src/share/vm/utilities/globalDefinitions.hpp

Tue, 18 Jul 2017 09:53:54 +0200

author
shade
date
Tue, 18 Jul 2017 09:53:54 +0200
changeset 9997
c7ef664f8649
parent 9896
1b8c45b8216a
child 10015
eb7ce841ccec
permissions
-rw-r--r--

8184762: ZapStackSegments should use optimized memset
Reviewed-by: rkennke, mgerdin

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    41 #ifdef TARGET_COMPILER_xlc
    42 # include "utilities/globalDefinitions_xlc.hpp"
    43 #endif
    45 // Defaults for macros that might be defined per compiler.
    46 #ifndef NOINLINE
    47 #define NOINLINE
    48 #endif
    49 #ifndef ALWAYSINLINE
    50 #define ALWAYSINLINE inline
    51 #endif
    53 #ifndef PRAGMA_DIAG_PUSH
    54 #define PRAGMA_DIAG_PUSH
    55 #endif
    56 #ifndef PRAGMA_DIAG_POP
    57 #define PRAGMA_DIAG_POP
    58 #endif
    59 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
    60 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
    61 #endif
    62 #ifndef PRAGMA_FORMAT_IGNORED
    63 #define PRAGMA_FORMAT_IGNORED
    64 #endif
    65 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    66 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    67 #endif
    68 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    69 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    70 #endif
    71 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    72 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    73 #endif
    74 #ifndef ATTRIBUTE_PRINTF
    75 #define ATTRIBUTE_PRINTF(fmt, vargs)
    76 #endif
    79 #include "utilities/macros.hpp"
    81 // This file holds all globally used constants & types, class (forward)
    82 // declarations and a few frequently used utility functions.
    84 //----------------------------------------------------------------------------------------------------
    85 // Constants
    87 const int LogBytesPerShort   = 1;
    88 const int LogBytesPerInt     = 2;
    89 #ifdef _LP64
    90 const int LogBytesPerWord    = 3;
    91 #else
    92 const int LogBytesPerWord    = 2;
    93 #endif
    94 const int LogBytesPerLong    = 3;
    96 const int BytesPerShort      = 1 << LogBytesPerShort;
    97 const int BytesPerInt        = 1 << LogBytesPerInt;
    98 const int BytesPerWord       = 1 << LogBytesPerWord;
    99 const int BytesPerLong       = 1 << LogBytesPerLong;
   101 const int LogBitsPerByte     = 3;
   102 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
   103 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
   104 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
   105 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
   107 const int BitsPerByte        = 1 << LogBitsPerByte;
   108 const int BitsPerShort       = 1 << LogBitsPerShort;
   109 const int BitsPerInt         = 1 << LogBitsPerInt;
   110 const int BitsPerWord        = 1 << LogBitsPerWord;
   111 const int BitsPerLong        = 1 << LogBitsPerLong;
   113 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
   114 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
   116 const int WordsPerLong       = 2;       // Number of stack entries for longs
   118 const int oopSize            = sizeof(char*); // Full-width oop
   119 extern int heapOopSize;                       // Oop within a java object
   120 const int wordSize           = sizeof(char*);
   121 const int longSize           = sizeof(jlong);
   122 const int jintSize           = sizeof(jint);
   123 const int size_tSize         = sizeof(size_t);
   125 const int BytesPerOop        = BytesPerWord;  // Full-width oop
   127 extern int LogBytesPerHeapOop;                // Oop within a java object
   128 extern int LogBitsPerHeapOop;
   129 extern int BytesPerHeapOop;
   130 extern int BitsPerHeapOop;
   132 // Oop encoding heap max
   133 extern uint64_t OopEncodingHeapMax;
   135 const int BitsPerJavaInteger = 32;
   136 const int BitsPerJavaLong    = 64;
   137 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   139 // Size of a char[] needed to represent a jint as a string in decimal.
   140 const int jintAsStringSize = 12;
   142 // In fact this should be
   143 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   144 // see os::set_memory_serialize_page()
   145 #ifdef _LP64
   146 const int SerializePageShiftCount = 4;
   147 #else
   148 const int SerializePageShiftCount = 3;
   149 #endif
   151 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   152 // pointer into the heap.  We require that object sizes be measured in
   153 // units of heap words, so that that
   154 //   HeapWord* hw;
   155 //   hw += oop(hw)->foo();
   156 // works, where foo is a method (like size or scavenge) that returns the
   157 // object size.
   158 class HeapWord {
   159   friend class VMStructs;
   160  private:
   161   char* i;
   162 #ifndef PRODUCT
   163  public:
   164   char* value() { return i; }
   165 #endif
   166 };
   168 // Analogous opaque struct for metadata allocated from
   169 // metaspaces.
   170 class MetaWord {
   171   friend class VMStructs;
   172  private:
   173   char* i;
   174 };
   176 // HeapWordSize must be 2^LogHeapWordSize.
   177 const int HeapWordSize        = sizeof(HeapWord);
   178 #ifdef _LP64
   179 const int LogHeapWordSize     = 3;
   180 #else
   181 const int LogHeapWordSize     = 2;
   182 #endif
   183 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   184 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   186 // The larger HeapWordSize for 64bit requires larger heaps
   187 // for the same application running in 64bit.  See bug 4967770.
