src/share/vm/opto/gcm.cpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 466
6152cbb08ce9
child 631
d1605aabd0a1
child 650
273eaa04d9a1
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_gcm.cpp.incl"
    32 //----------------------------schedule_node_into_block-------------------------
    33 // Insert node n into block b. Look for projections of n and make sure they
    34 // are in b also.
    35 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
    36   // Set basic block of n, Add n to b,
    37   _bbs.map(n->_idx, b);
    38   b->add_inst(n);
    40   // After Matching, nearly any old Node may have projections trailing it.
    41   // These are usually machine-dependent flags.  In any case, they might
    42   // float to another block below this one.  Move them up.
    43   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    44     Node*  use  = n->fast_out(i);
    45     if (use->is_Proj()) {
    46       Block* buse = _bbs[use->_idx];
    47       if (buse != b) {              // In wrong block?
    48         if (buse != NULL)
    49           buse->find_remove(use);   // Remove from wrong block
    50         _bbs.map(use->_idx, b);     // Re-insert in this block
    51         b->add_inst(use);
    52       }
    53     }
    54   }
    55 }
    58 //------------------------------schedule_pinned_nodes--------------------------
    59 // Set the basic block for Nodes pinned into blocks
    60 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
    61   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
    62   GrowableArray <Node *> spstack(C->unique()+8);
    63   spstack.push(_root);
    64   while ( spstack.is_nonempty() ) {
    65     Node *n = spstack.pop();
    66     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
    67       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
    68         Node *input = n->in(0);
    69         assert( input, "pinned Node must have Control" );
    70         while( !input->is_block_start() )
    71           input = input->in(0);
    72         Block *b = _bbs[input->_idx];  // Basic block of controlling input
    73         schedule_node_into_block(n, b);
    74       }
    75       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
    76         if( n->in(i) != NULL )
    77           spstack.push(n->in(i));
    78       }
    79     }
    80   }
    81 }
    83 #ifdef ASSERT
    84 // Assert that new input b2 is dominated by all previous inputs.
    85 // Check this by by seeing that it is dominated by b1, the deepest
    86 // input observed until b2.
    87 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
    88   if (b1 == NULL)  return;
    89   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
    90   Block* tmp = b2;
    91   while (tmp != b1 && tmp != NULL) {
    92     tmp = tmp->_idom;
    93   }
    94   if (tmp != b1) {
    95     // Detected an unschedulable graph.  Print some nice stuff and die.
    96     tty->print_cr("!!! Unschedulable graph !!!");
    97     for (uint j=0; j<n->len(); j++) { // For all inputs
    98       Node* inn = n->in(j); // Get input
    99       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
   100       Block* inb = bbs[inn->_idx];
   101       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
   102                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
   103       inn->dump();
   104     }
   105     tty->print("Failing node: ");
   106     n->dump();
   107     assert(false, "unscheduable graph");
   108   }
   109 }
   110 #endif
   112 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
   113   // Find the last input dominated by all other inputs.
   114   Block* deepb           = NULL;        // Deepest block so far
   115   int    deepb_dom_depth = 0;
   116   for (uint k = 0; k < n->len(); k++) { // For all inputs
   117     Node* inn = n->in(k);               // Get input
   118     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
   119     Block* inb = bbs[inn->_idx];
   120     assert(inb != NULL, "must already have scheduled this input");
   121     if (deepb_dom_depth < (int) inb->_dom_depth) {
   122       // The new inb must be dominated by the previous deepb.
   123       // The various inputs must be linearly ordered in the dom
   124       // tree, or else there will not be a unique deepest block.
   125       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
   126       deepb = inb;                      // Save deepest block
   127       deepb_dom_depth = deepb->_dom_depth;
   128     }
   129   }
   130   assert(deepb != NULL, "must be at least one input to n");
   131   return deepb;
   132 }
   135 //------------------------------schedule_early---------------------------------
   136 // Find the earliest Block any instruction can be placed in.  Some instructions
   137 // are pinned into Blocks.  Unpinned instructions can appear in last block in
   138 // which all their inputs occur.
   139 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
   140   // Allocate stack with enough space to avoid frequent realloc
   141   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
   142   // roots.push(_root); _root will be processed among C->top() inputs
   143   roots.push(C->top());
   144   visited.set(C->top()->_idx);
   146   while (roots.size() != 0) {
   147     // Use local variables nstack_top_n & nstack_top_i to cache values
   148     // on stack's top.
   149     Node *nstack_top_n = roots.pop();
   150     uint  nstack_top_i = 0;
   151 //while_nstack_nonempty:
   152     while (true) {
   153       // Get parent node and next input's index from stack's top.
   154       Node *n = nstack_top_n;
   155       uint  i = nstack_top_i;
   157       if (i == 0) {
   158         // Special control input processing.
   159         // While I am here, go ahead and look for Nodes which are taking control
   160         // from a is_block_proj Node.  After I inserted RegionNodes to make proper
   161         // blocks, the control at a is_block_proj more properly comes from the
   162         // Region being controlled by the block_proj Node.
   163         const Node *in0 = n->in(0);
   164         if (in0 != NULL) {              // Control-dependent?
   165           const Node *p = in0->is_block_proj();
   166           if (p != NULL && p != n) {    // Control from a block projection?
   167             // Find trailing Region
   168             Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
   169             uint j = 0;
   170             if (pb->_num_succs != 1) {  // More then 1 successor?
   171               // Search for successor
   172               uint max = pb->_nodes.size();
   173               assert( max > 1, "" );
   174               uint start = max - pb->_num_succs;
   175               // Find which output path belongs to projection
   176               for (j = start; j < max; j++) {
   177                 if( pb->_nodes[j] == in0 )
   178                   break;
   179               }
   180               assert( j < max, "must find" );
   181               // Change control to match head of successor basic block
   182               j -= start;
   183             }
   184             n->set_req(0, pb->_succs[j]->head());
   185           }
   186         } else {               // n->in(0) == NULL
   187           if (n->req() == 1) { // This guy is a constant with NO inputs?
   188             n->set_req(0, _root);
   189           }
   190         }
   191       }
   193       // First, visit all inputs and force them to get a block.  If an
   194       // input is already in a block we quit following inputs (to avoid
   195       // cycles). Instead we put that Node on a worklist to be handled
   196       // later (since IT'S inputs may not have a block yet).
   197       bool done = true;              // Assume all n's inputs will be processed
   198       while (i < n->len()) {         // For all inputs
   199         Node *in = n->in(i);         // Get input
   200         ++i;
   201         if (in == NULL) continue;    // Ignore NULL, missing inputs
   202         int is_visited = visited.test_set(in->_idx);
   203         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
   204           if (is_visited) {
   205             // assert( !visited.test(in->_idx), "did not schedule early" );
   206             return false;
   207           }
   208           nstack.push(n, i);         // Save parent node and next input's index.
   209           nstack_top_n = in;         // Process current input now.
   210           nstack_top_i = 0;
   211           done = false;              // Not all n's inputs processed.
   212           break; // continue while_nstack_nonempty;
   213         } else if (!is_visited) {    // Input not yet visited?
   214           roots.push(in);            // Visit this guy later, using worklist
   215         }
   216       }
   217       if (done) {
   218         // All of n's inputs have been processed, complete post-processing.
   220         // Some instructions are pinned into a block.  These include Region,
   221         // Phi, Start, Return, and other control-dependent instructions and
   222         // any projections which depend on them.
   223         if (!n->pinned()) {
   224           // Set earliest legal block.
   225           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
   226         }
   228         if (nstack.is_empty()) {
   229           // Finished all nodes on stack.
   230           // Process next node on the worklist 'roots'.
   231           break;
   232         }
   233         // Get saved parent node and next input's index.
   234         nstack_top_n = nstack.node();
   235         nstack_top_i = nstack.index();
   236         nstack.pop();
   237       } //    if (done)
   238     }   // while (true)
   239   }     // while (roots.size() != 0)
   240   return true;
   241 }
   243 //------------------------------dom_lca----------------------------------------
   244 // Find least common ancestor in dominator tree
   245 // LCA is a current notion of LCA, to be raised above 'this'.
