src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Thu, 16 Jun 2011 15:51:57 -0400

author
tonyp
date
Thu, 16 Jun 2011 15:51:57 -0400
changeset 2971
c9ca3f51cf41
parent 2314
f95d63e2154a
child 3294
bca17e38de00
permissions
-rw-r--r--

6994322: Remove the is_tlab and is_noref / is_large_noref parameters from the CollectedHeap
Summary: Remove two unused parameters from the mem_allocate() method and update its uses accordingly.
Reviewed-by: stefank, johnc

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
    30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "oops/oop.inline.hpp"
    32 #include "oops/oop.psgc.inline.hpp"
    34 // Checks an individual oop for missing precise marks. Mark
    35 // may be either dirty or newgen.
    36 class CheckForUnmarkedOops : public OopClosure {
    37  private:
    38   PSYoungGen*         _young_gen;
    39   CardTableExtension* _card_table;
    40   HeapWord*           _unmarked_addr;
    41   jbyte*              _unmarked_card;
    43  protected:
    44   template <class T> void do_oop_work(T* p) {
    45     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    46     if (_young_gen->is_in_reserved(obj) &&
    47         !_card_table->addr_is_marked_imprecise(p)) {
    48       // Don't overwrite the first missing card mark
    49       if (_unmarked_addr == NULL) {
    50         _unmarked_addr = (HeapWord*)p;
    51         _unmarked_card = _card_table->byte_for(p);
    52       }
    53     }
    54   }
    56  public:
    57   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
    58     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
    60   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
    61   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
    63   bool has_unmarked_oop() {
    64     return _unmarked_addr != NULL;
    65   }
    66 };
    68 // Checks all objects for the existance of some type of mark,
    69 // precise or imprecise, dirty or newgen.
    70 class CheckForUnmarkedObjects : public ObjectClosure {
    71  private:
    72   PSYoungGen*         _young_gen;
    73   CardTableExtension* _card_table;
    75  public:
    76   CheckForUnmarkedObjects() {
    77     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    78     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    80     _young_gen = heap->young_gen();
    81     _card_table = (CardTableExtension*)heap->barrier_set();
    82     // No point in asserting barrier set type here. Need to make CardTableExtension
    83     // a unique barrier set type.
    84   }
    86   // Card marks are not precise. The current system can leave us with
    87   // a mismash of precise marks and beginning of object marks. This means
    88   // we test for missing precise marks first. If any are found, we don't
    89   // fail unless the object head is also unmarked.
    90   virtual void do_object(oop obj) {
    91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
    92     obj->oop_iterate(&object_check);
    93     if (object_check.has_unmarked_oop()) {
    94       assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    95     }
    96   }
    97 };
    99 // Checks for precise marking of oops as newgen.
   100 class CheckForPreciseMarks : public OopClosure {
   101  private:
   102   PSYoungGen*         _young_gen;
   103   CardTableExtension* _card_table;
   105  protected:
   106   template <class T> void do_oop_work(T* p) {
   107     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   108     if (_young_gen->is_in_reserved(obj)) {
   109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
   110       _card_table->set_card_newgen(p);
   111     }
   112   }
   114  public:
   115   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
   116     _young_gen(young_gen), _card_table(card_table) { }
   118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
   119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
   120 };
   122 // We get passed the space_top value to prevent us from traversing into
   123 // the old_gen promotion labs, which cannot be safely parsed.