   188 // The minimum alignment to a heap word size is done.  Other
   189 // parts of the memory system may required additional alignment
   190 // and are responsible for those alignments.
   191 #ifdef _LP64
   192 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   193 #else
   194 #define ScaleForWordSize(x) (x)
   195 #endif
   197 // The minimum number of native machine words necessary to contain "byte_size"
   198 // bytes.
   199 inline size_t heap_word_size(size_t byte_size) {
   200   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   201 }
   204 const size_t K                  = 1024;
   205 const size_t M                  = K*K;
   206 const size_t G                  = M*K;
   207 const size_t HWperKB            = K / sizeof(HeapWord);
   209 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   210 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   212 // Constants for converting from a base unit to milli-base units.  For
   213 // example from seconds to milliseconds and microseconds
   215 const int MILLIUNITS    = 1000;         // milli units per base unit
   216 const int MICROUNITS    = 1000000;      // micro units per base unit
   217 const int NANOUNITS     = 1000000000;   // nano units per base unit
   219 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   220 const jint  NANOSECS_PER_MILLISEC = 1000000;
   222 // Proper units routines try to maintain at least three significant digits.
   223 // In worst case, it would print five significant digits with lower prefix.
   224 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
   225 // and therefore we need to be careful.
   227 inline const char* proper_unit_for_byte_size(size_t s) {
   228 #ifdef _LP64
   229   if (s >= 100*G) {
   230     return "G";
   231   }
   232 #endif
   233   if (s >= 100*M) {
   234     return "M";
   235   } else if (s >= 100*K) {
   236     return "K";
   237   } else {
   238     return "B";
   239   }
   240 }
   242 template <class T>
   243 inline T byte_size_in_proper_unit(T s) {
   244 #ifdef _LP64
   245   if (s >= 100*G) {
   246     return (T)(s/G);
   247   }
   248 #endif
   249   if (s >= 100*M) {
   250     return (T)(s/M);
   251   } else if (s >= 100*K) {
   252     return (T)(s/K);
   253   } else {
   254     return s;
   255   }
   256 }
   258 //----------------------------------------------------------------------------------------------------
   259 // VM type definitions
   261 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   262 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   264 typedef intptr_t  intx;
   265 typedef uintptr_t uintx;
   267 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   268 const intx  max_intx  = (uintx)min_intx - 1;
   269 const uintx max_uintx = (uintx)-1;
   271 // Table of values:
   272 //      sizeof intx         4               8
   273 // min_intx             0x80000000      0x8000000000000000
   274 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   275 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   277 typedef unsigned int uint;   NEEDS_CLEANUP
   280 //----------------------------------------------------------------------------------------------------
   281 // Java type definitions
   283 // All kinds of 'plain' byte addresses
   284 typedef   signed char s_char;
   285 typedef unsigned char u_char;
   286 typedef u_char*       address;
   287 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   288                                     // except for some implementations of a C++
   289                                     // linkage pointer to function. Should never
   290                                     // need one of those to be placed in this
   291                                     // type anyway.
   293 //  Utility functions to "portably" (?) bit twiddle pointers
   294 //  Where portable means keep ANSI C++ compilers quiet
   296 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   297 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   299 //  Utility functions to "portably" make cast to/from function pointers.
   301 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   302 inline address_word  castable_address(address x)              { return address_word(x) ; }
   303 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   305 // Pointer subtraction.
   306 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   307 // the range we might need to find differences from one end of the heap
   308 // to the other.
   309 // A typical use might be:
   310 //     if (pointer_delta(end(), top()) >= size) {
   311 //       // enough room for an object of size
   312 //       ...
   313 // and then additions like
   314 //       ... top() + size ...
   315 // are safe because we know that top() is at least size below end().
   316 inline size_t pointer_delta(const void* left,
   317                             const void* right,
   318                             size_t element_size) {
   319   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   320 }
   321 // A version specialized for HeapWord*'s.
   322 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   323   return pointer_delta(left, right, sizeof(HeapWord));
   324 }
   325 // A version specialized for MetaWord*'s.
   326 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   327   return pointer_delta(left, right, sizeof(MetaWord));
   328 }
   330 //
   331 // ANSI C++ does not allow casting from one pointer type to a function pointer
   332 // directly without at best a warning. This macro accomplishes it silently
   333 // In every case that is present at this point the value be cast is a pointer
   334 // to a C linkage function. In somecase the type used for the cast reflects
   335 // that linkage and a picky compiler would not complain. In other cases because
   336 // there is no convenient place to place a typedef with extern C linkage (i.e
   337 // a platform dependent header file) it doesn't. At this point no compiler seems
   338 // picky enough to catch these instances (which are few). It is possible that
   339 // using templates could fix these for all cases. This use of templates is likely
   340 // so far from the middle of the road that it is likely to be problematic in
   341 // many C++ compilers.
   342 //
   343 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
   344 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   346 // Unsigned byte types for os and stream.hpp
   348 // Unsigned one, two, four and eigth byte quantities used for describing
   349 // the .class file format. See JVM book chapter 4.