   246 // As a convenient boundary condition, return 'this' if LCA is NULL.
   247 // Find the LCA of those two nodes.
   248 Block* Block::dom_lca(Block* LCA) {
   249   if (LCA == NULL || LCA == this)  return this;
   251   Block* anc = this;
   252   while (anc->_dom_depth > LCA->_dom_depth)
   253     anc = anc->_idom;           // Walk up till anc is as high as LCA
   255   while (LCA->_dom_depth > anc->_dom_depth)
   256     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
   258   while (LCA != anc) {          // Walk both up till they are the same
   259     LCA = LCA->_idom;
   260     anc = anc->_idom;
   261   }
   263   return LCA;
   264 }
   266 //--------------------------raise_LCA_above_use--------------------------------
   267 // We are placing a definition, and have been given a def->use edge.
   268 // The definition must dominate the use, so move the LCA upward in the
   269 // dominator tree to dominate the use.  If the use is a phi, adjust
   270 // the LCA only with the phi input paths which actually use this def.
   271 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
   272   Block* buse = bbs[use->_idx];
   273   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
   274   if (!use->is_Phi())  return buse->dom_lca(LCA);
   275   uint pmax = use->req();       // Number of Phi inputs
   276   // Why does not this loop just break after finding the matching input to
   277   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
   278   // chains.  Means I cannot distinguish, from the def-use direction, which
   279   // of many use-defs lead from the same use to the same def.  That is, this
   280   // Phi might have several uses of the same def.  Each use appears in a
   281   // different predecessor block.  But when I enter here, I cannot distinguish
   282   // which use-def edge I should find the predecessor block for.  So I find
   283   // them all.  Means I do a little extra work if a Phi uses the same value
   284   // more than once.
   285   for (uint j=1; j<pmax; j++) { // For all inputs
   286     if (use->in(j) == def) {    // Found matching input?
   287       Block* pred = bbs[buse->pred(j)->_idx];
   288       LCA = pred->dom_lca(LCA);
   289     }
   290   }
   291   return LCA;
   292 }
   294 //----------------------------raise_LCA_above_marks----------------------------
   295 // Return a new LCA that dominates LCA and any of its marked predecessors.
   296 // Search all my parents up to 'early' (exclusive), looking for predecessors
   297 // which are marked with the given index.  Return the LCA (in the dom tree)
   298 // of all marked blocks.  If there are none marked, return the original
   299 // LCA.
   300 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
   301                                     Block* early, Block_Array &bbs) {
   302   Block_List worklist;
   303   worklist.push(LCA);
   304   while (worklist.size() > 0) {
   305     Block* mid = worklist.pop();
   306     if (mid == early)  continue;  // stop searching here
   308     // Test and set the visited bit.
   309     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
   310     mid->set_raise_LCA_visited(mark);
   312     // Don't process the current LCA, otherwise the search may terminate early
   313     if (mid != LCA && mid->raise_LCA_mark() == mark) {
   314       // Raise the LCA.
   315       LCA = mid->dom_lca(LCA);
   316       if (LCA == early)  break;   // stop searching everywhere
   317       assert(early->dominates(LCA), "early is high enough");
   318       // Resume searching at that point, skipping intermediate levels.
   319       worklist.push(LCA);
   320     } else {
   321       // Keep searching through this block's predecessors.
   322       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
   323         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
   324         worklist.push(mid_parent);
   325       }
   326     }
   327   }
   328   return LCA;
   329 }
   331 //--------------------------memory_early_block--------------------------------
   332 // This is a variation of find_deepest_input, the heart of schedule_early.
   333 // Find the "early" block for a load, if we considered only memory and
   334 // address inputs, that is, if other data inputs were ignored.
   335 //
   336 // Because a subset of edges are considered, the resulting block will
   337 // be earlier (at a shallower dom_depth) than the true schedule_early
   338 // point of the node. We compute this earlier block as a more permissive
   339 // site for anti-dependency insertion, but only if subsume_loads is enabled.
   340 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
   341   Node* base;
   342   Node* index;
   343   Node* store = load->in(MemNode::Memory);
   344   load->as_Mach()->memory_inputs(base, index);
   346   assert(base != NodeSentinel && index != NodeSentinel,
   347          "unexpected base/index inputs");
   349   Node* mem_inputs[4];
   350   int mem_inputs_length = 0;
   351   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
   352   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
   353   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
   355   // In the comparision below, add one to account for the control input,
   356   // which may be null, but always takes up a spot in the in array.
   357   if (mem_inputs_length + 1 < (int) load->req()) {
   358     // This "load" has more inputs than just the memory, base and index inputs.
   359     // For purposes of checking anti-dependences, we need to start
   360     // from the early block of only the address portion of the instruction,
   361     // and ignore other blocks that may have factored into the wider
   362     // schedule_early calculation.
   363     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
   365     Block* deepb           = NULL;        // Deepest block so far
   366     int    deepb_dom_depth = 0;
   367     for (int i = 0; i < mem_inputs_length; i++) {
   368       Block* inb = bbs[mem_inputs[i]->_idx];
   369       if (deepb_dom_depth < (int) inb->_dom_depth) {
   370         // The new inb must be dominated by the previous deepb.
   371         // The various inputs must be linearly ordered in the dom
   372         // tree, or else there will not be a unique deepest block.
   373         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
   374         deepb = inb;                      // Save deepest block
   375         deepb_dom_depth = deepb->_dom_depth;
   376       }
   377     }
   378     early = deepb;
   379   }
   381   return early;
   382 }
   384 //--------------------------insert_anti_dependences---------------------------
   385 // A load may need to witness memory that nearby stores can overwrite.
   386 // For each nearby store, either insert an "anti-dependence" edge
   387 // from the load to the store, or else move LCA upward to force the
   388 // load to (eventually) be scheduled in a block above the store.
   389 //
   390 // Do not add edges to stores on distinct control-flow paths;
   391 // only add edges to stores which might interfere.
   392 //
   393 // Return the (updated) LCA.  There will not be any possibly interfering
   394 // store between the load's "early block" and the updated LCA.
   395 // Any stores in the updated LCA will have new precedence edges
   396 // back to the load.  The caller is expected to schedule the load
   397 // in the LCA, in which case the precedence edges will make LCM
   398 // preserve anti-dependences.  The caller may also hoist the load
   399 // above the LCA, if it is not the early block.
   400 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
   401   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
   402   assert(LCA != NULL, "");
   403   DEBUG_ONLY(Block* LCA_orig = LCA);
   405   // Compute the alias index.  Loads and stores with different alias indices
   406   // do not need anti-dependence edges.
   407   uint load_alias_idx = C->get_alias_index(load->adr_type());
   408 #ifdef ASSERT
   409   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
   410       (PrintOpto || VerifyAliases ||
   411        PrintMiscellaneous && (WizardMode || Verbose))) {
   412     // Load nodes should not consume all of memory.
   413     // Reporting a bottom type indicates a bug in adlc.
   414     // If some particular type of node validly consumes all of memory,
   415     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
   416     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
   417     load->dump(2);
   418     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
   419   }
   420 #endif
   421   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
   422          "String compare is only known 'load' that does not conflict with any stores");
   424   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
   425     // It is impossible to spoil this load by putting stores before it,
   426     // because we know that the stores will never update the value
   427     // which 'load' must witness.
   428     return LCA;
   429   }
   431   node_idx_t load_index = load->_idx;
   433   // Note the earliest legal placement of 'load', as determined by
   434   // by the unique point in the dom tree where all memory effects
   435   // and other inputs are first available.  (Computed by schedule_early.)
   436   // For normal loads, 'early' is the shallowest place (dom graph wise)
   437   // to look for anti-deps between this load and any store.
