src/share/vm/asm/codeBuffer.cpp

Wed, 02 Apr 2008 12:09:59 -0700

author
jrose
date
Wed, 02 Apr 2008 12:09:59 -0700
changeset 535
c7c777385a15
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6667042: PrintAssembly option does not work without special plugin
Summary: remove old private plugin interface, simplify, rework old plugin to use unchanged Gnu sources
Reviewed-by: kvn, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_codeBuffer.cpp.incl"
    28 // The structure of a CodeSection:
    29 //
    30 //    _start ->           +----------------+
    31 //                        | machine code...|
    32 //    _end ->             |----------------|
    33 //                        |                |
    34 //                        |    (empty)     |
    35 //                        |                |
    36 //                        |                |
    37 //                        +----------------+
    38 //    _limit ->           |                |
    39 //
    40 //    _locs_start ->      +----------------+
    41 //                        |reloc records...|
    42 //                        |----------------|
    43 //    _locs_end ->        |                |
    44 //                        |                |
    45 //                        |    (empty)     |
    46 //                        |                |
    47 //                        |                |
    48 //                        +----------------+
    49 //    _locs_limit ->      |                |
    50 // The _end (resp. _limit) pointer refers to the first
    51 // unused (resp. unallocated) byte.
    53 // The structure of the CodeBuffer while code is being accumulated:
    54 //
    55 //    _total_start ->    \
    56 //    _insts._start ->              +----------------+
    57 //                                  |                |
    58 //                                  |     Code       |
    59 //                                  |                |
    60 //    _stubs._start ->              |----------------|
    61 //                                  |                |
    62 //                                  |    Stubs       | (also handlers for deopt/exception)
    63 //                                  |                |
    64 //    _consts._start ->             |----------------|
    65 //                                  |                |
    66 //                                  |   Constants    |
    67 //                                  |                |
    68 //                                  +----------------+
    69 //    + _total_size ->              |                |
    70 //
    71 // When the code and relocations are copied to the code cache,
    72 // the empty parts of each section are removed, and everything
    73 // is copied into contiguous locations.
    75 typedef CodeBuffer::csize_t csize_t;  // file-local definition
    77 // external buffer, in a predefined CodeBlob or other buffer area
    78 // Important: The code_start must be taken exactly, and not realigned.
    79 CodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
    80   assert(code_start != NULL, "sanity");
    81   initialize_misc("static buffer");
    82   initialize(code_start, code_size);
    83   assert(verify_section_allocation(), "initial use of buffer OK");
    84 }
    86 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
    87   // Compute maximal alignment.
    88   int align = _insts.alignment();
    89   // Always allow for empty slop around each section.
    90   int slop = (int) CodeSection::end_slop();
    92   assert(blob() == NULL, "only once");
    93   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
    94   if (blob() == NULL) {
    95     // The assembler constructor will throw a fatal on an empty CodeBuffer.
    96     return;  // caller must test this
    97   }
    99   // Set up various pointers into the blob.
   100   initialize(_total_start, _total_size);
   102   assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
   104   pd_initialize();
   106   if (locs_size != 0) {
   107     _insts.initialize_locs(locs_size / sizeof(relocInfo));
   108   }
   110   assert(verify_section_allocation(), "initial use of blob is OK");
   111 }
   114 CodeBuffer::~CodeBuffer() {
   115   // If we allocate our code buffer from the CodeCache
   116   // via a BufferBlob, and it's not permanent, then
   117   // free the BufferBlob.
   118   // The rest of the memory will be freed when the ResourceObj
   119   // is released.
   120   assert(verify_section_allocation(), "final storage configuration still OK");
   121   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
   122     // Previous incarnations of this buffer are held live, so that internal
   123     // addresses constructed before expansions will not be confused.