   351 typedef jubyte  u1;
   352 typedef jushort u2;
   353 typedef juint   u4;
   354 typedef julong  u8;
   356 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   357 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   358 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   359 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   361 typedef jbyte  s1;
   362 typedef jshort s2;
   363 typedef jint   s4;
   364 typedef jlong  s8;
   366 //----------------------------------------------------------------------------------------------------
   367 // JVM spec restrictions
   369 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   371 // Default ProtectionDomainCacheSize values
   373 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
   375 //----------------------------------------------------------------------------------------------------
   376 // Default and minimum StringTableSize values
   378 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
   379 const int minimumStringTableSize = 1009;
   381 const int defaultSymbolTableSize = 20011;
   382 const int minimumSymbolTableSize = 1009;
   385 //----------------------------------------------------------------------------------------------------
   386 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   387 //
   388 // Determines whether on-the-fly class replacement and frame popping are enabled.
   390 #define HOTSWAP
   392 //----------------------------------------------------------------------------------------------------
   393 // Object alignment, in units of HeapWords.
   394 //
   395 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   396 // reference fields can be naturally aligned.
   398 extern int MinObjAlignment;
   399 extern int MinObjAlignmentInBytes;
   400 extern int MinObjAlignmentInBytesMask;
   402 extern int LogMinObjAlignment;
   403 extern int LogMinObjAlignmentInBytes;
   405 const int LogKlassAlignmentInBytes = 3;
   406 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   407 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   408 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   410 // Klass encoding metaspace max size
   411 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   413 // Machine dependent stuff
   415 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
   416 // Include Restricted Transactional Memory lock eliding optimization
   417 #define INCLUDE_RTM_OPT 1
   418 #define RTM_OPT_ONLY(code) code
   419 #else
   420 #define INCLUDE_RTM_OPT 0
   421 #define RTM_OPT_ONLY(code)
   422 #endif
   423 // States of Restricted Transactional Memory usage.
   424 enum RTMState {
   425   NoRTM      = 0x2, // Don't use RTM
   426   UseRTM     = 0x1, // Use RTM
   427   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
   428 };
   430 #ifdef TARGET_ARCH_x86
   431 # include "globalDefinitions_x86.hpp"
   432 #endif
   433 #ifdef TARGET_ARCH_sparc
   434 # include "globalDefinitions_sparc.hpp"
   435 #endif
   436 #ifdef TARGET_ARCH_zero
   437 # include "globalDefinitions_zero.hpp"
   438 #endif
   439 #ifdef TARGET_ARCH_arm
   440 # include "globalDefinitions_arm.hpp"
   441 #endif
   442 #ifdef TARGET_ARCH_ppc
   443 # include "globalDefinitions_ppc.hpp"
   444 #endif
   446 /*
   447  * If a platform does not support native stack walking
   448  * the platform specific globalDefinitions (above)
   449  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
   450  */
   451 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
   452 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
   453 #endif
   455 // To assure the IRIW property on processors that are not multiple copy
   456 // atomic, sync instructions must be issued between volatile reads to
   457 // assure their ordering, instead of after volatile stores.
   458 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
   459 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
   460 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
   461 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
   462 #else
   463 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
   464 #endif
   466 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   467 // Note: this value must be a power of 2
   469 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   471 // Signed variants of alignment helpers.  There are two versions of each, a macro
   472 // for use in places like enum definitions that require compile-time constant
   473 // expressions and a function for all other places so as to get type checking.
   475 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   477 inline bool is_size_aligned(size_t size, size_t alignment) {
   478   return align_size_up_(size, alignment) == size;
   479 }
   481 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
   482   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
   483 }
   485 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   486   return align_size_up_(size, alignment);
   487 }
   489 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   491 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   492   return align_size_down_(size, alignment);
   493 }
   495 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
   497 inline void* align_ptr_up(void* ptr, size_t alignment) {
   498   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
   499 }
   501 inline void* align_ptr_down(void* ptr, size_t alignment) {
   502   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
   503 }
   505 // Align objects by rounding up their size, in HeapWord units.
   507 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   509 inline intptr_t align_object_size(intptr_t size) {
   510   return align_size_up(size, MinObjAlignment);
   511 }
   513 inline bool is_object_aligned(intptr_t addr) {
   514   return addr == align_object_size(addr);
   515 }
   517 // Pad out certain offsets to jlong alignment, in HeapWord units.
   519 inline intptr_t align_object_offset(intptr_t offset) {
   520   return align_size_up(offset, HeapWordsPerLong);
   521 }
   523 inline void* align_pointer_up(const void* addr, size_t size) {
   524   return (void*) align_size_up_((uintptr_t)addr, size);
   525 }
   527 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
   529 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
   530   size_t aligned_size = align_size_down_(size, alignment);
   531   return aligned_size > 0 ? aligned_size : alignment;
   532 }
   534 // Clamp an address to be within a specific page
   535 // 1. If addr is on the page it is returned as is
   536 // 2. If addr is above the page_address the start of the *next* page will be returned
   537 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
   538 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
   539   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
   540     // address is in the specified page, just return it as is
   541     return addr;
   542   } else if (addr > page_address) {
   543     // address is above specified page, return start of next page
   544     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
   545   } else {
   546     // address is below specified page, return start of page
   547     return (address)align_size_down(intptr_t(page_address), page_size);
   548   }
   549 }
   552 // The expected size in bytes of a cache line, used to pad data structures.
