     } else {
  2795       ShouldNotReachHere();
  2797     break;
  2798   case T_LONG:
  2799     if (kind == LS_xadd) {
  2800       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2801     } else if (kind == LS_xchg) {
  2802       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2803     } else if (kind == LS_cmpxchg) {
  2804       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2805     } else {
  2806       ShouldNotReachHere();
  2808     break;
  2809   case T_OBJECT:
  2810     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2811     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2812     // Execute transformation here to avoid barrier generation in such case.
  2813     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2814       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2816     // Reference stores need a store barrier.
  2817     if (kind == LS_xchg) {
  2818       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2819       if (!can_move_pre_barrier()) {
  2820         pre_barrier(true /* do_load*/,
  2821                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2822                     NULL /* pre_val*/,
  2823                     T_OBJECT);
  2824       } // Else move pre_barrier to use load_store value, see below.
  2825     } else if (kind == LS_cmpxchg) {
  2826       // Same as for newval above:
  2827       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2828         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2830       // The only known value which might get overwritten is oldval.
  2831       pre_barrier(false /* do_load */,
  2832                   control(), NULL, NULL, max_juint, NULL, NULL,
  2833                   oldval /* pre_val */,
  2834                   T_OBJECT);
  2835     } else {
  2836       ShouldNotReachHere();
  2839 #ifdef _LP64
  2840     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2841       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2842       if (kind == LS_xchg) {
  2843         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2844                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2845       } else {
  2846         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2847         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2848         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2849                                                                    newval_enc, oldval_enc));
  2851     } else
  2852 #endif
  2854       if (kind == LS_xchg) {
  2855         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2856       } else {
  2857         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2858         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2861     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2862     break;
  2863   default:
  2864     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2865     break;
  2868   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2869   // main role is to prevent LoadStore nodes from being optimized away
  2870   // when their results aren't used.
  2871   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  2872   set_memory(proj, alias_idx);
  2874   if (type == T_OBJECT && kind == LS_xchg) {
  2875 #ifdef _LP64
  2876     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2877       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  2879 #endif
  2880     if (can_move_pre_barrier()) {
  2881       // Don't need to load pre_val. The old value is returned by load_store.
  2882       // The pre_barrier can execute after the xchg as long as no safepoint
  2883       // gets inserted between them.
  2884       pre_barrier(false /* do_load */,
  2885                   control(), NULL, NULL, max_juint, NULL, NULL,
  2886                   load_store /* pre_val */,
  2887                   T_OBJECT);
  2891   // Add the trailing membar surrounding the access
  2892   insert_mem_bar(Op_MemBarCPUOrder);
  2893   insert_mem_bar(Op_MemBarAcquire);
  2895   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2896   set_result(load_store);
  2897   return true;
  2900 //----------------------------inline_unsafe_ordered_store----------------------
  2901 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2902 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2903 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2904 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2905   // This is another variant of inline_unsafe_access, differing in
  2906   // that it always issues store-store ("release") barrier and ensures
  2907   // store-atomicity (which only matters for "long").
  2909   if (callee()->is_static())  return false;  // caller must have the capability!
  2911 #ifndef PRODUCT
  2913     ResourceMark rm;
  2914     // Check the signatures.
  2915     ciSignature* sig = callee()->signature();
  2916 #ifdef ASSERT
  2917     BasicType rtype = sig->return_type()->basic_type();
  2918     assert(rtype == T_VOID, "must return void");
  2919     assert(sig->count() == 3, "has 3 arguments");
  2920     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2921     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2922 #endif // ASSERT
  2924 #endif //PRODUCT
  2926   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2928   // Get arguments:
  2929   Node* receiver = argument(0);  // type: oop
  2930   Node* base     = argument(1);  // type: oop
  2931   Node* offset   = argument(2);  // type: long
  2932   Node* val      = argument(4);  // type: oop, int, or long
  2934   // Null check receiver.
  2935   receiver = null_check(receiver);
  2936   if (stopped()) {
  2937     return true;
  2940   // Build field offset expression.
  2941   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2942   // 32-bit machines ignore the high half of long offsets
  2943   offset = ConvL2X(offset);
  2944   Node* adr = make_unsafe_address(base, offset);
  2945   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2946   const Type *value_type = Type::get_const_basic_type(type);
  2947   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2949   insert_mem_bar(Op_MemBarRelease);
  2950   insert_mem_bar(Op_MemBarCPUOrder);
  2951   // Ensure that the store is atomic for longs:
  2952   const bool require_atomic_access = true;
  2953   Node* store;
  2954   if (type == T_OBJECT) // reference stores need a store barrier.
  2955     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2956   else {
  2957     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2959   insert_mem_bar(Op_MemBarCPUOrder);
  2960   return true;
  2963 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  2964   // Regardless of form, don't allow previous ld/st to move down,
  2965   // then issue acquire, release, or volatile mem_bar.
  2966   insert_mem_bar(Op_MemBarCPUOrder);
  2967   switch(id) {
  2968     case vmIntrinsics::_loadFence:
  2969       insert_mem_bar(Op_MemBarAcquire);
  2970       return true;
  2971     case vmIntrinsics::_storeFence:
  2972       insert_mem_bar(Op_MemBarRelease);
  2973       return true;
  2974     case vmIntrinsics::_fullFence:
  2975       insert_mem_bar(Op_MemBarVolatile);
  2976       return true;
  2977     default:
  2978       fatal_unexpected_iid(id);
  2979       return false;
  2983 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  2984   if (!kls->is_Con()) {
  2985     return true;
  2987   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  2988   if (klsptr == NULL) {
  2989     return true;
  2991   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  2992   // don't need a guard for a klass that is already initialized
  2993   return !ik->is_initialized();
  2996 //----------------------------inline_unsafe_allocate---------------------------
  2997 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  2998 bool LibraryCallKit::inline_unsafe_allocate() {
  2999   if (callee()->is_static())  return false;  // caller must have the capability!
  3001   null_check_receiver();  // null-check, then ignore
  3002   Node* cls = null_check(argument(1));
  3003   if (stopped())  return true;
  3005   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3006   kls = null_check(kls);
  3007   if (stopped())  return true;  // argument was like int.class
  3009   Node* test = NULL;
  3010   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3011     // Note:  The argument might still be an illegal value like
  3012     // Serializable.class or Object[].class.   The runtime will handle it.
  3013     // But we must make an explicit check for initialization.
  3014     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3015     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3016     // can generate code to load it as unsigned byte.
  3017     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  3018     Node* bits = intcon(InstanceKlass::fully_initialized);
  3019     test = _gvn.transform(new (C) SubINode(inst, bits));
  3020     // The 'test' is non-zero if we need to take a slow path.
  3023   Node* obj = new_instance(kls, test);
  3024   set_result(obj);
  3025   return true;
  3028 #ifdef TRACE_HAVE_INTRINSICS
  3029 /*
  3030  * oop -> myklass
  3031  * myklass->trace_id |= USED
  3032  * return myklass->trace_id & ~0x3
  3033  */
  3034 bool LibraryCallKit::inline_native_classID() {
  3035   null_check_receiver();  // null-check, then ignore
  3036   Node* cls = null_check(argument(1), T_OBJECT);
  3037   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3038   kls = null_check(kls, T_OBJECT);
  3039   ByteSize offset = TRACE_ID_OFFSET;
  3040   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3041   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  3042   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3043   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3044   Node* clsused = longcon(0x01l); // set the class bit
  3045   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3047   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3048   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  3049   set_result(andl);
  3050   return true;
  3053 bool LibraryCallKit::inline_native_threadID() {
  3054   Node* tls_ptr = NULL;
  3055   Node* cur_thr = generate_current_thread(tls_ptr);
  3056   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3057   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3058   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3060   Node* threadid = NULL;
  3061   size_t thread_id_size = OSThread::thread_id_size();
  3062   if (thread_id_size == (size_t) BytesPerLong) {
  3063     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  3064   } else if (thread_id_size == (size_t) BytesPerInt) {
  3065     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  3066   } else {
  3067     ShouldNotReachHere();
  3069   set_result(threadid);
  3070   return true;
  3072 #endif
  3074 //------------------------inline_native_time_funcs--------------
  3075 // inline code for System.currentTimeMillis() and System.nanoTime()
  3076 // these have the same type and signature
  3077 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3078   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3079   const TypePtr* no_memory_effects = NULL;
  3080   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3081   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3082 #ifdef ASSERT
  3083   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3084   assert(value_top == top(), "second value must be top");
  3085 #endif
  3086   set_result(value);
  3087   return true;
  3090 //------------------------inline_native_currentThread------------------
  3091 bool LibraryCallKit::inline_native_currentThread() {
  3092   Node* junk = NULL;
  3093   set_result(generate_current_thread(junk));
  3094   return true;
  3097 //------------------------inline_native_isInterrupted------------------
  3098 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3099 bool LibraryCallKit::inline_native_isInterrupted() {
  3100   // Add a fast path to t.isInterrupted(clear_int):
  3101   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3102   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3103   // So, in the common case that the interrupt bit is false,
  3104   // we avoid making a call into the VM.  Even if the interrupt bit
  3105   // is true, if the clear_int argument is false, we avoid the VM call.
  3106   // However, if the receiver is not currentThread, we must call the VM,
  3107   // because there must be some locking done around the operation.
  3109   // We only go to the fast case code if we pass two guards.
  3110   // Paths which do not pass are accumulated in the slow_region.
  3112   enum {
  3113     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3114     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3115     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3116     PATH_LIMIT
  3117   };
  3119   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3120   // out of the function.
  3121   insert_mem_bar(Op_MemBarCPUOrder);
  3123   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3124   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3126   RegionNode* slow_region = new (C) RegionNode(1);
  3127   record_for_igvn(slow_region);
  3129   // (a) Receiving thread must be the current thread.
  3130   Node* rec_thr = argument(0);
  3131   Node* tls_ptr = NULL;
  3132   Node* cur_thr = generate_current_thread(tls_ptr);
  3133   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3134   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3136   generate_slow_guard(bol_thr, slow_region);
  3138   // (b) Interrupt bit on TLS must be false.
  3139   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3140   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3141   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3143   // Set the control input on the field _interrupted read to prevent it floating up.
  3144   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3145   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3146   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3148   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3150   // First fast path:  if (!TLS._interrupted) return false;
  3151   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3152   result_rgn->init_req(no_int_result_path, false_bit);
  3153   result_val->init_req(no_int_result_path, intcon(0));
  3155   // drop through to next case
  3156   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3158   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3159   Node* clr_arg = argument(1);
  3160   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3161   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3162   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3164   // Second fast path:  ... else if (!clear_int) return true;
  3165   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3166   result_rgn->init_req(no_clear_result_path, false_arg);
  3167   result_val->init_req(no_clear_result_path, intcon(1));
  3169   // drop through to next case
  3170   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3172   // (d) Otherwise, go to the slow path.
  3173   slow_region->add_req(control());
  3174   set_control( _gvn.transform(slow_region));
  3176   if (stopped()) {
  3177     // There is no slow path.
  3178     result_rgn->init_req(slow_result_path, top());
  3179     result_val->init_req(slow_result_path, top());
  3180   } else {
  3181     // non-virtual because it is a private non-static
  3182     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3184     Node* slow_val = set_results_for_java_call(slow_call);
  3185     // this->control() comes from set_results_for_java_call
  3187     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3188     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3190     // These two phis are pre-filled with copies of of the fast IO and Memory
  3191     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3192     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3194     result_rgn->init_req(slow_result_path, control());
  3195     result_io ->init_req(slow_result_path, i_o());
  3196     result_mem->init_req(slow_result_path, reset_memory());
  3197     result_val->init_req(slow_result_path, slow_val);
  3199     set_all_memory(_gvn.transform(result_mem));
  3200     set_i_o(       _gvn.transform(result_io));
  3203   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3204   set_result(result_rgn, result_val);
  3205   return true;
  3208 //---------------------------load_mirror_from_klass----------------------------
  3209 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3210 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3211   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3212   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3215 //-----------------------load_klass_from_mirror_common-------------------------
  3216 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3217 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3218 // and branch to the given path on the region.
  3219 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3220 // compile for the non-null case.
  3221 // If the region is NULL, force never_see_null = true.
