src/os/windows/vm/os_windows.cpp

Tue, 21 Apr 2009 16:12:51 -0400

author
coleenp
date
Tue, 21 Apr 2009 16:12:51 -0400
changeset 1152
c8152ae3f339
parent 1126
956304450e80
child 1312
8c79517a9300
permissions
-rw-r--r--

6830069: UseLargePages is broken on Win64
Summary: Making VirtualAlloc/VirtualProtect two calls for PAGE_EXECUTE_READWRITE doesn't work for MEM_LARGE_PAGES.
Reviewed-by: xlu, kvn, jcoomes

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // do not include precompiled header file
    31 # include "incls/_os_windows.cpp.incl"
    33 #ifdef _DEBUG
    34 #include <crtdbg.h>
    35 #endif
    38 #include <windows.h>
    39 #include <sys/types.h>
    40 #include <sys/stat.h>
    41 #include <sys/timeb.h>
    42 #include <objidl.h>
    43 #include <shlobj.h>
    45 #include <malloc.h>
    46 #include <signal.h>
    47 #include <direct.h>
    48 #include <errno.h>
    49 #include <fcntl.h>
    50 #include <io.h>
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
    54 /* for enumerating dll libraries */
    55 #include <tlhelp32.h>
    56 #include <vdmdbg.h>
    58 // for timer info max values which include all bits
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 // For DLL loading/load error detection
    62 // Values of PE COFF
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
    66 static HANDLE main_process;
    67 static HANDLE main_thread;
    68 static int    main_thread_id;
    70 static FILETIME process_creation_time;
    71 static FILETIME process_exit_time;
    72 static FILETIME process_user_time;
    73 static FILETIME process_kernel_time;
    75 #ifdef _WIN64
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
    77 #endif
    79 #ifdef _M_IA64
    80 #define __CPU__ ia64
    81 #elif _M_AMD64
    82 #define __CPU__ amd64
    83 #else
    84 #define __CPU__ i486
    85 #endif
    87 // save DLL module handle, used by GetModuleFileName
    89 HINSTANCE vm_lib_handle;
    90 static int getLastErrorString(char *buf, size_t len);
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
    93   switch (reason) {
    94     case DLL_PROCESS_ATTACH:
    95       vm_lib_handle = hinst;
    96       if(ForceTimeHighResolution)
    97         timeBeginPeriod(1L);
    98       break;
    99     case DLL_PROCESS_DETACH:
   100       if(ForceTimeHighResolution)
   101         timeEndPeriod(1L);
   102 #ifdef _WIN64
   103       if (topLevelVectoredExceptionHandler != NULL) {
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   105         topLevelVectoredExceptionHandler = NULL;
   106       }
   107 #endif
   108       break;
   109     default:
   110       break;
   111   }
   112   return true;
   113 }
   115 static inline double fileTimeAsDouble(FILETIME* time) {
   116   const double high  = (double) ((unsigned int) ~0);
   117   const double split = 10000000.0;
   118   double result = (time->dwLowDateTime / split) +
   119                    time->dwHighDateTime * (high/split);
   120   return result;
   121 }
   123 // Implementation of os
   125 bool os::getenv(const char* name, char* buffer, int len) {
   126  int result = GetEnvironmentVariable(name, buffer, len);
   127  return result > 0 && result < len;
   128 }
   131 // No setuid programs under Windows.
   132 bool os::have_special_privileges() {
   133   return false;
   134 }
   137 // This method is  a periodic task to check for misbehaving JNI applications
   138 // under CheckJNI, we can add any periodic checks here.
   139 // For Windows at the moment does nothing
   140 void os::run_periodic_checks() {
   141   return;
   142 }
   144 #ifndef _WIN64
   145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   146 #endif
   147 void os::init_system_properties_values() {
   148   /* sysclasspath, java_home, dll_dir */
   149   {
   150       char *home_path;
   151       char *dll_path;
   152       char *pslash;
   153       char *bin = "\\bin";
   154       char home_dir[MAX_PATH];
   156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   157           os::jvm_path(home_dir, sizeof(home_dir));
   158           // Found the full path to jvm[_g].dll.
   159           // Now cut the path to <java_home>/jre if we can.
   160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   161           pslash = strrchr(home_dir, '\\');
   162           if (pslash != NULL) {
   163               *pslash = '\0';                 /* get rid of \{client|server} */
   164               pslash = strrchr(home_dir, '\\');
   165               if (pslash != NULL)
   166                   *pslash = '\0';             /* get rid of \bin */
   167           }
   168       }
   170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   171       if (home_path == NULL)
   172           return;
   173       strcpy(home_path, home_dir);
   174       Arguments::set_java_home(home_path);
   176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   177       if (dll_path == NULL)
   178           return;
   179       strcpy(dll_path, home_dir);
   180       strcat(dll_path, bin);
   181       Arguments::set_dll_dir(dll_path);
   183       if (!set_boot_path('\\', ';'))
   184           return;
   185   }
   187   /* library_path */
   188   #define EXT_DIR "\\lib\\ext"
   189   #define BIN_DIR "\\bin"
   190   #define PACKAGE_DIR "\\Sun\\Java"
   191   {
   192     /* Win32 library search order (See the documentation for LoadLibrary):
   193      *
   194      * 1. The directory from which application is loaded.
   195      * 2. The current directory
   196      * 3. The system wide Java Extensions directory (Java only)
   197      * 4. System directory (GetSystemDirectory)
   198      * 5. Windows directory (GetWindowsDirectory)
   199      * 6. The PATH environment variable
   200      */
   202     char *library_path;
   203     char tmp[MAX_PATH];
   204     char *path_str = ::getenv("PATH");
   206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   209     library_path[0] = '\0';
   211     GetModuleFileName(NULL, tmp, sizeof(tmp));
   212     *(strrchr(tmp, '\\')) = '\0';
   213     strcat(library_path, tmp);
   215     strcat(library_path, ";.");
   217     GetWindowsDirectory(tmp, sizeof(tmp));
   218     strcat(library_path, ";");
   219     strcat(library_path, tmp);
   220     strcat(library_path, PACKAGE_DIR BIN_DIR);
   222     GetSystemDirectory(tmp, sizeof(tmp));
   223     strcat(library_path, ";");
   224     strcat(library_path, tmp);
   226     GetWindowsDirectory(tmp, sizeof(tmp));
   227     strcat(library_path, ";");
   228     strcat(library_path, tmp);
   230     if (path_str) {
   231         strcat(library_path, ";");
   232         strcat(library_path, path_str);
   233     }
   235     Arguments::set_library_path(library_path);
   236     FREE_C_HEAP_ARRAY(char, library_path);
   237   }
   239   /* Default extensions directory */
   240   {
   241     char path[MAX_PATH];
   242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   243     GetWindowsDirectory(path, MAX_PATH);
   244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   245         path, PACKAGE_DIR, EXT_DIR);
   246     Arguments::set_ext_dirs(buf);
   247   }
   248   #undef EXT_DIR
   249   #undef BIN_DIR
   250   #undef PACKAGE_DIR
   252   /* Default endorsed standards directory. */
   253   {
   254     #define ENDORSED_DIR "\\lib\\endorsed"
   255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   256     char * buf = NEW_C_HEAP_ARRAY(char, len);
   257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   258     Arguments::set_endorsed_dirs(buf);
   259     #undef ENDORSED_DIR
   260   }
   262 #ifndef _WIN64
   263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
   264 #endif
   266   // Done
   267   return;
   268 }
   270 void os::breakpoint() {
   271   DebugBreak();
   272 }
   274 // Invoked from the BREAKPOINT Macro
   275 extern "C" void breakpoint() {
   276   os::breakpoint();
   277 }
   279 // Returns an estimate of the current stack pointer. Result must be guaranteed
   280 // to point into the calling threads stack, and be no lower than the current
   281 // stack pointer.
   283 address os::current_stack_pointer() {
   284   int dummy;
   285   address sp = (address)&dummy;
   286   return sp;
   287 }
   289 // os::current_stack_base()
   290 //
   291 //   Returns the base of the stack, which is the stack's
   292 //   starting address.  This function must be called
   293 //   while running on the stack of the thread being queried.
   295 address os::current_stack_base() {
   296   MEMORY_BASIC_INFORMATION minfo;
   297   address stack_bottom;
   298   size_t stack_size;
   300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   301   stack_bottom =  (address)minfo.AllocationBase;
   302   stack_size = minfo.RegionSize;
   304   // Add up the sizes of all the regions with the same
   305   // AllocationBase.
   306   while( 1 )
   307   {
   308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   309     if ( stack_bottom == (address)minfo.AllocationBase )
   310       stack_size += minfo.RegionSize;
   311     else
   312       break;
   313   }
   315 #ifdef _M_IA64
   316   // IA64 has memory and register stacks
   317   stack_size = stack_size / 2;
   318 #endif
   319   return stack_bottom + stack_size;
   320 }
   322 size_t os::current_stack_size() {
   323   size_t sz;
   324   MEMORY_BASIC_INFORMATION minfo;
   325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   327   return sz;
   328 }
   330 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   331   const struct tm* time_struct_ptr = localtime(clock);
   332   if (time_struct_ptr != NULL) {
   333     *res = *time_struct_ptr;
   334     return res;
   335   }
   336   return NULL;
   337 }
   339 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   341 // Thread start routine for all new Java threads
   342 static unsigned __stdcall java_start(Thread* thread) {
   343   // Try to randomize the cache line index of hot stack frames.
   344   // This helps when threads of the same stack traces evict each other's
   345   // cache lines. The threads can be either from the same JVM instance, or
   346   // from different JVM instances. The benefit is especially true for
   347   // processors with hyperthreading technology.
   348   static int counter = 0;
   349   int pid = os::current_process_id();
   350   _alloca(((pid ^ counter++) & 7) * 128);
   352   OSThread* osthr = thread->osthread();
   353   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   355   if (UseNUMA) {
   356     int lgrp_id = os::numa_get_group_id();
   357     if (lgrp_id != -1) {
   358       thread->set_lgrp_id(lgrp_id);
   359     }
   360   }
   363   if (UseVectoredExceptions) {
   364     // If we are using vectored exception we don't need to set a SEH
   365     thread->run();
   366   }
   367   else {
   368     // Install a win32 structured exception handler around every thread created
   369     // by VM, so VM can genrate error dump when an exception occurred in non-
   370     // Java thread (e.g. VM thread).
   371     __try {
   372        thread->run();
   373     } __except(topLevelExceptionFilter(
   374                (_EXCEPTION_POINTERS*)_exception_info())) {
   375         // Nothing to do.
   376     }
   377   }
   379   // One less thread is executing
   380   // When the VMThread gets here, the main thread may have already exited
   381   // which frees the CodeHeap containing the Atomic::add code
   382   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   383     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   384   }
   386   return 0;
   387 }
   389 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   390   // Allocate the OSThread object
   391   OSThread* osthread = new OSThread(NULL, NULL);
   392   if (osthread == NULL) return NULL;
   394   // Initialize support for Java interrupts
   395   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   396   if (interrupt_event == NULL) {
   397     delete osthread;
   398     return NULL;
   399   }
   400   osthread->set_interrupt_event(interrupt_event);
   402   // Store info on the Win32 thread into the OSThread
   403   osthread->set_thread_handle(thread_handle);
   404   osthread->set_thread_id(thread_id);
   406   if (UseNUMA) {
   407     int lgrp_id = os::numa_get_group_id();
   408     if (lgrp_id != -1) {
   409       thread->set_lgrp_id(lgrp_id);
   410     }
   411   }
   413   // Initial thread state is INITIALIZED, not SUSPENDED
   414   osthread->set_state(INITIALIZED);
   416   return osthread;
   417 }
   420 bool os::create_attached_thread(JavaThread* thread) {
   421 #ifdef ASSERT
   422   thread->verify_not_published();
   423 #endif
   424   HANDLE thread_h;
   425   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   426                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   427     fatal("DuplicateHandle failed\n");
   428   }
   429   OSThread* osthread = create_os_thread(thread, thread_h,
   430                                         (int)current_thread_id());
   431   if (osthread == NULL) {
   432      return false;
   433   }
   435   // Initial thread state is RUNNABLE
   436   osthread->set_state(RUNNABLE);
   438   thread->set_osthread(osthread);
   439   return true;
   440 }
   442 bool os::create_main_thread(JavaThread* thread) {
   443 #ifdef ASSERT
   444   thread->verify_not_published();
   445 #endif
   446   if (_starting_thread == NULL) {
   447     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   448      if (_starting_thread == NULL) {
   449         return false;
   450      }
   451   }
   453   // The primordial thread is runnable from the start)
   454   _starting_thread->set_state(RUNNABLE);
   456   thread->set_osthread(_starting_thread);
   457   return true;
   458 }
   460 // Allocate and initialize a new OSThread
   461 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   462   unsigned thread_id;
   464   // Allocate the OSThread object
   465   OSThread* osthread = new OSThread(NULL, NULL);
   466   if (osthread == NULL) {
   467     return false;
   468   }
   470   // Initialize support for Java interrupts
   471   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   472   if (interrupt_event == NULL) {
   473     delete osthread;
   474     return NULL;
   475   }
   476   osthread->set_interrupt_event(interrupt_event);
   477   osthread->set_interrupted(false);
   479   thread->set_osthread(osthread);
   481   if (stack_size == 0) {
   482     switch (thr_type) {
   483     case os::java_thread:
   484       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   485       if (JavaThread::stack_size_at_create() > 0)
   486         stack_size = JavaThread::stack_size_at_create();
   487       break;
   488     case os::compiler_thread:
   489       if (CompilerThreadStackSize > 0) {
   490         stack_size = (size_t)(CompilerThreadStackSize * K);
   491         break;
   492       } // else fall through:
   493         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   494     case os::vm_thread:
   495     case os::pgc_thread:
   496     case os::cgc_thread:
   497     case os::watcher_thread:
   498       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   499       break;
   500     }
   501   }
   503   // Create the Win32 thread
   504   //
   505   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   506   // does not specify stack size. Instead, it specifies the size of
   507   // initially committed space. The stack size is determined by
   508   // PE header in the executable. If the committed "stack_size" is larger
   509   // than default value in the PE header, the stack is rounded up to the
   510   // nearest multiple of 1MB. For example if the launcher has default
   511   // stack size of 320k, specifying any size less than 320k does not
   512   // affect the actual stack size at all, it only affects the initial
   513   // commitment. On the other hand, specifying 'stack_size' larger than
   514   // default value may cause significant increase in memory usage, because
   515   // not only the stack space will be rounded up to MB, but also the
   516   // entire space is committed upfront.
   517   //
   518   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   519   // for CreateThread() that can treat 'stack_size' as stack size. However we
   520   // are not supposed to call CreateThread() directly according to MSDN
   521   // document because JVM uses C runtime library. The good news is that the
   522   // flag appears to work with _beginthredex() as well.
   524 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   525 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   526 #endif
   528   HANDLE thread_handle =
   529     (HANDLE)_beginthreadex(NULL,
   530                            (unsigned)stack_size,
   531                            (unsigned (__stdcall *)(void*)) java_start,
   532                            thread,
   533                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   534                            &thread_id);
   535   if (thread_handle == NULL) {
   536     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   537     // without the flag.
   538     thread_handle =
   539     (HANDLE)_beginthreadex(NULL,
   540                            (unsigned)stack_size,
   541                            (unsigned (__stdcall *)(void*)) java_start,
   542                            thread,
   543                            CREATE_SUSPENDED,
   544                            &thread_id);
   545   }
   546   if (thread_handle == NULL) {
   547     // Need to clean up stuff we've allocated so far
   548     CloseHandle(osthread->interrupt_event());
   549     thread->set_osthread(NULL);
   550     delete osthread;
   551     return NULL;
   552   }
   554   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   556   // Store info on the Win32 thread into the OSThread
   557   osthread->set_thread_handle(thread_handle);
   558   osthread->set_thread_id(thread_id);
   560   // Initial thread state is INITIALIZED, not SUSPENDED
   561   osthread->set_state(INITIALIZED);
   563   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   564   return true;
   565 }
   568 // Free Win32 resources related to the OSThread
   569 void os::free_thread(OSThread* osthread) {
   570   assert(osthread != NULL, "osthread not set");
   571   CloseHandle(osthread->thread_handle());
   572   CloseHandle(osthread->interrupt_event());
   573   delete osthread;
   574 }
   577 static int    has_performance_count = 0;
   578 static jlong first_filetime;
   579 static jlong initial_performance_count;
   580 static jlong performance_frequency;
   583 jlong as_long(LARGE_INTEGER x) {
   584   jlong result = 0; // initialization to avoid warning
   585   set_high(&result, x.HighPart);
   586   set_low(&result,  x.LowPart);
   587   return result;
   588 }
   591 jlong os::elapsed_counter() {
   592   LARGE_INTEGER count;
   593   if (has_performance_count) {
   594     QueryPerformanceCounter(&count);
   595     return as_long(count) - initial_performance_count;
   596   } else {
   597     FILETIME wt;
   598     GetSystemTimeAsFileTime(&wt);
   599     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   600   }
   601 }
   604 jlong os::elapsed_frequency() {
   605   if (has_performance_count) {
   606     return performance_frequency;
   607   } else {
   608    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   609    return 10000000;
   610   }
   611 }
   614 julong os::available_memory() {
   615   return win32::available_memory();
   616 }
   618 julong os::win32::available_memory() {
   619   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
   620   // is larger than 4GB
   621   MEMORYSTATUS ms;
   622   GlobalMemoryStatus(&ms);
   624   return (julong)ms.dwAvailPhys;
   625 }
   627 julong os::physical_memory() {
   628   return win32::physical_memory();
   629 }
   631 julong os::allocatable_physical_memory(julong size) {
   632 #ifdef _LP64
   633   return size;
   634 #else
   635   // Limit to 1400m because of the 2gb address space wall
   636   return MIN2(size, (julong)1400*M);
   637 #endif
   638 }
   640 // VC6 lacks DWORD_PTR
   641 #if _MSC_VER < 1300
   642 typedef UINT_PTR DWORD_PTR;
   643 #endif
   645 int os::active_processor_count() {
   646   DWORD_PTR lpProcessAffinityMask = 0;
   647   DWORD_PTR lpSystemAffinityMask = 0;
   648   int proc_count = processor_count();
   649   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   650       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   651     // Nof active processors is number of bits in process affinity mask
   652     int bitcount = 0;
   653     while (lpProcessAffinityMask != 0) {
   654       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   655       bitcount++;
   656     }
   657     return bitcount;
   658   } else {
   659     return proc_count;
   660   }
   661 }
   663 bool os::distribute_processes(uint length, uint* distribution) {
   664   // Not yet implemented.
   665   return false;
   666 }
   668 bool os::bind_to_processor(uint processor_id) {
   669   // Not yet implemented.
   670   return false;
   671 }
   673 static void initialize_performance_counter() {
   674   LARGE_INTEGER count;
   675   if (QueryPerformanceFrequency(&count)) {
   676     has_performance_count = 1;
   677     performance_frequency = as_long(count);
   678     QueryPerformanceCounter(&count);
   679     initial_performance_count = as_long(count);
   680   } else {
   681     has_performance_count = 0;
   682     FILETIME wt;
   683     GetSystemTimeAsFileTime(&wt);
   684     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   685   }
   686 }
   689 double os::elapsedTime() {
   690   return (double) elapsed_counter() / (double) elapsed_frequency();
   691 }
   694 // Windows format:
   695 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   696 // Java format:
   697 //   Java standards require the number of milliseconds since 1/1/1970
   699 // Constant offset - calculated using offset()
   700 static jlong  _offset   = 116444736000000000;
   701 // Fake time counter for reproducible results when debugging
   702 static jlong  fake_time = 0;
   704 #ifdef ASSERT
   705 // Just to be safe, recalculate the offset in debug mode
   706 static jlong _calculated_offset = 0;
   707 static int   _has_calculated_offset = 0;
   709 jlong offset() {
   710   if (_has_calculated_offset) return _calculated_offset;
   711   SYSTEMTIME java_origin;
   712   java_origin.wYear          = 1970;
   713   java_origin.wMonth         = 1;
   714   java_origin.wDayOfWeek     = 0; // ignored
   715   java_origin.wDay           = 1;
   716   java_origin.wHour          = 0;
   717   java_origin.wMinute        = 0;
   718   java_origin.wSecond        = 0;
   719   java_origin.wMilliseconds  = 0;
   720   FILETIME jot;
   721   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   722     fatal1("Error = %d\nWindows error", GetLastError());
   723   }
   724   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   725   _has_calculated_offset = 1;
   726   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   727   return _calculated_offset;
   728 }
   729 #else
   730 jlong offset() {
   731   return _offset;
   732 }
   733 #endif
   735 jlong windows_to_java_time(FILETIME wt) {
   736   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   737   return (a - offset()) / 10000;
   738 }
   740 FILETIME java_to_windows_time(jlong l) {
   741   jlong a = (l * 10000) + offset();
   742   FILETIME result;
   743   result.dwHighDateTime = high(a);
   744   result.dwLowDateTime  = low(a);
   745   return result;
   746 }
   748 // For now, we say that Windows does not support vtime.  I have no idea
   749 // whether it can actually be made to (DLD, 9/13/05).
   751 bool os::supports_vtime() { return false; }
   752 bool os::enable_vtime() { return false; }
   753 bool os::vtime_enabled() { return false; }
   754 double os::elapsedVTime() {
   755   // better than nothing, but not much
   756   return elapsedTime();
   757 }
   759 jlong os::javaTimeMillis() {
   760   if (UseFakeTimers) {
   761     return fake_time++;
   762   } else {
   763     FILETIME wt;
   764     GetSystemTimeAsFileTime(&wt);
   765     return windows_to_java_time(wt);
   766   }
   767 }
   769 #define NANOS_PER_SEC         CONST64(1000000000)
   770 #define NANOS_PER_MILLISEC    1000000
   771 jlong os::javaTimeNanos() {
   772   if (!has_performance_count) {
   773     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   774   } else {
   775     LARGE_INTEGER current_count;
   776     QueryPerformanceCounter(&current_count);
   777     double current = as_long(current_count);
   778     double freq = performance_frequency;
   779     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   780     return time;
   781   }
   782 }
   784 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   785   if (!has_performance_count) {
   786     // javaTimeMillis() doesn't have much percision,
   787     // but it is not going to wrap -- so all 64 bits
   788     info_ptr->max_value = ALL_64_BITS;
   790     // this is a wall clock timer, so may skip
   791     info_ptr->may_skip_backward = true;
   792     info_ptr->may_skip_forward = true;
   793   } else {
   794     jlong freq = performance_frequency;
   795     if (freq < NANOS_PER_SEC) {
   796       // the performance counter is 64 bits and we will
   797       // be multiplying it -- so no wrap in 64 bits
   798       info_ptr->max_value = ALL_64_BITS;
   799     } else if (freq > NANOS_PER_SEC) {
   800       // use the max value the counter can reach to
   801       // determine the max value which could be returned
   802       julong max_counter = (julong)ALL_64_BITS;
   803       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   804     } else {
   805       // the performance counter is 64 bits and we will
   806       // be using it directly -- so no wrap in 64 bits
   807       info_ptr->max_value = ALL_64_BITS;
   808     }
   810     // using a counter, so no skipping
   811     info_ptr->may_skip_backward = false;
   812     info_ptr->may_skip_forward = false;
   813   }
   814   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   815 }
   817 char* os::local_time_string(char *buf, size_t buflen) {
   818   SYSTEMTIME st;
   819   GetLocalTime(&st);
   820   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   821                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   822   return buf;
   823 }
   825 bool os::getTimesSecs(double* process_real_time,
   826                      double* process_user_time,
   827                      double* process_system_time) {
   828   HANDLE h_process = GetCurrentProcess();
   829   FILETIME create_time, exit_time, kernel_time, user_time;
   830   BOOL result = GetProcessTimes(h_process,
   831                                &create_time,
   832                                &exit_time,
   833                                &kernel_time,
   834                                &user_time);
   835   if (result != 0) {
   836     FILETIME wt;
   837     GetSystemTimeAsFileTime(&wt);
   838     jlong rtc_millis = windows_to_java_time(wt);
   839     jlong user_millis = windows_to_java_time(user_time);
   840     jlong system_millis = windows_to_java_time(kernel_time);
   841     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   842     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   843     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   844     return true;
   845   } else {
   846     return false;
   847   }
   848 }
   850 void os::shutdown() {
   852   // allow PerfMemory to attempt cleanup of any persistent resources
   853   perfMemory_exit();
   855   // flush buffered output, finish log files
   856   ostream_abort();
   858   // Check for abort hook
   859   abort_hook_t abort_hook = Arguments::abort_hook();
   860   if (abort_hook != NULL) {
   861     abort_hook();
   862   }
   863 }
   865 void os::abort(bool dump_core)
   866 {
   867   os::shutdown();
   868   // no core dump on Windows
   869   ::exit(1);
   870 }
   872 // Die immediately, no exit hook, no abort hook, no cleanup.
   873 void os::die() {
   874   _exit(-1);
   875 }
   877 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   878 //  * dirent_md.c       1.15 00/02/02
   879 //
   880 // The declarations for DIR and struct dirent are in jvm_win32.h.
   882 /* Caller must have already run dirname through JVM_NativePath, which removes
   883    duplicate slashes and converts all instances of '/' into '\\'. */
   885 DIR *
   886 os::opendir(const char *dirname)
   887 {
   888     assert(dirname != NULL, "just checking");   // hotspot change
   889     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   890     DWORD fattr;                                // hotspot change
   891     char alt_dirname[4] = { 0, 0, 0, 0 };
   893     if (dirp == 0) {
   894         errno = ENOMEM;
   895         return 0;
   896     }
   898     /*
   899      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   900      * as a directory in FindFirstFile().  We detect this case here and
   901      * prepend the current drive name.
   902      */
   903     if (dirname[1] == '\0' && dirname[0] == '\\') {
   904         alt_dirname[0] = _getdrive() + 'A' - 1;
   905         alt_dirname[1] = ':';
   906         alt_dirname[2] = '\\';
   907         alt_dirname[3] = '\0';
   908         dirname = alt_dirname;
   909     }
   911     dirp->path = (char *)malloc(strlen(dirname) + 5);
   912     if (dirp->path == 0) {
   913         free(dirp);
   914         errno = ENOMEM;
   915         return 0;
   916     }
   917     strcpy(dirp->path, dirname);
   919     fattr = GetFileAttributes(dirp->path);
   920     if (fattr == 0xffffffff) {
   921         free(dirp->path);
   922         free(dirp);
   923         errno = ENOENT;
   924         return 0;
   925     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   926         free(dirp->path);
   927         free(dirp);
   928         errno = ENOTDIR;
   929         return 0;
   930     }
   932     /* Append "*.*", or possibly "\\*.*", to path */
   933     if (dirp->path[1] == ':'
   934         && (dirp->path[2] == '\0'
   935             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   936         /* No '\\' needed for cases like "Z:" or "Z:\" */
   937         strcat(dirp->path, "*.*");
   938     } else {
   939         strcat(dirp->path, "\\*.*");
   940     }
   942     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   943     if (dirp->handle == INVALID_HANDLE_VALUE) {
   944         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   945             free(dirp->path);
   946             free(dirp);
   947             errno = EACCES;
   948             return 0;
   949         }
   950     }
   951     return dirp;
   952 }
   954 /* parameter dbuf unused on Windows */
   956 struct dirent *
   957 os::readdir(DIR *dirp, dirent *dbuf)
   958 {
   959     assert(dirp != NULL, "just checking");      // hotspot change
   960     if (dirp->handle == INVALID_HANDLE_VALUE) {
   961         return 0;
   962     }
   964     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
   966     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
   967         if (GetLastError() == ERROR_INVALID_HANDLE) {
   968             errno = EBADF;
   969             return 0;
   970         }
   971         FindClose(dirp->handle);
   972         dirp->handle = INVALID_HANDLE_VALUE;
   973     }
   975     return &dirp->dirent;
   976 }
   978 int
   979 os::closedir(DIR *dirp)
   980 {
   981     assert(dirp != NULL, "just checking");      // hotspot change
   982     if (dirp->handle != INVALID_HANDLE_VALUE) {
   983         if (!FindClose(dirp->handle)) {
   984             errno = EBADF;
   985             return -1;
   986         }
   987         dirp->handle = INVALID_HANDLE_VALUE;
   988     }
   989     free(dirp->path);
   990     free(dirp);
   991     return 0;
   992 }
   994 const char* os::dll_file_extension() { return ".dll"; }
   996 const char * os::get_temp_directory()
   997 {
   998     static char path_buf[MAX_PATH];
   999     if (GetTempPath(MAX_PATH, path_buf)>0)
  1000       return path_buf;
  1001     else{
  1002       path_buf[0]='\0';
  1003       return path_buf;
  1007 static bool file_exists(const char* filename) {
  1008   if (filename == NULL || strlen(filename) == 0) {
  1009     return false;
  1011   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1014 void os::dll_build_name(char *buffer, size_t buflen,
  1015                         const char* pname, const char* fname) {
  1016   // Copied from libhpi
  1017   const size_t pnamelen = pname ? strlen(pname) : 0;
  1018   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1020   // Quietly truncates on buffer overflow. Should be an error.
