src/share/vm/opto/superword.cpp

Wed, 27 Jul 2011 17:28:36 -0700

author
kvn
date
Wed, 27 Jul 2011 17:28:36 -0700
changeset 3040
c7b60b601eb4
parent 2727
08eb13460b3a
child 3048
6987871cfb9b
permissions
-rw-r--r--

7069452: Cleanup NodeFlags
Summary: Remove flags which duplicate information in Node::NodeClasses.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #include "precompiled.hpp"
    25 #include "compiler/compileLog.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/divnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/superword.hpp"
    36 #include "opto/vectornode.hpp"
    38 //
    39 //                  S U P E R W O R D   T R A N S F O R M
    40 //=============================================================================
    42 //------------------------------SuperWord---------------------------
    43 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    44   _phase(phase),
    45   _igvn(phase->_igvn),
    46   _arena(phase->C->comp_arena()),
    47   _packset(arena(), 8,  0, NULL),         // packs for the current block
    48   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    49   _block(arena(), 8,  0, NULL),           // nodes in current block
    50   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    51   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    52   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    53   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    54   _align_to_ref(NULL),                    // memory reference to align vectors to
    55   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    56   _dg(_arena),                            // dependence graph
    57   _visited(arena()),                      // visited node set
    58   _post_visited(arena()),                 // post visited node set
    59   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    60   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    61   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    62   _lpt(NULL),                             // loop tree node
    63   _lp(NULL),                              // LoopNode
    64   _bb(NULL),                              // basic block
    65   _iv(NULL)                               // induction var
    66 {}
    68 //------------------------------transform_loop---------------------------
    69 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    70   assert(lpt->_head->is_CountedLoop(), "must be");
    71   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    73   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    75   // Check for no control flow in body (other than exit)
    76   Node *cl_exit = cl->loopexit();
    77   if (cl_exit->in(0) != lpt->_head) return;
    79   // Make sure the are no extra control users of the loop backedge
    80   if (cl->back_control()->outcnt() != 1) {
    81     return;
    82   }
    84   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    85   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    86   if (pre_end == NULL) return;
    87   Node *pre_opaq1 = pre_end->limit();
    88   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    90   // Do vectors exist on this architecture?
    91   if (vector_width_in_bytes() == 0) return;
    93   init(); // initialize data structures
    95   set_lpt(lpt);
    96   set_lp(cl);
    98  // For now, define one block which is the entire loop body
    99   set_bb(cl);
   101   assert(_packset.length() == 0, "packset must be empty");
   102   SLP_extract();
   103 }
   105 //------------------------------SLP_extract---------------------------
   106 // Extract the superword level parallelism
   107 //
   108 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
   109 //    this list from first to last, all definitions are visited before their uses.
   110 //
   111 // 2) A point-to-point dependence graph is constructed between memory references.
   112 //    This simplies the upcoming "independence" checker.
   113 //
   114 // 3) The maximum depth in the node graph from the beginning of the block
   115 //    to each node is computed.  This is used to prune the graph search
   116 //    in the independence checker.
   117 //
   118 // 4) For integer types, the necessary bit width is propagated backwards
   119 //    from stores to allow packed operations on byte, char, and short
   120 //    integers.  This reverses the promotion to type "int" that javac
   121 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   122 //
   123 // 5) One of the memory references is picked to be an aligned vector reference.
   124 //    The pre-loop trip count is adjusted to align this reference in the
   125 //    unrolled body.
   126 //
   127 // 6) The initial set of pack pairs is seeded with memory references.
   128 //
   129 // 7) The set of pack pairs is extended by following use->def and def->use links.
   130 //
   131 // 8) The pairs are combined into vector sized packs.
   132 //
   133 // 9) Reorder the memory slices to co-locate members of the memory packs.
   134 //
   135 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   136 //    inserting scalar promotion, vector creation from multiple scalars, and
   137 //    extraction of scalar values from vectors.
   138 //
   139 void SuperWord::SLP_extract() {
   141   // Ready the block
   143   construct_bb();
   145   dependence_graph();
   147   compute_max_depth();
   149   compute_vector_element_type();
   151   // Attempt vectorization
   153   find_adjacent_refs();
   155   extend_packlist();
   157   combine_packs();
   159   construct_my_pack_map();
   161   filter_packs();
   163   schedule();
   165   output();
   166 }
   168 //------------------------------find_adjacent_refs---------------------------
   169 // Find the adjacent memory references and create pack pairs for them.
   170 // This is the initial set of packs that will then be extended by
   171 // following use->def and def->use links.  The align positions are
   172 // assigned relative to the reference "align_to_ref"
   173 void SuperWord::find_adjacent_refs() {
   174   // Get list of memory operations
   175   Node_List memops;
   176   for (int i = 0; i < _block.length(); i++) {
   177     Node* n = _block.at(i);
   178     if (n->is_Mem() && in_bb(n) &&
   179         is_java_primitive(n->as_Mem()->memory_type())) {
   180       int align = memory_alignment(n->as_Mem(), 0);
   181       if (align != bottom_align) {
   182         memops.push(n);
   183       }
   184     }
   185   }
   186   if (memops.size() == 0) return;
   188   // Find a memory reference to align to.  The pre-loop trip count
   189   // is modified to align this reference to a vector-aligned address
   190   find_align_to_ref(memops);
   191   if (align_to_ref() == NULL) return;
   193   SWPointer align_to_ref_p(align_to_ref(), this);
   194   int offset = align_to_ref_p.offset_in_bytes();
   195   int scale  = align_to_ref_p.scale_in_bytes();
   196   int vw              = vector_width_in_bytes();
   197   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
   198   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
   200 #ifndef PRODUCT
   201   if (TraceSuperWord)
   202     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d scale = %d iv_stride = %d",
   203                   offset, iv_adjustment, align_to_ref_p.memory_size(), align_to_ref_p.scale_in_bytes(), iv_stride());
   204 #endif
   206   // Set alignment relative to "align_to_ref"
   207   for (int i = memops.size() - 1; i >= 0; i--) {
   208     MemNode* s = memops.at(i)->as_Mem();
   209     SWPointer p2(s, this);
   210     if (p2.comparable(align_to_ref_p)) {
   211       int align = memory_alignment(s, iv_adjustment);
   212       set_alignment(s, align);
   213     } else {
   214       memops.remove(i);
   215     }
   216   }
   218   // Create initial pack pairs of memory operations
   219   for (uint i = 0; i < memops.size(); i++) {
   220     Node* s1 = memops.at(i);
   221     for (uint j = 0; j < memops.size(); j++) {
   222       Node* s2 = memops.at(j);
   223       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   224         int align = alignment(s1);
   225         if (stmts_can_pack(s1, s2, align)) {
   226           Node_List* pair = new Node_List();
   227           pair->push(s1);
   228           pair->push(s2);
   229           _packset.append(pair);
   230         }
   231       }
   232     }
   233   }
   235 #ifndef PRODUCT
   236   if (TraceSuperWord) {
   237     tty->print_cr("\nAfter find_adjacent_refs");
   238     print_packset();
   239   }
   240 #endif
   241 }
   243 //------------------------------find_align_to_ref---------------------------
   244 // Find a memory reference to align the loop induction variable to.
   245 // Looks first at stores then at loads, looking for a memory reference
   246 // with the largest number of references similar to it.
   247 void SuperWord::find_align_to_ref(Node_List &memops) {
   248   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   250   // Count number of comparable memory ops
   251   for (uint i = 0; i < memops.size(); i++) {
   252     MemNode* s1 = memops.at(i)->as_Mem();
   253     SWPointer p1(s1, this);
   254     // Discard if pre loop can't align this reference
   255     if (!ref_is_alignable(p1)) {
   256       *cmp_ct.adr_at(i) = 0;
   257       continue;
   258     }
   259     for (uint j = i+1; j < memops.size(); j++) {
   260       MemNode* s2 = memops.at(j)->as_Mem();
   261       if (isomorphic(s1, s2)) {
   262         SWPointer p2(s2, this);
   263         if (p1.comparable(p2)) {
   264           (*cmp_ct.adr_at(i))++;
   265           (*cmp_ct.adr_at(j))++;
   266         }
   267       }
   268     }
   269   }
   271   // Find Store (or Load) with the greatest number of "comparable" references
   272   int max_ct        = 0;
   273   int max_idx       = -1;
   274   int min_size      = max_jint;
   275   int min_iv_offset = max_jint;
   276   for (uint j = 0; j < memops.size(); j++) {
   277     MemNode* s = memops.at(j)->as_Mem();
   278     if (s->is_Store()) {
   279       SWPointer p(s, this);
   280       if (cmp_ct.at(j) > max_ct ||
   281           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   282                                      data_size(s) == min_size &&
   283                                         p.offset_in_bytes() < min_iv_offset)) {
   284         max_ct = cmp_ct.at(j);
   285         max_idx = j;
   286         min_size = data_size(s);
   287         min_iv_offset = p.offset_in_bytes();
   288       }
   289     }
   290   }
   291   // If no stores, look at loads
   292   if (max_ct == 0) {
   293     for (uint j = 0; j < memops.size(); j++) {
   294       MemNode* s = memops.at(j)->as_Mem();
   295       if (s->is_Load()) {
   296         SWPointer p(s, this);
   297         if (cmp_ct.at(j) > max_ct ||
   298             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   299                                        data_size(s) == min_size &&
   300                                           p.offset_in_bytes() < min_iv_offset)) {
   301           max_ct = cmp_ct.at(j);
   302           max_idx = j;
   303           min_size = data_size(s);
   304           min_iv_offset = p.offset_in_bytes();
   305         }
   306       }
   307     }
   308   }
   310   if (max_ct > 0)
   311     set_align_to_ref(memops.at(max_idx)->as_Mem());
   313 #ifndef PRODUCT
   314   if (TraceSuperWord && Verbose) {
   315     tty->print_cr("\nVector memops after find_align_to_refs");
   316     for (uint i = 0; i < memops.size(); i++) {
   317       MemNode* s = memops.at(i)->as_Mem();
   318       s->dump();
   319     }
   320   }
   321 #endif
   322 }
   324 //------------------------------ref_is_alignable---------------------------
   325 // Can the preloop align the reference to position zero in the vector?