  3222 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3223                                                     bool never_see_null,
  3224                                                     RegionNode* region,
  3225                                                     int null_path,
  3226                                                     int offset) {
  3227   if (region == NULL)  never_see_null = true;
  3228   Node* p = basic_plus_adr(mirror, offset);
  3229   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3230   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3231   Node* null_ctl = top();
  3232   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3233   if (region != NULL) {
  3234     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3235     region->init_req(null_path, null_ctl);
  3236   } else {
  3237     assert(null_ctl == top(), "no loose ends");
  3239   return kls;
  3242 //--------------------(inline_native_Class_query helpers)---------------------
  3243 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3244 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3245 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3246   // Branch around if the given klass has the given modifier bit set.
  3247   // Like generate_guard, adds a new path onto the region.
  3248   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3249   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3250   Node* mask = intcon(modifier_mask);
  3251   Node* bits = intcon(modifier_bits);
  3252   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3253   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3254   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3255   return generate_fair_guard(bol, region);
  3257 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3258   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3261 //-------------------------inline_native_Class_query-------------------
  3262 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3263   const Type* return_type = TypeInt::BOOL;
  3264   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3265   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3266   bool expect_prim = false;     // most of these guys expect to work on refs
  3268   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3270   Node* mirror = argument(0);
  3271   Node* obj    = top();
  3273   switch (id) {
  3274   case vmIntrinsics::_isInstance:
  3275     // nothing is an instance of a primitive type
  3276     prim_return_value = intcon(0);
  3277     obj = argument(1);
  3278     break;
  3279   case vmIntrinsics::_getModifiers:
  3280     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3281     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3282     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3283     break;
  3284   case vmIntrinsics::_isInterface:
  3285     prim_return_value = intcon(0);
  3286     break;
  3287   case vmIntrinsics::_isArray:
  3288     prim_return_value = intcon(0);
  3289     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3290     break;
  3291   case vmIntrinsics::_isPrimitive:
  3292     prim_return_value = intcon(1);
  3293     expect_prim = true;  // obviously
  3294     break;
  3295   case vmIntrinsics::_getSuperclass:
  3296     prim_return_value = null();
  3297     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3298     break;
  3299   case vmIntrinsics::_getComponentType:
  3300     prim_return_value = null();
  3301     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3302     break;
  3303   case vmIntrinsics::_getClassAccessFlags:
  3304     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3305     return_type = TypeInt::INT;  // not bool!  6297094
  3306     break;
  3307   default:
  3308     fatal_unexpected_iid(id);
  3309     break;
  3312   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3313   if (mirror_con == NULL)  return false;  // cannot happen?
  3315 #ifndef PRODUCT
  3316   if (C->print_intrinsics() || C->print_inlining()) {
  3317     ciType* k = mirror_con->java_mirror_type();
  3318     if (k) {
  3319       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3320       k->print_name();
  3321       tty->cr();
  3324 #endif
  3326   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3327   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3328   record_for_igvn(region);
  3329   PhiNode* phi = new (C) PhiNode(region, return_type);
  3331   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3332   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3333   // if it is. See bug 4774291.
  3335   // For Reflection.getClassAccessFlags(), the null check occurs in
  3336   // the wrong place; see inline_unsafe_access(), above, for a similar
  3337   // situation.
  3338   mirror = null_check(mirror);
  3339   // If mirror or obj is dead, only null-path is taken.
  3340   if (stopped())  return true;
  3342   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3344   // Now load the mirror's klass metaobject, and null-check it.
  3345   // Side-effects region with the control path if the klass is null.
  3346   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3347   // If kls is null, we have a primitive mirror.
  3348   phi->init_req(_prim_path, prim_return_value);
  3349   if (stopped()) { set_result(region, phi); return true; }
  3351   Node* p;  // handy temp
  3352   Node* null_ctl;
  3354   // Now that we have the non-null klass, we can perform the real query.
  3355   // For constant classes, the query will constant-fold in LoadNode::Value.
  3356   Node* query_value = top();
  3357   switch (id) {
  3358   case vmIntrinsics::_isInstance:
  3359     // nothing is an instance of a primitive type
  3360     query_value = gen_instanceof(obj, kls);
  3361     break;
  3363   case vmIntrinsics::_getModifiers:
  3364     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3365     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3366     break;
  3368   case vmIntrinsics::_isInterface:
  3369     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3370     if (generate_interface_guard(kls, region) != NULL)
  3371       // A guard was added.  If the guard is taken, it was an interface.
  3372       phi->add_req(intcon(1));
  3373     // If we fall through, it's a plain class.
  3374     query_value = intcon(0);
  3375     break;
  3377   case vmIntrinsics::_isArray:
  3378     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3379     if (generate_array_guard(kls, region) != NULL)
  3380       // A guard was added.  If the guard is taken, it was an array.
  3381       phi->add_req(intcon(1));
  3382     // If we fall through, it's a plain class.
  3383     query_value = intcon(0);
  3384     break;
  3386   case vmIntrinsics::_isPrimitive:
  3387     query_value = intcon(0); // "normal" path produces false
  3388     break;
  3390   case vmIntrinsics::_getSuperclass:
  3391     // The rules here are somewhat unfortunate, but we can still do better
  3392     // with random logic than with a JNI call.
  3393     // Interfaces store null or Object as _super, but must report null.
  3394     // Arrays store an intermediate super as _super, but must report Object.
  3395     // Other types can report the actual _super.
  3396     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3397     if (generate_interface_guard(kls, region) != NULL)
  3398       // A guard was added.  If the guard is taken, it was an interface.
  3399       phi->add_req(null());
  3400     if (generate_array_guard(kls, region) != NULL)
  3401       // A guard was added.  If the guard is taken, it was an array.
  3402       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3403     // If we fall through, it's a plain class.  Get its _super.
  3404     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3405     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3406     null_ctl = top();
  3407     kls = null_check_oop(kls, &null_ctl);
  3408     if (null_ctl != top()) {
  3409       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3410       region->add_req(null_ctl);
  3411       phi   ->add_req(null());
  3413     if (!stopped()) {
  3414       query_value = load_mirror_from_klass(kls);
  3416     break;
  3418   case vmIntrinsics::_getComponentType:
  3419     if (generate_array_guard(kls, region) != NULL) {
  3420       // Be sure to pin the oop load to the guard edge just created:
  3421       Node* is_array_ctrl = region->in(region->req()-1);
  3422       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3423       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3424       phi->add_req(cmo);
  3426     query_value = null();  // non-array case is null
  3427     break;
  3429   case vmIntrinsics::_getClassAccessFlags:
  3430     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3431     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3432     break;
  3434   default:
  3435     fatal_unexpected_iid(id);
  3436     break;
  3439   // Fall-through is the normal case of a query to a real class.
  3440   phi->init_req(1, query_value);
  3441   region->init_req(1, control());
  3443   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3444   set_result(region, phi);
  3445   return true;
  3448 //--------------------------inline_native_subtype_check------------------------
  3449 // This intrinsic takes the JNI calls out of the heart of
  3450 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3451 bool LibraryCallKit::inline_native_subtype_check() {
  3452   // Pull both arguments off the stack.
  3453   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3454   args[0] = argument(0);
  3455   args[1] = argument(1);
  3456   Node* klasses[2];             // corresponding Klasses: superk, subk
  3457   klasses[0] = klasses[1] = top();
  3459   enum {
  3460     // A full decision tree on {superc is prim, subc is prim}:
  3461     _prim_0_path = 1,           // {P,N} => false
  3462                                 // {P,P} & superc!=subc => false
  3463     _prim_same_path,            // {P,P} & superc==subc => true
  3464     _prim_1_path,               // {N,P} => false
  3465     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3466     _both_ref_path,             // {N,N} & subtype check loses => false
  3467     PATH_LIMIT
  3468   };
  3470   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3471   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3472   record_for_igvn(region);
  3474   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3475   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3476   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3478   // First null-check both mirrors and load each mirror's klass metaobject.
  3479   int which_arg;
  3480   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3481     Node* arg = args[which_arg];
  3482     arg = null_check(arg);
  3483     if (stopped())  break;
  3484     args[which_arg] = arg;
  3486     Node* p = basic_plus_adr(arg, class_klass_offset);
  3487     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3488     klasses[which_arg] = _gvn.transform(kls);
  3491   // Having loaded both klasses, test each for null.
  3492   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3493   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3494     Node* kls = klasses[which_arg];
  3495     Node* null_ctl = top();
  3496     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3497     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3498     region->init_req(prim_path, null_ctl);
  3499     if (stopped())  break;
  3500     klasses[which_arg] = kls;
  3503   if (!stopped()) {
  3504     // now we have two reference types, in klasses[0..1]
  3505     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3506     Node* superk = klasses[0];  // the receiver
  3507     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3508     // now we have a successful reference subtype check
  3509     region->set_req(_ref_subtype_path, control());
  3512   // If both operands are primitive (both klasses null), then
  3513   // we must return true when they are identical primitives.
  3514   // It is convenient to test this after the first null klass check.
  3515   set_control(region->in(_prim_0_path)); // go back to first null check
  3516   if (!stopped()) {
  3517     // Since superc is primitive, make a guard for the superc==subc case.
  3518     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3519     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3520     generate_guard(bol_eq, region, PROB_FAIR);
  3521     if (region->req() == PATH_LIMIT+1) {
  3522       // A guard was added.  If the added guard is taken, superc==subc.
  3523       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3524       region->del_req(PATH_LIMIT);
  3526     region->set_req(_prim_0_path, control()); // Not equal after all.
  3529   // these are the only paths that produce 'true':
  3530   phi->set_req(_prim_same_path,   intcon(1));
  3531   phi->set_req(_ref_subtype_path, intcon(1));
  3533   // pull together the cases:
  3534   assert(region->req() == PATH_LIMIT, "sane region");
  3535   for (uint i = 1; i < region->req(); i++) {
  3536     Node* ctl = region->in(i);
  3537     if (ctl == NULL || ctl == top()) {
  3538       region->set_req(i, top());
  3539       phi   ->set_req(i, top());
  3540     } else if (phi->in(i) == NULL) {
  3541       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3545   set_control(_gvn.transform(region));
  3546   set_result(_gvn.transform(phi));
  3547   return true;
  3550 //---------------------generate_array_guard_common------------------------
  3551 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3552                                                   bool obj_array, bool not_array) {
  3553   // If obj_array/non_array==false/false:
  3554   // Branch around if the given klass is in fact an array (either obj or prim).
  3555   // If obj_array/non_array==false/true:
  3556   // Branch around if the given klass is not an array klass of any kind.
  3557   // If obj_array/non_array==true/true:
  3558   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3559   // If obj_array/non_array==true/false:
  3560   // Branch around if the kls is an oop array (Object[] or subtype)
  3561   //
  3562   // Like generate_guard, adds a new path onto the region.
  3563   jint  layout_con = 0;
  3564   Node* layout_val = get_layout_helper(kls, layout_con);
  3565   if (layout_val == NULL) {
  3566     bool query = (obj_array
  3567                   ? Klass::layout_helper_is_objArray(layout_con)
  3568                   : Klass::layout_helper_is_array(layout_con));
  3569     if (query == not_array) {
  3570       return NULL;                       // never a branch
  3571     } else {                             // always a branch
  3572       Node* always_branch = control();
  3573       if (region != NULL)
  3574         region->add_req(always_branch);
  3575       set_control(top());
  3576       return always_branch;
  3579   // Now test the correct condition.
  3580   jint  nval = (obj_array
  3581                 ? ((jint)Klass::_lh_array_tag_type_value
  3582                    <<    Klass::_lh_array_tag_shift)
  3583                 : Klass::_lh_neutral_value);
  3584   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3585   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3586   // invert the test if we are looking for a non-array
  3587   if (not_array)  btest = BoolTest(btest).negate();
  3588   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3589   return generate_fair_guard(bol, region);
  3593 //-----------------------inline_native_newArray--------------------------
  3594 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3595 bool LibraryCallKit::inline_native_newArray() {
  3596   Node* mirror    = argument(0);
  3597   Node* count_val = argument(1);
  3599   mirror = null_check(mirror);
  3600   // If mirror or obj is dead, only null-path is taken.
