src/share/vm/opto/type.cpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 499
b8f5ba577b02
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_type.cpp.incl"
    32 // Dictionary of types shared among compilations.
    33 Dict* Type::_shared_type_dict = NULL;
    35 // Array which maps compiler types to Basic Types
    36 const BasicType Type::_basic_type[Type::lastype] = {
    37   T_ILLEGAL,    // Bad
    38   T_ILLEGAL,    // Control
    39   T_VOID,       // Top
    40   T_INT,        // Int
    41   T_LONG,       // Long
    42   T_VOID,       // Half
    44   T_ILLEGAL,    // Tuple
    45   T_ARRAY,      // Array
    47   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    48   T_ADDRESS,    // RawPtr
    49   T_OBJECT,     // OopPtr
    50   T_OBJECT,     // InstPtr
    51   T_OBJECT,     // AryPtr
    52   T_OBJECT,     // KlassPtr
    54   T_OBJECT,     // Function
    55   T_ILLEGAL,    // Abio
    56   T_ADDRESS,    // Return_Address
    57   T_ILLEGAL,    // Memory
    58   T_FLOAT,      // FloatTop
    59   T_FLOAT,      // FloatCon
    60   T_FLOAT,      // FloatBot
    61   T_DOUBLE,     // DoubleTop
    62   T_DOUBLE,     // DoubleCon
    63   T_DOUBLE,     // DoubleBot
    64   T_ILLEGAL,    // Bottom
    65 };
    67 // Map ideal registers (machine types) to ideal types
    68 const Type *Type::mreg2type[_last_machine_leaf];
    70 // Map basic types to canonical Type* pointers.
    71 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    73 // Map basic types to constant-zero Types.
    74 const Type* Type::            _zero_type[T_CONFLICT+1];
    76 // Map basic types to array-body alias types.
    77 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    79 //=============================================================================
    80 // Convenience common pre-built types.
    81 const Type *Type::ABIO;         // State-of-machine only
    82 const Type *Type::BOTTOM;       // All values
    83 const Type *Type::CONTROL;      // Control only
    84 const Type *Type::DOUBLE;       // All doubles
    85 const Type *Type::FLOAT;        // All floats
    86 const Type *Type::HALF;         // Placeholder half of doublewide type
    87 const Type *Type::MEMORY;       // Abstract store only
    88 const Type *Type::RETURN_ADDRESS;
    89 const Type *Type::TOP;          // No values in set
    91 //------------------------------get_const_type---------------------------
    92 const Type* Type::get_const_type(ciType* type) {
    93   if (type == NULL) {
    94     return NULL;
    95   } else if (type->is_primitive_type()) {
    96     return get_const_basic_type(type->basic_type());
    97   } else {
    98     return TypeOopPtr::make_from_klass(type->as_klass());
    99   }
   100 }
   102 //---------------------------array_element_basic_type---------------------------------
   103 // Mapping to the array element's basic type.
   104 BasicType Type::array_element_basic_type() const {
   105   BasicType bt = basic_type();
   106   if (bt == T_INT) {
   107     if (this == TypeInt::INT)   return T_INT;
   108     if (this == TypeInt::CHAR)  return T_CHAR;
   109     if (this == TypeInt::BYTE)  return T_BYTE;
   110     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   111     if (this == TypeInt::SHORT) return T_SHORT;
   112     return T_VOID;
   113   }
   114   return bt;
   115 }
   117 //---------------------------get_typeflow_type---------------------------------
   118 // Import a type produced by ciTypeFlow.
   119 const Type* Type::get_typeflow_type(ciType* type) {
   120   switch (type->basic_type()) {
   122   case ciTypeFlow::StateVector::T_BOTTOM:
   123     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   124     return Type::BOTTOM;
   126   case ciTypeFlow::StateVector::T_TOP:
   127     assert(type == ciTypeFlow::StateVector::top_type(), "");
   128     return Type::TOP;
   130   case ciTypeFlow::StateVector::T_NULL:
   131     assert(type == ciTypeFlow::StateVector::null_type(), "");
   132     return TypePtr::NULL_PTR;
   134   case ciTypeFlow::StateVector::T_LONG2:
   135     // The ciTypeFlow pass pushes a long, then the half.
   136     // We do the same.
   137     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   138     return TypeInt::TOP;
   140   case ciTypeFlow::StateVector::T_DOUBLE2:
   141     // The ciTypeFlow pass pushes double, then the half.
   142     // Our convention is the same.
   143     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   144     return Type::TOP;
   146   case T_ADDRESS:
   147     assert(type->is_return_address(), "");
   148     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   150   default:
   151     // make sure we did not mix up the cases:
   152     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   153     assert(type != ciTypeFlow::StateVector::top_type(), "");
   154     assert(type != ciTypeFlow::StateVector::null_type(), "");
   155     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   156     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   157     assert(!type->is_return_address(), "");
   159     return Type::get_const_type(type);
   160   }
   161 }
   164 //------------------------------make-------------------------------------------
   165 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   166 // and look for an existing copy in the type dictionary.
   167 const Type *Type::make( enum TYPES t ) {
   168   return (new Type(t))->hashcons();
   169 }
   171 //------------------------------cmp--------------------------------------------
   172 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   173   if( t1->_base != t2->_base )
   174     return 1;                   // Missed badly
   175   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   176   return !t1->eq(t2);           // Return ZERO if equal
   177 }
   179 //------------------------------hash-------------------------------------------
   180 int Type::uhash( const Type *const t ) {
   181   return t->hash();
   182 }
   184 //--------------------------Initialize_shared----------------------------------
   185 void Type::Initialize_shared(Compile* current) {
   186   // This method does not need to be locked because the first system
   187   // compilations (stub compilations) occur serially.  If they are
   188   // changed to proceed in parallel, then this section will need
   189   // locking.
   191   Arena* save = current->type_arena();
   192   Arena* shared_type_arena = new Arena();
   194   current->set_type_arena(shared_type_arena);
   195   _shared_type_dict =
   196     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   197                                   shared_type_arena, 128 );
   198   current->set_type_dict(_shared_type_dict);
   200   // Make shared pre-built types.
   201   CONTROL = make(Control);      // Control only
   202   TOP     = make(Top);          // No values in set
   203   MEMORY  = make(Memory);       // Abstract store only
   204   ABIO    = make(Abio);         // State-of-machine only
   205   RETURN_ADDRESS=make(Return_Address);
   206   FLOAT   = make(FloatBot);     // All floats
   207   DOUBLE  = make(DoubleBot);    // All doubles
   208   BOTTOM  = make(Bottom);       // Everything
   209   HALF    = make(Half);         // Placeholder half of doublewide type
   211   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   212   TypeF::ONE  = TypeF::make(1.0); // Float 1
   214   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   215   TypeD::ONE  = TypeD::make(1.0); // Double 1
   217   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   218   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   219   TypeInt::ONE     = TypeInt::make( 1);  //  1
   220   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   221   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   222   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   223   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   224   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   225   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   226   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   227   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   228   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   229   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   230   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   231   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   232   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   233   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   234   // CmpL is overloaded both as the bytecode computation returning
   235   // a trinary (-1,0,+1) integer result AND as an efficient long
   236   // compare returning optimizer ideal-type flags.
   237   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   238   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   239   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   240   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   242   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   243   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   244   TypeLong::ONE     = TypeLong::make( 1);        //  1
   245   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   246   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   247   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   248   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   250   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   251   fboth[0] = Type::CONTROL;
   252   fboth[1] = Type::CONTROL;
   253   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   255   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   256   ffalse[0] = Type::CONTROL;
   257   ffalse[1] = Type::TOP;
   258   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   260   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   261   fneither[0] = Type::TOP;
   262   fneither[1] = Type::TOP;
   263   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   265   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   266   ftrue[0] = Type::TOP;
   267   ftrue[1] = Type::CONTROL;
   268   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   270   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   271   floop[0] = Type::CONTROL;
   272   floop[1] = TypeInt::INT;
   273   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   275   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   276   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   277   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   279   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   280   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   282   mreg2type[Op_Node] = Type::BOTTOM;
   283   mreg2type[Op_Set ] = 0;
   284   mreg2type[Op_RegI] = TypeInt::INT;
   285   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   286   mreg2type[Op_RegF] = Type::FLOAT;
   287   mreg2type[Op_RegD] = Type::DOUBLE;
   288   mreg2type[Op_RegL] = TypeLong::LONG;
   289   mreg2type[Op_RegFlags] = TypeInt::CC;
   291   const Type **fmembar = TypeTuple::fields(0);
   292   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   294   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   295   fsc[0] = TypeInt::CC;
   296   fsc[1] = Type::MEMORY;
   297   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   299   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   300   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   301   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   302   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   303                                            false, 0, oopDesc::mark_offset_in_bytes());
   304   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   305                                            false, 0, oopDesc::klass_offset_in_bytes());
   306   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
   308   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
   309   // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   310   TypeAryPtr::OOPS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   311   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   312   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   313   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   314   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   315   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   316   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   317   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   319   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   320   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS;   // arrays are stored in oop arrays
   321   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   322   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   323   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   324   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   325   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   326   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   327   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   328   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   330   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   331   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   333   const Type **fi2c = TypeTuple::fields(2);
   334   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   335   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   336   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   338   const Type **intpair = TypeTuple::fields(2);
   339   intpair[0] = TypeInt::INT;
   340   intpair[1] = TypeInt::INT;
   341   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   343   const Type **longpair = TypeTuple::fields(2);
   344   longpair[0] = TypeLong::LONG;
   345   longpair[1] = TypeLong::LONG;
   346   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   348   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   349   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   350   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   351   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   352   _const_basic_type[T_INT]     = TypeInt::INT;
   353   _const_basic_type[T_LONG]    = TypeLong::LONG;
   354   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   355   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   356   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   357   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   358   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   359   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   360   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   362   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   363   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   364   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   365   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   366   _zero_type[T_INT]     = TypeInt::ZERO;
   367   _zero_type[T_LONG]    = TypeLong::ZERO;
   368   _zero_type[T_FLOAT]   = TypeF::ZERO;
   369   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   370   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   371   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   372   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   373   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   375   // get_zero_type() should not happen for T_CONFLICT
   376   _zero_type[T_CONFLICT]= NULL;
   378   // Restore working type arena.
   379   current->set_type_arena(save);
   380   current->set_type_dict(NULL);
   381 }
   383 //------------------------------Initialize-------------------------------------
   384 void Type::Initialize(Compile* current) {
   385   assert(current->type_arena() != NULL, "must have created type arena");
   387   if (_shared_type_dict == NULL) {
   388     Initialize_shared(current);
   389   }
   391   Arena* type_arena = current->type_arena();
   393   // Create the hash-cons'ing dictionary with top-level storage allocation
   394   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   395   current->set_type_dict(tdic);
   397   // Transfer the shared types.
   398   DictI i(_shared_type_dict);
   399   for( ; i.test(); ++i ) {
   400     Type* t = (Type*)i._value;
   401     tdic->Insert(t,t);  // New Type, insert into Type table
   402   }
   403 }
   405 //------------------------------hashcons---------------------------------------
   406 // Do the hash-cons trick.  If the Type already exists in the type table,
   407 // delete the current Type and return the existing Type.  Otherwise stick the
   408 // current Type in the Type table.
   409 const Type *Type::hashcons(void) {
   410   debug_only(base());           // Check the assertion in Type::base().
   411   // Look up the Type in the Type dictionary
   412   Dict *tdic = type_dict();
   413   Type* old = (Type*)(tdic->Insert(this, this, false));
   414   if( old ) {                   // Pre-existing Type?
   415     if( old != this )           // Yes, this guy is not the pre-existing?
   416       delete this;              // Yes, Nuke this guy
   417     assert( old->_dual, "" );
   418     return old;                 // Return pre-existing
   419   }
   421   // Every type has a dual (to make my lattice symmetric).
   422   // Since we just discovered a new Type, compute its dual right now.
   423   assert( !_dual, "" );         // No dual yet
   424   _dual = xdual();              // Compute the dual
   425   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   426     _dual = this;
   427     return this;
   428   }
   429   assert( !_dual->_dual, "" );  // No reverse dual yet
   430   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   431   // New Type, insert into Type table
   432   tdic->Insert((void*)_dual,(void*)_dual);
   433   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   434 #ifdef ASSERT
   435   Type *dual_dual = (Type*)_dual->xdual();
   436   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   437   delete dual_dual;
   438 #endif
   439   return this;                  // Return new Type
   440 }
   442 //------------------------------eq---------------------------------------------
   443 // Structural equality check for Type representations
   444 bool Type::eq( const Type * ) const {
   445   return true;                  // Nothing else can go wrong
   446 }
   448 //------------------------------hash-------------------------------------------
   449 // Type-specific hashing function.
   450 int Type::hash(void) const {
   451   return _base;
   452 }
   454 //------------------------------is_finite--------------------------------------
   455 // Has a finite value
   456 bool Type::is_finite() const {
   457   return false;
   458 }
   460 //------------------------------is_nan-----------------------------------------
   461 // Is not a number (NaN)
   462 bool Type::is_nan()    const {
   463   return false;
   464 }
   466 //------------------------------meet-------------------------------------------
   467 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   468 // commutative and the lattice is symmetric.
   469 const Type *Type::meet( const Type *t ) const {
   470   const Type *mt = xmeet(t);
   471 #ifdef ASSERT
   472   assert( mt == t->xmeet(this), "meet not commutative" );
   473   const Type* dual_join = mt->_dual;
   474   const Type *t2t    = dual_join->xmeet(t->_dual);
   475   const Type *t2this = dual_join->xmeet(   _dual);
   477   // Interface meet Oop is Not Symmetric:
   478   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   479   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   480   const TypeInstPtr* this_inst = this->isa_instptr();
   481   const TypeInstPtr*    t_inst =    t->isa_instptr();
   482   bool interface_vs_oop = false;
   483   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   484     bool this_interface = this_inst->klass()->is_interface();
   485     bool    t_interface =    t_inst->klass()->is_interface();
   486     interface_vs_oop = this_interface ^ t_interface;
   487   }
   488   const Type *tdual = t->_dual;
   489   const Type *thisdual = _dual;
   490   // strip out instances
   491   if (t2t->isa_oopptr() != NULL) {
   492     t2t = t2t->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   493   }
   494   if (t2this->isa_oopptr() != NULL) {
   495     t2this = t2this->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   496   }
   497   if (tdual->isa_oopptr() != NULL) {
   498     tdual = tdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   499   }
   500   if (thisdual->isa_oopptr() != NULL) {
   501     thisdual = thisdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   502   }
   504   if( !interface_vs_oop && (t2t != tdual || t2this != thisdual) ) {
   505     tty->print_cr("=== Meet Not Symmetric ===");
   506     tty->print("t   =                   ");         t->dump(); tty->cr();
   507     tty->print("this=                   ");            dump(); tty->cr();
   508     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   510     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   511     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   512     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   514     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   515     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   517     fatal("meet not symmetric" );
   518   }
   519 #endif
   520   return mt;
   521 }
   523 //------------------------------xmeet------------------------------------------
   524 // Compute the MEET of two types.  It returns a new Type object.
   525 const Type *Type::xmeet( const Type *t ) const {
   526   // Perform a fast test for common case; meeting the same types together.