   438   Block* early = _bbs[load_index];
   440   // If we are subsuming loads, compute an "early" block that only considers
   441   // memory or address inputs. This block may be different than the
   442   // schedule_early block in that it could be at an even shallower depth in the
   443   // dominator tree, and allow for a broader discovery of anti-dependences.
   444   if (C->subsume_loads()) {
   445     early = memory_early_block(load, early, _bbs);
   446   }
   448   ResourceArea *area = Thread::current()->resource_area();
   449   Node_List worklist_mem(area);     // prior memory state to store
   450   Node_List worklist_store(area);   // possible-def to explore
   451   Node_List worklist_visited(area); // visited mergemem nodes
   452   Node_List non_early_stores(area); // all relevant stores outside of early
   453   bool must_raise_LCA = false;
   455 #ifdef TRACK_PHI_INPUTS
   456   // %%% This extra checking fails because MergeMem nodes are not GVNed.
   457   // Provide "phi_inputs" to check if every input to a PhiNode is from the
   458   // original memory state.  This indicates a PhiNode for which should not
   459   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
   460   // may be overly conservative.
   461   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
   462   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
   463 #endif
   465   // 'load' uses some memory state; look for users of the same state.
   466   // Recurse through MergeMem nodes to the stores that use them.
   468   // Each of these stores is a possible definition of memory
   469   // that 'load' needs to use.  We need to force 'load'
   470   // to occur before each such store.  When the store is in
   471   // the same block as 'load', we insert an anti-dependence
   472   // edge load->store.
   474   // The relevant stores "nearby" the load consist of a tree rooted
   475   // at initial_mem, with internal nodes of type MergeMem.
   476   // Therefore, the branches visited by the worklist are of this form:
   477   //    initial_mem -> (MergeMem ->)* store
   478   // The anti-dependence constraints apply only to the fringe of this tree.
   480   Node* initial_mem = load->in(MemNode::Memory);
   481   worklist_store.push(initial_mem);
   482   worklist_visited.push(initial_mem);
   483   worklist_mem.push(NULL);
   484   while (worklist_store.size() > 0) {
   485     // Examine a nearby store to see if it might interfere with our load.
   486     Node* mem   = worklist_mem.pop();
   487     Node* store = worklist_store.pop();
   488     uint op = store->Opcode();
   490     // MergeMems do not directly have anti-deps.
   491     // Treat them as internal nodes in a forward tree of memory states,
   492     // the leaves of which are each a 'possible-def'.
   493     if (store == initial_mem    // root (exclusive) of tree we are searching
   494         || op == Op_MergeMem    // internal node of tree we are searching
   495         ) {
   496       mem = store;   // It's not a possibly interfering store.
   497       if (store == initial_mem)
   498         initial_mem = NULL;  // only process initial memory once
   500       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
   501         store = mem->fast_out(i);
   502         if (store->is_MergeMem()) {
   503           // Be sure we don't get into combinatorial problems.
   504           // (Allow phis to be repeated; they can merge two relevant states.)
   505           uint j = worklist_visited.size();
   506           for (; j > 0; j--) {
   507             if (worklist_visited.at(j-1) == store)  break;
   508           }
   509           if (j > 0)  continue; // already on work list; do not repeat
   510           worklist_visited.push(store);
   511         }
   512         worklist_mem.push(mem);
   513         worklist_store.push(store);
   514       }
   515       continue;
   516     }
   518     if (op == Op_MachProj || op == Op_Catch)   continue;
   519     if (store->needs_anti_dependence_check())  continue;  // not really a store
   521     // Compute the alias index.  Loads and stores with different alias
   522     // indices do not need anti-dependence edges.  Wide MemBar's are
   523     // anti-dependent on everything (except immutable memories).
   524     const TypePtr* adr_type = store->adr_type();
   525     if (!C->can_alias(adr_type, load_alias_idx))  continue;
   527     // Most slow-path runtime calls do NOT modify Java memory, but
   528     // they can block and so write Raw memory.
   529     if (store->is_Mach()) {
   530       MachNode* mstore = store->as_Mach();
   531       if (load_alias_idx != Compile::AliasIdxRaw) {
   532         // Check for call into the runtime using the Java calling
   533         // convention (and from there into a wrapper); it has no
   534         // _method.  Can't do this optimization for Native calls because
   535         // they CAN write to Java memory.
   536         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
   537           assert(mstore->is_MachSafePoint(), "");
   538           MachSafePointNode* ms = (MachSafePointNode*) mstore;
   539           assert(ms->is_MachCallJava(), "");
   540           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
   541           if (mcj->_method == NULL) {
   542             // These runtime calls do not write to Java visible memory
   543             // (other than Raw) and so do not require anti-dependence edges.
   544             continue;
   545           }
   546         }
   547         // Same for SafePoints: they read/write Raw but only read otherwise.
   548         // This is basically a workaround for SafePoints only defining control
   549         // instead of control + memory.
   550         if (mstore->ideal_Opcode() == Op_SafePoint)
   551           continue;
   552       } else {
   553         // Some raw memory, such as the load of "top" at an allocation,
   554         // can be control dependent on the previous safepoint. See
   555         // comments in GraphKit::allocate_heap() about control input.
   556         // Inserting an anti-dep between such a safepoint and a use
   557         // creates a cycle, and will cause a subsequent failure in
   558         // local scheduling.  (BugId 4919904)
   559         // (%%% How can a control input be a safepoint and not a projection??)
   560         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
   561           continue;
   562       }
   563     }
   565     // Identify a block that the current load must be above,
   566     // or else observe that 'store' is all the way up in the
   567     // earliest legal block for 'load'.  In the latter case,
   568     // immediately insert an anti-dependence edge.
   569     Block* store_block = _bbs[store->_idx];
   570     assert(store_block != NULL, "unused killing projections skipped above");
   572     if (store->is_Phi()) {
   573       // 'load' uses memory which is one (or more) of the Phi's inputs.
   574       // It must be scheduled not before the Phi, but rather before
   575       // each of the relevant Phi inputs.
   576       //
   577       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
   578       // we mark each corresponding predecessor block and do a combined
   579       // hoisting operation later (raise_LCA_above_marks).
   580       //
   581       // Do not assert(store_block != early, "Phi merging memory after access")
   582       // PhiNode may be at start of block 'early' with backedge to 'early'
   583       DEBUG_ONLY(bool found_match = false);
   584       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
   585         if (store->in(j) == mem) {   // Found matching input?
   586           DEBUG_ONLY(found_match = true);
   587           Block* pred_block = _bbs[store_block->pred(j)->_idx];
   588           if (pred_block != early) {
   589             // If any predecessor of the Phi matches the load's "early block",
   590             // we do not need a precedence edge between the Phi and 'load'
   591             // since the load will be forced into a block preceeding the Phi.
   592             pred_block->set_raise_LCA_mark(load_index);
   593             assert(!LCA_orig->dominates(pred_block) ||
   594                    early->dominates(pred_block), "early is high enough");
   595             must_raise_LCA = true;
   596           }
   597         }
   598       }
   599       assert(found_match, "no worklist bug");
   600 #ifdef TRACK_PHI_INPUTS
   601 #ifdef ASSERT
   602       // This assert asks about correct handling of PhiNodes, which may not
   603       // have all input edges directly from 'mem'. See BugId 4621264
   604       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
   605       // Increment by exactly one even if there are multiple copies of 'mem'
   606       // coming into the phi, because we will run this block several times
   607       // if there are several copies of 'mem'.  (That's how DU iterators work.)
   608       phi_inputs.at_put(store->_idx, num_mem_inputs);
   609       assert(PhiNode::Input + num_mem_inputs < store->req(),
   610              "Expect at least one phi input will not be from original memory state");
   611 #endif //ASSERT
   612 #endif //TRACK_PHI_INPUTS
   613     } else if (store_block != early) {
   614       // 'store' is between the current LCA and earliest possible block.
   615       // Label its block, and decide later on how to raise the LCA
   616       // to include the effect on LCA of this store.