  3601   if (stopped())  return true;
  3603   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3604   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3605   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3606                                           TypeInstPtr::NOTNULL);
  3607   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3608   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3609                                           TypePtr::BOTTOM);
  3611   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3612   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3613                                                   result_reg, _slow_path);
  3614   Node* normal_ctl   = control();
  3615   Node* no_array_ctl = result_reg->in(_slow_path);
  3617   // Generate code for the slow case.  We make a call to newArray().
  3618   set_control(no_array_ctl);
  3619   if (!stopped()) {
  3620     // Either the input type is void.class, or else the
  3621     // array klass has not yet been cached.  Either the
  3622     // ensuing call will throw an exception, or else it
  3623     // will cache the array klass for next time.
  3624     PreserveJVMState pjvms(this);
  3625     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3626     Node* slow_result = set_results_for_java_call(slow_call);
  3627     // this->control() comes from set_results_for_java_call
  3628     result_reg->set_req(_slow_path, control());
  3629     result_val->set_req(_slow_path, slow_result);
  3630     result_io ->set_req(_slow_path, i_o());
  3631     result_mem->set_req(_slow_path, reset_memory());
  3634   set_control(normal_ctl);
  3635   if (!stopped()) {
  3636     // Normal case:  The array type has been cached in the java.lang.Class.
  3637     // The following call works fine even if the array type is polymorphic.
  3638     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3639     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3640     result_reg->init_req(_normal_path, control());
  3641     result_val->init_req(_normal_path, obj);
  3642     result_io ->init_req(_normal_path, i_o());
  3643     result_mem->init_req(_normal_path, reset_memory());
  3646   // Return the combined state.
  3647   set_i_o(        _gvn.transform(result_io)  );
  3648   set_all_memory( _gvn.transform(result_mem));
  3650   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3651   set_result(result_reg, result_val);
  3652   return true;
  3655 //----------------------inline_native_getLength--------------------------
  3656 // public static native int java.lang.reflect.Array.getLength(Object array);
  3657 bool LibraryCallKit::inline_native_getLength() {
  3658   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3660   Node* array = null_check(argument(0));
  3661   // If array is dead, only null-path is taken.
  3662   if (stopped())  return true;
  3664   // Deoptimize if it is a non-array.
  3665   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3667   if (non_array != NULL) {
  3668     PreserveJVMState pjvms(this);
  3669     set_control(non_array);
  3670     uncommon_trap(Deoptimization::Reason_intrinsic,
  3671                   Deoptimization::Action_maybe_recompile);
  3674   // If control is dead, only non-array-path is taken.
  3675   if (stopped())  return true;
  3677   // The works fine even if the array type is polymorphic.
  3678   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3679   Node* result = load_array_length(array);
  3681   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3682   set_result(result);
  3683   return true;
  3686 //------------------------inline_array_copyOf----------------------------
  3687 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3688 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3689 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3690   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3692   // Get the arguments.
  3693   Node* original          = argument(0);
  3694   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3695   Node* end               = is_copyOfRange? argument(2): argument(1);
  3696   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3698   Node* newcopy;
  3700   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3701   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3702   { PreserveReexecuteState preexecs(this);
  3703     jvms()->set_should_reexecute(true);
  3705     array_type_mirror = null_check(array_type_mirror);
  3706     original          = null_check(original);
  3708     // Check if a null path was taken unconditionally.
  3709     if (stopped())  return true;
  3711     Node* orig_length = load_array_length(original);
  3713     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3714     klass_node = null_check(klass_node);
  3716     RegionNode* bailout = new (C) RegionNode(1);
  3717     record_for_igvn(bailout);
  3719     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3720     // Bail out if that is so.
  3721     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3722     if (not_objArray != NULL) {
  3723       // Improve the klass node's type from the new optimistic assumption:
  3724       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3725       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3726       Node* cast = new (C) CastPPNode(klass_node, akls);
  3727       cast->init_req(0, control());
  3728       klass_node = _gvn.transform(cast);
  3731     // Bail out if either start or end is negative.
  3732     generate_negative_guard(start, bailout, &start);
  3733     generate_negative_guard(end,   bailout, &end);
  3735     Node* length = end;
  3736     if (_gvn.type(start) != TypeInt::ZERO) {
  3737       length = _gvn.transform(new (C) SubINode(end, start));
  3740     // Bail out if length is negative.
  3741     // Without this the new_array would throw
  3742     // NegativeArraySizeException but IllegalArgumentException is what
  3743     // should be thrown
  3744     generate_negative_guard(length, bailout, &length);
  3746     if (bailout->req() > 1) {
  3747       PreserveJVMState pjvms(this);
  3748       set_control(_gvn.transform(bailout));
  3749       uncommon_trap(Deoptimization::Reason_intrinsic,
  3750                     Deoptimization::Action_maybe_recompile);
  3753     if (!stopped()) {
  3754       // How many elements will we copy from the original?
  3755       // The answer is MinI(orig_length - start, length).
  3756       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3757       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3759       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3761       // Generate a direct call to the right arraycopy function(s).
  3762       // We know the copy is disjoint but we might not know if the
  3763       // oop stores need checking.
  3764       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3765       // This will fail a store-check if x contains any non-nulls.
  3766       bool disjoint_bases = true;
  3767       // if start > orig_length then the length of the copy may be
  3768       // negative.
  3769       bool length_never_negative = !is_copyOfRange;
  3770       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3771                          original, start, newcopy, intcon(0), moved,
  3772                          disjoint_bases, length_never_negative);
  3774   } // original reexecute is set back here
  3776   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3777   if (!stopped()) {
  3778     set_result(newcopy);
  3780   return true;
  3784 //----------------------generate_virtual_guard---------------------------
  3785 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3786 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3787                                              RegionNode* slow_region) {
  3788   ciMethod* method = callee();
  3789   int vtable_index = method->vtable_index();
  3790   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3791          err_msg_res("bad index %d", vtable_index));
  3792   // Get the Method* out of the appropriate vtable entry.
  3793   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3794                      vtable_index*vtableEntry::size()) * wordSize +
  3795                      vtableEntry::method_offset_in_bytes();
  3796   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3797   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3799   // Compare the target method with the expected method (e.g., Object.hashCode).
  3800   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3802   Node* native_call = makecon(native_call_addr);
  3803   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3804   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3806   return generate_slow_guard(test_native, slow_region);
  3809 //-----------------------generate_method_call----------------------------
  3810 // Use generate_method_call to make a slow-call to the real
  3811 // method if the fast path fails.  An alternative would be to
  3812 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3813 // This only works for expanding the current library call,
  3814 // not another intrinsic.  (E.g., don't use this for making an
  3815 // arraycopy call inside of the copyOf intrinsic.)
  3816 CallJavaNode*
  3817 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3818   // When compiling the intrinsic method itself, do not use this technique.
  3819   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3821   ciMethod* method = callee();
  3822   // ensure the JVMS we have will be correct for this call
  3823   guarantee(method_id == method->intrinsic_id(), "must match");
  3825   const TypeFunc* tf = TypeFunc::make(method);
  3826   CallJavaNode* slow_call;
  3827   if (is_static) {
  3828     assert(!is_virtual, "");
  3829     slow_call = new(C) CallStaticJavaNode(C, tf,
  3830                            SharedRuntime::get_resolve_static_call_stub(),
  3831                            method, bci());
  3832   } else if (is_virtual) {
  3833     null_check_receiver();
  3834     int vtable_index = Method::invalid_vtable_index;
  3835     if (UseInlineCaches) {
  3836       // Suppress the vtable call
  3837     } else {
  3838       // hashCode and clone are not a miranda methods,
  3839       // so the vtable index is fixed.
  3840       // No need to use the linkResolver to get it.
  3841        vtable_index = method->vtable_index();
  3842        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3843               err_msg_res("bad index %d", vtable_index));
  3845     slow_call = new(C) CallDynamicJavaNode(tf,
  3846                           SharedRuntime::get_resolve_virtual_call_stub(),
  3847                           method, vtable_index, bci());
  3848   } else {  // neither virtual nor static:  opt_virtual
  3849     null_check_receiver();
  3850     slow_call = new(C) CallStaticJavaNode(C, tf,
  3851                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3852                                 method, bci());
  3853     slow_call->set_optimized_virtual(true);
  3855   set_arguments_for_java_call(slow_call);
  3856   set_edges_for_java_call(slow_call);
  3857   return slow_call;
  3861 //------------------------------inline_native_hashcode--------------------
  3862 // Build special case code for calls to hashCode on an object.
  3863 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3864   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3865   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3867   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3869   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3870   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3871                                           TypeInt::INT);
  3872   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3873   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3874                                           TypePtr::BOTTOM);
  3875   Node* obj = NULL;
  3876   if (!is_static) {
  3877     // Check for hashing null object
  3878     obj = null_check_receiver();
  3879     if (stopped())  return true;        // unconditionally null
  3880     result_reg->init_req(_null_path, top());
  3881     result_val->init_req(_null_path, top());
  3882   } else {
  3883     // Do a null check, and return zero if null.
  3884     // System.identityHashCode(null) == 0
  3885     obj = argument(0);
  3886     Node* null_ctl = top();
  3887     obj = null_check_oop(obj, &null_ctl);
  3888     result_reg->init_req(_null_path, null_ctl);
  3889     result_val->init_req(_null_path, _gvn.intcon(0));
  3892   // Unconditionally null?  Then return right away.
  3893   if (stopped()) {
  3894     set_control( result_reg->in(_null_path));
  3895     if (!stopped())
  3896       set_result(result_val->in(_null_path));
  3897     return true;
  3900   // After null check, get the object's klass.
  3901   Node* obj_klass = load_object_klass(obj);
  3903   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3904   // For each case we generate slightly different code.
  3906   // We only go to the fast case code if we pass a number of guards.  The
  3907   // paths which do not pass are accumulated in the slow_region.
  3908   RegionNode* slow_region = new (C) RegionNode(1);
  3909   record_for_igvn(slow_region);
  3911   // If this is a virtual call, we generate a funny guard.  We pull out
  3912   // the vtable entry corresponding to hashCode() from the target object.
  3913   // If the target method which we are calling happens to be the native
  3914   // Object hashCode() method, we pass the guard.  We do not need this
  3915   // guard for non-virtual calls -- the caller is known to be the native
  3916   // Object hashCode().
  3917   if (is_virtual) {
  3918     generate_virtual_guard(obj_klass, slow_region);
  3921   // Get the header out of the object, use LoadMarkNode when available
  3922   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3923   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3925   // Test the header to see if it is unlocked.
  3926   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3927   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  3928   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3929   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  3930   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  3932   generate_slow_guard(test_unlocked, slow_region);
  3934   // Get the hash value and check to see that it has been properly assigned.
  3935   // We depend on hash_mask being at most 32 bits and avoid the use of
  3936   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3937   // vm: see markOop.hpp.
  3938   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3939   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3940   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  3941   // This hack lets the hash bits live anywhere in the mark object now, as long
  3942   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3943   // Java spec says that HashCode is an int so there's no point in capturing
  3944   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3945   hshifted_header      = ConvX2I(hshifted_header);
  3946   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  3948   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3949   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  3950   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  3952   generate_slow_guard(test_assigned, slow_region);
  3954   Node* init_mem = reset_memory();
  3955   // fill in the rest of the null path:
  3956   result_io ->init_req(_null_path, i_o());
  3957   result_mem->init_req(_null_path, init_mem);
  3959   result_val->init_req(_fast_path, hash_val);
  3960   result_reg->init_req(_fast_path, control());
  3961   result_io ->init_req(_fast_path, i_o());
  3962   result_mem->init_req(_fast_path, init_mem);
  3964   // Generate code for the slow case.  We make a call to hashCode().
  3965   set_control(_gvn.transform(slow_region));
  3966   if (!stopped()) {
  3967     // No need for PreserveJVMState, because we're using up the present state.
  3968     set_all_memory(init_mem);
  3969     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3970     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3971     Node* slow_result = set_results_for_java_call(slow_call);
  3972     // this->control() comes from set_results_for_java_call
  3973     result_reg->init_req(_slow_path, control());
  3974     result_val->init_req(_slow_path, slow_result);
  3975     result_io  ->set_req(_slow_path, i_o());
  3976     result_mem ->set_req(_slow_path, reset_memory());
  3979   // Return the combined state.