   124 void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
   125                                            MutableSpace* sp,
   126                                            HeapWord* space_top,
   127                                            PSPromotionManager* pm)
   128 {
   129   assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
   130   assert(start_array->covered_region().contains(sp->used_region()),
   131          "ObjectStartArray does not cover space");
   133   if (sp->not_empty()) {
   134     oop* sp_top = (oop*)space_top;
   135     oop* prev_top = NULL;
   136     jbyte* current_card = byte_for(sp->bottom());
   137     jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
   138     // scan card marking array
   139     while (current_card <= end_card) {
   140       jbyte value = *current_card;
   141       // skip clean cards
   142       if (card_is_clean(value)) {
   143         current_card++;
   144       } else {
   145         // we found a non-clean card
   146         jbyte* first_nonclean_card = current_card++;
   147         oop* bottom = (oop*)addr_for(first_nonclean_card);
   148         // find object starting on card
   149         oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   150         // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
   151         assert(bottom_obj <= bottom, "just checking");
   152         // make sure we don't scan oops we already looked at
   153         if (bottom < prev_top) bottom = prev_top;
   154         // figure out when to stop scanning
   155         jbyte* first_clean_card;
   156         oop* top;
   157         bool restart_scanning;
   158         do {
   159           restart_scanning = false;
   160           // find a clean card
   161           while (current_card <= end_card) {
   162             value = *current_card;
   163             if (card_is_clean(value)) break;
   164             current_card++;
   165           }
   166           // check if we reached the end, if so we are done
   167           if (current_card >= end_card) {
   168             first_clean_card = end_card + 1;
   169             current_card++;
   170             top = sp_top;
   171           } else {
   172             // we have a clean card, find object starting on that card
   173             first_clean_card = current_card++;
   174             top = (oop*)addr_for(first_clean_card);
   175             oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
   176             // top_obj = (oop*)start_array->object_start((HeapWord*)top);
   177             assert(top_obj <= top, "just checking");
   178             if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   179               // an arrayOop is starting on the clean card - since we do exact store
   180               // checks for objArrays we are done
   181             } else {
   182               // otherwise, it is possible that the object starting on the clean card
   183               // spans the entire card, and that the store happened on a later card.
   184               // figure out where the object ends
   185               top = top_obj + oop(top_obj)->size();
   186               jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
   187               if (top_card > first_clean_card) {
   188                 // object ends a different card
   189                 current_card = top_card + 1;
   190                 if (card_is_clean(*top_card)) {
   191                   // the ending card is clean, we are done
   192                   first_clean_card = top_card;
   193                 } else {
   194                   // the ending card is not clean, continue scanning at start of do-while
   195                   restart_scanning = true;
   196                 }
   197               } else {
   198                 // object ends on the clean card, we are done.
   199                 assert(first_clean_card == top_card, "just checking");
   200               }
   201             }
   202           }
   203         } while (restart_scanning);
   204         // we know which cards to scan, now clear them
   205         while (first_nonclean_card < first_clean_card) {
   206           *first_nonclean_card++ = clean_card;
   207         }
   208         // scan oops in objects
   209         do {
   210           oop(bottom_obj)->push_contents(pm);
   211           bottom_obj += oop(bottom_obj)->size();
   212           assert(bottom_obj <= sp_top, "just checking");
   213         } while (bottom_obj < top);
   214         pm->drain_stacks_cond_depth();
   215         // remember top oop* scanned
   216         prev_top = top;
   217       }
   218     }
   219   }
   220 }
   222 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
   223                                                     MutableSpace* sp,
   224                                                     HeapWord* space_top,
   225                                                     PSPromotionManager* pm,
   226                                                     uint stripe_number) {
   227   int ssize = 128; // Naked constant!  Work unit = 64k.
   228   int dirty_card_count = 0;
   230   oop* sp_top = (oop*)space_top;
   231   jbyte* start_card = byte_for(sp->bottom());
   232   jbyte* end_card   = byte_for(sp_top - 1) + 1;
   233   oop* last_scanned = NULL; // Prevent scanning objects more than once
   234   for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
   235     jbyte* worker_start_card = slice + stripe_number * ssize;
   236     if (worker_start_card >= end_card)
   237       return; // We're done.
