src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Fri, 20 Mar 2009 23:19:36 -0700

author
jrose
date
Fri, 20 Mar 2009 23:19:36 -0700
changeset 1100
c89f86385056
parent 1077
660978a2a31a
child 1280
df6caf649ff7
permissions
-rw-r--r--

6814659: separable cleanups and subroutines for 6655638
Summary: preparatory but separable changes for method handles
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parallelScavengeHeap.cpp.incl"
    28 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    29 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    30 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    36 static void trace_gen_sizes(const char* const str,
    37                             size_t pg_min, size_t pg_max,
    38                             size_t og_min, size_t og_max,
    39                             size_t yg_min, size_t yg_max)
    40 {
    41   if (TracePageSizes) {
    42     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    43                   SIZE_FORMAT "," SIZE_FORMAT " "
    44                   SIZE_FORMAT "," SIZE_FORMAT " "
    45                   SIZE_FORMAT,
    46                   str, pg_min / K, pg_max / K,
    47                   og_min / K, og_max / K,
    48                   yg_min / K, yg_max / K,
    49                   (pg_max + og_max + yg_max) / K);
    50   }
    51 }
    53 jint ParallelScavengeHeap::initialize() {
    54   // Cannot be initialized until after the flags are parsed
    55   GenerationSizer flag_parser;
    57   size_t yg_min_size = flag_parser.min_young_gen_size();
    58   size_t yg_max_size = flag_parser.max_young_gen_size();
    59   size_t og_min_size = flag_parser.min_old_gen_size();
    60   size_t og_max_size = flag_parser.max_old_gen_size();
    61   // Why isn't there a min_perm_gen_size()?
    62   size_t pg_min_size = flag_parser.perm_gen_size();
    63   size_t pg_max_size = flag_parser.max_perm_gen_size();
    65   trace_gen_sizes("ps heap raw",
    66                   pg_min_size, pg_max_size,
    67                   og_min_size, og_max_size,
    68                   yg_min_size, yg_max_size);
    70   // The ReservedSpace ctor used below requires that the page size for the perm
    71   // gen is <= the page size for the rest of the heap (young + old gens).
    72   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    73                                                      yg_max_size + og_max_size,
    74                                                      8);
    75   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    76                                                           pg_max_size, 16),
    77                                  og_page_sz);
    79   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
    80   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
    81   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
    83   // Update sizes to reflect the selected page size(s).
    84   //
    85   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
    86   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
    87   // move to the common code.
    88   yg_min_size = align_size_up(yg_min_size, yg_align);
    89   yg_max_size = align_size_up(yg_max_size, yg_align);
    90   size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
    91   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
    93   og_min_size = align_size_up(og_min_size, og_align);
    94   og_max_size = align_size_up(og_max_size, og_align);
    95   size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
    96   og_cur_size = MAX2(og_cur_size, og_min_size);
    98   pg_min_size = align_size_up(pg_min_size, pg_align);
    99   pg_max_size = align_size_up(pg_max_size, pg_align);
   100   size_t pg_cur_size = pg_min_size;
   102   trace_gen_sizes("ps heap rnd",
   103                   pg_min_size, pg_max_size,
   104                   og_min_size, og_max_size,
   105                   yg_min_size, yg_max_size);
   107   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   108   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   110   // The main part of the heap (old gen + young gen) can often use a larger page
   111   // size than is needed or wanted for the perm gen.  Use the "compound
   112   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   113   // all gens.
   115   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   116                             og_align, addr);
   118   if (UseCompressedOops) {
   119     if (addr != NULL && !heap_rs.is_reserved()) {
   120       // Failed to reserve at specified address - the requested memory
   121       // region is taken already, for example, by 'java' launcher.
   122       // Try again to reserver heap higher.
   123       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   124       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   125                                  og_align, addr);
   126       if (addr != NULL && !heap_rs0.is_reserved()) {
   127         // Failed to reserve at specified address again - give up.
   128         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   129         assert(addr == NULL, "");
   130         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   131                                    og_align, addr);
   132         heap_rs = heap_rs1;
   133       } else {
   134         heap_rs = heap_rs0;
   135       }
   136     }
   137   }
   139   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   140                        heap_rs.base(), pg_max_size);
   141   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   142                        og_max_size + yg_max_size, og_page_sz,
   143                        heap_rs.base() + pg_max_size,
   144                        heap_rs.size() - pg_max_size);
   145   if (!heap_rs.is_reserved()) {
   146     vm_shutdown_during_initialization(
   147       "Could not reserve enough space for object heap");
   148     return JNI_ENOMEM;
   149   }
   151   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   152                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   154   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   155   _barrier_set = barrier_set;
   156   oopDesc::set_bs(_barrier_set);
   157   if (_barrier_set == NULL) {
   158     vm_shutdown_during_initialization(
   159       "Could not reserve enough space for barrier set");
   160     return JNI_ENOMEM;
   161   }
   163   // Initial young gen size is 4 Mb
   164   //
   165   // XXX - what about flag_parser.young_gen_size()?
   166   const size_t init_young_size = align_size_up(4 * M, yg_align);
   167   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   169   // Split the reserved space into perm gen and the main heap (everything else).
   170   // The main heap uses a different alignment.
   171   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   172   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   174   // Make up the generations
   175   // Calculate the maximum size that a generation can grow.  This
   176   // includes growth into the other generation.  Note that the
   177   // parameter _max_gen_size is kept as the maximum
   178   // size of the generation as the boundaries currently stand.
   179   // _max_gen_size is still used as that value.
   180   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   181   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   183   _gens = new AdjoiningGenerations(main_rs,
   184                                    og_cur_size,
   185                                    og_min_size,
   186                                    og_max_size,
   187                                    yg_cur_size,
   188                                    yg_min_size,
   189                                    yg_max_size,
   190                                    yg_align);
   192   _old_gen = _gens->old_gen();
   193   _young_gen = _gens->young_gen();
   195   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   196   const size_t old_capacity = _old_gen->capacity_in_bytes();
   197   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   198   _size_policy =
   199     new PSAdaptiveSizePolicy(eden_capacity,
   200                              initial_promo_size,
   201                              young_gen()->to_space()->capacity_in_bytes(),
   202                              intra_heap_alignment(),
   203                              max_gc_pause_sec,
   204                              max_gc_minor_pause_sec,
   205                              GCTimeRatio
   206                              );
   208   _perm_gen = new PSPermGen(perm_rs,
   209                             pg_align,
   210                             pg_cur_size,
   211                             pg_cur_size,
   212                             pg_max_size,
   213                             "perm", 2);
   215   assert(!UseAdaptiveGCBoundary ||
   216     (old_gen()->virtual_space()->high_boundary() ==
   217      young_gen()->virtual_space()->low_boundary()),
   218     "Boundaries must meet");
   219   // initialize the policy counters - 2 collectors, 3 generations
   220   _gc_policy_counters =
   221     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   222   _psh = this;
   224   // Set up the GCTaskManager
   225   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   227   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   228     return JNI_ENOMEM;
   229   }
   231   return JNI_OK;
   232 }
   234 void ParallelScavengeHeap::post_initialize() {
   235   // Need to init the tenuring threshold
   236   PSScavenge::initialize();
   237   if (UseParallelOldGC) {
   238     PSParallelCompact::post_initialize();
   239   } else {
   240     PSMarkSweep::initialize();
   241   }
   242   PSPromotionManager::initialize();
   243 }
   245 void ParallelScavengeHeap::update_counters() {
   246   young_gen()->update_counters();
   247   old_gen()->update_counters();
   248   perm_gen()->update_counters();
   249 }
   251 size_t ParallelScavengeHeap::capacity() const {