   124     cb->free_blob();
   125   }
   126 #ifdef ASSERT
   127   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
   128 #endif
   129 }
   131 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
   132   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
   133   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
   134   _oop_recorder = r;
   135 }
   137 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
   138   assert(cs != &_insts, "insts is the memory provider, not the consumer");
   139 #ifdef ASSERT
   140   for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
   141     CodeSection* prevCS = code_section(n);
   142     if (prevCS == cs)  break;
   143     assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
   144   }
   145 #endif
   146   csize_t slop = CodeSection::end_slop();  // margin between sections
   147   int align = cs->alignment();
   148   assert(is_power_of_2(align), "sanity");
   149   address start  = _insts._start;
   150   address limit  = _insts._limit;
   151   address middle = limit - size;
   152   middle -= (intptr_t)middle & (align-1);  // align the division point downward
   153   guarantee(middle - slop > start, "need enough space to divide up");
   154   _insts._limit = middle - slop;  // subtract desired space, plus slop
   155   cs->initialize(middle, limit - middle);
   156   assert(cs->start() == middle, "sanity");
   157   assert(cs->limit() == limit,  "sanity");
   158   // give it some relocations to start with, if the main section has them
   159   if (_insts.has_locs())  cs->initialize_locs(1);
   160 }
   162 void CodeBuffer::freeze_section(CodeSection* cs) {
   163   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
   164   csize_t frozen_size = cs->size();
   165   if (next_cs != NULL) {
   166     frozen_size = next_cs->align_at_start(frozen_size);
   167   }
   168   address old_limit = cs->limit();
   169   address new_limit = cs->start() + frozen_size;
   170   relocInfo* old_locs_limit = cs->locs_limit();
   171   relocInfo* new_locs_limit = cs->locs_end();
   172   // Patch the limits.
   173   cs->_limit = new_limit;
   174   cs->_locs_limit = new_locs_limit;
   175   cs->_frozen = true;
   176   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
   177     // Give remaining buffer space to the following section.
   178     next_cs->initialize(new_limit, old_limit - new_limit);
   179     next_cs->initialize_shared_locs(new_locs_limit,
   180                                     old_locs_limit - new_locs_limit);
   181   }
   182 }
   184 void CodeBuffer::set_blob(BufferBlob* blob) {
   185   _blob = blob;
   186   if (blob != NULL) {
   187     address start = blob->instructions_begin();
   188     address end   = blob->instructions_end();
   189     // Round up the starting address.
   190     int align = _insts.alignment();
   191     start += (-(intptr_t)start) & (align-1);
   192     _total_start = start;
   193     _total_size  = end - start;
   194   } else {
   195     #ifdef ASSERT
   196     // Clean out dangling pointers.
   197     _total_start    = badAddress;
   198     _insts._start   = _insts._end   = badAddress;
   199     _stubs._start   = _stubs._end   = badAddress;
   200     _consts._start  = _consts._end  = badAddress;
   201     #endif //ASSERT
   202   }
   203 }
   205 void CodeBuffer::free_blob() {
   206   if (_blob != NULL) {
   207     BufferBlob::free(_blob);
   208     set_blob(NULL);
   209   }
   210 }
   212 const char* CodeBuffer::code_section_name(int n) {
   213 #ifdef PRODUCT
   214   return NULL;
   215 #else //PRODUCT
   216   switch (n) {
   217   case SECT_INSTS:             return "insts";
   218   case SECT_STUBS:             return "stubs";
   219   case SECT_CONSTS:            return "consts";
   220   default:                     return NULL;
   221   }
   222 #endif //PRODUCT
   223 }
   225 int CodeBuffer::section_index_of(address addr) const {
   226   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   227     const CodeSection* cs = code_section(n);
   228     if (cs->allocates(addr))  return n;
   229   }
   230   return SECT_NONE;
   231 }
   233 int CodeBuffer::locator(address addr) const {
   234   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   235     const CodeSection* cs = code_section(n);
   236     if (cs->allocates(addr)) {
   237       return locator(addr - cs->start(), n);
   238     }
   239   }
   240   return -1;
   241 }
   243 address CodeBuffer::locator_address(int locator) const {
   244   if (locator < 0)  return NULL;
   245   address start = code_section(locator_sect(locator))->start();
   246   return start + locator_pos(locator);
   247 }
   249 address CodeBuffer::decode_begin() {
   250   address begin = _insts.start();
   251   if (_decode_begin != NULL && _decode_begin > begin)
   252     begin = _decode_begin;
   253   return begin;
   254 }
   257 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
   258   if (_overflow_arena == NULL) {
   259     _overflow_arena = new Arena();
   260   }
   261   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
   262 }
   265 // Helper function for managing labels and their target addresses.