   239     jbyte* worker_end_card = worker_start_card + ssize;
   240     if (worker_end_card > end_card)
   241       worker_end_card = end_card;
   243     // We do not want to scan objects more than once. In order to accomplish
   244     // this, we assert that any object with an object head inside our 'slice'
   245     // belongs to us. We may need to extend the range of scanned cards if the
   246     // last object continues into the next 'slice'.
   247     //
   248     // Note! ending cards are exclusive!
   249     HeapWord* slice_start = addr_for(worker_start_card);
   250     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
   252     // If there are not objects starting within the chunk, skip it.
   253     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
   254       continue;
   255     }
   256     // Update our beginning addr
   257     HeapWord* first_object = start_array->object_start(slice_start);
   258     debug_only(oop* first_object_within_slice = (oop*) first_object;)
   259     if (first_object < slice_start) {
   260       last_scanned = (oop*)(first_object + oop(first_object)->size());
   261       debug_only(first_object_within_slice = last_scanned;)
   262       worker_start_card = byte_for(last_scanned);
   263     }
   265     // Update the ending addr
   266     if (slice_end < (HeapWord*)sp_top) {
   267       // The subtraction is important! An object may start precisely at slice_end.
   268       HeapWord* last_object = start_array->object_start(slice_end - 1);
   269       slice_end = last_object + oop(last_object)->size();
   270       // worker_end_card is exclusive, so bump it one past the end of last_object's
   271       // covered span.
   272       worker_end_card = byte_for(slice_end) + 1;
   274       if (worker_end_card > end_card)
   275         worker_end_card = end_card;
   276     }
   278     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
   279     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
   280     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
   281     // Note that worker_start_card >= worker_end_card is legal, and happens when
   282     // an object spans an entire slice.
   283     assert(worker_start_card <= end_card, "worker start card beyond end card");
   284     assert(worker_end_card <= end_card, "worker end card beyond end card");
   286     jbyte* current_card = worker_start_card;
   287     while (current_card < worker_end_card) {
   288       // Find an unclean card.
   289       while (current_card < worker_end_card && card_is_clean(*current_card)) {
   290         current_card++;
   291       }
   292       jbyte* first_unclean_card = current_card;
   294       // Find the end of a run of contiguous unclean cards
   295       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   296         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
   297           current_card++;
   298         }
   300         if (current_card < worker_end_card) {
   301           // Some objects may be large enough to span several cards. If such
   302           // an object has more than one dirty card, separated by a clean card,
   303           // we will attempt to scan it twice. The test against "last_scanned"
   304           // prevents the redundant object scan, but it does not prevent newly
   305           // marked cards from being cleaned.
   306           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
   307           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
   308           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
   309           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
   310           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
   311           if (ending_card_of_last_object > current_card) {
   312             // This means the object spans the next complete card.
   313             // We need to bump the current_card to ending_card_of_last_object
   314             current_card = ending_card_of_last_object;
   315           }
   316         }
   317       }
   318       jbyte* following_clean_card = current_card;
   320       if (first_unclean_card < worker_end_card) {
   321         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
   322         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
   323         // "p" should always be >= "last_scanned" because newly GC dirtied
   324         // cards are no longer scanned again (see comment at end
   325         // of loop on the increment of "current_card").  Test that
   326         // hypothesis before removing this code.
   327         // If this code is removed, deal with the first time through
   328         // the loop when the last_scanned is the object starting in
   329         // the previous slice.
   330         assert((p >= last_scanned) ||
   331                (last_scanned == first_object_within_slice),
   332                "Should no longer be possible");
   333         if (p < last_scanned) {
   334           // Avoid scanning more than once; this can happen because
   335           // newgen cards set by GC may a different set than the
   336           // originally dirty set
   337           p = last_scanned;
   338         }
   339         oop* to = (oop*)addr_for(following_clean_card);
   341         // Test slice_end first!