   527   if( this == t ) return this;  // Meeting same type-rep?
   529   // Meeting TOP with anything?
   530   if( _base == Top ) return t;
   532   // Meeting BOTTOM with anything?
   533   if( _base == Bottom ) return BOTTOM;
   535   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   536   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   537   switch (t->base()) {  // Switch on original type
   539   // Cut in half the number of cases I must handle.  Only need cases for when
   540   // the given enum "t->type" is less than or equal to the local enum "type".
   541   case FloatCon:
   542   case DoubleCon:
   543   case Int:
   544   case Long:
   545     return t->xmeet(this);
   547   case OopPtr:
   548     return t->xmeet(this);
   550   case InstPtr:
   551     return t->xmeet(this);
   553   case KlassPtr:
   554     return t->xmeet(this);
   556   case AryPtr:
   557     return t->xmeet(this);
   559   case Bad:                     // Type check
   560   default:                      // Bogus type not in lattice
   561     typerr(t);
   562     return Type::BOTTOM;
   564   case Bottom:                  // Ye Olde Default
   565     return t;
   567   case FloatTop:
   568     if( _base == FloatTop ) return this;
   569   case FloatBot:                // Float
   570     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   571     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   572     typerr(t);
   573     return Type::BOTTOM;
   575   case DoubleTop:
   576     if( _base == DoubleTop ) return this;
   577   case DoubleBot:               // Double
   578     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   579     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   580     typerr(t);
   581     return Type::BOTTOM;
   583   // These next few cases must match exactly or it is a compile-time error.
   584   case Control:                 // Control of code
   585   case Abio:                    // State of world outside of program
   586   case Memory:
   587     if( _base == t->_base )  return this;
   588     typerr(t);
   589     return Type::BOTTOM;
   591   case Top:                     // Top of the lattice
   592     return this;
   593   }
   595   // The type is unchanged
   596   return this;
   597 }
   599 //-----------------------------filter------------------------------------------
   600 const Type *Type::filter( const Type *kills ) const {
   601   const Type* ft = join(kills);
   602   if (ft->empty())
   603     return Type::TOP;           // Canonical empty value
   604   return ft;
   605 }
   607 //------------------------------xdual------------------------------------------
   608 // Compute dual right now.
   609 const Type::TYPES Type::dual_type[Type::lastype] = {
   610   Bad,          // Bad
   611   Control,      // Control
   612   Bottom,       // Top
   613   Bad,          // Int - handled in v-call
   614   Bad,          // Long - handled in v-call
   615   Half,         // Half
   617   Bad,          // Tuple - handled in v-call
   618   Bad,          // Array - handled in v-call
   620   Bad,          // AnyPtr - handled in v-call
   621   Bad,          // RawPtr - handled in v-call
   622   Bad,          // OopPtr - handled in v-call
   623   Bad,          // InstPtr - handled in v-call
   624   Bad,          // AryPtr - handled in v-call
   625   Bad,          // KlassPtr - handled in v-call
   627   Bad,          // Function - handled in v-call
   628   Abio,         // Abio
   629   Return_Address,// Return_Address
   630   Memory,       // Memory
   631   FloatBot,     // FloatTop
   632   FloatCon,     // FloatCon
   633   FloatTop,     // FloatBot
   634   DoubleBot,    // DoubleTop
   635   DoubleCon,    // DoubleCon
   636   DoubleTop,    // DoubleBot
   637   Top           // Bottom
   638 };
   640 const Type *Type::xdual() const {
   641   // Note: the base() accessor asserts the sanity of _base.
   642   assert(dual_type[base()] != Bad, "implement with v-call");
   643   return new Type(dual_type[_base]);
   644 }
   646 //------------------------------has_memory-------------------------------------
   647 bool Type::has_memory() const {
   648   Type::TYPES tx = base();
   649   if (tx == Memory) return true;
   650   if (tx == Tuple) {
   651     const TypeTuple *t = is_tuple();
   652     for (uint i=0; i < t->cnt(); i++) {
   653       tx = t->field_at(i)->base();
   654       if (tx == Memory)  return true;
   655     }
   656   }
   657   return false;
   658 }
   660 #ifndef PRODUCT
   661 //------------------------------dump2------------------------------------------
   662 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   663   st->print(msg[_base]);
   664 }
   666 //------------------------------dump-------------------------------------------
   667 void Type::dump_on(outputStream *st) const {
   668   ResourceMark rm;
   669   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   670   dump2(d,1, st);
   671 }
   673 //------------------------------data-------------------------------------------
   674 const char * const Type::msg[Type::lastype] = {
   675   "bad","control","top","int:","long:","half",
   676   "tuple:", "aryptr",
   677   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   678   "func", "abIO", "return_address", "memory",
   679   "float_top", "ftcon:", "float",
   680   "double_top", "dblcon:", "double",
   681   "bottom"
   682 };
   683 #endif
   685 //------------------------------singleton--------------------------------------
   686 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   687 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   688 bool Type::singleton(void) const {
   689   return _base == Top || _base == Half;
   690 }
   692 //------------------------------empty------------------------------------------
   693 // TRUE if Type is a type with no values, FALSE otherwise.
   694 bool Type::empty(void) const {
   695   switch (_base) {
   696   case DoubleTop:
   697   case FloatTop:
   698   case Top:
   699     return true;
   701   case Half:
   702   case Abio:
   703   case Return_Address:
   704   case Memory:
   705   case Bottom:
   706   case FloatBot:
   707   case DoubleBot:
   708     return false;  // never a singleton, therefore never empty
   709   }
   711   ShouldNotReachHere();
   712   return false;
   713 }
   715 //------------------------------dump_stats-------------------------------------
   716 // Dump collected statistics to stderr
   717 #ifndef PRODUCT
   718 void Type::dump_stats() {
   719   tty->print("Types made: %d\n", type_dict()->Size());
   720 }
   721 #endif
   723 //------------------------------typerr-----------------------------------------
   724 void Type::typerr( const Type *t ) const {
   725 #ifndef PRODUCT
   726   tty->print("\nError mixing types: ");
   727   dump();
   728   tty->print(" and ");
   729   t->dump();
   730   tty->print("\n");
   731 #endif
   732   ShouldNotReachHere();
   733 }
   735 //------------------------------isa_oop_ptr------------------------------------
   736 // Return true if type is an oop pointer type.  False for raw pointers.
   737 static char isa_oop_ptr_tbl[Type::lastype] = {
   738   0,0,0,0,0,0,0/*tuple*/, 0/*ary*/,
   739   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   740   0/*func*/,0,0/*return_address*/,0,
   741   /*floats*/0,0,0, /*doubles*/0,0,0,
   742   0
   743 };
   744 bool Type::isa_oop_ptr() const {
   745   return isa_oop_ptr_tbl[_base] != 0;
   746 }
   748 //------------------------------dump_stats-------------------------------------
   749 // // Check that arrays match type enum
   750 #ifndef PRODUCT
   751 void Type::verify_lastype() {
   752   // Check that arrays match enumeration
   753   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   754   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   755   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   756   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   757   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   758 }
   759 #endif
   761 //=============================================================================
   762 // Convenience common pre-built types.
   763 const TypeF *TypeF::ZERO;       // Floating point zero
   764 const TypeF *TypeF::ONE;        // Floating point one
   766 //------------------------------make-------------------------------------------
   767 // Create a float constant
   768 const TypeF *TypeF::make(float f) {
   769   return (TypeF*)(new TypeF(f))->hashcons();
   770 }
   772 //------------------------------meet-------------------------------------------
   773 // Compute the MEET of two types.  It returns a new Type object.
   774 const Type *TypeF::xmeet( const Type *t ) const {
   775   // Perform a fast test for common case; meeting the same types together.
   776   if( this == t ) return this;  // Meeting same type-rep?
   778   // Current "this->_base" is FloatCon
   779   switch (t->base()) {          // Switch on original type
   780   case AnyPtr:                  // Mixing with oops happens when javac
   781   case RawPtr:                  // reuses local variables
   782   case OopPtr:
   783   case InstPtr:
   784   case KlassPtr:
   785   case AryPtr:
   786   case Int:
   787   case Long:
   788   case DoubleTop:
   789   case DoubleCon:
   790   case DoubleBot:
   791   case Bottom:                  // Ye Olde Default
   792     return Type::BOTTOM;
   794   case FloatBot:
   795     return t;
   797   default:                      // All else is a mistake
   798     typerr(t);
   800   case FloatCon:                // Float-constant vs Float-constant?
   801     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   802                                 // must compare bitwise as positive zero, negative zero and NaN have
   803                                 // all the same representation in C++
   804       return FLOAT;             // Return generic float
   805                                 // Equal constants
   806   case Top:
   807   case FloatTop:
   808     break;                      // Return the float constant
   809   }
   810   return this;                  // Return the float constant
   811 }
   813 //------------------------------xdual------------------------------------------
   814 // Dual: symmetric
   815 const Type *TypeF::xdual() const {
   816   return this;
   817 }
   819 //------------------------------eq---------------------------------------------
   820 // Structural equality check for Type representations
   821 bool TypeF::eq( const Type *t ) const {
   822   if( g_isnan(_f) ||
   823       g_isnan(t->getf()) ) {
   824     // One or both are NANs.  If both are NANs return true, else false.
   825     return (g_isnan(_f) && g_isnan(t->getf()));
   826   }
   827   if (_f == t->getf()) {
   828     // (NaN is impossible at this point, since it is not equal even to itself)
   829     if (_f == 0.0) {
   830       // difference between positive and negative zero
   831       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   832     }
   833     return true;
   834   }
   835   return false;
   836 }
   838 //------------------------------hash-------------------------------------------
   839 // Type-specific hashing function.
   840 int TypeF::hash(void) const {
   841   return *(int*)(&_f);
   842 }
   844 //------------------------------is_finite--------------------------------------
   845 // Has a finite value
   846 bool TypeF::is_finite() const {
   847   return g_isfinite(getf()) != 0;
   848 }
   850 //------------------------------is_nan-----------------------------------------
   851 // Is not a number (NaN)
   852 bool TypeF::is_nan()    const {
   853   return g_isnan(getf()) != 0;
   854 }
   856 //------------------------------dump2------------------------------------------
   857 // Dump float constant Type
   858 #ifndef PRODUCT
   859 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   860   Type::dump2(d,depth, st);
   861   st->print("%f", _f);
   862 }
   863 #endif
   865 //------------------------------singleton--------------------------------------
   866 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   867 // constants (Ldi nodes).  Singletons are integer, float or double constants
   868 // or a single symbol.
   869 bool TypeF::singleton(void) const {
   870   return true;                  // Always a singleton
   871 }
   873 bool TypeF::empty(void) const {
   874   return false;                 // always exactly a singleton
   875 }
   877 //=============================================================================
   878 // Convenience common pre-built types.
   879 const TypeD *TypeD::ZERO;       // Floating point zero
   880 const TypeD *TypeD::ONE;        // Floating point one
   882 //------------------------------make-------------------------------------------
   883 const TypeD *TypeD::make(double d) {
   884   return (TypeD*)(new TypeD(d))->hashcons();
   885 }
   887 //------------------------------meet-------------------------------------------
   888 // Compute the MEET of two types.  It returns a new Type object.
   889 const Type *TypeD::xmeet( const Type *t ) const {
   890   // Perform a fast test for common case; meeting the same types together.
   891   if( this == t ) return this;  // Meeting same type-rep?
   893   // Current "this->_base" is DoubleCon
   894   switch (t->base()) {          // Switch on original type
   895   case AnyPtr:                  // Mixing with oops happens when javac
   896   case RawPtr:                  // reuses local variables
   897   case OopPtr:
   898   case InstPtr:
   899   case KlassPtr:
   900   case AryPtr:
   901   case Int:
   902   case Long:
   903   case FloatTop:
   904   case FloatCon:
   905   case FloatBot:
   906   case Bottom:                  // Ye Olde Default
   907     return Type::BOTTOM;
   909   case DoubleBot:
   910     return t;
   912   default:                      // All else is a mistake
   913     typerr(t);
   915   case DoubleCon:               // Double-constant vs Double-constant?
   916     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   917       return DOUBLE;            // Return generic double
   918   case Top:
   919   case DoubleTop:
   920     break;
   921   }
   922   return this;                  // Return the double constant
   923 }
   925 //------------------------------xdual------------------------------------------
   926 // Dual: symmetric
   927 const Type *TypeD::xdual() const {
   928   return this;
   929 }
   931 //------------------------------eq---------------------------------------------
   932 // Structural equality check for Type representations
   933 bool TypeD::eq( const Type *t ) const {
   934   if( g_isnan(_d) ||
   935       g_isnan(t->getd()) ) {
   936     // One or both are NANs.  If both are NANs return true, else false.
   937     return (g_isnan(_d) && g_isnan(t->getd()));
   938   }
   939   if (_d == t->getd()) {
   940     // (NaN is impossible at this point, since it is not equal even to itself)
   941     if (_d == 0.0) {
   942       // difference between positive and negative zero
   943       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
   944     }
   945     return true;
   946   }
   947   return false;
   948 }
   950 //------------------------------hash-------------------------------------------
   951 // Type-specific hashing function.
   952 int TypeD::hash(void) const {
   953   return *(int*)(&_d);
   954 }
   956 //------------------------------is_finite--------------------------------------
   957 // Has a finite value
   958 bool TypeD::is_finite() const {
   959   return g_isfinite(getd()) != 0;
   960 }
   962 //------------------------------is_nan-----------------------------------------
   963 // Is not a number (NaN)
   964 bool TypeD::is_nan()    const {
   965   return g_isnan(getd()) != 0;
   966 }
   968 //------------------------------dump2------------------------------------------
   969 // Dump double constant Type
   970 #ifndef PRODUCT
   971 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
   972   Type::dump2(d,depth,st);
   973   st->print("%f", _d);
   974 }
   975 #endif
   977 //------------------------------singleton--------------------------------------
   978 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   979 // constants (Ldi nodes).  Singletons are integer, float or double constants
   980 // or a single symbol.
   981 bool TypeD::singleton(void) const {
   982   return true;                  // Always a singleton
   983 }
   985 bool TypeD::empty(void) const {
   986   return false;                 // always exactly a singleton
   987 }
   989 //=============================================================================
   990 // Convience common pre-built types.
   991 const TypeInt *TypeInt::MINUS_1;// -1
   992 const TypeInt *TypeInt::ZERO;   // 0
   993 const TypeInt *TypeInt::ONE;    // 1
   994 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
   995 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
   996 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
   997 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
   998 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
   999 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1000 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1001 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1002 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1003 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1004 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1005 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1006 const TypeInt *TypeInt::INT;    // 32-bit integers
  1007 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1009 //------------------------------TypeInt----------------------------------------
  1010 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1013 //------------------------------make-------------------------------------------
  1014 const TypeInt *TypeInt::make( jint lo ) {
  1015   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1018 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
  1020 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1021   // Certain normalizations keep us sane when comparing types.
  1022   // The 'SMALLINT' covers constants and also CC and its relatives.
  1023   assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
  1024   if (lo <= hi) {
  1025     if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1026     if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
  1028   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1031 //------------------------------meet-------------------------------------------
  1032 // Compute the MEET of two types.  It returns a new Type representation object
  1033 // with reference count equal to the number of Types pointing at it.