   266 // Returns a sensible address, and if it is not the label's final
   267 // address, notes the dependency (at 'branch_pc') on the label.
   268 address CodeSection::target(Label& L, address branch_pc) {
   269   if (L.is_bound()) {
   270     int loc = L.loc();
   271     if (index() == CodeBuffer::locator_sect(loc)) {
   272       return start() + CodeBuffer::locator_pos(loc);
   273     } else {
   274       return outer()->locator_address(loc);
   275     }
   276   } else {
   277     assert(allocates2(branch_pc), "sanity");
   278     address base = start();
   279     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
   280     L.add_patch_at(outer(), patch_loc);
   282     // Need to return a pc, doesn't matter what it is since it will be
   283     // replaced during resolution later.
   284     // (Don't return NULL or badAddress, since branches shouldn't overflow.)
   285     return base;
   286   }
   287 }
   289 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
   290   Relocation* reloc = spec.reloc();
   291   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
   292   if (rtype == relocInfo::none)  return;
   294   // The assertion below has been adjusted, to also work for
   295   // relocation for fixup.  Sometimes we want to put relocation
   296   // information for the next instruction, since it will be patched
   297   // with a call.
   298   assert(start() <= at && at <= end()+1,
   299          "cannot relocate data outside code boundaries");
   301   if (!has_locs()) {
   302     // no space for relocation information provided => code cannot be
   303     // relocated.  Make sure that relocate is only called with rtypes
   304     // that can be ignored for this kind of code.
   305     assert(rtype == relocInfo::none              ||
   306            rtype == relocInfo::runtime_call_type ||
   307            rtype == relocInfo::internal_word_type||
   308            rtype == relocInfo::section_word_type ||
   309            rtype == relocInfo::external_word_type,
   310            "code needs relocation information");
   311     // leave behind an indication that we attempted a relocation
   312     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
   313     return;
   314   }
   316   // Advance the point, noting the offset we'll have to record.
   317   csize_t offset = at - locs_point();
   318   set_locs_point(at);
   320   // Test for a couple of overflow conditions; maybe expand the buffer.
   321   relocInfo* end = locs_end();
   322   relocInfo* req = end + relocInfo::length_limit;
   323   // Check for (potential) overflow
   324   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
   325     req += (uint)offset / (uint)relocInfo::offset_limit();
   326     if (req >= locs_limit()) {
   327       // Allocate or reallocate.
   328       expand_locs(locs_count() + (req - end));
   329       // reload pointer
   330       end = locs_end();
   331     }
   332   }
   334   // If the offset is giant, emit filler relocs, of type 'none', but
   335   // each carrying the largest possible offset, to advance the locs_point.
   336   while (offset >= relocInfo::offset_limit()) {
   337     assert(end < locs_limit(), "adjust previous paragraph of code");
   338     *end++ = filler_relocInfo();
   339     offset -= filler_relocInfo().addr_offset();
   340   }
   342   // If it's a simple reloc with no data, we'll just write (rtype | offset).
   343   (*end) = relocInfo(rtype, offset, format);
   345   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
   346   end->initialize(this, reloc);
   347 }
   349 void CodeSection::initialize_locs(int locs_capacity) {
   350   assert(_locs_start == NULL, "only one locs init step, please");
   351   // Apply a priori lower limits to relocation size:
   352   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
   353   if (locs_capacity < min_locs)  locs_capacity = min_locs;
   354   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
   355   _locs_start    = locs_start;
   356   _locs_end      = locs_start;
   357   _locs_limit    = locs_start + locs_capacity;
   358   _locs_own      = true;
   359 }
   361 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
   362   assert(_locs_start == NULL, "do this before locs are allocated");
   363   // Internal invariant:  locs buf must be fully aligned.
   364   // See copy_relocations_to() below.