  3980   set_i_o(        _gvn.transform(result_io)  );
  3981   set_all_memory( _gvn.transform(result_mem));
  3983   set_result(result_reg, result_val);
  3984   return true;
  3987 //---------------------------inline_native_getClass----------------------------
  3988 // public final native Class<?> java.lang.Object.getClass();
  3989 //
  3990 // Build special case code for calls to getClass on an object.
  3991 bool LibraryCallKit::inline_native_getClass() {
  3992   Node* obj = null_check_receiver();
  3993   if (stopped())  return true;
  3994   set_result(load_mirror_from_klass(load_object_klass(obj)));
  3995   return true;
  3998 //-----------------inline_native_Reflection_getCallerClass---------------------
  3999 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4000 //
  4001 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4002 //
  4003 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4004 // in that it must skip particular security frames and checks for
  4005 // caller sensitive methods.
  4006 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4007 #ifndef PRODUCT
  4008   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4009     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4011 #endif
  4013   if (!jvms()->has_method()) {
  4014 #ifndef PRODUCT
  4015     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4016       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4018 #endif
  4019     return false;
  4022   // Walk back up the JVM state to find the caller at the required
  4023   // depth.
  4024   JVMState* caller_jvms = jvms();
  4026   // Cf. JVM_GetCallerClass
  4027   // NOTE: Start the loop at depth 1 because the current JVM state does
  4028   // not include the Reflection.getCallerClass() frame.
  4029   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4030     ciMethod* m = caller_jvms->method();
  4031     switch (n) {
  4032     case 0:
  4033       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4034       break;
  4035     case 1:
  4036       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4037       if (!m->caller_sensitive()) {
  4038 #ifndef PRODUCT
  4039         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4040           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4042 #endif
  4043         return false;  // bail-out; let JVM_GetCallerClass do the work
  4045       break;
  4046     default:
  4047       if (!m->is_ignored_by_security_stack_walk()) {
  4048         // We have reached the desired frame; return the holder class.
  4049         // Acquire method holder as java.lang.Class and push as constant.
  4050         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4051         ciInstance* caller_mirror = caller_klass->java_mirror();
  4052         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4054 #ifndef PRODUCT
  4055         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4056           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4057           tty->print_cr("  JVM state at this point:");
  4058           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4059             ciMethod* m = jvms()->of_depth(i)->method();
  4060             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4063 #endif
  4064         return true;
  4066       break;
  4070 #ifndef PRODUCT
  4071   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4072     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4073     tty->print_cr("  JVM state at this point:");
  4074     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4075       ciMethod* m = jvms()->of_depth(i)->method();
  4076       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4079 #endif
  4081   return false;  // bail-out; let JVM_GetCallerClass do the work
  4084 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4085   Node* arg = argument(0);
  4086   Node* result;
  4088   switch (id) {
  4089   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4090   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4091   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4092   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4094   case vmIntrinsics::_doubleToLongBits: {
  4095     // two paths (plus control) merge in a wood
  4096     RegionNode *r = new (C) RegionNode(3);
  4097     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4099     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4100     // Build the boolean node
  4101     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4103     // Branch either way.
  4104     // NaN case is less traveled, which makes all the difference.
  4105     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4106     Node *opt_isnan = _gvn.transform(ifisnan);
  4107     assert( opt_isnan->is_If(), "Expect an IfNode");
  4108     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4109     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4111     set_control(iftrue);
  4113     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4114     Node *slow_result = longcon(nan_bits); // return NaN
  4115     phi->init_req(1, _gvn.transform( slow_result ));
  4116     r->init_req(1, iftrue);
  4118     // Else fall through
  4119     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4120     set_control(iffalse);
  4122     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4123     r->init_req(2, iffalse);
  4125     // Post merge
  4126     set_control(_gvn.transform(r));
  4127     record_for_igvn(r);
  4129     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4130     result = phi;
  4131     assert(result->bottom_type()->isa_long(), "must be");
  4132     break;
  4135   case vmIntrinsics::_floatToIntBits: {
  4136     // two paths (plus control) merge in a wood
  4137     RegionNode *r = new (C) RegionNode(3);
  4138     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4140     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4141     // Build the boolean node
  4142     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4144     // Branch either way.
  4145     // NaN case is less traveled, which makes all the difference.
  4146     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4147     Node *opt_isnan = _gvn.transform(ifisnan);
  4148     assert( opt_isnan->is_If(), "Expect an IfNode");
  4149     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4150     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4152     set_control(iftrue);
  4154     static const jint nan_bits = 0x7fc00000;
  4155     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4156     phi->init_req(1, _gvn.transform( slow_result ));
  4157     r->init_req(1, iftrue);
  4159     // Else fall through
  4160     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4161     set_control(iffalse);
  4163     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4164     r->init_req(2, iffalse);
  4166     // Post merge
  4167     set_control(_gvn.transform(r));
  4168     record_for_igvn(r);
  4170     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4171     result = phi;
  4172     assert(result->bottom_type()->isa_int(), "must be");
  4173     break;
  4176   default:
  4177     fatal_unexpected_iid(id);
  4178     break;
  4180   set_result(_gvn.transform(result));
  4181   return true;
  4184 #ifdef _LP64
  4185 #define XTOP ,top() /*additional argument*/
  4186 #else  //_LP64
  4187 #define XTOP        /*no additional argument*/
  4188 #endif //_LP64
  4190 //----------------------inline_unsafe_copyMemory-------------------------
  4191 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4192 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4193   if (callee()->is_static())  return false;  // caller must have the capability!
  4194   null_check_receiver();  // null-check receiver
  4195   if (stopped())  return true;
  4197   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4199   Node* src_ptr =         argument(1);   // type: oop
  4200   Node* src_off = ConvL2X(argument(2));  // type: long
  4201   Node* dst_ptr =         argument(4);   // type: oop
  4202   Node* dst_off = ConvL2X(argument(5));  // type: long
  4203   Node* size    = ConvL2X(argument(7));  // type: long
  4205   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4206          "fieldOffset must be byte-scaled");
  4208   Node* src = make_unsafe_address(src_ptr, src_off);
  4209   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4211   // Conservatively insert a memory barrier on all memory slices.
  4212   // Do not let writes of the copy source or destination float below the copy.
  4213   insert_mem_bar(Op_MemBarCPUOrder);
  4215   // Call it.  Note that the length argument is not scaled.
  4216   make_runtime_call(RC_LEAF|RC_NO_FP,
  4217                     OptoRuntime::fast_arraycopy_Type(),
  4218                     StubRoutines::unsafe_arraycopy(),
  4219                     "unsafe_arraycopy",
  4220                     TypeRawPtr::BOTTOM,
  4221                     src, dst, size XTOP);
  4223   // Do not let reads of the copy destination float above the copy.
  4224   insert_mem_bar(Op_MemBarCPUOrder);
  4226   return true;
  4229 //------------------------clone_coping-----------------------------------
  4230 // Helper function for inline_native_clone.
  4231 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4232   assert(obj_size != NULL, "");
  4233   Node* raw_obj = alloc_obj->in(1);
  4234   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4236   AllocateNode* alloc = NULL;
  4237   if (ReduceBulkZeroing) {
  4238     // We will be completely responsible for initializing this object -
  4239     // mark Initialize node as complete.
  4240     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4241     // The object was just allocated - there should be no any stores!
  4242     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4243     // Mark as complete_with_arraycopy so that on AllocateNode
  4244     // expansion, we know this AllocateNode is initialized by an array
  4245     // copy and a StoreStore barrier exists after the array copy.
  4246     alloc->initialization()->set_complete_with_arraycopy();
  4249   // Copy the fastest available way.
  4250   // TODO: generate fields copies for small objects instead.
  4251   Node* src  = obj;
  4252   Node* dest = alloc_obj;
  4253   Node* size = _gvn.transform(obj_size);
  4255   // Exclude the header but include array length to copy by 8 bytes words.
  4256   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4257   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4258                             instanceOopDesc::base_offset_in_bytes();
  4259   // base_off:
  4260   // 8  - 32-bit VM
  4261   // 12 - 64-bit VM, compressed klass
  4262   // 16 - 64-bit VM, normal klass
  4263   if (base_off % BytesPerLong != 0) {
  4264     assert(UseCompressedClassPointers, "");
  4265     if (is_array) {
  4266       // Exclude length to copy by 8 bytes words.
  4267       base_off += sizeof(int);
  4268     } else {
  4269       // Include klass to copy by 8 bytes words.
  4270       base_off = instanceOopDesc::klass_offset_in_bytes();
  4272     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4274   src  = basic_plus_adr(src,  base_off);
  4275   dest = basic_plus_adr(dest, base_off);
  4277   // Compute the length also, if needed:
  4278   Node* countx = size;
  4279   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4280   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4282   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4283   bool disjoint_bases = true;
  4284   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4285                                src, NULL, dest, NULL, countx,
  4286                                /*dest_uninitialized*/true);
  4288   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4289   if (card_mark) {
  4290     assert(!is_array, "");
  4291     // Put in store barrier for any and all oops we are sticking
  4292     // into this object.  (We could avoid this if we could prove
  4293     // that the object type contains no oop fields at all.)
  4294     Node* no_particular_value = NULL;
  4295     Node* no_particular_field = NULL;
  4296     int raw_adr_idx = Compile::AliasIdxRaw;
  4297     post_barrier(control(),
  4298                  memory(raw_adr_type),
  4299                  alloc_obj,
  4300                  no_particular_field,
  4301                  raw_adr_idx,
  4302                  no_particular_value,
  4303                  T_OBJECT,
  4304                  false);
  4307   // Do not let reads from the cloned object float above the arraycopy.
  4308   if (alloc != NULL) {
  4309     // Do not let stores that initialize this object be reordered with
  4310     // a subsequent store that would make this object accessible by
  4311     // other threads.
  4312     // Record what AllocateNode this StoreStore protects so that
  4313     // escape analysis can go from the MemBarStoreStoreNode to the
  4314     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4315     // based on the escape status of the AllocateNode.
  4316     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4317   } else {
  4318     insert_mem_bar(Op_MemBarCPUOrder);
  4322 //------------------------inline_native_clone----------------------------
  4323 // protected native Object java.lang.Object.clone();
  4324 //
  4325 // Here are the simple edge cases:
  4326 //  null receiver => normal trap
  4327 //  virtual and clone was overridden => slow path to out-of-line clone
  4328 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4329 //
  4330 // The general case has two steps, allocation and copying.
  4331 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4332 //
  4333 // Copying also has two cases, oop arrays and everything else.
  4334 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4335 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4336 //
  4337 // These steps fold up nicely if and when the cloned object's klass
  4338 // can be sharply typed as an object array, a type array, or an instance.
  4339 //
  4340 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4341   PhiNode* result_val;
  4343   // Set the reexecute bit for the interpreter to reexecute
  4344   // the bytecode that invokes Object.clone if deoptimization happens.
  4345   { PreserveReexecuteState preexecs(this);
  4346     jvms()->set_should_reexecute(true);
  4348     Node* obj = null_check_receiver();
  4349     if (stopped())  return true;
  4351     Node* obj_klass = load_object_klass(obj);
  4352     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4353     const TypeOopPtr*   toop   = ((tklass != NULL)
  4354                                 ? tklass->as_instance_type()
  4355                                 : TypeInstPtr::NOTNULL);
  4357     // Conservatively insert a memory barrier on all memory slices.
  4358     // Do not let writes into the original float below the clone.
  4359     insert_mem_bar(Op_MemBarCPUOrder);
  4361     // paths into result_reg:
  4362     enum {
  4363       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4364       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4365       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4366       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4367       PATH_LIMIT
  4368     };
  4369     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4370     result_val             = new(C) PhiNode(result_reg,
  4371                                             TypeInstPtr::NOTNULL);
  4372     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4373     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4374                                             TypePtr::BOTTOM);
  4375     record_for_igvn(result_reg);
  4377     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4378     int raw_adr_idx = Compile::AliasIdxRaw;
  4380     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4381     if (array_ctl != NULL) {
  4382       // It's an array.
  4383       PreserveJVMState pjvms(this);
  4384       set_control(array_ctl);
  4385       Node* obj_length = load_array_length(obj);
  4386       Node* obj_size  = NULL;
  4387       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4389       if (!use_ReduceInitialCardMarks()) {
  4390         // If it is an oop array, it requires very special treatment,
  4391         // because card marking is required on each card of the array.