   326 bool SuperWord::ref_is_alignable(SWPointer& p) {
   327   if (!p.has_iv()) {
   328     return true;   // no induction variable
   329   }
   330   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   331   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   332   int preloop_stride = pre_end->stride_con();
   334   int span = preloop_stride * p.scale_in_bytes();
   336   // Stride one accesses are alignable.
   337   if (ABS(span) == p.memory_size())
   338     return true;
   340   // If initial offset from start of object is computable,
   341   // compute alignment within the vector.
   342   int vw = vector_width_in_bytes();
   343   if (vw % span == 0) {
   344     Node* init_nd = pre_end->init_trip();
   345     if (init_nd->is_Con() && p.invar() == NULL) {
   346       int init = init_nd->bottom_type()->is_int()->get_con();
   348       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   349       assert(init_offset >= 0, "positive offset from object start");
   351       if (span > 0) {
   352         return (vw - (init_offset % vw)) % span == 0;
   353       } else {
   354         assert(span < 0, "nonzero stride * scale");
   355         return (init_offset % vw) % -span == 0;
   356       }
   357     }
   358   }
   359   return false;
   360 }
   362 //---------------------------dependence_graph---------------------------
   363 // Construct dependency graph.
   364 // Add dependence edges to load/store nodes for memory dependence
   365 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   366 void SuperWord::dependence_graph() {
   367   // First, assign a dependence node to each memory node
   368   for (int i = 0; i < _block.length(); i++ ) {
   369     Node *n = _block.at(i);
   370     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   371       _dg.make_node(n);
   372     }
   373   }
   375   // For each memory slice, create the dependences
   376   for (int i = 0; i < _mem_slice_head.length(); i++) {
   377     Node* n      = _mem_slice_head.at(i);
   378     Node* n_tail = _mem_slice_tail.at(i);
   380     // Get slice in predecessor order (last is first)
   381     mem_slice_preds(n_tail, n, _nlist);
   383     // Make the slice dependent on the root
   384     DepMem* slice = _dg.dep(n);
   385     _dg.make_edge(_dg.root(), slice);
   387     // Create a sink for the slice
   388     DepMem* slice_sink = _dg.make_node(NULL);
   389     _dg.make_edge(slice_sink, _dg.tail());
   391     // Now visit each pair of memory ops, creating the edges
   392     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   393       Node* s1 = _nlist.at(j);
   395       // If no dependency yet, use slice
   396       if (_dg.dep(s1)->in_cnt() == 0) {
   397         _dg.make_edge(slice, s1);
   398       }
   399       SWPointer p1(s1->as_Mem(), this);
   400       bool sink_dependent = true;
   401       for (int k = j - 1; k >= 0; k--) {
   402         Node* s2 = _nlist.at(k);
   403         if (s1->is_Load() && s2->is_Load())
   404           continue;
   405         SWPointer p2(s2->as_Mem(), this);
   407         int cmp = p1.cmp(p2);
   408         if (SuperWordRTDepCheck &&
   409             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   410           // Create a runtime check to disambiguate
   411           OrderedPair pp(p1.base(), p2.base());
   412           _disjoint_ptrs.append_if_missing(pp);
   413         } else if (!SWPointer::not_equal(cmp)) {
   414           // Possibly same address
   415           _dg.make_edge(s1, s2);
   416           sink_dependent = false;
   417         }
   418       }
   419       if (sink_dependent) {
   420         _dg.make_edge(s1, slice_sink);
   421       }
   422     }
   423 #ifndef PRODUCT
   424     if (TraceSuperWord) {
   425       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   426       for (int q = 0; q < _nlist.length(); q++) {
   427         _dg.print(_nlist.at(q));
   428       }
   429       tty->cr();
   430     }
   431 #endif
   432     _nlist.clear();
   433   }
   435 #ifndef PRODUCT
   436   if (TraceSuperWord) {
   437     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   438     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   439       _disjoint_ptrs.at(r).print();
   440       tty->cr();
   441     }
   442     tty->cr();
   443   }
   444 #endif
   445 }
   447 //---------------------------mem_slice_preds---------------------------
   448 // Return a memory slice (node list) in predecessor order starting at "start"
   449 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   450   assert(preds.length() == 0, "start empty");
   451   Node* n = start;
   452   Node* prev = NULL;
   453   while (true) {
   454     assert(in_bb(n), "must be in block");
   455     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   456       Node* out = n->fast_out(i);
   457       if (out->is_Load()) {
   458         if (in_bb(out)) {
   459           preds.push(out);
   460         }
   461       } else {
   462         // FIXME
   463         if (out->is_MergeMem() && !in_bb(out)) {
   464           // Either unrolling is causing a memory edge not to disappear,
   465           // or need to run igvn.optimize() again before SLP
   466         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   467           // Ditto.  Not sure what else to check further.
   468         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
   469           // StoreCM has an input edge used as a precedence edge.
   470           // Maybe an issue when oop stores are vectorized.
   471         } else {
   472           assert(out == prev || prev == NULL, "no branches off of store slice");
   473         }
   474       }
   475     }
   476     if (n == stop) break;
   477     preds.push(n);
   478     prev = n;
   479     n = n->in(MemNode::Memory);
   480   }
   481 }
   483 //------------------------------stmts_can_pack---------------------------
   484 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
   485 // s1 aligned at "align"
   486 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   488   // Do not use superword for non-primitives
   489   if((s1->is_Mem() && !is_java_primitive(s1->as_Mem()->memory_type())) ||
   490      (s2->is_Mem() && !is_java_primitive(s2->as_Mem()->memory_type())))
   491     return false;
   493   if (isomorphic(s1, s2)) {
   494     if (independent(s1, s2)) {
   495       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   496         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   497           int s1_align = alignment(s1);
   498           int s2_align = alignment(s2);
   499           if (s1_align == top_align || s1_align == align) {
   500             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   501               return true;
   502             }
   503           }
   504         }
   505       }
   506     }
   507   }
   508   return false;
   509 }
   511 //------------------------------exists_at---------------------------
   512 // Does s exist in a pack at position pos?
   513 bool SuperWord::exists_at(Node* s, uint pos) {
   514   for (int i = 0; i < _packset.length(); i++) {
   515     Node_List* p = _packset.at(i);
   516     if (p->at(pos) == s) {
   517       return true;
   518     }
   519   }
   520   return false;
   521 }
   523 //------------------------------are_adjacent_refs---------------------------
   524 // Is s1 immediately before s2 in memory?
   525 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   526   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   527   if (!in_bb(s1)    || !in_bb(s2))    return false;
   529   // Do not use superword for non-primitives
   530   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
   531       !is_java_primitive(s2->as_Mem()->memory_type())) {
   532     return false;
   533   }
   535   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   536   // only pack memops that are in the same alias set until that's fixed.
   537   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   538       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   539     return false;
   540   SWPointer p1(s1->as_Mem(), this);
   541   SWPointer p2(s2->as_Mem(), this);
   542   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   543   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   544   return diff == data_size(s1);
   545 }
   547 //------------------------------isomorphic---------------------------
   548 // Are s1 and s2 similar?
   549 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   550   if (s1->Opcode() != s2->Opcode()) return false;
   551   if (s1->req() != s2->req()) return false;
   552   if (s1->in(0) != s2->in(0)) return false;
   553   if (velt_type(s1) != velt_type(s2)) return false;
   554   return true;
   555 }
   557 //------------------------------independent---------------------------
   558 // Is there no data path from s1 to s2 or s2 to s1?
   559 bool SuperWord::independent(Node* s1, Node* s2) {
   560   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   561   int d1 = depth(s1);
   562   int d2 = depth(s2);
   563   if (d1 == d2) return s1 != s2;
   564   Node* deep    = d1 > d2 ? s1 : s2;
   565   Node* shallow = d1 > d2 ? s2 : s1;
   567   visited_clear();
   569   return independent_path(shallow, deep);
   570 }
   572 //------------------------------independent_path------------------------------
   573 // Helper for independent
   574 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   575   if (dp >= 1000) return false; // stop deep recursion
   576   visited_set(deep);
   577   int shal_depth = depth(shallow);
   578   assert(shal_depth <= depth(deep), "must be");
   579   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   580     Node* pred = preds.current();
   581     if (in_bb(pred) && !visited_test(pred)) {
   582       if (shallow == pred) {
   583         return false;
   584       }
   585       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   586         return false;
   587       }
   588     }
   589   }
   590   return true;
   591 }
   593 //------------------------------set_alignment---------------------------
   594 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   595   set_alignment(s1, align);
   596   set_alignment(s2, align + data_size(s1));
   597 }
   599 //------------------------------data_size---------------------------
   600 int SuperWord::data_size(Node* s) {
   601   const Type* t = velt_type(s);
   602   BasicType  bt = t->array_element_basic_type();
   603   int bsize = type2aelembytes(bt);
   604   assert(bsize != 0, "valid size");
   605   return bsize;
   606 }
   608 //------------------------------extend_packlist---------------------------
   609 // Extend packset by following use->def and def->use links from pack members.
   610 void SuperWord::extend_packlist() {
   611   bool changed;
   612   do {
   613     changed = false;
   614     for (int i = 0; i < _packset.length(); i++) {
   615       Node_List* p = _packset.at(i);
   616       changed |= follow_use_defs(p);
   617       changed |= follow_def_uses(p);
   618     }
   619   } while (changed);
   621 #ifndef PRODUCT
   622   if (TraceSuperWord) {
   623     tty->print_cr("\nAfter extend_packlist");
   624     print_packset();
   625   }
   626 #endif
   627 }
   629 //------------------------------follow_use_defs---------------------------
   630 // Extend the packset by visiting operand definitions of nodes in pack p
   631 bool SuperWord::follow_use_defs(Node_List* p) {
   632   Node* s1 = p->at(0);
   633   Node* s2 = p->at(1);
   634   assert(p->size() == 2, "just checking");
   635   assert(s1->req() == s2->req(), "just checking");
   636   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   638   if (s1->is_Load()) return false;
   640   int align = alignment(s1);
   641   bool changed = false;
   642   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   643   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   644   for (int j = start; j < end; j++) {
   645     Node* t1 = s1->in(j);
   646     Node* t2 = s2->in(j);
   647     if (!in_bb(t1) || !in_bb(t2))
   648       continue;
   649     if (stmts_can_pack(t1, t2, align)) {
   650       if (est_savings(t1, t2) >= 0) {
   651         Node_List* pair = new Node_List();
   652         pair->push(t1);
   653         pair->push(t2);
   654         _packset.append(pair);
   655         set_alignment(t1, t2, align);
   656         changed = true;
   657       }
   658     }
   659   }
   660   return changed;
   661 }
   663 //------------------------------follow_def_uses---------------------------
   664 // Extend the packset by visiting uses of nodes in pack p
   665 bool SuperWord::follow_def_uses(Node_List* p) {
   666   bool changed = false;
   667   Node* s1 = p->at(0);
   668   Node* s2 = p->at(1);
   669   assert(p->size() == 2, "just checking");
   670   assert(s1->req() == s2->req(), "just checking");
   671   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   673   if (s1->is_Store()) return false;
   675   int align = alignment(s1);
   676   int savings = -1;
   677   Node* u1 = NULL;
   678   Node* u2 = NULL;
   679   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   680     Node* t1 = s1->fast_out(i);
   681     if (!in_bb(t1)) continue;
   682     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   683       Node* t2 = s2->fast_out(j);
   684       if (!in_bb(t2)) continue;
   685       if (!opnd_positions_match(s1, t1, s2, t2))
   686         continue;
   687       if (stmts_can_pack(t1, t2, align)) {
   688         int my_savings = est_savings(t1, t2);
   689         if (my_savings > savings) {
   690           savings = my_savings;
   691           u1 = t1;
   692           u2 = t2;
   693         }
   694       }
   695     }
   696   }
   697   if (savings >= 0) {
   698     Node_List* pair = new Node_List();
   699     pair->push(u1);
   700     pair->push(u2);
   701     _packset.append(pair);
   702     set_alignment(u1, u2, align);
   703     changed = true;
   704   }
   705   return changed;
   706 }
   708 //---------------------------opnd_positions_match-------------------------
   709 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   710 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   711   uint ct = u1->req();
   712   if (ct != u2->req()) return false;
   713   uint i1 = 0;
   714   uint i2 = 0;
   715   do {
   716     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   717     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   718     if (i1 != i2) {
   719       return false;
   720     }
   721   } while (i1 < ct);
   722   return true;
   723 }
   725 //------------------------------est_savings---------------------------
   726 // Estimate the savings from executing s1 and s2 as a pack
   727 int SuperWord::est_savings(Node* s1, Node* s2) {
   728   int save = 2 - 1; // 2 operations per instruction in packed form
   730   // inputs
   731   for (uint i = 1; i < s1->req(); i++) {
   732     Node* x1 = s1->in(i);
   733     Node* x2 = s2->in(i);
   734     if (x1 != x2) {
   735       if (are_adjacent_refs(x1, x2)) {
   736         save += adjacent_profit(x1, x2);
   737       } else if (!in_packset(x1, x2)) {
   738         save -= pack_cost(2);
   739       } else {
   740         save += unpack_cost(2);
   741       }
   742     }
   743   }
   745   // uses of result
   746   uint ct = 0;
   747   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   748     Node* s1_use = s1->fast_out(i);
   749     for (int j = 0; j < _packset.length(); j++) {
   750       Node_List* p = _packset.at(j);
   751       if (p->at(0) == s1_use) {
   752         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   753           Node* s2_use = s2->fast_out(k);
   754           if (p->at(p->size()-1) == s2_use) {
   755             ct++;
   756             if (are_adjacent_refs(s1_use, s2_use)) {
   757               save += adjacent_profit(s1_use, s2_use);
   758             }
   759           }
   760         }
   761       }
   762     }
   763   }
   765   if (ct < s1->outcnt()) save += unpack_cost(1);
   766   if (ct < s2->outcnt()) save += unpack_cost(1);
   768   return save;
   769 }
   771 //------------------------------costs---------------------------
   772 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   773 int SuperWord::pack_cost(int ct)   { return ct; }
   774 int SuperWord::unpack_cost(int ct) { return ct; }
   776 //------------------------------combine_packs---------------------------
   777 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   778 void SuperWord::combine_packs() {
   779   bool changed;
   780   do {
   781     changed = false;
   782     for (int i = 0; i < _packset.length(); i++) {
   783       Node_List* p1 = _packset.at(i);
   784       if (p1 == NULL) continue;
   785       for (int j = 0; j < _packset.length(); j++) {
   786         Node_List* p2 = _packset.at(j);
   787         if (p2 == NULL) continue;
   788         if (p1->at(p1->size()-1) == p2->at(0)) {
   789           for (uint k = 1; k < p2->size(); k++) {
   790             p1->push(p2->at(k));
   791           }
   792           _packset.at_put(j, NULL);
   793           changed = true;
   794         }
   795       }
   796     }
   797   } while (changed);
   799   for (int i = _packset.length() - 1; i >= 0; i--) {
   800     Node_List* p1 = _packset.at(i);
   801     if (p1 == NULL) {
   802       _packset.remove_at(i);
   803     }
   804   }
   806 #ifndef PRODUCT
   807   if (TraceSuperWord) {
   808     tty->print_cr("\nAfter combine_packs");
   809     print_packset();
   810   }
   811 #endif
   812 }
   814 //-----------------------------construct_my_pack_map--------------------------
   815 // Construct the map from nodes to packs.  Only valid after the
   816 // point where a node is only in one pack (after combine_packs).
   817 void SuperWord::construct_my_pack_map() {
   818   Node_List* rslt = NULL;
   819   for (int i = 0; i < _packset.length(); i++) {
   820     Node_List* p = _packset.at(i);
   821     for (uint j = 0; j < p->size(); j++) {
   822       Node* s = p->at(j);
   823       assert(my_pack(s) == NULL, "only in one pack");
   824       set_my_pack(s, p);
   825     }
   826   }
   827 }
   829 //------------------------------filter_packs---------------------------
   830 // Remove packs that are not implemented or not profitable.
   831 void SuperWord::filter_packs() {
   833   // Remove packs that are not implemented
   834   for (int i = _packset.length() - 1; i >= 0; i--) {
   835     Node_List* pk = _packset.at(i);
   836     bool impl = implemented(pk);
   837     if (!impl) {
   838 #ifndef PRODUCT
   839       if (TraceSuperWord && Verbose) {
   840         tty->print_cr("Unimplemented");
   841         pk->at(0)->dump();
   842       }
   843 #endif
   844       remove_pack_at(i);
   845     }
   846   }
   848   // Remove packs that are not profitable
   849   bool changed;
   850   do {
   851     changed = false;
   852     for (int i = _packset.length() - 1; i >= 0; i--) {
   853       Node_List* pk = _packset.at(i);
   854       bool prof = profitable(pk);
   855       if (!prof) {
   856 #ifndef PRODUCT
   857         if (TraceSuperWord && Verbose) {
   858           tty->print_cr("Unprofitable");
   859           pk->at(0)->dump();
   860         }
   861 #endif
   862         remove_pack_at(i);
   863         changed = true;
   864       }
   865     }
   866   } while (changed);
   868 #ifndef PRODUCT
   869   if (TraceSuperWord) {
   870     tty->print_cr("\nAfter filter_packs");
   871     print_packset();
   872     tty->cr();
   873   }
   874 #endif
   875 }
   877 //------------------------------implemented---------------------------
   878 // Can code be generated for pack p?
   879 bool SuperWord::implemented(Node_List* p) {
   880   Node* p0 = p->at(0);
   881   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
   882   return vopc > 0 && Matcher::has_match_rule(vopc);
   883 }
   885 //------------------------------profitable---------------------------
   886 // For pack p, are all operands and all uses (with in the block) vector?
   887 bool SuperWord::profitable(Node_List* p) {
   888   Node* p0 = p->at(0);
   889   uint start, end;
   890   vector_opd_range(p0, &start, &end);
   892   // Return false if some input is not vector and inside block
   893   for (uint i = start; i < end; i++) {
   894     if (!is_vector_use(p0, i)) {
   895       // For now, return false if not scalar promotion case (inputs are the same.)
   896       // Later, implement PackNode and allow differing, non-vector inputs
   897       // (maybe just the ones from outside the block.)
   898       Node* p0_def = p0->in(i);
   899       for (uint j = 1; j < p->size(); j++) {
   900         Node* use = p->at(j);
   901         Node* def = use->in(i);
   902         if (p0_def != def)
   903           return false;
   904       }
   905     }
   906   }
   907   if (!p0->is_Store()) {
   908     // For now, return false if not all uses are vector.
   909     // Later, implement ExtractNode and allow non-vector uses (maybe
   910     // just the ones outside the block.)
   911     for (uint i = 0; i < p->size(); i++) {
   912       Node* def = p->at(i);
   913       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
   914         Node* use = def->fast_out(j);
   915         for (uint k = 0; k < use->req(); k++) {
   916           Node* n = use->in(k);
   917           if (def == n) {
   918             if (!is_vector_use(use, k)) {
   919               return false;
   920             }
   921           }
   922         }
   923       }
   924     }
   925   }
   926   return true;
   927 }
   929 //------------------------------schedule---------------------------
   930 // Adjust the memory graph for the packed operations
   931 void SuperWord::schedule() {
   933   // Co-locate in the memory graph the members of each memory pack
   934   for (int i = 0; i < _packset.length(); i++) {
   935     co_locate_pack(_packset.at(i));
   936   }
   937 }
   939 //-------------------------------remove_and_insert-------------------
   940 //remove "current" from its current position in the memory graph and insert
   941 //it after the appropriate insertion point (lip or uip)
   942 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
   943                                   Node *uip, Unique_Node_List &sched_before) {
   944   Node* my_mem = current->in(MemNode::Memory);
   945   _igvn.hash_delete(current);
   946   _igvn.hash_delete(my_mem);
   948   //remove current_store from its current position in the memmory graph
   949   for (DUIterator i = current->outs(); current->has_out(i); i++) {
   950     Node* use = current->out(i);
   951     if (use->is_Mem()) {
   952       assert(use->in(MemNode::Memory) == current, "must be");
   953       _igvn.hash_delete(use);
   954       if (use == prev) { // connect prev to my_mem
   955         use->set_req(MemNode::Memory, my_mem);
   956       } else if (sched_before.member(use)) {
   957         _igvn.hash_delete(uip);
   958         use->set_req(MemNode::Memory, uip);
   959       } else {
   960         _igvn.hash_delete(lip);
   961         use->set_req(MemNode::Memory, lip);
   962       }
   963       _igvn._worklist.push(use);
   964       --i; //deleted this edge; rescan position
   965     }
   966   }
   968   bool sched_up = sched_before.member(current);
   969   Node *insert_pt =  sched_up ?  uip : lip;
   970   _igvn.hash_delete(insert_pt);
   972   // all uses of insert_pt's memory state should use current's instead
   973   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
   974     Node* use = insert_pt->out(i);
   975     if (use->is_Mem()) {
   976       assert(use->in(MemNode::Memory) == insert_pt, "must be");
   977       _igvn.hash_delete(use);
   978       use->set_req(MemNode::Memory, current);
   979       _igvn._worklist.push(use);
   980       --i; //deleted this edge; rescan position
   981     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
   982       uint pos; //lip (lower insert point) must be the last one in the memory slice
   983       _igvn.hash_delete(use);
   984       for (pos=1; pos < use->req(); pos++) {
   985         if (use->in(pos) == insert_pt) break;
   986       }
   987       use->set_req(pos, current);
   988       _igvn._worklist.push(use);
   989       --i;
   990     }
   991   }
   993   //connect current to insert_pt
   994   current->set_req(MemNode::Memory, insert_pt);
   995   _igvn._worklist.push(current);
   996 }
   998 //------------------------------co_locate_pack----------------------------------
   999 // To schedule a store pack, we need to move any sandwiched memory ops either before
  1000 // or after the pack, based upon dependence information:
  1001 // (1) If any store in the pack depends on the sandwiched memory op, the
  1002 //     sandwiched memory op must be scheduled BEFORE the pack;
  1003 // (2) If a sandwiched memory op depends on any store in the pack, the
  1004 //     sandwiched memory op must be scheduled AFTER the pack;
  1005 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
  1006 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
  1007 //     scheduled before the pack, memB must also be scheduled before the pack;
  1008 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
  1009 //     schedule this store AFTER the pack
  1010 // (5) We know there is no dependence cycle, so there in no other case;
  1011 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
  1012 //
  1013 // To schedule a load pack, we use the memory state of either the first or the last load in
  1014 // the pack, based on the dependence constraint.
  1015 void SuperWord::co_locate_pack(Node_List* pk) {
  1016   if (pk->at(0)->is_Store()) {
  1017     MemNode* first     = executed_first(pk)->as_Mem();
  1018     MemNode* last      = executed_last(pk)->as_Mem();
  1019     Unique_Node_List schedule_before_pack;
  1020     Unique_Node_List memops;
  1022     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
  1023     MemNode* previous  = last;
  1024     while (true) {
  1025       assert(in_bb(current), "stay in block");
  1026       memops.push(previous);
  1027       for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1028         Node* use = current->out(i);
  1029         if (use->is_Mem() && use != previous)
  1030           memops.push(use);
  1032       if(current == first) break;
  1033       previous = current;
  1034       current  = current->in(MemNode::Memory)->as_Mem();
  1037     // determine which memory operations should be scheduled before the pack
  1038     for (uint i = 1; i < memops.size(); i++) {
  1039       Node *s1 = memops.at(i);
  1040       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
  1041         for (uint j = 0; j< i; j++) {
  1042           Node *s2 = memops.at(j);
  1043           if (!independent(s1, s2)) {
  1044             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
  1045               schedule_before_pack.push(s1); //s1 must be scheduled before
  1046               Node_List* mem_pk = my_pack(s1);
  1047               if (mem_pk != NULL) {
  1048                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
  1049                   Node* s = mem_pk->at(ii); // follow partner
  1050                   if (memops.member(s) && !schedule_before_pack.member(s))
  1051                     schedule_before_pack.push(s);
  1060     MemNode* lower_insert_pt = last;
  1061     Node*    upper_insert_pt = first->in(MemNode::Memory);
  1062     previous                 = last; //previous store in pk
  1063     current                  = last->in(MemNode::Memory)->as_Mem();
  1065     //start scheduling from "last" to "first"
  1066     while (true) {
  1067       assert(in_bb(current), "stay in block");
  1068       assert(in_pack(previous, pk), "previous stays in pack");
  1069       Node* my_mem = current->in(MemNode::Memory);
  1071       if (in_pack(current, pk)) {
  1072         // Forward users of my memory state (except "previous) to my input memory state
  1073         _igvn.hash_delete(current);
  1074         for (DUIterator i = current->outs(); current->has_out(i); i++) {
  1075           Node* use = current->out(i);
  1076           if (use->is_Mem() && use != previous) {
  1077             assert(use->in(MemNode::Memory) == current, "must be");
  1078             _igvn.hash_delete(use);
  1079             if (schedule_before_pack.member(use)) {
  1080               _igvn.hash_delete(upper_insert_pt);
  1081               use->set_req(MemNode::Memory, upper_insert_pt);
  1082             } else {
  1083               _igvn.hash_delete(lower_insert_pt);
  1084               use->set_req(MemNode::Memory, lower_insert_pt);
  1086             _igvn._worklist.push(use);
  1087             --i; // deleted this edge; rescan position
  1090         previous = current;
  1091       } else { // !in_pack(current, pk) ==> a sandwiched store
  1092         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
  1095       if (current == first) break;
  1096       current = my_mem->as_Mem();
  1097     } // end while
  1098   } else if (pk->at(0)->is_Load()) { //load
  1099     // all loads in the pack should have the same memory state. By default,
  1100     // we use the memory state of the last load. However, if any load could
  1101     // not be moved down due to the dependence constraint, we use the memory
  1102     // state of the first load.
  1103     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
  1104     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
  1105     bool schedule_last = true;
  1106     for (uint i = 0; i < pk->size(); i++) {
  1107       Node* ld = pk->at(i);
  1108       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
  1109            current=current->in(MemNode::Memory)) {
  1110         assert(current != first_mem, "corrupted memory graph");
  1111         if(current->is_Mem() && !independent(current, ld)){
  1112           schedule_last = false; // a later store depends on this load
  1113           break;
  1118     Node* mem_input = schedule_last ? last_mem : first_mem;
  1119     _igvn.hash_delete(mem_input);
  1120     // Give each load the same memory state
  1121     for (uint i = 0; i < pk->size(); i++) {
  1122       LoadNode* ld = pk->at(i)->as_Load();
  1123       _igvn.hash_delete(ld);
  1124       ld->set_req(MemNode::Memory, mem_input);
  1125       _igvn._worklist.push(ld);
  1130 //------------------------------output---------------------------
  1131 // Convert packs into vector node operations
  1132 void SuperWord::output() {
  1133   if (_packset.length() == 0) return;
  1135 #ifndef PRODUCT
  1136   if (TraceLoopOpts) {
  1137     tty->print("SuperWord    ");
  1138     lpt()->dump_head();
  1140 #endif
  1142   // MUST ENSURE main loop's initial value is properly aligned:
  1143   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
  1145   align_initial_loop_index(align_to_ref());
  1147   // Insert extract (unpack) operations for scalar uses
  1148   for (int i = 0; i < _packset.length(); i++) {
  1149     insert_extracts(_packset.at(i));
  1152   for (int i = 0; i < _block.length(); i++) {
  1153     Node* n = _block.at(i);
  1154     Node_List* p = my_pack(n);
  1155     if (p && n == executed_last(p)) {
  1156       uint vlen = p->size();
  1157       Node* vn = NULL;
  1158       Node* low_adr = p->at(0);
  1159       Node* first   = executed_first(p);
  1160       if (n->is_Load()) {
  1161         int   opc = n->Opcode();
  1162         Node* ctl = n->in(MemNode::Control);
  1163         Node* mem = first->in(MemNode::Memory);
  1164         Node* adr = low_adr->in(MemNode::Address);
  1165         const TypePtr* atyp = n->adr_type();
  1166         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
  1168       } else if (n->is_Store()) {
  1169         // Promote value to be stored to vector
  1170         Node* val = vector_opd(p, MemNode::ValueIn);
  1172         int   opc = n->Opcode();
  1173         Node* ctl = n->in(MemNode::Control);
  1174         Node* mem = first->in(MemNode::Memory);
  1175         Node* adr = low_adr->in(MemNode::Address);
  1176         const TypePtr* atyp = n->adr_type();
  1177         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1179       } else if (n->req() == 3) {
  1180         // Promote operands to vector
  1181         Node* in1 = vector_opd(p, 1);
  1182         Node* in2 = vector_opd(p, 2);
  1183         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
  1185       } else {
  1186         ShouldNotReachHere();
  1189       _phase->_igvn.register_new_node_with_optimizer(vn);
  1190       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1191       for (uint j = 0; j < p->size(); j++) {
  1192         Node* pm = p->at(j);
  1193         _igvn.replace_node(pm, vn);
  1195       _igvn._worklist.push(vn);
  1200 //------------------------------vector_opd---------------------------
  1201 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1202 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1203   Node* p0 = p->at(0);
  1204   uint vlen = p->size();
  1205   Node* opd = p0->in(opd_idx);
  1207   bool same_opd = true;
  1208   for (uint i = 1; i < vlen; i++) {
  1209     Node* pi = p->at(i);
  1210     Node* in = pi->in(opd_idx);
  1211     if (opd != in) {
  1212       same_opd = false;
  1213       break;
  1217   if (same_opd) {
  1218     if (opd->is_Vector() || opd->is_VectorLoad()) {
  1219       return opd; // input is matching vector
  1221     assert(!opd->is_VectorStore(), "such vector is not expected here");
  1222     // Convert scalar input to vector. Use p0's type because it's container
  1223     // maybe smaller than the operand's container.
  1224     const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1225     const Type* p0_t  = velt_type(p0);
  1226     if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
  1227     VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
  1229     _phase->_igvn.register_new_node_with_optimizer(vn);
  1230     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1231     return vn;
  1234   // Insert pack operation
  1235   const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1236   PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
  1238   for (uint i = 1; i < vlen; i++) {
  1239     Node* pi = p->at(i);
  1240     Node* in = pi->in(opd_idx);
  1241     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1242     assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
  1243     pk->add_opd(in);
  1245   _phase->_igvn.register_new_node_with_optimizer(pk);
  1246   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1247   return pk;
  1250 //------------------------------insert_extracts---------------------------
  1251 // If a use of pack p is not a vector use, then replace the
  1252 // use with an extract operation.
  1253 void SuperWord::insert_extracts(Node_List* p) {
  1254   if (p->at(0)->is_Store()) return;
  1255   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1257   // Inspect each use of each pack member.  For each use that is
  1258   // not a vector use, replace the use with an extract operation.
  1260   for (uint i = 0; i < p->size(); i++) {
  1261     Node* def = p->at(i);
  1262     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1263       Node* use = def->fast_out(j);
  1264       for (uint k = 0; k < use->req(); k++) {
  1265         Node* n = use->in(k);
  1266         if (def == n) {
  1267           if (!is_vector_use(use, k)) {
  1268             _n_idx_list.push(use, k);
  1275   while (_n_idx_list.is_nonempty()) {
  1276     Node* use = _n_idx_list.node();
  1277     int   idx = _n_idx_list.index();
  1278     _n_idx_list.pop();
  1279     Node* def = use->in(idx);
  1281     // Insert extract operation
  1282     _igvn.hash_delete(def);
  1283     _igvn.hash_delete(use);
  1284     int def_pos = alignment(def) / data_size(def);
  1285     const Type* def_t = velt_type(def);
  1287     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
  1288     _phase->_igvn.register_new_node_with_optimizer(ex);
  1289     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1290     use->set_req(idx, ex);
  1291     _igvn._worklist.push(def);
  1292     _igvn._worklist.push(use);
  1294     bb_insert_after(ex, bb_idx(def));
  1295     set_velt_type(ex, def_t);
  1299 //------------------------------is_vector_use---------------------------
  1300 // Is use->in(u_idx) a vector use?
  1301 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1302   Node_List* u_pk = my_pack(use);
  1303   if (u_pk == NULL) return false;
  1304   Node* def = use->in(u_idx);
  1305   Node_List* d_pk = my_pack(def);
  1306   if (d_pk == NULL) {
  1307     // check for scalar promotion
  1308     Node* n = u_pk->at(0)->in(u_idx);
  1309     for (uint i = 1; i < u_pk->size(); i++) {
  1310       if (u_pk->at(i)->in(u_idx) != n) return false;
  1312     return true;
  1314   if (u_pk->size() != d_pk->size())
  1315     return false;
  1316   for (uint i = 0; i < u_pk->size(); i++) {
  1317     Node* ui = u_pk->at(i);
  1318     Node* di = d_pk->at(i);
  1319     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1320       return false;
  1322   return true;
  1325 //------------------------------construct_bb---------------------------
  1326 // Construct reverse postorder list of block members
  1327 void SuperWord::construct_bb() {
  1328   Node* entry = bb();
  1330   assert(_stk.length() == 0,            "stk is empty");
  1331   assert(_block.length() == 0,          "block is empty");
  1332   assert(_data_entry.length() == 0,     "data_entry is empty");
  1333   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1334   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1336   // Find non-control nodes with no inputs from within block,
  1337   // create a temporary map from node _idx to bb_idx for use
  1338   // by the visited and post_visited sets,
  1339   // and count number of nodes in block.
  1340   int bb_ct = 0;
  1341   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1342     Node *n = lpt()->_body.at(i);
  1343     set_bb_idx(n, i); // Create a temporary map
  1344     if (in_bb(n)) {
  1345       bb_ct++;
  1346       if (!n->is_CFG()) {
  1347         bool found = false;
  1348         for (uint j = 0; j < n->req(); j++) {
  1349           Node* def = n->in(j);
  1350           if (def && in_bb(def)) {
  1351             found = true;
  1352             break;
  1355         if (!found) {
  1356           assert(n != entry, "can't be entry");
  1357           _data_entry.push(n);
  1363   // Find memory slices (head and tail)
  1364   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1365     Node *n = lp()->fast_out(i);
  1366     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1367       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1368       if (n_tail != n->in(LoopNode::EntryControl)) {
  1369         _mem_slice_head.push(n);
  1370         _mem_slice_tail.push(n_tail);
  1375   // Create an RPO list of nodes in block
  1377   visited_clear();
  1378   post_visited_clear();
  1380   // Push all non-control nodes with no inputs from within block, then control entry
  1381   for (int j = 0; j < _data_entry.length(); j++) {
  1382     Node* n = _data_entry.at(j);
  1383     visited_set(n);
  1384     _stk.push(n);
  1386   visited_set(entry);
  1387   _stk.push(entry);
  1389   // Do a depth first walk over out edges
  1390   int rpo_idx = bb_ct - 1;
  1391   int size;
  1392   while ((size = _stk.length()) > 0) {
  1393     Node* n = _stk.top(); // Leave node on stack
  1394     if (!visited_test_set(n)) {
  1395       // forward arc in graph
  1396     } else if (!post_visited_test(n)) {
  1397       // cross or back arc
  1398       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1399         Node *use = n->fast_out(i);
  1400         if (in_bb(use) && !visited_test(use) &&
  1401             // Don't go around backedge
  1402             (!use->is_Phi() || n == entry)) {
  1403           _stk.push(use);
  1406       if (_stk.length() == size) {
  1407         // There were no additional uses, post visit node now
  1408         _stk.pop(); // Remove node from stack
  1409         assert(rpo_idx >= 0, "");
  1410         _block.at_put_grow(rpo_idx, n);
  1411         rpo_idx--;
  1412         post_visited_set(n);
  1413         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1415     } else {
  1416       _stk.pop(); // Remove post-visited node from stack
  1420   // Create real map of block indices for nodes
  1421   for (int j = 0; j < _block.length(); j++) {
  1422     Node* n = _block.at(j);
  1423     set_bb_idx(n, j);
  1426   initialize_bb(); // Ensure extra info is allocated.
