src/share/vm/oops/methodDataOop.hpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 631
d1605aabd0a1
child 1376
8b46c4d82093
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BytecodeStream;
    27 // The MethodData object collects counts and other profile information
    28 // during zeroth-tier (interpretive) and first-tier execution.
    29 // The profile is used later by compilation heuristics.  Some heuristics
    30 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    31 // optimization often has a down-side, a corner case that it handles
    32 // poorly, but which is thought to be rare.  The profile provides
    33 // evidence of this rarity for a given method or even BCI.  It allows
    34 // the compiler to back out of the optimization at places where it
    35 // has historically been a poor choice.  Other heuristics try to use
    36 // specific information gathered about types observed at a given site.
    37 //
    38 // All data in the profile is approximate.  It is expected to be accurate
    39 // on the whole, but the system expects occasional inaccuraces, due to
    40 // counter overflow, multiprocessor races during data collection, space
    41 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    42 // optimization quality but will not affect correctness.  Also, each MDO
    43 // is marked with its birth-date ("creation_mileage") which can be used
    44 // to assess the quality ("maturity") of its data.
    45 //
    46 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    47 // state.  Also, certain recorded per-BCI events are given one-bit counters
    48 // which overflow to a saturated state which applied to all counters at
    49 // that BCI.  In other words, there is a small lattice which approximates
    50 // the ideal of an infinite-precision counter for each event at each BCI,
    51 // and the lattice quickly "bottoms out" in a state where all counters
    52 // are taken to be indefinitely large.
    53 //
    54 // The reader will find many data races in profile gathering code, starting
    55 // with invocation counter incrementation.  None of these races harm correct
    56 // execution of the compiled code.
    58 // DataLayout
    59 //
    60 // Overlay for generic profiling data.
    61 class DataLayout VALUE_OBJ_CLASS_SPEC {
    62 private:
    63   // Every data layout begins with a header.  This header
    64   // contains a tag, which is used to indicate the size/layout
    65   // of the data, 4 bits of flags, which can be used in any way,
    66   // 4 bits of trap history (none/one reason/many reasons),
    67   // and a bci, which is used to tie this piece of data to a
    68   // specific bci in the bytecodes.
    69   union {
    70     intptr_t _bits;
    71     struct {
    72       u1 _tag;
    73       u1 _flags;
    74       u2 _bci;
    75     } _struct;
    76   } _header;
    78   // The data layout has an arbitrary number of cells, each sized
    79   // to accomodate a pointer or an integer.
    80   intptr_t _cells[1];
    82   // Some types of data layouts need a length field.
    83   static bool needs_array_len(u1 tag);
    85 public:
    86   enum {
    87     counter_increment = 1
    88   };
    90   enum {
    91     cell_size = sizeof(intptr_t)
    92   };
    94   // Tag values
    95   enum {
    96     no_tag,
    97     bit_data_tag,
    98     counter_data_tag,
    99     jump_data_tag,
   100     receiver_type_data_tag,
   101     virtual_call_data_tag,
   102     ret_data_tag,
   103     branch_data_tag,
   104     multi_branch_data_tag,
   105     arg_info_data_tag
   106   };
   108   enum {
   109     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   110     // The trap state breaks down further as [recompile:1 | reason:3].
   111     // This further breakdown is defined in deoptimization.cpp.
   112     // See Deoptimization::trap_state_reason for an assert that
   113     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   114     //
   115     // The trap_state is collected only if ProfileTraps is true.
   116     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   117     trap_shift = BitsPerByte - trap_bits,
   118     trap_mask = right_n_bits(trap_bits),
   119     trap_mask_in_place = (trap_mask << trap_shift),
   120     flag_limit = trap_shift,
   121     flag_mask = right_n_bits(flag_limit),
   122     first_flag = 0
   123   };
   125   // Size computation
   126   static int header_size_in_bytes() {
   127     return cell_size;
   128   }
   129   static int header_size_in_cells() {
   130     return 1;
   131   }
   133   static int compute_size_in_bytes(int cell_count) {
   134     return header_size_in_bytes() + cell_count * cell_size;
   135   }
   137   // Initialization
   138   void initialize(u1 tag, u2 bci, int cell_count);
   140   // Accessors
   141   u1 tag() {
   142     return _header._struct._tag;
   143   }
   145   // Return a few bits of trap state.  Range is [0..trap_mask].
   146   // The state tells if traps with zero, one, or many reasons have occurred.
   147   // It also tells whether zero or many recompilations have occurred.
   148   // The associated trap histogram in the MDO itself tells whether
   149   // traps are common or not.  If a BCI shows that a trap X has
   150   // occurred, and the MDO shows N occurrences of X, we make the
   151   // simplifying assumption that all N occurrences can be blamed
   152   // on that BCI.