   365   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
   366     ++buf; --length;
   367   }
   368   if (length > 0) {
   369     _locs_start = buf;
   370     _locs_end   = buf;
   371     _locs_limit = buf + length;
   372     _locs_own   = false;
   373   }
   374 }
   376 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
   377   int lcount = source_cs->locs_count();
   378   if (lcount != 0) {
   379     initialize_shared_locs(source_cs->locs_start(), lcount);
   380     _locs_end = _locs_limit = _locs_start + lcount;
   381     assert(is_allocated(), "must have copied code already");
   382     set_locs_point(start() + source_cs->locs_point_off());
   383   }
   384   assert(this->locs_count() == source_cs->locs_count(), "sanity");
   385 }
   387 void CodeSection::expand_locs(int new_capacity) {
   388   if (_locs_start == NULL) {
   389     initialize_locs(new_capacity);
   390     return;
   391   } else {
   392     int old_count    = locs_count();
   393     int old_capacity = locs_capacity();
   394     if (new_capacity < old_capacity * 2)
   395       new_capacity = old_capacity * 2;
   396     relocInfo* locs_start;
   397     if (_locs_own) {
   398       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
   399     } else {
   400       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
   401       Copy::conjoint_bytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
   402       _locs_own = true;
   403     }
   404     _locs_start    = locs_start;
   405     _locs_end      = locs_start + old_count;
   406     _locs_limit    = locs_start + new_capacity;
   407   }
   408 }
   411 /// Support for emitting the code to its final location.
   412 /// The pattern is the same for all functions.
   413 /// We iterate over all the sections, padding each to alignment.
   415 csize_t CodeBuffer::total_code_size() const {
   416   csize_t code_size_so_far = 0;
   417   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   418     const CodeSection* cs = code_section(n);
   419     if (cs->is_empty())  continue;  // skip trivial section
   420     code_size_so_far = cs->align_at_start(code_size_so_far);
   421     code_size_so_far += cs->size();
   422   }
   423   return code_size_so_far;
   424 }
   426 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
   427   address buf = dest->_total_start;
   428   csize_t buf_offset = 0;
   429   assert(dest->_total_size >= total_code_size(), "must be big enough");
   431   {
   432     // not sure why this is here, but why not...
   433     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
   434     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
   435   }
   437   const CodeSection* prev_cs      = NULL;
   438   CodeSection*       prev_dest_cs = NULL;
   439   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   440     // figure compact layout of each section
   441     const CodeSection* cs = code_section(n);
   442     address cstart = cs->start();
   443     address cend   = cs->end();
   444     csize_t csize  = cend - cstart;
   446     CodeSection* dest_cs = dest->code_section(n);
   447     if (!cs->is_empty()) {
   448       // Compute initial padding; assign it to the previous non-empty guy.
   449       // Cf. figure_expanded_capacities.
   450       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
   451       if (padding != 0) {
   452         buf_offset += padding;
   453         assert(prev_dest_cs != NULL, "sanity");
   454         prev_dest_cs->_limit += padding;
   455       }
   456       #ifdef ASSERT
   457       if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
   458         // Make sure the ends still match up.
   459         // This is important because a branch in a frozen section
   460         // might target code in a following section, via a Label,
   461         // and without a relocation record.  See Label::patch_instructions.
   462         address dest_start = buf+buf_offset;
   463         csize_t start2start = cs->start() - prev_cs->start();
   464         csize_t dest_start2start = dest_start - prev_dest_cs->start();
   465         assert(start2start == dest_start2start, "cannot stretch frozen sect");
   466       }
   467       #endif //ASSERT
   468       prev_dest_cs = dest_cs;
   469       prev_cs      = cs;
   470     }
   472     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
   473     dest_cs->initialize(buf+buf_offset, csize);
   474     dest_cs->set_end(buf+buf_offset+csize);
   475     assert(dest_cs->is_allocated(), "must always be allocated");
   476     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
   478     buf_offset += csize;
   479   }
   481   // Done calculating sections; did it come out to the right end?