  1428 #ifndef PRODUCT
  1429   if (TraceSuperWord) {
  1430     print_bb();
  1431     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1432     for (int m = 0; m < _data_entry.length(); m++) {
  1433       tty->print("%3d ", m);
  1434       _data_entry.at(m)->dump();
  1436     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1437     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1438       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1439       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1442 #endif
  1443   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1446 //------------------------------initialize_bb---------------------------
  1447 // Initialize per node info
  1448 void SuperWord::initialize_bb() {
  1449   Node* last = _block.at(_block.length() - 1);
  1450   grow_node_info(bb_idx(last));
  1453 //------------------------------bb_insert_after---------------------------
  1454 // Insert n into block after pos
  1455 void SuperWord::bb_insert_after(Node* n, int pos) {
  1456   int n_pos = pos + 1;
  1457   // Make room
  1458   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1459     _block.at_put_grow(i+1, _block.at(i));
  1461   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1462     _node_info.at_put_grow(j+1, _node_info.at(j));
  1464   // Set value
  1465   _block.at_put_grow(n_pos, n);
  1466   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1467   // Adjust map from node->_idx to _block index
  1468   for (int i = n_pos; i < _block.length(); i++) {
  1469     set_bb_idx(_block.at(i), i);
  1473 //------------------------------compute_max_depth---------------------------
  1474 // Compute max depth for expressions from beginning of block
  1475 // Use to prune search paths during test for independence.
  1476 void SuperWord::compute_max_depth() {
  1477   int ct = 0;
  1478   bool again;
  1479   do {
  1480     again = false;
  1481     for (int i = 0; i < _block.length(); i++) {
  1482       Node* n = _block.at(i);
  1483       if (!n->is_Phi()) {
  1484         int d_orig = depth(n);
  1485         int d_in   = 0;
  1486         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1487           Node* pred = preds.current();
  1488           if (in_bb(pred)) {
  1489             d_in = MAX2(d_in, depth(pred));
  1492         if (d_in + 1 != d_orig) {
  1493           set_depth(n, d_in + 1);
  1494           again = true;
  1498     ct++;
  1499   } while (again);
  1500 #ifndef PRODUCT
  1501   if (TraceSuperWord && Verbose)
  1502     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1503 #endif
  1506 //-------------------------compute_vector_element_type-----------------------
  1507 // Compute necessary vector element type for expressions
  1508 // This propagates backwards a narrower integer type when the
  1509 // upper bits of the value are not needed.
  1510 // Example:  char a,b,c;  a = b + c;
  1511 // Normally the type of the add is integer, but for packed character
  1512 // operations the type of the add needs to be char.
  1513 void SuperWord::compute_vector_element_type() {
  1514 #ifndef PRODUCT
  1515   if (TraceSuperWord && Verbose)
  1516     tty->print_cr("\ncompute_velt_type:");
  1517 #endif
  1519   // Initial type
  1520   for (int i = 0; i < _block.length(); i++) {
  1521     Node* n = _block.at(i);
  1522     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
  1523                                  : _igvn.type(n);
  1524     const Type* vt = container_type(t);
  1525     set_velt_type(n, vt);
  1528   // Propagate narrowed type backwards through operations
  1529   // that don't depend on higher order bits
  1530   for (int i = _block.length() - 1; i >= 0; i--) {
  1531     Node* n = _block.at(i);
  1532     // Only integer types need be examined
  1533     if (n->bottom_type()->isa_int()) {
  1534       uint start, end;
  1535       vector_opd_range(n, &start, &end);
  1536       const Type* vt = velt_type(n);
  1538       for (uint j = start; j < end; j++) {
  1539         Node* in  = n->in(j);
  1540         // Don't propagate through a type conversion
  1541         if (n->bottom_type() != in->bottom_type())
  1542           continue;
  1543         switch(in->Opcode()) {
  1544         case Op_AddI:    case Op_AddL:
  1545         case Op_SubI:    case Op_SubL:
  1546         case Op_MulI:    case Op_MulL:
  1547         case Op_AndI:    case Op_AndL:
  1548         case Op_OrI:     case Op_OrL:
  1549         case Op_XorI:    case Op_XorL:
  1550         case Op_LShiftI: case Op_LShiftL:
  1551         case Op_CMoveI:  case Op_CMoveL:
  1552           if (in_bb(in)) {
  1553             bool same_type = true;
  1554             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1555               Node *use = in->fast_out(k);
  1556               if (!in_bb(use) || velt_type(use) != vt) {
  1557                 same_type = false;
  1558                 break;
  1561             if (same_type) {
  1562               set_velt_type(in, vt);
  1569 #ifndef PRODUCT
  1570   if (TraceSuperWord && Verbose) {
  1571     for (int i = 0; i < _block.length(); i++) {
  1572       Node* n = _block.at(i);
  1573       velt_type(n)->dump();
  1574       tty->print("\t");
  1575       n->dump();
  1578 #endif
  1581 //------------------------------memory_alignment---------------------------
  1582 // Alignment within a vector memory reference
  1583 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1584   SWPointer p(s, this);
  1585   if (!p.valid()) {
  1586     return bottom_align;
  1588   int offset  = p.offset_in_bytes();
  1589   offset     += iv_adjust_in_bytes;
  1590   int off_rem = offset % vector_width_in_bytes();
  1591   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
  1592   return off_mod;
  1595 //---------------------------container_type---------------------------
  1596 // Smallest type containing range of values
  1597 const Type* SuperWord::container_type(const Type* t) {
  1598   const Type* tp = t->make_ptr();
  1599   if (tp && tp->isa_aryptr()) {
  1600     t = tp->is_aryptr()->elem();
  1602   if (t->basic_type() == T_INT) {
  1603     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1604     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1605     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1606     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1607     return TypeInt::INT;
  1609   return t;
  1612 //-------------------------vector_opd_range-----------------------
  1613 // (Start, end] half-open range defining which operands are vector
  1614 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1615   switch (n->Opcode()) {
  1616   case Op_LoadB:   case Op_LoadUS:
  1617   case Op_LoadI:   case Op_LoadL:
  1618   case Op_LoadF:   case Op_LoadD:
  1619   case Op_LoadP:
  1620     *start = 0;
  1621     *end   = 0;
  1622     return;
  1623   case Op_StoreB:  case Op_StoreC:
  1624   case Op_StoreI:  case Op_StoreL:
  1625   case Op_StoreF:  case Op_StoreD:
  1626   case Op_StoreP:
  1627     *start = MemNode::ValueIn;
  1628     *end   = *start + 1;
  1629     return;
  1630   case Op_LShiftI: case Op_LShiftL:
  1631     *start = 1;
  1632     *end   = 2;
  1633     return;
  1634   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1635     *start = 2;
  1636     *end   = n->req();
  1637     return;
  1639   *start = 1;
  1640   *end   = n->req(); // default is all operands
  1643 //------------------------------in_packset---------------------------
  1644 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1645 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1646   for (int i = 0; i < _packset.length(); i++) {
  1647     Node_List* p = _packset.at(i);
  1648     assert(p->size() == 2, "must be");
  1649     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1650       return true;
  1653   return false;
  1656 //------------------------------in_pack---------------------------
  1657 // Is s in pack p?
  1658 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1659   for (uint i = 0; i < p->size(); i++) {
  1660     if (p->at(i) == s) {
  1661       return p;
  1664   return NULL;
  1667 //------------------------------remove_pack_at---------------------------
  1668 // Remove the pack at position pos in the packset
  1669 void SuperWord::remove_pack_at(int pos) {
  1670   Node_List* p = _packset.at(pos);
  1671   for (uint i = 0; i < p->size(); i++) {
  1672     Node* s = p->at(i);
  1673     set_my_pack(s, NULL);
  1675   _packset.remove_at(pos);
  1678 //------------------------------executed_first---------------------------
  1679 // Return the node executed first in pack p.  Uses the RPO block list
  1680 // to determine order.
  1681 Node* SuperWord::executed_first(Node_List* p) {
  1682   Node* n = p->at(0);
  1683   int n_rpo = bb_idx(n);
  1684   for (uint i = 1; i < p->size(); i++) {
  1685     Node* s = p->at(i);
  1686     int s_rpo = bb_idx(s);
  1687     if (s_rpo < n_rpo) {
  1688       n = s;
  1689       n_rpo = s_rpo;
  1692   return n;
  1695 //------------------------------executed_last---------------------------
  1696 // Return the node executed last in pack p.
  1697 Node* SuperWord::executed_last(Node_List* p) {
  1698   Node* n = p->at(0);
  1699   int n_rpo = bb_idx(n);
  1700   for (uint i = 1; i < p->size(); i++) {
  1701     Node* s = p->at(i);
  1702     int s_rpo = bb_idx(s);
  1703     if (s_rpo > n_rpo) {
  1704       n = s;
  1705       n_rpo = s_rpo;
  1708   return n;
  1711 //----------------------------align_initial_loop_index---------------------------
  1712 // Adjust pre-loop limit so that in main loop, a load/store reference
  1713 // to align_to_ref will be a position zero in the vector.
  1714 //   (iv + k) mod vector_align == 0
  1715 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1716   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1717   assert(main_head->is_main_loop(), "");
  1718   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1719   assert(pre_end != NULL, "");
  1720   Node *pre_opaq1 = pre_end->limit();
  1721   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1722   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1723   Node *lim0 = pre_opaq->in(1);
  1725   // Where we put new limit calculations
  1726   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1728   // Ensure the original loop limit is available from the
  1729   // pre-loop Opaque1 node.
  1730   Node *orig_limit = pre_opaq->original_loop_limit();
  1731   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1733   SWPointer align_to_ref_p(align_to_ref, this);
  1735   // Given:
  1736   //     lim0 == original pre loop limit
  1737   //     V == v_align (power of 2)
  1738   //     invar == extra invariant piece of the address expression
  1739   //     e == k [ +/- invar ]
  1740   //
  1741   // When reassociating expressions involving '%' the basic rules are:
  1742   //     (a - b) % k == 0   =>  a % k == b % k
  1743   // and:
  1744   //     (a + b) % k == 0   =>  a % k == (k - b) % k
  1745   //
  1746   // For stride > 0 && scale > 0,
  1747   //   Derive the new pre-loop limit "lim" such that the two constraints:
  1748   //     (1) lim = lim0 + N           (where N is some positive integer < V)
  1749   //     (2) (e + lim) % V == 0
  1750   //   are true.
  1751   //
  1752   //   Substituting (1) into (2),
  1753   //     (e + lim0 + N) % V == 0
  1754   //   solve for N:
  1755   //     N = (V - (e + lim0)) % V
  1756   //   substitute back into (1), so that new limit
  1757   //     lim = lim0 + (V - (e + lim0)) % V
  1758   //
  1759   // For stride > 0 && scale < 0
  1760   //   Constraints:
  1761   //     lim = lim0 + N
  1762   //     (e - lim) % V == 0
  1763   //   Solving for lim:
  1764   //     (e - lim0 - N) % V == 0
  1765   //     N = (e - lim0) % V
  1766   //     lim = lim0 + (e - lim0) % V
  1767   //
  1768   // For stride < 0 && scale > 0
  1769   //   Constraints:
  1770   //     lim = lim0 - N
  1771   //     (e + lim) % V == 0
  1772   //   Solving for lim:
  1773   //     (e + lim0 - N) % V == 0
  1774   //     N = (e + lim0) % V
  1775   //     lim = lim0 - (e + lim0) % V
  1776   //
  1777   // For stride < 0 && scale < 0
  1778   //   Constraints:
  1779   //     lim = lim0 - N
  1780   //     (e - lim) % V == 0
  1781   //   Solving for lim:
  1782   //     (e - lim0 + N) % V == 0
  1783   //     N = (V - (e - lim0)) % V
  1784   //     lim = lim0 - (V - (e - lim0)) % V
  1786   int stride   = iv_stride();
  1787   int scale    = align_to_ref_p.scale_in_bytes();
  1788   int elt_size = align_to_ref_p.memory_size();
  1789   int v_align  = vector_width_in_bytes() / elt_size;
  1790   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1792   Node *kn   = _igvn.intcon(k);
  1794   Node *e = kn;
  1795   if (align_to_ref_p.invar() != NULL) {
  1796     // incorporate any extra invariant piece producing k +/- invar >>> log2(elt)
  1797     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1798     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1799     _phase->_igvn.register_new_node_with_optimizer(aref);
  1800     _phase->set_ctrl(aref, pre_ctrl);
  1801     if (align_to_ref_p.negate_invar()) {
  1802       e = new (_phase->C, 3) SubINode(e, aref);
  1803     } else {
  1804       e = new (_phase->C, 3) AddINode(e, aref);
  1806     _phase->_igvn.register_new_node_with_optimizer(e);
  1807     _phase->set_ctrl(e, pre_ctrl);
  1810   // compute e +/- lim0
  1811   if (scale < 0) {
  1812     e = new (_phase->C, 3) SubINode(e, lim0);
  1813   } else {
  1814     e = new (_phase->C, 3) AddINode(e, lim0);
  1816   _phase->_igvn.register_new_node_with_optimizer(e);
  1817   _phase->set_ctrl(e, pre_ctrl);
  1819   if (stride * scale > 0) {
  1820     // compute V - (e +/- lim0)
  1821     Node* va  = _igvn.intcon(v_align);
  1822     e = new (_phase->C, 3) SubINode(va, e);
  1823     _phase->_igvn.register_new_node_with_optimizer(e);
  1824     _phase->set_ctrl(e, pre_ctrl);
  1826   // compute N = (exp) % V
  1827   Node* va_msk = _igvn.intcon(v_align - 1);
  1828   Node* N = new (_phase->C, 3) AndINode(e, va_msk);
  1829   _phase->_igvn.register_new_node_with_optimizer(N);
  1830   _phase->set_ctrl(N, pre_ctrl);
  1832   //   substitute back into (1), so that new limit
  1833   //     lim = lim0 + N
  1834   Node* lim;
  1835   if (stride < 0) {
  1836     lim = new (_phase->C, 3) SubINode(lim0, N);
  1837   } else {
  1838     lim = new (_phase->C, 3) AddINode(lim0, N);
  1840   _phase->_igvn.register_new_node_with_optimizer(lim);
  1841   _phase->set_ctrl(lim, pre_ctrl);
  1842   Node* constrained =
  1843     (stride > 0) ? (Node*) new (_phase->C,3) MinINode(lim, orig_limit)
  1844                  : (Node*) new (_phase->C,3) MaxINode(lim, orig_limit);
  1845   _phase->_igvn.register_new_node_with_optimizer(constrained);
  1846   _phase->set_ctrl(constrained, pre_ctrl);
  1847   _igvn.hash_delete(pre_opaq);
  1848   pre_opaq->set_req(1, constrained);
  1851 //----------------------------get_pre_loop_end---------------------------
  1852 // Find pre loop end from main loop.  Returns null if none.
  1853 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  1854   Node *ctrl = cl->in(LoopNode::EntryControl);
  1855   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  1856   Node *iffm = ctrl->in(0);
  1857   if (!iffm->is_If()) return NULL;
  1858   Node *p_f = iffm->in(0);
  1859   if (!p_f->is_IfFalse()) return NULL;
  1860   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  1861   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1862   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  1863   return pre_end;
  1867 //------------------------------init---------------------------
  1868 void SuperWord::init() {
  1869   _dg.init();
  1870   _packset.clear();
  1871   _disjoint_ptrs.clear();
  1872   _block.clear();
  1873   _data_entry.clear();
  1874   _mem_slice_head.clear();
  1875   _mem_slice_tail.clear();
  1876   _node_info.clear();
  1877   _align_to_ref = NULL;
  1878   _lpt = NULL;
  1879   _lp = NULL;
  1880   _bb = NULL;
  1881   _iv = NULL;
  1884 //------------------------------print_packset---------------------------
  1885 void SuperWord::print_packset() {
  1886 #ifndef PRODUCT
  1887   tty->print_cr("packset");
  1888   for (int i = 0; i < _packset.length(); i++) {
  1889     tty->print_cr("Pack: %d", i);
  1890     Node_List* p = _packset.at(i);
  1891     print_pack(p);
  1893 #endif
  1896 //------------------------------print_pack---------------------------
  1897 void SuperWord::print_pack(Node_List* p) {
  1898   for (uint i = 0; i < p->size(); i++) {
  1899     print_stmt(p->at(i));
  1903 //------------------------------print_bb---------------------------
  1904 void SuperWord::print_bb() {
  1905 #ifndef PRODUCT
  1906   tty->print_cr("\nBlock");
  1907   for (int i = 0; i < _block.length(); i++) {
  1908     Node* n = _block.at(i);
  1909     tty->print("%d ", i);
  1910     if (n) {
  1911       n->dump();
  1914 #endif
  1917 //------------------------------print_stmt---------------------------
  1918 void SuperWord::print_stmt(Node* s) {
  1919 #ifndef PRODUCT
  1920   tty->print(" align: %d \t", alignment(s));
  1921   s->dump();
  1922 #endif
  1925 //------------------------------blank---------------------------
  1926 char* SuperWord::blank(uint depth) {
  1927   static char blanks[101];
  1928   assert(depth < 101, "too deep");
  1929   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  1930   blanks[depth] = '\0';
  1931   return blanks;
  1935 //==============================SWPointer===========================
  1937 //----------------------------SWPointer------------------------
  1938 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  1939   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  1940   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  1942   Node* adr = mem->in(MemNode::Address);
  1943   if (!adr->is_AddP()) {
  1944     assert(!valid(), "too complex");
  1945     return;
  1947   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  1948   Node* base = adr->in(AddPNode::Base);
  1949   //unsafe reference could not be aligned appropriately without runtime checking
  1950   if (base == NULL || base->bottom_type() == Type::TOP) {
  1951     assert(!valid(), "unsafe access");
  1952     return;
  1954   for (int i = 0; i < 3; i++) {
  1955     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  1956       assert(!valid(), "too complex");
  1957       return;
  1959     adr = adr->in(AddPNode::Address);
  1960     if (base == adr || !adr->is_AddP()) {
  1961       break; // stop looking at addp's
  1964   _base = base;
  1965   _adr  = adr;
  1966   assert(valid(), "Usable");
  1969 // Following is used to create a temporary object during
  1970 // the pattern match of an address expression.
  1971 SWPointer::SWPointer(SWPointer* p) :
  1972   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  1973   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  1975 //------------------------scaled_iv_plus_offset--------------------
  1976 // Match: k*iv + offset
  1977 // where: k is a constant that maybe zero, and
  1978 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  1979 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  1980   if (scaled_iv(n)) {
  1981     return true;
  1983   if (offset_plus_k(n)) {
  1984     return true;
  1986   int opc = n->Opcode();
  1987   if (opc == Op_AddI) {
  1988     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  1989       return true;
  1991     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1992       return true;
  1994   } else if (opc == Op_SubI) {
  1995     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  1996       return true;
  1998     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1999       _scale *= -1;
  2000       return true;
  2003   return false;
  2006 //----------------------------scaled_iv------------------------
  2007 // Match: k*iv where k is a constant that's not zero
  2008 bool SWPointer::scaled_iv(Node* n) {
  2009   if (_scale != 0) {
  2010     return false;  // already found a scale
  2012   if (n == iv()) {
  2013     _scale = 1;
  2014     return true;
  2016   int opc = n->Opcode();
  2017   if (opc == Op_MulI) {
  2018     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2019       _scale = n->in(2)->get_int();
  2020       return true;
  2021     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  2022       _scale = n->in(1)->get_int();
  2023       return true;
  2025   } else if (opc == Op_LShiftI) {
  2026     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  2027       _scale = 1 << n->in(2)->get_int();
  2028       return true;
  2030   } else if (opc == Op_ConvI2L) {
  2031     if (scaled_iv_plus_offset(n->in(1))) {
  2032       return true;
  2034   } else if (opc == Op_LShiftL) {
  2035     if (!has_iv() && _invar == NULL) {
  2036       // Need to preserve the current _offset value, so
  2037       // create a temporary object for this expression subtree.
  2038       // Hacky, so should re-engineer the address pattern match.
  2039       SWPointer tmp(this);
  2040       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  2041         if (tmp._invar == NULL) {
  2042           int mult = 1 << n->in(2)->get_int();
  2043           _scale   = tmp._scale  * mult;
  2044           _offset += tmp._offset * mult;
  2045           return true;
  2050   return false;
  2053 //----------------------------offset_plus_k------------------------
  2054 // Match: offset is (k [+/- invariant])
  2055 // where k maybe zero and invariant is optional, but not both.
  2056 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  2057   int opc = n->Opcode();
  2058   if (opc == Op_ConI) {
  2059     _offset += negate ? -(n->get_int()) : n->get_int();
  2060     return true;
  2061   } else if (opc == Op_ConL) {
  2062     // Okay if value fits into an int
  2063     const TypeLong* t = n->find_long_type();
  2064     if (t->higher_equal(TypeLong::INT)) {
  2065       jlong loff = n->get_long();
  2066       jint  off  = (jint)loff;
  2067       _offset += negate ? -off : loff;
  2068       return true;
  2070     return false;
  2072   if (_invar != NULL) return false; // already have an invariant
  2073   if (opc == Op_AddI) {
  2074     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2075       _negate_invar = negate;
  2076       _invar = n->in(1);
  2077       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2078       return true;
  2079     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2080       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2081       _negate_invar = negate;
  2082       _invar = n->in(2);
  2083       return true;
  2086   if (opc == Op_SubI) {
  2087     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  2088       _negate_invar = negate;
  2089       _invar = n->in(1);
  2090       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  2091       return true;
  2092     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  2093       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  2094       _negate_invar = !negate;
  2095       _invar = n->in(2);
  2096       return true;
  2099   if (invariant(n)) {
  2100     _negate_invar = negate;
  2101     _invar = n;
  2102     return true;
  2104   return false;
  2107 //----------------------------print------------------------
  2108 void SWPointer::print() {
  2109 #ifndef PRODUCT
  2110   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  2111              _base != NULL ? _base->_idx : 0,
  2112              _adr  != NULL ? _adr->_idx  : 0,
  2113              _scale, _offset,
  2114              _negate_invar?'-':'+',
  2115              _invar != NULL ? _invar->_idx : 0);
  2116 #endif
  2119 // ========================= OrderedPair =====================
  2121 const OrderedPair OrderedPair::initial;
  2123 // ========================= SWNodeInfo =====================
  2125 const SWNodeInfo SWNodeInfo::initial;
  2128 // ============================ DepGraph ===========================
  2130 //------------------------------make_node---------------------------
  2131 // Make a new dependence graph node for an ideal node.
  2132 DepMem* DepGraph::make_node(Node* node) {
  2133   DepMem* m = new (_arena) DepMem(node);
  2134   if (node != NULL) {
  2135     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  2136     _map.at_put_grow(node->_idx, m);
  2138   return m;
  2141 //------------------------------make_edge---------------------------
  2142 // Make a new dependence graph edge from dpred -> dsucc
  2143 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  2144   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  2145   dpred->set_out_head(e);
  2146   dsucc->set_in_head(e);
  2147   return e;
  2150 // ========================== DepMem ========================
  2152 //------------------------------in_cnt---------------------------
  2153 int DepMem::in_cnt() {
  2154   int ct = 0;
  2155   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  2156   return ct;
  2159 //------------------------------out_cnt---------------------------
  2160 int DepMem::out_cnt() {
  2161   int ct = 0;
  2162   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  2163   return ct;
  2166 //------------------------------print-----------------------------
  2167 void DepMem::print() {
  2168 #ifndef PRODUCT
  2169   tty->print("  DepNode %d (", _node->_idx);
  2170   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  2171     Node* pred = p->pred()->node();
  2172     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  2174   tty->print(") [");
  2175   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  2176     Node* succ = s->succ()->node();
  2177     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  2179   tty->print_cr(" ]");
  2180 #endif
  2183 // =========================== DepEdge =========================
  2185 //------------------------------DepPreds---------------------------
  2186 void DepEdge::print() {
  2187 #ifndef PRODUCT
  2188   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  2189 #endif
  2192 // =========================== DepPreds =========================
  2193 // Iterator over predecessor edges in the dependence graph.
  2195 //------------------------------DepPreds---------------------------
  2196 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  2197   _n = n;
  2198   _done = false;
  2199   if (_n->is_Store() || _n->is_Load()) {
  2200     _next_idx = MemNode::Address;
  2201     _end_idx  = n->req();
  2202     _dep_next = dg.dep(_n)->in_head();
  2203   } else if (_n->is_Mem()) {
  2204     _next_idx = 0;
  2205     _end_idx  = 0;
  2206     _dep_next = dg.dep(_n)->in_head();
  2207   } else {
  2208     _next_idx = 1;
  2209     _end_idx  = _n->req();
  2210     _dep_next = NULL;
  2212   next();
  2215 //------------------------------next---------------------------
  2216 void DepPreds::next() {
  2217   if (_dep_next != NULL) {
  2218     _current  = _dep_next->pred()->node();
  2219     _dep_next = _dep_next->next_in();
  2220   } else if (_next_idx < _end_idx) {
  2221     _current  = _n->in(_next_idx++);
  2222   } else {
  2223     _done = true;
  2227 // =========================== DepSuccs =========================
  2228 // Iterator over successor edges in the dependence graph.
  2230 //------------------------------DepSuccs---------------------------
  2231 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  2232   _n = n;
  2233   _done = false;
  2234   if (_n->is_Load()) {
  2235     _next_idx = 0;
  2236     _end_idx  = _n->outcnt();
  2237     _dep_next = dg.dep(_n)->out_head();
  2238   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2239     _next_idx = 0;
  2240     _end_idx  = 0;
  2241     _dep_next = dg.dep(_n)->out_head();
  2242   } else {
  2243     _next_idx = 0;
  2244     _end_idx  = _n->outcnt();
  2245     _dep_next = NULL;
  2247   next();
  2250 //-------------------------------next---------------------------
  2251 void DepSuccs::next() {
  2252   if (_dep_next != NULL) {
  2253     _current  = _dep_next->succ()->node();
  2254     _dep_next = _dep_next->next_out();
  2255   } else if (_next_idx < _end_idx) {
  2256     _current  = _n->raw_out(_next_idx++);
  2257   } else {
  2258     _done = true;

mercurial