   153   int trap_state() {
   154     return ((_header._struct._flags >> trap_shift) & trap_mask);
   155   }
   157   void set_trap_state(int new_state) {
   158     assert(ProfileTraps, "used only under +ProfileTraps");
   159     uint old_flags = (_header._struct._flags & flag_mask);
   160     _header._struct._flags = (new_state << trap_shift) | old_flags;
   161   }
   163   u1 flags() {
   164     return _header._struct._flags;
   165   }
   167   u2 bci() {
   168     return _header._struct._bci;
   169   }
   171   void set_header(intptr_t value) {
   172     _header._bits = value;
   173   }
   174   void release_set_header(intptr_t value) {
   175     OrderAccess::release_store_ptr(&_header._bits, value);
   176   }
   177   intptr_t header() {
   178     return _header._bits;
   179   }
   180   void set_cell_at(int index, intptr_t value) {
   181     _cells[index] = value;
   182   }
   183   void release_set_cell_at(int index, intptr_t value) {
   184     OrderAccess::release_store_ptr(&_cells[index], value);
   185   }
   186   intptr_t cell_at(int index) {
   187     return _cells[index];
   188   }
   189   intptr_t* adr_cell_at(int index) {
   190     return &_cells[index];
   191   }
   192   oop* adr_oop_at(int index) {
   193     return (oop*)&(_cells[index]);
   194   }
   196   void set_flag_at(int flag_number) {
   197     assert(flag_number < flag_limit, "oob");
   198     _header._struct._flags |= (0x1 << flag_number);
   199   }
   200   bool flag_at(int flag_number) {
   201     assert(flag_number < flag_limit, "oob");
   202     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   203   }
   205   // Low-level support for code generation.
   206   static ByteSize header_offset() {
   207     return byte_offset_of(DataLayout, _header);
   208   }
   209   static ByteSize tag_offset() {
   210     return byte_offset_of(DataLayout, _header._struct._tag);
   211   }
   212   static ByteSize flags_offset() {
   213     return byte_offset_of(DataLayout, _header._struct._flags);
   214   }
   215   static ByteSize bci_offset() {
   216     return byte_offset_of(DataLayout, _header._struct._bci);
   217   }
   218   static ByteSize cell_offset(int index) {
   219     return byte_offset_of(DataLayout, _cells[index]);
   220   }
   221   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   222   static int flag_number_to_byte_constant(int flag_number) {
   223     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   224     DataLayout temp; temp.set_header(0);
   225     temp.set_flag_at(flag_number);
   226     return temp._header._struct._flags;
   227   }
   228   // Return a value which, when or-ed as a word into _header, sets the flag.
   229   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   230     DataLayout temp; temp.set_header(0);
   231     temp._header._struct._flags = byte_constant;
   232     return temp._header._bits;
   233   }
   234 };
   237 // ProfileData class hierarchy
   238 class ProfileData;
   239 class   BitData;
   240 class     CounterData;
   241 class       ReceiverTypeData;
   242 class         VirtualCallData;
   243 class       RetData;
   244 class   JumpData;
   245 class     BranchData;
   246 class   ArrayData;
   247 class     MultiBranchData;
   248 class     ArgInfoData;
   251 // ProfileData
   252 //
   253 // A ProfileData object is created to refer to a section of profiling
   254 // data in a structured way.
   255 class ProfileData : public ResourceObj {
   256 private:
   257 #ifndef PRODUCT
   258   enum {
   259     tab_width_one = 16,
   260     tab_width_two = 36
   261   };
   262 #endif // !PRODUCT
   264   // This is a pointer to a section of profiling data.
   265   DataLayout* _data;
   267 protected:
   268   DataLayout* data() { return _data; }
   270   enum {
   271     cell_size = DataLayout::cell_size
   272   };
   274 public:
   275   // How many cells are in this?
   276   virtual int cell_count() {
   277     ShouldNotReachHere();
   278     return -1;
   279   }
   281   // Return the size of this data.
   282   int size_in_bytes() {
   283     return DataLayout::compute_size_in_bytes(cell_count());
   284   }
   286 protected:
   287   // Low-level accessors for underlying data
   288   void set_intptr_at(int index, intptr_t value) {
   289     assert(0 <= index && index < cell_count(), "oob");
   290     data()->set_cell_at(index, value);
   291   }
   292   void release_set_intptr_at(int index, intptr_t value) {
   293     assert(0 <= index && index < cell_count(), "oob");
   294     data()->release_set_cell_at(index, value);
   295   }
   296   intptr_t intptr_at(int index) {
   297     assert(0 <= index && index < cell_count(), "oob");
   298     return data()->cell_at(index);
   299   }
   300   void set_uint_at(int index, uint value) {
   301     set_intptr_at(index, (intptr_t) value);
   302   }
   303   void release_set_uint_at(int index, uint value) {
   304     release_set_intptr_at(index, (intptr_t) value);
   305   }
   306   uint uint_at(int index) {
   307     return (uint)intptr_at(index);
   308   }
   309   void set_int_at(int index, int value) {
   310     set_intptr_at(index, (intptr_t) value);
   311   }
   312   void release_set_int_at(int index, int value) {
   313     release_set_intptr_at(index, (intptr_t) value);
   314   }
   315   int int_at(int index) {
   316     return (int)intptr_at(index);
   317   }
   318   int int_at_unchecked(int index) {
   319     return (int)data()->cell_at(index);
   320   }
   321   void set_oop_at(int index, oop value) {
   322     set_intptr_at(index, (intptr_t) value);
   323   }
   324   oop oop_at(int index) {
   325     return (oop)intptr_at(index);
   326   }
   327   oop* adr_oop_at(int index) {
   328     assert(0 <= index && index < cell_count(), "oob");
   329     return data()->adr_oop_at(index);
   330   }
   332   void set_flag_at(int flag_number) {
   333     data()->set_flag_at(flag_number);
   334   }
   335   bool flag_at(int flag_number) {
   336     return data()->flag_at(flag_number);
   337   }
   339   // two convenient imports for use by subclasses:
   340   static ByteSize cell_offset(int index) {
   341     return DataLayout::cell_offset(index);
   342   }
   343   static int flag_number_to_byte_constant(int flag_number) {
   344     return DataLayout::flag_number_to_byte_constant(flag_number);
   345   }
   347   ProfileData(DataLayout* data) {
   348     _data = data;
   349   }
   351 public:
   352   // Constructor for invalid ProfileData.