   482   assert(buf_offset == total_code_size(), "sanity");
   483   assert(dest->verify_section_allocation(), "final configuration works");
   484 }
   486 csize_t CodeBuffer::total_offset_of(address addr) const {
   487   csize_t code_size_so_far = 0;
   488   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   489     const CodeSection* cs = code_section(n);
   490     if (!cs->is_empty()) {
   491       code_size_so_far = cs->align_at_start(code_size_so_far);
   492     }
   493     if (cs->contains2(addr)) {
   494       return code_size_so_far + (addr - cs->start());
   495     }
   496     code_size_so_far += cs->size();
   497   }
   498 #ifndef PRODUCT
   499   tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
   500   ((CodeBuffer*)this)->print();
   501 #endif
   502   ShouldNotReachHere();
   503   return -1;
   504 }
   506 csize_t CodeBuffer::total_relocation_size() const {
   507   csize_t lsize = copy_relocations_to(NULL);  // dry run only
   508   csize_t csize = total_code_size();
   509   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
   510   return (csize_t) align_size_up(total, HeapWordSize);
   511 }
   513 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
   514   address buf = NULL;
   515   csize_t buf_offset = 0;
   516   csize_t buf_limit = 0;
   517   if (dest != NULL) {
   518     buf = (address)dest->relocation_begin();
   519     buf_limit = (address)dest->relocation_end() - buf;
   520     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
   521     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
   522   }
   523   // if dest == NULL, this is just the sizing pass
   525   csize_t code_end_so_far = 0;
   526   csize_t code_point_so_far = 0;
   527   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   528     // pull relocs out of each section
   529     const CodeSection* cs = code_section(n);
   530     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
   531     if (cs->is_empty())  continue;  // skip trivial section
   532     relocInfo* lstart = cs->locs_start();
   533     relocInfo* lend   = cs->locs_end();
   534     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
   535     csize_t    csize  = cs->size();
   536     code_end_so_far = cs->align_at_start(code_end_so_far);
   538     if (lsize > 0) {
   539       // Figure out how to advance the combined relocation point
   540       // first to the beginning of this section.
   541       // We'll insert one or more filler relocs to span that gap.
   542       // (Don't bother to improve this by editing the first reloc's offset.)
   543       csize_t new_code_point = code_end_so_far;
   544       for (csize_t jump;
   545            code_point_so_far < new_code_point;
   546            code_point_so_far += jump) {
   547         jump = new_code_point - code_point_so_far;
   548         relocInfo filler = filler_relocInfo();
   549         if (jump >= filler.addr_offset()) {
   550           jump = filler.addr_offset();
   551         } else {  // else shrink the filler to fit
   552           filler = relocInfo(relocInfo::none, jump);
   553         }
   554         if (buf != NULL) {
   555           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
   556           *(relocInfo*)(buf+buf_offset) = filler;
   557         }
   558         buf_offset += sizeof(filler);
   559       }
   561       // Update code point and end to skip past this section:
   562       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
   563       assert(code_point_so_far <= last_code_point, "sanity");
   564       code_point_so_far = last_code_point; // advance past this guy's relocs
   565     }
   566     code_end_so_far += csize;  // advance past this guy's instructions too
   568     // Done with filler; emit the real relocations:
   569     if (buf != NULL && lsize != 0) {
   570       assert(buf_offset + lsize <= buf_limit, "target in bounds");
   571       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
   572       if (buf_offset % HeapWordSize == 0) {
   573         // Use wordwise copies if possible:
   574         Copy::disjoint_words((HeapWord*)lstart,
   575                              (HeapWord*)(buf+buf_offset),
   576                              (lsize + HeapWordSize-1) / HeapWordSize);
   577       } else {
   578         Copy::conjoint_bytes(lstart, buf+buf_offset, lsize);
   579       }
   580     }
   581     buf_offset += lsize;
   582   }
   584   // Align end of relocation info in target.
   585   while (buf_offset % HeapWordSize != 0) {
   586     if (buf != NULL) {
   587       relocInfo padding = relocInfo(relocInfo::none, 0);
   588       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
   589       *(relocInfo*)(buf+buf_offset) = padding;
   590     }
   591     buf_offset += sizeof(relocInfo);
   592   }
   594   assert(code_end_so_far == total_code_size(), "sanity");
   596   // Account for index:
   597   if (buf != NULL) {
   598     RelocIterator::create_index(dest->relocation_begin(),
   599                                 buf_offset / sizeof(relocInfo),
   600                                 dest->relocation_end());
   601   }
   603   return buf_offset;
   604 }
   606 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
   607 #ifndef PRODUCT
   608   if (PrintNMethods && (WizardMode || Verbose)) {
   609     tty->print("done with CodeBuffer:");
   610     ((CodeBuffer*)this)->print();
   611   }
   612 #endif //PRODUCT
   614   CodeBuffer dest(dest_blob->instructions_begin(),
   615                   dest_blob->instructions_size());
   616   assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
   617   this->compute_final_layout(&dest);
   618   relocate_code_to(&dest);
   620   // transfer comments from buffer to blob
   621   dest_blob->set_comments(_comments);
   623   // Done moving code bytes; were they the right size?
   624   assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
   626   // Flush generated code
   627   ICache::invalidate_range(dest_blob->instructions_begin(),
   628                            dest_blob->instructions_size());
   629 }
   631 // Move all my code into another code buffer.
   632 // Consult applicable relocs to repair embedded addresses.
   633 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
   634   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
   635   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   636     // pull code out of each section
   637     const CodeSection* cs = code_section(n);
   638     if (cs->is_empty())  continue;  // skip trivial section
   639     CodeSection* dest_cs = dest->code_section(n);
   640     assert(cs->size() == dest_cs->size(), "sanity");
   641     csize_t usize = dest_cs->size();
   642     csize_t wsize = align_size_up(usize, HeapWordSize);
   643     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
   644     // Copy the code as aligned machine words.
   645     // This may also include an uninitialized partial word at the end.
   646     Copy::disjoint_words((HeapWord*)cs->start(),
   647                          (HeapWord*)dest_cs->start(),
   648                          wsize / HeapWordSize);
   650     if (dest->blob() == NULL) {
   651       // Destination is a final resting place, not just another buffer.
   652       // Normalize uninitialized bytes in the final padding.
   653       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
   654                           Assembler::code_fill_byte());
   655     }
   657     assert(cs->locs_start() != (relocInfo*)badAddress,
   658            "this section carries no reloc storage, but reloc was attempted");
   660     // Make the new code copy use the old copy's relocations:
   661     dest_cs->initialize_locs_from(cs);
   663     { // Repair the pc relative information in the code after the move
   664       RelocIterator iter(dest_cs);
   665       while (iter.next()) {
   666         iter.reloc()->fix_relocation_after_move(this, dest);
   667       }
   668     }
   669   }
   670 }
   672 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
   673                                                csize_t amount,
   674                                                csize_t* new_capacity) {
   675   csize_t new_total_cap = 0;
   677   int prev_n = -1;
   678   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   679     const CodeSection* sect = code_section(n);
   681     if (!sect->is_empty()) {
   682       // Compute initial padding; assign it to the previous non-empty guy.
   683       // Cf. compute_final_layout.
   684       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
   685       if (padding != 0) {
   686         new_total_cap += padding;
   687         assert(prev_n >= 0, "sanity");
   688         new_capacity[prev_n] += padding;
   689       }
   690       prev_n = n;
   691     }
   693     csize_t exp = sect->size();  // 100% increase
   694     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
   695     if (sect == which_cs) {
   696       if (exp < amount)  exp = amount;
   697       if (StressCodeBuffers)  exp = amount;  // expand only slightly
   698     } else if (n == SECT_INSTS) {
   699       // scale down inst increases to a more modest 25%
   700       exp = 4*K + ((exp - 4*K) >> 2);
   701       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
   702     } else if (sect->is_empty()) {
   703       // do not grow an empty secondary section
   704       exp = 0;
   705     }
   706     // Allow for inter-section slop:
   707     exp += CodeSection::end_slop();
   708     csize_t new_cap = sect->size() + exp;
   709     if (new_cap < sect->capacity()) {
   710       // No need to expand after all.
   711       new_cap = sect->capacity();
   712     }
   713     new_capacity[n] = new_cap;
   714     new_total_cap += new_cap;
   715   }
   717   return new_total_cap;
   718 }
   720 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
   721 #ifndef PRODUCT
   722   if (PrintNMethods && (WizardMode || Verbose)) {
   723     tty->print("expanding CodeBuffer:");
   724     this->print();
   725   }
   727   if (StressCodeBuffers && blob() != NULL) {
   728     static int expand_count = 0;
   729     if (expand_count >= 0)  expand_count += 1;
   730     if (expand_count > 100 && is_power_of_2(expand_count)) {
   731       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
   732       // simulate an occasional allocation failure:
   733       free_blob();
   734     }
   735   }
   736 #endif //PRODUCT
   738   // Resizing must be allowed
   739   {
   740     if (blob() == NULL)  return;  // caller must check for blob == NULL
   741     for (int n = 0; n < (int)SECT_LIMIT; n++) {
   742       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
   743     }
   744   }
   746   // Figure new capacity for each section.
   747   csize_t new_capacity[SECT_LIMIT];
   748   csize_t new_total_cap
   749     = figure_expanded_capacities(which_cs, amount, new_capacity);
   751   // Create a new (temporary) code buffer to hold all the new data
   752   CodeBuffer cb(name(), new_total_cap, 0);
   753   if (cb.blob() == NULL) {
   754     // Failed to allocate in code cache.
   755     free_blob();
   756     return;
   757   }
   759   // Create an old code buffer to remember which addresses used to go where.
   760   // This will be useful when we do final assembly into the code cache,
   761   // because we will need to know how to warp any internal address that
   762   // has been created at any time in this CodeBuffer's past.
   763   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
   764   bxp->take_over_code_from(this);  // remember the old undersized blob
   765   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
   766   bxp->_before_expand = this->_before_expand;
   767   this->_before_expand = bxp;
   769   // Give each section its required (expanded) capacity.
   770   for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
   771     CodeSection* cb_sect   = cb.code_section(n);
   772     CodeSection* this_sect = code_section(n);
   773     if (new_capacity[n] == 0)  continue;  // already nulled out
   774     if (n > SECT_INSTS) {
   775       cb.initialize_section_size(cb_sect, new_capacity[n]);
   776     }
   777     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
   778     address cb_start = cb_sect->start();
   779     cb_sect->set_end(cb_start + this_sect->size());
   780     if (this_sect->mark() == NULL) {
   781       cb_sect->clear_mark();
   782     } else {
   783       cb_sect->set_mark(cb_start + this_sect->mark_off());
   784     }
   785   }
   787   // Move all the code and relocations to the new blob:
   788   relocate_code_to(&cb);
   790   // Copy the temporary code buffer into the current code buffer.
   791   // Basically, do {*this = cb}, except for some control information.
   792   this->take_over_code_from(&cb);
   793   cb.set_blob(NULL);
   795   // Zap the old code buffer contents, to avoid mistakenly using them.
   796   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
   797                                  badCodeHeapFreeVal));
   799   _decode_begin = NULL;  // sanity
   801   // Make certain that the new sections are all snugly inside the new blob.
   802   assert(verify_section_allocation(), "expanded allocation is ship-shape");
   804 #ifndef PRODUCT
   805   if (PrintNMethods && (WizardMode || Verbose)) {
   806     tty->print("expanded CodeBuffer:");
   807     this->print();
   808   }
   809 #endif //PRODUCT
   810 }
   812 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
   813   // Must already have disposed of the old blob somehow.
   814   assert(blob() == NULL, "must be empty");
   815 #ifdef ASSERT
   817 #endif
   818   // Take the new blob away from cb.
   819   set_blob(cb->blob());
   820   // Take over all the section pointers.
   821   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   822     CodeSection* cb_sect   = cb->code_section(n);
   823     CodeSection* this_sect = code_section(n);
   824     this_sect->take_over_code_from(cb_sect);
   825   }
   826   _overflow_arena = cb->_overflow_arena;
   827   // Make sure the old cb won't try to use it or free it.