   617       // If this store's block gets chosen as the raised LCA, we
   618       // will find him on the non_early_stores list and stick him
   619       // with a precedence edge.
   620       // (But, don't bother if LCA is already raised all the way.)
   621       if (LCA != early) {
   622         store_block->set_raise_LCA_mark(load_index);
   623         must_raise_LCA = true;
   624         non_early_stores.push(store);
   625       }
   626     } else {
   627       // Found a possibly-interfering store in the load's 'early' block.
   628       // This means 'load' cannot sink at all in the dominator tree.
   629       // Add an anti-dep edge, and squeeze 'load' into the highest block.
   630       assert(store != load->in(0), "dependence cycle found");
   631       if (verify) {
   632         assert(store->find_edge(load) != -1, "missing precedence edge");
   633       } else {
   634         store->add_prec(load);
   635       }
   636       LCA = early;
   637       // This turns off the process of gathering non_early_stores.
   638     }
   639   }
   640   // (Worklist is now empty; all nearby stores have been visited.)
   642   // Finished if 'load' must be scheduled in its 'early' block.
   643   // If we found any stores there, they have already been given
   644   // precedence edges.
   645   if (LCA == early)  return LCA;
   647   // We get here only if there are no possibly-interfering stores
   648   // in the load's 'early' block.  Move LCA up above all predecessors
   649   // which contain stores we have noted.
   650   //
   651   // The raised LCA block can be a home to such interfering stores,
   652   // but its predecessors must not contain any such stores.
   653   //
   654   // The raised LCA will be a lower bound for placing the load,
   655   // preventing the load from sinking past any block containing
   656   // a store that may invalidate the memory state required by 'load'.
   657   if (must_raise_LCA)
   658     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
   659   if (LCA == early)  return LCA;
   661   // Insert anti-dependence edges from 'load' to each store
   662   // in the non-early LCA block.
   663   // Mine the non_early_stores list for such stores.
   664   if (LCA->raise_LCA_mark() == load_index) {
   665     while (non_early_stores.size() > 0) {
   666       Node* store = non_early_stores.pop();
   667       Block* store_block = _bbs[store->_idx];
   668       if (store_block == LCA) {
   669         // add anti_dependence from store to load in its own block
   670         assert(store != load->in(0), "dependence cycle found");
   671         if (verify) {
   672           assert(store->find_edge(load) != -1, "missing precedence edge");
   673         } else {
   674           store->add_prec(load);
   675         }
   676       } else {
   677         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
   678         // Any other stores we found must be either inside the new LCA
   679         // or else outside the original LCA.  In the latter case, they
   680         // did not interfere with any use of 'load'.
   681         assert(LCA->dominates(store_block)
   682                || !LCA_orig->dominates(store_block), "no stray stores");
   683       }
   684     }
   685   }
   687   // Return the highest block containing stores; any stores
   688   // within that block have been given anti-dependence edges.
   689   return LCA;
   690 }
   692 // This class is used to iterate backwards over the nodes in the graph.
   694 class Node_Backward_Iterator {
   696 private:
   697   Node_Backward_Iterator();
   699 public:
   700   // Constructor for the iterator
   701   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
   703   // Postincrement operator to iterate over the nodes
   704   Node *next();
   706 private:
   707   VectorSet   &_visited;
   708   Node_List   &_stack;
   709   Block_Array &_bbs;
   710 };
   712 // Constructor for the Node_Backward_Iterator
   713 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
   714   : _visited(visited), _stack(stack), _bbs(bbs) {
   715   // The stack should contain exactly the root
   716   stack.clear();
   717   stack.push(root);
   719   // Clear the visited bits
   720   visited.Clear();
   721 }
   723 // Iterator for the Node_Backward_Iterator
   724 Node *Node_Backward_Iterator::next() {
   726   // If the _stack is empty, then just return NULL: finished.
   727   if ( !_stack.size() )
   728     return NULL;
   730   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
   731   // made stateless, so I do not need to record the index 'i' on my _stack.
   732   // Instead I visit all users each time, scanning for unvisited users.
   733   // I visit unvisited not-anti-dependence users first, then anti-dependent
   734   // children next.
   735   Node *self = _stack.pop();
   737   // I cycle here when I am entering a deeper level of recursion.
   738   // The key variable 'self' was set prior to jumping here.
   739   while( 1 ) {
   741     _visited.set(self->_idx);
   743     // Now schedule all uses as late as possible.
   744     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
   745     uint src_rpo = _bbs[src]->_rpo;
   747     // Schedule all nodes in a post-order visit
   748     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
   750     // Scan for unvisited nodes
   751     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
   752       // For all uses, schedule late
   753       Node* n = self->fast_out(i); // Use
   755       // Skip already visited children
   756       if ( _visited.test(n->_idx) )
   757         continue;
   759       // do not traverse backward control edges
   760       Node *use = n->is_Proj() ? n->in(0) : n;
   761       uint use_rpo = _bbs[use->_idx]->_rpo;
   763       if ( use_rpo < src_rpo )
   764         continue;
   766       // Phi nodes always precede uses in a basic block
   767       if ( use_rpo == src_rpo && use->is_Phi() )
   768         continue;
   770       unvisited = n;      // Found unvisited
   772       // Check for possible-anti-dependent
   773       if( !n->needs_anti_dependence_check() )
   774         break;            // Not visited, not anti-dep; schedule it NOW
   775     }
   777     // Did I find an unvisited not-anti-dependent Node?
   778     if ( !unvisited )
   779       break;                  // All done with children; post-visit 'self'
   781     // Visit the unvisited Node.  Contains the obvious push to
   782     // indicate I'm entering a deeper level of recursion.  I push the
   783     // old state onto the _stack and set a new state and loop (recurse).
   784     _stack.push(self);
   785     self = unvisited;
   786   } // End recursion loop
   788   return self;
   789 }
   791 //------------------------------ComputeLatenciesBackwards----------------------
   792 // Compute the latency of all the instructions.
   793 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
   794 #ifndef PRODUCT
   795   if (trace_opto_pipelining())
   796     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
   797 #endif
   799   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
   800   Node *n;
   802   // Walk over all the nodes from last to first
   803   while (n = iter.next()) {
   804     // Set the latency for the definitions of this instruction
   805     partial_latency_of_defs(n);
   806   }
   807 } // end ComputeLatenciesBackwards
   809 //------------------------------partial_latency_of_defs------------------------
   810 // Compute the latency impact of this node on all defs.  This computes
   811 // a number that increases as we approach the beginning of the routine.
   812 void PhaseCFG::partial_latency_of_defs(Node *n) {
   813   // Set the latency for this instruction
   814 #ifndef PRODUCT
   815   if (trace_opto_pipelining()) {
   816     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
   817                n->_idx, _node_latency.at_grow(n->_idx));
   818     dump();
   819   }
   820 #endif
   822   if (n->is_Proj())
   823     n = n->in(0);
   825   if (n->is_Root())
   826     return;
   828   uint nlen = n->len();
   829   uint use_latency = _node_latency.at_grow(n->_idx);
   830   uint use_pre_order = _bbs[n->_idx]->_pre_order;
   832   for ( uint j=0; j<nlen; j++ ) {
   833     Node *def = n->in(j);
   835     if (!def || def == n)
   836       continue;
   838     // Walk backwards thru projections
   839     if (def->is_Proj())
   840       def = def->in(0);
   842 #ifndef PRODUCT
   843     if (trace_opto_pipelining()) {
   844       tty->print("#    in(%2d): ", j);
   845       def->dump();
   846     }
   847 #endif
   849     // If the defining block is not known, assume it is ok
   850     Block *def_block = _bbs[def->_idx];
   851     uint def_pre_order = def_block ? def_block->_pre_order : 0;
   853     if ( (use_pre_order <  def_pre_order) ||
   854          (use_pre_order == def_pre_order && n->is_Phi()) )
   855       continue;
   857     uint delta_latency = n->latency(j);
   858     uint current_latency = delta_latency + use_latency;
   860     if (_node_latency.at_grow(def->_idx) < current_latency) {
   861       _node_latency.at_put_grow(def->_idx, current_latency);
   862     }
   864 #ifndef PRODUCT
   865     if (trace_opto_pipelining()) {
   866       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
   867                     use_latency, j, delta_latency, current_latency, def->_idx,
   868                     _node_latency.at_grow(def->_idx));
   869     }
   870 #endif
   871   }
   872 }
   874 //------------------------------latency_from_use-------------------------------
   875 // Compute the latency of a specific use
   876 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
   877   // If self-reference, return no latency
   878   if (use == n || use->is_Root())
   879     return 0;
   881   uint def_pre_order = _bbs[def->_idx]->_pre_order;
   882   uint latency = 0;
   884   // If the use is not a projection, then it is simple...