   342         if ((HeapWord*)to > slice_end) {
   343           to = (oop*)slice_end;
   344         } else if (to > sp_top) {
   345           to = sp_top;
   346         }
   348         // we know which cards to scan, now clear them
   349         if (first_unclean_card <= worker_start_card+1)
   350           first_unclean_card = worker_start_card+1;
   351         if (following_clean_card >= worker_end_card-1)
   352           following_clean_card = worker_end_card-1;
   354         while (first_unclean_card < following_clean_card) {
   355           *first_unclean_card++ = clean_card;
   356         }
   358         const int interval = PrefetchScanIntervalInBytes;
   359         // scan all objects in the range
   360         if (interval != 0) {
   361           while (p < to) {
   362             Prefetch::write(p, interval);
   363             oop m = oop(p);
   364             assert(m->is_oop_or_null(), "check for header");
   365             m->push_contents(pm);
   366             p += m->size();
   367           }
   368           pm->drain_stacks_cond_depth();
   369         } else {
   370           while (p < to) {
   371             oop m = oop(p);
   372             assert(m->is_oop_or_null(), "check for header");
   373             m->push_contents(pm);
   374             p += m->size();
   375           }
   376           pm->drain_stacks_cond_depth();
   377         }
   378         last_scanned = p;
   379       }
   380       // "current_card" is still the "following_clean_card" or
   381       // the current_card is >= the worker_end_card so the
   382       // loop will not execute again.
   383       assert((current_card == following_clean_card) ||
   384              (current_card >= worker_end_card),
   385         "current_card should only be incremented if it still equals "
   386         "following_clean_card");
   387       // Increment current_card so that it is not processed again.
   388       // It may now be dirty because a old-to-young pointer was
   389       // found on it an updated.  If it is now dirty, it cannot be
   390       // be safely cleaned in the next iteration.
   391       current_card++;
   392     }
   393   }
   394 }
   396 // This should be called before a scavenge.
   397 void CardTableExtension::verify_all_young_refs_imprecise() {
   398   CheckForUnmarkedObjects check;
   400   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   401   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   403   PSOldGen* old_gen = heap->old_gen();
   404   PSPermGen* perm_gen = heap->perm_gen();
   406   old_gen->object_iterate(&check);
   407   perm_gen->object_iterate(&check);
   408 }
   410 // This should be called immediately after a scavenge, before mutators resume.
   411 void CardTableExtension::verify_all_young_refs_precise() {
   412   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   413   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   415   PSOldGen* old_gen = heap->old_gen();
   416   PSPermGen* perm_gen = heap->perm_gen();
   418   CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
   420   old_gen->oop_iterate(&check);
   421   perm_gen->oop_iterate(&check);
   423   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
   424   verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
   425 }
   427 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
   428   CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
   429   // FIX ME ASSERT HERE
   431   jbyte* bot = card_table->byte_for(mr.start());
   432   jbyte* top = card_table->byte_for(mr.end());
   433   while(bot <= top) {
   434     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
   435     if (*bot == verify_card)
   436       *bot = youngergen_card;
   437     bot++;
   438   }
   439 }
   441 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
   442   jbyte* p = byte_for(addr);
   443   jbyte val = *p;
   445   if (card_is_dirty(val))
   446     return true;
   448   if (card_is_newgen(val))
   449     return true;
   451   if (card_is_clean(val))
   452     return false;
   454   assert(false, "Found unhandled card mark type");
   456   return false;
   457 }
   459 // Also includes verify_card
   460 bool CardTableExtension::addr_is_marked_precise(void *addr) {
   461   jbyte* p = byte_for(addr);
   462   jbyte val = *p;
   464   if (card_is_newgen(val))
   465     return true;
   467   if (card_is_verify(val))
   468     return true;
   470   if (card_is_clean(val))
   471     return false;
   473   if (card_is_dirty(val))
   474     return false;
   476   assert(false, "Found unhandled card mark type");
   478   return false;
   479 }
   481 // Assumes that only the base or the end changes.  This allows indentification
   482 // of the region that is being resized.  The
   483 // CardTableModRefBS::resize_covered_region() is used for the normal case
   484 // where the covered regions are growing or shrinking at the high end.