  4392         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4393         if (is_obja != NULL) {
  4394           PreserveJVMState pjvms2(this);
  4395           set_control(is_obja);
  4396           // Generate a direct call to the right arraycopy function(s).
  4397           bool disjoint_bases = true;
  4398           bool length_never_negative = true;
  4399           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4400                              obj, intcon(0), alloc_obj, intcon(0),
  4401                              obj_length,
  4402                              disjoint_bases, length_never_negative);
  4403           result_reg->init_req(_objArray_path, control());
  4404           result_val->init_req(_objArray_path, alloc_obj);
  4405           result_i_o ->set_req(_objArray_path, i_o());
  4406           result_mem ->set_req(_objArray_path, reset_memory());
  4409       // Otherwise, there are no card marks to worry about.
  4410       // (We can dispense with card marks if we know the allocation
  4411       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4412       //  causes the non-eden paths to take compensating steps to
  4413       //  simulate a fresh allocation, so that no further
  4414       //  card marks are required in compiled code to initialize
  4415       //  the object.)
  4417       if (!stopped()) {
  4418         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4420         // Present the results of the copy.
  4421         result_reg->init_req(_array_path, control());
  4422         result_val->init_req(_array_path, alloc_obj);
  4423         result_i_o ->set_req(_array_path, i_o());
  4424         result_mem ->set_req(_array_path, reset_memory());
  4428     // We only go to the instance fast case code if we pass a number of guards.
  4429     // The paths which do not pass are accumulated in the slow_region.
  4430     RegionNode* slow_region = new (C) RegionNode(1);
  4431     record_for_igvn(slow_region);
  4432     if (!stopped()) {
  4433       // It's an instance (we did array above).  Make the slow-path tests.
  4434       // If this is a virtual call, we generate a funny guard.  We grab
  4435       // the vtable entry corresponding to clone() from the target object.
  4436       // If the target method which we are calling happens to be the
  4437       // Object clone() method, we pass the guard.  We do not need this
  4438       // guard for non-virtual calls; the caller is known to be the native
  4439       // Object clone().
  4440       if (is_virtual) {
  4441         generate_virtual_guard(obj_klass, slow_region);
  4444       // The object must be cloneable and must not have a finalizer.
  4445       // Both of these conditions may be checked in a single test.
  4446       // We could optimize the cloneable test further, but we don't care.
  4447       generate_access_flags_guard(obj_klass,
  4448                                   // Test both conditions:
  4449                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4450                                   // Must be cloneable but not finalizer:
  4451                                   JVM_ACC_IS_CLONEABLE,
  4452                                   slow_region);
  4455     if (!stopped()) {
  4456       // It's an instance, and it passed the slow-path tests.
  4457       PreserveJVMState pjvms(this);
  4458       Node* obj_size  = NULL;
  4459       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4461       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4463       // Present the results of the slow call.
  4464       result_reg->init_req(_instance_path, control());
  4465       result_val->init_req(_instance_path, alloc_obj);
  4466       result_i_o ->set_req(_instance_path, i_o());
  4467       result_mem ->set_req(_instance_path, reset_memory());
  4470     // Generate code for the slow case.  We make a call to clone().
  4471     set_control(_gvn.transform(slow_region));
  4472     if (!stopped()) {
  4473       PreserveJVMState pjvms(this);
  4474       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4475       Node* slow_result = set_results_for_java_call(slow_call);
  4476       // this->control() comes from set_results_for_java_call
  4477       result_reg->init_req(_slow_path, control());
  4478       result_val->init_req(_slow_path, slow_result);
  4479       result_i_o ->set_req(_slow_path, i_o());
  4480       result_mem ->set_req(_slow_path, reset_memory());
  4483     // Return the combined state.
  4484     set_control(    _gvn.transform(result_reg));
  4485     set_i_o(        _gvn.transform(result_i_o));
  4486     set_all_memory( _gvn.transform(result_mem));
  4487   } // original reexecute is set back here
  4489   set_result(_gvn.transform(result_val));
  4490   return true;
  4493 //------------------------------basictype2arraycopy----------------------------
  4494 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4495                                             Node* src_offset,
  4496                                             Node* dest_offset,
  4497                                             bool disjoint_bases,
  4498                                             const char* &name,
  4499                                             bool dest_uninitialized) {
  4500   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4501   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4503   bool aligned = false;
  4504   bool disjoint = disjoint_bases;
  4506   // if the offsets are the same, we can treat the memory regions as
  4507   // disjoint, because either the memory regions are in different arrays,
  4508   // or they are identical (which we can treat as disjoint.)  We can also
  4509   // treat a copy with a destination index  less that the source index
  4510   // as disjoint since a low->high copy will work correctly in this case.
  4511   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4512       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4513     // both indices are constants
  4514     int s_offs = src_offset_inttype->get_con();
  4515     int d_offs = dest_offset_inttype->get_con();
  4516     int element_size = type2aelembytes(t);
  4517     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4518               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4519     if (s_offs >= d_offs)  disjoint = true;
  4520   } else if (src_offset == dest_offset && src_offset != NULL) {
  4521     // This can occur if the offsets are identical non-constants.
  4522     disjoint = true;
  4525   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4529 //------------------------------inline_arraycopy-----------------------
  4530 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4531 //                                                      Object dest, int destPos,
  4532 //                                                      int length);
  4533 bool LibraryCallKit::inline_arraycopy() {
  4534   // Get the arguments.
  4535   Node* src         = argument(0);  // type: oop
  4536   Node* src_offset  = argument(1);  // type: int
  4537   Node* dest        = argument(2);  // type: oop
  4538   Node* dest_offset = argument(3);  // type: int
  4539   Node* length      = argument(4);  // type: int
  4541   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4542   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4543   // is.  The checks we choose to mandate at compile time are:
  4544   //
  4545   // (1) src and dest are arrays.
  4546   const Type* src_type  = src->Value(&_gvn);
  4547   const Type* dest_type = dest->Value(&_gvn);
  4548   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4549   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4550   if (top_src  == NULL || top_src->klass()  == NULL ||
  4551       top_dest == NULL || top_dest->klass() == NULL) {
  4552     // Conservatively insert a memory barrier on all memory slices.
  4553     // Do not let writes into the source float below the arraycopy.
  4554     insert_mem_bar(Op_MemBarCPUOrder);
  4556     // Call StubRoutines::generic_arraycopy stub.
  4557     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4558                        src, src_offset, dest, dest_offset, length);
  4560     // Do not let reads from the destination float above the arraycopy.
  4561     // Since we cannot type the arrays, we don't know which slices
  4562     // might be affected.  We could restrict this barrier only to those
  4563     // memory slices which pertain to array elements--but don't bother.
  4564     if (!InsertMemBarAfterArraycopy)
  4565       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4566       insert_mem_bar(Op_MemBarCPUOrder);
  4567     return true;
  4570   // (2) src and dest arrays must have elements of the same BasicType
  4571   // Figure out the size and type of the elements we will be copying.
  4572   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4573   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4574   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4575   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4577   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4578     // The component types are not the same or are not recognized.  Punt.
  4579     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4580     generate_slow_arraycopy(TypePtr::BOTTOM,
  4581                             src, src_offset, dest, dest_offset, length,
  4582                             /*dest_uninitialized*/false);
  4583     return true;
  4586   //---------------------------------------------------------------------------
  4587   // We will make a fast path for this call to arraycopy.
  4589   // We have the following tests left to perform:
  4590   //
  4591   // (3) src and dest must not be null.
  4592   // (4) src_offset must not be negative.
  4593   // (5) dest_offset must not be negative.
  4594   // (6) length must not be negative.
  4595   // (7) src_offset + length must not exceed length of src.
  4596   // (8) dest_offset + length must not exceed length of dest.
  4597   // (9) each element of an oop array must be assignable
  4599   RegionNode* slow_region = new (C) RegionNode(1);
  4600   record_for_igvn(slow_region);
  4602   // (3) operands must not be null
  4603   // We currently perform our null checks with the null_check routine.
  4604   // This means that the null exceptions will be reported in the caller
  4605   // rather than (correctly) reported inside of the native arraycopy call.
  4606   // This should be corrected, given time.  We do our null check with the
  4607   // stack pointer restored.
  4608   src  = null_check(src,  T_ARRAY);
  4609   dest = null_check(dest, T_ARRAY);
  4611   // (4) src_offset must not be negative.
  4612   generate_negative_guard(src_offset, slow_region);
  4614   // (5) dest_offset must not be negative.
  4615   generate_negative_guard(dest_offset, slow_region);
  4617   // (6) length must not be negative (moved to generate_arraycopy()).
  4618   // generate_negative_guard(length, slow_region);
  4620   // (7) src_offset + length must not exceed length of src.
  4621   generate_limit_guard(src_offset, length,
  4622                        load_array_length(src),
  4623                        slow_region);
  4625   // (8) dest_offset + length must not exceed length of dest.
  4626   generate_limit_guard(dest_offset, length,
  4627                        load_array_length(dest),
  4628                        slow_region);
  4630   // (9) each element of an oop array must be assignable
  4631   // The generate_arraycopy subroutine checks this.
  4633   // This is where the memory effects are placed:
  4634   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4635   generate_arraycopy(adr_type, dest_elem,
  4636                      src, src_offset, dest, dest_offset, length,
  4637                      false, false, slow_region);
  4639   return true;
  4642 //-----------------------------generate_arraycopy----------------------
  4643 // Generate an optimized call to arraycopy.
  4644 // Caller must guard against non-arrays.
  4645 // Caller must determine a common array basic-type for both arrays.
  4646 // Caller must validate offsets against array bounds.
  4647 // The slow_region has already collected guard failure paths
  4648 // (such as out of bounds length or non-conformable array types).
  4649 // The generated code has this shape, in general:
  4650 //
  4651 //     if (length == 0)  return   // via zero_path
  4652 //     slowval = -1
  4653 //     if (types unknown) {
  4654 //       slowval = call generic copy loop
  4655 //       if (slowval == 0)  return  // via checked_path
  4656 //     } else if (indexes in bounds) {
  4657 //       if ((is object array) && !(array type check)) {
  4658 //         slowval = call checked copy loop
  4659 //         if (slowval == 0)  return  // via checked_path
  4660 //       } else {
  4661 //         call bulk copy loop
  4662 //         return  // via fast_path
  4663 //       }
  4664 //     }
  4665 //     // adjust params for remaining work:
  4666 //     if (slowval != -1) {
  4667 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4668 //     }
  4669 //   slow_region:
  4670 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4671 //     return  // via slow_call_path
  4672 //
  4673 // This routine is used from several intrinsics:  System.arraycopy,
  4674 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4675 //
  4676 void
  4677 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4678                                    BasicType basic_elem_type,
  4679                                    Node* src,  Node* src_offset,
  4680                                    Node* dest, Node* dest_offset,
  4681                                    Node* copy_length,
  4682                                    bool disjoint_bases,
  4683                                    bool length_never_negative,
  4684                                    RegionNode* slow_region) {
  4686   if (slow_region == NULL) {
  4687     slow_region = new(C) RegionNode(1);
  4688     record_for_igvn(slow_region);
  4691   Node* original_dest      = dest;
  4692   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4693   bool  dest_uninitialized = false;
  4695   // See if this is the initialization of a newly-allocated array.
  4696   // If so, we will take responsibility here for initializing it to zero.
  4697   // (Note:  Because tightly_coupled_allocation performs checks on the
  4698   // out-edges of the dest, we need to avoid making derived pointers
  4699   // from it until we have checked its uses.)
  4700   if (ReduceBulkZeroing
  4701       && !ZeroTLAB              // pointless if already zeroed
  4702       && basic_elem_type != T_CONFLICT // avoid corner case
  4703       && !src->eqv_uncast(dest)
  4704       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4705           != NULL)
  4706       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4707       && alloc->maybe_set_complete(&_gvn)) {
  4708     // "You break it, you buy it."
  4709     InitializeNode* init = alloc->initialization();
  4710     assert(init->is_complete(), "we just did this");
  4711     init->set_complete_with_arraycopy();
  4712     assert(dest->is_CheckCastPP(), "sanity");
  4713     assert(dest->in(0)->in(0) == init, "dest pinned");
  4714     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4715     // From this point on, every exit path is responsible for
  4716     // initializing any non-copied parts of the object to zero.
  4717     // Also, if this flag is set we make sure that arraycopy interacts properly
  4718     // with G1, eliding pre-barriers. See CR 6627983.
  4719     dest_uninitialized = true;
  4720   } else {
  4721     // No zeroing elimination here.
  4722     alloc             = NULL;
  4723     //original_dest   = dest;
  4724     //dest_uninitialized = false;
  4727   // Results are placed here:
  4728   enum { fast_path        = 1,  // normal void-returning assembly stub
  4729          checked_path     = 2,  // special assembly stub with cleanup
  4730          slow_call_path   = 3,  // something went wrong; call the VM
  4731          zero_path        = 4,  // bypass when length of copy is zero
  4732          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4733          PATH_LIMIT       = 6
  4734   };
  4735   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4736   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4737   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4738   record_for_igvn(result_region);
  4739   _gvn.set_type_bottom(result_i_o);
  4740   _gvn.set_type_bottom(result_memory);
  4741   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4743   // The slow_control path:
  4744   Node* slow_control;
  4745   Node* slow_i_o = i_o();
  4746   Node* slow_mem = memory(adr_type);
  4747   debug_only(slow_control = (Node*) badAddress);
  4749   // Checked control path:
  4750   Node* checked_control = top();
  4751   Node* checked_mem     = NULL;
  4752   Node* checked_i_o     = NULL;
  4753   Node* checked_value   = NULL;
  4755   if (basic_elem_type == T_CONFLICT) {
  4756     assert(!dest_uninitialized, "");
  4757     Node* cv = generate_generic_arraycopy(adr_type,
  4758                                           src, src_offset, dest, dest_offset,
  4759                                           copy_length, dest_uninitialized);
  4760     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4761     checked_control = control();
  4762     checked_i_o     = i_o();
  4763     checked_mem     = memory(adr_type);
  4764     checked_value   = cv;
  4765     set_control(top());         // no fast path
  4768   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4769   if (not_pos != NULL) {
  4770     PreserveJVMState pjvms(this);
  4771     set_control(not_pos);
  4773     // (6) length must not be negative.
  4774     if (!length_never_negative) {
  4775       generate_negative_guard(copy_length, slow_region);
  4778     // copy_length is 0.
  4779     if (!stopped() && dest_uninitialized) {
  4780       Node* dest_length = alloc->in(AllocateNode::ALength);
  4781       if (copy_length->eqv_uncast(dest_length)
  4782           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4783         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4784       } else {
  4785         // Clear the whole thing since there are no source elements to copy.
  4786         generate_clear_array(adr_type, dest, basic_elem_type,
  4787                              intcon(0), NULL,
  4788                              alloc->in(AllocateNode::AllocSize));
  4789         // Use a secondary InitializeNode as raw memory barrier.
  4790         // Currently it is needed only on this path since other
  4791         // paths have stub or runtime calls as raw memory barriers.
  4792         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4793                                                        Compile::AliasIdxRaw,
  4794                                                        top())->as_Initialize();
  4795         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4799     // Present the results of the fast call.
  4800     result_region->init_req(zero_path, control());
  4801     result_i_o   ->init_req(zero_path, i_o());
  4802     result_memory->init_req(zero_path, memory(adr_type));
  4805   if (!stopped() && dest_uninitialized) {
  4806     // We have to initialize the *uncopied* part of the array to zero.
  4807     // The copy destination is the slice dest[off..off+len].  The other slices
  4808     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4809     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4810     Node* dest_length = alloc->in(AllocateNode::ALength);
  4811     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  4812                                                           copy_length));
  4814     // If there is a head section that needs zeroing, do it now.
  4815     if (find_int_con(dest_offset, -1) != 0) {
  4816       generate_clear_array(adr_type, dest, basic_elem_type,
  4817                            intcon(0), dest_offset,
  4818                            NULL);
  4821     // Next, perform a dynamic check on the tail length.
  4822     // It is often zero, and we can win big if we prove this.
  4823     // There are two wins:  Avoid generating the ClearArray
  4824     // with its attendant messy index arithmetic, and upgrade
  4825     // the copy to a more hardware-friendly word size of 64 bits.
  4826     Node* tail_ctl = NULL;
  4827     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4828       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  4829       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  4830       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4831       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4834     // At this point, let's assume there is no tail.
  4835     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4836       // There is no tail.  Try an upgrade to a 64-bit copy.
  4837       bool didit = false;
  4838       { PreserveJVMState pjvms(this);
  4839         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4840                                          src, src_offset, dest, dest_offset,
  4841                                          dest_size, dest_uninitialized);
  4842         if (didit) {
  4843           // Present the results of the block-copying fast call.
  4844           result_region->init_req(bcopy_path, control());
  4845           result_i_o   ->init_req(bcopy_path, i_o());
  4846           result_memory->init_req(bcopy_path, memory(adr_type));
  4849       if (didit)
  4850         set_control(top());     // no regular fast path
  4853     // Clear the tail, if any.
  4854     if (tail_ctl != NULL) {
  4855       Node* notail_ctl = stopped() ? NULL : control();
  4856       set_control(tail_ctl);
  4857       if (notail_ctl == NULL) {
  4858         generate_clear_array(adr_type, dest, basic_elem_type,
  4859                              dest_tail, NULL,
  4860                              dest_size);
  4861       } else {
  4862         // Make a local merge.
  4863         Node* done_ctl = new(C) RegionNode(3);
  4864         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4865         done_ctl->init_req(1, notail_ctl);
  4866         done_mem->init_req(1, memory(adr_type));
  4867         generate_clear_array(adr_type, dest, basic_elem_type,
  4868                              dest_tail, NULL,
  4869                              dest_size);
  4870         done_ctl->init_req(2, control());
  4871         done_mem->init_req(2, memory(adr_type));
  4872         set_control( _gvn.transform(done_ctl));
  4873         set_memory(  _gvn.transform(done_mem), adr_type );
  4878   BasicType copy_type = basic_elem_type;
  4879   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4880   if (!stopped() && copy_type == T_OBJECT) {
  4881     // If src and dest have compatible element types, we can copy bits.
  4882     // Types S[] and D[] are compatible if D is a supertype of S.
  4883     //
  4884     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4885     // which performs a fast optimistic per-oop check, and backs off
  4886     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4887     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4889     // Get the Klass* for both src and dest
  4890     Node* src_klass  = load_object_klass(src);
  4891     Node* dest_klass = load_object_klass(dest);
  4893     // Generate the subtype check.
  4894     // This might fold up statically, or then again it might not.
  4895     //
  4896     // Non-static example:  Copying List<String>.elements to a new String[].
  4897     // The backing store for a List<String> is always an Object[],
  4898     // but its elements are always type String, if the generic types
  4899     // are correct at the source level.
  4900     //
  4901     // Test S[] against D[], not S against D, because (probably)
  4902     // the secondary supertype cache is less busy for S[] than S.
  4903     // This usually only matters when D is an interface.
  4904     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4905     // Plug failing path into checked_oop_disjoint_arraycopy
  4906     if (not_subtype_ctrl != top()) {
  4907       PreserveJVMState pjvms(this);
  4908       set_control(not_subtype_ctrl);
  4909       // (At this point we can assume disjoint_bases, since types differ.)
  4910       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4911       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4912       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4913       Node* dest_elem_klass = _gvn.transform(n1);
  4914       Node* cv = generate_checkcast_arraycopy(adr_type,
  4915                                               dest_elem_klass,
  4916                                               src, src_offset, dest, dest_offset,
  4917                                               ConvI2X(copy_length), dest_uninitialized);
  4918       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4919       checked_control = control();
  4920       checked_i_o     = i_o();
  4921       checked_mem     = memory(adr_type);
  4922       checked_value   = cv;
  4924     // At this point we know we do not need type checks on oop stores.
  4926     // Let's see if we need card marks:
  4927     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4928       // If we do not need card marks, copy using the jint or jlong stub.
  4929       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4930       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4931              "sizes agree");
  4935   if (!stopped()) {
  4936     // Generate the fast path, if possible.
  4937     PreserveJVMState pjvms(this);
  4938     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4939                                  src, src_offset, dest, dest_offset,
  4940                                  ConvI2X(copy_length), dest_uninitialized);
  4942     // Present the results of the fast call.
  4943     result_region->init_req(fast_path, control());
  4944     result_i_o   ->init_req(fast_path, i_o());
  4945     result_memory->init_req(fast_path, memory(adr_type));
  4948   // Here are all the slow paths up to this point, in one bundle:
  4949   slow_control = top();
  4950   if (slow_region != NULL)
  4951     slow_control = _gvn.transform(slow_region);
  4952   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4954   set_control(checked_control);
  4955   if (!stopped()) {
  4956     // Clean up after the checked call.
  4957     // The returned value is either 0 or -1^K,
  4958     // where K = number of partially transferred array elements.
  4959     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  4960     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  4961     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4963     // If it is 0, we are done, so transfer to the end.
  4964     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  4965     result_region->init_req(checked_path, checks_done);
  4966     result_i_o   ->init_req(checked_path, checked_i_o);
  4967     result_memory->init_req(checked_path, checked_mem);
  4969     // If it is not zero, merge into the slow call.
  4970     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  4971     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4972     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4973     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4974     record_for_igvn(slow_reg2);
  4975     slow_reg2  ->init_req(1, slow_control);
  4976     slow_i_o2  ->init_req(1, slow_i_o);
  4977     slow_mem2  ->init_req(1, slow_mem);
  4978     slow_reg2  ->init_req(2, control());
  4979     slow_i_o2  ->init_req(2, checked_i_o);
  4980     slow_mem2  ->init_req(2, checked_mem);
  4982     slow_control = _gvn.transform(slow_reg2);
  4983     slow_i_o     = _gvn.transform(slow_i_o2);
  4984     slow_mem     = _gvn.transform(slow_mem2);
  4986     if (alloc != NULL) {
  4987       // We'll restart from the very beginning, after zeroing the whole thing.
  4988       // This can cause double writes, but that's OK since dest is brand new.
  4989       // So we ignore the low 31 bits of the value returned from the stub.
  4990     } else {
  4991       // We must continue the copy exactly where it failed, or else
  4992       // another thread might see the wrong number of writes to dest.
  4993       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  4994       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  4995       slow_offset->init_req(1, intcon(0));
  4996       slow_offset->init_req(2, checked_offset);
  4997       slow_offset  = _gvn.transform(slow_offset);
  4999       // Adjust the arguments by the conditionally incoming offset.
  5000       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5001       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5002       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5004       // Tweak the node variables to adjust the code produced below:
  5005       src_offset  = src_off_plus;
  5006       dest_offset = dest_off_plus;
  5007       copy_length = length_minus;
  5011   set_control(slow_control);
  5012   if (!stopped()) {
  5013     // Generate the slow path, if needed.
  5014     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5016     set_memory(slow_mem, adr_type);
  5017     set_i_o(slow_i_o);
  5019     if (dest_uninitialized) {
  5020       generate_clear_array(adr_type, dest, basic_elem_type,
  5021                            intcon(0), NULL,
  5022                            alloc->in(AllocateNode::AllocSize));
  5025     generate_slow_arraycopy(adr_type,
  5026                             src, src_offset, dest, dest_offset,
  5027                             copy_length, /*dest_uninitialized*/false);
  5029     result_region->init_req(slow_call_path, control());
  5030     result_i_o   ->init_req(slow_call_path, i_o());
  5031     result_memory->init_req(slow_call_path, memory(adr_type));
  5034   // Remove unused edges.
  5035   for (uint i = 1; i < result_region->req(); i++) {
  5036     if (result_region->in(i) == NULL)
  5037       result_region->init_req(i, top());
  5040   // Finished; return the combined state.
  5041   set_control( _gvn.transform(result_region));
  5042   set_i_o(     _gvn.transform(result_i_o)    );
  5043   set_memory(  _gvn.transform(result_memory), adr_type );
  5045   // The memory edges above are precise in order to model effects around
  5046   // array copies accurately to allow value numbering of field loads around
  5047   // arraycopy.  Such field loads, both before and after, are common in Java
  5048   // collections and similar classes involving header/array data structures.