   885   if (!use->is_Proj()) {
   886 #ifndef PRODUCT
   887     if (trace_opto_pipelining()) {
   888       tty->print("#    out(): ");
   889       use->dump();
   890     }
   891 #endif
   893     uint use_pre_order = _bbs[use->_idx]->_pre_order;
   895     if (use_pre_order < def_pre_order)
   896       return 0;
   898     if (use_pre_order == def_pre_order && use->is_Phi())
   899       return 0;
   901     uint nlen = use->len();
   902     uint nl = _node_latency.at_grow(use->_idx);
   904     for ( uint j=0; j<nlen; j++ ) {
   905       if (use->in(j) == n) {
   906         // Change this if we want local latencies
   907         uint ul = use->latency(j);
   908         uint  l = ul + nl;
   909         if (latency < l) latency = l;
   910 #ifndef PRODUCT
   911         if (trace_opto_pipelining()) {
   912           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
   913                         nl, j, ul, l, latency);
   914         }
   915 #endif
   916       }
   917     }
   918   } else {
   919     // This is a projection, just grab the latency of the use(s)
   920     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
   921       uint l = latency_from_use(use, def, use->fast_out(j));
   922       if (latency < l) latency = l;
   923     }
   924   }
   926   return latency;
   927 }
   929 //------------------------------latency_from_uses------------------------------
   930 // Compute the latency of this instruction relative to all of it's uses.
   931 // This computes a number that increases as we approach the beginning of the
   932 // routine.
   933 void PhaseCFG::latency_from_uses(Node *n) {
   934   // Set the latency for this instruction
   935 #ifndef PRODUCT
   936   if (trace_opto_pipelining()) {
   937     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
   938                n->_idx, _node_latency.at_grow(n->_idx));
   939     dump();
   940   }
   941 #endif
   942   uint latency=0;
   943   const Node *def = n->is_Proj() ? n->in(0): n;
   945   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   946     uint l = latency_from_use(n, def, n->fast_out(i));
   948     if (latency < l) latency = l;
   949   }
   951   _node_latency.at_put_grow(n->_idx, latency);
   952 }
   954 //------------------------------hoist_to_cheaper_block-------------------------
   955 // Pick a block for node self, between early and LCA, that is a cheaper
   956 // alternative to LCA.
   957 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
   958   const double delta = 1+PROB_UNLIKELY_MAG(4);
   959   Block* least       = LCA;
   960   double least_freq  = least->_freq;
   961   uint target        = _node_latency.at_grow(self->_idx);
   962   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
   963   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
   964   bool in_latency    = (target <= start_latency);
   965   const Block* root_block = _bbs[_root->_idx];
   967   // Turn off latency scheduling if scheduling is just plain off
   968   if (!C->do_scheduling())
   969     in_latency = true;
   971   // Do not hoist (to cover latency) instructions which target a
   972   // single register.  Hoisting stretches the live range of the
   973   // single register and may force spilling.
   974   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
   975   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
   976     in_latency = true;
   978 #ifndef PRODUCT
   979   if (trace_opto_pipelining()) {
   980     tty->print("# Find cheaper block for latency %d: ",
   981       _node_latency.at_grow(self->_idx));
   982     self->dump();
   983     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
   984       LCA->_pre_order,
   985       LCA->_nodes[0]->_idx,
   986       start_latency,
   987       LCA->_nodes[LCA->end_idx()]->_idx,
   988       end_latency,
   989       least_freq);
   990   }
   991 #endif
   993   // Walk up the dominator tree from LCA (Lowest common ancestor) to
   994   // the earliest legal location.  Capture the least execution frequency.
   995   while (LCA != early) {
   996     LCA = LCA->_idom;         // Follow up the dominator tree
   998     if (LCA == NULL) {
   999       // Bailout without retry
  1000       C->record_method_not_compilable("late schedule failed: LCA == NULL");
  1001       return least;
  1004     // Don't hoist machine instructions to the root basic block
  1005     if (mach && LCA == root_block)
  1006       break;
  1008     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
  1009     uint end_idx   = LCA->end_idx();
  1010     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
  1011     double LCA_freq = LCA->_freq;
  1012 #ifndef PRODUCT
  1013     if (trace_opto_pipelining()) {
  1014       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1015         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
  1017 #endif
  1018     if (LCA_freq < least_freq              || // Better Frequency
  1019         ( !in_latency                   &&    // No block containing latency
  1020           LCA_freq < least_freq * delta &&    // No worse frequency
  1021           target >= end_lat             &&    // within latency range
  1022           !self->is_iteratively_computed() )  // But don't hoist IV increments
  1023              // because they may end up above other uses of their phi forcing
  1024              // their result register to be different from their input.
  1025        ) {
  1026       least = LCA;            // Found cheaper block
  1027       least_freq = LCA_freq;
  1028       start_latency = start_lat;
  1029       end_latency = end_lat;
  1030       if (target <= start_lat)
  1031         in_latency = true;
  1035 #ifndef PRODUCT
  1036   if (trace_opto_pipelining()) {
  1037     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
  1038       least->_pre_order, start_latency, least_freq);
  1040 #endif
  1042   // See if the latency needs to be updated
  1043   if (target < end_latency) {
  1044 #ifndef PRODUCT
  1045     if (trace_opto_pipelining()) {
  1046       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
  1048 #endif
  1049     _node_latency.at_put_grow(self->_idx, end_latency);
  1050     partial_latency_of_defs(self);
  1053   return least;
  1057 //------------------------------schedule_late-----------------------------------
  1058 // Now schedule all codes as LATE as possible.  This is the LCA in the
  1059 // dominator tree of all USES of a value.  Pick the block with the least
  1060 // loop nesting depth that is lowest in the dominator tree.
  1061 extern const char must_clone[];
  1062 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
  1063 #ifndef PRODUCT
  1064   if (trace_opto_pipelining())
  1065     tty->print("\n#---- schedule_late ----\n");
  1066 #endif
  1068   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
  1069   Node *self;
  1071   // Walk over all the nodes from last to first
  1072   while (self = iter.next()) {
  1073     Block* early = _bbs[self->_idx];   // Earliest legal placement
  1075     if (self->is_top()) {
  1076       // Top node goes in bb #2 with other constants.
  1077       // It must be special-cased, because it has no out edges.
  1078       early->add_inst(self);
  1079       continue;
  1082     // No uses, just terminate
  1083     if (self->outcnt() == 0) {
  1084       assert(self->Opcode() == Op_MachProj, "sanity");
  1085       continue;                   // Must be a dead machine projection
  1088     // If node is pinned in the block, then no scheduling can be done.
  1089     if( self->pinned() )          // Pinned in block?
  1090       continue;
  1092     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1093     if (mach) {
  1094       switch (mach->ideal_Opcode()) {
  1095       case Op_CreateEx:
  1096         // Don't move exception creation
  1097         early->add_inst(self);
  1098         continue;
  1099         break;
  1100       case Op_CheckCastPP:
  1101         // Don't move CheckCastPP nodes away from their input, if the input
  1102         // is a rawptr (5071820).