   252   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   253   return value;
   254 }
   256 size_t ParallelScavengeHeap::used() const {
   257   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   258   return value;
   259 }
   261 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   262   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   263 }
   266 size_t ParallelScavengeHeap::permanent_capacity() const {
   267   return perm_gen()->capacity_in_bytes();
   268 }
   270 size_t ParallelScavengeHeap::permanent_used() const {
   271   return perm_gen()->used_in_bytes();
   272 }
   274 size_t ParallelScavengeHeap::max_capacity() const {
   275   size_t estimated = reserved_region().byte_size();
   276   estimated -= perm_gen()->reserved().byte_size();
   277   if (UseAdaptiveSizePolicy) {
   278     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   279   } else {
   280     estimated -= young_gen()->to_space()->capacity_in_bytes();
   281   }
   282   return MAX2(estimated, capacity());
   283 }
   285 bool ParallelScavengeHeap::is_in(const void* p) const {
   286   if (young_gen()->is_in(p)) {
   287     return true;
   288   }
   290   if (old_gen()->is_in(p)) {
   291     return true;
   292   }
   294   if (perm_gen()->is_in(p)) {
   295     return true;
   296   }
   298   return false;
   299 }
   301 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   302   if (young_gen()->is_in_reserved(p)) {
   303     return true;
   304   }
   306   if (old_gen()->is_in_reserved(p)) {
   307     return true;
   308   }
   310   if (perm_gen()->is_in_reserved(p)) {
   311     return true;
   312   }
   314   return false;
   315 }
   317 // Static method
   318 bool ParallelScavengeHeap::is_in_young(oop* p) {
   319   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   320   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   321                                             "Must be ParallelScavengeHeap");
   323   PSYoungGen* young_gen = heap->young_gen();
   325   if (young_gen->is_in_reserved(p)) {
   326     return true;
   327   }
   329   return false;
   330 }
   332 // Static method
   333 bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
   334   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   335   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   336                                             "Must be ParallelScavengeHeap");
   338   PSOldGen* old_gen = heap->old_gen();
   339   PSPermGen* perm_gen = heap->perm_gen();
   341   if (old_gen->is_in_reserved(p)) {
   342     return true;
   343   }
   345   if (perm_gen->is_in_reserved(p)) {
   346     return true;
   347   }
   349   return false;
   350 }
   352 // There are two levels of allocation policy here.
   353 //
   354 // When an allocation request fails, the requesting thread must invoke a VM
   355 // operation, transfer control to the VM thread, and await the results of a
   356 // garbage collection. That is quite expensive, and we should avoid doing it
   357 // multiple times if possible.
   358 //
   359 // To accomplish this, we have a basic allocation policy, and also a
   360 // failed allocation policy.
   361 //
   362 // The basic allocation policy controls how you allocate memory without
   363 // attempting garbage collection. It is okay to grab locks and
   364 // expand the heap, if that can be done without coming to a safepoint.
   365 // It is likely that the basic allocation policy will not be very
   366 // aggressive.
   367 //
   368 // The failed allocation policy is invoked from the VM thread after
   369 // the basic allocation policy is unable to satisfy a mem_allocate
   370 // request. This policy needs to cover the entire range of collection,
   371 // heap expansion, and out-of-memory conditions. It should make every
   372 // attempt to allocate the requested memory.
   374 // Basic allocation policy. Should never be called at a safepoint, or
   375 // from the VM thread.
   376 //
   377 // This method must handle cases where many mem_allocate requests fail
   378 // simultaneously. When that happens, only one VM operation will succeed,
   379 // and the rest will not be executed. For that reason, this method loops
   380 // during failed allocation attempts. If the java heap becomes exhausted,
   381 // we rely on the size_policy object to force a bail out.
   382 HeapWord* ParallelScavengeHeap::mem_allocate(
   383                                      size_t size,
   384                                      bool is_noref,
   385                                      bool is_tlab,
   386                                      bool* gc_overhead_limit_was_exceeded) {
   387   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   388   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   389   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   391   HeapWord* result = young_gen()->allocate(size, is_tlab);
   393   uint loop_count = 0;
   394   uint gc_count = 0;
   396   while (result == NULL) {
   397     // We don't want to have multiple collections for a single filled generation.
   398     // To prevent this, each thread tracks the total_collections() value, and if
   399     // the count has changed, does not do a new collection.
   400     //
   401     // The collection count must be read only while holding the heap lock. VM
   402     // operations also hold the heap lock during collections. There is a lock
   403     // contention case where thread A blocks waiting on the Heap_lock, while
   404     // thread B is holding it doing a collection. When thread A gets the lock,
   405     // the collection count has already changed. To prevent duplicate collections,
   406     // The policy MUST attempt allocations during the same period it reads the
   407     // total_collections() value!
   408     {
   409       MutexLocker ml(Heap_lock);
   410       gc_count = Universe::heap()->total_collections();
   412       result = young_gen()->allocate(size, is_tlab);
   414       // (1) If the requested object is too large to easily fit in the
   415       //     young_gen, or
   416       // (2) If GC is locked out via GCLocker, young gen is full and
   417       //     the need for a GC already signalled to GCLocker (done
   418       //     at a safepoint),
   419       // ... then, rather than force a safepoint and (a potentially futile)
   420       // collection (attempt) for each allocation, try allocation directly
   421       // in old_gen. For case (2) above, we may in the future allow
   422       // TLAB allocation directly in the old gen.
   423       if (result != NULL) {
   424         return result;
   425       }
   426       if (!is_tlab &&
   427           size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
   428         result = old_gen()->allocate(size, is_tlab);
   429         if (result != NULL) {
   430           return result;
   431         }
   432       }
   433       if (GC_locker::is_active_and_needs_gc()) {
   434         // GC is locked out. If this is a TLAB allocation,
   435         // return NULL; the requestor will retry allocation
   436         // of an idividual object at a time.
   437         if (is_tlab) {
   438           return NULL;
   439         }
   441         // If this thread is not in a jni critical section, we stall
   442         // the requestor until the critical section has cleared and
   443         // GC allowed. When the critical section clears, a GC is
   444         // initiated by the last thread exiting the critical section; so
   445         // we retry the allocation sequence from the beginning of the loop,
   446         // rather than causing more, now probably unnecessary, GC attempts.
   447         JavaThread* jthr = JavaThread::current();
   448         if (!jthr->in_critical()) {
   449           MutexUnlocker mul(Heap_lock);
   450           GC_locker::stall_until_clear();
   451           continue;
   452         } else {
   453           if (CheckJNICalls) {
   454             fatal("Possible deadlock due to allocating while"
   455                   " in jni critical section");
   456           }
   457           return NULL;
   458         }
   459       }
   460     }
   462     if (result == NULL) {
   464       // Exit the loop if if the gc time limit has been exceeded.
   465       // The allocation must have failed above (result must be NULL),
   466       // and the most recent collection must have exceeded the
   467       // gc time limit.  Exit the loop so that an out-of-memory
   468       // will be thrown (returning a NULL will do that), but
   469       // clear gc_time_limit_exceeded so that the next collection
   470       // will succeeded if the applications decides to handle the
   471       // out-of-memory and tries to go on.
   472       *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
   473       if (size_policy()->gc_time_limit_exceeded()) {
   474         size_policy()->set_gc_time_limit_exceeded(false);
   475         if (PrintGCDetails && Verbose) {
   476         gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   477           "return NULL because gc_time_limit_exceeded is set");
   478         }
   479         return NULL;
   480       }
   482       // Generate a VM operation
   483       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
   484       VMThread::execute(&op);
   486       // Did the VM operation execute? If so, return the result directly.
   487       // This prevents us from looping until time out on requests that can
   488       // not be satisfied.
   489       if (op.prologue_succeeded()) {
   490         assert(Universe::heap()->is_in_or_null(op.result()),
   491           "result not in heap");
   493         // If GC was locked out during VM operation then retry allocation
   494         // and/or stall as necessary.
   495         if (op.gc_locked()) {
   496           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   497           continue;  // retry and/or stall as necessary
   498         }
   499         // If a NULL result is being returned, an out-of-memory
   500         // will be thrown now.  Clear the gc_time_limit_exceeded
   501         // flag to avoid the following situation.
   502         //      gc_time_limit_exceeded is set during a collection
   503         //      the collection fails to return enough space and an OOM is thrown
   504         //      the next GC is skipped because the gc_time_limit_exceeded
   505         //        flag is set and another OOM is thrown
   506         if (op.result() == NULL) {
   507           size_policy()->set_gc_time_limit_exceeded(false);
   508         }
   509         return op.result();
   510       }
   511     }
   513     // The policy object will prevent us from looping forever. If the
   514     // time spent in gc crosses a threshold, we will bail out.
   515     loop_count++;
   516     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   517         (loop_count % QueuedAllocationWarningCount == 0)) {
   518       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   519               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
   520     }
   521   }
   523   return result;
   524 }
   526 // Failed allocation policy. Must be called from the VM thread, and
   527 // only at a safepoint! Note that this method has policy for allocation
   528 // flow, and NOT collection policy. So we do not check for gc collection
   529 // time over limit here, that is the responsibility of the heap specific
   530 // collection methods. This method decides where to attempt allocations,
   531 // and when to attempt collections, but no collection specific policy.
   532 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
   533   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   534   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   535   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   536   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   538   size_t mark_sweep_invocation_count = total_invocations();
   540   // We assume (and assert!) that an allocation at this point will fail
   541   // unless we collect.
   543   // First level allocation failure, scavenge and allocate in young gen.
   544   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   545   PSScavenge::invoke();
   546   HeapWord* result = young_gen()->allocate(size, is_tlab);
   548   // Second level allocation failure.
   549   //   Mark sweep and allocate in young generation.
   550   if (result == NULL) {
   551     // There is some chance the scavenge method decided to invoke mark_sweep.
   552     // Don't mark sweep twice if so.
   553     if (mark_sweep_invocation_count == total_invocations()) {
   554       invoke_full_gc(false);
   555       result = young_gen()->allocate(size, is_tlab);
   556     }
   557   }
   559   // Third level allocation failure.
   560   //   After mark sweep and young generation allocation failure,
   561   //   allocate in old generation.
   562   if (result == NULL && !is_tlab) {
   563     result = old_gen()->allocate(size, is_tlab);
   564   }
   566   // Fourth level allocation failure. We're running out of memory.
   567   //   More complete mark sweep and allocate in young generation.
   568   if (result == NULL) {
   569     invoke_full_gc(true);
   570     result = young_gen()->allocate(size, is_tlab);
   571   }
   573   // Fifth level allocation failure.
   574   //   After more complete mark sweep, allocate in old generation.
   575   if (result == NULL && !is_tlab) {
   576     result = old_gen()->allocate(size, is_tlab);
   577   }
   579   return result;
   580 }
   582 //
   583 // This is the policy loop for allocating in the permanent generation.
   584 // If the initial allocation fails, we create a vm operation which will
   585 // cause a collection.
   586 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   587   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   588   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   589   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   591   HeapWord* result;
   593   uint loop_count = 0;
   594   uint gc_count = 0;
   595   uint full_gc_count = 0;
   597   do {
   598     // We don't want to have multiple collections for a single filled generation.
   599     // To prevent this, each thread tracks the total_collections() value, and if
   600     // the count has changed, does not do a new collection.
   601     //
   602     // The collection count must be read only while holding the heap lock. VM
   603     // operations also hold the heap lock during collections. There is a lock
   604     // contention case where thread A blocks waiting on the Heap_lock, while
   605     // thread B is holding it doing a collection. When thread A gets the lock,
   606     // the collection count has already changed. To prevent duplicate collections,
   607     // The policy MUST attempt allocations during the same period it reads the
   608     // total_collections() value!
   609     {
   610       MutexLocker ml(Heap_lock);
   611       gc_count      = Universe::heap()->total_collections();
   612       full_gc_count = Universe::heap()->total_full_collections();
   614       result = perm_gen()->allocate_permanent(size);
   616       if (result != NULL) {
   617         return result;
   618       }
   620       if (GC_locker::is_active_and_needs_gc()) {
   621         // If this thread is not in a jni critical section, we stall
   622         // the requestor until the critical section has cleared and
   623         // GC allowed. When the critical section clears, a GC is
   624         // initiated by the last thread exiting the critical section; so
   625         // we retry the allocation sequence from the beginning of the loop,
   626         // rather than causing more, now probably unnecessary, GC attempts.
   627         JavaThread* jthr = JavaThread::current();
   628         if (!jthr->in_critical()) {
   629           MutexUnlocker mul(Heap_lock);
   630           GC_locker::stall_until_clear();
   631           continue;
   632         } else {
   633           if (CheckJNICalls) {
   634             fatal("Possible deadlock due to allocating while"
   635                   " in jni critical section");
   636           }
   637           return NULL;
   638         }
   639       }
   640     }
   642     if (result == NULL) {
   644       // Exit the loop if the gc time limit has been exceeded.
   645       // The allocation must have failed above (result must be NULL),
   646       // and the most recent collection must have exceeded the
   647       // gc time limit.  Exit the loop so that an out-of-memory
   648       // will be thrown (returning a NULL will do that), but
   649       // clear gc_time_limit_exceeded so that the next collection
   650       // will succeeded if the applications decides to handle the
   651       // out-of-memory and tries to go on.
   652       if (size_policy()->gc_time_limit_exceeded()) {
   653         size_policy()->set_gc_time_limit_exceeded(false);
   654         if (PrintGCDetails && Verbose) {
   655         gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
   656           "return NULL because gc_time_limit_exceeded is set");
   657         }
   658         assert(result == NULL, "Allocation did not fail");
   659         return NULL;
   660       }
   662       // Generate a VM operation
   663       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   664       VMThread::execute(&op);
   666       // Did the VM operation execute? If so, return the result directly.
   667       // This prevents us from looping until time out on requests that can
   668       // not be satisfied.
   669       if (op.prologue_succeeded()) {
   670         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   671           "result not in heap");
   672         // If GC was locked out during VM operation then retry allocation
   673         // and/or stall as necessary.
   674         if (op.gc_locked()) {
   675           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   676           continue;  // retry and/or stall as necessary
   677         }
   678         // If a NULL results is being returned, an out-of-memory
   679         // will be thrown now.  Clear the gc_time_limit_exceeded
   680         // flag to avoid the following situation.
   681         //      gc_time_limit_exceeded is set during a collection
   682         //      the collection fails to return enough space and an OOM is thrown
   683         //      the next GC is skipped because the gc_time_limit_exceeded
   684         //        flag is set and another OOM is thrown
   685         if (op.result() == NULL) {
   686           size_policy()->set_gc_time_limit_exceeded(false);
   687         }
   688         return op.result();
   689       }
   690     }
   692     // The policy object will prevent us from looping forever. If the
   693     // time spent in gc crosses a threshold, we will bail out.
   694     loop_count++;
   695     if ((QueuedAllocationWarningCount > 0) &&
   696         (loop_count % QueuedAllocationWarningCount == 0)) {
   697       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   698               " size=%d", loop_count, size);
   699     }
   700   } while (result == NULL);
   702   return result;
   703 }
   705 //
   706 // This is the policy code for permanent allocations which have failed
   707 // and require a collection. Note that just as in failed_mem_allocate,
   708 // we do not set collection policy, only where & when to allocate and
   709 // collect.
   710 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   711   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   712   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   713   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   714   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   715   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   717   // We assume (and assert!) that an allocation at this point will fail
   718   // unless we collect.
   720   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   721   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   722   invoke_full_gc(false);
   723   HeapWord* result = perm_gen()->allocate_permanent(size);
   725   // Second level allocation failure. We're running out of memory.
   726   if (result == NULL) {
   727     invoke_full_gc(true);
   728     result = perm_gen()->allocate_permanent(size);
   729   }
   731   return result;
   732 }
   734 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   735   CollectedHeap::ensure_parsability(retire_tlabs);
   736   young_gen()->eden_space()->ensure_parsability();
   737 }
   739 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   740   return young_gen()->eden_space()->free_in_bytes();
   741 }
   743 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   744   return young_gen()->eden_space()->tlab_capacity(thr);
   745 }
   747 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   748   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   749 }
   751 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   752   return young_gen()->allocate(size, true);
   753 }
   755 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
   756   CollectedHeap::fill_all_tlabs(retire);
   757 }
   759 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   760   CollectedHeap::accumulate_statistics_all_tlabs();
   761 }
   763 void ParallelScavengeHeap::resize_all_tlabs() {
   764   CollectedHeap::resize_all_tlabs();
   765 }
   767 // This method is used by System.gc() and JVMTI.
   768 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   769   assert(!Heap_lock->owned_by_self(),
   770     "this thread should not own the Heap_lock");
   772   unsigned int gc_count      = 0;
   773   unsigned int full_gc_count = 0;
   774   {
   775     MutexLocker ml(Heap_lock);
   776     // This value is guarded by the Heap_lock
   777     gc_count      = Universe::heap()->total_collections();
   778     full_gc_count = Universe::heap()->total_full_collections();
   779   }
   781   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   782   VMThread::execute(&op);
   783 }
   785 // This interface assumes that it's being called by the
   786 // vm thread. It collects the heap assuming that the
   787 // heap lock is already held and that we are executing in
   788 // the context of the vm thread.
   789 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   790   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   791   assert(Heap_lock->is_locked(), "Precondition#2");
   792   GCCauseSetter gcs(this, cause);
   793   switch (cause) {
   794     case GCCause::_heap_inspection:
   795     case GCCause::_heap_dump: {
   796       HandleMark hm;
   797       invoke_full_gc(false);
   798       break;
   799     }
   800     default: // XXX FIX ME
   801       ShouldNotReachHere();
   802   }
   803 }
   806 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   807   Unimplemented();
   808 }
   810 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   811   young_gen()->object_iterate(cl);
   812   old_gen()->object_iterate(cl);
   813   perm_gen()->object_iterate(cl);
   814 }
   816 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   817   Unimplemented();
   818 }
   820 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   821   perm_gen()->object_iterate(cl);
   822 }
   824 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   825   if (young_gen()->is_in_reserved(addr)) {
   826     assert(young_gen()->is_in(addr),
   827            "addr should be in allocated part of young gen");
   828     if (Debugging)  return NULL;  // called from find() in debug.cpp
   829     Unimplemented();
   830   } else if (old_gen()->is_in_reserved(addr)) {
   831     assert(old_gen()->is_in(addr),
   832            "addr should be in allocated part of old gen");
   833     return old_gen()->start_array()->object_start((HeapWord*)addr);
   834   } else if (perm_gen()->is_in_reserved(addr)) {
   835     assert(perm_gen()->is_in(addr),
   836            "addr should be in allocated part of perm gen");
   837     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   838   }
   839   return 0;
   840 }
   842 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   843   return oop(addr)->size();
   844 }
   846 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   847   return block_start(addr) == addr;
   848 }
   850 jlong ParallelScavengeHeap::millis_since_last_gc() {
   851   return UseParallelOldGC ?
   852     PSParallelCompact::millis_since_last_gc() :
   853     PSMarkSweep::millis_since_last_gc();
   854 }
   856 void ParallelScavengeHeap::prepare_for_verify() {
   857   ensure_parsability(false);  // no need to retire TLABs for verification
   858 }
   860 void ParallelScavengeHeap::print() const { print_on(tty); }
   862 void ParallelScavengeHeap::print_on(outputStream* st) const {
   863   young_gen()->print_on(st);
   864   old_gen()->print_on(st);
   865   perm_gen()->print_on(st);
   866 }
   868 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   869   PSScavenge::gc_task_manager()->threads_do(tc);
   870 }
   872 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   873   PSScavenge::gc_task_manager()->print_threads_on(st);
   874 }
   876 void ParallelScavengeHeap::print_tracing_info() const {
   877   if (TraceGen0Time) {
   878     double time = PSScavenge::accumulated_time()->seconds();
   879     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   880   }
   881   if (TraceGen1Time) {
   882     double time = PSMarkSweep::accumulated_time()->seconds();
   883     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   884   }
   885 }
   888 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent) {
   889   // Why do we need the total_collections()-filter below?
   890   if (total_collections() > 0) {
   891     if (!silent) {
   892       gclog_or_tty->print("permanent ");
   893     }
   894     perm_gen()->verify(allow_dirty);
   896     if (!silent) {
   897       gclog_or_tty->print("tenured ");
   898     }
   899     old_gen()->verify(allow_dirty);
   901     if (!silent) {
   902       gclog_or_tty->print("eden ");
   903     }
   904     young_gen()->verify(allow_dirty);
   905   }
   906   if (!silent) {
   907     gclog_or_tty->print("ref_proc ");
   908   }
   909   ReferenceProcessor::verify();
   910 }
   912 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   913   if (PrintGCDetails && Verbose) {
   914     gclog_or_tty->print(" "  SIZE_FORMAT
   915                         "->" SIZE_FORMAT
   916                         "("  SIZE_FORMAT ")",
   917                         prev_used, used(), capacity());
   918   } else {
   919     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   920                         "->" SIZE_FORMAT "K"
   921                         "("  SIZE_FORMAT "K)",
   922                         prev_used / K, used() / K, capacity() / K);
   923   }
   924 }
   926 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   927   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   928   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   929   return _psh;
   930 }
   932 // Before delegating the resize to the young generation,
   933 // the reserved space for the young and old generations
   934 // may be changed to accomodate the desired resize.
   935 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   936     size_t survivor_size) {
   937   if (UseAdaptiveGCBoundary) {
   938     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   939       size_policy()->reset_bytes_absorbed_from_eden();
   940       return;  // The generation changed size already.
   941     }
   942     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   943   }
   945   // Delegate the resize to the generation.
   946   _young_gen->resize(eden_size, survivor_size);
   947 }
   949 // Before delegating the resize to the old generation,
   950 // the reserved space for the young and old generations
   951 // may be changed to accomodate the desired resize.
   952 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   953   if (UseAdaptiveGCBoundary) {
   954     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   955       size_policy()->reset_bytes_absorbed_from_eden();
   956       return;  // The generation changed size already.
   957     }
   958     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   959   }
   961   // Delegate the resize to the generation.
   962   _old_gen->resize(desired_free_space);
   963 }
   965 #ifndef PRODUCT
   966 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   967   if (ZapUnusedHeapArea) {
   968     young_gen()->record_spaces_top();
   969     old_gen()->record_spaces_top();
   970     perm_gen()->record_spaces_top();
   971   }
   972 }
   974 void ParallelScavengeHeap::gen_mangle_unused_area() {
   975   if (ZapUnusedHeapArea) {
   976     young_gen()->eden_space()->mangle_unused_area();
   977     young_gen()->to_space()->mangle_unused_area();
   978     young_gen()->from_space()->mangle_unused_area();
   979     old_gen()->object_space()->mangle_unused_area();
   980     perm_gen()->object_space()->mangle_unused_area();
   981   }
   982 }
   983 #endif

mercurial