  5049   //
  5050   // But with low number of register or when some registers are used or killed
  5051   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5052   // The next memory barrier is added to avoid it. If the arraycopy can be
  5053   // optimized away (which it can, sometimes) then we can manually remove
  5054   // the membar also.
  5055   //
  5056   // Do not let reads from the cloned object float above the arraycopy.
  5057   if (alloc != NULL) {
  5058     // Do not let stores that initialize this object be reordered with
  5059     // a subsequent store that would make this object accessible by
  5060     // other threads.
  5061     // Record what AllocateNode this StoreStore protects so that
  5062     // escape analysis can go from the MemBarStoreStoreNode to the
  5063     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5064     // based on the escape status of the AllocateNode.
  5065     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5066   } else if (InsertMemBarAfterArraycopy)
  5067     insert_mem_bar(Op_MemBarCPUOrder);
  5071 // Helper function which determines if an arraycopy immediately follows
  5072 // an allocation, with no intervening tests or other escapes for the object.
  5073 AllocateArrayNode*
  5074 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5075                                            RegionNode* slow_region) {
  5076   if (stopped())             return NULL;  // no fast path
  5077   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5079   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5080   if (alloc == NULL)  return NULL;
  5082   Node* rawmem = memory(Compile::AliasIdxRaw);
  5083   // Is the allocation's memory state untouched?
  5084   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5085     // Bail out if there have been raw-memory effects since the allocation.
  5086     // (Example:  There might have been a call or safepoint.)
  5087     return NULL;
  5089   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5090   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5091     return NULL;
  5094   // There must be no unexpected observers of this allocation.
  5095   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5096     Node* obs = ptr->fast_out(i);
  5097     if (obs != this->map()) {
  5098       return NULL;
  5102   // This arraycopy must unconditionally follow the allocation of the ptr.
  5103   Node* alloc_ctl = ptr->in(0);
  5104   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5106   Node* ctl = control();
  5107   while (ctl != alloc_ctl) {
  5108     // There may be guards which feed into the slow_region.
  5109     // Any other control flow means that we might not get a chance
  5110     // to finish initializing the allocated object.
  5111     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5112       IfNode* iff = ctl->in(0)->as_If();
  5113       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5114       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5115       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5116         ctl = iff->in(0);       // This test feeds the known slow_region.
  5117         continue;
  5119       // One more try:  Various low-level checks bottom out in
  5120       // uncommon traps.  If the debug-info of the trap omits
  5121       // any reference to the allocation, as we've already
  5122       // observed, then there can be no objection to the trap.
  5123       bool found_trap = false;
  5124       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5125         Node* obs = not_ctl->fast_out(j);
  5126         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5127             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5128           found_trap = true; break;
  5131       if (found_trap) {
  5132         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5133         continue;
  5136     return NULL;
  5139   // If we get this far, we have an allocation which immediately
  5140   // precedes the arraycopy, and we can take over zeroing the new object.
  5141   // The arraycopy will finish the initialization, and provide
  5142   // a new control state to which we will anchor the destination pointer.
  5144   return alloc;
  5147 // Helper for initialization of arrays, creating a ClearArray.
  5148 // It writes zero bits in [start..end), within the body of an array object.
  5149 // The memory effects are all chained onto the 'adr_type' alias category.
  5150 //
  5151 // Since the object is otherwise uninitialized, we are free
  5152 // to put a little "slop" around the edges of the cleared area,
  5153 // as long as it does not go back into the array's header,
  5154 // or beyond the array end within the heap.
  5155 //
  5156 // The lower edge can be rounded down to the nearest jint and the
  5157 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5158 //
  5159 // Arguments:
  5160 //   adr_type           memory slice where writes are generated
  5161 //   dest               oop of the destination array
  5162 //   basic_elem_type    element type of the destination
  5163 //   slice_idx          array index of first element to store
  5164 //   slice_len          number of elements to store (or NULL)
  5165 //   dest_size          total size in bytes of the array object
  5166 //
  5167 // Exactly one of slice_len or dest_size must be non-NULL.
  5168 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5169 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5170 void
  5171 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5172                                      Node* dest,
  5173                                      BasicType basic_elem_type,
  5174                                      Node* slice_idx,
  5175                                      Node* slice_len,
  5176                                      Node* dest_size) {
  5177   // one or the other but not both of slice_len and dest_size:
  5178   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5179   if (slice_len == NULL)  slice_len = top();
  5180   if (dest_size == NULL)  dest_size = top();
  5182   // operate on this memory slice:
  5183   Node* mem = memory(adr_type); // memory slice to operate on
  5185   // scaling and rounding of indexes:
  5186   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5187   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5188   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5189   int bump_bit  = (-1 << scale) & BytesPerInt;
  5191   // determine constant starts and ends
  5192   const intptr_t BIG_NEG = -128;
  5193   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5194   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5195   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5196   if (slice_len_con == 0) {
  5197     return;                     // nothing to do here
  5199   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5200   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5201   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5202     assert(end_con < 0, "not two cons");
  5203     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5204                        BytesPerLong);
  5207   if (start_con >= 0 && end_con >= 0) {
  5208     // Constant start and end.  Simple.
  5209     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5210                                        start_con, end_con, &_gvn);
  5211   } else if (start_con >= 0 && dest_size != top()) {
  5212     // Constant start, pre-rounded end after the tail of the array.
  5213     Node* end = dest_size;
  5214     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5215                                        start_con, end, &_gvn);
  5216   } else if (start_con >= 0 && slice_len != top()) {
  5217     // Constant start, non-constant end.  End needs rounding up.
  5218     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5219     intptr_t end_base  = abase + (slice_idx_con << scale);
  5220     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5221     Node*    end       = ConvI2X(slice_len);
  5222     if (scale != 0)
  5223       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5224     end_base += end_round;
  5225     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5226     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5227     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5228                                        start_con, end, &_gvn);
  5229   } else if (start_con < 0 && dest_size != top()) {
  5230     // Non-constant start, pre-rounded end after the tail of the array.
  5231     // This is almost certainly a "round-to-end" operation.
  5232     Node* start = slice_idx;
  5233     start = ConvI2X(start);
  5234     if (scale != 0)
  5235       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5236     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5237     if ((bump_bit | clear_low) != 0) {
  5238       int to_clear = (bump_bit | clear_low);
  5239       // Align up mod 8, then store a jint zero unconditionally
  5240       // just before the mod-8 boundary.
  5241       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5242           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5243         bump_bit = 0;
  5244         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5245       } else {
  5246         // Bump 'start' up to (or past) the next jint boundary:
  5247         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5248         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5250       // Round bumped 'start' down to jlong boundary in body of array.
  5251       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5252       if (bump_bit != 0) {
  5253         // Store a zero to the immediately preceding jint:
  5254         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5255         Node* p1 = basic_plus_adr(dest, x1);
  5256         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5257         mem = _gvn.transform(mem);
  5260     Node* end = dest_size; // pre-rounded
  5261     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5262                                        start, end, &_gvn);
  5263   } else {
  5264     // Non-constant start, unrounded non-constant end.
  5265     // (Nobody zeroes a random midsection of an array using this routine.)
  5266     ShouldNotReachHere();       // fix caller
  5269   // Done.
  5270   set_memory(mem, adr_type);
  5274 bool
  5275 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5276                                          BasicType basic_elem_type,
  5277                                          AllocateNode* alloc,
  5278                                          Node* src,  Node* src_offset,
  5279                                          Node* dest, Node* dest_offset,
  5280                                          Node* dest_size, bool dest_uninitialized) {
  5281   // See if there is an advantage from block transfer.
  5282   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5283   if (scale >= LogBytesPerLong)
  5284     return false;               // it is already a block transfer
  5286   // Look at the alignment of the starting offsets.
  5287   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5289   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5290   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5291   if (src_off_con < 0 || dest_off_con < 0)
  5292     // At present, we can only understand constants.
  5293     return false;
  5295   intptr_t src_off  = abase + (src_off_con  << scale);
  5296   intptr_t dest_off = abase + (dest_off_con << scale);
  5298   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5299     // Non-aligned; too bad.
  5300     // One more chance:  Pick off an initial 32-bit word.
  5301     // This is a common case, since abase can be odd mod 8.
  5302     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5303         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5304       Node* sptr = basic_plus_adr(src,  src_off);
  5305       Node* dptr = basic_plus_adr(dest, dest_off);
  5306       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5307       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5308       src_off += BytesPerInt;
  5309       dest_off += BytesPerInt;
  5310     } else {
  5311       return false;
  5314   assert(src_off % BytesPerLong == 0, "");
  5315   assert(dest_off % BytesPerLong == 0, "");
  5317   // Do this copy by giant steps.
  5318   Node* sptr  = basic_plus_adr(src,  src_off);
  5319   Node* dptr  = basic_plus_adr(dest, dest_off);
  5320   Node* countx = dest_size;
  5321   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5322   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5324   bool disjoint_bases = true;   // since alloc != NULL
  5325   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5326                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5328   return true;
  5332 // Helper function; generates code for the slow case.
  5333 // We make a call to a runtime method which emulates the native method,
  5334 // but without the native wrapper overhead.
  5335 void
  5336 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5337                                         Node* src,  Node* src_offset,
  5338                                         Node* dest, Node* dest_offset,
  5339                                         Node* copy_length, bool dest_uninitialized) {
  5340   assert(!dest_uninitialized, "Invariant");
  5341   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5342                                  OptoRuntime::slow_arraycopy_Type(),
  5343                                  OptoRuntime::slow_arraycopy_Java(),
  5344                                  "slow_arraycopy", adr_type,
  5345                                  src, src_offset, dest, dest_offset,
  5346                                  copy_length);
  5348   // Handle exceptions thrown by this fellow:
  5349   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5352 // Helper function; generates code for cases requiring runtime checks.
  5353 Node*
  5354 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5355                                              Node* dest_elem_klass,
  5356                                              Node* src,  Node* src_offset,
  5357                                              Node* dest, Node* dest_offset,
  5358                                              Node* copy_length, bool dest_uninitialized) {
  5359   if (stopped())  return NULL;
  5361   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5362   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5363     return NULL;
  5366   // Pick out the parameters required to perform a store-check
  5367   // for the target array.  This is an optimistic check.  It will
  5368   // look in each non-null element's class, at the desired klass's
  5369   // super_check_offset, for the desired klass.
  5370   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5371   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5372   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5373   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5374   Node* check_value  = dest_elem_klass;
  5376   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5377   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5379   // (We know the arrays are never conjoint, because their types differ.)
  5380   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5381                                  OptoRuntime::checkcast_arraycopy_Type(),
  5382                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5383                                  // five arguments, of which two are
  5384                                  // intptr_t (jlong in LP64)
  5385                                  src_start, dest_start,
  5386                                  copy_length XTOP,
  5387                                  check_offset XTOP,
  5388                                  check_value);
  5390   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5394 // Helper function; generates code for cases requiring runtime checks.
  5395 Node*
  5396 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5397                                            Node* src,  Node* src_offset,
  5398                                            Node* dest, Node* dest_offset,
  5399                                            Node* copy_length, bool dest_uninitialized) {
  5400   assert(!dest_uninitialized, "Invariant");
  5401   if (stopped())  return NULL;
  5402   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5403   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5404     return NULL;
  5407   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5408                     OptoRuntime::generic_arraycopy_Type(),
  5409                     copyfunc_addr, "generic_arraycopy", adr_type,
  5410                     src, src_offset, dest, dest_offset, copy_length);
  5412   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5415 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5416 void
  5417 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5418                                              BasicType basic_elem_type,
  5419                                              bool disjoint_bases,
  5420                                              Node* src,  Node* src_offset,
  5421                                              Node* dest, Node* dest_offset,
  5422                                              Node* copy_length, bool dest_uninitialized) {
  5423   if (stopped())  return;               // nothing to do
  5425   Node* src_start  = src;
  5426   Node* dest_start = dest;
  5427   if (src_offset != NULL || dest_offset != NULL) {
  5428     assert(src_offset != NULL && dest_offset != NULL, "");
  5429     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5430     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5433   // Figure out which arraycopy runtime method to call.