  1103         Node *def = self->in(1);
  1104         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
  1105           early->add_inst(self);
  1106           continue;
  1108         break;
  1112     // Gather LCA of all uses
  1113     Block *LCA = NULL;
  1115       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
  1116         // For all uses, find LCA
  1117         Node* use = self->fast_out(i);
  1118         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
  1120     }  // (Hide defs of imax, i from rest of block.)
  1122     // Place temps in the block of their use.  This isn't a
  1123     // requirement for correctness but it reduces useless
  1124     // interference between temps and other nodes.
  1125     if (mach != NULL && mach->is_MachTemp()) {
  1126       _bbs.map(self->_idx, LCA);
  1127       LCA->add_inst(self);
  1128       continue;
  1131     // Check if 'self' could be anti-dependent on memory
  1132     if (self->needs_anti_dependence_check()) {
  1133       // Hoist LCA above possible-defs and insert anti-dependences to
  1134       // defs in new LCA block.
  1135       LCA = insert_anti_dependences(LCA, self);
  1138     if (early->_dom_depth > LCA->_dom_depth) {
  1139       // Somehow the LCA has moved above the earliest legal point.
  1140       // (One way this can happen is via memory_early_block.)
  1141       if (C->subsume_loads() == true && !C->failing()) {
  1142         // Retry with subsume_loads == false
  1143         // If this is the first failure, the sentinel string will "stick"
  1144         // to the Compile object, and the C2Compiler will see it and retry.
  1145         C->record_failure(C2Compiler::retry_no_subsuming_loads());
  1146       } else {
  1147         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
  1148         C->record_method_not_compilable("late schedule failed: incorrect graph");
  1150       return;
  1153     // If there is no opportunity to hoist, then we're done.
  1154     bool try_to_hoist = (LCA != early);
  1156     // Must clone guys stay next to use; no hoisting allowed.
  1157     // Also cannot hoist guys that alter memory or are otherwise not
  1158     // allocatable (hoisting can make a value live longer, leading to
  1159     // anti and output dependency problems which are normally resolved
  1160     // by the register allocator giving everyone a different register).
  1161     if (mach != NULL && must_clone[mach->ideal_Opcode()])
  1162       try_to_hoist = false;
  1164     Block* late = NULL;
  1165     if (try_to_hoist) {
  1166       // Now find the block with the least execution frequency.
  1167       // Start at the latest schedule and work up to the earliest schedule
  1168       // in the dominator tree.  Thus the Node will dominate all its uses.
  1169       late = hoist_to_cheaper_block(LCA, early, self);
  1170     } else {
  1171       // Just use the LCA of the uses.
  1172       late = LCA;
  1175     // Put the node into target block
  1176     schedule_node_into_block(self, late);
  1178 #ifdef ASSERT
  1179     if (self->needs_anti_dependence_check()) {
  1180       // since precedence edges are only inserted when we're sure they
  1181       // are needed make sure that after placement in a block we don't
  1182       // need any new precedence edges.
  1183       verify_anti_dependences(late, self);
  1185 #endif
  1186   } // Loop until all nodes have been visited
  1188 } // end ScheduleLate
  1190 //------------------------------GlobalCodeMotion-------------------------------
  1191 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
  1192   ResourceMark rm;
  1194 #ifndef PRODUCT
  1195   if (trace_opto_pipelining()) {
  1196     tty->print("\n---- Start GlobalCodeMotion ----\n");
  1198 #endif
  1200   // Initialize the bbs.map for things on the proj_list
  1201   uint i;
  1202   for( i=0; i < proj_list.size(); i++ )
  1203     _bbs.map(proj_list[i]->_idx, NULL);
  1205   // Set the basic block for Nodes pinned into blocks
  1206   Arena *a = Thread::current()->resource_area();
  1207   VectorSet visited(a);
  1208   schedule_pinned_nodes( visited );
  1210   // Find the earliest Block any instruction can be placed in.  Some
  1211   // instructions are pinned into Blocks.  Unpinned instructions can
  1212   // appear in last block in which all their inputs occur.
  1213   visited.Clear();
  1214   Node_List stack(a);
  1215   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
  1216   if (!schedule_early(visited, stack)) {
  1217     // Bailout without retry
  1218     C->record_method_not_compilable("early schedule failed");
  1219     return;
  1222   // Build Def-Use edges.
  1223   proj_list.push(_root);        // Add real root as another root
  1224   proj_list.pop();
  1226   // Compute the latency information (via backwards walk) for all the
  1227   // instructions in the graph
  1228   GrowableArray<uint> node_latency;
  1229   _node_latency = node_latency;
  1231   if( C->do_scheduling() )
  1232     ComputeLatenciesBackwards(visited, stack);
  1234   // Now schedule all codes as LATE as possible.  This is the LCA in the
  1235   // dominator tree of all USES of a value.  Pick the block with the least
  1236   // loop nesting depth that is lowest in the dominator tree.
  1237   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  1238   schedule_late(visited, stack);
  1239   if( C->failing() ) {
  1240     // schedule_late fails only when graph is incorrect.
  1241     assert(!VerifyGraphEdges, "verification should have failed");
  1242     return;
  1245   unique = C->unique();
  1247 #ifndef PRODUCT
  1248   if (trace_opto_pipelining()) {
  1249     tty->print("\n---- Detect implicit null checks ----\n");
  1251 #endif
  1253   // Detect implicit-null-check opportunities.  Basically, find NULL checks
  1254   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  1255   // I can generate a memory op if there is not one nearby.
  1256   if (C->is_method_compilation()) {
  1257     // Don't do it for natives, adapters, or runtime stubs
  1258     int allowed_reasons = 0;
  1259     // ...and don't do it when there have been too many traps, globally.
  1260     for (int reason = (int)Deoptimization::Reason_none+1;
  1261          reason < Compile::trapHistLength; reason++) {
  1262       assert(reason < BitsPerInt, "recode bit map");
  1263       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
  1264         allowed_reasons |= nth_bit(reason);
  1266     // By reversing the loop direction we get a very minor gain on mpegaudio.
  1267     // Feel free to revert to a forward loop for clarity.
  1268     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
  1269     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
  1270       Node *proj = matcher._null_check_tests[i  ];
  1271       Node *val  = matcher._null_check_tests[i+1];
  1272       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
  1273       // The implicit_null_check will only perform the transformation
  1274       // if the null branch is truly uncommon, *and* it leads to an
  1275       // uncommon trap.  Combined with the too_many_traps guards
  1276       // above, this prevents SEGV storms reported in 6366351,
  1277       // by recompiling offending methods without this optimization.
  1281 #ifndef PRODUCT
  1282   if (trace_opto_pipelining()) {
  1283     tty->print("\n---- Start Local Scheduling ----\n");
  1285 #endif
  1287   // Schedule locally.  Right now a simple topological sort.
  1288   // Later, do a real latency aware scheduler.
  1289   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
  1290   memset( ready_cnt, -1, C->unique() * sizeof(int) );
  1291   visited.Clear();
  1292   for (i = 0; i < _num_blocks; i++) {
  1293     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
  1294       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  1295         C->record_method_not_compilable("local schedule failed");
  1297       return;
  1301   // If we inserted any instructions between a Call and his CatchNode,
  1302   // clone the instructions on all paths below the Catch.
  1303   for( i=0; i < _num_blocks; i++ )
  1304     _blocks[i]->call_catch_cleanup(_bbs);
  1306 #ifndef PRODUCT
  1307   if (trace_opto_pipelining()) {
  1308     tty->print("\n---- After GlobalCodeMotion ----\n");
  1309     for (uint i = 0; i < _num_blocks; i++) {
  1310       _blocks[i]->dump();
  1313 #endif
  1317 //------------------------------Estimate_Block_Frequency-----------------------
  1318 // Estimate block frequencies based on IfNode probabilities.