  1034 // Caller should wrap a Types around it.
  1035 const Type *TypeInt::xmeet( const Type *t ) const {
  1036   // Perform a fast test for common case; meeting the same types together.
  1037   if( this == t ) return this;  // Meeting same type?
  1039   // Currently "this->_base" is a TypeInt
  1040   switch (t->base()) {          // Switch on original type
  1041   case AnyPtr:                  // Mixing with oops happens when javac
  1042   case RawPtr:                  // reuses local variables
  1043   case OopPtr:
  1044   case InstPtr:
  1045   case KlassPtr:
  1046   case AryPtr:
  1047   case Long:
  1048   case FloatTop:
  1049   case FloatCon:
  1050   case FloatBot:
  1051   case DoubleTop:
  1052   case DoubleCon:
  1053   case DoubleBot:
  1054   case Bottom:                  // Ye Olde Default
  1055     return Type::BOTTOM;
  1056   default:                      // All else is a mistake
  1057     typerr(t);
  1058   case Top:                     // No change
  1059     return this;
  1060   case Int:                     // Int vs Int?
  1061     break;
  1064   // Expand covered set
  1065   const TypeInt *r = t->is_int();
  1066   // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
  1067   return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1070 //------------------------------xdual------------------------------------------
  1071 // Dual: reverse hi & lo; flip widen
  1072 const Type *TypeInt::xdual() const {
  1073   return new TypeInt(_hi,_lo,WidenMax-_widen);
  1076 //------------------------------widen------------------------------------------
  1077 // Only happens for optimistic top-down optimizations.
  1078 const Type *TypeInt::widen( const Type *old ) const {
  1079   // Coming from TOP or such; no widening
  1080   if( old->base() != Int ) return this;
  1081   const TypeInt *ot = old->is_int();
  1083   // If new guy is equal to old guy, no widening
  1084   if( _lo == ot->_lo && _hi == ot->_hi )
  1085     return old;
  1087   // If new guy contains old, then we widened
  1088   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1089     // New contains old
  1090     // If new guy is already wider than old, no widening
  1091     if( _widen > ot->_widen ) return this;
  1092     // If old guy was a constant, do not bother
  1093     if (ot->_lo == ot->_hi)  return this;
  1094     // Now widen new guy.
  1095     // Check for widening too far
  1096     if (_widen == WidenMax) {
  1097       if (min_jint < _lo && _hi < max_jint) {
  1098         // If neither endpoint is extremal yet, push out the endpoint
  1099         // which is closer to its respective limit.
  1100         if (_lo >= 0 ||                 // easy common case
  1101             (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
  1102           // Try to widen to an unsigned range type of 31 bits:
  1103           return make(_lo, max_jint, WidenMax);
  1104         } else {
  1105           return make(min_jint, _hi, WidenMax);
  1108       return TypeInt::INT;
  1110     // Returned widened new guy
  1111     return make(_lo,_hi,_widen+1);
  1114   // If old guy contains new, then we probably widened too far & dropped to
  1115   // bottom.  Return the wider fellow.
  1116   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1117     return old;
  1119   //fatal("Integer value range is not subset");
  1120   //return this;
  1121   return TypeInt::INT;
  1124 //------------------------------narrow---------------------------------------
  1125 // Only happens for pessimistic optimizations.
  1126 const Type *TypeInt::narrow( const Type *old ) const {
  1127   if (_lo >= _hi)  return this;   // already narrow enough
  1128   if (old == NULL)  return this;
  1129   const TypeInt* ot = old->isa_int();
  1130   if (ot == NULL)  return this;
  1131   jint olo = ot->_lo;
  1132   jint ohi = ot->_hi;
  1134   // If new guy is equal to old guy, no narrowing
  1135   if (_lo == olo && _hi == ohi)  return old;
  1137   // If old guy was maximum range, allow the narrowing
  1138   if (olo == min_jint && ohi == max_jint)  return this;
  1140   if (_lo < olo || _hi > ohi)
  1141     return this;                // doesn't narrow; pretty wierd
  1143   // The new type narrows the old type, so look for a "death march".
  1144   // See comments on PhaseTransform::saturate.
  1145   juint nrange = _hi - _lo;
  1146   juint orange = ohi - olo;
  1147   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1148     // Use the new type only if the range shrinks a lot.
  1149     // We do not want the optimizer computing 2^31 point by point.
  1150     return old;
  1153   return this;
  1156 //-----------------------------filter------------------------------------------
  1157 const Type *TypeInt::filter( const Type *kills ) const {
  1158   const TypeInt* ft = join(kills)->isa_int();
  1159   if (ft == NULL || ft->_lo > ft->_hi)
  1160     return Type::TOP;           // Canonical empty value
  1161   if (ft->_widen < this->_widen) {
  1162     // Do not allow the value of kill->_widen to affect the outcome.
  1163     // The widen bits must be allowed to run freely through the graph.
  1164     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1166   return ft;
  1169 //------------------------------eq---------------------------------------------
  1170 // Structural equality check for Type representations
  1171 bool TypeInt::eq( const Type *t ) const {
  1172   const TypeInt *r = t->is_int(); // Handy access
  1173   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1176 //------------------------------hash-------------------------------------------
  1177 // Type-specific hashing function.
  1178 int TypeInt::hash(void) const {
  1179   return _lo+_hi+_widen+(int)Type::Int;
  1182 //------------------------------is_finite--------------------------------------
  1183 // Has a finite value
  1184 bool TypeInt::is_finite() const {
  1185   return true;
  1188 //------------------------------dump2------------------------------------------
  1189 // Dump TypeInt
  1190 #ifndef PRODUCT
  1191 static const char* intname(char* buf, jint n) {
  1192   if (n == min_jint)
  1193     return "min";
  1194   else if (n < min_jint + 10000)
  1195     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1196   else if (n == max_jint)
  1197     return "max";
  1198   else if (n > max_jint - 10000)
  1199     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1200   else
  1201     sprintf(buf, INT32_FORMAT, n);
  1202   return buf;
  1205 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1206   char buf[40], buf2[40];
  1207   if (_lo == min_jint && _hi == max_jint)
  1208     st->print("int");
  1209   else if (is_con())
  1210     st->print("int:%s", intname(buf, get_con()));
  1211   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1212     st->print("bool");
  1213   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1214     st->print("byte");
  1215   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1216     st->print("char");
  1217   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1218     st->print("short");
  1219   else if (_hi == max_jint)
  1220     st->print("int:>=%s", intname(buf, _lo));
  1221   else if (_lo == min_jint)
  1222     st->print("int:<=%s", intname(buf, _hi));
  1223   else
  1224     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1226   if (_widen != 0 && this != TypeInt::INT)
  1227     st->print(":%.*s", _widen, "wwww");
  1229 #endif
  1231 //------------------------------singleton--------------------------------------
  1232 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1233 // constants.
  1234 bool TypeInt::singleton(void) const {
  1235   return _lo >= _hi;
  1238 bool TypeInt::empty(void) const {
  1239   return _lo > _hi;
  1242 //=============================================================================
  1243 // Convenience common pre-built types.
  1244 const TypeLong *TypeLong::MINUS_1;// -1
  1245 const TypeLong *TypeLong::ZERO; // 0
  1246 const TypeLong *TypeLong::ONE;  // 1
  1247 const TypeLong *TypeLong::POS;  // >=0
  1248 const TypeLong *TypeLong::LONG; // 64-bit integers
  1249 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1250 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1252 //------------------------------TypeLong---------------------------------------
  1253 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1256 //------------------------------make-------------------------------------------
  1257 const TypeLong *TypeLong::make( jlong lo ) {
  1258   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1261 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1262   // Certain normalizations keep us sane when comparing types.
  1263   // The '1' covers constants.
  1264   if (lo <= hi) {
  1265     if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
  1266     if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
  1268   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1272 //------------------------------meet-------------------------------------------
  1273 // Compute the MEET of two types.  It returns a new Type representation object
  1274 // with reference count equal to the number of Types pointing at it.
  1275 // Caller should wrap a Types around it.
  1276 const Type *TypeLong::xmeet( const Type *t ) const {
  1277   // Perform a fast test for common case; meeting the same types together.
  1278   if( this == t ) return this;  // Meeting same type?
  1280   // Currently "this->_base" is a TypeLong
  1281   switch (t->base()) {          // Switch on original type
  1282   case AnyPtr:                  // Mixing with oops happens when javac
  1283   case RawPtr:                  // reuses local variables
  1284   case OopPtr:
  1285   case InstPtr:
  1286   case KlassPtr:
  1287   case AryPtr:
  1288   case Int:
  1289   case FloatTop:
  1290   case FloatCon:
  1291   case FloatBot:
  1292   case DoubleTop:
  1293   case DoubleCon:
  1294   case DoubleBot:
  1295   case Bottom:                  // Ye Olde Default
  1296     return Type::BOTTOM;
  1297   default:                      // All else is a mistake
  1298     typerr(t);
  1299   case Top:                     // No change
  1300     return this;
  1301   case Long:                    // Long vs Long?
  1302     break;
  1305   // Expand covered set
  1306   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1307   // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
  1308   return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1311 //------------------------------xdual------------------------------------------
  1312 // Dual: reverse hi & lo; flip widen
  1313 const Type *TypeLong::xdual() const {
  1314   return new TypeLong(_hi,_lo,WidenMax-_widen);
  1317 //------------------------------widen------------------------------------------
  1318 // Only happens for optimistic top-down optimizations.
  1319 const Type *TypeLong::widen( const Type *old ) const {
  1320   // Coming from TOP or such; no widening
  1321   if( old->base() != Long ) return this;
  1322   const TypeLong *ot = old->is_long();
  1324   // If new guy is equal to old guy, no widening
  1325   if( _lo == ot->_lo && _hi == ot->_hi )
  1326     return old;
  1328   // If new guy contains old, then we widened
  1329   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1330     // New contains old
  1331     // If new guy is already wider than old, no widening
  1332     if( _widen > ot->_widen ) return this;
  1333     // If old guy was a constant, do not bother
  1334     if (ot->_lo == ot->_hi)  return this;
  1335     // Now widen new guy.
  1336     // Check for widening too far
  1337     if (_widen == WidenMax) {
  1338       if (min_jlong < _lo && _hi < max_jlong) {
  1339         // If neither endpoint is extremal yet, push out the endpoint
  1340         // which is closer to its respective limit.
  1341         if (_lo >= 0 ||                 // easy common case
  1342             (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
  1343           // Try to widen to an unsigned range type of 32/63 bits:
  1344           if (_hi < max_juint)
  1345             return make(_lo, max_juint, WidenMax);
  1346           else
  1347             return make(_lo, max_jlong, WidenMax);
  1348         } else {
  1349           return make(min_jlong, _hi, WidenMax);
  1352       return TypeLong::LONG;
  1354     // Returned widened new guy
  1355     return make(_lo,_hi,_widen+1);
  1358   // If old guy contains new, then we probably widened too far & dropped to
  1359   // bottom.  Return the wider fellow.
  1360   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1361     return old;
  1363   //  fatal("Long value range is not subset");
  1364   // return this;
  1365   return TypeLong::LONG;
  1368 //------------------------------narrow----------------------------------------
  1369 // Only happens for pessimistic optimizations.
  1370 const Type *TypeLong::narrow( const Type *old ) const {
  1371   if (_lo >= _hi)  return this;   // already narrow enough
  1372   if (old == NULL)  return this;
  1373   const TypeLong* ot = old->isa_long();
  1374   if (ot == NULL)  return this;
  1375   jlong olo = ot->_lo;
  1376   jlong ohi = ot->_hi;
  1378   // If new guy is equal to old guy, no narrowing
  1379   if (_lo == olo && _hi == ohi)  return old;
  1381   // If old guy was maximum range, allow the narrowing
  1382   if (olo == min_jlong && ohi == max_jlong)  return this;
  1384   if (_lo < olo || _hi > ohi)
  1385     return this;                // doesn't narrow; pretty wierd
  1387   // The new type narrows the old type, so look for a "death march".
  1388   // See comments on PhaseTransform::saturate.
  1389   julong nrange = _hi - _lo;
  1390   julong orange = ohi - olo;
  1391   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1392     // Use the new type only if the range shrinks a lot.
  1393     // We do not want the optimizer computing 2^31 point by point.
  1394     return old;
  1397   return this;
  1400 //-----------------------------filter------------------------------------------
  1401 const Type *TypeLong::filter( const Type *kills ) const {
  1402   const TypeLong* ft = join(kills)->isa_long();
  1403   if (ft == NULL || ft->_lo > ft->_hi)
  1404     return Type::TOP;           // Canonical empty value
  1405   if (ft->_widen < this->_widen) {
  1406     // Do not allow the value of kill->_widen to affect the outcome.
  1407     // The widen bits must be allowed to run freely through the graph.
  1408     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1410   return ft;
  1413 //------------------------------eq---------------------------------------------
  1414 // Structural equality check for Type representations
  1415 bool TypeLong::eq( const Type *t ) const {
  1416   const TypeLong *r = t->is_long(); // Handy access
  1417   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1420 //------------------------------hash-------------------------------------------
  1421 // Type-specific hashing function.
  1422 int TypeLong::hash(void) const {
  1423   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1426 //------------------------------is_finite--------------------------------------
  1427 // Has a finite value
  1428 bool TypeLong::is_finite() const {
  1429   return true;
  1432 //------------------------------dump2------------------------------------------
  1433 // Dump TypeLong
  1434 #ifndef PRODUCT
  1435 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1436   if (n > x) {
  1437     if (n >= x + 10000)  return NULL;
  1438     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1439   } else if (n < x) {
  1440     if (n <= x - 10000)  return NULL;
  1441     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1442   } else {
  1443     return xname;
  1445   return buf;
  1448 static const char* longname(char* buf, jlong n) {
  1449   const char* str;
  1450   if (n == min_jlong)
  1451     return "min";
  1452   else if (n < min_jlong + 10000)
  1453     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1454   else if (n == max_jlong)
  1455     return "max";
  1456   else if (n > max_jlong - 10000)
  1457     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1458   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1459     return str;
  1460   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1461     return str;
  1462   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1463     return str;
  1464   else
  1465     sprintf(buf, INT64_FORMAT, n);
  1466   return buf;
  1469 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1470   char buf[80], buf2[80];
  1471   if (_lo == min_jlong && _hi == max_jlong)
  1472     st->print("long");
  1473   else if (is_con())
  1474     st->print("long:%s", longname(buf, get_con()));
  1475   else if (_hi == max_jlong)
  1476     st->print("long:>=%s", longname(buf, _lo));
  1477   else if (_lo == min_jlong)
  1478     st->print("long:<=%s", longname(buf, _hi));
  1479   else
  1480     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1482   if (_widen != 0 && this != TypeLong::LONG)
  1483     st->print(":%.*s", _widen, "wwww");
  1485 #endif
  1487 //------------------------------singleton--------------------------------------
  1488 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1489 // constants
  1490 bool TypeLong::singleton(void) const {
  1491   return _lo >= _hi;
  1494 bool TypeLong::empty(void) const {
  1495   return _lo > _hi;
  1498 //=============================================================================
  1499 // Convenience common pre-built types.