  1021   if (pnamelen + strlen(fname) + 10 > buflen) {
  1022     *buffer = '\0';
  1023     return;
  1026   if (pnamelen == 0) {
  1027     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1028   } else if (c == ':' || c == '\\') {
  1029     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1030   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1031     int n;
  1032     char** pelements = split_path(pname, &n);
  1033     for (int i = 0 ; i < n ; i++) {
  1034       char* path = pelements[i];
  1035       // Really shouldn't be NULL, but check can't hurt
  1036       size_t plen = (path == NULL) ? 0 : strlen(path);
  1037       if (plen == 0) {
  1038         continue; // skip the empty path values
  1040       const char lastchar = path[plen - 1];
  1041       if (lastchar == ':' || lastchar == '\\') {
  1042         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1043       } else {
  1044         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1046       if (file_exists(buffer)) {
  1047         break;
  1050     // release the storage
  1051     for (int i = 0 ; i < n ; i++) {
  1052       if (pelements[i] != NULL) {
  1053         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1056     if (pelements != NULL) {
  1057       FREE_C_HEAP_ARRAY(char*, pelements);
  1059   } else {
  1060     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1064 // Needs to be in os specific directory because windows requires another
  1065 // header file <direct.h>
  1066 const char* os::get_current_directory(char *buf, int buflen) {
  1067   return _getcwd(buf, buflen);
  1070 //-----------------------------------------------------------
  1071 // Helper functions for fatal error handler
  1073 // The following library functions are resolved dynamically at runtime:
  1075 // PSAPI functions, for Windows NT, 2000, XP
  1077 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1078 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1079 typedef struct _MODULEINFO {
  1080     LPVOID lpBaseOfDll;
  1081     DWORD SizeOfImage;
  1082     LPVOID EntryPoint;
  1083 } MODULEINFO, *LPMODULEINFO;
  1085 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1086 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1087 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1089 // ToolHelp Functions, for Windows 95, 98 and ME
  1091 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1092 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1093 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1095 bool _has_psapi;
  1096 bool _psapi_init = false;
  1097 bool _has_toolhelp;
  1099 static bool _init_psapi() {
  1100   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1101   if( psapi == NULL ) return false ;
  1103   _EnumProcessModules = CAST_TO_FN_PTR(
  1104       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1105       GetProcAddress(psapi, "EnumProcessModules")) ;
  1106   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1107       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1108       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1109   _GetModuleInformation = CAST_TO_FN_PTR(
  1110       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1111       GetProcAddress(psapi, "GetModuleInformation"));
  1113   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1114   _psapi_init = true;
  1115   return _has_psapi;
  1118 static bool _init_toolhelp() {
  1119   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1120   if (kernel32 == NULL) return false ;
  1122   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1123       HANDLE(WINAPI *)(DWORD,DWORD),
  1124       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1125   _Module32First = CAST_TO_FN_PTR(
  1126       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1127       GetProcAddress(kernel32, "Module32First" ));
  1128   _Module32Next = CAST_TO_FN_PTR(
  1129       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1130       GetProcAddress(kernel32, "Module32Next" ));
  1132   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1133   return _has_toolhelp;
  1136 #ifdef _WIN64
  1137 // Helper routine which returns true if address in
  1138 // within the NTDLL address space.
  1139 //
  1140 static bool _addr_in_ntdll( address addr )
  1142   HMODULE hmod;
  1143   MODULEINFO minfo;
  1145   hmod = GetModuleHandle("NTDLL.DLL");
  1146   if ( hmod == NULL ) return false;
  1147   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1148                                &minfo, sizeof(MODULEINFO)) )
  1149     return false;
  1151   if ( (addr >= minfo.lpBaseOfDll) &&
  1152        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1153     return true;
  1154   else
  1155     return false;
  1157 #endif
  1160 // Enumerate all modules for a given process ID
  1161 //
  1162 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1163 // different API for doing this. We use PSAPI.DLL on NT based
  1164 // Windows and ToolHelp on 95/98/Me.
  1166 // Callback function that is called by enumerate_modules() on
  1167 // every DLL module.
  1168 // Input parameters:
  1169 //    int       pid,
  1170 //    char*     module_file_name,
  1171 //    address   module_base_addr,
  1172 //    unsigned  module_size,
  1173 //    void*     param
  1174 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1176 // enumerate_modules for Windows NT, using PSAPI
  1177 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1179   HANDLE   hProcess ;
  1181 # define MAX_NUM_MODULES 128
  1182   HMODULE     modules[MAX_NUM_MODULES];
  1183   static char filename[ MAX_PATH ];
  1184   int         result = 0;
  1186   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1188   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1189                          FALSE, pid ) ;
  1190   if (hProcess == NULL) return 0;
  1192   DWORD size_needed;
  1193   if (!_EnumProcessModules(hProcess, modules,
  1194                            sizeof(modules), &size_needed)) {
  1195       CloseHandle( hProcess );
  1196       return 0;
  1199   // number of modules that are currently loaded
  1200   int num_modules = size_needed / sizeof(HMODULE);
  1202   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1203     // Get Full pathname:
  1204     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1205                              filename, sizeof(filename))) {
  1206         filename[0] = '\0';
  1209     MODULEINFO modinfo;
  1210     if (!_GetModuleInformation(hProcess, modules[i],
  1211                                &modinfo, sizeof(modinfo))) {
  1212         modinfo.lpBaseOfDll = NULL;
  1213         modinfo.SizeOfImage = 0;
  1216     // Invoke callback function
  1217     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1218                   modinfo.SizeOfImage, param);
  1219     if (result) break;
  1222   CloseHandle( hProcess ) ;
  1223   return result;
  1227 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1228 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1230   HANDLE                hSnapShot ;
  1231   static MODULEENTRY32  modentry ;
  1232   int                   result = 0;
  1234   if (!_has_toolhelp) return 0;
  1236   // Get a handle to a Toolhelp snapshot of the system
  1237   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1238   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1239       return FALSE ;
  1242   // iterate through all modules
  1243   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1244   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1246   while( not_done ) {
  1247     // invoke the callback
  1248     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1249                 modentry.modBaseSize, param);
  1250     if (result) break;
  1252     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1253     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1256   CloseHandle(hSnapShot);
  1257   return result;
  1260 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1262   // Get current process ID if caller doesn't provide it.
  1263   if (!pid) pid = os::current_process_id();
  1265   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1266   else                    return _enumerate_modules_windows(pid, func, param);
  1269 struct _modinfo {
  1270    address addr;
  1271    char*   full_path;   // point to a char buffer
  1272    int     buflen;      // size of the buffer
  1273    address base_addr;
  1274 };
  1276 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1277                                   unsigned size, void * param) {
  1278    struct _modinfo *pmod = (struct _modinfo *)param;
  1279    if (!pmod) return -1;
  1281    if (base_addr     <= pmod->addr &&
  1282        base_addr+size > pmod->addr) {
  1283      // if a buffer is provided, copy path name to the buffer
  1284      if (pmod->full_path) {
  1285        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1287      pmod->base_addr = base_addr;
  1288      return 1;
  1290    return 0;
  1293 bool os::dll_address_to_library_name(address addr, char* buf,
  1294                                      int buflen, int* offset) {
  1295 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1296 //       return the full path to the DLL file, sometimes it returns path
  1297 //       to the corresponding PDB file (debug info); sometimes it only
  1298 //       returns partial path, which makes life painful.
  1300    struct _modinfo mi;
  1301    mi.addr      = addr;
  1302    mi.full_path = buf;
  1303    mi.buflen    = buflen;
  1304    int pid = os::current_process_id();
  1305    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1306       // buf already contains path name
  1307       if (offset) *offset = addr - mi.base_addr;
  1308       return true;
  1309    } else {
  1310       if (buf) buf[0] = '\0';
  1311       if (offset) *offset = -1;
  1312       return false;
  1316 bool os::dll_address_to_function_name(address addr, char *buf,
  1317                                       int buflen, int *offset) {
  1318   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1319   // we need to initialize imagehlp/dbghelp, then load symbol table
  1320   // for every module. That's too much work to do after a fatal error.
  1321   // For an example on how to implement this function, see 1.4.2.
  1322   if (offset)  *offset  = -1;
  1323   if (buf) buf[0] = '\0';
  1324   return false;
  1327 void* os::dll_lookup(void* handle, const char* name) {
  1328   return GetProcAddress((HMODULE)handle, name);
  1331 // save the start and end address of jvm.dll into param[0] and param[1]
  1332 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1333                     unsigned size, void * param) {
  1334    if (!param) return -1;
  1336    if (base_addr     <= (address)_locate_jvm_dll &&
  1337        base_addr+size > (address)_locate_jvm_dll) {
  1338          ((address*)param)[0] = base_addr;
  1339          ((address*)param)[1] = base_addr + size;
  1340          return 1;
  1342    return 0;
  1345 address vm_lib_location[2];    // start and end address of jvm.dll
  1347 // check if addr is inside jvm.dll
  1348 bool os::address_is_in_vm(address addr) {
  1349   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1350     int pid = os::current_process_id();
  1351     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1352       assert(false, "Can't find jvm module.");
  1353       return false;
  1357   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1360 // print module info; param is outputStream*
  1361 static int _print_module(int pid, char* fname, address base,
  1362                          unsigned size, void* param) {
  1363    if (!param) return -1;
  1365    outputStream* st = (outputStream*)param;
  1367    address end_addr = base + size;
  1368    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1369    return 0;
  1372 // Loads .dll/.so and
  1373 // in case of error it checks if .dll/.so was built for the
  1374 // same architecture as Hotspot is running on
  1375 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1377   void * result = LoadLibrary(name);
  1378   if (result != NULL)
  1380     return result;
  1383   long errcode = GetLastError();
  1384   if (errcode == ERROR_MOD_NOT_FOUND) {
  1385     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1386     ebuf[ebuflen-1]='\0';
  1387     return NULL;
  1390   // Parsing dll below
  1391   // If we can read dll-info and find that dll was built
  1392   // for an architecture other than Hotspot is running in
  1393   // - then print to buffer "DLL was built for a different architecture"
  1394   // else call getLastErrorString to obtain system error message
  1396   // Read system error message into ebuf
  1397   // It may or may not be overwritten below (in the for loop and just above)
  1398   getLastErrorString(ebuf, (size_t) ebuflen);
  1399   ebuf[ebuflen-1]='\0';
  1400   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1401   if (file_descriptor<0)
  1403     return NULL;
  1406   uint32_t signature_offset;
  1407   uint16_t lib_arch=0;
  1408   bool failed_to_get_lib_arch=
  1410     //Go to position 3c in the dll
  1411     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1412     ||
  1413     // Read loacation of signature
  1414     (sizeof(signature_offset)!=
  1415       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1416     ||
  1417     //Go to COFF File Header in dll
  1418     //that is located after"signature" (4 bytes long)
  1419     (os::seek_to_file_offset(file_descriptor,
  1420       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1421     ||
  1422     //Read field that contains code of architecture
  1423     // that dll was build for
  1424     (sizeof(lib_arch)!=
  1425       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1426   );
  1428   ::close(file_descriptor);
  1429   if (failed_to_get_lib_arch)
  1431     // file i/o error - report getLastErrorString(...) msg
  1432     return NULL;
  1435   typedef struct
  1437     uint16_t arch_code;
  1438     char* arch_name;
  1439   } arch_t;
  1441   static const arch_t arch_array[]={
  1442     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1443     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1444     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1445   };
  1446   #if   (defined _M_IA64)
  1447     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1448   #elif (defined _M_AMD64)
  1449     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1450   #elif (defined _M_IX86)
  1451     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1452   #else
  1453     #error Method os::dll_load requires that one of following \
  1454            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1455   #endif
  1458   // Obtain a string for printf operation
  1459   // lib_arch_str shall contain string what platform this .dll was built for
  1460   // running_arch_str shall string contain what platform Hotspot was built for
  1461   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1462   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1464     if (lib_arch==arch_array[i].arch_code)
  1465       lib_arch_str=arch_array[i].arch_name;
  1466     if (running_arch==arch_array[i].arch_code)
  1467       running_arch_str=arch_array[i].arch_name;
  1470   assert(running_arch_str,
  1471     "Didn't find runing architecture code in arch_array");
  1473   // If the architure is right
  1474   // but some other error took place - report getLastErrorString(...) msg
  1475   if (lib_arch == running_arch)
  1477     return NULL;
  1480   if (lib_arch_str!=NULL)
  1482     ::_snprintf(ebuf, ebuflen-1,
  1483       "Can't load %s-bit .dll on a %s-bit platform",
  1484       lib_arch_str,running_arch_str);
  1486   else
  1488     // don't know what architecture this dll was build for
  1489     ::_snprintf(ebuf, ebuflen-1,
  1490       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1491       lib_arch,running_arch_str);
  1494   return NULL;
  1498 void os::print_dll_info(outputStream *st) {
  1499    int pid = os::current_process_id();
  1500    st->print_cr("Dynamic libraries:");
  1501    enumerate_modules(pid, _print_module, (void *)st);
  1504 // function pointer to Windows API "GetNativeSystemInfo".
  1505 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1506 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1508 void os::print_os_info(outputStream* st) {
  1509   st->print("OS:");
  1511   OSVERSIONINFOEX osvi;
  1512   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1513   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1515   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1516     st->print_cr("N/A");
  1517     return;
  1520   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1521   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1522     switch (os_vers) {
  1523     case 3051: st->print(" Windows NT 3.51"); break;
  1524     case 4000: st->print(" Windows NT 4.0"); break;
  1525     case 5000: st->print(" Windows 2000"); break;
  1526     case 5001: st->print(" Windows XP"); break;
  1527     case 5002:
  1528     case 6000: {
  1529       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1530       // find out whether we are running on 64 bit processor or not.
  1531       SYSTEM_INFO si;
  1532       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1533       // Check to see if _GetNativeSystemInfo has been initialized.