  5434   const char* copyfunc_name = "arraycopy";
  5435   address     copyfunc_addr =
  5436       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5437                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5439   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5440   make_runtime_call(RC_LEAF|RC_NO_FP,
  5441                     OptoRuntime::fast_arraycopy_Type(),
  5442                     copyfunc_addr, copyfunc_name, adr_type,
  5443                     src_start, dest_start, copy_length XTOP);
  5446 //-------------inline_encodeISOArray-----------------------------------
  5447 // encode char[] to byte[] in ISO_8859_1
  5448 bool LibraryCallKit::inline_encodeISOArray() {
  5449   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5450   // no receiver since it is static method
  5451   Node *src         = argument(0);
  5452   Node *src_offset  = argument(1);
  5453   Node *dst         = argument(2);
  5454   Node *dst_offset  = argument(3);
  5455   Node *length      = argument(4);
  5457   const Type* src_type = src->Value(&_gvn);
  5458   const Type* dst_type = dst->Value(&_gvn);
  5459   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5460   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5461   if (top_src  == NULL || top_src->klass()  == NULL ||
  5462       top_dest == NULL || top_dest->klass() == NULL) {
  5463     // failed array check
  5464     return false;
  5467   // Figure out the size and type of the elements we will be copying.
  5468   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5469   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5470   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5471     return false;
  5473   Node* src_start = array_element_address(src, src_offset, src_elem);
  5474   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5475   // 'src_start' points to src array + scaled offset
  5476   // 'dst_start' points to dst array + scaled offset
  5478   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5479   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5480   enc = _gvn.transform(enc);
  5481   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5482   set_memory(res_mem, mtype);
  5483   set_result(enc);
  5484   return true;
  5487 /**
  5488  * Calculate CRC32 for byte.
  5489  * int java.util.zip.CRC32.update(int crc, int b)
  5490  */
  5491 bool LibraryCallKit::inline_updateCRC32() {
  5492   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5493   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5494   // no receiver since it is static method
  5495   Node* crc  = argument(0); // type: int
  5496   Node* b    = argument(1); // type: int
  5498   /*
  5499    *    int c = ~ crc;
  5500    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5501    *    b = b ^ (c >>> 8);
  5502    *    crc = ~b;
  5503    */
  5505   Node* M1 = intcon(-1);
  5506   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5507   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5508   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5510   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5511   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5512   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5513   result = make_load(control(), adr, TypeInt::INT, T_INT);
  5515   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5516   result = _gvn.transform(new (C) XorINode(crc, result));
  5517   result = _gvn.transform(new (C) XorINode(result, M1));
  5518   set_result(result);
  5519   return true;
  5522 /**
  5523  * Calculate CRC32 for byte[] array.
  5524  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5525  */
  5526 bool LibraryCallKit::inline_updateBytesCRC32() {
  5527   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5528   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5529   // no receiver since it is static method
  5530   Node* crc     = argument(0); // type: int
  5531   Node* src     = argument(1); // type: oop
  5532   Node* offset  = argument(2); // type: int
  5533   Node* length  = argument(3); // type: int
  5535   const Type* src_type = src->Value(&_gvn);
  5536   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5537   if (top_src  == NULL || top_src->klass()  == NULL) {
  5538     // failed array check
  5539     return false;
  5542   // Figure out the size and type of the elements we will be copying.
  5543   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5544   if (src_elem != T_BYTE) {
  5545     return false;
  5548   // 'src_start' points to src array + scaled offset
  5549   Node* src_start = array_element_address(src, offset, src_elem);
  5551   // We assume that range check is done by caller.
  5552   // TODO: generate range check (offset+length < src.length) in debug VM.
  5554   // Call the stub.
  5555   address stubAddr = StubRoutines::updateBytesCRC32();
  5556   const char *stubName = "updateBytesCRC32";
  5558   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5559                                  stubAddr, stubName, TypePtr::BOTTOM,
  5560                                  crc, src_start, length);
  5561   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5562   set_result(result);
  5563   return true;
  5566 /**
  5567  * Calculate CRC32 for ByteBuffer.
  5568  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5569  */
  5570 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5571   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5572   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5573   // no receiver since it is static method
  5574   Node* crc     = argument(0); // type: int
  5575   Node* src     = argument(1); // type: long
  5576   Node* offset  = argument(3); // type: int
  5577   Node* length  = argument(4); // type: int
  5579   src = ConvL2X(src);  // adjust Java long to machine word
  5580   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5581   offset = ConvI2X(offset);
  5583   // 'src_start' points to src array + scaled offset
  5584   Node* src_start = basic_plus_adr(top(), base, offset);
  5586   // Call the stub.
  5587   address stubAddr = StubRoutines::updateBytesCRC32();
  5588   const char *stubName = "updateBytesCRC32";
  5590   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5591                                  stubAddr, stubName, TypePtr::BOTTOM,
  5592                                  crc, src_start, length);
  5593   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5594   set_result(result);
  5595   return true;
  5598 //----------------------------inline_reference_get----------------------------
  5599 // public T java.lang.ref.Reference.get();
  5600 bool LibraryCallKit::inline_reference_get() {
  5601   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5602   guarantee(referent_offset > 0, "should have already been set");
  5604   // Get the argument:
  5605   Node* reference_obj = null_check_receiver();
  5606   if (stopped()) return true;
  5608   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5610   ciInstanceKlass* klass = env()->Object_klass();
  5611   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5613   Node* no_ctrl = NULL;
  5614   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5616   // Use the pre-barrier to record the value in the referent field
  5617   pre_barrier(false /* do_load */,
  5618               control(),
  5619               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5620               result /* pre_val */,
  5621               T_OBJECT);
  5623   // Add memory barrier to prevent commoning reads from this field
  5624   // across safepoint since GC can change its value.
  5625   insert_mem_bar(Op_MemBarCPUOrder);
  5627   set_result(result);
  5628   return true;
  5632 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5633                                               bool is_exact=true, bool is_static=false) {
  5635   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5636   assert(tinst != NULL, "obj is null");
  5637   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5638   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5640   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5641                                                                           ciSymbol::make(fieldTypeString),
  5642                                                                           is_static);
  5643   if (field == NULL) return (Node *) NULL;
  5644   assert (field != NULL, "undefined field");
  5646   // Next code  copied from Parse::do_get_xxx():
  5648   // Compute address and memory type.
  5649   int offset  = field->offset_in_bytes();
  5650   bool is_vol = field->is_volatile();
  5651   ciType* field_klass = field->type();
  5652   assert(field_klass->is_loaded(), "should be loaded");
  5653   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5654   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5655   BasicType bt = field->layout_type();
  5657   // Build the resultant type of the load
  5658   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5660   // Build the load.
  5661   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5662   return loadedField;
  5666 //------------------------------inline_aescrypt_Block-----------------------
  5667 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5668   address stubAddr;
  5669   const char *stubName;
  5670   assert(UseAES, "need AES instruction support");
  5672   switch(id) {
  5673   case vmIntrinsics::_aescrypt_encryptBlock:
  5674     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5675     stubName = "aescrypt_encryptBlock";
  5676     break;
  5677   case vmIntrinsics::_aescrypt_decryptBlock:
  5678     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5679     stubName = "aescrypt_decryptBlock";
  5680     break;
  5682   if (stubAddr == NULL) return false;
  5684   Node* aescrypt_object = argument(0);
  5685   Node* src             = argument(1);
  5686   Node* src_offset      = argument(2);
  5687   Node* dest            = argument(3);
  5688   Node* dest_offset     = argument(4);
  5690   // (1) src and dest are arrays.
  5691   const Type* src_type = src->Value(&_gvn);
  5692   const Type* dest_type = dest->Value(&_gvn);
  5693   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5694   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5695   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5697   // for the quick and dirty code we will skip all the checks.
  5698   // we are just trying to get the call to be generated.
  5699   Node* src_start  = src;
  5700   Node* dest_start = dest;
  5701   if (src_offset != NULL || dest_offset != NULL) {
  5702     assert(src_offset != NULL && dest_offset != NULL, "");
  5703     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5704     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5707   // now need to get the start of its expanded key array
  5708   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5709   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5710   if (k_start == NULL) return false;
  5712   // Call the stub.
  5713   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5714                     stubAddr, stubName, TypePtr::BOTTOM,
  5715                     src_start, dest_start, k_start);
  5717   return true;
  5720 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5721 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5722   address stubAddr;
  5723   const char *stubName;
  5725   assert(UseAES, "need AES instruction support");
  5727   switch(id) {
  5728   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5729     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5730     stubName = "cipherBlockChaining_encryptAESCrypt";
  5731     break;
  5732   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5733     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5734     stubName = "cipherBlockChaining_decryptAESCrypt";
  5735     break;
  5737   if (stubAddr == NULL) return false;
  5739   Node* cipherBlockChaining_object = argument(0);
  5740   Node* src                        = argument(1);
  5741   Node* src_offset                 = argument(2);
  5742   Node* len                        = argument(3);
  5743   Node* dest                       = argument(4);
  5744   Node* dest_offset                = argument(5);
  5746   // (1) src and dest are arrays.
  5747   const Type* src_type = src->Value(&_gvn);
  5748   const Type* dest_type = dest->Value(&_gvn);
  5749   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5750   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5751   assert (top_src  != NULL && top_src->klass()  != NULL
  5752           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5754   // checks are the responsibility of the caller
  5755   Node* src_start  = src;
  5756   Node* dest_start = dest;
  5757   if (src_offset != NULL || dest_offset != NULL) {
  5758     assert(src_offset != NULL && dest_offset != NULL, "");
  5759     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5760     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5763   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5764   // (because of the predicated logic executed earlier).
  5765   // so we cast it here safely.
  5766   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5768   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5769   if (embeddedCipherObj == NULL) return false;
  5771   // cast it to what we know it will be at runtime
  5772   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5773   assert(tinst != NULL, "CBC obj is null");
  5774   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5775   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5776   if (!klass_AESCrypt->is_loaded()) return false;
  5778   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5779   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5780   const TypeOopPtr* xtype = aklass->as_instance_type();
  5781   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5782   aescrypt_object = _gvn.transform(aescrypt_object);
  5784   // we need to get the start of the aescrypt_object's expanded key array
  5785   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5786   if (k_start == NULL) return false;
  5788   // similarly, get the start address of the r vector
  5789   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5790   if (objRvec == NULL) return false;
  5791   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5793   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5794   make_runtime_call(RC_LEAF|RC_NO_FP,
  5795                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5796                     stubAddr, stubName, TypePtr::BOTTOM,
  5797                     src_start, dest_start, k_start, r_start, len);
  5799   // return is void so no result needs to be pushed
  5801   return true;
  5804 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5805 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5806   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5807   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5808   if (objAESCryptKey == NULL) return (Node *) NULL;
  5810   // now have the array, need to get the start address of the K array
  5811   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5812   return k_start;
  5815 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5816 // Return node representing slow path of predicate check.
  5817 // the pseudo code we want to emulate with this predicate is:
  5818 // for encryption:
  5819 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5820 // for decryption:
  5821 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5822 //    note cipher==plain is more conservative than the original java code but that's OK
  5823 //
  5824 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5825   // First, check receiver for NULL since it is virtual method.
  5826   Node* objCBC = argument(0);
  5827   objCBC = null_check(objCBC);
  5829   if (stopped()) return NULL; // Always NULL
  5831   // Load embeddedCipher field of CipherBlockChaining object.
  5832   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5834   // get AESCrypt klass for instanceOf check
  5835   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5836   // will have same classloader as CipherBlockChaining object
  5837   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5838   assert(tinst != NULL, "CBCobj is null");
  5839   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5841   // we want to do an instanceof comparison against the AESCrypt class
  5842   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5843   if (!klass_AESCrypt->is_loaded()) {
  5844     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5845     Node* ctrl = control();
  5846     set_control(top()); // no regular fast path
  5847     return ctrl;
  5849   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5851   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5852   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5853   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5855   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5857   // for encryption, we are done
  5858   if (!decrypting)
  5859     return instof_false;  // even if it is NULL
  5861   // for decryption, we need to add a further check to avoid
  5862   // taking the intrinsic path when cipher and plain are the same
  5863   // see the original java code for why.
  5864   RegionNode* region = new(C) RegionNode(3);
  5865   region->init_req(1, instof_false);
  5866   Node* src = argument(1);
  5867   Node* dest = argument(4);
  5868   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5869   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5870   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5871   region->init_req(2, src_dest_conjoint);
  5873   record_for_igvn(region);
  5874   return _gvn.transform(region);

mercurial