  1319 void PhaseCFG::Estimate_Block_Frequency() {
  1320   int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
  1321   // Most of our algorithms will die horribly if frequency can become
  1322   // negative so make sure cnts is a sane value.
  1323   if( cnts <= 0 ) cnts = 1;
  1324   float f = (float)cnts/(float)FreqCountInvocations;
  1326   // Create the loop tree and calculate loop depth.
  1327   _root_loop = create_loop_tree();
  1328   _root_loop->compute_loop_depth(0);
  1330   // Compute block frequency of each block, relative to a single loop entry.
  1331   _root_loop->compute_freq();
  1333   // Adjust all frequencies to be relative to a single method entry
  1334   _root_loop->_freq = f * 1.0;
  1335   _root_loop->scale_freq();
  1337   // force paths ending at uncommon traps to be infrequent
  1338   Block_List worklist;
  1339   Block* root_blk = _blocks[0];
  1340   for (uint i = 0; i < root_blk->num_preds(); i++) {
  1341     Block *pb = _bbs[root_blk->pred(i)->_idx];
  1342     if (pb->has_uncommon_code()) {
  1343       worklist.push(pb);
  1346   while (worklist.size() > 0) {
  1347     Block* uct = worklist.pop();
  1348     uct->_freq = PROB_MIN;
  1349     for (uint i = 0; i < uct->num_preds(); i++) {
  1350       Block *pb = _bbs[uct->pred(i)->_idx];
  1351       if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
  1352         worklist.push(pb);
  1357 #ifndef PRODUCT
  1358   if (PrintCFGBlockFreq) {
  1359     tty->print_cr("CFG Block Frequencies");
  1360     _root_loop->dump_tree();
  1361     if (Verbose) {
  1362       tty->print_cr("PhaseCFG dump");
  1363       dump();
  1364       tty->print_cr("Node dump");
  1365       _root->dump(99999);
  1368 #endif
  1371 //----------------------------create_loop_tree--------------------------------
  1372 // Create a loop tree from the CFG
  1373 CFGLoop* PhaseCFG::create_loop_tree() {
  1375 #ifdef ASSERT
  1376   assert( _blocks[0] == _broot, "" );
  1377   for (uint i = 0; i < _num_blocks; i++ ) {
  1378     Block *b = _blocks[i];
  1379     // Check that _loop field are clear...we could clear them if not.
  1380     assert(b->_loop == NULL, "clear _loop expected");
  1381     // Sanity check that the RPO numbering is reflected in the _blocks array.
  1382     // It doesn't have to be for the loop tree to be built, but if it is not,
  1383     // then the blocks have been reordered since dom graph building...which
  1384     // may question the RPO numbering
  1385     assert(b->_rpo == i, "unexpected reverse post order number");
  1387 #endif
  1389   int idct = 0;
  1390   CFGLoop* root_loop = new CFGLoop(idct++);
  1392   Block_List worklist;
  1394   // Assign blocks to loops
  1395   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
  1396     Block *b = _blocks[i];
  1398     if (b->head()->is_Loop()) {
  1399       Block* loop_head = b;
  1400       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1401       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
  1402       Block* tail = _bbs[tail_n->_idx];
  1404       // Defensively filter out Loop nodes for non-single-entry loops.
  1405       // For all reasonable loops, the head occurs before the tail in RPO.
  1406       if (i <= tail->_rpo) {
  1408         // The tail and (recursive) predecessors of the tail
  1409         // are made members of a new loop.
  1411         assert(worklist.size() == 0, "nonempty worklist");
  1412         CFGLoop* nloop = new CFGLoop(idct++);
  1413         assert(loop_head->_loop == NULL, "just checking");
  1414         loop_head->_loop = nloop;
  1415         // Add to nloop so push_pred() will skip over inner loops
  1416         nloop->add_member(loop_head);
  1417         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
  1419         while (worklist.size() > 0) {
  1420           Block* member = worklist.pop();
  1421           if (member != loop_head) {
  1422             for (uint j = 1; j < member->num_preds(); j++) {
  1423               nloop->push_pred(member, j, worklist, _bbs);
  1431   // Create a member list for each loop consisting
  1432   // of both blocks and (immediate child) loops.
  1433   for (uint i = 0; i < _num_blocks; i++) {
  1434     Block *b = _blocks[i];
  1435     CFGLoop* lp = b->_loop;
  1436     if (lp == NULL) {
  1437       // Not assigned to a loop. Add it to the method's pseudo loop.
  1438       b->_loop = root_loop;
  1439       lp = root_loop;
  1441     if (lp == root_loop || b != lp->head()) { // loop heads are already members
  1442       lp->add_member(b);
  1444     if (lp != root_loop) {
  1445       if (lp->parent() == NULL) {
  1446         // Not a nested loop. Make it a child of the method's pseudo loop.
  1447         root_loop->add_nested_loop(lp);
  1449       if (b == lp->head()) {
  1450         // Add nested loop to member list of parent loop.
  1451         lp->parent()->add_member(lp);
  1456   return root_loop;
  1459 //------------------------------push_pred--------------------------------------
  1460 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
  1461   Node* pred_n = blk->pred(i);
  1462   Block* pred = node_to_blk[pred_n->_idx];
  1463   CFGLoop *pred_loop = pred->_loop;
  1464   if (pred_loop == NULL) {
  1465     // Filter out blocks for non-single-entry loops.
  1466     // For all reasonable loops, the head occurs before the tail in RPO.
  1467     if (pred->_rpo > head()->_rpo) {
  1468       pred->_loop = this;
  1469       worklist.push(pred);
  1471   } else if (pred_loop != this) {
  1472     // Nested loop.
  1473     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
  1474       pred_loop = pred_loop->_parent;
  1476     // Make pred's loop be a child
  1477     if (pred_loop->_parent == NULL) {
  1478       add_nested_loop(pred_loop);
  1479       // Continue with loop entry predecessor.
  1480       Block* pred_head = pred_loop->head();
  1481       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1482       assert(pred_head != head(), "loop head in only one loop");
  1483       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
  1484     } else {
  1485       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
  1490 //------------------------------add_nested_loop--------------------------------
  1491 // Make cl a child of the current loop in the loop tree.
  1492 void CFGLoop::add_nested_loop(CFGLoop* cl) {
  1493   assert(_parent == NULL, "no parent yet");
  1494   assert(cl != this, "not my own parent");
  1495   cl->_parent = this;
  1496   CFGLoop* ch = _child;
  1497   if (ch == NULL) {
  1498     _child = cl;
  1499   } else {
  1500     while (ch->_sibling != NULL) { ch = ch->_sibling; }
  1501     ch->_sibling = cl;
  1505 //------------------------------compute_loop_depth-----------------------------
  1506 // Store the loop depth in each CFGLoop object.
  1507 // Recursively walk the children to do the same for them.
  1508 void CFGLoop::compute_loop_depth(int depth) {
  1509   _depth = depth;
  1510   CFGLoop* ch = _child;
  1511   while (ch != NULL) {
  1512     ch->compute_loop_depth(depth + 1);
  1513     ch = ch->_sibling;
  1517 //------------------------------compute_freq-----------------------------------
  1518 // Compute the frequency of each block and loop, relative to a single entry
  1519 // into the dominating loop head.
  1520 void CFGLoop::compute_freq() {
  1521   // Bottom up traversal of loop tree (visit inner loops first.)
  1522   // Set loop head frequency to 1.0, then transitively
  1523   // compute frequency for all successors in the loop,
  1524   // as well as for each exit edge.  Inner loops are
  1525   // treated as single blocks with loop exit targets
  1526   // as the successor blocks.