  1534       if (_GetNativeSystemInfo == NULL) {
  1535         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1536         _GetNativeSystemInfo =
  1537             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1538                            GetProcAddress(hKernel32,
  1539                                           "GetNativeSystemInfo"));
  1540         if (_GetNativeSystemInfo == NULL)
  1541           GetSystemInfo(&si);
  1542       } else {
  1543         _GetNativeSystemInfo(&si);
  1545       if (os_vers == 5002) {
  1546         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1547             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1548           st->print(" Windows XP x64 Edition");
  1549         else
  1550             st->print(" Windows Server 2003 family");
  1551       } else { // os_vers == 6000
  1552         if (osvi.wProductType == VER_NT_WORKSTATION)
  1553             st->print(" Windows Vista");
  1554         else
  1555             st->print(" Windows Server 2008");
  1556         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1557             st->print(" , 64 bit");
  1559       break;
  1561     default: // future windows, print out its major and minor versions
  1562       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1564   } else {
  1565     switch (os_vers) {
  1566     case 4000: st->print(" Windows 95"); break;
  1567     case 4010: st->print(" Windows 98"); break;
  1568     case 4090: st->print(" Windows Me"); break;
  1569     default: // future windows, print out its major and minor versions
  1570       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1573   st->print(" Build %d", osvi.dwBuildNumber);
  1574   st->print(" %s", osvi.szCSDVersion);           // service pack
  1575   st->cr();
  1578 void os::print_memory_info(outputStream* st) {
  1579   st->print("Memory:");
  1580   st->print(" %dk page", os::vm_page_size()>>10);
  1582   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
  1583   // is larger than 4GB
  1584   MEMORYSTATUS ms;
  1585   GlobalMemoryStatus(&ms);
  1587   st->print(", physical %uk", os::physical_memory() >> 10);
  1588   st->print("(%uk free)", os::available_memory() >> 10);
  1590   st->print(", swap %uk", ms.dwTotalPageFile >> 10);
  1591   st->print("(%uk free)", ms.dwAvailPageFile >> 10);
  1592   st->cr();
  1595 void os::print_siginfo(outputStream *st, void *siginfo) {
  1596   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1597   st->print("siginfo:");
  1598   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1600   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1601       er->NumberParameters >= 2) {
  1602       switch (er->ExceptionInformation[0]) {
  1603       case 0: st->print(", reading address"); break;
  1604       case 1: st->print(", writing address"); break;
  1605       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1606                             er->ExceptionInformation[0]);
  1608       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1609   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1610              er->NumberParameters >= 2 && UseSharedSpaces) {
  1611     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1612     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1613       st->print("\n\nError accessing class data sharing archive."       \
  1614                 " Mapped file inaccessible during execution, "          \
  1615                 " possible disk/network problem.");
  1617   } else {
  1618     int num = er->NumberParameters;
  1619     if (num > 0) {
  1620       st->print(", ExceptionInformation=");
  1621       for (int i = 0; i < num; i++) {
  1622         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1626   st->cr();
  1629 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1630   // do nothing
  1633 static char saved_jvm_path[MAX_PATH] = {0};
  1635 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1636 void os::jvm_path(char *buf, jint buflen) {
  1637   // Error checking.
  1638   if (buflen < MAX_PATH) {
  1639     assert(false, "must use a large-enough buffer");
  1640     buf[0] = '\0';
  1641     return;
  1643   // Lazy resolve the path to current module.
  1644   if (saved_jvm_path[0] != 0) {
  1645     strcpy(buf, saved_jvm_path);
  1646     return;
  1649   GetModuleFileName(vm_lib_handle, buf, buflen);
  1650   strcpy(saved_jvm_path, buf);
  1654 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1655 #ifndef _WIN64
  1656   st->print("_");
  1657 #endif
  1661 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1662 #ifndef _WIN64
  1663   st->print("@%d", args_size  * sizeof(int));
  1664 #endif
  1667 // sun.misc.Signal
  1668 // NOTE that this is a workaround for an apparent kernel bug where if
  1669 // a signal handler for SIGBREAK is installed then that signal handler
  1670 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1671 // See bug 4416763.
  1672 static void (*sigbreakHandler)(int) = NULL;
  1674 static void UserHandler(int sig, void *siginfo, void *context) {
  1675   os::signal_notify(sig);
  1676   // We need to reinstate the signal handler each time...
  1677   os::signal(sig, (void*)UserHandler);
  1680 void* os::user_handler() {
  1681   return (void*) UserHandler;
  1684 void* os::signal(int signal_number, void* handler) {
  1685   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1686     void (*oldHandler)(int) = sigbreakHandler;
  1687     sigbreakHandler = (void (*)(int)) handler;
  1688     return (void*) oldHandler;
  1689   } else {
  1690     return (void*)::signal(signal_number, (void (*)(int))handler);
  1694 void os::signal_raise(int signal_number) {
  1695   raise(signal_number);
  1698 // The Win32 C runtime library maps all console control events other than ^C
  1699 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1700 // logoff, and shutdown events.  We therefore install our own console handler
  1701 // that raises SIGTERM for the latter cases.
  1702 //
  1703 static BOOL WINAPI consoleHandler(DWORD event) {
  1704   switch(event) {
  1705     case CTRL_C_EVENT:
  1706       if (is_error_reported()) {
  1707         // Ctrl-C is pressed during error reporting, likely because the error
  1708         // handler fails to abort. Let VM die immediately.
  1709         os::die();
  1712       os::signal_raise(SIGINT);
  1713       return TRUE;
  1714       break;
  1715     case CTRL_BREAK_EVENT:
  1716       if (sigbreakHandler != NULL) {
  1717         (*sigbreakHandler)(SIGBREAK);
  1719       return TRUE;
  1720       break;
  1721     case CTRL_CLOSE_EVENT:
  1722     case CTRL_LOGOFF_EVENT:
  1723     case CTRL_SHUTDOWN_EVENT:
  1724       os::signal_raise(SIGTERM);
  1725       return TRUE;
  1726       break;
  1727     default:
  1728       break;
  1730   return FALSE;
  1733 /*
  1734  * The following code is moved from os.cpp for making this
  1735  * code platform specific, which it is by its very nature.
  1736  */
  1738 // Return maximum OS signal used + 1 for internal use only
  1739 // Used as exit signal for signal_thread
  1740 int os::sigexitnum_pd(){
  1741   return NSIG;
  1744 // a counter for each possible signal value, including signal_thread exit signal
  1745 static volatile jint pending_signals[NSIG+1] = { 0 };
  1746 static HANDLE sig_sem;
  1748 void os::signal_init_pd() {
  1749   // Initialize signal structures
  1750   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1752   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1754   // Programs embedding the VM do not want it to attempt to receive
  1755   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1756   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1757   // the VM is run as part of a Windows NT service (i.e., a servlet
  1758   // engine in a web server), the correct behavior is for any console
  1759   // control handler to return FALSE, not TRUE, because the OS's
  1760   // "final" handler for such events allows the process to continue if
  1761   // it is a service (while terminating it if it is not a service).
  1762   // To make this behavior uniform and the mechanism simpler, we
  1763   // completely disable the VM's usage of these console events if -Xrs
  1764   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1765   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1766   // case.  See bugs 4323062, 4345157, and related bugs.
  1768   if (!ReduceSignalUsage) {
  1769     // Add a CTRL-C handler
  1770     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1774 void os::signal_notify(int signal_number) {
  1775   BOOL ret;
  1777   Atomic::inc(&pending_signals[signal_number]);
  1778   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1779   assert(ret != 0, "ReleaseSemaphore() failed");
  1782 static int check_pending_signals(bool wait_for_signal) {
  1783   DWORD ret;
  1784   while (true) {
  1785     for (int i = 0; i < NSIG + 1; i++) {
  1786       jint n = pending_signals[i];
  1787       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1788         return i;
  1791     if (!wait_for_signal) {
  1792       return -1;
  1795     JavaThread *thread = JavaThread::current();
  1797     ThreadBlockInVM tbivm(thread);
  1799     bool threadIsSuspended;
  1800     do {
  1801       thread->set_suspend_equivalent();
  1802       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1803       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1804       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1806       // were we externally suspended while we were waiting?
  1807       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1808       if (threadIsSuspended) {
  1809         //
  1810         // The semaphore has been incremented, but while we were waiting
  1811         // another thread suspended us. We don't want to continue running
  1812         // while suspended because that would surprise the thread that
  1813         // suspended us.
  1814         //
  1815         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1816         assert(ret != 0, "ReleaseSemaphore() failed");
  1818         thread->java_suspend_self();
  1820     } while (threadIsSuspended);
  1824 int os::signal_lookup() {
  1825   return check_pending_signals(false);
  1828 int os::signal_wait() {
  1829   return check_pending_signals(true);
  1832 // Implicit OS exception handling
  1834 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1835   JavaThread* thread = JavaThread::current();
  1836   // Save pc in thread
  1837 #ifdef _M_IA64
  1838   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1839   // Set pc to handler
  1840   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1841 #elif _M_AMD64
  1842   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1843   // Set pc to handler
  1844   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1845 #else
  1846   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1847   // Set pc to handler
  1848   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1849 #endif
  1851   // Continue the execution
  1852   return EXCEPTION_CONTINUE_EXECUTION;
  1856 // Used for PostMortemDump
  1857 extern "C" void safepoints();
  1858 extern "C" void find(int x);
  1859 extern "C" void events();
  1861 // According to Windows API documentation, an illegal instruction sequence should generate
  1862 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1863 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1864 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1866 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1868 // From "Execution Protection in the Windows Operating System" draft 0.35
  1869 // Once a system header becomes available, the "real" define should be
  1870 // included or copied here.
  1871 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1873 #define def_excpt(val) #val, val
  1875 struct siglabel {
  1876   char *name;
  1877   int   number;
  1878 };
  1880 struct siglabel exceptlabels[] = {
  1881     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1882     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1883     def_excpt(EXCEPTION_BREAKPOINT),
  1884     def_excpt(EXCEPTION_SINGLE_STEP),
  1885     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1886     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1887     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1888     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1889     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1890     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1891     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1892     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1893     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1894     def_excpt(EXCEPTION_INT_OVERFLOW),
  1895     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1896     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1897     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1898     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1899     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1900     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1901     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1902     def_excpt(EXCEPTION_GUARD_PAGE),
  1903     def_excpt(EXCEPTION_INVALID_HANDLE),
  1904     NULL, 0
  1905 };
  1907 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1908   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1909     if (exceptlabels[i].number == exception_code) {
  1910        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1911        return buf;
  1915   return NULL;
  1918 //-----------------------------------------------------------------------------
  1919 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1920   // handle exception caused by idiv; should only happen for -MinInt/-1
  1921   // (division by zero is handled explicitly)
  1922 #ifdef _M_IA64
  1923   assert(0, "Fix Handle_IDiv_Exception");
  1924 #elif _M_AMD64
  1925   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1926   address pc = (address)ctx->Rip;
  1927   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1928   assert(pc[0] == 0xF7, "not an idiv opcode");
  1929   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1930   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  1931   // set correct result values and continue after idiv instruction
  1932   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1933   ctx->Rax = (DWORD)min_jint;      // result
  1934   ctx->Rdx = (DWORD)0;             // remainder
  1935   // Continue the execution
  1936 #else
  1937   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1938   address pc = (address)ctx->Eip;
  1939   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1940   assert(pc[0] == 0xF7, "not an idiv opcode");
  1941   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1942   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  1943   // set correct result values and continue after idiv instruction
  1944   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1945   ctx->Eax = (DWORD)min_jint;      // result
  1946   ctx->Edx = (DWORD)0;             // remainder
  1947   // Continue the execution
  1948 #endif
  1949   return EXCEPTION_CONTINUE_EXECUTION;
  1952 #ifndef  _WIN64
  1953 //-----------------------------------------------------------------------------
  1954 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1955   // handle exception caused by native mothod modifying control word
  1956   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1957   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1959   switch (exception_code) {
  1960     case EXCEPTION_FLT_DENORMAL_OPERAND:
  1961     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  1962     case EXCEPTION_FLT_INEXACT_RESULT:
  1963     case EXCEPTION_FLT_INVALID_OPERATION:
  1964     case EXCEPTION_FLT_OVERFLOW:
  1965     case EXCEPTION_FLT_STACK_CHECK:
  1966     case EXCEPTION_FLT_UNDERFLOW:
  1967       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  1968       if (fp_control_word != ctx->FloatSave.ControlWord) {
  1969         // Restore FPCW and mask out FLT exceptions
  1970         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  1971         // Mask out pending FLT exceptions
  1972         ctx->FloatSave.StatusWord &=  0xffffff00;
  1973         return EXCEPTION_CONTINUE_EXECUTION;
  1976   return EXCEPTION_CONTINUE_SEARCH;
  1978 #else //_WIN64
  1979 /*
  1980   On Windows, the mxcsr control bits are non-volatile across calls
  1981   See also CR 6192333
  1982   If EXCEPTION_FLT_* happened after some native method modified
  1983   mxcsr - it is not a jvm fault.
  1984   However should we decide to restore of mxcsr after a faulty
  1985   native method we can uncomment following code
  1986       jint MxCsr = INITIAL_MXCSR;
  1987         // we can't use StubRoutines::addr_mxcsr_std()
  1988         // because in Win64 mxcsr is not saved there
  1989       if (MxCsr != ctx->MxCsr) {
  1990         ctx->MxCsr = MxCsr;
  1991         return EXCEPTION_CONTINUE_EXECUTION;
  1994 */
  1995 #endif //_WIN64
  1998 // Fatal error reporting is single threaded so we can make this a
  1999 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2000 // it.
  2001 static char saved_error_file[MAX_PATH] = {0};
  2003 void os::set_error_file(const char *logfile) {
  2004   if (strlen(logfile) <= MAX_PATH) {
  2005     strncpy(saved_error_file, logfile, MAX_PATH);
  2009 static inline void report_error(Thread* t, DWORD exception_code,
  2010                                 address addr, void* siginfo, void* context) {
  2011   VMError err(t, exception_code, addr, siginfo, context);
  2012   err.report_and_die();
  2014   // If UseOsErrorReporting, this will return here and save the error file
  2015   // somewhere where we can find it in the minidump.
  2018 //-----------------------------------------------------------------------------
  2019 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2020   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2021   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2022 #ifdef _M_IA64
  2023   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2024 #elif _M_AMD64
  2025   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2026 #else
  2027   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2028 #endif
  2029   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2031 #ifndef _WIN64
  2032   // Execution protection violation - win32 running on AMD64 only
  2033   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2034   // This is safe to do because we have a new/unique ExceptionInformation
  2035   // code for this condition.
  2036   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2037     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2038     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2039     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2041     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2042       int page_size = os::vm_page_size();
  2044       // Make sure the pc and the faulting address are sane.
  2045       //
  2046       // If an instruction spans a page boundary, and the page containing
  2047       // the beginning of the instruction is executable but the following
  2048       // page is not, the pc and the faulting address might be slightly
  2049       // different - we still want to unguard the 2nd page in this case.
  2050       //
  2051       // 15 bytes seems to be a (very) safe value for max instruction size.
  2052       bool pc_is_near_addr =
  2053         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2054       bool instr_spans_page_boundary =
  2055         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2056                          (intptr_t) page_size) > 0);
  2058       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2059         static volatile address last_addr =
  2060           (address) os::non_memory_address_word();
  2062         // In conservative mode, don't unguard unless the address is in the VM
  2063         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2064             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2066           // Set memory to RWX and retry
  2067           address page_start =
  2068             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2069           bool res = os::protect_memory((char*) page_start, page_size,
  2070                                         os::MEM_PROT_RWX);
  2072           if (PrintMiscellaneous && Verbose) {
  2073             char buf[256];
  2074             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2075                          "at " INTPTR_FORMAT
  2076                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2077                          page_start, (res ? "success" : strerror(errno)));
  2078             tty->print_raw_cr(buf);
  2081           // Set last_addr so if we fault again at the same address, we don't
  2082           // end up in an endless loop.
  2083           //
  2084           // There are two potential complications here.  Two threads trapping
  2085           // at the same address at the same time could cause one of the
  2086           // threads to think it already unguarded, and abort the VM.  Likely
  2087           // very rare.