  1500 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1501 const TypeTuple *TypeTuple::IFFALSE;
  1502 const TypeTuple *TypeTuple::IFTRUE;
  1503 const TypeTuple *TypeTuple::IFNEITHER;
  1504 const TypeTuple *TypeTuple::LOOPBODY;
  1505 const TypeTuple *TypeTuple::MEMBAR;
  1506 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1507 const TypeTuple *TypeTuple::START_I2C;
  1508 const TypeTuple *TypeTuple::INT_PAIR;
  1509 const TypeTuple *TypeTuple::LONG_PAIR;
  1512 //------------------------------make-------------------------------------------
  1513 // Make a TypeTuple from the range of a method signature
  1514 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1515   ciType* return_type = sig->return_type();
  1516   uint total_fields = TypeFunc::Parms + return_type->size();
  1517   const Type **field_array = fields(total_fields);
  1518   switch (return_type->basic_type()) {
  1519   case T_LONG:
  1520     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1521     field_array[TypeFunc::Parms+1] = Type::HALF;
  1522     break;
  1523   case T_DOUBLE:
  1524     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1525     field_array[TypeFunc::Parms+1] = Type::HALF;
  1526     break;
  1527   case T_OBJECT:
  1528   case T_ARRAY:
  1529   case T_BOOLEAN:
  1530   case T_CHAR:
  1531   case T_FLOAT:
  1532   case T_BYTE:
  1533   case T_SHORT:
  1534   case T_INT:
  1535     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1536     break;
  1537   case T_VOID:
  1538     break;
  1539   default:
  1540     ShouldNotReachHere();
  1542   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1545 // Make a TypeTuple from the domain of a method signature
  1546 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1547   uint total_fields = TypeFunc::Parms + sig->size();
  1549   uint pos = TypeFunc::Parms;
  1550   const Type **field_array;
  1551   if (recv != NULL) {
  1552     total_fields++;
  1553     field_array = fields(total_fields);
  1554     // Use get_const_type here because it respects UseUniqueSubclasses:
  1555     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1556   } else {
  1557     field_array = fields(total_fields);
  1560   int i = 0;
  1561   while (pos < total_fields) {
  1562     ciType* type = sig->type_at(i);
  1564     switch (type->basic_type()) {
  1565     case T_LONG:
  1566       field_array[pos++] = TypeLong::LONG;
  1567       field_array[pos++] = Type::HALF;
  1568       break;
  1569     case T_DOUBLE:
  1570       field_array[pos++] = Type::DOUBLE;
  1571       field_array[pos++] = Type::HALF;
  1572       break;
  1573     case T_OBJECT:
  1574     case T_ARRAY:
  1575     case T_BOOLEAN:
  1576     case T_CHAR:
  1577     case T_FLOAT:
  1578     case T_BYTE:
  1579     case T_SHORT:
  1580     case T_INT:
  1581       field_array[pos++] = get_const_type(type);
  1582       break;
  1583     default:
  1584       ShouldNotReachHere();
  1586     i++;
  1588   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1591 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1592   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1595 //------------------------------fields-----------------------------------------
  1596 // Subroutine call type with space allocated for argument types
  1597 const Type **TypeTuple::fields( uint arg_cnt ) {
  1598   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1599   flds[TypeFunc::Control  ] = Type::CONTROL;
  1600   flds[TypeFunc::I_O      ] = Type::ABIO;
  1601   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1602   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1603   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1605   return flds;
  1608 //------------------------------meet-------------------------------------------
  1609 // Compute the MEET of two types.  It returns a new Type object.
  1610 const Type *TypeTuple::xmeet( const Type *t ) const {
  1611   // Perform a fast test for common case; meeting the same types together.
  1612   if( this == t ) return this;  // Meeting same type-rep?
  1614   // Current "this->_base" is Tuple
  1615   switch (t->base()) {          // switch on original type
  1617   case Bottom:                  // Ye Olde Default
  1618     return t;
  1620   default:                      // All else is a mistake
  1621     typerr(t);
  1623   case Tuple: {                 // Meeting 2 signatures?
  1624     const TypeTuple *x = t->is_tuple();
  1625     assert( _cnt == x->_cnt, "" );
  1626     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1627     for( uint i=0; i<_cnt; i++ )
  1628       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1629     return TypeTuple::make(_cnt,fields);
  1631   case Top:
  1632     break;
  1634   return this;                  // Return the double constant
  1637 //------------------------------xdual------------------------------------------
  1638 // Dual: compute field-by-field dual
  1639 const Type *TypeTuple::xdual() const {
  1640   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1641   for( uint i=0; i<_cnt; i++ )
  1642     fields[i] = _fields[i]->dual();
  1643   return new TypeTuple(_cnt,fields);
  1646 //------------------------------eq---------------------------------------------
  1647 // Structural equality check for Type representations
  1648 bool TypeTuple::eq( const Type *t ) const {
  1649   const TypeTuple *s = (const TypeTuple *)t;
  1650   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1651   for (uint i = 0; i < _cnt; i++)
  1652     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1653       return false;             // Missed
  1654   return true;
  1657 //------------------------------hash-------------------------------------------
  1658 // Type-specific hashing function.
  1659 int TypeTuple::hash(void) const {
  1660   intptr_t sum = _cnt;
  1661   for( uint i=0; i<_cnt; i++ )
  1662     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1663   return sum;
  1666 //------------------------------dump2------------------------------------------
  1667 // Dump signature Type
  1668 #ifndef PRODUCT
  1669 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1670   st->print("{");
  1671   if( !depth || d[this] ) {     // Check for recursive print
  1672     st->print("...}");
  1673     return;
  1675   d.Insert((void*)this, (void*)this);   // Stop recursion
  1676   if( _cnt ) {
  1677     uint i;
  1678     for( i=0; i<_cnt-1; i++ ) {
  1679       st->print("%d:", i);
  1680       _fields[i]->dump2(d, depth-1, st);
  1681       st->print(", ");
  1683     st->print("%d:", i);
  1684     _fields[i]->dump2(d, depth-1, st);
  1686   st->print("}");
  1688 #endif
  1690 //------------------------------singleton--------------------------------------
  1691 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1692 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1693 // or a single symbol.
  1694 bool TypeTuple::singleton(void) const {
  1695   return false;                 // Never a singleton
  1698 bool TypeTuple::empty(void) const {
  1699   for( uint i=0; i<_cnt; i++ ) {
  1700     if (_fields[i]->empty())  return true;
  1702   return false;
  1705 //=============================================================================
  1706 // Convenience common pre-built types.
  1708 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1709   // Certain normalizations keep us sane when comparing types.
  1710   // We do not want arrayOop variables to differ only by the wideness
  1711   // of their index types.  Pick minimum wideness, since that is the
  1712   // forced wideness of small ranges anyway.
  1713   if (size->_widen != Type::WidenMin)
  1714     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1715   else
  1716     return size;
  1719 //------------------------------make-------------------------------------------
  1720 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1721   size = normalize_array_size(size);
  1722   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1725 //------------------------------meet-------------------------------------------
  1726 // Compute the MEET of two types.  It returns a new Type object.
  1727 const Type *TypeAry::xmeet( const Type *t ) const {
  1728   // Perform a fast test for common case; meeting the same types together.
  1729   if( this == t ) return this;  // Meeting same type-rep?
  1731   // Current "this->_base" is Ary
  1732   switch (t->base()) {          // switch on original type
  1734   case Bottom:                  // Ye Olde Default
  1735     return t;
  1737   default:                      // All else is a mistake
  1738     typerr(t);
  1740   case Array: {                 // Meeting 2 arrays?
  1741     const TypeAry *a = t->is_ary();
  1742     return TypeAry::make(_elem->meet(a->_elem),
  1743                          _size->xmeet(a->_size)->is_int());
  1745   case Top:
  1746     break;
  1748   return this;                  // Return the double constant
  1751 //------------------------------xdual------------------------------------------
  1752 // Dual: compute field-by-field dual
  1753 const Type *TypeAry::xdual() const {
  1754   const TypeInt* size_dual = _size->dual()->is_int();
  1755   size_dual = normalize_array_size(size_dual);
  1756   return new TypeAry( _elem->dual(), size_dual);
  1759 //------------------------------eq---------------------------------------------
  1760 // Structural equality check for Type representations
  1761 bool TypeAry::eq( const Type *t ) const {
  1762   const TypeAry *a = (const TypeAry*)t;
  1763   return _elem == a->_elem &&
  1764     _size == a->_size;
  1767 //------------------------------hash-------------------------------------------
  1768 // Type-specific hashing function.
  1769 int TypeAry::hash(void) const {
  1770   return (intptr_t)_elem + (intptr_t)_size;
  1773 //------------------------------dump2------------------------------------------
  1774 #ifndef PRODUCT
  1775 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1776   _elem->dump2(d, depth, st);
  1777   st->print("[");
  1778   _size->dump2(d, depth, st);
  1779   st->print("]");
  1781 #endif
  1783 //------------------------------singleton--------------------------------------
  1784 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1785 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1786 // or a single symbol.
  1787 bool TypeAry::singleton(void) const {
  1788   return false;                 // Never a singleton
  1791 bool TypeAry::empty(void) const {
  1792   return _elem->empty() || _size->empty();
  1795 //--------------------------ary_must_be_exact----------------------------------
  1796 bool TypeAry::ary_must_be_exact() const {
  1797   if (!UseExactTypes)       return false;
  1798   // This logic looks at the element type of an array, and returns true
  1799   // if the element type is either a primitive or a final instance class.
  1800   // In such cases, an array built on this ary must have no subclasses.
  1801   if (_elem == BOTTOM)      return false;  // general array not exact
  1802   if (_elem == TOP   )      return false;  // inverted general array not exact
  1803   const TypeOopPtr*  toop = _elem->isa_oopptr();
  1804   if (!toop)                return true;   // a primitive type, like int
  1805   ciKlass* tklass = toop->klass();
  1806   if (tklass == NULL)       return false;  // unloaded class
  1807   if (!tklass->is_loaded()) return false;  // unloaded class
  1808   const TypeInstPtr* tinst = _elem->isa_instptr();
  1809   if (tinst)                return tklass->as_instance_klass()->is_final();
  1810   const TypeAryPtr*  tap = _elem->isa_aryptr();
  1811   if (tap)                  return tap->ary()->ary_must_be_exact();
  1812   return false;
  1815 //=============================================================================
  1816 // Convenience common pre-built types.
  1817 const TypePtr *TypePtr::NULL_PTR;
  1818 const TypePtr *TypePtr::NOTNULL;
  1819 const TypePtr *TypePtr::BOTTOM;
  1821 //------------------------------meet-------------------------------------------
  1822 // Meet over the PTR enum
  1823 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1824   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1825   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1826   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1827   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1828   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1829   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1830   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1831 };
  1833 //------------------------------make-------------------------------------------
  1834 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1835   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1838 //------------------------------cast_to_ptr_type-------------------------------
  1839 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1840   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1841   if( ptr == _ptr ) return this;
  1842   return make(_base, ptr, _offset);
  1845 //------------------------------get_con----------------------------------------
  1846 intptr_t TypePtr::get_con() const {
  1847   assert( _ptr == Null, "" );
  1848   return _offset;
  1851 //------------------------------meet-------------------------------------------
  1852 // Compute the MEET of two types.  It returns a new Type object.
  1853 const Type *TypePtr::xmeet( const Type *t ) const {
  1854   // Perform a fast test for common case; meeting the same types together.
  1855   if( this == t ) return this;  // Meeting same type-rep?
  1857   // Current "this->_base" is AnyPtr
  1858   switch (t->base()) {          // switch on original type
  1859   case Int:                     // Mixing ints & oops happens when javac
  1860   case Long:                    // reuses local variables
  1861   case FloatTop:
  1862   case FloatCon:
  1863   case FloatBot:
  1864   case DoubleTop:
  1865   case DoubleCon:
  1866   case DoubleBot:
  1867   case Bottom:                  // Ye Olde Default
  1868     return Type::BOTTOM;
  1869   case Top:
  1870     return this;
  1872   case AnyPtr: {                // Meeting to AnyPtrs
  1873     const TypePtr *tp = t->is_ptr();
  1874     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1876   case RawPtr:                  // For these, flip the call around to cut down
  1877   case OopPtr:
  1878   case InstPtr:                 // on the cases I have to handle.
  1879   case KlassPtr:
  1880   case AryPtr:
  1881     return t->xmeet(this);      // Call in reverse direction
  1882   default:                      // All else is a mistake
  1883     typerr(t);
  1886   return this;
  1889 //------------------------------meet_offset------------------------------------
  1890 int TypePtr::meet_offset( int offset ) const {
  1891   // Either is 'TOP' offset?  Return the other offset!
  1892   if( _offset == OffsetTop ) return offset;
  1893   if( offset == OffsetTop ) return _offset;
  1894   // If either is different, return 'BOTTOM' offset
  1895   if( _offset != offset ) return OffsetBot;
  1896   return _offset;
  1899 //------------------------------dual_offset------------------------------------
  1900 int TypePtr::dual_offset( ) const {
  1901   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  1902   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  1903   return _offset;               // Map everything else into self
  1906 //------------------------------xdual------------------------------------------
  1907 // Dual: compute field-by-field dual
  1908 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  1909   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  1910 };
  1911 const Type *TypePtr::xdual() const {
  1912   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  1915 //------------------------------add_offset-------------------------------------
  1916 const TypePtr *TypePtr::add_offset( int offset ) const {
  1917   if( offset == 0 ) return this; // No change
  1918   if( _offset == OffsetBot ) return this;
  1919   if(  offset == OffsetBot ) offset = OffsetBot;
  1920   else if( _offset == OffsetTop || offset == OffsetTop ) offset = OffsetTop;
  1921   else offset += _offset;
  1922   return make( AnyPtr, _ptr, offset );
  1925 //------------------------------eq---------------------------------------------
  1926 // Structural equality check for Type representations
  1927 bool TypePtr::eq( const Type *t ) const {
  1928   const TypePtr *a = (const TypePtr*)t;
  1929   return _ptr == a->ptr() && _offset == a->offset();
  1932 //------------------------------hash-------------------------------------------
  1933 // Type-specific hashing function.
  1934 int TypePtr::hash(void) const {
  1935   return _ptr + _offset;
  1938 //------------------------------dump2------------------------------------------
  1939 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  1940   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  1941 };
  1943 #ifndef PRODUCT
  1944 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  1945   if( _ptr == Null ) st->print("NULL");
  1946   else st->print("%s *", ptr_msg[_ptr]);
  1947   if( _offset == OffsetTop ) st->print("+top");
  1948   else if( _offset == OffsetBot ) st->print("+bot");
  1949   else if( _offset ) st->print("+%d", _offset);
  1951 #endif
  1953 //------------------------------singleton--------------------------------------
  1954 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1955 // constants
  1956 bool TypePtr::singleton(void) const {
  1957   // TopPTR, Null, AnyNull, Constant are all singletons
  1958   return (_offset != OffsetBot) && !below_centerline(_ptr);
  1961 bool TypePtr::empty(void) const {
  1962   return (_offset == OffsetTop) || above_centerline(_ptr);
  1965 //=============================================================================
  1966 // Convenience common pre-built types.