   553 #define DEFAULT_CACHE_LINE_SIZE 64
   556 //----------------------------------------------------------------------------------------------------
   557 // Utility macros for compilers
   558 // used to silence compiler warnings
   560 #define Unused_Variable(var) var
   563 //----------------------------------------------------------------------------------------------------
   564 // Miscellaneous
   566 // 6302670 Eliminate Hotspot __fabsf dependency
   567 // All fabs() callers should call this function instead, which will implicitly
   568 // convert the operand to double, avoiding a dependency on __fabsf which
   569 // doesn't exist in early versions of Solaris 8.
   570 inline double fabsd(double value) {
   571   return fabs(value);
   572 }
   574 //----------------------------------------------------------------------------------------------------
   575 // Special casts
   576 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
   577 typedef union {
   578   jfloat f;
   579   jint i;
   580 } FloatIntConv;
   582 typedef union {
   583   jdouble d;
   584   jlong l;
   585   julong ul;
   586 } DoubleLongConv;
   588 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
   589 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
   591 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
   592 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
   593 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
   595 inline jint low (jlong value)                    { return jint(value); }
   596 inline jint high(jlong value)                    { return jint(value >> 32); }
   598 // the fancy casts are a hopefully portable way
   599 // to do unsigned 32 to 64 bit type conversion
   600 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   601                                                    *value |= (jlong)(julong)(juint)low; }
   603 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   604                                                    *value |= (jlong)high       << 32; }
   606 inline jlong jlong_from(jint h, jint l) {
   607   jlong result = 0; // initialization to avoid warning
   608   set_high(&result, h);
   609   set_low(&result,  l);
   610   return result;
   611 }
   613 union jlong_accessor {
   614   jint  words[2];
   615   jlong long_value;
   616 };
   618 void basic_types_init(); // cannot define here; uses assert
   621 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   622 enum BasicType {
   623   T_BOOLEAN     =  4,
   624   T_CHAR        =  5,
   625   T_FLOAT       =  6,
   626   T_DOUBLE      =  7,
   627   T_BYTE        =  8,
   628   T_SHORT       =  9,
   629   T_INT         = 10,
   630   T_LONG        = 11,
   631   T_OBJECT      = 12,
   632   T_ARRAY       = 13,
   633   T_VOID        = 14,
   634   T_ADDRESS     = 15,
   635   T_NARROWOOP   = 16,
   636   T_METADATA    = 17,
   637   T_NARROWKLASS = 18,
   638   T_CONFLICT    = 19, // for stack value type with conflicting contents
   639   T_ILLEGAL     = 99
   640 };
   642 inline bool is_java_primitive(BasicType t) {
   643   return T_BOOLEAN <= t && t <= T_LONG;
   644 }
   646 inline bool is_subword_type(BasicType t) {
   647   // these guys are processed exactly like T_INT in calling sequences:
   648   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   649 }
   651 inline bool is_signed_subword_type(BasicType t) {
   652   return (t == T_BYTE || t == T_SHORT);
   653 }
   655 inline bool is_reference_type(BasicType t) {
   656   return (t == T_OBJECT || t == T_ARRAY);
   657 }
   659 // Convert a char from a classfile signature to a BasicType
   660 inline BasicType char2type(char c) {
   661   switch( c ) {
   662   case 'B': return T_BYTE;
   663   case 'C': return T_CHAR;
   664   case 'D': return T_DOUBLE;
   665   case 'F': return T_FLOAT;
   666   case 'I': return T_INT;
   667   case 'J': return T_LONG;
   668   case 'S': return T_SHORT;
   669   case 'Z': return T_BOOLEAN;
   670   case 'V': return T_VOID;
   671   case 'L': return T_OBJECT;
   672   case '[': return T_ARRAY;
   673   }
   674   return T_ILLEGAL;
   675 }
   677 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   678 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   679 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   680 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   681 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   682 extern BasicType name2type(const char* name);
   684 // Auxilary math routines
   685 // least common multiple
   686 extern size_t lcm(size_t a, size_t b);
   689 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   690 enum BasicTypeSize {
   691   T_BOOLEAN_size     = 1,
   692   T_CHAR_size        = 1,
   693   T_FLOAT_size       = 1,
   694   T_DOUBLE_size      = 2,
   695   T_BYTE_size        = 1,
   696   T_SHORT_size       = 1,
   697   T_INT_size         = 1,
   698   T_LONG_size        = 2,
   699   T_OBJECT_size      = 1,
   700   T_ARRAY_size       = 1,
   701   T_NARROWOOP_size   = 1,
   702   T_NARROWKLASS_size = 1,
   703   T_VOID_size        = 0
   704 };
   707 // maps a BasicType to its instance field storage type:
   708 // all sub-word integral types are widened to T_INT
   709 extern BasicType type2field[T_CONFLICT+1];
   710 extern BasicType type2wfield[T_CONFLICT+1];
   713 // size in bytes
   714 enum ArrayElementSize {
   715   T_BOOLEAN_aelem_bytes     = 1,
   716   T_CHAR_aelem_bytes        = 2,
   717   T_FLOAT_aelem_bytes       = 4,
   718   T_DOUBLE_aelem_bytes      = 8,
   719   T_BYTE_aelem_bytes        = 1,
   720   T_SHORT_aelem_bytes       = 2,
   721   T_INT_aelem_bytes         = 4,
   722   T_LONG_aelem_bytes        = 8,
   723 #ifdef _LP64
   724   T_OBJECT_aelem_bytes      = 8,
   725   T_ARRAY_aelem_bytes       = 8,
   726 #else
   727   T_OBJECT_aelem_bytes      = 4,
   728   T_ARRAY_aelem_bytes       = 4,
   729 #endif
   730   T_NARROWOOP_aelem_bytes   = 4,
   731   T_NARROWKLASS_aelem_bytes = 4,
   732   T_VOID_aelem_bytes        = 0
   733 };
   735 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   736 #ifdef ASSERT
   737 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   738 #else
   739 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   740 #endif
   743 // JavaValue serves as a container for arbitrary Java values.
   745 class JavaValue {
   747  public:
   748   typedef union JavaCallValue {
   749     jfloat   f;
   750     jdouble  d;
   751     jint     i;
   752     jlong    l;
   753     jobject  h;
   754   } JavaCallValue;
   756  private:
   757   BasicType _type;
   758   JavaCallValue _value;
   760  public:
   761   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   763   JavaValue(jfloat value) {
   764     _type    = T_FLOAT;
   765     _value.f = value;
   766   }
   768   JavaValue(jdouble value) {
   769     _type    = T_DOUBLE;
   770     _value.d = value;
   771   }
   773  jfloat get_jfloat() const { return _value.f; }
   774  jdouble get_jdouble() const { return _value.d; }
   775  jint get_jint() const { return _value.i; }
   776  jlong get_jlong() const { return _value.l; }
   777  jobject get_jobject() const { return _value.h; }
   778  JavaCallValue* get_value_addr() { return &_value; }
   779  BasicType get_type() const { return _type; }
   781  void set_jfloat(jfloat f) { _value.f = f;}
   782  void set_jdouble(jdouble d) { _value.d = d;}
   783  void set_jint(jint i) { _value.i = i;}
   784  void set_jlong(jlong l) { _value.l = l;}
   785  void set_jobject(jobject h) { _value.h = h;}
   786  void set_type(BasicType t) { _type = t; }
   788  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   789  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   790  jchar get_jchar() const { return (jchar) (_value.i);}
   791  jshort get_jshort() const { return (jshort) (_value.i);}
   793 };
   796 #define STACK_BIAS      0
   797 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   798 // in order to extend the reach of the stack pointer.
   799 #if defined(SPARC) && defined(_LP64)
   800 #undef STACK_BIAS
   801 #define STACK_BIAS      0x7ff
   802 #endif
   805 // TosState describes the top-of-stack state before and after the execution of
   806 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   807 // registers. The TosState corresponds to the 'machine represention' of this cached
   808 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   809 // as well as a 5th state in case the top-of-stack value is actually on the top
   810 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   811 // state when it comes to machine representation but is used separately for (oop)
   812 // type specific operations (e.g. verification code).
   814 enum TosState {         // describes the tos cache contents
   815   btos = 0,             // byte, bool tos cached
   816   ztos = 1,             // byte, bool tos cached
   817   ctos = 2,             // char tos cached
   818   stos = 3,             // short tos cached
   819   itos = 4,             // int tos cached
   820   ltos = 5,             // long tos cached
   821   ftos = 6,             // float tos cached
   822   dtos = 7,             // double tos cached
   823   atos = 8,             // object cached
   824   vtos = 9,             // tos not cached
   825   number_of_states,
   826   ilgl                  // illegal state: should not occur
   827 };
   830 inline TosState as_TosState(BasicType type) {
   831   switch (type) {
   832     case T_BYTE   : return btos;
   833     case T_BOOLEAN: return ztos;
   834     case T_CHAR   : return ctos;
   835     case T_SHORT  : return stos;
   836     case T_INT    : return itos;
   837     case T_LONG   : return ltos;
   838     case T_FLOAT  : return ftos;
   839     case T_DOUBLE : return dtos;
   840     case T_VOID   : return vtos;
   841     case T_ARRAY  : // fall through
   842     case T_OBJECT : return atos;
   843   }
   844   return ilgl;
   845 }
   847 inline BasicType as_BasicType(TosState state) {
   848   switch (state) {
   849     case btos : return T_BYTE;
   850     case ztos : return T_BOOLEAN;
   851     case ctos : return T_CHAR;
   852     case stos : return T_SHORT;
   853     case itos : return T_INT;
   854     case ltos : return T_LONG;
   855     case ftos : return T_FLOAT;
   856     case dtos : return T_DOUBLE;
   857     case atos : return T_OBJECT;
   858     case vtos : return T_VOID;
   859   }
   860   return T_ILLEGAL;
   861 }
   864 // Helper function to convert BasicType info into TosState
   865 // Note: Cannot define here as it uses global constant at the time being.
   866 TosState as_TosState(BasicType type);
   869 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   870 // information is needed by the safepoint code.
   871 //
   872 // There are 4 essential states:
   873 //
   874 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   875 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   876 //  _thread_in_vm       : Executing in the vm
   877 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   878 //
   879 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   880 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   881 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   882 //
   883 // Given a state, the xxx_trans state can always be found by adding 1.
   884 //
   885 enum JavaThreadState {
   886   _thread_uninitialized     =  0, // should never happen (missing initialization)
   887   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   888   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   889   _thread_in_native         =  4, // running in native code
   890   _thread_in_native_trans   =  5, // corresponding transition state
   891   _thread_in_vm             =  6, // running in VM
   892   _thread_in_vm_trans       =  7, // corresponding transition state
   893   _thread_in_Java           =  8, // running in Java or in stub code
   894   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   895   _thread_blocked           = 10, // blocked in vm
   896   _thread_blocked_trans     = 11, // corresponding transition state
   897   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   898 };
   901 // Handy constants for deciding which compiler mode to use.
   902 enum MethodCompilation {
   903   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   904   InvalidOSREntryBci = -2
   905 };
   907 // Enumeration to distinguish tiers of compilation
   908 enum CompLevel {
   909   CompLevel_any               = -1,
   910   CompLevel_all               = -1,
   911   CompLevel_none              = 0,         // Interpreter
   912   CompLevel_simple            = 1,         // C1
   913   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   914   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   915   CompLevel_full_optimization = 4,         // C2 or Shark
   917 #if defined(COMPILER2) || defined(SHARK)
   918   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   919 #elif defined(COMPILER1)
   920   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   921 #else
   922   CompLevel_highest_tier      = CompLevel_none,
   923 #endif
   925 #if defined(TIERED)
   926   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   927 #elif defined(COMPILER1)
   928   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   929 #elif defined(COMPILER2) || defined(SHARK)
   930   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   931 #else
   932   CompLevel_initial_compile   = CompLevel_none
   933 #endif
   934 };
   936 inline bool is_c1_compile(int comp_level) {
   937   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   938 }
   940 inline bool is_c2_compile(int comp_level) {
   941   return comp_level == CompLevel_full_optimization;
   942 }
   944 inline bool is_highest_tier_compile(int comp_level) {
   945   return comp_level == CompLevel_highest_tier;
   946 }
   948 inline bool is_compile(int comp_level) {
   949   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
   950 }
   952 //----------------------------------------------------------------------------------------------------
   953 // 'Forward' declarations of frequently used classes
   954 // (in order to reduce interface dependencies & reduce
   955 // number of unnecessary compilations after changes)
   957 class symbolTable;
   958 class ClassFileStream;
   960 class Event;
   962 class Thread;
   963 class  VMThread;
   964 class  JavaThread;
   965 class Threads;
   967 class VM_Operation;
   968 class VMOperationQueue;
   970 class CodeBlob;
   971 class  nmethod;
   972 class  OSRAdapter;
   973 class  I2CAdapter;
   974 class  C2IAdapter;
   975 class CompiledIC;
   976 class relocInfo;
   977 class ScopeDesc;
   978 class PcDesc;
   980 class Recompiler;
   981 class Recompilee;
   982 class RecompilationPolicy;
   983 class RFrame;
   984 class  CompiledRFrame;
   985 class  InterpretedRFrame;
   987 class frame;
   989 class vframe;
   990 class   javaVFrame;
   991 class     interpretedVFrame;
   992 class     compiledVFrame;
   993 class     deoptimizedVFrame;
   994 class   externalVFrame;
   995 class     entryVFrame;
   997 class RegisterMap;
   999 class Mutex;
  1000 class Monitor;
  1001 class BasicLock;
  1002 class BasicObjectLock;
  1004 class PeriodicTask;
  1006 class JavaCallWrapper;
  1008 class   oopDesc;
  1009 class   metaDataOopDesc;
  1011 class NativeCall;
  1013 class zone;
  1015 class StubQueue;
  1017 class outputStream;
  1019 class ResourceArea;
  1021 class DebugInformationRecorder;
  1022 class ScopeValue;
  1023 class CompressedStream;
  1024 class   DebugInfoReadStream;
  1025 class   DebugInfoWriteStream;
  1026 class LocationValue;
  1027 class ConstantValue;
  1028 class IllegalValue;
  1030 class PrivilegedElement;
  1031 class MonitorArray;
  1033 class MonitorInfo;
  1035 class OffsetClosure;
  1036 class OopMapCache;
  1037 class InterpreterOopMap;
  1038 class OopMapCacheEntry;
  1039 class OSThread;
  1041 typedef int (*OSThreadStartFunc)(void*);
  1043 class Space;
  1045 class JavaValue;
  1046 class methodHandle;
  1047 class JavaCallArguments;
  1049 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
  1051 extern void basic_fatal(const char* msg);
  1054 //----------------------------------------------------------------------------------------------------
  1055 // Special constants for debugging
  1057 const jint     badInt           = -3;                       // generic "bad int" value
  1058 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
  1059 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
  1060 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
  1061 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
  1062 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
  1063 const int      badResourceValue = 0xAB;                     // value used to zap resource area
  1064 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
  1065 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
  1066 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
  1067 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
  1068 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
  1069 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
  1070 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
  1073 // (These must be implemented as #defines because C++ compilers are
  1074 // not obligated to inline non-integral constants!)
  1075 #define       badAddress        ((address)::badAddressVal)
  1076 #define       badOop            (cast_to_oop(::badOopVal))
  1077 #define       badHeapWord       (::badHeapWordVal)
  1078 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
  1080 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
  1081 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
  1083 //----------------------------------------------------------------------------------------------------
  1084 // Utility functions for bitfield manipulations
  1086 const intptr_t AllBits    = ~0; // all bits set in a word
  1087 const intptr_t NoBits     =  0; // no bits set in a word
  1088 const jlong    NoLongBits =  0; // no bits set in a long
  1089 const intptr_t OneBit     =  1; // only right_most bit set in a word
  1091 // get a word with the n.th or the right-most or left-most n bits set
  1092 // (note: #define used only so that they can be used in enum constant definitions)
  1093 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
  1094 #define right_n_bits(n)   (nth_bit(n) - 1)
  1095 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
  1097 // bit-operations using a mask m
  1098 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
  1099 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
  1100 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
  1101 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
  1102 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
  1104 // bit-operations using the n.th bit
  1105 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
  1106 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
  1107 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
  1109 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
  1110 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  1111   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
  1115 //----------------------------------------------------------------------------------------------------
  1116 // Utility functions for integers
  1118 // Avoid use of global min/max macros which may cause unwanted double
  1119 // evaluation of arguments.
  1120 #ifdef max
  1121 #undef max
  1122 #endif
  1124 #ifdef min
  1125 #undef min
  1126 #endif
  1128 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1129 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1131 // It is necessary to use templates here. Having normal overloaded
  1132 // functions does not work because it is necessary to provide both 32-
  1133 // and 64-bit overloaded functions, which does not work, and having
  1134 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1135 // will be even more error-prone than macros.
  1136 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1137 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1138 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1139 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1140 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1141 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1143 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1145 // true if x is a power of 2, false otherwise
  1146 inline bool is_power_of_2(intptr_t x) {
  1147   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1150 // long version of is_power_of_2
  1151 inline bool is_power_of_2_long(jlong x) {
  1152   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1155 //* largest i such that 2^i <= x
  1156 //  A negative value of 'x' will return '31'
  1157 inline int log2_intptr(uintptr_t x) {
  1158   int i = -1;
  1159   uintptr_t p =  1;
  1160   while (p != 0 && p <= x) {
  1161     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1162     i++; p *= 2;
  1164   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1165   // (if p = 0 then overflow occurred and i = 31)
  1166   return i;
  1169 //* largest i such that 2^i <= x
  1170 inline int log2_long(julong x) {
  1171   int i = -1;
  1172   julong p =  1;
  1173   while (p != 0 && p <= x) {
  1174     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1175     i++; p *= 2;
  1177   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1178   // (if p = 0 then overflow occurred and i = 63)
  1179   return i;
  1182 inline int log2_intptr(intptr_t x) {
  1183   return log2_intptr((uintptr_t)x);
  1186 inline int log2_int(int x) {
  1187   return log2_intptr((uintptr_t)x);
  1190 inline int log2_jint(jint x) {
  1191   return log2_intptr((uintptr_t)x);
  1194 inline int log2_uint(uint x) {
  1195   return log2_intptr((uintptr_t)x);
  1198 //  A negative value of 'x' will return '63'
  1199 inline int log2_jlong(jlong x) {
  1200   return log2_long((julong)x);
  1203 //* the argument must be exactly a power of 2
  1204 inline int exact_log2(intptr_t x) {
  1205   #ifdef ASSERT
  1206     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1207   #endif
  1208   return log2_intptr(x);
  1211 //* the argument must be exactly a power of 2
  1212 inline int exact_log2_long(jlong x) {
  1213   #ifdef ASSERT
  1214     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1215   #endif
  1216   return log2_long(x);
  1220 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1221 inline intptr_t round_to(intptr_t x, uintx s) {
  1222   #ifdef ASSERT
  1223     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1224   #endif
  1225   const uintx m = s - 1;
  1226   return mask_bits(x + m, ~m);
  1229 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1230 inline intptr_t round_down(intptr_t x, uintx s) {
  1231   #ifdef ASSERT
  1232     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1233   #endif
  1234   const uintx m = s - 1;
  1235   return mask_bits(x, ~m);
  1239 inline bool is_odd (intx x) { return x & 1;      }
  1240 inline bool is_even(intx x) { return !is_odd(x); }
  1242 // abs methods which cannot overflow and so are well-defined across
  1243 // the entire domain of integer types.
  1244 static inline unsigned int uabs(unsigned int n) {
  1245   union {
  1246     unsigned int result;
  1247     int value;
  1248   };
  1249   result = n;
  1250   if (value < 0) result = 0-result;
  1251   return result;
  1253 static inline julong uabs(julong n) {
  1254   union {
  1255     julong result;
  1256     jlong value;
  1257   };
  1258   result = n;
  1259   if (value < 0) result = 0-result;
  1260   return result;
  1262 static inline julong uabs(jlong n) { return uabs((julong)n); }
  1263 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
  1265 // "to" should be greater than "from."
  1266 inline intx byte_size(void* from, void* to) {
  1267   return (address)to - (address)from;
  1270 //----------------------------------------------------------------------------------------------------
  1271 // Avoid non-portable casts with these routines (DEPRECATED)
  1273 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1274 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1276 // Given sequence of four bytes, build into a 32-bit word
  1277 // following the conventions used in class files.
  1278 // On the 386, this could be realized with a simple address cast.
  1279 //
  1281 // This routine takes eight bytes:
  1282 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1283   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1284        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1285        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1286        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1287        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1288        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1289        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1290        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1293 // This routine takes four bytes:
  1294 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1295   return  (( u4(c1) << 24 )  &  0xff000000)
  1296        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1297        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1298        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1301 // And this one works if the four bytes are contiguous in memory:
  1302 inline u4 build_u4_from( u1* p ) {
  1303   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1306 // Ditto for two-byte ints:
  1307 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1308   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1309           |  (( u2(c2) <<  0 )  &  0x00ff));
  1312 // And this one works if the two bytes are contiguous in memory:
  1313 inline u2 build_u2_from( u1* p ) {
  1314   return  build_u2_from( p[0], p[1] );
  1317 // Ditto for floats:
  1318 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1319   u4 u = build_u4_from( c1, c2, c3, c4 );
  1320   return  *(jfloat*)&u;
  1323 inline jfloat build_float_from( u1* p ) {
  1324   u4 u = build_u4_from( p );
  1325   return  *(jfloat*)&u;
  1329 // now (64-bit) longs
  1331 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1332   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1333        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1334        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1335        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1336        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1337        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1338        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1339        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1342 inline jlong build_long_from( u1* p ) {
  1343   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1347 // Doubles, too!
  1348 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1349   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1350   return  *(jdouble*)&u;
  1353 inline jdouble build_double_from( u1* p ) {
  1354   jlong u = build_long_from( p );
  1355   return  *(jdouble*)&u;
  1359 // Portable routines to go the other way:
  1361 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1362   c1 = u1(x >> 8);
  1363   c2 = u1(x);
  1366 inline void explode_short_to( u2 x, u1* p ) {
  1367   explode_short_to( x, p[0], p[1]);
  1370 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1371   c1 = u1(x >> 24);
  1372   c2 = u1(x >> 16);
  1373   c3 = u1(x >>  8);
  1374   c4 = u1(x);
  1377 inline void explode_int_to( u4 x, u1* p ) {
  1378   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1382 // Pack and extract shorts to/from ints:
  1384 inline int extract_low_short_from_int(jint x) {
  1385   return x & 0xffff;
  1388 inline int extract_high_short_from_int(jint x) {
  1389   return (x >> 16) & 0xffff;
  1392 inline int build_int_from_shorts( jushort low, jushort high ) {
  1393   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1396 // Convert pointer to intptr_t, for use in printing pointers.
  1397 inline intptr_t p2i(const void * p) {
  1398   return (intptr_t) p;
  1401 // Printf-style formatters for fixed- and variable-width types as pointers and
  1402 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1403 // doesn't provide appropriate definitions, they should be provided in
  1404 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1406 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1408 // Format 32-bit quantities.
  1409 #define INT32_FORMAT           "%" PRId32
  1410 #define UINT32_FORMAT          "%" PRIu32
  1411 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1412 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1414 #define PTR32_FORMAT           "0x%08" PRIx32
  1416 // Format 64-bit quantities.
  1417 #define INT64_FORMAT           "%" PRId64
  1418 #define UINT64_FORMAT          "%" PRIu64
  1419 #define UINT64_FORMAT_X        "%" PRIx64
  1420 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1421 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1423 #define PTR64_FORMAT           "0x%016" PRIx64
  1425 // Format jlong, if necessary
  1426 #ifndef JLONG_FORMAT
  1427 #define JLONG_FORMAT           INT64_FORMAT
  1428 #endif
  1429 #ifndef JULONG_FORMAT
  1430 #define JULONG_FORMAT          UINT64_FORMAT
  1431 #endif
  1433 // Format pointers which change size between 32- and 64-bit.
  1434 #ifdef  _LP64
  1435 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1436 #define PTR_FORMAT    "0x%016" PRIxPTR
  1437 #else   // !_LP64
  1438 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1439 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1440 #endif  // _LP64
  1442 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  1444 #define SSIZE_FORMAT          "%"   PRIdPTR
  1445 #define SIZE_FORMAT           "%"   PRIuPTR
  1446 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
  1447 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
  1448 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
  1449 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
  1451 #define INTX_FORMAT           "%" PRIdPTR
  1452 #define UINTX_FORMAT          "%" PRIuPTR
  1453 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1454 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1457 // Enable zap-a-lot if in debug version.
  1459 # ifdef ASSERT
  1460 # ifdef COMPILER2
  1461 #   define ENABLE_ZAP_DEAD_LOCALS
  1462 #endif /* COMPILER2 */
  1463 # endif /* ASSERT */
  1465 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1467 //----------------------------------------------------------------------------------------------------
  1468 // Sum and product which can never overflow: they wrap, just like the
  1469 // Java operations.  Note that we don't intend these to be used for
  1470 // general-purpose arithmetic: their purpose is to emulate Java
  1471 // operations.
  1473 // The goal of this code to avoid undefined or implementation-defined
  1474 // behaviour.  The use of an lvalue to reference cast is explicitly
  1475 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
  1476 // 15 in C++03]
  1477 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
  1478 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
  1479   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
  1480   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
  1481   return reinterpret_cast<TYPE&>(ures);                 \
  1484 JAVA_INTEGER_OP(+, java_add, jint, juint)
  1485 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
  1486 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
  1487 JAVA_INTEGER_OP(+, java_add, jlong, julong)
  1488 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
  1489 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
  1491 #undef JAVA_INTEGER_OP
  1493 // Dereference vptr
  1494 // All C++ compilers that we know of have the vtbl pointer in the first
  1495 // word.  If there are exceptions, this function needs to be made compiler
  1496 // specific.
  1497 static inline void* dereference_vptr(const void* addr) {
  1498   return *(void**)addr;
  1501 #ifndef PRODUCT
  1503 // For unit testing only
  1504 class GlobalDefinitions {
  1505 public:
  1506   static void test_globals();
  1507   static void test_proper_unit();
  1508 };
  1510 #endif // PRODUCT
  1512 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial