src/share/vm/opto/addnode.cpp

Wed, 10 Sep 2008 20:44:47 -0700

author
kvn
date
Wed, 10 Sep 2008 20:44:47 -0700
changeset 767
c792b641b8bd
parent 755
2b73d212b1fd
child 835
cc80376deb0c
permissions
-rw-r--r--

6746907: Improve implicit null check generation
Summary: add missing implicit null check cases.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_addnode.cpp.incl"
    30 #define MAXFLOAT        ((float)3.40282346638528860e+38)
    32 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    33 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    34 // all inherited from this class.  The various identity values are supplied
    35 // by virtual functions.
    38 //=============================================================================
    39 //------------------------------hash-------------------------------------------
    40 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    42 // the same value in the presence of edge swapping.
    43 uint AddNode::hash() const {
    44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    45 }
    47 //------------------------------Identity---------------------------------------
    48 // If either input is a constant 0, return the other input.
    49 Node *AddNode::Identity( PhaseTransform *phase ) {
    50   const Type *zero = add_id();  // The additive identity
    51   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    52   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    53   return this;
    54 }
    56 //------------------------------commute----------------------------------------
    57 // Commute operands to move loads and constants to the right.
    58 static bool commute( Node *add, int con_left, int con_right ) {
    59   Node *in1 = add->in(1);
    60   Node *in2 = add->in(2);
    62   // Convert "1+x" into "x+1".
    63   // Right is a constant; leave it
    64   if( con_right ) return false;
    65   // Left is a constant; move it right.
    66   if( con_left ) {
    67     add->swap_edges(1, 2);
    68     return true;
    69   }
    71   // Convert "Load+x" into "x+Load".
    72   // Now check for loads
    73   if (in2->is_Load()) {
    74     if (!in1->is_Load()) {
    75       // already x+Load to return
    76       return false;
    77     }
    78     // both are loads, so fall through to sort inputs by idx
    79   } else if( in1->is_Load() ) {
    80     // Left is a Load and Right is not; move it right.
    81     add->swap_edges(1, 2);
    82     return true;
    83   }
    85   PhiNode *phi;
    86   // Check for tight loop increments: Loop-phi of Add of loop-phi
    87   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    88     return false;
    89   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    90     add->swap_edges(1, 2);
    91     return true;
    92   }
    94   // Otherwise, sort inputs (commutativity) to help value numbering.
    95   if( in1->_idx > in2->_idx ) {
    96     add->swap_edges(1, 2);
    97     return true;
    98   }
    99   return false;
   100 }
   102 //------------------------------Idealize---------------------------------------
   103 // If we get here, we assume we are associative!
   104 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   105   const Type *t1 = phase->type( in(1) );
   106   const Type *t2 = phase->type( in(2) );
   107   int con_left  = t1->singleton();
   108   int con_right = t2->singleton();
   110   // Check for commutative operation desired
   111   if( commute(this,con_left,con_right) ) return this;
   113   AddNode *progress = NULL;             // Progress flag
   115   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   116   // constant, and the left input is an add of a constant, flatten the
   117   // expression tree.
   118   Node *add1 = in(1);
   119   Node *add2 = in(2);
   120   int add1_op = add1->Opcode();
   121   int this_op = Opcode();
   122   if( con_right && t2 != Type::TOP && // Right input is a constant?
   123       add1_op == this_op ) { // Left input is an Add?
   125     // Type of left _in right input
   126     const Type *t12 = phase->type( add1->in(2) );
   127     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   128       // Check for rare case of closed data cycle which can happen inside
   129       // unreachable loops. In these cases the computation is undefined.