   353   ProfileData();
   355   u2 bci() {
   356     return data()->bci();
   357   }
   359   address dp() {
   360     return (address)_data;
   361   }
   363   int trap_state() {
   364     return data()->trap_state();
   365   }
   366   void set_trap_state(int new_state) {
   367     data()->set_trap_state(new_state);
   368   }
   370   // Type checking
   371   virtual bool is_BitData()         { return false; }
   372   virtual bool is_CounterData()     { return false; }
   373   virtual bool is_JumpData()        { return false; }
   374   virtual bool is_ReceiverTypeData(){ return false; }
   375   virtual bool is_VirtualCallData() { return false; }
   376   virtual bool is_RetData()         { return false; }
   377   virtual bool is_BranchData()      { return false; }
   378   virtual bool is_ArrayData()       { return false; }
   379   virtual bool is_MultiBranchData() { return false; }
   380   virtual bool is_ArgInfoData()     { return false; }
   383   BitData* as_BitData() {
   384     assert(is_BitData(), "wrong type");
   385     return is_BitData()         ? (BitData*)        this : NULL;
   386   }
   387   CounterData* as_CounterData() {
   388     assert(is_CounterData(), "wrong type");
   389     return is_CounterData()     ? (CounterData*)    this : NULL;
   390   }
   391   JumpData* as_JumpData() {
   392     assert(is_JumpData(), "wrong type");
   393     return is_JumpData()        ? (JumpData*)       this : NULL;
   394   }
   395   ReceiverTypeData* as_ReceiverTypeData() {
   396     assert(is_ReceiverTypeData(), "wrong type");
   397     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   398   }
   399   VirtualCallData* as_VirtualCallData() {
   400     assert(is_VirtualCallData(), "wrong type");
   401     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   402   }
   403   RetData* as_RetData() {
   404     assert(is_RetData(), "wrong type");
   405     return is_RetData()         ? (RetData*)        this : NULL;
   406   }
   407   BranchData* as_BranchData() {
   408     assert(is_BranchData(), "wrong type");
   409     return is_BranchData()      ? (BranchData*)     this : NULL;
   410   }
   411   ArrayData* as_ArrayData() {
   412     assert(is_ArrayData(), "wrong type");
   413     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   414   }
   415   MultiBranchData* as_MultiBranchData() {
   416     assert(is_MultiBranchData(), "wrong type");
   417     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   418   }
   419   ArgInfoData* as_ArgInfoData() {
   420     assert(is_ArgInfoData(), "wrong type");
   421     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   422   }
   425   // Subclass specific initialization
   426   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   428   // GC support
   429   virtual void follow_contents() {}
   430   virtual void oop_iterate(OopClosure* blk) {}
   431   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   432   virtual void adjust_pointers() {}
   434 #ifndef SERIALGC
   435   // Parallel old support
   436   virtual void follow_contents(ParCompactionManager* cm) {}
   437   virtual void update_pointers() {}
   438   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {}
   439 #endif // SERIALGC
   441   // CI translation: ProfileData can represent both MethodDataOop data
   442   // as well as CIMethodData data. This function is provided for translating
   443   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   444   // most ProfileData don't require any translation, so we provide the null
   445   // translation here, and the required translators are in the ci subclasses.
   446   virtual void translate_from(ProfileData* data) {}
   448   virtual void print_data_on(outputStream* st) {
   449     ShouldNotReachHere();
   450   }
   452 #ifndef PRODUCT
   453   void print_shared(outputStream* st, const char* name);
   454   void tab(outputStream* st);
   455 #endif
   456 };
   458 // BitData
   459 //
   460 // A BitData holds a flag or two in its header.
   461 class BitData : public ProfileData {
   462 protected:
   463   enum {
   464     // null_seen:
   465     //  saw a null operand (cast/aastore/instanceof)
   466     null_seen_flag              = DataLayout::first_flag + 0
   467   };
   468   enum { bit_cell_count = 0 };  // no additional data fields needed.
   469 public:
   470   BitData(DataLayout* layout) : ProfileData(layout) {
   471   }
   473   virtual bool is_BitData() { return true; }
   475   static int static_cell_count() {
   476     return bit_cell_count;
   477   }
   479   virtual int cell_count() {
   480     return static_cell_count();
   481   }
   483   // Accessor
   485   // The null_seen flag bit is specially known to the interpreter.
   486   // Consulting it allows the compiler to avoid setting up null_check traps.