   485 // The method resize_covered_region_by_end() is analogous to
   486 // CardTableModRefBS::resize_covered_region() but
   487 // for regions that grow or shrink at the low end.
   488 void CardTableExtension::resize_covered_region(MemRegion new_region) {
   490   for (int i = 0; i < _cur_covered_regions; i++) {
   491     if (_covered[i].start() == new_region.start()) {
   492       // Found a covered region with the same start as the
   493       // new region.  The region is growing or shrinking
   494       // from the start of the region.
   495       resize_covered_region_by_start(new_region);
   496       return;
   497     }
   498     if (_covered[i].start() > new_region.start()) {
   499       break;
   500     }
   501   }
   503   int changed_region = -1;
   504   for (int j = 0; j < _cur_covered_regions; j++) {
   505     if (_covered[j].end() == new_region.end()) {
   506       changed_region = j;
   507       // This is a case where the covered region is growing or shrinking
   508       // at the start of the region.
   509       assert(changed_region != -1, "Don't expect to add a covered region");
   510       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
   511         "The sizes should be different here");
   512       resize_covered_region_by_end(changed_region, new_region);
   513       return;
   514     }
   515   }
   516   // This should only be a new covered region (where no existing
   517   // covered region matches at the start or the end).
   518   assert(_cur_covered_regions < _max_covered_regions,
   519     "An existing region should have been found");
   520   resize_covered_region_by_start(new_region);
   521 }
   523 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
   524   CardTableModRefBS::resize_covered_region(new_region);
   525   debug_only(verify_guard();)
   526 }
   528 void CardTableExtension::resize_covered_region_by_end(int changed_region,
   529                                                       MemRegion new_region) {
   530   assert(SafepointSynchronize::is_at_safepoint(),
   531     "Only expect an expansion at the low end at a GC");
   532   debug_only(verify_guard();)
   533 #ifdef ASSERT
   534   for (int k = 0; k < _cur_covered_regions; k++) {
   535     if (_covered[k].end() == new_region.end()) {
   536       assert(changed_region == k, "Changed region is incorrect");
   537       break;
   538     }
   539   }
   540 #endif
   542   // Commit new or uncommit old pages, if necessary.
   543   if (resize_commit_uncommit(changed_region, new_region)) {
   544     // Set the new start of the committed region
   545     resize_update_committed_table(changed_region, new_region);
   546   }
   548   // Update card table entries
   549   resize_update_card_table_entries(changed_region, new_region);
   551   // Update the covered region
   552   resize_update_covered_table(changed_region, new_region);
   554   if (TraceCardTableModRefBS) {
   555     int ind = changed_region;
   556     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   557     gclog_or_tty->print_cr("  "
   558                   "  _covered[%d].start(): " INTPTR_FORMAT
   559                   "  _covered[%d].last(): " INTPTR_FORMAT,
   560                   ind, _covered[ind].start(),
   561                   ind, _covered[ind].last());
   562     gclog_or_tty->print_cr("  "
   563                   "  _committed[%d].start(): " INTPTR_FORMAT
   564                   "  _committed[%d].last(): " INTPTR_FORMAT,
   565                   ind, _committed[ind].start(),
   566                   ind, _committed[ind].last());
   567     gclog_or_tty->print_cr("  "
   568                   "  byte_for(start): " INTPTR_FORMAT
   569                   "  byte_for(last): " INTPTR_FORMAT,
   570                   byte_for(_covered[ind].start()),
   571                   byte_for(_covered[ind].last()));
   572     gclog_or_tty->print_cr("  "
   573                   "  addr_for(start): " INTPTR_FORMAT
   574                   "  addr_for(last): " INTPTR_FORMAT,
   575                   addr_for((jbyte*) _committed[ind].start()),
   576                   addr_for((jbyte*) _committed[ind].last()));
   577   }
   578   debug_only(verify_guard();)
   579 }
   581 bool CardTableExtension::resize_commit_uncommit(int changed_region,
   582                                                 MemRegion new_region) {
   583   bool result = false;
   584   // Commit new or uncommit old pages, if necessary.