   130 #ifdef ASSERT
   131       Node *add11    = add1->in(1);
   132       int   add11_op = add11->Opcode();
   133       if( (add1 == add1->in(1))
   134          || (add11_op == this_op && add11->in(1) == add1) ) {
   135         assert(false, "dead loop in AddNode::Ideal");
   136       }
   137 #endif
   138       // The Add of the flattened expression
   139       Node *x1 = add1->in(1);
   140       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   141       PhaseIterGVN *igvn = phase->is_IterGVN();
   142       if( igvn ) {
   143         set_req_X(2,x2,igvn);
   144         set_req_X(1,x1,igvn);
   145       } else {
   146         set_req(2,x2);
   147         set_req(1,x1);
   148       }
   149       progress = this;            // Made progress
   150       add1 = in(1);
   151       add1_op = add1->Opcode();
   152     }
   153   }
   155   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   156   if( add1_op == this_op && !con_right ) {
   157     Node *a12 = add1->in(2);
   158     const Type *t12 = phase->type( a12 );
   159     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
   160       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
   161       add2 = add1->clone();
   162       add2->set_req(2, in(2));
   163       add2 = phase->transform(add2);
   164       set_req(1, add2);
   165       set_req(2, a12);
   166       progress = this;
   167       add2 = a12;
   168     }
   169   }
   171   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   172   int add2_op = add2->Opcode();
   173   if( add2_op == this_op && !con_left ) {
   174     Node *a22 = add2->in(2);
   175     const Type *t22 = phase->type( a22 );
   176     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
   177       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
   178       Node *addx = add2->clone();
   179       addx->set_req(1, in(1));
   180       addx->set_req(2, add2->in(1));
   181       addx = phase->transform(addx);
   182       set_req(1, addx);
   183       set_req(2, a22);
   184       progress = this;
   185     }
   186   }
   188   return progress;
   189 }
   191 //------------------------------Value-----------------------------------------
   192 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   193 // the other input's symbols.
   194 const Type *AddNode::Value( PhaseTransform *phase ) const {
   195   // Either input is TOP ==> the result is TOP
   196   const Type *t1 = phase->type( in(1) );
   197   const Type *t2 = phase->type( in(2) );
   198   if( t1 == Type::TOP ) return Type::TOP;
   199   if( t2 == Type::TOP ) return Type::TOP;
   201   // Either input is BOTTOM ==> the result is the local BOTTOM
   202   const Type *bot = bottom_type();
   203   if( (t1 == bot) || (t2 == bot) ||
   204       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   205     return bot;
   207   // Check for an addition involving the additive identity
   208   const Type *tadd = add_of_identity( t1, t2 );
   209   if( tadd ) return tadd;
   211   return add_ring(t1,t2);               // Local flavor of type addition
   212 }
   214 //------------------------------add_identity-----------------------------------
   215 // Check for addition of the identity
   216 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   217   const Type *zero = add_id();  // The additive identity
   218   if( t1->higher_equal( zero ) ) return t2;
   219   if( t2->higher_equal( zero ) ) return t1;
   221   return NULL;
   222 }
   225 //=============================================================================
   226 //------------------------------Idealize---------------------------------------
   227 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   228   int op1 = in(1)->Opcode();
   229   int op2 = in(2)->Opcode();
   230   // Fold (con1-x)+con2 into (con1+con2)-x
   231   if( op1 == Op_SubI ) {
   232     const Type *t_sub1 = phase->type( in(1)->in(1) );
   233     const Type *t_2    = phase->type( in(2)        );
   234     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   235       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   236                               in(1)->in(2) );
   237     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   238     if( op2 == Op_SubI ) {
   239       // Check for dead cycle: d = (a-b)+(c-d)
   240       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   241               "dead loop in AddINode::Ideal" );
   242       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
   243       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
   244       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
   245       return sub;
   246     }
   247   }
   249   // Convert "x+(0-y)" into "(x-y)"
   250   if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
   251     return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
   253   // Convert "(0-y)+x" into "(x-y)"
   254   if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
   255     return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
   257   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   258   // Helps with array allocation math constant folding
   259   // See 4790063:
   260   // Unrestricted transformation is unsafe for some runtime values of 'x'
   261   // ( x ==  0, z == 1, y == -1 ) fails
   262   // ( x == -5, z == 1, y ==  1 ) fails
   263   // Transform works for small z and small negative y when the addition
   264   // (x + (y << z)) does not cross zero.
   265   // Implement support for negative y and (x >= -(y << z))
   266   // Have not observed cases where type information exists to support
   267   // positive y and (x <= -(y << z))
   268   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   269       in(1)->in(2)->Opcode() == Op_ConI ) {
   270     jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   271     jint y = phase->type( in(2) )->is_int()->get_con();
   273     if( z < 5 && -5 < y && y < 0 ) {
   274       const Type *t_in11 = phase->type(in(1)->in(1));
   275       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   276         Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
   277         return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
   278       }
   279     }
   280   }
   282   return AddNode::Ideal(phase, can_reshape);
   283 }
   286 //------------------------------Identity---------------------------------------
   287 // Fold (x-y)+y  OR  y+(x-y)  into  x
   288 Node *AddINode::Identity( PhaseTransform *phase ) {
   289   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   290     return in(1)->in(1);
   291   }
   292   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   293     return in(2)->in(1);
   294   }
   295   return AddNode::Identity(phase);
   296 }
   299 //------------------------------add_ring---------------------------------------
   300 // Supplied function returns the sum of the inputs.  Guaranteed never
   301 // to be passed a TOP or BOTTOM type, these are filtered out by
   302 // pre-check.
   303 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   304   const TypeInt *r0 = t0->is_int(); // Handy access
   305   const TypeInt *r1 = t1->is_int();
   306   int lo = r0->_lo + r1->_lo;
   307   int hi = r0->_hi + r1->_hi;
   308   if( !(r0->is_con() && r1->is_con()) ) {
   309     // Not both constants, compute approximate result
   310     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   311       lo = min_jint; hi = max_jint; // Underflow on the low side
   312     }
   313     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   314       lo = min_jint; hi = max_jint; // Overflow on the high side
   315     }
   316     if( lo > hi ) {               // Handle overflow
   317       lo = min_jint; hi = max_jint;
   318     }
   319   } else {
   320     // both constants, compute precise result using 'lo' and 'hi'
   321     // Semantics define overflow and underflow for integer addition
   322     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   323   }
   324   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   325 }
   328 //=============================================================================
   329 //------------------------------Idealize---------------------------------------
   330 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   331   int op1 = in(1)->Opcode();
   332   int op2 = in(2)->Opcode();
   333   // Fold (con1-x)+con2 into (con1+con2)-x
   334   if( op1 == Op_SubL ) {
   335     const Type *t_sub1 = phase->type( in(1)->in(1) );
   336     const Type *t_2    = phase->type( in(2)        );
   337     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   338       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   339                               in(1)->in(2) );
   340     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   341     if( op2 == Op_SubL ) {
   342       // Check for dead cycle: d = (a-b)+(c-d)
   343       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   344               "dead loop in AddLNode::Ideal" );
   345       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
   346       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
   347       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
   348       return sub;
   349     }
   350   }
   352   // Convert "x+(0-y)" into "(x-y)"
   353   if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
   354     return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
   356   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   357   // into "(X<<1)+Y" and let shift-folding happen.
   358   if( op2 == Op_AddL &&
   359       in(2)->in(1) == in(1) &&
   360       op1 != Op_ConL &&
   361       0 ) {
   362     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
   363     return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
   364   }
   366   return AddNode::Ideal(phase, can_reshape);
   367 }
   370 //------------------------------Identity---------------------------------------
   371 // Fold (x-y)+y  OR  y+(x-y)  into  x
   372 Node *AddLNode::Identity( PhaseTransform *phase ) {
   373   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   374     return in(1)->in(1);
   375   }
   376   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   377     return in(2)->in(1);
   378   }
   379   return AddNode::Identity(phase);
   380 }
   383 //------------------------------add_ring---------------------------------------
   384 // Supplied function returns the sum of the inputs.  Guaranteed never
   385 // to be passed a TOP or BOTTOM type, these are filtered out by
   386 // pre-check.
   387 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   388   const TypeLong *r0 = t0->is_long(); // Handy access
   389   const TypeLong *r1 = t1->is_long();
   390   jlong lo = r0->_lo + r1->_lo;
   391   jlong hi = r0->_hi + r1->_hi;
   392   if( !(r0->is_con() && r1->is_con()) ) {
   393     // Not both constants, compute approximate result
   394     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   395       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   396     }
   397     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   398       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   399     }
   400     if( lo > hi ) {               // Handle overflow
   401       lo = min_jlong; hi = max_jlong;
   402     }
   403   } else {
   404     // both constants, compute precise result using 'lo' and 'hi'
   405     // Semantics define overflow and underflow for integer addition
   406     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   407   }
   408   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   409 }
   412 //=============================================================================
   413 //------------------------------add_of_identity--------------------------------
   414 // Check for addition of the identity
   415 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   416   // x ADD 0  should return x unless 'x' is a -zero
   417   //
   418   // const Type *zero = add_id();     // The additive identity
   419   // jfloat f1 = t1->getf();
   420   // jfloat f2 = t2->getf();
   421   //
   422   // if( t1->higher_equal( zero ) ) return t2;
   423   // if( t2->higher_equal( zero ) ) return t1;
   425   return NULL;
   426 }
   428 //------------------------------add_ring---------------------------------------
   429 // Supplied function returns the sum of the inputs.
   430 // This also type-checks the inputs for sanity.  Guaranteed never to
   431 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   432 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   433   // We must be adding 2 float constants.
   434   return TypeF::make( t0->getf() + t1->getf() );
   435 }
   437 //------------------------------Ideal------------------------------------------
   438 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   439   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   440     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   441   }
   443   // Floating point additions are not associative because of boundary conditions (infinity)
   444   return commute(this,
   445                  phase->type( in(1) )->singleton(),
   446                  phase->type( in(2) )->singleton() ) ? this : NULL;
   447 }
   450 //=============================================================================
   451 //------------------------------add_of_identity--------------------------------
   452 // Check for addition of the identity
   453 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   454   // x ADD 0  should return x unless 'x' is a -zero
   455   //
   456   // const Type *zero = add_id();     // The additive identity
   457   // jfloat f1 = t1->getf();
   458   // jfloat f2 = t2->getf();
   459   //
   460   // if( t1->higher_equal( zero ) ) return t2;
   461   // if( t2->higher_equal( zero ) ) return t1;
   463   return NULL;
   464 }
   465 //------------------------------add_ring---------------------------------------
   466 // Supplied function returns the sum of the inputs.
   467 // This also type-checks the inputs for sanity.  Guaranteed never to
   468 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   469 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   470   // We must be adding 2 double constants.
   471   return TypeD::make( t0->getd() + t1->getd() );
   472 }
   474 //------------------------------Ideal------------------------------------------
   475 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   476   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   477     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   478   }
   480   // Floating point additions are not associative because of boundary conditions (infinity)
   481   return commute(this,
   482                  phase->type( in(1) )->singleton(),
   483                  phase->type( in(2) )->singleton() ) ? this : NULL;
   484 }
   487 //=============================================================================
   488 //------------------------------Identity---------------------------------------
   489 // If one input is a constant 0, return the other input.
   490 Node *AddPNode::Identity( PhaseTransform *phase ) {
   491   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   492 }
   494 //------------------------------Idealize---------------------------------------
   495 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   496   // Bail out if dead inputs
   497   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   499   // If the left input is an add of a constant, flatten the expression tree.
   500   const Node *n = in(Address);
   501   if (n->is_AddP() && n->in(Base) == in(Base)) {
   502     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   503     assert( !addp->in(Address)->is_AddP() ||
   504              addp->in(Address)->as_AddP() != addp,
   505             "dead loop in AddPNode::Ideal" );
   506     // Type of left input's right input
   507     const Type *t = phase->type( addp->in(Offset) );
   508     if( t == Type::TOP ) return NULL;
   509     const TypeX *t12 = t->is_intptr_t();
   510     if( t12->is_con() ) {       // Left input is an add of a constant?
   511       // If the right input is a constant, combine constants
   512       const Type *temp_t2 = phase->type( in(Offset) );
   513       if( temp_t2 == Type::TOP ) return NULL;
   514       const TypeX *t2 = temp_t2->is_intptr_t();
   515       Node* address;
   516       Node* offset;
   517       if( t2->is_con() ) {
   518         // The Add of the flattened expression
   519         address = addp->in(Address);
   520         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
   521       } else {
   522         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   523         address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
   524         offset  = addp->in(Offset);
   525       }
   526       PhaseIterGVN *igvn = phase->is_IterGVN();
   527       if( igvn ) {
   528         set_req_X(Address,address,igvn);
   529         set_req_X(Offset,offset,igvn);
   530       } else {
   531         set_req(Address,address);
   532         set_req(Offset,offset);
   533       }
   534       return this;
   535     }
   536   }
   538   // Raw pointers?
   539   if( in(Base)->bottom_type() == Type::TOP ) {
   540     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   541     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   542       Node* offset = in(Offset);
   543       return new (phase->C, 2) CastX2PNode(offset);
   544     }
   545   }
   547   // If the right is an add of a constant, push the offset down.
   548   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   549   // The idea is to merge array_base+scaled_index groups together,
   550   // and only have different constant offsets from the same base.
   551   const Node *add = in(Offset);
   552   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   553     const Type *t22 = phase->type( add->in(2) );
   554     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   555       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
   556       set_req(Offset, add->in(2));
   557       return this;              // Made progress
   558     }
   559   }
   561   return NULL;                  // No progress
   562 }
   564 //------------------------------bottom_type------------------------------------
   565 // Bottom-type is the pointer-type with unknown offset.
   566 const Type *AddPNode::bottom_type() const {
   567   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   568   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   569   if( !tp ) return Type::TOP;   // TOP input means TOP output
   570   assert( in(Offset)->Opcode() != Op_ConP, "" );
   571   const Type *t = in(Offset)->bottom_type();
   572   if( t == Type::TOP )
   573     return tp->add_offset(Type::OffsetTop);
   574   const TypeX *tx = t->is_intptr_t();
   575   intptr_t txoffset = Type::OffsetBot;
   576   if (tx->is_con()) {   // Left input is an add of a constant?
   577     txoffset = tx->get_con();
   578   }
   579   return tp->add_offset(txoffset);
   580 }
   582 //------------------------------Value------------------------------------------
   583 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   584   // Either input is TOP ==> the result is TOP
   585   const Type *t1 = phase->type( in(Address) );
   586   const Type *t2 = phase->type( in(Offset) );
   587   if( t1 == Type::TOP ) return Type::TOP;
   588   if( t2 == Type::TOP ) return Type::TOP;
   590   // Left input is a pointer
   591   const TypePtr *p1 = t1->isa_ptr();
   592   // Right input is an int
   593   const TypeX *p2 = t2->is_intptr_t();
   594   // Add 'em
   595   intptr_t p2offset = Type::OffsetBot;
   596   if (p2->is_con()) {   // Left input is an add of a constant?
   597     p2offset = p2->get_con();
   598   }
   599   return p1->add_offset(p2offset);
   600 }
   602 //------------------------Ideal_base_and_offset--------------------------------
   603 // Split an oop pointer into a base and offset.
   604 // (The offset might be Type::OffsetBot in the case of an array.)
   605 // Return the base, or NULL if failure.
   606 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   607                                       // second return value:
   608                                       intptr_t& offset) {
   609   if (ptr->is_AddP()) {
   610     Node* base = ptr->in(AddPNode::Base);
   611     Node* addr = ptr->in(AddPNode::Address);
   612     Node* offs = ptr->in(AddPNode::Offset);
   613     if (base == addr || base->is_top()) {
   614       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   615       if (offset != Type::OffsetBot) {
   616         return addr;
   617       }
   618     }
   619   }
   620   offset = Type::OffsetBot;
   621   return NULL;
   622 }
   624 //------------------------------unpack_offsets----------------------------------
   625 // Collect the AddP offset values into the elements array, giving up
   626 // if there are more than length.
   627 int AddPNode::unpack_offsets(Node* elements[], int length) {
   628   int count = 0;
   629   Node* addr = this;
   630   Node* base = addr->in(AddPNode::Base);
   631   while (addr->is_AddP()) {
   632     if (addr->in(AddPNode::Base) != base) {
   633       // give up
   634       return -1;
   635     }
   636     elements[count++] = addr->in(AddPNode::Offset);
   637     if (count == length) {
   638       // give up
   639       return -1;
   640     }
   641     addr = addr->in(AddPNode::Address);
   642   }
   643   return count;
   644 }
   646 //------------------------------match_edge-------------------------------------
   647 // Do we Match on this edge index or not?  Do not match base pointer edge
   648 uint AddPNode::match_edge(uint idx) const {
   649   return idx > Base;
   650 }
   652 //---------------------------mach_bottom_type----------------------------------
   653 // Utility function for use by ADLC.  Implements bottom_type for matched AddP.
   654 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
   655   Node* base = n->in(Base);
   656   const Type *t = base->bottom_type();
   657   if ( t == Type::TOP ) {
   658     // an untyped pointer
   659     return TypeRawPtr::BOTTOM;
   660   }
   661   const TypePtr* tp = t->isa_oopptr();
   662   if ( tp == NULL )  return t;
   663   if ( tp->_offset == TypePtr::OffsetBot )  return tp;
   665   // We must carefully add up the various offsets...
   666   intptr_t offset = 0;
   667   const TypePtr* tptr = NULL;
   669   uint numopnds = n->num_opnds();
   670   uint index = n->oper_input_base();
   671   for ( uint i = 1; i < numopnds; i++ ) {
   672     MachOper *opnd = n->_opnds[i];
   673     // Check for any interesting operand info.
   674     // In particular, check for both memory and non-memory operands.
   675     // %%%%% Clean this up: use xadd_offset
   676     intptr_t con = opnd->constant();
   677     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   678     offset += con;
   679     con = opnd->constant_disp();
   680     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   681     offset += con;
   682     if( opnd->scale() != 0 ) goto bottom_out;
   684     // Check each operand input edge.  Find the 1 allowed pointer
   685     // edge.  Other edges must be index edges; track exact constant
   686     // inputs and otherwise assume the worst.
   687     for ( uint j = opnd->num_edges(); j > 0; j-- ) {
   688       Node* edge = n->in(index++);
   689       const Type*    et  = edge->bottom_type();
   690       const TypeX*   eti = et->isa_intptr_t();
   691       if ( eti == NULL ) {
   692         // there must be one pointer among the operands
   693         guarantee(tptr == NULL, "must be only one pointer operand");
   694         tptr = et->isa_oopptr();
   695         guarantee(tptr != NULL, "non-int operand must be pointer");
   696         if (tptr->higher_equal(tp->add_offset(tptr->offset())))
   697           tp = tptr; // Set more precise type for bailout
   698         continue;
   699       }
   700       if ( eti->_hi != eti->_lo )  goto bottom_out;
   701       offset += eti->_lo;
   702     }
   703   }
   704   guarantee(tptr != NULL, "must be exactly one pointer operand");
   705   return tptr->add_offset(offset);
   707  bottom_out:
   708   return tp->add_offset(TypePtr::OffsetBot);
   709 }
   711 //=============================================================================
   712 //------------------------------Identity---------------------------------------
   713 Node *OrINode::Identity( PhaseTransform *phase ) {
   714   // x | x => x
   715   if (phase->eqv(in(1), in(2))) {
   716     return in(1);
   717   }
   719   return AddNode::Identity(phase);
   720 }
   722 //------------------------------add_ring---------------------------------------
   723 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   724 // the logical operations the ring's ADD is really a logical OR function.
   725 // This also type-checks the inputs for sanity.  Guaranteed never to
   726 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   727 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   728   const TypeInt *r0 = t0->is_int(); // Handy access
   729   const TypeInt *r1 = t1->is_int();
   731   // If both args are bool, can figure out better types
   732   if ( r0 == TypeInt::BOOL ) {
   733     if ( r1 == TypeInt::ONE) {
   734       return TypeInt::ONE;
   735     } else if ( r1 == TypeInt::BOOL ) {
   736       return TypeInt::BOOL;
   737     }
   738   } else if ( r0 == TypeInt::ONE ) {
   739     if ( r1 == TypeInt::BOOL ) {
   740       return TypeInt::ONE;
   741     }
   742   }
   744   // If either input is not a constant, just return all integers.
   745   if( !r0->is_con() || !r1->is_con() )
   746     return TypeInt::INT;        // Any integer, but still no symbols.
   748   // Otherwise just OR them bits.
   749   return TypeInt::make( r0->get_con() | r1->get_con() );
   750 }
   752 //=============================================================================
   753 //------------------------------Identity---------------------------------------
   754 Node *OrLNode::Identity( PhaseTransform *phase ) {
   755   // x | x => x
   756   if (phase->eqv(in(1), in(2))) {
   757     return in(1);
   758   }
   760   return AddNode::Identity(phase);
   761 }
   763 //------------------------------add_ring---------------------------------------
   764 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   765   const TypeLong *r0 = t0->is_long(); // Handy access
   766   const TypeLong *r1 = t1->is_long();
   768   // If either input is not a constant, just return all integers.
   769   if( !r0->is_con() || !r1->is_con() )
   770     return TypeLong::LONG;      // Any integer, but still no symbols.
   772   // Otherwise just OR them bits.
   773   return TypeLong::make( r0->get_con() | r1->get_con() );
   774 }
   776 //=============================================================================
   777 //------------------------------add_ring---------------------------------------
   778 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   779 // the logical operations the ring's ADD is really a logical OR function.
   780 // This also type-checks the inputs for sanity.  Guaranteed never to
   781 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   782 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   783   const TypeInt *r0 = t0->is_int(); // Handy access
   784   const TypeInt *r1 = t1->is_int();
   786   // Complementing a boolean?
   787   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   788                                || r1 == TypeInt::BOOL))
   789     return TypeInt::BOOL;
   791   if( !r0->is_con() || !r1->is_con() ) // Not constants
   792     return TypeInt::INT;        // Any integer, but still no symbols.
   794   // Otherwise just XOR them bits.
   795   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   796 }
   798 //=============================================================================
   799 //------------------------------add_ring---------------------------------------
   800 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   801   const TypeLong *r0 = t0->is_long(); // Handy access
   802   const TypeLong *r1 = t1->is_long();
   804   // If either input is not a constant, just return all integers.
   805   if( !r0->is_con() || !r1->is_con() )
   806     return TypeLong::LONG;      // Any integer, but still no symbols.
   808   // Otherwise just OR them bits.
   809   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   810 }
   812 //=============================================================================
   813 //------------------------------add_ring---------------------------------------
   814 // Supplied function returns the sum of the inputs.
   815 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   816   const TypeInt *r0 = t0->is_int(); // Handy access
   817   const TypeInt *r1 = t1->is_int();
   819   // Otherwise just MAX them bits.
   820   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   821 }
   823 //=============================================================================
   824 //------------------------------Idealize---------------------------------------
   825 // MINs show up in range-check loop limit calculations.  Look for
   826 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   827 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   828   Node *progress = NULL;
   829   // Force a right-spline graph
   830   Node *l = in(1);
   831   Node *r = in(2);
   832   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   833   // to force a right-spline graph for the rest of MinINode::Ideal().
   834   if( l->Opcode() == Op_MinI ) {
   835     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   836     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
   837     l = l->in(1);
   838     set_req(1, l);
   839     set_req(2, r);
   840     return this;
   841   }
   843   // Get left input & constant
   844   Node *x = l;
   845   int x_off = 0;
   846   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   847       x->in(2)->is_Con() ) {
   848     const Type *t = x->in(2)->bottom_type();
   849     if( t == Type::TOP ) return NULL;  // No progress
   850     x_off = t->is_int()->get_con();
   851     x = x->in(1);
   852   }
   854   // Scan a right-spline-tree for MINs
   855   Node *y = r;
   856   int y_off = 0;
   857   // Check final part of MIN tree
   858   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   859       y->in(2)->is_Con() ) {
   860     const Type *t = y->in(2)->bottom_type();
   861     if( t == Type::TOP ) return NULL;  // No progress
   862     y_off = t->is_int()->get_con();
   863     y = y->in(1);
   864   }
   865   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   866     swap_edges(1, 2);
   867     return this;
   868   }
   871   if( r->Opcode() == Op_MinI ) {
   872     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   873     y = r->in(1);
   874     // Check final part of MIN tree
   875     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   876         y->in(2)->is_Con() ) {
   877       const Type *t = y->in(2)->bottom_type();
   878       if( t == Type::TOP ) return NULL;  // No progress
   879       y_off = t->is_int()->get_con();
   880       y = y->in(1);
   881     }
   883     if( x->_idx > y->_idx )
   884       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
   886     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   887     if( !phase->eqv(x,y) ) return NULL;
   888     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   889     // MIN2(x+c0 or x+c1 which less, z).
   890     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   891   } else {
   892     // See if covers: MIN2(x+c0,y+c1)
   893     if( !phase->eqv(x,y) ) return NULL;
   894     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   895     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   896   }
   898 }
   900 //------------------------------add_ring---------------------------------------
   901 // Supplied function returns the sum of the inputs.
   902 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   903   const TypeInt *r0 = t0->is_int(); // Handy access
   904   const TypeInt *r1 = t1->is_int();
   906   // Otherwise just MIN them bits.
   907   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   908 }

mercurial