   487   bool null_seen()     { return flag_at(null_seen_flag); }
   488   void set_null_seen()    { set_flag_at(null_seen_flag); }
   491   // Code generation support
   492   static int null_seen_byte_constant() {
   493     return flag_number_to_byte_constant(null_seen_flag);
   494   }
   496   static ByteSize bit_data_size() {
   497     return cell_offset(bit_cell_count);
   498   }
   500 #ifndef PRODUCT
   501   void print_data_on(outputStream* st);
   502 #endif
   503 };
   505 // CounterData
   506 //
   507 // A CounterData corresponds to a simple counter.
   508 class CounterData : public BitData {
   509 protected:
   510   enum {
   511     count_off,
   512     counter_cell_count
   513   };
   514 public:
   515   CounterData(DataLayout* layout) : BitData(layout) {}
   517   virtual bool is_CounterData() { return true; }
   519   static int static_cell_count() {
   520     return counter_cell_count;
   521   }
   523   virtual int cell_count() {
   524     return static_cell_count();
   525   }
   527   // Direct accessor
   528   uint count() {
   529     return uint_at(count_off);
   530   }
   532   // Code generation support
   533   static ByteSize count_offset() {
   534     return cell_offset(count_off);
   535   }
   536   static ByteSize counter_data_size() {
   537     return cell_offset(counter_cell_count);
   538   }
   540 #ifndef PRODUCT
   541   void print_data_on(outputStream* st);
   542 #endif
   543 };
   545 // JumpData
   546 //
   547 // A JumpData is used to access profiling information for a direct
   548 // branch.  It is a counter, used for counting the number of branches,
   549 // plus a data displacement, used for realigning the data pointer to
   550 // the corresponding target bci.
   551 class JumpData : public ProfileData {
   552 protected:
   553   enum {
   554     taken_off_set,
   555     displacement_off_set,
   556     jump_cell_count
   557   };
   559   void set_displacement(int displacement) {
   560     set_int_at(displacement_off_set, displacement);
   561   }
   563 public:
   564   JumpData(DataLayout* layout) : ProfileData(layout) {
   565     assert(layout->tag() == DataLayout::jump_data_tag ||
   566       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   567   }
   569   virtual bool is_JumpData() { return true; }
   571   static int static_cell_count() {
   572     return jump_cell_count;
   573   }
   575   virtual int cell_count() {
   576     return static_cell_count();
   577   }
   579   // Direct accessor
   580   uint taken() {
   581     return uint_at(taken_off_set);
   582   }
   583   // Saturating counter
   584   uint inc_taken() {
   585     uint cnt = taken() + 1;
   586     // Did we wrap? Will compiler screw us??
   587     if (cnt == 0) cnt--;
   588     set_uint_at(taken_off_set, cnt);
   589     return cnt;
   590   }
   592   int displacement() {
   593     return int_at(displacement_off_set);
   594   }
   596   // Code generation support
   597   static ByteSize taken_offset() {
   598     return cell_offset(taken_off_set);
   599   }
   601   static ByteSize displacement_offset() {
   602     return cell_offset(displacement_off_set);
   603   }
   605   // Specific initialization.
   606   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   608 #ifndef PRODUCT
   609   void print_data_on(outputStream* st);
   610 #endif
   611 };
   613 // ReceiverTypeData
   614 //
   615 // A ReceiverTypeData is used to access profiling information about a
   616 // dynamic type check.  It consists of a counter which counts the total times
   617 // that the check is reached, and a series of (klassOop, count) pairs
   618 // which are used to store a type profile for the receiver of the check.
   619 class ReceiverTypeData : public CounterData {
   620 protected:
   621   enum {
   622     receiver0_offset = counter_cell_count,
   623     count0_offset,
   624     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   625   };
   627 public:
   628   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   629     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   630            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   631   }
   633   virtual bool is_ReceiverTypeData() { return true; }
   635   static int static_cell_count() {
   636     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   637   }
   639   virtual int cell_count() {
   640     return static_cell_count();
   641   }
   643   // Direct accessors
   644   static uint row_limit() {
   645     return TypeProfileWidth;
   646   }
   647   static int receiver_cell_index(uint row) {
   648     return receiver0_offset + row * receiver_type_row_cell_count;
   649   }
   650   static int receiver_count_cell_index(uint row) {
   651     return count0_offset + row * receiver_type_row_cell_count;
   652   }
   654   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   655   // gc; it does not assert the receiver is a klass.  During compaction of the
   656   // perm gen, the klass may already have moved, so the is_klass() predicate
   657   // would fail.  The 'normal' version should be used whenever possible.