  1528   // Nested loops first
  1529   CFGLoop* ch = _child;
  1530   while (ch != NULL) {
  1531     ch->compute_freq();
  1532     ch = ch->_sibling;
  1534   assert (_members.length() > 0, "no empty loops");
  1535   Block* hd = head();
  1536   hd->_freq = 1.0f;
  1537   for (int i = 0; i < _members.length(); i++) {
  1538     CFGElement* s = _members.at(i);
  1539     float freq = s->_freq;
  1540     if (s->is_block()) {
  1541       Block* b = s->as_Block();
  1542       for (uint j = 0; j < b->_num_succs; j++) {
  1543         Block* sb = b->_succs[j];
  1544         update_succ_freq(sb, freq * b->succ_prob(j));
  1546     } else {
  1547       CFGLoop* lp = s->as_CFGLoop();
  1548       assert(lp->_parent == this, "immediate child");
  1549       for (int k = 0; k < lp->_exits.length(); k++) {
  1550         Block* eb = lp->_exits.at(k).get_target();
  1551         float prob = lp->_exits.at(k).get_prob();
  1552         update_succ_freq(eb, freq * prob);
  1557 #if 0
  1558   // Raise frequency of the loop backedge block, in an effort
  1559   // to keep it empty.  Skip the method level "loop".
  1560   if (_parent != NULL) {
  1561     CFGElement* s = _members.at(_members.length() - 1);
  1562     if (s->is_block()) {
  1563       Block* bk = s->as_Block();
  1564       if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
  1565         // almost any value >= 1.0f works
  1566         // FIXME: raw constant
  1567         bk->_freq = 1.05f;
  1571 #endif
  1573   // For all loops other than the outer, "method" loop,
  1574   // sum and normalize the exit probability. The "method" loop
  1575   // should keep the initial exit probability of 1, so that
  1576   // inner blocks do not get erroneously scaled.
  1577   if (_depth != 0) {
  1578     // Total the exit probabilities for this loop.
  1579     float exits_sum = 0.0f;
  1580     for (int i = 0; i < _exits.length(); i++) {
  1581       exits_sum += _exits.at(i).get_prob();
  1584     // Normalize the exit probabilities. Until now, the
  1585     // probabilities estimate the possibility of exit per
  1586     // a single loop iteration; afterward, they estimate
  1587     // the probability of exit per loop entry.
  1588     for (int i = 0; i < _exits.length(); i++) {
  1589       Block* et = _exits.at(i).get_target();
  1590       float new_prob = _exits.at(i).get_prob() / exits_sum;
  1591       BlockProbPair bpp(et, new_prob);
  1592       _exits.at_put(i, bpp);
  1595     // Save the total, but guard against unreasoable probability,
  1596     // as the value is used to estimate the loop trip count.
  1597     // An infinite trip count would blur relative block
  1598     // frequencies.
  1599     if (exits_sum > 1.0f) exits_sum = 1.0;
  1600     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
  1601     _exit_prob = exits_sum;
  1605 //------------------------------succ_prob-------------------------------------
  1606 // Determine the probability of reaching successor 'i' from the receiver block.
  1607 float Block::succ_prob(uint i) {
  1608   int eidx = end_idx();
  1609   Node *n = _nodes[eidx];  // Get ending Node
  1610   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
  1612   // Switch on branch type
  1613   switch( op ) {
  1614   case Op_CountedLoopEnd:
  1615   case Op_If: {
  1616     assert (i < 2, "just checking");
  1617     // Conditionals pass on only part of their frequency
  1618     float prob  = n->as_MachIf()->_prob;
  1619     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
  1620     // If succ[i] is the FALSE branch, invert path info
  1621     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
  1622       return 1.0f - prob; // not taken
  1623     } else {
  1624       return prob; // taken
  1628   case Op_Jump:
  1629     // Divide the frequency between all successors evenly
  1630     return 1.0f/_num_succs;
  1632   case Op_Catch: {
  1633     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
  1634     if (ci->_con == CatchProjNode::fall_through_index) {
  1635       // Fall-thru path gets the lion's share.
  1636       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
  1637     } else {
  1638       // Presume exceptional paths are equally unlikely
  1639       return PROB_UNLIKELY_MAG(5);
  1643   case Op_Root:
  1644   case Op_Goto:
  1645     // Pass frequency straight thru to target
  1646     return 1.0f;
  1648   case Op_NeverBranch:
  1649     return 0.0f;
  1651   case Op_TailCall:
  1652   case Op_TailJump:
  1653   case Op_Return:
  1654   case Op_Halt:
  1655   case Op_Rethrow:
  1656     // Do not push out freq to root block
  1657     return 0.0f;
  1659   default:
  1660     ShouldNotReachHere();
  1663   return 0.0f;
  1666 //------------------------------update_succ_freq-------------------------------
  1667 // Update the appropriate frequency associated with block 'b', a succesor of
  1668 // a block in this loop.
  1669 void CFGLoop::update_succ_freq(Block* b, float freq) {
  1670   if (b->_loop == this) {
  1671     if (b == head()) {
  1672       // back branch within the loop
  1673       // Do nothing now, the loop carried frequency will be
  1674       // adjust later in scale_freq().
  1675     } else {
  1676       // simple branch within the loop
  1677       b->_freq += freq;
  1679   } else if (!in_loop_nest(b)) {
  1680     // branch is exit from this loop
  1681     BlockProbPair bpp(b, freq);
  1682     _exits.append(bpp);
  1683   } else {
  1684     // branch into nested loop
  1685     CFGLoop* ch = b->_loop;
  1686     ch->_freq += freq;
  1690 //------------------------------in_loop_nest-----------------------------------
  1691 // Determine if block b is in the receiver's loop nest.
  1692 bool CFGLoop::in_loop_nest(Block* b) {
  1693   int depth = _depth;
  1694   CFGLoop* b_loop = b->_loop;
  1695   int b_depth = b_loop->_depth;
  1696   if (depth == b_depth) {
  1697     return true;
  1699   while (b_depth > depth) {
  1700     b_loop = b_loop->_parent;
  1701     b_depth = b_loop->_depth;
  1703   return b_loop == this;
  1706 //------------------------------scale_freq-------------------------------------
  1707 // Scale frequency of loops and blocks by trip counts from outer loops
  1708 // Do a top down traversal of loop tree (visit outer loops first.)
  1709 void CFGLoop::scale_freq() {
  1710   float loop_freq = _freq * trip_count();
  1711   for (int i = 0; i < _members.length(); i++) {
  1712     CFGElement* s = _members.at(i);
  1713     s->_freq *= loop_freq;
  1715   CFGLoop* ch = _child;
  1716   while (ch != NULL) {
  1717     ch->scale_freq();
  1718     ch = ch->_sibling;
  1722 #ifndef PRODUCT
  1723 //------------------------------dump_tree--------------------------------------
  1724 void CFGLoop::dump_tree() const {
  1725   dump();
  1726   if (_child != NULL)   _child->dump_tree();
  1727   if (_sibling != NULL) _sibling->dump_tree();
  1730 //------------------------------dump-------------------------------------------
  1731 void CFGLoop::dump() const {
  1732   for (int i = 0; i < _depth; i++) tty->print("   ");
  1733   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
  1734              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  1735   for (int i = 0; i < _depth; i++) tty->print("   ");
  1736   tty->print("         members:", _id);
  1737   int k = 0;
  1738   for (int i = 0; i < _members.length(); i++) {
  1739     if (k++ >= 6) {
  1740       tty->print("\n              ");
  1741       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1742       k = 0;
  1744     CFGElement *s = _members.at(i);
  1745     if (s->is_block()) {
  1746       Block *b = s->as_Block();
  1747       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
  1748     } else {
  1749       CFGLoop* lp = s->as_CFGLoop();
  1750       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
  1753   tty->print("\n");
  1754   for (int i = 0; i < _depth; i++) tty->print("   ");
  1755   tty->print("         exits:  ");
  1756   k = 0;
  1757   for (int i = 0; i < _exits.length(); i++) {
  1758     if (k++ >= 7) {
  1759       tty->print("\n              ");
  1760       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  1761       k = 0;
  1763     Block *blk = _exits.at(i).get_target();
  1764     float prob = _exits.at(i).get_prob();
  1765     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  1767   tty->print("\n");
  1769 #endif

mercurial