   585   MemRegion cur_committed = _committed[changed_region];
   586   assert(_covered[changed_region].end() == new_region.end(),
   587     "The ends of the regions are expected to match");
   588   // Extend the start of this _committed region to
   589   // to cover the start of any previous _committed region.
   590   // This forms overlapping regions, but never interior regions.
   591   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
   592   if (min_prev_start < cur_committed.start()) {
   593     // Only really need to set start of "cur_committed" to
   594     // the new start (min_prev_start) but assertion checking code
   595     // below use cur_committed.end() so make it correct.
   596     MemRegion new_committed =
   597         MemRegion(min_prev_start, cur_committed.end());
   598     cur_committed = new_committed;
   599   }
   600 #ifdef ASSERT
   601   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   602   assert(cur_committed.start() ==
   603     (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
   604                               os::vm_page_size()),
   605     "Starts should have proper alignment");
   606 #endif
   608   jbyte* new_start = byte_for(new_region.start());
   609   // Round down because this is for the start address
   610   HeapWord* new_start_aligned =
   611     (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
   612   // The guard page is always committed and should not be committed over.
   613   // This method is used in cases where the generation is growing toward
   614   // lower addresses but the guard region is still at the end of the
   615   // card table.  That still makes sense when looking for writes
   616   // off the end of the card table.
   617   if (new_start_aligned < cur_committed.start()) {
   618     // Expand the committed region
   619     //
   620     // Case A
   621     //                                          |+ guard +|
   622     //                          |+ cur committed +++++++++|
   623     //                  |+ new committed +++++++++++++++++|
   624     //
   625     // Case B
   626     //                                          |+ guard +|
   627     //                        |+ cur committed +|
   628     //                  |+ new committed +++++++|
   629     //
   630     // These are not expected because the calculation of the
   631     // cur committed region and the new committed region
   632     // share the same end for the covered region.
   633     // Case C
   634     //                                          |+ guard +|
   635     //                        |+ cur committed +|
   636     //                  |+ new committed +++++++++++++++++|
   637     // Case D
   638     //                                          |+ guard +|
   639     //                        |+ cur committed +++++++++++|
   640     //                  |+ new committed +++++++|
   642     HeapWord* new_end_for_commit =
   643       MIN2(cur_committed.end(), _guard_region.start());
   644     if(new_start_aligned < new_end_for_commit) {
   645       MemRegion new_committed =
   646         MemRegion(new_start_aligned, new_end_for_commit);
   647       if (!os::commit_memory((char*)new_committed.start(),
   648                              new_committed.byte_size())) {
   649         vm_exit_out_of_memory(new_committed.byte_size(),
   650                               "card table expansion");
   651       }
   652     }
   653     result = true;
   654   } else if (new_start_aligned > cur_committed.start()) {
   655     // Shrink the committed region
   656 #if 0 // uncommitting space is currently unsafe because of the interactions
   657       // of growing and shrinking regions.  One region A can uncommit space
   658       // that it owns but which is being used by another region B (maybe).
   659       // Region B has not committed the space because it was already
   660       // committed by region A.
   661     MemRegion uncommit_region = committed_unique_to_self(changed_region,
   662       MemRegion(cur_committed.start(), new_start_aligned));
   663     if (!uncommit_region.is_empty()) {
   664       if (!os::uncommit_memory((char*)uncommit_region.start(),
   665                                uncommit_region.byte_size())) {
   666         // If the uncommit fails, ignore it.  Let the
   667         // committed table resizing go even though the committed
   668         // table will over state the committed space.