  1967 const TypeRawPtr *TypeRawPtr::BOTTOM;
  1968 const TypeRawPtr *TypeRawPtr::NOTNULL;
  1970 //------------------------------make-------------------------------------------
  1971 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  1972   assert( ptr != Constant, "what is the constant?" );
  1973   assert( ptr != Null, "Use TypePtr for NULL" );
  1974   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  1977 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  1978   assert( bits, "Use TypePtr for NULL" );
  1979   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  1982 //------------------------------cast_to_ptr_type-------------------------------
  1983 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  1984   assert( ptr != Constant, "what is the constant?" );
  1985   assert( ptr != Null, "Use TypePtr for NULL" );
  1986   assert( _bits==0, "Why cast a constant address?");
  1987   if( ptr == _ptr ) return this;
  1988   return make(ptr);
  1991 //------------------------------get_con----------------------------------------
  1992 intptr_t TypeRawPtr::get_con() const {
  1993   assert( _ptr == Null || _ptr == Constant, "" );
  1994   return (intptr_t)_bits;
  1997 //------------------------------meet-------------------------------------------
  1998 // Compute the MEET of two types.  It returns a new Type object.
  1999 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2000   // Perform a fast test for common case; meeting the same types together.
  2001   if( this == t ) return this;  // Meeting same type-rep?
  2003   // Current "this->_base" is RawPtr
  2004   switch( t->base() ) {         // switch on original type
  2005   case Bottom:                  // Ye Olde Default
  2006     return t;
  2007   case Top:
  2008     return this;
  2009   case AnyPtr:                  // Meeting to AnyPtrs
  2010     break;
  2011   case RawPtr: {                // might be top, bot, any/not or constant
  2012     enum PTR tptr = t->is_ptr()->ptr();
  2013     enum PTR ptr = meet_ptr( tptr );
  2014     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2015       if( tptr == Constant && _ptr != Constant)  return t;
  2016       if( _ptr == Constant && tptr != Constant)  return this;
  2017       ptr = NotNull;            // Fall down in lattice
  2019     return make( ptr );
  2022   case OopPtr:
  2023   case InstPtr:
  2024   case KlassPtr:
  2025   case AryPtr:
  2026     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2027   default:                      // All else is a mistake
  2028     typerr(t);
  2031   // Found an AnyPtr type vs self-RawPtr type
  2032   const TypePtr *tp = t->is_ptr();
  2033   switch (tp->ptr()) {
  2034   case TypePtr::TopPTR:  return this;
  2035   case TypePtr::BotPTR:  return t;
  2036   case TypePtr::Null:
  2037     if( _ptr == TypePtr::TopPTR ) return t;
  2038     return TypeRawPtr::BOTTOM;
  2039   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2040   case TypePtr::AnyNull:
  2041     if( _ptr == TypePtr::Constant) return this;
  2042     return make( meet_ptr(TypePtr::AnyNull) );
  2043   default: ShouldNotReachHere();
  2045   return this;
  2048 //------------------------------xdual------------------------------------------
  2049 // Dual: compute field-by-field dual
  2050 const Type *TypeRawPtr::xdual() const {
  2051   return new TypeRawPtr( dual_ptr(), _bits );
  2054 //------------------------------add_offset-------------------------------------
  2055 const TypePtr *TypeRawPtr::add_offset( int offset ) const {
  2056   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2057   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2058   if( offset == 0 ) return this; // No change
  2059   switch (_ptr) {
  2060   case TypePtr::TopPTR:
  2061   case TypePtr::BotPTR:
  2062   case TypePtr::NotNull:
  2063     return this;
  2064   case TypePtr::Null:
  2065   case TypePtr::Constant:
  2066     return make( _bits+offset );
  2067   default:  ShouldNotReachHere();
  2069   return NULL;                  // Lint noise
  2072 //------------------------------eq---------------------------------------------
  2073 // Structural equality check for Type representations
  2074 bool TypeRawPtr::eq( const Type *t ) const {
  2075   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2076   return _bits == a->_bits && TypePtr::eq(t);
  2079 //------------------------------hash-------------------------------------------
  2080 // Type-specific hashing function.
  2081 int TypeRawPtr::hash(void) const {
  2082   return (intptr_t)_bits + TypePtr::hash();
  2085 //------------------------------dump2------------------------------------------
  2086 #ifndef PRODUCT
  2087 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2088   if( _ptr == Constant )
  2089     st->print(INTPTR_FORMAT, _bits);
  2090   else
  2091     st->print("rawptr:%s", ptr_msg[_ptr]);
  2093 #endif
  2095 //=============================================================================
  2096 // Convenience common pre-built type.
  2097 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2099 //------------------------------make-------------------------------------------
  2100 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2101                                    int offset) {
  2102   assert(ptr != Constant, "no constant generic pointers");
  2103   ciKlass*  k = ciKlassKlass::make();
  2104   bool      xk = false;
  2105   ciObject* o = NULL;
  2106   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, UNKNOWN_INSTANCE))->hashcons();
  2110 //------------------------------cast_to_ptr_type-------------------------------
  2111 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2112   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2113   if( ptr == _ptr ) return this;
  2114   return make(ptr, _offset);
  2117 //-----------------------------cast_to_instance-------------------------------
  2118 const TypeOopPtr *TypeOopPtr::cast_to_instance(int instance_id) const {
  2119   // There are no instances of a general oop.
  2120   // Return self unchanged.
  2121   return this;
  2124 //-----------------------------cast_to_exactness-------------------------------
  2125 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2126   // There is no such thing as an exact general oop.
  2127   // Return self unchanged.
  2128   return this;
  2132 //------------------------------as_klass_type----------------------------------
  2133 // Return the klass type corresponding to this instance or array type.
  2134 // It is the type that is loaded from an object of this type.
  2135 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2136   ciKlass* k = klass();
  2137   bool    xk = klass_is_exact();
  2138   if (k == NULL || !k->is_java_klass())
  2139     return TypeKlassPtr::OBJECT;
  2140   else
  2141     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2145 //------------------------------meet-------------------------------------------
  2146 // Compute the MEET of two types.  It returns a new Type object.
  2147 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2148   // Perform a fast test for common case; meeting the same types together.
  2149   if( this == t ) return this;  // Meeting same type-rep?
  2151   // Current "this->_base" is OopPtr
  2152   switch (t->base()) {          // switch on original type
  2154   case Int:                     // Mixing ints & oops happens when javac
  2155   case Long:                    // reuses local variables
  2156   case FloatTop:
  2157   case FloatCon:
  2158   case FloatBot:
  2159   case DoubleTop:
  2160   case DoubleCon:
  2161   case DoubleBot:
  2162   case Bottom:                  // Ye Olde Default
  2163     return Type::BOTTOM;
  2164   case Top:
  2165     return this;
  2167   default:                      // All else is a mistake
  2168     typerr(t);
  2170   case RawPtr:
  2171     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2173   case AnyPtr: {
  2174     // Found an AnyPtr type vs self-OopPtr type
  2175     const TypePtr *tp = t->is_ptr();
  2176     int offset = meet_offset(tp->offset());
  2177     PTR ptr = meet_ptr(tp->ptr());
  2178     switch (tp->ptr()) {
  2179     case Null:
  2180       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2181       // else fall through:
  2182     case TopPTR:
  2183     case AnyNull:
  2184       return make(ptr, offset);
  2185     case BotPTR:
  2186     case NotNull:
  2187       return TypePtr::make(AnyPtr, ptr, offset);
  2188     default: typerr(t);
  2192   case OopPtr: {                 // Meeting to other OopPtrs
  2193     const TypeOopPtr *tp = t->is_oopptr();
  2194     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2197   case InstPtr:                  // For these, flip the call around to cut down
  2198   case KlassPtr:                 // on the cases I have to handle.
  2199   case AryPtr:
  2200     return t->xmeet(this);      // Call in reverse direction
  2202   } // End of switch
  2203   return this;                  // Return the double constant
  2207 //------------------------------xdual------------------------------------------
  2208 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2209 const Type *TypeOopPtr::xdual() const {
  2210   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2211   assert(const_oop() == NULL,             "no constants here");
  2212   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
  2215 //--------------------------make_from_klass_common-----------------------------
  2216 // Computes the element-type given a klass.
  2217 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2218   assert(klass->is_java_klass(), "must be java language klass");
  2219   if (klass->is_instance_klass()) {
  2220     Compile* C = Compile::current();
  2221     Dependencies* deps = C->dependencies();
  2222     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2223     // Element is an instance
  2224     bool klass_is_exact = false;
  2225     if (klass->is_loaded()) {
  2226       // Try to set klass_is_exact.
  2227       ciInstanceKlass* ik = klass->as_instance_klass();
  2228       klass_is_exact = ik->is_final();
  2229       if (!klass_is_exact && klass_change
  2230           && deps != NULL && UseUniqueSubclasses) {
  2231         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2232         if (sub != NULL) {
  2233           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2234           klass = ik = sub;
  2235           klass_is_exact = sub->is_final();
  2238       if (!klass_is_exact && try_for_exact
  2239           && deps != NULL && UseExactTypes) {
  2240         if (!ik->is_interface() && !ik->has_subklass()) {
  2241           // Add a dependence; if concrete subclass added we need to recompile
  2242           deps->assert_leaf_type(ik);
  2243           klass_is_exact = true;
  2247     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2248   } else if (klass->is_obj_array_klass()) {
  2249     // Element is an object array. Recursively call ourself.
  2250     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2251     bool xk = etype->klass_is_exact();
  2252     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2253     // We used to pass NotNull in here, asserting that the sub-arrays
  2254     // are all not-null.  This is not true in generally, as code can
  2255     // slam NULLs down in the subarrays.
  2256     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2257     return arr;
  2258   } else if (klass->is_type_array_klass()) {
  2259     // Element is an typeArray
  2260     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2261     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2262     // We used to pass NotNull in here, asserting that the array pointer
  2263     // is not-null. That was not true in general.
  2264     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2265     return arr;
  2266   } else {
  2267     ShouldNotReachHere();
  2268     return NULL;
  2272 //------------------------------make_from_constant-----------------------------
  2273 // Make a java pointer from an oop constant
  2274 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
  2275   if (o->is_method_data() || o->is_method()) {
  2276     // Treat much like a typeArray of bytes, like below, but fake the type...
  2277     assert(o->has_encoding(), "must be a perm space object");
  2278     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2279     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2280     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2281     assert(o->has_encoding(), "method data oops should be tenured");
  2282     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2283     return arr;
  2284   } else {
  2285     assert(o->is_java_object(), "must be java language object");
  2286     assert(!o->is_null_object(), "null object not yet handled here.");
  2287     ciKlass *klass = o->klass();
  2288     if (klass->is_instance_klass()) {
  2289       // Element is an instance
  2290       if (!o->has_encoding()) {  // not a perm-space constant
  2291         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2292         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2294       return TypeInstPtr::make(o);
  2295     } else if (klass->is_obj_array_klass()) {
  2296       // Element is an object array. Recursively call ourself.
  2297       const Type *etype =
  2298         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2299       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2300       // We used to pass NotNull in here, asserting that the sub-arrays
  2301       // are all not-null.  This is not true in generally, as code can
  2302       // slam NULLs down in the subarrays.
  2303       if (!o->has_encoding()) {  // not a perm-space constant
  2304         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2305         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2307       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2308       return arr;
  2309     } else if (klass->is_type_array_klass()) {
  2310       // Element is an typeArray
  2311       const Type* etype =
  2312         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2313       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2314       // We used to pass NotNull in here, asserting that the array pointer
  2315       // is not-null. That was not true in general.
  2316       if (!o->has_encoding()) {  // not a perm-space constant
  2317         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2318         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2320       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2321       return arr;
  2325   ShouldNotReachHere();
  2326   return NULL;
  2329 //------------------------------get_con----------------------------------------
  2330 intptr_t TypeOopPtr::get_con() const {
  2331   assert( _ptr == Null || _ptr == Constant, "" );
  2332   assert( _offset >= 0, "" );
  2334   if (_offset != 0) {
  2335     // After being ported to the compiler interface, the compiler no longer
  2336     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2337     // to a handle at compile time.  This handle is embedded in the generated
  2338     // code and dereferenced at the time the nmethod is made.  Until that time,
  2339     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2340     // have access to the addresses!).  This does not seem to currently happen,
  2341     // but this assertion here is to help prevent its occurrance.
  2342     tty->print_cr("Found oop constant with non-zero offset");
  2343     ShouldNotReachHere();
  2346   return (intptr_t)const_oop()->encoding();
  2350 //-----------------------------filter------------------------------------------
  2351 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2352 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2354   const Type* ft = join(kills);
  2355   const TypeInstPtr* ftip = ft->isa_instptr();
  2356   const TypeInstPtr* ktip = kills->isa_instptr();
  2358   if (ft->empty()) {
  2359     // Check for evil case of 'this' being a class and 'kills' expecting an
  2360     // interface.  This can happen because the bytecodes do not contain
  2361     // enough type info to distinguish a Java-level interface variable
  2362     // from a Java-level object variable.  If we meet 2 classes which
  2363     // both implement interface I, but their meet is at 'j/l/O' which
  2364     // doesn't implement I, we have no way to tell if the result should
  2365     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2366     // into a Phi which "knows" it's an Interface type we'll have to
  2367     // uplift the type.
  2368     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2369       return kills;             // Uplift to interface
  2371     return Type::TOP;           // Canonical empty value
  2374   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2375   // the join should report back the class.  However, if we have a J/L/Object
  2376   // class-typed Phi and an interface flows in, it's possible that the meet &
  2377   // join report an interface back out.  This isn't possible but happens
  2378   // because the type system doesn't interact well with interfaces.
  2379   if (ftip != NULL && ktip != NULL &&
  2380       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2381       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2382     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2383     return ktip->cast_to_ptr_type(ftip->ptr());
  2386   return ft;
  2389 //------------------------------eq---------------------------------------------
  2390 // Structural equality check for Type representations
  2391 bool TypeOopPtr::eq( const Type *t ) const {
  2392   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2393   if (_klass_is_exact != a->_klass_is_exact ||
  2394       _instance_id != a->_instance_id)  return false;
  2395   ciObject* one = const_oop();
  2396   ciObject* two = a->const_oop();
  2397   if (one == NULL || two == NULL) {
  2398     return (one == two) && TypePtr::eq(t);
  2399   } else {
  2400     return one->equals(two) && TypePtr::eq(t);
  2404 //------------------------------hash-------------------------------------------
  2405 // Type-specific hashing function.
  2406 int TypeOopPtr::hash(void) const {
  2407   return
  2408     (const_oop() ? const_oop()->hash() : 0) +
  2409     _klass_is_exact +
  2410     _instance_id +
  2411     TypePtr::hash();
  2414 //------------------------------dump2------------------------------------------
  2415 #ifndef PRODUCT
  2416 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2417   st->print("oopptr:%s", ptr_msg[_ptr]);
  2418   if( _klass_is_exact ) st->print(":exact");
  2419   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2420   switch( _offset ) {
  2421   case OffsetTop: st->print("+top"); break;
  2422   case OffsetBot: st->print("+any"); break;
  2423   case         0: break;
  2424   default:        st->print("+%d",_offset); break;
  2426   if (_instance_id != UNKNOWN_INSTANCE)
  2427     st->print(",iid=%d",_instance_id);
  2429 #endif
  2431 //------------------------------singleton--------------------------------------
  2432 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2433 // constants
  2434 bool TypeOopPtr::singleton(void) const {
  2435   // detune optimizer to not generate constant oop + constant offset as a constant!