  2088           //
  2089           // The other race involves two threads alternately trapping at
  2090           // different addresses and failing to unguard the page, resulting in
  2091           // an endless loop.  This condition is probably even more unlikely
  2092           // than the first.
  2093           //
  2094           // Although both cases could be avoided by using locks or thread
  2095           // local last_addr, these solutions are unnecessary complication:
  2096           // this handler is a best-effort safety net, not a complete solution.
  2097           // It is disabled by default and should only be used as a workaround
  2098           // in case we missed any no-execute-unsafe VM code.
  2100           last_addr = addr;
  2102           return EXCEPTION_CONTINUE_EXECUTION;
  2106       // Last unguard failed or not unguarding
  2107       tty->print_raw_cr("Execution protection violation");
  2108       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2109                    exceptionInfo->ContextRecord);
  2110       return EXCEPTION_CONTINUE_SEARCH;
  2113 #endif // _WIN64
  2115   // Check to see if we caught the safepoint code in the
  2116   // process of write protecting the memory serialization page.
  2117   // It write enables the page immediately after protecting it
  2118   // so just return.
  2119   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2120     JavaThread* thread = (JavaThread*) t;
  2121     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2122     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2123     if ( os::is_memory_serialize_page(thread, addr) ) {
  2124       // Block current thread until the memory serialize page permission restored.
  2125       os::block_on_serialize_page_trap();
  2126       return EXCEPTION_CONTINUE_EXECUTION;
  2131   if (t != NULL && t->is_Java_thread()) {
  2132     JavaThread* thread = (JavaThread*) t;
  2133     bool in_java = thread->thread_state() == _thread_in_Java;
  2135     // Handle potential stack overflows up front.
  2136     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2137       if (os::uses_stack_guard_pages()) {
  2138 #ifdef _M_IA64
  2139         //
  2140         // If it's a legal stack address continue, Windows will map it in.
  2141         //
  2142         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2143         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2144         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2145           return EXCEPTION_CONTINUE_EXECUTION;
  2147         // The register save area is the same size as the memory stack
  2148         // and starts at the page just above the start of the memory stack.
  2149         // If we get a fault in this area, we've run out of register
  2150         // stack.  If we are in java, try throwing a stack overflow exception.
  2151         if (addr > thread->stack_base() &&
  2152                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2153           char buf[256];
  2154           jio_snprintf(buf, sizeof(buf),
  2155                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2156                        addr, thread->stack_base() );
  2157           tty->print_raw_cr(buf);
  2158           // If not in java code, return and hope for the best.
  2159           return in_java ? Handle_Exception(exceptionInfo,
  2160             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2161             :  EXCEPTION_CONTINUE_EXECUTION;
  2163 #endif
  2164         if (thread->stack_yellow_zone_enabled()) {
  2165           // Yellow zone violation.  The o/s has unprotected the first yellow
  2166           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2167           // update the enabled status, even if the zone contains only one page.
  2168           thread->disable_stack_yellow_zone();
  2169           // If not in java code, return and hope for the best.
  2170           return in_java ? Handle_Exception(exceptionInfo,
  2171             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2172             :  EXCEPTION_CONTINUE_EXECUTION;
  2173         } else {
  2174           // Fatal red zone violation.
  2175           thread->disable_stack_red_zone();
  2176           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2177           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2178                        exceptionInfo->ContextRecord);
  2179           return EXCEPTION_CONTINUE_SEARCH;
  2181       } else if (in_java) {
  2182         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2183         // a one-time-only guard page, which it has released to us.  The next
  2184         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2185         return Handle_Exception(exceptionInfo,
  2186           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2187       } else {
  2188         // Can only return and hope for the best.  Further stack growth will
  2189         // result in an ACCESS_VIOLATION.
  2190         return EXCEPTION_CONTINUE_EXECUTION;
  2192     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2193       // Either stack overflow or null pointer exception.
  2194       if (in_java) {
  2195         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2196         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2197         address stack_end = thread->stack_base() - thread->stack_size();
  2198         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2199           // Stack overflow.
  2200           assert(!os::uses_stack_guard_pages(),
  2201             "should be caught by red zone code above.");
  2202           return Handle_Exception(exceptionInfo,
  2203             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2205         //
  2206         // Check for safepoint polling and implicit null
  2207         // We only expect null pointers in the stubs (vtable)
  2208         // the rest are checked explicitly now.
  2209         //
  2210         CodeBlob* cb = CodeCache::find_blob(pc);
  2211         if (cb != NULL) {
  2212           if (os::is_poll_address(addr)) {
  2213             address stub = SharedRuntime::get_poll_stub(pc);
  2214             return Handle_Exception(exceptionInfo, stub);
  2218 #ifdef _WIN64
  2219           //
  2220           // If it's a legal stack address map the entire region in
  2221           //
  2222           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2223           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2224           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2225                   addr = (address)((uintptr_t)addr &
  2226                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2227                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2228                                     false );
  2229                   return EXCEPTION_CONTINUE_EXECUTION;
  2231           else
  2232 #endif
  2234             // Null pointer exception.
  2235 #ifdef _M_IA64
  2236             // We catch register stack overflows in compiled code by doing
  2237             // an explicit compare and executing a st8(G0, G0) if the
  2238             // BSP enters into our guard area.  We test for the overflow
  2239             // condition and fall into the normal null pointer exception
  2240             // code if BSP hasn't overflowed.
  2241             if ( in_java ) {
  2242               if(thread->register_stack_overflow()) {
  2243                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2244                                 thread->register_stack_limit(),
  2245                                "GR7 doesn't contain register_stack_limit");
  2246                 // Disable the yellow zone which sets the state that
  2247                 // we've got a stack overflow problem.
  2248                 if (thread->stack_yellow_zone_enabled()) {
  2249                   thread->disable_stack_yellow_zone();
  2251                 // Give us some room to process the exception
  2252                 thread->disable_register_stack_guard();
  2253                 // Update GR7 with the new limit so we can continue running
  2254                 // compiled code.
  2255                 exceptionInfo->ContextRecord->IntS3 =
  2256                                (ULONGLONG)thread->register_stack_limit();
  2257                 return Handle_Exception(exceptionInfo,
  2258                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2259               } else {
  2260                 //
  2261                 // Check for implicit null
  2262                 // We only expect null pointers in the stubs (vtable)
  2263                 // the rest are checked explicitly now.
  2264                 //
  2265                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2266                   // an access to the first page of VM--assume it is a null pointer
  2267                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2268                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2271             } // in_java
  2273             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2274             // get here.
  2275             tty->print_raw_cr("Access violation, possible null pointer exception");
  2276             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2277                          exceptionInfo->ContextRecord);
  2278             return EXCEPTION_CONTINUE_SEARCH;
  2279 #else /* !IA64 */
  2281             // Windows 98 reports faulting addresses incorrectly
  2282             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2283                 !os::win32::is_nt()) {
  2284               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2285               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2287             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2288                          exceptionInfo->ContextRecord);
  2289             return EXCEPTION_CONTINUE_SEARCH;
  2290 #endif
  2295 #ifdef _WIN64
  2296       // Special care for fast JNI field accessors.
  2297       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2298       // in and the heap gets shrunk before the field access.
  2299       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2300         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2301         if (addr != (address)-1) {
  2302           return Handle_Exception(exceptionInfo, addr);
  2305 #endif
  2307 #ifdef _WIN64
  2308       // Windows will sometimes generate an access violation
  2309       // when we call malloc.  Since we use VectoredExceptions
  2310       // on 64 bit platforms, we see this exception.  We must
  2311       // pass this exception on so Windows can recover.
  2312       // We check to see if the pc of the fault is in NTDLL.DLL
  2313       // if so, we pass control on to Windows for handling.
  2314       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2315 #endif
  2317       // Stack overflow or null pointer exception in native code.
  2318       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2319                    exceptionInfo->ContextRecord);
  2320       return EXCEPTION_CONTINUE_SEARCH;
  2323     if (in_java) {
  2324       switch (exception_code) {
  2325       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2326         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2328       case EXCEPTION_INT_OVERFLOW:
  2329         return Handle_IDiv_Exception(exceptionInfo);
  2331       } // switch
  2333 #ifndef _WIN64
  2334     if ((thread->thread_state() == _thread_in_Java) ||
  2335         (thread->thread_state() == _thread_in_native) )
  2337       LONG result=Handle_FLT_Exception(exceptionInfo);
  2338       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2340 #endif //_WIN64
  2343   if (exception_code != EXCEPTION_BREAKPOINT) {
  2344 #ifndef _WIN64
  2345     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2346                  exceptionInfo->ContextRecord);
  2347 #else
  2348     // Itanium Windows uses a VectoredExceptionHandler
  2349     // Which means that C++ programatic exception handlers (try/except)
  2350     // will get here.  Continue the search for the right except block if
  2351     // the exception code is not a fatal code.
  2352     switch ( exception_code ) {
  2353       case EXCEPTION_ACCESS_VIOLATION:
  2354       case EXCEPTION_STACK_OVERFLOW:
  2355       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2356       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2357       case EXCEPTION_INT_OVERFLOW:
  2358       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2359       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2360                        exceptionInfo->ContextRecord);
  2362         break;
  2363       default:
  2364         break;
  2366 #endif
  2368   return EXCEPTION_CONTINUE_SEARCH;
  2371 #ifndef _WIN64
  2372 // Special care for fast JNI accessors.
  2373 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2374 // the heap gets shrunk before the field access.
  2375 // Need to install our own structured exception handler since native code may
  2376 // install its own.
  2377 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2378   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2379   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2380     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2381     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2382     if (addr != (address)-1) {
  2383       return Handle_Exception(exceptionInfo, addr);
  2386   return EXCEPTION_CONTINUE_SEARCH;
  2389 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2390 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2391   __try { \
  2392     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2393   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2394   } \
  2395   return 0; \
  2398 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2399 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2400 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2401 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2402 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2403 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2404 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2405 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2407 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2408   switch (type) {
  2409     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2410     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2411     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2412     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2413     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2414     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2415     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2416     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2417     default:        ShouldNotReachHere();
  2419   return (address)-1;
  2421 #endif
  2423 // Virtual Memory
  2425 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2426 int os::vm_allocation_granularity() {
  2427   return os::win32::vm_allocation_granularity();
  2430 // Windows large page support is available on Windows 2003. In order to use
  2431 // large page memory, the administrator must first assign additional privilege
  2432 // to the user:
  2433 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2434 //   + select Local Policies -> User Rights Assignment
  2435 //   + double click "Lock pages in memory", add users and/or groups
  2436 //   + reboot
  2437 // Note the above steps are needed for administrator as well, as administrators
  2438 // by default do not have the privilege to lock pages in memory.
  2439 //
  2440 // Note about Windows 2003: although the API supports committing large page
  2441 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2442 // scenario, I found through experiment it only uses large page if the entire
  2443 // memory region is reserved and committed in a single VirtualAlloc() call.
  2444 // This makes Windows large page support more or less like Solaris ISM, in
  2445 // that the entire heap must be committed upfront. This probably will change
  2446 // in the future, if so the code below needs to be revisited.
  2448 #ifndef MEM_LARGE_PAGES
  2449 #define MEM_LARGE_PAGES 0x20000000
  2450 #endif
  2452 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2453 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2454 // runtime.
  2455 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2456 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2457              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2458 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2459 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2461 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2462 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2463 static OpenProcessToken_func_type      _OpenProcessToken;
  2464 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2466 static HINSTANCE _kernel32;
  2467 static HINSTANCE _advapi32;
  2468 static HANDLE    _hProcess;
  2469 static HANDLE    _hToken;
  2471 static size_t _large_page_size = 0;
  2473 static bool resolve_functions_for_large_page_init() {
  2474   _kernel32 = LoadLibrary("kernel32.dll");
  2475   if (_kernel32 == NULL) return false;
  2477   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2478                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2479   if (_GetLargePageMinimum == NULL) return false;
  2481   _advapi32 = LoadLibrary("advapi32.dll");
  2482   if (_advapi32 == NULL) return false;
  2484   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2485                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2486   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2487                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2488   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2489                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2490   return _AdjustTokenPrivileges != NULL &&
  2491          _OpenProcessToken      != NULL &&
  2492          _LookupPrivilegeValue  != NULL;
  2495 static bool request_lock_memory_privilege() {
  2496   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2497                                 os::current_process_id());
  2499   LUID luid;
  2500   if (_hProcess != NULL &&
  2501       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2502       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2504     TOKEN_PRIVILEGES tp;
  2505     tp.PrivilegeCount = 1;
  2506     tp.Privileges[0].Luid = luid;
  2507     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2509     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2510     // privilege. Check GetLastError() too. See MSDN document.
  2511     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2512         (GetLastError() == ERROR_SUCCESS)) {
  2513       return true;
  2517   return false;
  2520 static void cleanup_after_large_page_init() {
  2521   _GetLargePageMinimum = NULL;
  2522   _AdjustTokenPrivileges = NULL;
  2523   _OpenProcessToken = NULL;
  2524   _LookupPrivilegeValue = NULL;
  2525   if (_kernel32) FreeLibrary(_kernel32);
  2526   _kernel32 = NULL;
  2527   if (_advapi32) FreeLibrary(_advapi32);
  2528   _advapi32 = NULL;
  2529   if (_hProcess) CloseHandle(_hProcess);
  2530   _hProcess = NULL;
  2531   if (_hToken) CloseHandle(_hToken);
  2532   _hToken = NULL;
  2535 bool os::large_page_init() {
  2536   if (!UseLargePages) return false;
  2538   // print a warning if any large page related flag is specified on command line
  2539   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2540                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2541   bool success = false;
  2543 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2544   if (resolve_functions_for_large_page_init()) {
  2545     if (request_lock_memory_privilege()) {
  2546       size_t s = _GetLargePageMinimum();
  2547       if (s) {
  2548 #if defined(IA32) || defined(AMD64)
  2549         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2550           WARN("JVM cannot use large pages bigger than 4mb.");
  2551         } else {
  2552 #endif
  2553           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2554             _large_page_size = LargePageSizeInBytes;
  2555           } else {
  2556             _large_page_size = s;
  2558           success = true;
  2559 #if defined(IA32) || defined(AMD64)
  2561 #endif
  2562       } else {
  2563         WARN("Large page is not supported by the processor.");
  2565     } else {
  2566       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2568   } else {
  2569     WARN("Large page is not supported by the operating system.");
  2571 #undef WARN
  2573   const size_t default_page_size = (size_t) vm_page_size();
  2574   if (success && _large_page_size > default_page_size) {
  2575     _page_sizes[0] = _large_page_size;
  2576     _page_sizes[1] = default_page_size;
  2577     _page_sizes[2] = 0;
  2580   cleanup_after_large_page_init();
  2581   return success;
  2584 // On win32, one cannot release just a part of reserved memory, it's an
  2585 // all or nothing deal.  When we split a reservation, we must break the
  2586 // reservation into two reservations.
  2587 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2588                               bool realloc) {
  2589   if (size > 0) {
  2590     release_memory(base, size);
  2591     if (realloc) {
  2592       reserve_memory(split, base);
  2594     if (size != split) {
  2595       reserve_memory(size - split, base + split);
  2600 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2601   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2602          "reserve alignment");
  2603   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2604   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2605   assert(res == NULL || addr == NULL || addr == res,
  2606          "Unexpected address from reserve.");
  2607   return res;
  2610 // Reserve memory at an arbitrary address, only if that area is
  2611 // available (and not reserved for something else).
  2612 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2613   // Windows os::reserve_memory() fails of the requested address range is
  2614   // not avilable.
  2615   return reserve_memory(bytes, requested_addr);
  2618 size_t os::large_page_size() {
  2619   return _large_page_size;
  2622 bool os::can_commit_large_page_memory() {
  2623   // Windows only uses large page memory when the entire region is reserved
  2624   // and committed in a single VirtualAlloc() call. This may change in the
  2625   // future, but with Windows 2003 it's not possible to commit on demand.
  2626   return false;
  2629 bool os::can_execute_large_page_memory() {
  2630   return true;
  2633 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2635   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2637   if (UseLargePagesIndividualAllocation) {
  2638     if (TracePageSizes && Verbose) {
  2639        tty->print_cr("Reserving large pages individually.");
  2641     char * p_buf;
  2642     // first reserve enough address space in advance since we want to be
  2643     // able to break a single contiguous virtual address range into multiple
  2644     // large page commits but WS2003 does not allow reserving large page space
  2645     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2646     // address space. then we will deallocate that reservation, and re alloc
  2647     // using large pages
  2648     const size_t size_of_reserve = bytes + _large_page_size;
  2649     if (bytes > size_of_reserve) {
  2650       // Overflowed.
  2651       warning("Individually allocated large pages failed, "
  2652         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2653       return NULL;
  2655     p_buf = (char *) VirtualAlloc(addr,
  2656                                  size_of_reserve,  // size of Reserve
  2657                                  MEM_RESERVE,
  2658                                  PAGE_READWRITE);
  2659     // If reservation failed, return NULL
  2660     if (p_buf == NULL) return NULL;
  2662     release_memory(p_buf, bytes + _large_page_size);
  2663     // round up to page boundary.  If the size_of_reserve did not
  2664     // overflow and the reservation did not fail, this align up
  2665     // should not overflow.
  2666     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2668     // now go through and allocate one page at a time until all bytes are
  2669     // allocated
  2670     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2671     // An overflow of align_size_up() would have been caught above
  2672     // in the calculation of size_of_reserve.
  2673     char * next_alloc_addr = p_buf;
  2675 #ifdef ASSERT
  2676     // Variable for the failure injection
  2677     long ran_num = os::random();
  2678     size_t fail_after = ran_num % bytes;
  2679 #endif
  2681     while (bytes_remaining) {
  2682       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2683       // Note allocate and commit
  2684       char * p_new;
  2686 #ifdef ASSERT
  2687       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2688           (bytes_remaining <= fail_after);
  2689 #else
  2690       const bool inject_error = false;
  2691 #endif
  2693       if (inject_error) {
  2694         p_new = NULL;
  2695       } else {
  2696         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2697                                     bytes_to_rq,
  2698                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2699                                     prot);
  2702       if (p_new == NULL) {
  2703         // Free any allocated pages
  2704         if (next_alloc_addr > p_buf) {
  2705           // Some memory was committed so release it.
  2706           size_t bytes_to_release = bytes - bytes_remaining;
  2707           release_memory(p_buf, bytes_to_release);
  2709 #ifdef ASSERT
  2710         if (UseLargePagesIndividualAllocation &&
  2711             LargePagesIndividualAllocationInjectError) {
  2712           if (TracePageSizes && Verbose) {
  2713              tty->print_cr("Reserving large pages individually failed.");
  2716 #endif
  2717         return NULL;
  2719       bytes_remaining -= bytes_to_rq;
  2720       next_alloc_addr += bytes_to_rq;
  2723     return p_buf;
  2725   } else {
  2726     // normal policy just allocate it all at once
  2727     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2728     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  2729     return res;
  2733 bool os::release_memory_special(char* base, size_t bytes) {
  2734   return release_memory(base, bytes);
  2737 void os::print_statistics() {
  2740 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2741   if (bytes == 0) {
  2742     // Don't bother the OS with noops.
  2743     return true;
  2745   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2746   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2747   // Don't attempt to print anything if the OS call fails. We're
  2748   // probably low on resources, so the print itself may cause crashes.
  2749   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
  2750   if (result != NULL && exec) {
  2751     DWORD oldprot;
  2752     // Windows doc says to use VirtualProtect to get execute permissions
  2753     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
  2754   } else {
  2755     return result;
  2759 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2760                        bool exec) {
  2761   return commit_memory(addr, size, exec);
  2764 bool os::uncommit_memory(char* addr, size_t bytes) {
  2765   if (bytes == 0) {
  2766     // Don't bother the OS with noops.
  2767     return true;
  2769   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2770   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2771   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2774 bool os::release_memory(char* addr, size_t bytes) {
  2775   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2778 // Set protections specified
  2779 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2780                         bool is_committed) {
  2781   unsigned int p = 0;
  2782   switch (prot) {
  2783   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2784   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2785   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2786   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2787   default:
  2788     ShouldNotReachHere();
  2791   DWORD old_status;
  2793   // Strange enough, but on Win32 one can change protection only for committed
  2794   // memory, not a big deal anyway, as bytes less or equal than 64K
  2795   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  2796     fatal("cannot commit protection page");
  2798   // One cannot use os::guard_memory() here, as on Win32 guard page
  2799   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2800   //
  2801   // Pages in the region become guard pages. Any attempt to access a guard page
  2802   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2803   // the guard page status. Guard pages thus act as a one-time access alarm.
  2804   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2807 bool os::guard_memory(char* addr, size_t bytes) {
  2808   DWORD old_status;
  2809   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2812 bool os::unguard_memory(char* addr, size_t bytes) {
  2813   DWORD old_status;
  2814   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  2817 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2818 void os::free_memory(char *addr, size_t bytes)         { }
  2819 void os::numa_make_global(char *addr, size_t bytes)    { }
  2820 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2821 bool os::numa_topology_changed()                       { return false; }
  2822 size_t os::numa_get_groups_num()                       { return 1; }
  2823 int os::numa_get_group_id()                            { return 0; }
  2824 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2825   if (size > 0) {
  2826     ids[0] = 0;
  2827     return 1;
  2829   return 0;
  2832 bool os::get_page_info(char *start, page_info* info) {
  2833   return false;
  2836 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2837   return end;
  2840 char* os::non_memory_address_word() {
  2841   // Must never look like an address returned by reserve_memory,
  2842   // even in its subfields (as defined by the CPU immediate fields,
  2843   // if the CPU splits constants across multiple instructions).
  2844   return (char*)-1;
  2847 #define MAX_ERROR_COUNT 100
  2848 #define SYS_THREAD_ERROR 0xffffffffUL
  2850 void os::pd_start_thread(Thread* thread) {
  2851   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2852   // Returns previous suspend state:
  2853   // 0:  Thread was not suspended
  2854   // 1:  Thread is running now
  2855   // >1: Thread is still suspended.
  2856   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2859 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2860   return ::read(fd, buf, nBytes);
  2863 class HighResolutionInterval {
  2864   // The default timer resolution seems to be 10 milliseconds.
  2865   // (Where is this written down?)
  2866   // If someone wants to sleep for only a fraction of the default,
  2867   // then we set the timer resolution down to 1 millisecond for
  2868   // the duration of their interval.
  2869   // We carefully set the resolution back, since otherwise we
  2870   // seem to incur an overhead (3%?) that we don't need.
  2871   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2872   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2873   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2874   // timeBeginPeriod() if the relative error exceeded some threshold.
  2875   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2876   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2877   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2878   // resolution timers running.
  2879 private:
  2880     jlong resolution;
  2881 public:
  2882   HighResolutionInterval(jlong ms) {
  2883     resolution = ms % 10L;
  2884     if (resolution != 0) {
  2885       MMRESULT result = timeBeginPeriod(1L);
  2888   ~HighResolutionInterval() {
  2889     if (resolution != 0) {
  2890       MMRESULT result = timeEndPeriod(1L);
  2892     resolution = 0L;
  2894 };
  2896 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2897   jlong limit = (jlong) MAXDWORD;
  2899   while(ms > limit) {
  2900     int res;
  2901     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2902       return res;
  2903     ms -= limit;
  2906   assert(thread == Thread::current(),  "thread consistency check");
  2907   OSThread* osthread = thread->osthread();
  2908   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2909   int result;
  2910   if (interruptable) {
  2911     assert(thread->is_Java_thread(), "must be java thread");
  2912     JavaThread *jt = (JavaThread *) thread;
  2913     ThreadBlockInVM tbivm(jt);
  2915     jt->set_suspend_equivalent();
  2916     // cleared by handle_special_suspend_equivalent_condition() or
  2917     // java_suspend_self() via check_and_wait_while_suspended()
  2919     HANDLE events[1];
  2920     events[0] = osthread->interrupt_event();
  2921     HighResolutionInterval *phri=NULL;
  2922     if(!ForceTimeHighResolution)
  2923       phri = new HighResolutionInterval( ms );
  2924     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  2925       result = OS_TIMEOUT;
  2926     } else {
  2927       ResetEvent(osthread->interrupt_event());
  2928       osthread->set_interrupted(false);
  2929       result = OS_INTRPT;
  2931     delete phri; //if it is NULL, harmless
  2933     // were we externally suspended while we were waiting?
  2934     jt->check_and_wait_while_suspended();
  2935   } else {
  2936     assert(!thread->is_Java_thread(), "must not be java thread");
  2937     Sleep((long) ms);
  2938     result = OS_TIMEOUT;
  2940   return result;
  2943 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2944 void os::infinite_sleep() {
  2945   while (true) {    // sleep forever ...
  2946     Sleep(100000);  // ... 100 seconds at a time
  2950 typedef BOOL (WINAPI * STTSignature)(void) ;
  2952 os::YieldResult os::NakedYield() {
  2953   // Use either SwitchToThread() or Sleep(0)
  2954   // Consider passing back the return value from SwitchToThread().
  2955   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  2956   // In that case we revert to Sleep(0).
  2957   static volatile STTSignature stt = (STTSignature) 1 ;
  2959   if (stt == ((STTSignature) 1)) {
  2960     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  2961     // It's OK if threads race during initialization as the operation above is idempotent.
  2963   if (stt != NULL) {
  2964     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  2965   } else {
  2966     Sleep (0) ;
  2968   return os::YIELD_UNKNOWN ;
  2971 void os::yield() {  os::NakedYield(); }
  2973 void os::yield_all(int attempts) {
  2974   // Yields to all threads, including threads with lower priorities
  2975   Sleep(1);
  2978 // Win32 only gives you access to seven real priorities at a time,
  2979 // so we compress Java's ten down to seven.  It would be better
  2980 // if we dynamically adjusted relative priorities.
  2982 int os::java_to_os_priority[MaxPriority + 1] = {
  2983   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2984   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2985   THREAD_PRIORITY_LOWEST,                       // 2
  2986   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  2987   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  2988   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  2989   THREAD_PRIORITY_NORMAL,                       // 6
  2990   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  2991   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  2992   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  2993   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  2994 };
  2996 int prio_policy1[MaxPriority + 1] = {
  2997   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2998   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2999   THREAD_PRIORITY_LOWEST,                       // 2
  3000   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3001   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3002   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3003   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3004   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3005   THREAD_PRIORITY_HIGHEST,                      // 8
  3006   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3007   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  3008 };
  3010 static int prio_init() {
  3011   // If ThreadPriorityPolicy is 1, switch tables
  3012   if (ThreadPriorityPolicy == 1) {
  3013     int i;
  3014     for (i = 0; i < MaxPriority + 1; i++) {
  3015       os::java_to_os_priority[i] = prio_policy1[i];
  3018   return 0;
  3021 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3022   if (!UseThreadPriorities) return OS_OK;
  3023   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3024   return ret ? OS_OK : OS_ERR;
  3027 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3028   if ( !UseThreadPriorities ) {
  3029     *priority_ptr = java_to_os_priority[NormPriority];
  3030     return OS_OK;
  3032   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3033   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3034     assert(false, "GetThreadPriority failed");
  3035     return OS_ERR;
  3037   *priority_ptr = os_prio;
  3038   return OS_OK;
  3042 // Hint to the underlying OS that a task switch would not be good.
  3043 // Void return because it's a hint and can fail.
  3044 void os::hint_no_preempt() {}
  3046 void os::interrupt(Thread* thread) {
  3047   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3048          "possibility of dangling Thread pointer");
  3050   OSThread* osthread = thread->osthread();
  3051   osthread->set_interrupted(true);
  3052   // More than one thread can get here with the same value of osthread,
  3053   // resulting in multiple notifications.  We do, however, want the store
  3054   // to interrupted() to be visible to other threads before we post
  3055   // the interrupt event.
  3056   OrderAccess::release();
  3057   SetEvent(osthread->interrupt_event());
  3058   // For JSR166:  unpark after setting status
  3059   if (thread->is_Java_thread())
  3060     ((JavaThread*)thread)->parker()->unpark();
  3062   ParkEvent * ev = thread->_ParkEvent ;
  3063   if (ev != NULL) ev->unpark() ;
  3068 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3069   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3070          "possibility of dangling Thread pointer");
  3072   OSThread* osthread = thread->osthread();
  3073   bool interrupted;
  3074   interrupted = osthread->interrupted();
  3075   if (clear_interrupted == true) {
  3076     osthread->set_interrupted(false);
  3077     ResetEvent(osthread->interrupt_event());
  3078   } // Otherwise leave the interrupted state alone
  3080   return interrupted;
  3083 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3084 ExtendedPC os::get_thread_pc(Thread* thread) {
  3085   CONTEXT context;
  3086   context.ContextFlags = CONTEXT_CONTROL;
  3087   HANDLE handle = thread->osthread()->thread_handle();
  3088 #ifdef _M_IA64
  3089   assert(0, "Fix get_thread_pc");
  3090   return ExtendedPC(NULL);
  3091 #else
  3092   if (GetThreadContext(handle, &context)) {
  3093 #ifdef _M_AMD64
  3094     return ExtendedPC((address) context.Rip);
  3095 #else
  3096     return ExtendedPC((address) context.Eip);
  3097 #endif
  3098   } else {
  3099     return ExtendedPC(NULL);
  3101 #endif
  3104 // GetCurrentThreadId() returns DWORD
  3105 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3107 static int _initial_pid = 0;
  3109 int os::current_process_id()
  3111   return (_initial_pid ? _initial_pid : _getpid());
  3114 int    os::win32::_vm_page_size       = 0;
  3115 int    os::win32::_vm_allocation_granularity = 0;
  3116 int    os::win32::_processor_type     = 0;
  3117 // Processor level is not available on non-NT systems, use vm_version instead
  3118 int    os::win32::_processor_level    = 0;
  3119 julong os::win32::_physical_memory    = 0;
  3120 size_t os::win32::_default_stack_size = 0;
  3122          intx os::win32::_os_thread_limit    = 0;
  3123 volatile intx os::win32::_os_thread_count    = 0;
  3125 bool   os::win32::_is_nt              = false;
  3126 bool   os::win32::_is_windows_2003    = false;
  3129 void os::win32::initialize_system_info() {
  3130   SYSTEM_INFO si;
  3131   GetSystemInfo(&si);
  3132   _vm_page_size    = si.dwPageSize;
  3133   _vm_allocation_granularity = si.dwAllocationGranularity;
  3134   _processor_type  = si.dwProcessorType;
  3135   _processor_level = si.wProcessorLevel;
  3136   _processor_count = si.dwNumberOfProcessors;
  3138   MEMORYSTATUS ms;
  3139   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3140   // dwMemoryLoad (% of memory in use)
  3141   GlobalMemoryStatus(&ms);
  3142   _physical_memory = ms.dwTotalPhys;
  3144   OSVERSIONINFO oi;
  3145   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3146   GetVersionEx(&oi);
  3147   switch(oi.dwPlatformId) {
  3148     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3149     case VER_PLATFORM_WIN32_NT:
  3150       _is_nt = true;
  3152         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3153         if (os_vers == 5002) {
  3154           _is_windows_2003 = true;
  3157       break;
  3158     default: fatal("Unknown platform");
  3161   _default_stack_size = os::current_stack_size();
  3162   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3163   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3164     "stack size not a multiple of page size");
  3166   initialize_performance_counter();
  3168   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3169   // known to deadlock the system, if the VM issues to thread operations with
  3170   // a too high frequency, e.g., such as changing the priorities.
  3171   // The 6000 seems to work well - no deadlocks has been notices on the test
  3172   // programs that we have seen experience this problem.
  3173   if (!os::win32::is_nt()) {
  3174     StarvationMonitorInterval = 6000;
  3179 void os::win32::setmode_streams() {
  3180   _setmode(_fileno(stdin), _O_BINARY);
  3181   _setmode(_fileno(stdout), _O_BINARY);
  3182   _setmode(_fileno(stderr), _O_BINARY);
  3186 int os::message_box(const char* title, const char* message) {
  3187   int result = MessageBox(NULL, message, title,
  3188                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3189   return result == IDYES;
  3192 int os::allocate_thread_local_storage() {
  3193   return TlsAlloc();
  3197 void os::free_thread_local_storage(int index) {
  3198   TlsFree(index);
  3202 void os::thread_local_storage_at_put(int index, void* value) {
  3203   TlsSetValue(index, value);
  3204   assert(thread_local_storage_at(index) == value, "Just checking");
  3208 void* os::thread_local_storage_at(int index) {
  3209   return TlsGetValue(index);
  3213 #ifndef PRODUCT
  3214 #ifndef _WIN64
  3215 // Helpers to check whether NX protection is enabled
  3216 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3217   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3218       pex->ExceptionRecord->NumberParameters > 0 &&
  3219       pex->ExceptionRecord->ExceptionInformation[0] ==
  3220       EXCEPTION_INFO_EXEC_VIOLATION) {
  3221     return EXCEPTION_EXECUTE_HANDLER;
  3223   return EXCEPTION_CONTINUE_SEARCH;
  3226 void nx_check_protection() {
  3227   // If NX is enabled we'll get an exception calling into code on the stack
  3228   char code[] = { (char)0xC3 }; // ret
  3229   void *code_ptr = (void *)code;
  3230   __try {
  3231     __asm call code_ptr
  3232   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3233     tty->print_raw_cr("NX protection detected.");
  3236 #endif // _WIN64
  3237 #endif // PRODUCT
  3239 // this is called _before_ the global arguments have been parsed
  3240 void os::init(void) {
  3241   _initial_pid = _getpid();
  3243   init_random(1234567);
  3245   win32::initialize_system_info();
  3246   win32::setmode_streams();
  3247   init_page_sizes((size_t) win32::vm_page_size());
  3249   // For better scalability on MP systems (must be called after initialize_system_info)
  3250 #ifndef PRODUCT
  3251   if (is_MP()) {
  3252     NoYieldsInMicrolock = true;
  3254 #endif
  3255   // This may be overridden later when argument processing is done.
  3256   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3257     os::win32::is_windows_2003());
  3259   // Initialize main_process and main_thread
  3260   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3261  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3262                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3263     fatal("DuplicateHandle failed\n");
  3265   main_thread_id = (int) GetCurrentThreadId();
  3268 // To install functions for atexit processing
  3269 extern "C" {
  3270   static void perfMemory_exit_helper() {
  3271     perfMemory_exit();
  3276 // this is called _after_ the global arguments have been parsed
  3277 jint os::init_2(void) {
  3278   // Allocate a single page and mark it as readable for safepoint polling
  3279   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3280   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3282   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3283   guarantee( return_page != NULL, "Commit Failed for polling page");
  3285   os::set_polling_page( polling_page );
  3287 #ifndef PRODUCT
  3288   if( Verbose && PrintMiscellaneous )
  3289     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3290 #endif
  3292   if (!UseMembar) {
  3293     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3294     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3296     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3297     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3299     os::set_memory_serialize_page( mem_serialize_page );
  3301 #ifndef PRODUCT
  3302     if(Verbose && PrintMiscellaneous)
  3303       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3304 #endif
  3307   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3309   // Setup Windows Exceptions
  3311   // On Itanium systems, Structured Exception Handling does not
  3312   // work since stack frames must be walkable by the OS.  Since
  3313   // much of our code is dynamically generated, and we do not have
  3314   // proper unwind .xdata sections, the system simply exits
  3315   // rather than delivering the exception.  To work around
  3316   // this we use VectorExceptions instead.
  3317 #ifdef _WIN64
  3318   if (UseVectoredExceptions) {
  3319     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3321 #endif
  3323   // for debugging float code generation bugs
  3324   if (ForceFloatExceptions) {
  3325 #ifndef  _WIN64
  3326     static long fp_control_word = 0;
  3327     __asm { fstcw fp_control_word }
  3328     // see Intel PPro Manual, Vol. 2, p 7-16
  3329     const long precision = 0x20;
  3330     const long underflow = 0x10;
  3331     const long overflow  = 0x08;
  3332     const long zero_div  = 0x04;
  3333     const long denorm    = 0x02;
  3334     const long invalid   = 0x01;
  3335     fp_control_word |= invalid;
  3336     __asm { fldcw fp_control_word }
  3337 #endif
  3340   // Initialize HPI.
  3341   jint hpi_result = hpi::initialize();
  3342   if (hpi_result != JNI_OK) { return hpi_result; }
  3344   // If stack_commit_size is 0, windows will reserve the default size,
  3345   // but only commit a small portion of it.
  3346   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3347   size_t default_reserve_size = os::win32::default_stack_size();
  3348   size_t actual_reserve_size = stack_commit_size;
  3349   if (stack_commit_size < default_reserve_size) {
  3350     // If stack_commit_size == 0, we want this too
  3351     actual_reserve_size = default_reserve_size;
  3354   JavaThread::set_stack_size_at_create(stack_commit_size);
  3356   // Calculate theoretical max. size of Threads to guard gainst artifical
  3357   // out-of-memory situations, where all available address-space has been
  3358   // reserved by thread stacks.
  3359   assert(actual_reserve_size != 0, "Must have a stack");
  3361   // Calculate the thread limit when we should start doing Virtual Memory
  3362   // banging. Currently when the threads will have used all but 200Mb of space.
  3363   //
  3364   // TODO: consider performing a similar calculation for commit size instead
  3365   // as reserve size, since on a 64-bit platform we'll run into that more
  3366   // often than running out of virtual memory space.  We can use the
  3367   // lower value of the two calculations as the os_thread_limit.
  3368   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3369   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3371   // at exit methods are called in the reverse order of their registration.
  3372   // there is no limit to the number of functions registered. atexit does
  3373   // not set errno.
  3375   if (PerfAllowAtExitRegistration) {
  3376     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3377     // atexit functions can be delayed until process exit time, which
  3378     // can be problematic for embedded VM situations. Embedded VMs should
  3379     // call DestroyJavaVM() to assure that VM resources are released.
  3381     // note: perfMemory_exit_helper atexit function may be removed in
  3382     // the future if the appropriate cleanup code can be added to the
  3383     // VM_Exit VMOperation's doit method.
  3384     if (atexit(perfMemory_exit_helper) != 0) {
  3385       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3389   // initialize PSAPI or ToolHelp for fatal error handler
  3390   if (win32::is_nt()) _init_psapi();
  3391   else _init_toolhelp();
  3393 #ifndef _WIN64
  3394   // Print something if NX is enabled (win32 on AMD64)
  3395   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3396 #endif
  3398   // initialize thread priority policy
  3399   prio_init();
  3401   if (UseNUMA && !ForceNUMA) {
  3402     UseNUMA = false; // Currently unsupported.
  3405   return JNI_OK;
  3409 // Mark the polling page as unreadable
  3410 void os::make_polling_page_unreadable(void) {
  3411   DWORD old_status;
  3412   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3413     fatal("Could not disable polling page");
  3414 };
  3416 // Mark the polling page as readable
  3417 void os::make_polling_page_readable(void) {
  3418   DWORD old_status;
  3419   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3420     fatal("Could not enable polling page");
  3421 };
  3424 int os::stat(const char *path, struct stat *sbuf) {
  3425   char pathbuf[MAX_PATH];
  3426   if (strlen(path) > MAX_PATH - 1) {
  3427     errno = ENAMETOOLONG;
  3428     return -1;
  3430   hpi::native_path(strcpy(pathbuf, path));
  3431   int ret = ::stat(pathbuf, sbuf);
  3432   if (sbuf != NULL && UseUTCFileTimestamp) {
  3433     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3434     // the system timezone and so can return different values for the
  3435     // same file if/when daylight savings time changes.  This adjustment
  3436     // makes sure the same timestamp is returned regardless of the TZ.
  3437     //
  3438     // See:
  3439     // http://msdn.microsoft.com/library/
  3440     //   default.asp?url=/library/en-us/sysinfo/base/
  3441     //   time_zone_information_str.asp
  3442     // and
  3443     // http://msdn.microsoft.com/library/default.asp?url=
  3444     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3445     //
  3446     // NOTE: there is a insidious bug here:  If the timezone is changed
  3447     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3448     // the adjustment we do here will be wrong and we'll return the wrong
  3449     // value (which will likely end up creating an invalid class data
  3450     // archive).  Absent a better API for this, or some time zone locking
  3451     // mechanism, we'll have to live with this risk.
  3452     TIME_ZONE_INFORMATION tz;
  3453     DWORD tzid = GetTimeZoneInformation(&tz);
  3454     int daylightBias =
  3455       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3456     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3458   return ret;
  3462 #define FT2INT64(ft) \
  3463   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3466 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3467 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3468 // of a thread.
  3469 //
  3470 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3471 // the fast estimate available on the platform.
  3473 // current_thread_cpu_time() is not optimized for Windows yet
  3474 jlong os::current_thread_cpu_time() {
  3475   // return user + sys since the cost is the same
  3476   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3479 jlong os::thread_cpu_time(Thread* thread) {
  3480   // consistent with what current_thread_cpu_time() returns.
  3481   return os::thread_cpu_time(thread, true /* user+sys */);
  3484 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3485   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3488 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3489   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3490   // If this function changes, os::is_thread_cpu_time_supported() should too
  3491   if (os::win32::is_nt()) {
  3492     FILETIME CreationTime;
  3493     FILETIME ExitTime;
  3494     FILETIME KernelTime;
  3495     FILETIME UserTime;
  3497     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3498                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3499       return -1;
  3500     else
  3501       if (user_sys_cpu_time) {
  3502         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3503       } else {
  3504         return FT2INT64(UserTime) * 100;
  3506   } else {
  3507     return (jlong) timeGetTime() * 1000000;
  3511 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3512   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3513   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3514   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3515   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3518 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3519   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3520   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3521   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3522   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3525 bool os::is_thread_cpu_time_supported() {
  3526   // see os::thread_cpu_time
  3527   if (os::win32::is_nt()) {
  3528     FILETIME CreationTime;
  3529     FILETIME ExitTime;
  3530     FILETIME KernelTime;
  3531     FILETIME UserTime;
  3533     if ( GetThreadTimes(GetCurrentThread(),
  3534                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3535       return false;
  3536     else
  3537       return true;
  3538   } else {
  3539     return false;
  3543 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3544 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3545 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3546 // If we wanted to implement loadavg on Windows, we have a few options:
  3547 //
  3548 // a) Query CPU usage and run queue length and "fake" an answer by
  3549 //    returning the CPU usage if it's under 100%, and the run queue
  3550 //    length otherwise.  It turns out that querying is pretty slow
  3551 //    on Windows, on the order of 200 microseconds on a fast machine.
  3552 //    Note that on the Windows the CPU usage value is the % usage
  3553 //    since the last time the API was called (and the first call
  3554 //    returns 100%), so we'd have to deal with that as well.
  3555 //
  3556 // b) Sample the "fake" answer using a sampling thread and store
  3557 //    the answer in a global variable.  The call to loadavg would
  3558 //    just return the value of the global, avoiding the slow query.
  3559 //
  3560 // c) Sample a better answer using exponential decay to smooth the
  3561 //    value.  This is basically the algorithm used by UNIX kernels.
  3562 //
  3563 // Note that sampling thread starvation could affect both (b) and (c).
  3564 int os::loadavg(double loadavg[], int nelem) {
  3565   return -1;
  3569 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3570 bool os::dont_yield() {
  3571   return DontYieldALot;
  3574 // Is a (classpath) directory empty?
  3575 bool os::dir_is_empty(const char* path) {
  3576   WIN32_FIND_DATA fd;
  3577   HANDLE f = FindFirstFile(path, &fd);
  3578   if (f == INVALID_HANDLE_VALUE) {
  3579     return true;
  3581   FindClose(f);
  3582   return false;
  3585 // create binary file, rewriting existing file if required
  3586 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3587   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3588   if (!rewrite_existing) {
  3589     oflags |= _O_EXCL;
  3591   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3594 // return current position of file pointer
  3595 jlong os::current_file_offset(int fd) {
  3596   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3599 // move file pointer to the specified offset
  3600 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3601   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3605 // Map a block of memory.
  3606 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3607                      char *addr, size_t bytes, bool read_only,
  3608                      bool allow_exec) {
  3609   HANDLE hFile;
  3610   char* base;
  3612   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3613                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3614   if (hFile == NULL) {
  3615     if (PrintMiscellaneous && Verbose) {
  3616       DWORD err = GetLastError();
  3617       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3619     return NULL;
  3622   if (allow_exec) {
  3623     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3624     // unless it comes from a PE image (which the shared archive is not.)
  3625     // Even VirtualProtect refuses to give execute access to mapped memory
  3626     // that was not previously executable.
  3627     //
  3628     // Instead, stick the executable region in anonymous memory.  Yuck.
  3629     // Penalty is that ~4 pages will not be shareable - in the future
  3630     // we might consider DLLizing the shared archive with a proper PE
  3631     // header so that mapping executable + sharing is possible.
  3633     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3634                                 PAGE_READWRITE);
  3635     if (base == NULL) {
  3636       if (PrintMiscellaneous && Verbose) {
  3637         DWORD err = GetLastError();
  3638         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3640       CloseHandle(hFile);
  3641       return NULL;
  3644     DWORD bytes_read;
  3645     OVERLAPPED overlapped;
  3646     overlapped.Offset = (DWORD)file_offset;
  3647     overlapped.OffsetHigh = 0;
  3648     overlapped.hEvent = NULL;
  3649     // ReadFile guarantees that if the return value is true, the requested
  3650     // number of bytes were read before returning.
  3651     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3652     if (!res) {
  3653       if (PrintMiscellaneous && Verbose) {
  3654         DWORD err = GetLastError();
  3655         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3657       release_memory(base, bytes);
  3658       CloseHandle(hFile);
  3659       return NULL;
  3661   } else {
  3662     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3663                                     NULL /*file_name*/);
  3664     if (hMap == NULL) {
  3665       if (PrintMiscellaneous && Verbose) {
  3666         DWORD err = GetLastError();
  3667         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3669       CloseHandle(hFile);
  3670       return NULL;
  3673     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3674     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3675                                   (DWORD)bytes, addr);
  3676     if (base == NULL) {
  3677       if (PrintMiscellaneous && Verbose) {
  3678         DWORD err = GetLastError();
  3679         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3681       CloseHandle(hMap);
  3682       CloseHandle(hFile);
  3683       return NULL;
  3686     if (CloseHandle(hMap) == 0) {
  3687       if (PrintMiscellaneous && Verbose) {
  3688         DWORD err = GetLastError();
  3689         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3691       CloseHandle(hFile);
  3692       return base;
  3696   if (allow_exec) {
  3697     DWORD old_protect;
  3698     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3699     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3701     if (!res) {
  3702       if (PrintMiscellaneous && Verbose) {
  3703         DWORD err = GetLastError();
  3704         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3706       // Don't consider this a hard error, on IA32 even if the
  3707       // VirtualProtect fails, we should still be able to execute
  3708       CloseHandle(hFile);
  3709       return base;
  3713   if (CloseHandle(hFile) == 0) {
  3714     if (PrintMiscellaneous && Verbose) {
  3715       DWORD err = GetLastError();
  3716       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3718     return base;
  3721   return base;
  3725 // Remap a block of memory.
  3726 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3727                        char *addr, size_t bytes, bool read_only,
  3728                        bool allow_exec) {
  3729   // This OS does not allow existing memory maps to be remapped so we
  3730   // have to unmap the memory before we remap it.
  3731   if (!os::unmap_memory(addr, bytes)) {
  3732     return NULL;
  3735   // There is a very small theoretical window between the unmap_memory()
  3736   // call above and the map_memory() call below where a thread in native
  3737   // code may be able to access an address that is no longer mapped.
  3739   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3740                         allow_exec);
  3744 // Unmap a block of memory.
  3745 // Returns true=success, otherwise false.
  3747 bool os::unmap_memory(char* addr, size_t bytes) {
  3748   BOOL result = UnmapViewOfFile(addr);
  3749   if (result == 0) {
  3750     if (PrintMiscellaneous && Verbose) {
  3751       DWORD err = GetLastError();
  3752       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3754     return false;
  3756   return true;
  3759 void os::pause() {
  3760   char filename[MAX_PATH];
  3761   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3762     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3763   } else {
  3764     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3767   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3768   if (fd != -1) {
  3769     struct stat buf;
  3770     close(fd);
  3771     while (::stat(filename, &buf) == 0) {
  3772       Sleep(100);
  3774   } else {
  3775     jio_fprintf(stderr,
  3776       "Could not open pause file '%s', continuing immediately.\n", filename);
  3780 // An Event wraps a win32 "CreateEvent" kernel handle.
  3781 //
  3782 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3783 //
  3784 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3785 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3786 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3787 //     In addition, an unpark() operation might fetch the handle field, but the
  3788 //     event could recycle between the fetch and the SetEvent() operation.
  3789 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3790 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3791 //     on an stale but recycled handle would be harmless, but in practice this might
  3792 //     confuse other non-Sun code, so it's not a viable approach.
  3793 //
  3794 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3795 //     with the Event.  The event handle is never closed.  This could be construed
  3796 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3797 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3798 //     permit a process to have hundreds of thousands of open handles.
  3799 //
  3800 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3801 //     and release unused handles.
  3802 //
  3803 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3804 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3805 //
  3806 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3807 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3808 //
  3809 // We use (2).
  3810 //
  3811 // TODO-FIXME:
  3812 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3813 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3814 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3815 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3816 //     into a single win32 CreateEvent() handle.
  3817 //
  3818 // _Event transitions in park()
  3819 //   -1 => -1 : illegal
  3820 //    1 =>  0 : pass - return immediately
  3821 //    0 => -1 : block
  3822 //
  3823 // _Event serves as a restricted-range semaphore :
  3824 //    -1 : thread is blocked
  3825 //     0 : neutral  - thread is running or ready
  3826 //     1 : signaled - thread is running or ready
  3827 //
  3828 // Another possible encoding of _Event would be
  3829 // with explicit "PARKED" and "SIGNALED" bits.
  3831 int os::PlatformEvent::park (jlong Millis) {
  3832     guarantee (_ParkHandle != NULL , "Invariant") ;
  3833     guarantee (Millis > 0          , "Invariant") ;
  3834     int v ;
  3836     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3837     // the initial park() operation.
  3839     for (;;) {
  3840         v = _Event ;
  3841         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3843     guarantee ((v == 0) || (v == 1), "invariant") ;
  3844     if (v != 0) return OS_OK ;
  3846     // Do this the hard way by blocking ...
  3847     // TODO: consider a brief spin here, gated on the success of recent
  3848     // spin attempts by this thread.
  3849     //
  3850     // We decompose long timeouts into series of shorter timed waits.
  3851     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3852     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3853     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3854     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3855     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3856     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3857     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3858     // for the already waited time.  This policy does not admit any new outcomes.
  3859     // In the future, however, we might want to track the accumulated wait time and
  3860     // adjust Millis accordingly if we encounter a spurious wakeup.
  3862     const int MAXTIMEOUT = 0x10000000 ;
  3863     DWORD rv = WAIT_TIMEOUT ;
  3864     while (_Event < 0 && Millis > 0) {
  3865        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3866        if (Millis > MAXTIMEOUT) {
  3867           prd = MAXTIMEOUT ;
  3869        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3870        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3871        if (rv == WAIT_TIMEOUT) {
  3872            Millis -= prd ;
  3875     v = _Event ;
  3876     _Event = 0 ;
  3877     OrderAccess::fence() ;
  3878     // If we encounter a nearly simultanous timeout expiry and unpark()
  3879     // we return OS_OK indicating we awoke via unpark().
  3880     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3881     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3884 void os::PlatformEvent::park () {
  3885     guarantee (_ParkHandle != NULL, "Invariant") ;
  3886     // Invariant: Only the thread associated with the Event/PlatformEvent
  3887     // may call park().
  3888     int v ;
  3889     for (;;) {
  3890         v = _Event ;
  3891         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3893     guarantee ((v == 0) || (v == 1), "invariant") ;
  3894     if (v != 0) return ;
  3896     // Do this the hard way by blocking ...
  3897     // TODO: consider a brief spin here, gated on the success of recent
  3898     // spin attempts by this thread.
  3899     while (_Event < 0) {
  3900        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  3901        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  3904     // Usually we'll find _Event == 0 at this point, but as
  3905     // an optional optimization we clear it, just in case can
  3906     // multiple unpark() operations drove _Event up to 1.
  3907     _Event = 0 ;
  3908     OrderAccess::fence() ;
  3909     guarantee (_Event >= 0, "invariant") ;
  3912 void os::PlatformEvent::unpark() {
  3913   guarantee (_ParkHandle != NULL, "Invariant") ;
  3914   int v ;
  3915   for (;;) {
  3916       v = _Event ;      // Increment _Event if it's < 1.
  3917       if (v > 0) {
  3918          // If it's already signaled just return.
  3919          // The LD of _Event could have reordered or be satisfied
  3920          // by a read-aside from this processor's write buffer.
  3921          // To avoid problems execute a barrier and then
  3922          // ratify the value.  A degenerate CAS() would also work.
  3923          // Viz., CAS (v+0, &_Event, v) == v).
  3924          OrderAccess::fence() ;
  3925          if (_Event == v) return ;
  3926          continue ;
  3928       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  3930   if (v < 0) {
  3931      ::SetEvent (_ParkHandle) ;
  3936 // JSR166
  3937 // -------------------------------------------------------
  3939 /*
  3940  * The Windows implementation of Park is very straightforward: Basic
  3941  * operations on Win32 Events turn out to have the right semantics to
  3942  * use them directly. We opportunistically resuse the event inherited
  3943  * from Monitor.
  3944  */
  3947 void Parker::park(bool isAbsolute, jlong time) {
  3948   guarantee (_ParkEvent != NULL, "invariant") ;
  3949   // First, demultiplex/decode time arguments
  3950   if (time < 0) { // don't wait
  3951     return;
  3953   else if (time == 0) {
  3954     time = INFINITE;
  3956   else if  (isAbsolute) {
  3957     time -= os::javaTimeMillis(); // convert to relative time
  3958     if (time <= 0) // already elapsed
  3959       return;
  3961   else { // relative
  3962     time /= 1000000; // Must coarsen from nanos to millis
  3963     if (time == 0)   // Wait for the minimal time unit if zero
  3964       time = 1;
  3967   JavaThread* thread = (JavaThread*)(Thread::current());
  3968   assert(thread->is_Java_thread(), "Must be JavaThread");
  3969   JavaThread *jt = (JavaThread *)thread;
  3971   // Don't wait if interrupted or already triggered
  3972   if (Thread::is_interrupted(thread, false) ||
  3973     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  3974     ResetEvent(_ParkEvent);
  3975     return;
  3977   else {
  3978     ThreadBlockInVM tbivm(jt);
  3979     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3980     jt->set_suspend_equivalent();
  3982     WaitForSingleObject(_ParkEvent,  time);
  3983     ResetEvent(_ParkEvent);
  3985     // If externally suspended while waiting, re-suspend
  3986     if (jt->handle_special_suspend_equivalent_condition()) {
  3987       jt->java_suspend_self();
  3992 void Parker::unpark() {
  3993   guarantee (_ParkEvent != NULL, "invariant") ;
  3994   SetEvent(_ParkEvent);
  3997 // Run the specified command in a separate process. Return its exit value,
  3998 // or -1 on failure (e.g. can't create a new process).
  3999 int os::fork_and_exec(char* cmd) {
  4000   STARTUPINFO si;
  4001   PROCESS_INFORMATION pi;
  4003   memset(&si, 0, sizeof(si));
  4004   si.cb = sizeof(si);
  4005   memset(&pi, 0, sizeof(pi));
  4006   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4007                             cmd,    // command line
  4008                             NULL,   // process security attribute
  4009                             NULL,   // thread security attribute
  4010                             TRUE,   // inherits system handles
  4011                             0,      // no creation flags
  4012                             NULL,   // use parent's environment block
  4013                             NULL,   // use parent's starting directory
  4014                             &si,    // (in) startup information
  4015                             &pi);   // (out) process information
  4017   if (rslt) {
  4018     // Wait until child process exits.
  4019     WaitForSingleObject(pi.hProcess, INFINITE);
  4021     DWORD exit_code;
  4022     GetExitCodeProcess(pi.hProcess, &exit_code);
  4024     // Close process and thread handles.
  4025     CloseHandle(pi.hProcess);
  4026     CloseHandle(pi.hThread);
  4028     return (int)exit_code;
  4029   } else {
  4030     return -1;
  4034 //--------------------------------------------------------------------------------------------------
  4035 // Non-product code
  4037 static int mallocDebugIntervalCounter = 0;
  4038 static int mallocDebugCounter = 0;
  4039 bool os::check_heap(bool force) {
  4040   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4041   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4042     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4043     // wrong; at these points, eax contains the address of the offending block (I think).
  4044     // To get to the exlicit error message(s) below, just continue twice.
  4045     HANDLE heap = GetProcessHeap();
  4046     { HeapLock(heap);
  4047       PROCESS_HEAP_ENTRY phe;
  4048       phe.lpData = NULL;
  4049       while (HeapWalk(heap, &phe) != 0) {
  4050         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4051             !HeapValidate(heap, 0, phe.lpData)) {
  4052           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4053           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4054           fatal("corrupted C heap");
  4057       int err = GetLastError();
  4058       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4059         fatal1("heap walk aborted with error %d", err);
  4061       HeapUnlock(heap);
  4063     mallocDebugIntervalCounter = 0;
  4065   return true;
  4069 #ifndef PRODUCT
  4070 bool os::find(address addr) {
  4071   // Nothing yet
  4072   return false;
  4074 #endif
  4076 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4077   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4079   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4080     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4081     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4082     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4084     if (os::is_memory_serialize_page(thread, addr))
  4085       return EXCEPTION_CONTINUE_EXECUTION;
  4088   return EXCEPTION_CONTINUE_SEARCH;
  4091 static int getLastErrorString(char *buf, size_t len)
  4093     long errval;
  4095     if ((errval = GetLastError()) != 0)
  4097       /* DOS error */
  4098       size_t n = (size_t)FormatMessage(
  4099             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4100             NULL,
  4101             errval,
  4102             0,
  4103             buf,
  4104             (DWORD)len,
  4105             NULL);
  4106       if (n > 3) {
  4107         /* Drop final '.', CR, LF */
  4108         if (buf[n - 1] == '\n') n--;
  4109         if (buf[n - 1] == '\r') n--;
  4110         if (buf[n - 1] == '.') n--;
  4111         buf[n] = '\0';
  4113       return (int)n;
  4116     if (errno != 0)
  4118       /* C runtime error that has no corresponding DOS error code */
  4119       const char *s = strerror(errno);
  4120       size_t n = strlen(s);
  4121       if (n >= len) n = len - 1;
  4122       strncpy(buf, s, n);
  4123       buf[n] = '\0';
  4124       return (int)n;
  4126     return 0;

mercurial