   669       }
   670     }
   671 #else
   672     assert(!result, "Should be false with current workaround");
   673 #endif
   674   }
   675   assert(_committed[changed_region].end() == cur_committed.end(),
   676     "end should not change");
   677   return result;
   678 }
   680 void CardTableExtension::resize_update_committed_table(int changed_region,
   681                                                        MemRegion new_region) {
   683   jbyte* new_start = byte_for(new_region.start());
   684   // Set the new start of the committed region
   685   HeapWord* new_start_aligned =
   686     (HeapWord*)align_size_down((uintptr_t)new_start,
   687                              os::vm_page_size());
   688   MemRegion new_committed = MemRegion(new_start_aligned,
   689     _committed[changed_region].end());
   690   _committed[changed_region] = new_committed;
   691   _committed[changed_region].set_start(new_start_aligned);
   692 }
   694 void CardTableExtension::resize_update_card_table_entries(int changed_region,
   695                                                           MemRegion new_region) {
   696   debug_only(verify_guard();)
   697   MemRegion original_covered = _covered[changed_region];
   698   // Initialize the card entries.  Only consider the
   699   // region covered by the card table (_whole_heap)
   700   jbyte* entry;
   701   if (new_region.start() < _whole_heap.start()) {
   702     entry = byte_for(_whole_heap.start());
   703   } else {
   704     entry = byte_for(new_region.start());
   705   }
   706   jbyte* end = byte_for(original_covered.start());
   707   // If _whole_heap starts at the original covered regions start,
   708   // this loop will not execute.
   709   while (entry < end) { *entry++ = clean_card; }
   710 }
   712 void CardTableExtension::resize_update_covered_table(int changed_region,
   713                                                      MemRegion new_region) {
   714   // Update the covered region
   715   _covered[changed_region].set_start(new_region.start());
   716   _covered[changed_region].set_word_size(new_region.word_size());
   718   // reorder regions.  There should only be at most 1 out
   719   // of order.
   720   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
   721     if (_covered[i].start() < _covered[i-1].start()) {
   722         MemRegion covered_mr = _covered[i-1];
   723         _covered[i-1] = _covered[i];
   724         _covered[i] = covered_mr;
   725         MemRegion committed_mr = _committed[i-1];
   726       _committed[i-1] = _committed[i];
   727       _committed[i] = committed_mr;
   728       break;
   729     }
   730   }
   731 #ifdef ASSERT
   732   for (int m = 0; m < _cur_covered_regions-1; m++) {
   733     assert(_covered[m].start() <= _covered[m+1].start(),
   734       "Covered regions out of order");
   735     assert(_committed[m].start() <= _committed[m+1].start(),
   736       "Committed regions out of order");
   737   }
   738 #endif
   739 }
   741 // Returns the start of any committed region that is lower than
   742 // the target committed region (index ind) and that intersects the
   743 // target region.  If none, return start of target region.
   744 //
   745 //      -------------
   746 //      |           |
   747 //      -------------
   748 //              ------------
   749 //              | target   |
   750 //              ------------
   751 //                               -------------
   752 //                               |           |
   753 //                               -------------
   754 //      ^ returns this
   755 //
   756 //      -------------
   757 //      |           |
   758 //      -------------
   759 //                      ------------
   760 //                      | target   |
   761 //                      ------------
   762 //                               -------------
   763 //                               |           |
   764 //                               -------------
   765 //                      ^ returns this
   767 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
   768   assert(_cur_covered_regions >= 0, "Expecting at least on region");
   769   HeapWord* min_start = _committed[ind].start();
   770   for (int j = 0; j < ind; j++) {
   771     HeapWord* this_start = _committed[j].start();
   772     if ((this_start < min_start) &&
   773         !(_committed[j].intersection(_committed[ind])).is_empty()) {
   774        min_start = this_start;
   775     }
   776   }
   777   return min_start;
   778 }

mercurial