   658   klassOop receiver_unchecked(uint row) {
   659     assert(row < row_limit(), "oob");
   660     oop recv = oop_at(receiver_cell_index(row));
   661     return (klassOop)recv;
   662   }
   664   klassOop receiver(uint row) {
   665     klassOop recv = receiver_unchecked(row);
   666     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   667     return recv;
   668   }
   670   uint receiver_count(uint row) {
   671     assert(row < row_limit(), "oob");
   672     return uint_at(receiver_count_cell_index(row));
   673   }
   675   // Code generation support
   676   static ByteSize receiver_offset(uint row) {
   677     return cell_offset(receiver_cell_index(row));
   678   }
   679   static ByteSize receiver_count_offset(uint row) {
   680     return cell_offset(receiver_count_cell_index(row));
   681   }
   682   static ByteSize receiver_type_data_size() {
   683     return cell_offset(static_cell_count());
   684   }
   686   // GC support
   687   virtual void follow_contents();
   688   virtual void oop_iterate(OopClosure* blk);
   689   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   690   virtual void adjust_pointers();
   692 #ifndef SERIALGC
   693   // Parallel old support
   694   virtual void follow_contents(ParCompactionManager* cm);
   695   virtual void update_pointers();
   696   virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr);
   697 #endif // SERIALGC
   699   oop* adr_receiver(uint row) {
   700     return adr_oop_at(receiver_cell_index(row));
   701   }
   703 #ifndef PRODUCT
   704   void print_receiver_data_on(outputStream* st);
   705   void print_data_on(outputStream* st);
   706 #endif
   707 };
   709 // VirtualCallData
   710 //
   711 // A VirtualCallData is used to access profiling information about a
   712 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   713 class VirtualCallData : public ReceiverTypeData {
   714 public:
   715   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   716     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   717   }
   719   virtual bool is_VirtualCallData() { return true; }
   721   static int static_cell_count() {
   722     // At this point we could add more profile state, e.g., for arguments.
   723     // But for now it's the same size as the base record type.
   724     return ReceiverTypeData::static_cell_count();
   725   }
   727   virtual int cell_count() {
   728     return static_cell_count();
   729   }
   731   // Direct accessors
   732   static ByteSize virtual_call_data_size() {
   733     return cell_offset(static_cell_count());
   734   }
   736 #ifndef PRODUCT
   737   void print_data_on(outputStream* st);
   738 #endif
   739 };
   741 // RetData
   742 //
   743 // A RetData is used to access profiling information for a ret bytecode.
   744 // It is composed of a count of the number of times that the ret has
   745 // been executed, followed by a series of triples of the form
   746 // (bci, count, di) which count the number of times that some bci was the
   747 // target of the ret and cache a corresponding data displacement.
   748 class RetData : public CounterData {
   749 protected:
   750   enum {
   751     bci0_offset = counter_cell_count,
   752     count0_offset,
   753     displacement0_offset,
   754     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   755   };
   757   void set_bci(uint row, int bci) {
   758     assert((uint)row < row_limit(), "oob");
   759     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   760   }
   761   void release_set_bci(uint row, int bci) {
   762     assert((uint)row < row_limit(), "oob");
   763     // 'release' when setting the bci acts as a valid flag for other
   764     // threads wrt bci_count and bci_displacement.
   765     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   766   }
   767   void set_bci_count(uint row, uint count) {
   768     assert((uint)row < row_limit(), "oob");
   769     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   770   }
   771   void set_bci_displacement(uint row, int disp) {
   772     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   773   }
   775 public:
   776   RetData(DataLayout* layout) : CounterData(layout) {
   777     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   778   }
   780   virtual bool is_RetData() { return true; }
   782   enum {
   783     no_bci = -1 // value of bci when bci1/2 are not in use.
   784   };
   786   static int static_cell_count() {
   787     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   788   }
   790   virtual int cell_count() {
   791     return static_cell_count();
   792   }
   794   static uint row_limit() {
   795     return BciProfileWidth;
   796   }
   797   static int bci_cell_index(uint row) {
   798     return bci0_offset + row * ret_row_cell_count;
   799   }
   800   static int bci_count_cell_index(uint row) {
   801     return count0_offset + row * ret_row_cell_count;
   802   }
   803   static int bci_displacement_cell_index(uint row) {
   804     return displacement0_offset + row * ret_row_cell_count;
   805   }
   807   // Direct accessors
   808   int bci(uint row) {
   809     return int_at(bci_cell_index(row));
   810   }
   811   uint bci_count(uint row) {
   812     return uint_at(bci_count_cell_index(row));
   813   }
   814   int bci_displacement(uint row) {
   815     return int_at(bci_displacement_cell_index(row));
   816   }
   818   // Interpreter Runtime support
   819   address fixup_ret(int return_bci, methodDataHandle mdo);
   821   // Code generation support
   822   static ByteSize bci_offset(uint row) {
   823     return cell_offset(bci_cell_index(row));
   824   }
   825   static ByteSize bci_count_offset(uint row) {
   826     return cell_offset(bci_count_cell_index(row));
   827   }
   828   static ByteSize bci_displacement_offset(uint row) {
   829     return cell_offset(bci_displacement_cell_index(row));
   830   }
   832   // Specific initialization.
   833   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   835 #ifndef PRODUCT
   836   void print_data_on(outputStream* st);
   837 #endif
   838 };
   840 // BranchData
   841 //
   842 // A BranchData is used to access profiling data for a two-way branch.
   843 // It consists of taken and not_taken counts as well as a data displacement
   844 // for the taken case.
   845 class BranchData : public JumpData {
   846 protected:
   847   enum {
   848     not_taken_off_set = jump_cell_count,
   849     branch_cell_count
   850   };
   852   void set_displacement(int displacement) {
   853     set_int_at(displacement_off_set, displacement);
   854   }
   856 public:
   857   BranchData(DataLayout* layout) : JumpData(layout) {
   858     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   859   }
   861   virtual bool is_BranchData() { return true; }
   863   static int static_cell_count() {
   864     return branch_cell_count;
   865   }
   867   virtual int cell_count() {
   868     return static_cell_count();
   869   }
   871   // Direct accessor
   872   uint not_taken() {
   873     return uint_at(not_taken_off_set);
   874   }
   876   uint inc_not_taken() {
   877     uint cnt = not_taken() + 1;
   878     // Did we wrap? Will compiler screw us??
   879     if (cnt == 0) cnt--;
   880     set_uint_at(not_taken_off_set, cnt);
   881     return cnt;
   882   }
   884   // Code generation support
   885   static ByteSize not_taken_offset() {
   886     return cell_offset(not_taken_off_set);
   887   }
   888   static ByteSize branch_data_size() {
   889     return cell_offset(branch_cell_count);
   890   }
   892   // Specific initialization.
   893   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   895 #ifndef PRODUCT
   896   void print_data_on(outputStream* st);
   897 #endif
   898 };
   900 // ArrayData
   901 //
   902 // A ArrayData is a base class for accessing profiling data which does
   903 // not have a statically known size.  It consists of an array length
   904 // and an array start.
   905 class ArrayData : public ProfileData {
   906 protected:
   907   friend class DataLayout;
   909   enum {
   910     array_len_off_set,
   911     array_start_off_set
   912   };
   914   uint array_uint_at(int index) {
   915     int aindex = index + array_start_off_set;
   916     return uint_at(aindex);
   917   }
   918   int array_int_at(int index) {
   919     int aindex = index + array_start_off_set;
   920     return int_at(aindex);
   921   }
   922   oop array_oop_at(int index) {
   923     int aindex = index + array_start_off_set;
   924     return oop_at(aindex);
   925   }
   926   void array_set_int_at(int index, int value) {
   927     int aindex = index + array_start_off_set;
   928     set_int_at(aindex, value);
   929   }
   931   // Code generation support for subclasses.
   932   static ByteSize array_element_offset(int index) {
   933     return cell_offset(array_start_off_set + index);
   934   }
   936 public:
   937   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   939   virtual bool is_ArrayData() { return true; }
   941   static int static_cell_count() {
   942     return -1;
   943   }
   945   int array_len() {
   946     return int_at_unchecked(array_len_off_set);
   947   }
   949   virtual int cell_count() {
   950     return array_len() + 1;
   951   }
   953   // Code generation support
   954   static ByteSize array_len_offset() {
   955     return cell_offset(array_len_off_set);
   956   }
   957   static ByteSize array_start_offset() {
   958     return cell_offset(array_start_off_set);
   959   }
   960 };
   962 // MultiBranchData
   963 //
   964 // A MultiBranchData is used to access profiling information for
   965 // a multi-way branch (*switch bytecodes).  It consists of a series
   966 // of (count, displacement) pairs, which count the number of times each
   967 // case was taken and specify the data displacment for each branch target.
   968 class MultiBranchData : public ArrayData {
   969 protected:
   970   enum {
   971     default_count_off_set,
   972     default_disaplacement_off_set,
   973     case_array_start
   974   };
   975   enum {
   976     relative_count_off_set,
   977     relative_displacement_off_set,
   978     per_case_cell_count
   979   };
   981   void set_default_displacement(int displacement) {
   982     array_set_int_at(default_disaplacement_off_set, displacement);
   983   }
   984   void set_displacement_at(int index, int displacement) {
   985     array_set_int_at(case_array_start +
   986                      index * per_case_cell_count +
   987                      relative_displacement_off_set,
   988                      displacement);
   989   }
   991 public:
   992   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
   993     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
   994   }
   996   virtual bool is_MultiBranchData() { return true; }
   998   static int compute_cell_count(BytecodeStream* stream);
  1000   int number_of_cases() {
  1001     int alen = array_len() - 2; // get rid of default case here.
  1002     assert(alen % per_case_cell_count == 0, "must be even");
  1003     return (alen / per_case_cell_count);
  1006   uint default_count() {
  1007     return array_uint_at(default_count_off_set);
  1009   int default_displacement() {
  1010     return array_int_at(default_disaplacement_off_set);
  1013   uint count_at(int index) {
  1014     return array_uint_at(case_array_start +
  1015                          index * per_case_cell_count +
  1016                          relative_count_off_set);
  1018   int displacement_at(int index) {
  1019     return array_int_at(case_array_start +
  1020                         index * per_case_cell_count +
  1021                         relative_displacement_off_set);
  1024   // Code generation support
  1025   static ByteSize default_count_offset() {
  1026     return array_element_offset(default_count_off_set);
  1028   static ByteSize default_displacement_offset() {
  1029     return array_element_offset(default_disaplacement_off_set);
  1031   static ByteSize case_count_offset(int index) {
  1032     return case_array_offset() +
  1033            (per_case_size() * index) +
  1034            relative_count_offset();
  1036   static ByteSize case_array_offset() {
  1037     return array_element_offset(case_array_start);
  1039   static ByteSize per_case_size() {
  1040     return in_ByteSize(per_case_cell_count) * cell_size;
  1042   static ByteSize relative_count_offset() {
  1043     return in_ByteSize(relative_count_off_set) * cell_size;
  1045   static ByteSize relative_displacement_offset() {
  1046     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1049   // Specific initialization.
  1050   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1052 #ifndef PRODUCT
  1053   void print_data_on(outputStream* st);
  1054 #endif
  1055 };
  1057 class ArgInfoData : public ArrayData {
  1059 public:
  1060   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1061     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1064   virtual bool is_ArgInfoData() { return true; }
  1067   int number_of_args() {
  1068     return array_len();
  1071   uint arg_modified(int arg) {
  1072     return array_uint_at(arg);
  1075   void set_arg_modified(int arg, uint val) {
  1076     array_set_int_at(arg, val);
  1079 #ifndef PRODUCT
  1080   void print_data_on(outputStream* st);
  1081 #endif
  1082 };
  1084 // methodDataOop
  1085 //
  1086 // A methodDataOop holds information which has been collected about
  1087 // a method.  Its layout looks like this:
  1088 //
  1089 // -----------------------------
  1090 // | header                    |
  1091 // | klass                     |
  1092 // -----------------------------
  1093 // | method                    |
  1094 // | size of the methodDataOop |
  1095 // -----------------------------
  1096 // | Data entries...           |
  1097 // |   (variable size)         |
  1098 // |                           |
  1099 // .                           .
  1100 // .                           .
  1101 // .                           .
  1102 // |                           |
  1103 // -----------------------------
  1104 //
  1105 // The data entry area is a heterogeneous array of DataLayouts. Each
  1106 // DataLayout in the array corresponds to a specific bytecode in the
  1107 // method.  The entries in the array are sorted by the corresponding
  1108 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1109 // which point to the underlying blocks of DataLayout structures.
  1110 //
  1111 // During interpretation, if profiling in enabled, the interpreter
  1112 // maintains a method data pointer (mdp), which points at the entry
  1113 // in the array corresponding to the current bci.  In the course of
  1114 // intepretation, when a bytecode is encountered that has profile data
  1115 // associated with it, the entry pointed to by mdp is updated, then the
  1116 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1117 // is NULL to begin with, the interpreter assumes that the current method
  1118 // is not (yet) being profiled.
  1119 //
  1120 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1121 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1122 // from the base of the data entry array.  A "displacement" is the byte offset
  1123 // in certain ProfileData objects that indicate the amount the mdp must be
  1124 // adjusted in the event of a change in control flow.
  1125 //
  1127 class methodDataOopDesc : public oopDesc {
  1128   friend class VMStructs;
  1129 private:
  1130   friend class ProfileData;
  1132   // Back pointer to the methodOop
  1133   methodOop _method;
  1135   // Size of this oop in bytes
  1136   int _size;
  1138   // Cached hint for bci_to_dp and bci_to_data
  1139   int _hint_di;
  1141   // Whole-method sticky bits and flags
  1142 public:
  1143   enum {
  1144     _trap_hist_limit    = 16,   // decoupled from Deoptimization::Reason_LIMIT
  1145     _trap_hist_mask     = max_jubyte,
  1146     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1147   }; // Public flag values
  1148 private:
  1149   uint _nof_decompiles;             // count of all nmethod removals
  1150   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1151   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1152   union {
  1153     intptr_t _align;
  1154     u1 _array[_trap_hist_limit];
  1155   } _trap_hist;
  1157   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1158   intx              _eflags;          // flags on escape information
  1159   intx              _arg_local;       // bit set of non-escaping arguments
  1160   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1161   intx              _arg_returned;    // bit set of returned arguments
  1163   int _creation_mileage;            // method mileage at MDO creation
  1165   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1166   int _data_size;
  1168   // Beginning of the data entries
  1169   intptr_t _data[1];
  1171   // Helper for size computation
  1172   static int compute_data_size(BytecodeStream* stream);
  1173   static int bytecode_cell_count(Bytecodes::Code code);
  1174   enum { no_profile_data = -1, variable_cell_count = -2 };
  1176   // Helper for initialization
  1177   DataLayout* data_layout_at(int data_index) {
  1178     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1179     return (DataLayout*) (((address)_data) + data_index);
  1182   // Initialize an individual data segment.  Returns the size of
  1183   // the segment in bytes.
  1184   int initialize_data(BytecodeStream* stream, int data_index);
  1186   // Helper for data_at
  1187   DataLayout* limit_data_position() {
  1188     return (DataLayout*)((address)data_base() + _data_size);
  1190   bool out_of_bounds(int data_index) {
  1191     return data_index >= data_size();
  1194   // Give each of the data entries a chance to perform specific
  1195   // data initialization.
  1196   void post_initialize(BytecodeStream* stream);
  1198   // hint accessors
  1199   int      hint_di() const  { return _hint_di; }
  1200   void set_hint_di(int di)  {
  1201     assert(!out_of_bounds(di), "hint_di out of bounds");
  1202     _hint_di = di;
  1204   ProfileData* data_before(int bci) {
  1205     // avoid SEGV on this edge case
  1206     if (data_size() == 0)
  1207       return NULL;
  1208     int hint = hint_di();
  1209     if (data_layout_at(hint)->bci() <= bci)
  1210       return data_at(hint);
  1211     return first_data();
  1214   // What is the index of the first data entry?
  1215   int first_di() { return 0; }
  1217   // Find or create an extra ProfileData:
  1218   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1220   // return the argument info cell
  1221   ArgInfoData *arg_info();
  1223 public:
  1224   static int header_size() {
  1225     return sizeof(methodDataOopDesc)/wordSize;
  1228   // Compute the size of a methodDataOop before it is created.
  1229   static int compute_allocation_size_in_bytes(methodHandle method);
  1230   static int compute_allocation_size_in_words(methodHandle method);
  1231   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1233   // Determine if a given bytecode can have profile information.
  1234   static bool bytecode_has_profile(Bytecodes::Code code) {
  1235     return bytecode_cell_count(code) != no_profile_data;
  1238   // Perform initialization of a new methodDataOop
  1239   void initialize(methodHandle method);
  1241   // My size
  1242   int object_size_in_bytes() { return _size; }
  1243   int object_size() {
  1244     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1247   int      creation_mileage() const  { return _creation_mileage; }
  1248   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1249   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1250   static int mileage_of(methodOop m);
  1252   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1253   enum EscapeFlag {
  1254     estimated    = 1 << 0,
  1255     return_local = 1 << 1,
  1256     return_allocated = 1 << 2,
  1257     allocated_escapes = 1 << 3,
  1258     unknown_modified = 1 << 4
  1259   };
  1261   intx eflags()                                  { return _eflags; }
  1262   intx arg_local()                               { return _arg_local; }
  1263   intx arg_stack()                               { return _arg_stack; }
  1264   intx arg_returned()                            { return _arg_returned; }
  1265   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1266                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1267                                                    return aid->arg_modified(a); }
  1269   void set_eflags(intx v)                        { _eflags = v; }
  1270   void set_arg_local(intx v)                     { _arg_local = v; }
  1271   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1272   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1273   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1274                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1276                                                    aid->set_arg_modified(a, v); }
  1278   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1280   // Location and size of data area
  1281   address data_base() const {
  1282     return (address) _data;
  1284   int data_size() {
  1285     return _data_size;
  1288   // Accessors
  1289   methodOop method() { return _method; }
  1291   // Get the data at an arbitrary (sort of) data index.
  1292   ProfileData* data_at(int data_index);
  1294   // Walk through the data in order.
  1295   ProfileData* first_data() { return data_at(first_di()); }
  1296   ProfileData* next_data(ProfileData* current);
  1297   bool is_valid(ProfileData* current) { return current != NULL; }
  1299   // Convert a dp (data pointer) to a di (data index).
  1300   int dp_to_di(address dp) {
  1301     return dp - ((address)_data);
  1304   address di_to_dp(int di) {
  1305     return (address)data_layout_at(di);
  1308   // bci to di/dp conversion.
  1309   address bci_to_dp(int bci);
  1310   int bci_to_di(int bci) {
  1311     return dp_to_di(bci_to_dp(bci));
  1314   // Get the data at an arbitrary bci, or NULL if there is none.
  1315   ProfileData* bci_to_data(int bci);
  1317   // Same, but try to create an extra_data record if one is needed:
  1318   ProfileData* allocate_bci_to_data(int bci) {
  1319     ProfileData* data = bci_to_data(bci);
  1320     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1323   // Add a handful of extra data records, for trap tracking.
  1324   DataLayout* extra_data_base() { return limit_data_position(); }
  1325   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1326   int extra_data_size() { return (address)extra_data_limit()
  1327                                - (address)extra_data_base(); }
  1328   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1330   // Return (uint)-1 for overflow.
  1331   uint trap_count(int reason) const {
  1332     assert((uint)reason < _trap_hist_limit, "oob");
  1333     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1335   // For loops:
  1336   static uint trap_reason_limit() { return _trap_hist_limit; }
  1337   static uint trap_count_limit()  { return _trap_hist_mask; }
  1338   uint inc_trap_count(int reason) {
  1339     // Count another trap, anywhere in this method.
  1340     assert(reason >= 0, "must be single trap");
  1341     if ((uint)reason < _trap_hist_limit) {
  1342       uint cnt1 = 1 + _trap_hist._array[reason];
  1343       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1344         _trap_hist._array[reason] = cnt1;
  1345         return cnt1;
  1346       } else {
  1347         return _trap_hist_mask + (++_nof_overflow_traps);
  1349     } else {
  1350       // Could not represent the count in the histogram.
  1351       return (++_nof_overflow_traps);
  1355   uint overflow_trap_count() const {
  1356     return _nof_overflow_traps;
  1358   uint overflow_recompile_count() const {
  1359     return _nof_overflow_recompiles;
  1361   void inc_overflow_recompile_count() {
  1362     _nof_overflow_recompiles += 1;
  1364   uint decompile_count() const {
  1365     return _nof_decompiles;
  1367   void inc_decompile_count() {
  1368     _nof_decompiles += 1;
  1371   // Support for code generation
  1372   static ByteSize data_offset() {
  1373     return byte_offset_of(methodDataOopDesc, _data[0]);
  1376   // GC support
  1377   oop* adr_method() const { return (oop*)&_method; }
  1378   bool object_is_parsable() const { return _size != 0; }
  1379   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1381 #ifndef PRODUCT
  1382   // printing support for method data
  1383   void print_data_on(outputStream* st);
  1384 #endif
  1386   // verification
  1387   void verify_data_on(outputStream* st);
  1388 };

mercurial