  2436   // TopPTR, Null, AnyNull, Constant are all singletons
  2437   return (_offset == 0) && !below_centerline(_ptr);
  2440 //------------------------------xadd_offset------------------------------------
  2441 int TypeOopPtr::xadd_offset( int offset ) const {
  2442   // Adding to 'TOP' offset?  Return 'TOP'!
  2443   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2444   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2445   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2447   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2448   // It is possible to construct a negative offset during PhaseCCP
  2450   return _offset+offset;        // Sum valid offsets
  2453 //------------------------------add_offset-------------------------------------
  2454 const TypePtr *TypeOopPtr::add_offset( int offset ) const {
  2455   return make( _ptr, xadd_offset(offset) );
  2458 int TypeOopPtr::meet_instance(int iid) const {
  2459   if (iid == 0) {
  2460     return (_instance_id < 0)  ? _instance_id : UNKNOWN_INSTANCE;
  2461   } else if (_instance_id == UNKNOWN_INSTANCE) {
  2462     return (iid < 0)  ? iid : UNKNOWN_INSTANCE;
  2463   } else {
  2464     return (_instance_id == iid) ? iid : UNKNOWN_INSTANCE;
  2468 //=============================================================================
  2469 // Convenience common pre-built types.
  2470 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2471 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2472 const TypeInstPtr *TypeInstPtr::MIRROR;
  2473 const TypeInstPtr *TypeInstPtr::MARK;
  2474 const TypeInstPtr *TypeInstPtr::KLASS;
  2476 //------------------------------TypeInstPtr-------------------------------------
  2477 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2478  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2479    assert(k != NULL &&
  2480           (k->is_loaded() || o == NULL),
  2481           "cannot have constants with non-loaded klass");
  2482 };
  2484 //------------------------------make-------------------------------------------
  2485 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2486                                      ciKlass* k,
  2487                                      bool xk,
  2488                                      ciObject* o,
  2489                                      int offset,
  2490                                      int instance_id) {
  2491   assert( !k->is_loaded() || k->is_instance_klass() ||
  2492           k->is_method_klass(), "Must be for instance or method");
  2493   // Either const_oop() is NULL or else ptr is Constant
  2494   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2495           "constant pointers must have a value supplied" );
  2496   // Ptr is never Null
  2497   assert( ptr != Null, "NULL pointers are not typed" );
  2499   if (instance_id != UNKNOWN_INSTANCE)
  2500     xk = true;  // instances are always exactly typed
  2501   if (!UseExactTypes)  xk = false;
  2502   if (ptr == Constant) {
  2503     // Note:  This case includes meta-object constants, such as methods.
  2504     xk = true;
  2505   } else if (k->is_loaded()) {
  2506     ciInstanceKlass* ik = k->as_instance_klass();
  2507     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2508     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2511   // Now hash this baby
  2512   TypeInstPtr *result =
  2513     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2515   return result;
  2519 //------------------------------cast_to_ptr_type-------------------------------
  2520 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2521   if( ptr == _ptr ) return this;
  2522   // Reconstruct _sig info here since not a problem with later lazy
  2523   // construction, _sig will show up on demand.
  2524   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset);
  2528 //-----------------------------cast_to_exactness-------------------------------
  2529 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2530   if( klass_is_exact == _klass_is_exact ) return this;
  2531   if (!UseExactTypes)  return this;
  2532   if (!_klass->is_loaded())  return this;
  2533   ciInstanceKlass* ik = _klass->as_instance_klass();
  2534   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2535   if( ik->is_interface() )              return this;  // cannot set xk
  2536   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2539 //-----------------------------cast_to_instance-------------------------------
  2540 const TypeOopPtr *TypeInstPtr::cast_to_instance(int instance_id) const {
  2541   if( instance_id == _instance_id) return this;
  2542   bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
  2544   return make(ptr(), klass(), exact, const_oop(), _offset, instance_id);
  2547 //------------------------------xmeet_unloaded---------------------------------
  2548 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2549 // Assume classes are different since called after check for same name/class-loader
  2550 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2551     int off = meet_offset(tinst->offset());
  2552     PTR ptr = meet_ptr(tinst->ptr());
  2554     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2555     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2556     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2557       //
  2558       // Meet unloaded class with java/lang/Object
  2559       //
  2560       // Meet
  2561       //          |                     Unloaded Class
  2562       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2563       //  ===================================================================
  2564       //   TOP    | ..........................Unloaded......................|
  2565       //  AnyNull |  U-AN    |................Unloaded......................|
  2566       // Constant | ... O-NN .................................. |   O-BOT   |
  2567       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2568       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2569       //
  2570       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2571       //
  2572       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2573       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
  2574       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2575       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2576         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2577         else                                      { return TypeInstPtr::NOTNULL; }
  2579       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2581       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2584     // Both are unloaded, not the same class, not Object
  2585     // Or meet unloaded with a different loaded class, not java/lang/Object
  2586     if( ptr != TypePtr::BotPTR ) {
  2587       return TypeInstPtr::NOTNULL;
  2589     return TypeInstPtr::BOTTOM;
  2593 //------------------------------meet-------------------------------------------
  2594 // Compute the MEET of two types.  It returns a new Type object.
  2595 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2596   // Perform a fast test for common case; meeting the same types together.
  2597   if( this == t ) return this;  // Meeting same type-rep?
  2599   // Current "this->_base" is Pointer
  2600   switch (t->base()) {          // switch on original type
  2602   case Int:                     // Mixing ints & oops happens when javac
  2603   case Long:                    // reuses local variables
  2604   case FloatTop:
  2605   case FloatCon:
  2606   case FloatBot:
  2607   case DoubleTop:
  2608   case DoubleCon:
  2609   case DoubleBot:
  2610   case Bottom:                  // Ye Olde Default
  2611     return Type::BOTTOM;
  2612   case Top:
  2613     return this;
  2615   default:                      // All else is a mistake
  2616     typerr(t);
  2618   case RawPtr: return TypePtr::BOTTOM;
  2620   case AryPtr: {                // All arrays inherit from Object class
  2621     const TypeAryPtr *tp = t->is_aryptr();
  2622     int offset = meet_offset(tp->offset());
  2623     PTR ptr = meet_ptr(tp->ptr());
  2624     int iid = meet_instance(tp->instance_id());
  2625     switch (ptr) {
  2626     case TopPTR:
  2627     case AnyNull:                // Fall 'down' to dual of object klass
  2628       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2629         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
  2630       } else {
  2631         // cannot subclass, so the meet has to fall badly below the centerline
  2632         ptr = NotNull;
  2633         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid);
  2635     case Constant:
  2636     case NotNull:
  2637     case BotPTR:                // Fall down to object klass
  2638       // LCA is object_klass, but if we subclass from the top we can do better
  2639       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2640         // If 'this' (InstPtr) is above the centerline and it is Object class
  2641         // then we can subclass in the Java class heirarchy.
  2642         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2643           // that is, tp's array type is a subtype of my klass
  2644           return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
  2647       // The other case cannot happen, since I cannot be a subtype of an array.
  2648       // The meet falls down to Object class below centerline.
  2649       if( ptr == Constant )
  2650          ptr = NotNull;
  2651       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid );
  2652     default: typerr(t);
  2656   case OopPtr: {                // Meeting to OopPtrs
  2657     // Found a OopPtr type vs self-InstPtr type
  2658     const TypePtr *tp = t->is_oopptr();
  2659     int offset = meet_offset(tp->offset());
  2660     PTR ptr = meet_ptr(tp->ptr());
  2661     switch (tp->ptr()) {
  2662     case TopPTR:
  2663     case AnyNull:
  2664       return make(ptr, klass(), klass_is_exact(),
  2665                   (ptr == Constant ? const_oop() : NULL), offset);
  2666     case NotNull:
  2667     case BotPTR:
  2668       return TypeOopPtr::make(ptr, offset);
  2669     default: typerr(t);
  2673   case AnyPtr: {                // Meeting to AnyPtrs
  2674     // Found an AnyPtr type vs self-InstPtr type
  2675     const TypePtr *tp = t->is_ptr();
  2676     int offset = meet_offset(tp->offset());
  2677     PTR ptr = meet_ptr(tp->ptr());
  2678     switch (tp->ptr()) {
  2679     case Null:
  2680       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2681     case TopPTR:
  2682     case AnyNull:
  2683       return make( ptr, klass(), klass_is_exact(),
  2684                    (ptr == Constant ? const_oop() : NULL), offset );
  2685     case NotNull:
  2686     case BotPTR:
  2687       return TypePtr::make( AnyPtr, ptr, offset );
  2688     default: typerr(t);
  2692   /*
  2693                  A-top         }
  2694                /   |   \       }  Tops
  2695            B-top A-any C-top   }
  2696               | /  |  \ |      }  Any-nulls
  2697            B-any   |   C-any   }
  2698               |    |    |
  2699            B-con A-con C-con   } constants; not comparable across classes
  2700               |    |    |
  2701            B-not   |   C-not   }
  2702               | \  |  / |      }  not-nulls
  2703            B-bot A-not C-bot   }
  2704                \   |   /       }  Bottoms
  2705                  A-bot         }
  2706   */
  2708   case InstPtr: {                // Meeting 2 Oops?
  2709     // Found an InstPtr sub-type vs self-InstPtr type
  2710     const TypeInstPtr *tinst = t->is_instptr();
  2711     int off = meet_offset( tinst->offset() );
  2712     PTR ptr = meet_ptr( tinst->ptr() );
  2713     int instance_id = meet_instance(tinst->instance_id());
  2715     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2716     // If we have constants, then we created oops so classes are loaded
  2717     // and we can handle the constants further down.  This case handles
  2718     // both-not-loaded or both-loaded classes
  2719     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2720       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2723     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2724     ciKlass* tinst_klass = tinst->klass();
  2725     ciKlass* this_klass  = this->klass();
  2726     bool tinst_xk = tinst->klass_is_exact();
  2727     bool this_xk  = this->klass_is_exact();
  2728     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2729       // One of these classes has not been loaded
  2730       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2731 #ifndef PRODUCT
  2732       if( PrintOpto && Verbose ) {
  2733         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2734         tty->print("  this == "); this->dump(); tty->cr();
  2735         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2737 #endif
  2738       return unloaded_meet;
  2741     // Handle mixing oops and interfaces first.
  2742     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2743       ciKlass *tmp = tinst_klass; // Swap interface around
  2744       tinst_klass = this_klass;
  2745       this_klass = tmp;
  2746       bool tmp2 = tinst_xk;
  2747       tinst_xk = this_xk;
  2748       this_xk = tmp2;
  2750     if (tinst_klass->is_interface() &&
  2751         !(this_klass->is_interface() ||
  2752           // Treat java/lang/Object as an honorary interface,
  2753           // because we need a bottom for the interface hierarchy.
  2754           this_klass == ciEnv::current()->Object_klass())) {
  2755       // Oop meets interface!
  2757       // See if the oop subtypes (implements) interface.
  2758       ciKlass *k;
  2759       bool xk;
  2760       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2761         // Oop indeed subtypes.  Now keep oop or interface depending
  2762         // on whether we are both above the centerline or either is
  2763         // below the centerline.  If we are on the centerline
  2764         // (e.g., Constant vs. AnyNull interface), use the constant.
  2765         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2766         // If we are keeping this_klass, keep its exactness too.
  2767         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2768       } else {                  // Does not implement, fall to Object
  2769         // Oop does not implement interface, so mixing falls to Object
  2770         // just like the verifier does (if both are above the
  2771         // centerline fall to interface)
  2772         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2773         xk = above_centerline(ptr) ? tinst_xk : false;
  2774         // Watch out for Constant vs. AnyNull interface.
  2775         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2777       ciObject* o = NULL;  // the Constant value, if any
  2778       if (ptr == Constant) {
  2779         // Find out which constant.
  2780         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  2782       return make( ptr, k, xk, o, off );
  2785     // Either oop vs oop or interface vs interface or interface vs Object
  2787     // !!! Here's how the symmetry requirement breaks down into invariants:
  2788     // If we split one up & one down AND they subtype, take the down man.
  2789     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2790     // If both are up and they subtype, take the subtype class.
  2791     // If both are up and they do NOT subtype, "fall hard".
  2792     // If both are down and they subtype, take the supertype class.
  2793     // If both are down and they do NOT subtype, "fall hard".
  2794     // Constants treated as down.
  2796     // Now, reorder the above list; observe that both-down+subtype is also
  2797     // "fall hard"; "fall hard" becomes the default case:
  2798     // If we split one up & one down AND they subtype, take the down man.
  2799     // If both are up and they subtype, take the subtype class.
  2801     // If both are down and they subtype, "fall hard".
  2802     // If both are down and they do NOT subtype, "fall hard".
  2803     // If both are up and they do NOT subtype, "fall hard".
  2804     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2806     // If a proper subtype is exact, and we return it, we return it exactly.
  2807     // If a proper supertype is exact, there can be no subtyping relationship!
  2808     // If both types are equal to the subtype, exactness is and-ed below the
  2809     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  2811     // Check for subtyping:
  2812     ciKlass *subtype = NULL;
  2813     bool subtype_exact = false;
  2814     if( tinst_klass->equals(this_klass) ) {
  2815       subtype = this_klass;
  2816       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  2817     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  2818       subtype = this_klass;     // Pick subtyping class
  2819       subtype_exact = this_xk;
  2820     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  2821       subtype = tinst_klass;    // Pick subtyping class
  2822       subtype_exact = tinst_xk;
  2825     if( subtype ) {
  2826       if( above_centerline(ptr) ) { // both are up?
  2827         this_klass = tinst_klass = subtype;
  2828         this_xk = tinst_xk = subtype_exact;
  2829       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  2830         this_klass = tinst_klass; // tinst is down; keep down man
  2831         this_xk = tinst_xk;
  2832       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  2833         tinst_klass = this_klass; // this is down; keep down man
  2834         tinst_xk = this_xk;
  2835       } else {
  2836         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  2840     // Check for classes now being equal
  2841     if (tinst_klass->equals(this_klass)) {
  2842       // If the klasses are equal, the constants may still differ.  Fall to
  2843       // NotNull if they do (neither constant is NULL; that is a special case
  2844       // handled elsewhere).
  2845       ciObject* o = NULL;             // Assume not constant when done
  2846       ciObject* this_oop  = const_oop();
  2847       ciObject* tinst_oop = tinst->const_oop();
  2848       if( ptr == Constant ) {
  2849         if (this_oop != NULL && tinst_oop != NULL &&
  2850             this_oop->equals(tinst_oop) )
  2851           o = this_oop;
  2852         else if (above_centerline(this ->_ptr))
  2853           o = tinst_oop;
  2854         else if (above_centerline(tinst ->_ptr))
  2855           o = this_oop;
  2856         else
  2857           ptr = NotNull;
  2859       return make( ptr, this_klass, this_xk, o, off, instance_id );
  2860     } // Else classes are not equal
  2862     // Since klasses are different, we require a LCA in the Java
  2863     // class hierarchy - which means we have to fall to at least NotNull.