   828   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
   829 }
   831 #ifdef ASSERT
   832 bool CodeBuffer::verify_section_allocation() {
   833   address tstart = _total_start;
   834   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
   835   address tend   = tstart + _total_size;
   836   if (_blob != NULL) {
   837     assert(tstart >= _blob->instructions_begin(), "sanity");
   838     assert(tend   <= _blob->instructions_end(),   "sanity");
   839   }
   840   address tcheck = tstart;  // advancing pointer to verify disjointness
   841   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   842     CodeSection* sect = code_section(n);
   843     if (!sect->is_allocated())  continue;
   844     assert(sect->start() >= tcheck, "sanity");
   845     tcheck = sect->start();
   846     assert((intptr_t)tcheck % sect->alignment() == 0
   847            || sect->is_empty() || _blob == NULL,
   848            "start is aligned");
   849     assert(sect->end()   >= tcheck, "sanity");
   850     assert(sect->end()   <= tend,   "sanity");
   851   }
   852   return true;
   853 }
   854 #endif //ASSERT
   856 #ifndef PRODUCT
   858 void CodeSection::dump() {
   859   address ptr = start();
   860   for (csize_t step; ptr < end(); ptr += step) {
   861     step = end() - ptr;
   862     if (step > jintSize * 4)  step = jintSize * 4;
   863     tty->print(PTR_FORMAT ": ", ptr);
   864     while (step > 0) {
   865       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
   866       ptr += jintSize;
   867     }
   868     tty->cr();
   869   }
   870 }
   873 void CodeSection::decode() {
   874   Disassembler::decode(start(), end());
   875 }
   878 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
   879   _comments.add_comment(offset, comment);
   880 }
   883 class CodeComment: public CHeapObj {
   884  private:
   885   friend class CodeComments;
   886   intptr_t     _offset;
   887   const char * _comment;
   888   CodeComment* _next;
   890   ~CodeComment() {
   891     assert(_next == NULL, "wrong interface for freeing list");
   892     os::free((void*)_comment);
   893   }
   895  public:
   896   CodeComment(intptr_t offset, const char * comment) {
   897     _offset = offset;
   898     _comment = os::strdup(comment);
   899     _next = NULL;
   900   }
   902   intptr_t     offset()  const { return _offset;  }
   903   const char * comment() const { return _comment; }
   904   CodeComment* next()          { return _next; }
   906   void set_next(CodeComment* next) { _next = next; }
   908   CodeComment* find(intptr_t offset) {
   909     CodeComment* a = this;
   910     while (a != NULL && a->_offset != offset) {
   911       a = a->_next;
   912     }
   913     return a;
   914   }
   915 };
   918 void CodeComments::add_comment(intptr_t offset, const char * comment) {
   919   CodeComment* c = new CodeComment(offset, comment);
   920   CodeComment* insert = NULL;
   921   if (_comments != NULL) {
   922     CodeComment* c = _comments->find(offset);
   923     insert = c;
   924     while (c && c->offset() == offset) {
   925       insert = c;
   926       c = c->next();
   927     }
   928   }
   929   if (insert) {
   930     // insert after comments with same offset
   931     c->set_next(insert->next());
   932     insert->set_next(c);
   933   } else {
   934     c->set_next(_comments);
   935     _comments = c;
   936   }
   937 }
   940 void CodeComments::assign(CodeComments& other) {
   941   assert(_comments == NULL, "don't overwrite old value");
   942   _comments = other._comments;
   943 }
   946 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
   947   if (_comments != NULL) {
   948     CodeComment* c = _comments->find(offset);
   949     while (c && c->offset() == offset) {
   950       stream->bol();
   951       stream->print("  ;; ");
   952       stream->print_cr(c->comment());
   953       c = c->next();
   954     }
   955   }
   956 }
   959 void CodeComments::free() {
   960   CodeComment* n = _comments;
   961   while (n) {
   962     // unlink the node from the list saving a pointer to the next
   963     CodeComment* p = n->_next;
   964     n->_next = NULL;
   965     delete n;
   966     n = p;
   967   }
   968   _comments = NULL;
   969 }
   973 void CodeBuffer::decode() {
   974   Disassembler::decode(decode_begin(), code_end());
   975   _decode_begin = code_end();
   976 }
   979 void CodeBuffer::skip_decode() {
   980   _decode_begin = code_end();
   981 }
   984 void CodeBuffer::decode_all() {
   985   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   986     // dump contents of each section
   987     CodeSection* cs = code_section(n);
   988     tty->print_cr("! %s:", code_section_name(n));
   989     if (cs != consts())
   990       cs->decode();
   991     else
   992       cs->dump();
   993   }
   994 }
   997 void CodeSection::print(const char* name) {
   998   csize_t locs_size = locs_end() - locs_start();
   999   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
  1000                 name, start(), end(), limit(), size(), capacity(),
  1001                 is_frozen()? " [frozen]": "");
  1002   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
  1003                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
  1004   if (PrintRelocations) {
  1005     RelocIterator iter(this);
  1006     iter.print();
  1010 void CodeBuffer::print() {
  1011   if (this == NULL) {
  1012     tty->print_cr("NULL CodeBuffer pointer");
  1013     return;
  1016   tty->print_cr("CodeBuffer:");
  1017   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1018     // print each section
  1019     CodeSection* cs = code_section(n);
  1020     cs->print(code_section_name(n));
  1024 #endif // PRODUCT

mercurial