  2864     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  2865       ptr = NotNull;
  2867     // Now we find the LCA of Java classes
  2868     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  2869     return make( ptr, k, false, NULL, off );
  2870   } // End of case InstPtr
  2872   case KlassPtr:
  2873     return TypeInstPtr::BOTTOM;
  2875   } // End of switch
  2876   return this;                  // Return the double constant
  2880 //------------------------java_mirror_type--------------------------------------
  2881 ciType* TypeInstPtr::java_mirror_type() const {
  2882   // must be a singleton type
  2883   if( const_oop() == NULL )  return NULL;
  2885   // must be of type java.lang.Class
  2886   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  2888   return const_oop()->as_instance()->java_mirror_type();
  2892 //------------------------------xdual------------------------------------------
  2893 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  2894 // inheritence mechanism.
  2895 const Type *TypeInstPtr::xdual() const {
  2896   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
  2899 //------------------------------eq---------------------------------------------
  2900 // Structural equality check for Type representations
  2901 bool TypeInstPtr::eq( const Type *t ) const {
  2902   const TypeInstPtr *p = t->is_instptr();
  2903   return
  2904     klass()->equals(p->klass()) &&
  2905     TypeOopPtr::eq(p);          // Check sub-type stuff
  2908 //------------------------------hash-------------------------------------------
  2909 // Type-specific hashing function.
  2910 int TypeInstPtr::hash(void) const {
  2911   int hash = klass()->hash() + TypeOopPtr::hash();
  2912   return hash;
  2915 //------------------------------dump2------------------------------------------
  2916 // Dump oop Type
  2917 #ifndef PRODUCT
  2918 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2919   // Print the name of the klass.
  2920   klass()->print_name_on(st);
  2922   switch( _ptr ) {
  2923   case Constant:
  2924     // TO DO: Make CI print the hex address of the underlying oop.
  2925     if (WizardMode || Verbose) {
  2926       const_oop()->print_oop(st);
  2928   case BotPTR:
  2929     if (!WizardMode && !Verbose) {
  2930       if( _klass_is_exact ) st->print(":exact");
  2931       break;
  2933   case TopPTR:
  2934   case AnyNull:
  2935   case NotNull:
  2936     st->print(":%s", ptr_msg[_ptr]);
  2937     if( _klass_is_exact ) st->print(":exact");
  2938     break;
  2941   if( _offset ) {               // Dump offset, if any
  2942     if( _offset == OffsetBot )      st->print("+any");
  2943     else if( _offset == OffsetTop ) st->print("+unknown");
  2944     else st->print("+%d", _offset);
  2947   st->print(" *");
  2948   if (_instance_id != UNKNOWN_INSTANCE)
  2949     st->print(",iid=%d",_instance_id);
  2951 #endif
  2953 //------------------------------add_offset-------------------------------------
  2954 const TypePtr *TypeInstPtr::add_offset( int offset ) const {
  2955   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  2958 //=============================================================================
  2959 // Convenience common pre-built types.
  2960 const TypeAryPtr *TypeAryPtr::RANGE;
  2961 const TypeAryPtr *TypeAryPtr::OOPS;
  2962 const TypeAryPtr *TypeAryPtr::BYTES;
  2963 const TypeAryPtr *TypeAryPtr::SHORTS;
  2964 const TypeAryPtr *TypeAryPtr::CHARS;
  2965 const TypeAryPtr *TypeAryPtr::INTS;
  2966 const TypeAryPtr *TypeAryPtr::LONGS;
  2967 const TypeAryPtr *TypeAryPtr::FLOATS;
  2968 const TypeAryPtr *TypeAryPtr::DOUBLES;
  2970 //------------------------------make-------------------------------------------
  2971 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  2972   assert(!(k == NULL && ary->_elem->isa_int()),
  2973          "integral arrays must be pre-equipped with a class");
  2974   if (!xk)  xk = ary->ary_must_be_exact();
  2975   if (instance_id != UNKNOWN_INSTANCE)
  2976     xk = true;  // instances are always exactly typed
  2977   if (!UseExactTypes)  xk = (ptr == Constant);
  2978   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  2981 //------------------------------make-------------------------------------------
  2982 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  2983   assert(!(k == NULL && ary->_elem->isa_int()),
  2984          "integral arrays must be pre-equipped with a class");
  2985   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  2986   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  2987   if (instance_id != UNKNOWN_INSTANCE)
  2988     xk = true;  // instances are always exactly typed
  2989   if (!UseExactTypes)  xk = (ptr == Constant);
  2990   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  2993 //------------------------------cast_to_ptr_type-------------------------------
  2994 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  2995   if( ptr == _ptr ) return this;
  2996   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset);
  3000 //-----------------------------cast_to_exactness-------------------------------
  3001 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3002   if( klass_is_exact == _klass_is_exact ) return this;
  3003   if (!UseExactTypes)  return this;
  3004   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3005   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3008 //-----------------------------cast_to_instance-------------------------------
  3009 const TypeOopPtr *TypeAryPtr::cast_to_instance(int instance_id) const {
  3010   if( instance_id == _instance_id) return this;
  3011   bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
  3012   return make(ptr(), const_oop(), _ary, klass(), exact, _offset, instance_id);
  3015 //-----------------------------narrow_size_type-------------------------------
  3016 // Local cache for arrayOopDesc::max_array_length(etype),
  3017 // which is kind of slow (and cached elsewhere by other users).
  3018 static jint max_array_length_cache[T_CONFLICT+1];
  3019 static jint max_array_length(BasicType etype) {
  3020   jint& cache = max_array_length_cache[etype];
  3021   jint res = cache;
  3022   if (res == 0) {
  3023     switch (etype) {
  3024     case T_CONFLICT:
  3025     case T_ILLEGAL:
  3026     case T_VOID:
  3027       etype = T_BYTE;           // will produce conservatively high value
  3029     cache = res = arrayOopDesc::max_array_length(etype);
  3031   return res;
  3034 // Narrow the given size type to the index range for the given array base type.
  3035 // Return NULL if the resulting int type becomes empty.
  3036 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size, BasicType elem) {
  3037   jint hi = size->_hi;
  3038   jint lo = size->_lo;
  3039   jint min_lo = 0;
  3040   jint max_hi = max_array_length(elem);
  3041   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3042   bool chg = false;
  3043   if (lo < min_lo) { lo = min_lo; chg = true; }
  3044   if (hi > max_hi) { hi = max_hi; chg = true; }
  3045   if (lo > hi)
  3046     return NULL;
  3047   if (!chg)
  3048     return size;
  3049   return TypeInt::make(lo, hi, Type::WidenMin);
  3052 //-------------------------------cast_to_size----------------------------------
  3053 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3054   assert(new_size != NULL, "");
  3055   new_size = narrow_size_type(new_size, elem()->basic_type());
  3056   if (new_size == NULL)       // Negative length arrays will produce weird
  3057     new_size = TypeInt::ZERO; // intermediate dead fast-path goo
  3058   if (new_size == size())  return this;
  3059   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3060   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset);
  3064 //------------------------------eq---------------------------------------------
  3065 // Structural equality check for Type representations
  3066 bool TypeAryPtr::eq( const Type *t ) const {
  3067   const TypeAryPtr *p = t->is_aryptr();
  3068   return
  3069     _ary == p->_ary &&  // Check array
  3070     TypeOopPtr::eq(p);  // Check sub-parts
  3073 //------------------------------hash-------------------------------------------
  3074 // Type-specific hashing function.
  3075 int TypeAryPtr::hash(void) const {
  3076   return (intptr_t)_ary + TypeOopPtr::hash();
  3079 //------------------------------meet-------------------------------------------
  3080 // Compute the MEET of two types.  It returns a new Type object.
  3081 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3082   // Perform a fast test for common case; meeting the same types together.
  3083   if( this == t ) return this;  // Meeting same type-rep?
  3084   // Current "this->_base" is Pointer
  3085   switch (t->base()) {          // switch on original type
  3087   // Mixing ints & oops happens when javac reuses local variables
  3088   case Int:
  3089   case Long:
  3090   case FloatTop:
  3091   case FloatCon:
  3092   case FloatBot:
  3093   case DoubleTop:
  3094   case DoubleCon:
  3095   case DoubleBot:
  3096   case Bottom:                  // Ye Olde Default
  3097     return Type::BOTTOM;
  3098   case Top:
  3099     return this;
  3101   default:                      // All else is a mistake
  3102     typerr(t);
  3104   case OopPtr: {                // Meeting to OopPtrs
  3105     // Found a OopPtr type vs self-AryPtr type
  3106     const TypePtr *tp = t->is_oopptr();
  3107     int offset = meet_offset(tp->offset());
  3108     PTR ptr = meet_ptr(tp->ptr());
  3109     switch (tp->ptr()) {
  3110     case TopPTR:
  3111     case AnyNull:
  3112       return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset);
  3113     case BotPTR:
  3114     case NotNull:
  3115       return TypeOopPtr::make(ptr, offset);
  3116     default: ShouldNotReachHere();
  3120   case AnyPtr: {                // Meeting two AnyPtrs
  3121     // Found an AnyPtr type vs self-AryPtr type
  3122     const TypePtr *tp = t->is_ptr();
  3123     int offset = meet_offset(tp->offset());
  3124     PTR ptr = meet_ptr(tp->ptr());
  3125     switch (tp->ptr()) {
  3126     case TopPTR:
  3127       return this;
  3128     case BotPTR:
  3129     case NotNull:
  3130       return TypePtr::make(AnyPtr, ptr, offset);
  3131     case Null:
  3132       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3133     case AnyNull:
  3134       return make( ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset );
  3135     default: ShouldNotReachHere();
  3139   case RawPtr: return TypePtr::BOTTOM;
  3141   case AryPtr: {                // Meeting 2 references?
  3142     const TypeAryPtr *tap = t->is_aryptr();
  3143     int off = meet_offset(tap->offset());
  3144     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3145     PTR ptr = meet_ptr(tap->ptr());
  3146     int iid = meet_instance(tap->instance_id());
  3147     ciKlass* lazy_klass = NULL;
  3148     if (tary->_elem->isa_int()) {
  3149       // Integral array element types have irrelevant lattice relations.
  3150       // It is the klass that determines array layout, not the element type.
  3151       if (_klass == NULL)
  3152         lazy_klass = tap->_klass;
  3153       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3154         lazy_klass = _klass;
  3155       } else {
  3156         // Something like byte[int+] meets char[int+].
  3157         // This must fall to bottom, not (int[-128..65535])[int+].
  3158         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3161     bool xk;
  3162     switch (tap->ptr()) {
  3163     case AnyNull:
  3164     case TopPTR:
  3165       // Compute new klass on demand, do not use tap->_klass
  3166       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3167       return make( ptr, const_oop(), tary, lazy_klass, xk, off, iid );
  3168     case Constant: {
  3169       ciObject* o = const_oop();
  3170       if( _ptr == Constant ) {
  3171         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3172           ptr = NotNull;
  3173           o = NULL;
  3175       } else if( above_centerline(_ptr) ) {
  3176         o = tap->const_oop();
  3178       xk = true;
  3179       return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, iid );
  3181     case NotNull:
  3182     case BotPTR:
  3183       // Compute new klass on demand, do not use tap->_klass
  3184       if (above_centerline(this->_ptr))
  3185             xk = tap->_klass_is_exact;
  3186       else if (above_centerline(tap->_ptr))
  3187             xk = this->_klass_is_exact;
  3188       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3189               (klass() == tap->klass()); // Only precise for identical arrays
  3190       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, iid );
  3191     default: ShouldNotReachHere();
  3195   // All arrays inherit from Object class
  3196   case InstPtr: {
  3197     const TypeInstPtr *tp = t->is_instptr();
  3198     int offset = meet_offset(tp->offset());
  3199     PTR ptr = meet_ptr(tp->ptr());
  3200     int iid = meet_instance(tp->instance_id());
  3201     switch (ptr) {
  3202     case TopPTR:
  3203     case AnyNull:                // Fall 'down' to dual of object klass
  3204       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3205         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
  3206       } else {
  3207         // cannot subclass, so the meet has to fall badly below the centerline
  3208         ptr = NotNull;
  3209         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
  3211     case Constant:
  3212     case NotNull:
  3213     case BotPTR:                // Fall down to object klass
  3214       // LCA is object_klass, but if we subclass from the top we can do better
  3215       if (above_centerline(tp->ptr())) {
  3216         // If 'tp'  is above the centerline and it is Object class
  3217         // then we can subclass in the Java class heirarchy.
  3218         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3219           // that is, my array type is a subtype of 'tp' klass
  3220           return make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
  3223       // The other case cannot happen, since t cannot be a subtype of an array.
  3224       // The meet falls down to Object class below centerline.
  3225       if( ptr == Constant )
  3226          ptr = NotNull;
  3227       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
  3228     default: typerr(t);
  3232   case KlassPtr:
  3233     return TypeInstPtr::BOTTOM;
  3236   return this;                  // Lint noise
  3239 //------------------------------xdual------------------------------------------
  3240 // Dual: compute field-by-field dual
  3241 const Type *TypeAryPtr::xdual() const {
  3242   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance() );
  3245 //------------------------------dump2------------------------------------------
  3246 #ifndef PRODUCT
  3247 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3248   _ary->dump2(d,depth,st);
  3249   switch( _ptr ) {
  3250   case Constant:
  3251     const_oop()->print(st);
  3252     break;
  3253   case BotPTR:
  3254     if (!WizardMode && !Verbose) {
  3255       if( _klass_is_exact ) st->print(":exact");
  3256       break;
  3258   case TopPTR:
  3259   case AnyNull:
  3260   case NotNull:
  3261     st->print(":%s", ptr_msg[_ptr]);
  3262     if( _klass_is_exact ) st->print(":exact");
  3263     break;
  3266   if( _offset != 0 ) {
  3267     int header_size = objArrayOopDesc::header_size() * wordSize;
  3268     if( _offset == OffsetTop )       st->print("+undefined");
  3269     else if( _offset == OffsetBot )  st->print("+any");
  3270     else if( _offset < header_size ) st->print("+%d", _offset);
  3271     else {
  3272       BasicType basic_elem_type = elem()->basic_type();
  3273       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3274       int elem_size = type2aelembytes(basic_elem_type);
  3275       st->print("[%d]", (_offset - array_base)/elem_size);
  3278   st->print(" *");
  3279   if (_instance_id != UNKNOWN_INSTANCE)
  3280     st->print(",iid=%d",_instance_id);
  3282 #endif
  3284 bool TypeAryPtr::empty(void) const {
  3285   if (_ary->empty())       return true;
  3286   return TypeOopPtr::empty();
  3289 //------------------------------add_offset-------------------------------------
  3290 const TypePtr *TypeAryPtr::add_offset( int offset ) const {
  3291   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3295 //=============================================================================
  3296 // Convenience common pre-built types.
  3298 // Not-null object klass or below
  3299 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3300 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3302 //------------------------------TypeKlasPtr------------------------------------
  3303 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3304   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3307 //------------------------------make-------------------------------------------
  3308 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3309 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3310   assert( k != NULL, "Expect a non-NULL klass");
  3311   assert(k->is_instance_klass() || k->is_array_klass() ||
  3312          k->is_method_klass(), "Incorrect type of klass oop");
  3313   TypeKlassPtr *r =
  3314     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3316   return r;
  3319 //------------------------------eq---------------------------------------------
  3320 // Structural equality check for Type representations
  3321 bool TypeKlassPtr::eq( const Type *t ) const {
  3322   const TypeKlassPtr *p = t->is_klassptr();
  3323   return
  3324     klass()->equals(p->klass()) &&
  3325     TypeOopPtr::eq(p);
  3328 //------------------------------hash-------------------------------------------
  3329 // Type-specific hashing function.
  3330 int TypeKlassPtr::hash(void) const {
  3331   return klass()->hash() + TypeOopPtr::hash();
  3335 //------------------------------klass------------------------------------------
  3336 // Return the defining klass for this class
  3337 ciKlass* TypeAryPtr::klass() const {
  3338   if( _klass ) return _klass;   // Return cached value, if possible
  3340   // Oops, need to compute _klass and cache it
  3341   ciKlass* k_ary = NULL;
  3342   const TypeInstPtr *tinst;
  3343   const TypeAryPtr *tary;
  3344   // Get element klass
  3345   if ((tinst = elem()->isa_instptr()) != NULL) {
  3346     // Compute array klass from element klass
  3347     k_ary = ciObjArrayKlass::make(tinst->klass());
  3348   } else if ((tary = elem()->isa_aryptr()) != NULL) {
  3349     // Compute array klass from element klass
  3350     ciKlass* k_elem = tary->klass();
  3351     // If element type is something like bottom[], k_elem will be null.
  3352     if (k_elem != NULL)
  3353       k_ary = ciObjArrayKlass::make(k_elem);
  3354   } else if ((elem()->base() == Type::Top) ||
  3355              (elem()->base() == Type::Bottom)) {
  3356     // element type of Bottom occurs from meet of basic type
  3357     // and object; Top occurs when doing join on Bottom.
  3358     // Leave k_ary at NULL.
  3359   } else {
  3360     // Cannot compute array klass directly from basic type,
  3361     // since subtypes of TypeInt all have basic type T_INT.
  3362     assert(!elem()->isa_int(),
  3363            "integral arrays must be pre-equipped with a class");
  3364     // Compute array klass directly from basic type
  3365     k_ary = ciTypeArrayKlass::make(elem()->basic_type());
  3368   if( this != TypeAryPtr::OOPS )
  3369     // The _klass field acts as a cache of the underlying
  3370     // ciKlass for this array type.  In order to set the field,
  3371     // we need to cast away const-ness.
  3372     //
  3373     // IMPORTANT NOTE: we *never* set the _klass field for the
  3374     // type TypeAryPtr::OOPS.  This Type is shared between all
  3375     // active compilations.  However, the ciKlass which represents
  3376     // this Type is *not* shared between compilations, so caching
  3377     // this value would result in fetching a dangling pointer.
  3378     //
  3379     // Recomputing the underlying ciKlass for each request is
  3380     // a bit less efficient than caching, but calls to
  3381     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3382     ((TypeAryPtr*)this)->_klass = k_ary;
  3383   return k_ary;
  3387 //------------------------------add_offset-------------------------------------
  3388 // Access internals of klass object
  3389 const TypePtr *TypeKlassPtr::add_offset( int offset ) const {
  3390   return make( _ptr, klass(), xadd_offset(offset) );
  3393 //------------------------------cast_to_ptr_type-------------------------------
  3394 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3395   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  3396   if( ptr == _ptr ) return this;
  3397   return make(ptr, _klass, _offset);
  3401 //-----------------------------cast_to_exactness-------------------------------
  3402 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3403   if( klass_is_exact == _klass_is_exact ) return this;
  3404   if (!UseExactTypes)  return this;
  3405   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3409 //-----------------------------as_instance_type--------------------------------
  3410 // Corresponding type for an instance of the given class.
  3411 // It will be NotNull, and exact if and only if the klass type is exact.
  3412 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3413   ciKlass* k = klass();
  3414   bool    xk = klass_is_exact();
  3415   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3416   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3417   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3418   return toop->cast_to_exactness(xk)->is_oopptr();
  3422 //------------------------------xmeet------------------------------------------
  3423 // Compute the MEET of two types, return a new Type object.
  3424 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3425   // Perform a fast test for common case; meeting the same types together.
  3426   if( this == t ) return this;  // Meeting same type-rep?
  3428   // Current "this->_base" is Pointer
  3429   switch (t->base()) {          // switch on original type
  3431   case Int:                     // Mixing ints & oops happens when javac
  3432   case Long:                    // reuses local variables
  3433   case FloatTop:
  3434   case FloatCon:
  3435   case FloatBot:
  3436   case DoubleTop:
  3437   case DoubleCon:
  3438   case DoubleBot:
  3439   case Bottom:                  // Ye Olde Default
  3440     return Type::BOTTOM;
  3441   case Top:
  3442     return this;
  3444   default:                      // All else is a mistake
  3445     typerr(t);
  3447   case RawPtr: return TypePtr::BOTTOM;
  3449   case OopPtr: {                // Meeting to OopPtrs
  3450     // Found a OopPtr type vs self-KlassPtr type
  3451     const TypePtr *tp = t->is_oopptr();
  3452     int offset = meet_offset(tp->offset());
  3453     PTR ptr = meet_ptr(tp->ptr());
  3454     switch (tp->ptr()) {
  3455     case TopPTR:
  3456     case AnyNull:
  3457       return make(ptr, klass(), offset);
  3458     case BotPTR:
  3459     case NotNull:
  3460       return TypePtr::make(AnyPtr, ptr, offset);
  3461     default: typerr(t);
  3465   case AnyPtr: {                // Meeting to AnyPtrs
  3466     // Found an AnyPtr type vs self-KlassPtr type
  3467     const TypePtr *tp = t->is_ptr();
  3468     int offset = meet_offset(tp->offset());
  3469     PTR ptr = meet_ptr(tp->ptr());
  3470     switch (tp->ptr()) {
  3471     case TopPTR:
  3472       return this;
  3473     case Null:
  3474       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3475     case AnyNull:
  3476       return make( ptr, klass(), offset );
  3477     case BotPTR:
  3478     case NotNull:
  3479       return TypePtr::make(AnyPtr, ptr, offset);
  3480     default: typerr(t);
  3484   case AryPtr:                  // Meet with AryPtr
  3485   case InstPtr:                 // Meet with InstPtr
  3486     return TypeInstPtr::BOTTOM;
  3488   //
  3489   //             A-top         }
  3490   //           /   |   \       }  Tops
  3491   //       B-top A-any C-top   }
  3492   //          | /  |  \ |      }  Any-nulls
  3493   //       B-any   |   C-any   }
  3494   //          |    |    |
  3495   //       B-con A-con C-con   } constants; not comparable across classes
  3496   //          |    |    |
  3497   //       B-not   |   C-not   }
  3498   //          | \  |  / |      }  not-nulls
  3499   //       B-bot A-not C-bot   }
  3500   //           \   |   /       }  Bottoms
  3501   //             A-bot         }
  3502   //
  3504   case KlassPtr: {  // Meet two KlassPtr types
  3505     const TypeKlassPtr *tkls = t->is_klassptr();
  3506     int  off     = meet_offset(tkls->offset());
  3507     PTR  ptr     = meet_ptr(tkls->ptr());
  3509     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3510     // If we have constants, then we created oops so classes are loaded
  3511     // and we can handle the constants further down.  This case handles
  3512     // not-loaded classes
  3513     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3514       return make( ptr, klass(), off );
  3517     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3518     ciKlass* tkls_klass = tkls->klass();
  3519     ciKlass* this_klass = this->klass();
  3520     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3521     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3523     // If 'this' type is above the centerline and is a superclass of the
  3524     // other, we can treat 'this' as having the same type as the other.
  3525     if ((above_centerline(this->ptr())) &&
  3526         tkls_klass->is_subtype_of(this_klass)) {
  3527       this_klass = tkls_klass;
  3529     // If 'tinst' type is above the centerline and is a superclass of the
  3530     // other, we can treat 'tinst' as having the same type as the other.
  3531     if ((above_centerline(tkls->ptr())) &&
  3532         this_klass->is_subtype_of(tkls_klass)) {
  3533       tkls_klass = this_klass;
  3536     // Check for classes now being equal
  3537     if (tkls_klass->equals(this_klass)) {
  3538       // If the klasses are equal, the constants may still differ.  Fall to
  3539       // NotNull if they do (neither constant is NULL; that is a special case
  3540       // handled elsewhere).
  3541       ciObject* o = NULL;             // Assume not constant when done
  3542       ciObject* this_oop = const_oop();
  3543       ciObject* tkls_oop = tkls->const_oop();
  3544       if( ptr == Constant ) {
  3545         if (this_oop != NULL && tkls_oop != NULL &&
  3546             this_oop->equals(tkls_oop) )
  3547           o = this_oop;
  3548         else if (above_centerline(this->ptr()))
  3549           o = tkls_oop;
  3550         else if (above_centerline(tkls->ptr()))
  3551           o = this_oop;
  3552         else
  3553           ptr = NotNull;
  3555       return make( ptr, this_klass, off );
  3556     } // Else classes are not equal
  3558     // Since klasses are different, we require the LCA in the Java
  3559     // class hierarchy - which means we have to fall to at least NotNull.
  3560     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3561       ptr = NotNull;
  3562     // Now we find the LCA of Java classes
  3563     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3564     return   make( ptr, k, off );
  3565   } // End of case KlassPtr
  3567   } // End of switch
  3568   return this;                  // Return the double constant
  3571 //------------------------------xdual------------------------------------------
  3572 // Dual: compute field-by-field dual
  3573 const Type    *TypeKlassPtr::xdual() const {
  3574   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  3577 //------------------------------dump2------------------------------------------
  3578 // Dump Klass Type
  3579 #ifndef PRODUCT
  3580 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3581   switch( _ptr ) {
  3582   case Constant:
  3583     st->print("precise ");
  3584   case NotNull:
  3586       const char *name = klass()->name()->as_utf8();
  3587       if( name ) {
  3588         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  3589       } else {
  3590         ShouldNotReachHere();
  3593   case BotPTR:
  3594     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  3595   case TopPTR:
  3596   case AnyNull:
  3597     st->print(":%s", ptr_msg[_ptr]);
  3598     if( _klass_is_exact ) st->print(":exact");
  3599     break;
  3602   if( _offset ) {               // Dump offset, if any
  3603     if( _offset == OffsetBot )      { st->print("+any"); }
  3604     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  3605     else                            { st->print("+%d", _offset); }
  3608   st->print(" *");
  3610 #endif
  3614 //=============================================================================
  3615 // Convenience common pre-built types.
  3617 //------------------------------make-------------------------------------------
  3618 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  3619   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  3622 //------------------------------make-------------------------------------------
  3623 const TypeFunc *TypeFunc::make(ciMethod* method) {
  3624   Compile* C = Compile::current();
  3625   const TypeFunc* tf = C->last_tf(method); // check cache
  3626   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  3627   const TypeTuple *domain;
  3628   if (method->flags().is_static()) {
  3629     domain = TypeTuple::make_domain(NULL, method->signature());
  3630   } else {
  3631     domain = TypeTuple::make_domain(method->holder(), method->signature());
  3633   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  3634   tf = TypeFunc::make(domain, range);
  3635   C->set_last_tf(method, tf);  // fill cache
  3636   return tf;
  3639 //------------------------------meet-------------------------------------------
  3640 // Compute the MEET of two types.  It returns a new Type object.
  3641 const Type *TypeFunc::xmeet( const Type *t ) const {
  3642   // Perform a fast test for common case; meeting the same types together.
  3643   if( this == t ) return this;  // Meeting same type-rep?
  3645   // Current "this->_base" is Func
  3646   switch (t->base()) {          // switch on original type
  3648   case Bottom:                  // Ye Olde Default
  3649     return t;
  3651   default:                      // All else is a mistake
  3652     typerr(t);
  3654   case Top:
  3655     break;
  3657   return this;                  // Return the double constant
  3660 //------------------------------xdual------------------------------------------
  3661 // Dual: compute field-by-field dual
  3662 const Type *TypeFunc::xdual() const {
  3663   return this;
  3666 //------------------------------eq---------------------------------------------
  3667 // Structural equality check for Type representations
  3668 bool TypeFunc::eq( const Type *t ) const {
  3669   const TypeFunc *a = (const TypeFunc*)t;
  3670   return _domain == a->_domain &&
  3671     _range == a->_range;
  3674 //------------------------------hash-------------------------------------------
  3675 // Type-specific hashing function.
  3676 int TypeFunc::hash(void) const {
  3677   return (intptr_t)_domain + (intptr_t)_range;
  3680 //------------------------------dump2------------------------------------------
  3681 // Dump Function Type
  3682 #ifndef PRODUCT
  3683 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  3684   if( _range->_cnt <= Parms )
  3685     st->print("void");
  3686   else {
  3687     uint i;
  3688     for (i = Parms; i < _range->_cnt-1; i++) {
  3689       _range->field_at(i)->dump2(d,depth,st);
  3690       st->print("/");
  3692     _range->field_at(i)->dump2(d,depth,st);
  3694   st->print(" ");
  3695   st->print("( ");
  3696   if( !depth || d[this] ) {     // Check for recursive dump
  3697     st->print("...)");
  3698     return;
  3700   d.Insert((void*)this,(void*)this);    // Stop recursion
  3701   if (Parms < _domain->_cnt)
  3702     _domain->field_at(Parms)->dump2(d,depth-1,st);
  3703   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  3704     st->print(", ");
  3705     _domain->field_at(i)->dump2(d,depth-1,st);
  3707   st->print(" )");
  3710 //------------------------------print_flattened--------------------------------
  3711 // Print a 'flattened' signature
  3712 static const char * const flat_type_msg[Type::lastype] = {
  3713   "bad","control","top","int","long","_",
  3714   "tuple:", "array:",
  3715   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  3716   "func", "abIO", "return_address", "mem",
  3717   "float_top", "ftcon:", "flt",
  3718   "double_top", "dblcon:", "dbl",
  3719   "bottom"
  3720 };
  3722 void TypeFunc::print_flattened() const {
  3723   if( _range->_cnt <= Parms )
  3724     tty->print("void");
  3725   else {
  3726     uint i;
  3727     for (i = Parms; i < _range->_cnt-1; i++)
  3728       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  3729     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  3731   tty->print(" ( ");
  3732   if (Parms < _domain->_cnt)
  3733     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  3734   for (uint i = Parms+1; i < _domain->_cnt; i++)
  3735     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  3736   tty->print(" )");
  3738 #endif
  3740 //------------------------------singleton--------------------------------------
  3741 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  3742 // constants (Ldi nodes).  Singletons are integer, float or double constants
  3743 // or a single symbol.
  3744 bool TypeFunc::singleton(void) const {
  3745   return false;                 // Never a singleton
  3748 bool TypeFunc::empty(void) const {
  3749   return false;                 // Never empty
  3753 BasicType TypeFunc::return_type() const{
  3754   if (range()->cnt() == TypeFunc::Parms) {
  3755     return T_VOID;
  3757   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial