src/share/vm/runtime/thread.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2322
828eafbd85cc
child 2356
4de5f4101cfd
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/oopFactory.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/instanceKlass.hpp"
    37 #include "oops/objArrayOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "oops/symbolOop.hpp"
    40 #include "prims/jvm_misc.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiThreadState.hpp"
    43 #include "prims/privilegedStack.hpp"
    44 #include "runtime/aprofiler.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/deoptimization.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/frame.inline.hpp"
    50 #include "runtime/init.hpp"
    51 #include "runtime/interfaceSupport.hpp"
    52 #include "runtime/java.hpp"
    53 #include "runtime/javaCalls.hpp"
    54 #include "runtime/jniPeriodicChecker.hpp"
    55 #include "runtime/memprofiler.hpp"
    56 #include "runtime/mutexLocker.hpp"
    57 #include "runtime/objectMonitor.hpp"
    58 #include "runtime/osThread.hpp"
    59 #include "runtime/safepoint.hpp"
    60 #include "runtime/sharedRuntime.hpp"
    61 #include "runtime/statSampler.hpp"
    62 #include "runtime/stubRoutines.hpp"
    63 #include "runtime/task.hpp"
    64 #include "runtime/threadCritical.hpp"
    65 #include "runtime/threadLocalStorage.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "runtime/vmThread.hpp"
    70 #include "runtime/vm_operations.hpp"
    71 #include "services/attachListener.hpp"
    72 #include "services/management.hpp"
    73 #include "services/threadService.hpp"
    74 #include "utilities/defaultStream.hpp"
    75 #include "utilities/dtrace.hpp"
    76 #include "utilities/events.hpp"
    77 #include "utilities/preserveException.hpp"
    78 #ifdef TARGET_OS_FAMILY_linux
    79 # include "os_linux.inline.hpp"
    80 # include "thread_linux.inline.hpp"
    81 #endif
    82 #ifdef TARGET_OS_FAMILY_solaris
    83 # include "os_solaris.inline.hpp"
    84 # include "thread_solaris.inline.hpp"
    85 #endif
    86 #ifdef TARGET_OS_FAMILY_windows
    87 # include "os_windows.inline.hpp"
    88 # include "thread_windows.inline.hpp"
    89 #endif
    90 #ifndef SERIALGC
    91 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    92 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    93 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    94 #endif
    95 #ifdef COMPILER1
    96 #include "c1/c1_Compiler.hpp"
    97 #endif
    98 #ifdef COMPILER2
    99 #include "opto/c2compiler.hpp"
   100 #include "opto/idealGraphPrinter.hpp"
   101 #endif
   103 #ifdef DTRACE_ENABLED
   105 // Only bother with this argument setup if dtrace is available
   107 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   109 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   110   intptr_t, intptr_t, bool);
   111 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   112   intptr_t, intptr_t, bool);
   114 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   115   {                                                                        \
   116     ResourceMark rm(this);                                                 \
   117     int len = 0;                                                           \
   118     const char* name = (javathread)->get_thread_name();                    \
   119     len = strlen(name);                                                    \
   120     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   121       name, len,                                                           \
   122       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   123       (javathread)->osthread()->thread_id(),                               \
   124       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   125   }
   127 #else //  ndef DTRACE_ENABLED
   129 #define DTRACE_THREAD_PROBE(probe, javathread)
   131 #endif // ndef DTRACE_ENABLED
   133 // Class hierarchy
   134 // - Thread
   135 //   - VMThread
   136 //   - WatcherThread
   137 //   - ConcurrentMarkSweepThread
   138 //   - JavaThread
   139 //     - CompilerThread
   141 // ======= Thread ========
   143 // Support for forcing alignment of thread objects for biased locking
   144 void* Thread::operator new(size_t size) {
   145   if (UseBiasedLocking) {
   146     const int alignment = markOopDesc::biased_lock_alignment;
   147     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   148     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   149     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   150     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   151            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   152            "JavaThread alignment code overflowed allocated storage");
   153     if (TraceBiasedLocking) {
   154       if (aligned_addr != real_malloc_addr)
   155         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   156                       real_malloc_addr, aligned_addr);
   157     }
   158     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   159     return aligned_addr;
   160   } else {
   161     return CHeapObj::operator new(size);
   162   }
   163 }
   165 void Thread::operator delete(void* p) {
   166   if (UseBiasedLocking) {
   167     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   168     CHeapObj::operator delete(real_malloc_addr);
   169   } else {
   170     CHeapObj::operator delete(p);
   171   }
   172 }
   175 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   176 // JavaThread
   179 Thread::Thread() {
   180   // stack
   181   _stack_base   = NULL;
   182   _stack_size   = 0;
   183   _self_raw_id  = 0;
   184   _lgrp_id      = -1;
   185   _osthread     = NULL;
   187   // allocated data structures
   188   set_resource_area(new ResourceArea());
   189   set_handle_area(new HandleArea(NULL));
   190   set_active_handles(NULL);
   191   set_free_handle_block(NULL);
   192   set_last_handle_mark(NULL);
   193   set_osthread(NULL);
   195   // This initial value ==> never claimed.
   196   _oops_do_parity = 0;
   198   // the handle mark links itself to last_handle_mark
   199   new HandleMark(this);
   201   // plain initialization
   202   debug_only(_owned_locks = NULL;)
   203   debug_only(_allow_allocation_count = 0;)
   204   NOT_PRODUCT(_allow_safepoint_count = 0;)
   205   NOT_PRODUCT(_skip_gcalot = false;)
   206   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   207   _jvmti_env_iteration_count = 0;
   208   _vm_operation_started_count = 0;
   209   _vm_operation_completed_count = 0;
   210   _current_pending_monitor = NULL;
   211   _current_pending_monitor_is_from_java = true;
   212   _current_waiting_monitor = NULL;
   213   _num_nested_signal = 0;
   214   omFreeList = NULL ;
   215   omFreeCount = 0 ;
   216   omFreeProvision = 32 ;
   217   omInUseList = NULL ;
   218   omInUseCount = 0 ;
   220   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   221   _suspend_flags = 0;
   223   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   224   _hashStateX = os::random() ;
   225   _hashStateY = 842502087 ;
   226   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   227   _hashStateW = 273326509 ;
   229   _OnTrap   = 0 ;
   230   _schedctl = NULL ;
   231   _Stalled  = 0 ;
   232   _TypeTag  = 0x2BAD ;
   234   // Many of the following fields are effectively final - immutable
   235   // Note that nascent threads can't use the Native Monitor-Mutex
   236   // construct until the _MutexEvent is initialized ...
   237   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   238   // we might instead use a stack of ParkEvents that we could provision on-demand.
   239   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   240   // and ::Release()
   241   _ParkEvent   = ParkEvent::Allocate (this) ;
   242   _SleepEvent  = ParkEvent::Allocate (this) ;
   243   _MutexEvent  = ParkEvent::Allocate (this) ;
   244   _MuxEvent    = ParkEvent::Allocate (this) ;
   246 #ifdef CHECK_UNHANDLED_OOPS
   247   if (CheckUnhandledOops) {
   248     _unhandled_oops = new UnhandledOops(this);
   249   }
   250 #endif // CHECK_UNHANDLED_OOPS
   251 #ifdef ASSERT
   252   if (UseBiasedLocking) {
   253     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   254     assert(this == _real_malloc_address ||
   255            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   256            "bug in forced alignment of thread objects");
   257   }
   258 #endif /* ASSERT */
   259 }
   261 void Thread::initialize_thread_local_storage() {
   262   // Note: Make sure this method only calls
   263   // non-blocking operations. Otherwise, it might not work
   264   // with the thread-startup/safepoint interaction.
   266   // During Java thread startup, safepoint code should allow this
   267   // method to complete because it may need to allocate memory to
   268   // store information for the new thread.
   270   // initialize structure dependent on thread local storage
   271   ThreadLocalStorage::set_thread(this);
   273   // set up any platform-specific state.
   274   os::initialize_thread();
   276 }
   278 void Thread::record_stack_base_and_size() {
   279   set_stack_base(os::current_stack_base());
   280   set_stack_size(os::current_stack_size());
   281 }
   284 Thread::~Thread() {
   285   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   286   ObjectSynchronizer::omFlush (this) ;
   288   // deallocate data structures
   289   delete resource_area();
   290   // since the handle marks are using the handle area, we have to deallocated the root
   291   // handle mark before deallocating the thread's handle area,
   292   assert(last_handle_mark() != NULL, "check we have an element");
   293   delete last_handle_mark();
   294   assert(last_handle_mark() == NULL, "check we have reached the end");
   296   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   297   // We NULL out the fields for good hygiene.
   298   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   299   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   300   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   301   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   303   delete handle_area();
   305   // osthread() can be NULL, if creation of thread failed.
   306   if (osthread() != NULL) os::free_thread(osthread());
   308   delete _SR_lock;
   310   // clear thread local storage if the Thread is deleting itself
   311   if (this == Thread::current()) {
   312     ThreadLocalStorage::set_thread(NULL);
   313   } else {
   314     // In the case where we're not the current thread, invalidate all the
   315     // caches in case some code tries to get the current thread or the
   316     // thread that was destroyed, and gets stale information.
   317     ThreadLocalStorage::invalidate_all();
   318   }
   319   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   320 }
   322 // NOTE: dummy function for assertion purpose.
   323 void Thread::run() {
   324   ShouldNotReachHere();
   325 }
   327 #ifdef ASSERT
   328 // Private method to check for dangling thread pointer
   329 void check_for_dangling_thread_pointer(Thread *thread) {
   330  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   331          "possibility of dangling Thread pointer");
   332 }
   333 #endif
   336 #ifndef PRODUCT
   337 // Tracing method for basic thread operations
   338 void Thread::trace(const char* msg, const Thread* const thread) {
   339   if (!TraceThreadEvents) return;
   340   ResourceMark rm;
   341   ThreadCritical tc;
   342   const char *name = "non-Java thread";
   343   int prio = -1;
   344   if (thread->is_Java_thread()
   345       && !thread->is_Compiler_thread()) {
   346     // The Threads_lock must be held to get information about
   347     // this thread but may not be in some situations when
   348     // tracing  thread events.
   349     bool release_Threads_lock = false;
   350     if (!Threads_lock->owned_by_self()) {
   351       Threads_lock->lock();
   352       release_Threads_lock = true;
   353     }
   354     JavaThread* jt = (JavaThread *)thread;
   355     name = (char *)jt->get_thread_name();
   356     oop thread_oop = jt->threadObj();
   357     if (thread_oop != NULL) {
   358       prio = java_lang_Thread::priority(thread_oop);
   359     }
   360     if (release_Threads_lock) {
   361       Threads_lock->unlock();
   362     }
   363   }
   364   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   365 }
   366 #endif
   369 ThreadPriority Thread::get_priority(const Thread* const thread) {
   370   trace("get priority", thread);
   371   ThreadPriority priority;
   372   // Can return an error!
   373   (void)os::get_priority(thread, priority);
   374   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   375   return priority;
   376 }
   378 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   379   trace("set priority", thread);
   380   debug_only(check_for_dangling_thread_pointer(thread);)
   381   // Can return an error!
   382   (void)os::set_priority(thread, priority);
   383 }
   386 void Thread::start(Thread* thread) {
   387   trace("start", thread);
   388   // Start is different from resume in that its safety is guaranteed by context or
   389   // being called from a Java method synchronized on the Thread object.
   390   if (!DisableStartThread) {
   391     if (thread->is_Java_thread()) {
   392       // Initialize the thread state to RUNNABLE before starting this thread.
   393       // Can not set it after the thread started because we do not know the
   394       // exact thread state at that time. It could be in MONITOR_WAIT or
   395       // in SLEEPING or some other state.
   396       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   397                                           java_lang_Thread::RUNNABLE);
   398     }
   399     os::start_thread(thread);
   400   }
   401 }
   403 // Enqueue a VM_Operation to do the job for us - sometime later
   404 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   405   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   406   VMThread::execute(vm_stop);
   407 }
   410 //
   411 // Check if an external suspend request has completed (or has been
   412 // cancelled). Returns true if the thread is externally suspended and
   413 // false otherwise.
   414 //
   415 // The bits parameter returns information about the code path through
   416 // the routine. Useful for debugging:
   417 //
   418 // set in is_ext_suspend_completed():
   419 // 0x00000001 - routine was entered
   420 // 0x00000010 - routine return false at end
   421 // 0x00000100 - thread exited (return false)
   422 // 0x00000200 - suspend request cancelled (return false)
   423 // 0x00000400 - thread suspended (return true)
   424 // 0x00001000 - thread is in a suspend equivalent state (return true)
   425 // 0x00002000 - thread is native and walkable (return true)
   426 // 0x00004000 - thread is native_trans and walkable (needed retry)
   427 //
   428 // set in wait_for_ext_suspend_completion():
   429 // 0x00010000 - routine was entered
   430 // 0x00020000 - suspend request cancelled before loop (return false)
   431 // 0x00040000 - thread suspended before loop (return true)
   432 // 0x00080000 - suspend request cancelled in loop (return false)
   433 // 0x00100000 - thread suspended in loop (return true)
   434 // 0x00200000 - suspend not completed during retry loop (return false)
   435 //
   437 // Helper class for tracing suspend wait debug bits.
   438 //
   439 // 0x00000100 indicates that the target thread exited before it could
   440 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   441 // 0x00080000 each indicate a cancelled suspend request so they don't
   442 // count as wait failures either.
   443 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   445 class TraceSuspendDebugBits : public StackObj {
   446  private:
   447   JavaThread * jt;
   448   bool         is_wait;
   449   bool         called_by_wait;  // meaningful when !is_wait
   450   uint32_t *   bits;
   452  public:
   453   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   454                         uint32_t *_bits) {
   455     jt             = _jt;
   456     is_wait        = _is_wait;
   457     called_by_wait = _called_by_wait;
   458     bits           = _bits;
   459   }
   461   ~TraceSuspendDebugBits() {
   462     if (!is_wait) {
   463 #if 1
   464       // By default, don't trace bits for is_ext_suspend_completed() calls.
   465       // That trace is very chatty.
   466       return;
   467 #else
   468       if (!called_by_wait) {
   469         // If tracing for is_ext_suspend_completed() is enabled, then only
   470         // trace calls to it from wait_for_ext_suspend_completion()
   471         return;
   472       }
   473 #endif
   474     }
   476     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   477       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   478         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   479         ResourceMark rm;
   481         tty->print_cr(
   482             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   483             jt->get_thread_name(), *bits);
   485         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   486       }
   487     }
   488   }
   489 };
   490 #undef DEBUG_FALSE_BITS
   493 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   494   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   496   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   497   bool do_trans_retry;           // flag to force the retry
   499   *bits |= 0x00000001;
   501   do {
   502     do_trans_retry = false;
   504     if (is_exiting()) {
   505       // Thread is in the process of exiting. This is always checked
   506       // first to reduce the risk of dereferencing a freed JavaThread.
   507       *bits |= 0x00000100;
   508       return false;
   509     }
   511     if (!is_external_suspend()) {
   512       // Suspend request is cancelled. This is always checked before
   513       // is_ext_suspended() to reduce the risk of a rogue resume
   514       // confusing the thread that made the suspend request.
   515       *bits |= 0x00000200;
   516       return false;
   517     }
   519     if (is_ext_suspended()) {
   520       // thread is suspended
   521       *bits |= 0x00000400;
   522       return true;
   523     }
   525     // Now that we no longer do hard suspends of threads running
   526     // native code, the target thread can be changing thread state
   527     // while we are in this routine:
   528     //
   529     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   530     //
   531     // We save a copy of the thread state as observed at this moment
   532     // and make our decision about suspend completeness based on the
   533     // copy. This closes the race where the thread state is seen as
   534     // _thread_in_native_trans in the if-thread_blocked check, but is
   535     // seen as _thread_blocked in if-thread_in_native_trans check.
   536     JavaThreadState save_state = thread_state();
   538     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   539       // If the thread's state is _thread_blocked and this blocking
   540       // condition is known to be equivalent to a suspend, then we can
   541       // consider the thread to be externally suspended. This means that
   542       // the code that sets _thread_blocked has been modified to do
   543       // self-suspension if the blocking condition releases. We also
   544       // used to check for CONDVAR_WAIT here, but that is now covered by
   545       // the _thread_blocked with self-suspension check.
   546       //
   547       // Return true since we wouldn't be here unless there was still an
   548       // external suspend request.
   549       *bits |= 0x00001000;
   550       return true;
   551     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   552       // Threads running native code will self-suspend on native==>VM/Java
   553       // transitions. If its stack is walkable (should always be the case
   554       // unless this function is called before the actual java_suspend()
   555       // call), then the wait is done.
   556       *bits |= 0x00002000;
   557       return true;
   558     } else if (!called_by_wait && !did_trans_retry &&
   559                save_state == _thread_in_native_trans &&
   560                frame_anchor()->walkable()) {
   561       // The thread is transitioning from thread_in_native to another
   562       // thread state. check_safepoint_and_suspend_for_native_trans()
   563       // will force the thread to self-suspend. If it hasn't gotten
   564       // there yet we may have caught the thread in-between the native
   565       // code check above and the self-suspend. Lucky us. If we were
   566       // called by wait_for_ext_suspend_completion(), then it
   567       // will be doing the retries so we don't have to.
   568       //
   569       // Since we use the saved thread state in the if-statement above,
   570       // there is a chance that the thread has already transitioned to
   571       // _thread_blocked by the time we get here. In that case, we will
   572       // make a single unnecessary pass through the logic below. This
   573       // doesn't hurt anything since we still do the trans retry.
   575       *bits |= 0x00004000;
   577       // Once the thread leaves thread_in_native_trans for another
   578       // thread state, we break out of this retry loop. We shouldn't
   579       // need this flag to prevent us from getting back here, but
   580       // sometimes paranoia is good.
   581       did_trans_retry = true;
   583       // We wait for the thread to transition to a more usable state.
   584       for (int i = 1; i <= SuspendRetryCount; i++) {
   585         // We used to do an "os::yield_all(i)" call here with the intention
   586         // that yielding would increase on each retry. However, the parameter
   587         // is ignored on Linux which means the yield didn't scale up. Waiting
   588         // on the SR_lock below provides a much more predictable scale up for
   589         // the delay. It also provides a simple/direct point to check for any
   590         // safepoint requests from the VMThread
   592         // temporarily drops SR_lock while doing wait with safepoint check
   593         // (if we're a JavaThread - the WatcherThread can also call this)
   594         // and increase delay with each retry
   595         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   597         // check the actual thread state instead of what we saved above
   598         if (thread_state() != _thread_in_native_trans) {
   599           // the thread has transitioned to another thread state so
   600           // try all the checks (except this one) one more time.
   601           do_trans_retry = true;
   602           break;
   603         }
   604       } // end retry loop
   607     }
   608   } while (do_trans_retry);
   610   *bits |= 0x00000010;
   611   return false;
   612 }
   614 //
   615 // Wait for an external suspend request to complete (or be cancelled).
   616 // Returns true if the thread is externally suspended and false otherwise.
   617 //
   618 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   619        uint32_t *bits) {
   620   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   621                              false /* !called_by_wait */, bits);
   623   // local flag copies to minimize SR_lock hold time
   624   bool is_suspended;
   625   bool pending;
   626   uint32_t reset_bits;
   628   // set a marker so is_ext_suspend_completed() knows we are the caller
   629   *bits |= 0x00010000;
   631   // We use reset_bits to reinitialize the bits value at the top of
   632   // each retry loop. This allows the caller to make use of any
   633   // unused bits for their own marking purposes.
   634   reset_bits = *bits;
   636   {
   637     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   638     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   639                                             delay, bits);
   640     pending = is_external_suspend();
   641   }
   642   // must release SR_lock to allow suspension to complete
   644   if (!pending) {
   645     // A cancelled suspend request is the only false return from
   646     // is_ext_suspend_completed() that keeps us from entering the
   647     // retry loop.
   648     *bits |= 0x00020000;
   649     return false;
   650   }
   652   if (is_suspended) {
   653     *bits |= 0x00040000;
   654     return true;
   655   }
   657   for (int i = 1; i <= retries; i++) {
   658     *bits = reset_bits;  // reinit to only track last retry
   660     // We used to do an "os::yield_all(i)" call here with the intention
   661     // that yielding would increase on each retry. However, the parameter
   662     // is ignored on Linux which means the yield didn't scale up. Waiting
   663     // on the SR_lock below provides a much more predictable scale up for
   664     // the delay. It also provides a simple/direct point to check for any
   665     // safepoint requests from the VMThread
   667     {
   668       MutexLocker ml(SR_lock());
   669       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   670       // can also call this)  and increase delay with each retry
   671       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   673       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   674                                               delay, bits);
   676       // It is possible for the external suspend request to be cancelled
   677       // (by a resume) before the actual suspend operation is completed.
   678       // Refresh our local copy to see if we still need to wait.
   679       pending = is_external_suspend();
   680     }
   682     if (!pending) {
   683       // A cancelled suspend request is the only false return from
   684       // is_ext_suspend_completed() that keeps us from staying in the
   685       // retry loop.
   686       *bits |= 0x00080000;
   687       return false;
   688     }
   690     if (is_suspended) {
   691       *bits |= 0x00100000;
   692       return true;
   693     }
   694   } // end retry loop
   696   // thread did not suspend after all our retries
   697   *bits |= 0x00200000;
   698   return false;
   699 }
   701 #ifndef PRODUCT
   702 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   704   // This should not need to be atomic as the only way for simultaneous
   705   // updates is via interrupts. Even then this should be rare or non-existant
   706   // and we don't care that much anyway.
   708   int index = _jmp_ring_index;
   709   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   710   _jmp_ring[index]._target = (intptr_t) target;
   711   _jmp_ring[index]._instruction = (intptr_t) instr;
   712   _jmp_ring[index]._file = file;
   713   _jmp_ring[index]._line = line;
   714 }
   715 #endif /* PRODUCT */
   717 // Called by flat profiler
   718 // Callers have already called wait_for_ext_suspend_completion
   719 // The assertion for that is currently too complex to put here:
   720 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   721   bool gotframe = false;
   722   // self suspension saves needed state.
   723   if (has_last_Java_frame() && _anchor.walkable()) {
   724      *_fr = pd_last_frame();
   725      gotframe = true;
   726   }
   727   return gotframe;
   728 }
   730 void Thread::interrupt(Thread* thread) {
   731   trace("interrupt", thread);
   732   debug_only(check_for_dangling_thread_pointer(thread);)
   733   os::interrupt(thread);
   734 }
   736 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   737   trace("is_interrupted", thread);
   738   debug_only(check_for_dangling_thread_pointer(thread);)
   739   // Note:  If clear_interrupted==false, this simply fetches and
   740   // returns the value of the field osthread()->interrupted().
   741   return os::is_interrupted(thread, clear_interrupted);
   742 }
   745 // GC Support
   746 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   747   jint thread_parity = _oops_do_parity;
   748   if (thread_parity != strong_roots_parity) {
   749     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   750     if (res == thread_parity) return true;
   751     else {
   752       guarantee(res == strong_roots_parity, "Or else what?");
   753       assert(SharedHeap::heap()->n_par_threads() > 0,
   754              "Should only fail when parallel.");
   755       return false;
   756     }
   757   }
   758   assert(SharedHeap::heap()->n_par_threads() > 0,
   759          "Should only fail when parallel.");
   760   return false;
   761 }
   763 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   764   active_handles()->oops_do(f);
   765   // Do oop for ThreadShadow
   766   f->do_oop((oop*)&_pending_exception);
   767   handle_area()->oops_do(f);
   768 }
   770 void Thread::nmethods_do(CodeBlobClosure* cf) {
   771   // no nmethods in a generic thread...
   772 }
   774 void Thread::print_on(outputStream* st) const {
   775   // get_priority assumes osthread initialized
   776   if (osthread() != NULL) {
   777     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   778     osthread()->print_on(st);
   779   }
   780   debug_only(if (WizardMode) print_owned_locks_on(st);)
   781 }
   783 // Thread::print_on_error() is called by fatal error handler. Don't use
   784 // any lock or allocate memory.
   785 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   786   if      (is_VM_thread())                  st->print("VMThread");
   787   else if (is_Compiler_thread())            st->print("CompilerThread");
   788   else if (is_Java_thread())                st->print("JavaThread");
   789   else if (is_GC_task_thread())             st->print("GCTaskThread");
   790   else if (is_Watcher_thread())             st->print("WatcherThread");
   791   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   792   else st->print("Thread");
   794   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   795             _stack_base - _stack_size, _stack_base);
   797   if (osthread()) {
   798     st->print(" [id=%d]", osthread()->thread_id());
   799   }
   800 }
   802 #ifdef ASSERT
   803 void Thread::print_owned_locks_on(outputStream* st) const {
   804   Monitor *cur = _owned_locks;
   805   if (cur == NULL) {
   806     st->print(" (no locks) ");
   807   } else {
   808     st->print_cr(" Locks owned:");
   809     while(cur) {
   810       cur->print_on(st);
   811       cur = cur->next();
   812     }
   813   }
   814 }
   816 static int ref_use_count  = 0;
   818 bool Thread::owns_locks_but_compiled_lock() const {
   819   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   820     if (cur != Compile_lock) return true;
   821   }
   822   return false;
   823 }
   826 #endif
   828 #ifndef PRODUCT
   830 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   831 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   832 // no threads which allow_vm_block's are held
   833 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   834     // Check if current thread is allowed to block at a safepoint
   835     if (!(_allow_safepoint_count == 0))
   836       fatal("Possible safepoint reached by thread that does not allow it");
   837     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   838       fatal("LEAF method calling lock?");
   839     }
   841 #ifdef ASSERT
   842     if (potential_vm_operation && is_Java_thread()
   843         && !Universe::is_bootstrapping()) {
   844       // Make sure we do not hold any locks that the VM thread also uses.
   845       // This could potentially lead to deadlocks
   846       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   847         // Threads_lock is special, since the safepoint synchronization will not start before this is
   848         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   849         // since it is used to transfer control between JavaThreads and the VMThread
   850         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   851         if ( (cur->allow_vm_block() &&
   852               cur != Threads_lock &&
   853               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   854               cur != VMOperationRequest_lock &&
   855               cur != VMOperationQueue_lock) ||
   856               cur->rank() == Mutex::special) {
   857           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   858         }
   859       }
   860     }
   862     if (GCALotAtAllSafepoints) {
   863       // We could enter a safepoint here and thus have a gc
   864       InterfaceSupport::check_gc_alot();
   865     }
   866 #endif
   867 }
   868 #endif
   870 bool Thread::is_in_stack(address adr) const {
   871   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   872   address end = os::current_stack_pointer();
   873   if (stack_base() >= adr && adr >= end) return true;
   875   return false;
   876 }
   879 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   880 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   881 // used for compilation in the future. If that change is made, the need for these methods
   882 // should be revisited, and they should be removed if possible.
   884 bool Thread::is_lock_owned(address adr) const {
   885   return on_local_stack(adr);
   886 }
   888 bool Thread::set_as_starting_thread() {
   889  // NOTE: this must be called inside the main thread.
   890   return os::create_main_thread((JavaThread*)this);
   891 }
   893 static void initialize_class(symbolHandle class_name, TRAPS) {
   894   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   895   instanceKlass::cast(klass)->initialize(CHECK);
   896 }
   899 // Creates the initial ThreadGroup
   900 static Handle create_initial_thread_group(TRAPS) {
   901   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   902   instanceKlassHandle klass (THREAD, k);
   904   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   905   {
   906     JavaValue result(T_VOID);
   907     JavaCalls::call_special(&result,
   908                             system_instance,
   909                             klass,
   910                             vmSymbolHandles::object_initializer_name(),
   911                             vmSymbolHandles::void_method_signature(),
   912                             CHECK_NH);
   913   }
   914   Universe::set_system_thread_group(system_instance());
   916   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   917   {
   918     JavaValue result(T_VOID);
   919     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   920     JavaCalls::call_special(&result,
   921                             main_instance,
   922                             klass,
   923                             vmSymbolHandles::object_initializer_name(),
   924                             vmSymbolHandles::threadgroup_string_void_signature(),
   925                             system_instance,
   926                             string,
   927                             CHECK_NH);
   928   }
   929   return main_instance;
   930 }
   932 // Creates the initial Thread
   933 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   934   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   935   instanceKlassHandle klass (THREAD, k);
   936   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   938   java_lang_Thread::set_thread(thread_oop(), thread);
   939   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   940   thread->set_threadObj(thread_oop());
   942   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   944   JavaValue result(T_VOID);
   945   JavaCalls::call_special(&result, thread_oop,
   946                                    klass,
   947                                    vmSymbolHandles::object_initializer_name(),
   948                                    vmSymbolHandles::threadgroup_string_void_signature(),
   949                                    thread_group,
   950                                    string,
   951                                    CHECK_NULL);
   952   return thread_oop();
   953 }
   955 static void call_initializeSystemClass(TRAPS) {
   956   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   957   instanceKlassHandle klass (THREAD, k);
   959   JavaValue result(T_VOID);
   960   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   961                                          vmSymbolHandles::void_method_signature(), CHECK);
   962 }
   964 #ifdef KERNEL
   965 static void set_jkernel_boot_classloader_hook(TRAPS) {
   966   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   967   instanceKlassHandle klass (THREAD, k);
   969   if (k == NULL) {
   970     // sun.jkernel.DownloadManager may not present in the JDK; just return
   971     return;
   972   }
   974   JavaValue result(T_VOID);
   975   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   976                                          vmSymbolHandles::void_method_signature(), CHECK);
   977 }
   978 #endif // KERNEL
   980 static void reset_vm_info_property(TRAPS) {
   981   // the vm info string
   982   ResourceMark rm(THREAD);
   983   const char *vm_info = VM_Version::vm_info_string();
   985   // java.lang.System class
   986   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   987   instanceKlassHandle klass (THREAD, k);
   989   // setProperty arguments
   990   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   991   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   993   // return value
   994   JavaValue r(T_OBJECT);
   996   // public static String setProperty(String key, String value);
   997   JavaCalls::call_static(&r,
   998                          klass,
   999                          vmSymbolHandles::setProperty_name(),
  1000                          vmSymbolHandles::string_string_string_signature(),
  1001                          key_str,
  1002                          value_str,
  1003                          CHECK);
  1007 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1008   assert(thread_group.not_null(), "thread group should be specified");
  1009   assert(threadObj() == NULL, "should only create Java thread object once");
  1011   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
  1012   instanceKlassHandle klass (THREAD, k);
  1013   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1015   java_lang_Thread::set_thread(thread_oop(), this);
  1016   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1017   set_threadObj(thread_oop());
  1019   JavaValue result(T_VOID);
  1020   if (thread_name != NULL) {
  1021     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1022     // Thread gets assigned specified name and null target
  1023     JavaCalls::call_special(&result,
  1024                             thread_oop,
  1025                             klass,
  1026                             vmSymbolHandles::object_initializer_name(),
  1027                             vmSymbolHandles::threadgroup_string_void_signature(),
  1028                             thread_group, // Argument 1
  1029                             name,         // Argument 2
  1030                             THREAD);
  1031   } else {
  1032     // Thread gets assigned name "Thread-nnn" and null target
  1033     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1034     JavaCalls::call_special(&result,
  1035                             thread_oop,
  1036                             klass,
  1037                             vmSymbolHandles::object_initializer_name(),
  1038                             vmSymbolHandles::threadgroup_runnable_void_signature(),
  1039                             thread_group, // Argument 1
  1040                             Handle(),     // Argument 2
  1041                             THREAD);
  1045   if (daemon) {
  1046       java_lang_Thread::set_daemon(thread_oop());
  1049   if (HAS_PENDING_EXCEPTION) {
  1050     return;
  1053   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1054   Handle threadObj(this, this->threadObj());
  1056   JavaCalls::call_special(&result,
  1057                          thread_group,
  1058                          group,
  1059                          vmSymbolHandles::add_method_name(),
  1060                          vmSymbolHandles::thread_void_signature(),
  1061                          threadObj,          // Arg 1
  1062                          THREAD);
  1067 // NamedThread --  non-JavaThread subclasses with multiple
  1068 // uniquely named instances should derive from this.
  1069 NamedThread::NamedThread() : Thread() {
  1070   _name = NULL;
  1071   _processed_thread = NULL;
  1074 NamedThread::~NamedThread() {
  1075   if (_name != NULL) {
  1076     FREE_C_HEAP_ARRAY(char, _name);
  1077     _name = NULL;
  1081 void NamedThread::set_name(const char* format, ...) {
  1082   guarantee(_name == NULL, "Only get to set name once.");
  1083   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1084   guarantee(_name != NULL, "alloc failure");
  1085   va_list ap;
  1086   va_start(ap, format);
  1087   jio_vsnprintf(_name, max_name_len, format, ap);
  1088   va_end(ap);
  1091 // ======= WatcherThread ========
  1093 // The watcher thread exists to simulate timer interrupts.  It should
  1094 // be replaced by an abstraction over whatever native support for
  1095 // timer interrupts exists on the platform.
  1097 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1098 volatile bool  WatcherThread::_should_terminate = false;
  1100 WatcherThread::WatcherThread() : Thread() {
  1101   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1102   if (os::create_thread(this, os::watcher_thread)) {
  1103     _watcher_thread = this;
  1105     // Set the watcher thread to the highest OS priority which should not be
  1106     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1107     // is created. The only normal thread using this priority is the reference
  1108     // handler thread, which runs for very short intervals only.
  1109     // If the VMThread's priority is not lower than the WatcherThread profiling
  1110     // will be inaccurate.
  1111     os::set_priority(this, MaxPriority);
  1112     if (!DisableStartThread) {
  1113       os::start_thread(this);
  1118 void WatcherThread::run() {
  1119   assert(this == watcher_thread(), "just checking");
  1121   this->record_stack_base_and_size();
  1122   this->initialize_thread_local_storage();
  1123   this->set_active_handles(JNIHandleBlock::allocate_block());
  1124   while(!_should_terminate) {
  1125     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1126     assert(watcher_thread() == this,  "thread consistency check");
  1128     // Calculate how long it'll be until the next PeriodicTask work
  1129     // should be done, and sleep that amount of time.
  1130     size_t time_to_wait = PeriodicTask::time_to_wait();
  1132     // we expect this to timeout - we only ever get unparked when
  1133     // we should terminate
  1135       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1137       jlong prev_time = os::javaTimeNanos();
  1138       for (;;) {
  1139         int res= _SleepEvent->park(time_to_wait);
  1140         if (res == OS_TIMEOUT || _should_terminate)
  1141           break;
  1142         // spurious wakeup of some kind
  1143         jlong now = os::javaTimeNanos();
  1144         time_to_wait -= (now - prev_time) / 1000000;
  1145         if (time_to_wait <= 0)
  1146           break;
  1147         prev_time = now;
  1151     if (is_error_reported()) {
  1152       // A fatal error has happened, the error handler(VMError::report_and_die)
  1153       // should abort JVM after creating an error log file. However in some
  1154       // rare cases, the error handler itself might deadlock. Here we try to
  1155       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1156       //
  1157       // This code is in WatcherThread because WatcherThread wakes up
  1158       // periodically so the fatal error handler doesn't need to do anything;
  1159       // also because the WatcherThread is less likely to crash than other
  1160       // threads.
  1162       for (;;) {
  1163         if (!ShowMessageBoxOnError
  1164          && (OnError == NULL || OnError[0] == '\0')
  1165          && Arguments::abort_hook() == NULL) {
  1166              os::sleep(this, 2 * 60 * 1000, false);
  1167              fdStream err(defaultStream::output_fd());
  1168              err.print_raw_cr("# [ timer expired, abort... ]");
  1169              // skip atexit/vm_exit/vm_abort hooks
  1170              os::die();
  1173         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1174         // ShowMessageBoxOnError when it is ready to abort.
  1175         os::sleep(this, 5 * 1000, false);
  1179     PeriodicTask::real_time_tick(time_to_wait);
  1181     // If we have no more tasks left due to dynamic disenrollment,
  1182     // shut down the thread since we don't currently support dynamic enrollment
  1183     if (PeriodicTask::num_tasks() == 0) {
  1184       _should_terminate = true;
  1188   // Signal that it is terminated
  1190     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1191     _watcher_thread = NULL;
  1192     Terminator_lock->notify();
  1195   // Thread destructor usually does this..
  1196   ThreadLocalStorage::set_thread(NULL);
  1199 void WatcherThread::start() {
  1200   if (watcher_thread() == NULL) {
  1201     _should_terminate = false;
  1202     // Create the single instance of WatcherThread
  1203     new WatcherThread();
  1207 void WatcherThread::stop() {
  1208   // it is ok to take late safepoints here, if needed
  1209   MutexLocker mu(Terminator_lock);
  1210   _should_terminate = true;
  1211   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1213   Thread* watcher = watcher_thread();
  1214   if (watcher != NULL)
  1215     watcher->_SleepEvent->unpark();
  1217   while(watcher_thread() != NULL) {
  1218     // This wait should make safepoint checks, wait without a timeout,
  1219     // and wait as a suspend-equivalent condition.
  1220     //
  1221     // Note: If the FlatProfiler is running, then this thread is waiting
  1222     // for the WatcherThread to terminate and the WatcherThread, via the
  1223     // FlatProfiler task, is waiting for the external suspend request on
  1224     // this thread to complete. wait_for_ext_suspend_completion() will
  1225     // eventually timeout, but that takes time. Making this wait a
  1226     // suspend-equivalent condition solves that timeout problem.
  1227     //
  1228     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1229                           Mutex::_as_suspend_equivalent_flag);
  1233 void WatcherThread::print_on(outputStream* st) const {
  1234   st->print("\"%s\" ", name());
  1235   Thread::print_on(st);
  1236   st->cr();
  1239 // ======= JavaThread ========
  1241 // A JavaThread is a normal Java thread
  1243 void JavaThread::initialize() {
  1244   // Initialize fields
  1246   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1247   set_claimed_par_id(-1);
  1249   set_saved_exception_pc(NULL);
  1250   set_threadObj(NULL);
  1251   _anchor.clear();
  1252   set_entry_point(NULL);
  1253   set_jni_functions(jni_functions());
  1254   set_callee_target(NULL);
  1255   set_vm_result(NULL);
  1256   set_vm_result_2(NULL);
  1257   set_vframe_array_head(NULL);
  1258   set_vframe_array_last(NULL);
  1259   set_deferred_locals(NULL);
  1260   set_deopt_mark(NULL);
  1261   set_deopt_nmethod(NULL);
  1262   clear_must_deopt_id();
  1263   set_monitor_chunks(NULL);
  1264   set_next(NULL);
  1265   set_thread_state(_thread_new);
  1266   _terminated = _not_terminated;
  1267   _privileged_stack_top = NULL;
  1268   _array_for_gc = NULL;
  1269   _suspend_equivalent = false;
  1270   _in_deopt_handler = 0;
  1271   _doing_unsafe_access = false;
  1272   _stack_guard_state = stack_guard_unused;
  1273   _exception_oop = NULL;
  1274   _exception_pc  = 0;
  1275   _exception_handler_pc = 0;
  1276   _exception_stack_size = 0;
  1277   _is_method_handle_return = 0;
  1278   _jvmti_thread_state= NULL;
  1279   _should_post_on_exceptions_flag = JNI_FALSE;
  1280   _jvmti_get_loaded_classes_closure = NULL;
  1281   _interp_only_mode    = 0;
  1282   _special_runtime_exit_condition = _no_async_condition;
  1283   _pending_async_exception = NULL;
  1284   _is_compiling = false;
  1285   _thread_stat = NULL;
  1286   _thread_stat = new ThreadStatistics();
  1287   _blocked_on_compilation = false;
  1288   _jni_active_critical = 0;
  1289   _do_not_unlock_if_synchronized = false;
  1290   _cached_monitor_info = NULL;
  1291   _parker = Parker::Allocate(this) ;
  1293 #ifndef PRODUCT
  1294   _jmp_ring_index = 0;
  1295   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1296     record_jump(NULL, NULL, NULL, 0);
  1298 #endif /* PRODUCT */
  1300   set_thread_profiler(NULL);
  1301   if (FlatProfiler::is_active()) {
  1302     // This is where we would decide to either give each thread it's own profiler
  1303     // or use one global one from FlatProfiler,
  1304     // or up to some count of the number of profiled threads, etc.
  1305     ThreadProfiler* pp = new ThreadProfiler();
  1306     pp->engage();
  1307     set_thread_profiler(pp);
  1310   // Setup safepoint state info for this thread
  1311   ThreadSafepointState::create(this);
  1313   debug_only(_java_call_counter = 0);
  1315   // JVMTI PopFrame support
  1316   _popframe_condition = popframe_inactive;
  1317   _popframe_preserved_args = NULL;
  1318   _popframe_preserved_args_size = 0;
  1320   pd_initialize();
  1323 #ifndef SERIALGC
  1324 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1325 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1326 #endif // !SERIALGC
  1328 JavaThread::JavaThread(bool is_attaching) :
  1329   Thread()
  1330 #ifndef SERIALGC
  1331   , _satb_mark_queue(&_satb_mark_queue_set),
  1332   _dirty_card_queue(&_dirty_card_queue_set)
  1333 #endif // !SERIALGC
  1335   initialize();
  1336   _is_attaching = is_attaching;
  1337   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1340 bool JavaThread::reguard_stack(address cur_sp) {
  1341   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1342     return true; // Stack already guarded or guard pages not needed.
  1345   if (register_stack_overflow()) {
  1346     // For those architectures which have separate register and
  1347     // memory stacks, we must check the register stack to see if
  1348     // it has overflowed.
  1349     return false;
  1352   // Java code never executes within the yellow zone: the latter is only
  1353   // there to provoke an exception during stack banging.  If java code
  1354   // is executing there, either StackShadowPages should be larger, or
  1355   // some exception code in c1, c2 or the interpreter isn't unwinding
  1356   // when it should.
  1357   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1359   enable_stack_yellow_zone();
  1360   return true;
  1363 bool JavaThread::reguard_stack(void) {
  1364   return reguard_stack(os::current_stack_pointer());
  1368 void JavaThread::block_if_vm_exited() {
  1369   if (_terminated == _vm_exited) {
  1370     // _vm_exited is set at safepoint, and Threads_lock is never released
  1371     // we will block here forever
  1372     Threads_lock->lock_without_safepoint_check();
  1373     ShouldNotReachHere();
  1378 // Remove this ifdef when C1 is ported to the compiler interface.
  1379 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1381 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1382   Thread()
  1383 #ifndef SERIALGC
  1384   , _satb_mark_queue(&_satb_mark_queue_set),
  1385   _dirty_card_queue(&_dirty_card_queue_set)
  1386 #endif // !SERIALGC
  1388   if (TraceThreadEvents) {
  1389     tty->print_cr("creating thread %p", this);
  1391   initialize();
  1392   _is_attaching = false;
  1393   set_entry_point(entry_point);
  1394   // Create the native thread itself.
  1395   // %note runtime_23
  1396   os::ThreadType thr_type = os::java_thread;
  1397   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1398                                                      os::java_thread;
  1399   os::create_thread(this, thr_type, stack_sz);
  1401   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1402   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1403   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1404   // the exception consists of creating the exception object & initializing it, initialization
  1405   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1406   //
  1407   // The thread is still suspended when we reach here. Thread must be explicit started
  1408   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1409   // by calling Threads:add. The reason why this is not done here, is because the thread
  1410   // object must be fully initialized (take a look at JVM_Start)
  1413 JavaThread::~JavaThread() {
  1414   if (TraceThreadEvents) {
  1415       tty->print_cr("terminate thread %p", this);
  1418   // JSR166 -- return the parker to the free list
  1419   Parker::Release(_parker);
  1420   _parker = NULL ;
  1422   // Free any remaining  previous UnrollBlock
  1423   vframeArray* old_array = vframe_array_last();
  1425   if (old_array != NULL) {
  1426     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1427     old_array->set_unroll_block(NULL);
  1428     delete old_info;
  1429     delete old_array;
  1432   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1433   if (deferred != NULL) {
  1434     // This can only happen if thread is destroyed before deoptimization occurs.
  1435     assert(deferred->length() != 0, "empty array!");
  1436     do {
  1437       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1438       deferred->remove_at(0);
  1439       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1440       delete dlv;
  1441     } while (deferred->length() != 0);
  1442     delete deferred;
  1445   // All Java related clean up happens in exit
  1446   ThreadSafepointState::destroy(this);
  1447   if (_thread_profiler != NULL) delete _thread_profiler;
  1448   if (_thread_stat != NULL) delete _thread_stat;
  1452 // The first routine called by a new Java thread
  1453 void JavaThread::run() {
  1454   // initialize thread-local alloc buffer related fields
  1455   this->initialize_tlab();
  1457   // used to test validitity of stack trace backs
  1458   this->record_base_of_stack_pointer();
  1460   // Record real stack base and size.
  1461   this->record_stack_base_and_size();
  1463   // Initialize thread local storage; set before calling MutexLocker
  1464   this->initialize_thread_local_storage();
  1466   this->create_stack_guard_pages();
  1468   this->cache_global_variables();
  1470   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1471   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1472   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1474   assert(JavaThread::current() == this, "sanity check");
  1475   assert(!Thread::current()->owns_locks(), "sanity check");
  1477   DTRACE_THREAD_PROBE(start, this);
  1479   // This operation might block. We call that after all safepoint checks for a new thread has
  1480   // been completed.
  1481   this->set_active_handles(JNIHandleBlock::allocate_block());
  1483   if (JvmtiExport::should_post_thread_life()) {
  1484     JvmtiExport::post_thread_start(this);
  1487   // We call another function to do the rest so we are sure that the stack addresses used
  1488   // from there will be lower than the stack base just computed
  1489   thread_main_inner();
  1491   // Note, thread is no longer valid at this point!
  1495 void JavaThread::thread_main_inner() {
  1496   assert(JavaThread::current() == this, "sanity check");
  1497   assert(this->threadObj() != NULL, "just checking");
  1499   // Execute thread entry point. If this thread is being asked to restart,
  1500   // or has been stopped before starting, do not reexecute entry point.
  1501   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1502   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1503     // enter the thread's entry point only if we have no pending exceptions
  1504     HandleMark hm(this);
  1505     this->entry_point()(this, this);
  1508   DTRACE_THREAD_PROBE(stop, this);
  1510   this->exit(false);
  1511   delete this;
  1515 static void ensure_join(JavaThread* thread) {
  1516   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1517   Handle threadObj(thread, thread->threadObj());
  1518   assert(threadObj.not_null(), "java thread object must exist");
  1519   ObjectLocker lock(threadObj, thread);
  1520   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1521   thread->clear_pending_exception();
  1522   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1523   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1524   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1525   // is dead when it gets notified.
  1526   java_lang_Thread::set_stillborn(threadObj());
  1527   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1528   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1529   java_lang_Thread::set_thread(threadObj(), NULL);
  1530   lock.notify_all(thread);
  1531   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1532   thread->clear_pending_exception();
  1536 // For any new cleanup additions, please check to see if they need to be applied to
  1537 // cleanup_failed_attach_current_thread as well.
  1538 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1539   assert(this == JavaThread::current(),  "thread consistency check");
  1540   if (!InitializeJavaLangSystem) return;
  1542   HandleMark hm(this);
  1543   Handle uncaught_exception(this, this->pending_exception());
  1544   this->clear_pending_exception();
  1545   Handle threadObj(this, this->threadObj());
  1546   assert(threadObj.not_null(), "Java thread object should be created");
  1548   if (get_thread_profiler() != NULL) {
  1549     get_thread_profiler()->disengage();
  1550     ResourceMark rm;
  1551     get_thread_profiler()->print(get_thread_name());
  1555   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1557     EXCEPTION_MARK;
  1559     CLEAR_PENDING_EXCEPTION;
  1561   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1562   // has to be fixed by a runtime query method
  1563   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1564     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1565     // java.lang.Thread.dispatchUncaughtException
  1566     if (uncaught_exception.not_null()) {
  1567       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1568       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1569         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1571         EXCEPTION_MARK;
  1572         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1573         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1574         // so call ThreadGroup.uncaughtException()
  1575         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1576         CallInfo callinfo;
  1577         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1578         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1579                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1580                                            vmSymbolHandles::throwable_void_signature(),
  1581                                            KlassHandle(), false, false, THREAD);
  1582         CLEAR_PENDING_EXCEPTION;
  1583         methodHandle method = callinfo.selected_method();
  1584         if (method.not_null()) {
  1585           JavaValue result(T_VOID);
  1586           JavaCalls::call_virtual(&result,
  1587                                   threadObj, thread_klass,
  1588                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1589                                   vmSymbolHandles::throwable_void_signature(),
  1590                                   uncaught_exception,
  1591                                   THREAD);
  1592         } else {
  1593           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1594           JavaValue result(T_VOID);
  1595           JavaCalls::call_virtual(&result,
  1596                                   group, thread_group,
  1597                                   vmSymbolHandles::uncaughtException_name(),
  1598                                   vmSymbolHandles::thread_throwable_void_signature(),
  1599                                   threadObj,           // Arg 1
  1600                                   uncaught_exception,  // Arg 2
  1601                                   THREAD);
  1603         CLEAR_PENDING_EXCEPTION;
  1607     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1608     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1609     // is deprecated anyhow.
  1610     { int count = 3;
  1611       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1612         EXCEPTION_MARK;
  1613         JavaValue result(T_VOID);
  1614         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1615         JavaCalls::call_virtual(&result,
  1616                               threadObj, thread_klass,
  1617                               vmSymbolHandles::exit_method_name(),
  1618                               vmSymbolHandles::void_method_signature(),
  1619                               THREAD);
  1620         CLEAR_PENDING_EXCEPTION;
  1624     // notify JVMTI
  1625     if (JvmtiExport::should_post_thread_life()) {
  1626       JvmtiExport::post_thread_end(this);
  1629     // We have notified the agents that we are exiting, before we go on,
  1630     // we must check for a pending external suspend request and honor it
  1631     // in order to not surprise the thread that made the suspend request.
  1632     while (true) {
  1634         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1635         if (!is_external_suspend()) {
  1636           set_terminated(_thread_exiting);
  1637           ThreadService::current_thread_exiting(this);
  1638           break;
  1640         // Implied else:
  1641         // Things get a little tricky here. We have a pending external
  1642         // suspend request, but we are holding the SR_lock so we
  1643         // can't just self-suspend. So we temporarily drop the lock
  1644         // and then self-suspend.
  1647       ThreadBlockInVM tbivm(this);
  1648       java_suspend_self();
  1650       // We're done with this suspend request, but we have to loop around
  1651       // and check again. Eventually we will get SR_lock without a pending
  1652       // external suspend request and will be able to mark ourselves as
  1653       // exiting.
  1655     // no more external suspends are allowed at this point
  1656   } else {
  1657     // before_exit() has already posted JVMTI THREAD_END events
  1660   // Notify waiters on thread object. This has to be done after exit() is called
  1661   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1662   // group should have the destroyed bit set before waiters are notified).
  1663   ensure_join(this);
  1664   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1666   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1667   // held by this thread must be released.  A detach operation must only
  1668   // get here if there are no Java frames on the stack.  Therefore, any
  1669   // owned monitors at this point MUST be JNI-acquired monitors which are
  1670   // pre-inflated and in the monitor cache.
  1671   //
  1672   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1673   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1674     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1675     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1676     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1679   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1680   // is in a consistent state, in case GC happens
  1681   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1683   if (active_handles() != NULL) {
  1684     JNIHandleBlock* block = active_handles();
  1685     set_active_handles(NULL);
  1686     JNIHandleBlock::release_block(block);
  1689   if (free_handle_block() != NULL) {
  1690     JNIHandleBlock* block = free_handle_block();
  1691     set_free_handle_block(NULL);
  1692     JNIHandleBlock::release_block(block);
  1695   // These have to be removed while this is still a valid thread.
  1696   remove_stack_guard_pages();
  1698   if (UseTLAB) {
  1699     tlab().make_parsable(true);  // retire TLAB
  1702   if (jvmti_thread_state() != NULL) {
  1703     JvmtiExport::cleanup_thread(this);
  1706 #ifndef SERIALGC
  1707   // We must flush G1-related buffers before removing a thread from
  1708   // the list of active threads.
  1709   if (UseG1GC) {
  1710     flush_barrier_queues();
  1712 #endif
  1714   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1715   Threads::remove(this);
  1718 #ifndef SERIALGC
  1719 // Flush G1-related queues.
  1720 void JavaThread::flush_barrier_queues() {
  1721   satb_mark_queue().flush();
  1722   dirty_card_queue().flush();
  1725 void JavaThread::initialize_queues() {
  1726   assert(!SafepointSynchronize::is_at_safepoint(),
  1727          "we should not be at a safepoint");
  1729   ObjPtrQueue& satb_queue = satb_mark_queue();
  1730   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1731   // The SATB queue should have been constructed with its active
  1732   // field set to false.
  1733   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1734   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1735   // If we are creating the thread during a marking cycle, we should
  1736   // set the active field of the SATB queue to true.
  1737   if (satb_queue_set.is_active()) {
  1738     satb_queue.set_active(true);
  1741   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1742   // The dirty card queue should have been constructed with its
  1743   // active field set to true.
  1744   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1746 #endif // !SERIALGC
  1748 void JavaThread::cleanup_failed_attach_current_thread() {
  1749   if (get_thread_profiler() != NULL) {
  1750     get_thread_profiler()->disengage();
  1751     ResourceMark rm;
  1752     get_thread_profiler()->print(get_thread_name());
  1755   if (active_handles() != NULL) {
  1756     JNIHandleBlock* block = active_handles();
  1757     set_active_handles(NULL);
  1758     JNIHandleBlock::release_block(block);
  1761   if (free_handle_block() != NULL) {
  1762     JNIHandleBlock* block = free_handle_block();
  1763     set_free_handle_block(NULL);
  1764     JNIHandleBlock::release_block(block);
  1767   // These have to be removed while this is still a valid thread.
  1768   remove_stack_guard_pages();
  1770   if (UseTLAB) {
  1771     tlab().make_parsable(true);  // retire TLAB, if any
  1774 #ifndef SERIALGC
  1775   if (UseG1GC) {
  1776     flush_barrier_queues();
  1778 #endif
  1780   Threads::remove(this);
  1781   delete this;
  1787 JavaThread* JavaThread::active() {
  1788   Thread* thread = ThreadLocalStorage::thread();
  1789   assert(thread != NULL, "just checking");
  1790   if (thread->is_Java_thread()) {
  1791     return (JavaThread*) thread;
  1792   } else {
  1793     assert(thread->is_VM_thread(), "this must be a vm thread");
  1794     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1795     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1796     assert(ret->is_Java_thread(), "must be a Java thread");
  1797     return ret;
  1801 bool JavaThread::is_lock_owned(address adr) const {
  1802   if (Thread::is_lock_owned(adr)) return true;
  1804   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1805     if (chunk->contains(adr)) return true;
  1808   return false;
  1812 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1813   chunk->set_next(monitor_chunks());
  1814   set_monitor_chunks(chunk);
  1817 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1818   guarantee(monitor_chunks() != NULL, "must be non empty");
  1819   if (monitor_chunks() == chunk) {
  1820     set_monitor_chunks(chunk->next());
  1821   } else {
  1822     MonitorChunk* prev = monitor_chunks();
  1823     while (prev->next() != chunk) prev = prev->next();
  1824     prev->set_next(chunk->next());
  1828 // JVM support.
  1830 // Note: this function shouldn't block if it's called in
  1831 // _thread_in_native_trans state (such as from
  1832 // check_special_condition_for_native_trans()).
  1833 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1835   if (has_last_Java_frame() && has_async_condition()) {
  1836     // If we are at a polling page safepoint (not a poll return)
  1837     // then we must defer async exception because live registers
  1838     // will be clobbered by the exception path. Poll return is
  1839     // ok because the call we a returning from already collides
  1840     // with exception handling registers and so there is no issue.
  1841     // (The exception handling path kills call result registers but
  1842     //  this is ok since the exception kills the result anyway).
  1844     if (is_at_poll_safepoint()) {
  1845       // if the code we are returning to has deoptimized we must defer
  1846       // the exception otherwise live registers get clobbered on the
  1847       // exception path before deoptimization is able to retrieve them.
  1848       //
  1849       RegisterMap map(this, false);
  1850       frame caller_fr = last_frame().sender(&map);
  1851       assert(caller_fr.is_compiled_frame(), "what?");
  1852       if (caller_fr.is_deoptimized_frame()) {
  1853         if (TraceExceptions) {
  1854           ResourceMark rm;
  1855           tty->print_cr("deferred async exception at compiled safepoint");
  1857         return;
  1862   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1863   if (condition == _no_async_condition) {
  1864     // Conditions have changed since has_special_runtime_exit_condition()
  1865     // was called:
  1866     // - if we were here only because of an external suspend request,
  1867     //   then that was taken care of above (or cancelled) so we are done
  1868     // - if we were here because of another async request, then it has
  1869     //   been cleared between the has_special_runtime_exit_condition()
  1870     //   and now so again we are done
  1871     return;
  1874   // Check for pending async. exception
  1875   if (_pending_async_exception != NULL) {
  1876     // Only overwrite an already pending exception, if it is not a threadDeath.
  1877     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1879       // We cannot call Exceptions::_throw(...) here because we cannot block
  1880       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1882       if (TraceExceptions) {
  1883         ResourceMark rm;
  1884         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1885         if (has_last_Java_frame() ) {
  1886           frame f = last_frame();
  1887           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1889         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1891       _pending_async_exception = NULL;
  1892       clear_has_async_exception();
  1896   if (check_unsafe_error &&
  1897       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1898     condition = _no_async_condition;  // done
  1899     switch (thread_state()) {
  1900     case _thread_in_vm:
  1902         JavaThread* THREAD = this;
  1903         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1905     case _thread_in_native:
  1907         ThreadInVMfromNative tiv(this);
  1908         JavaThread* THREAD = this;
  1909         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1911     case _thread_in_Java:
  1913         ThreadInVMfromJava tiv(this);
  1914         JavaThread* THREAD = this;
  1915         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1917     default:
  1918       ShouldNotReachHere();
  1922   assert(condition == _no_async_condition || has_pending_exception() ||
  1923          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1924          "must have handled the async condition, if no exception");
  1927 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1928   //
  1929   // Check for pending external suspend. Internal suspend requests do
  1930   // not use handle_special_runtime_exit_condition().
  1931   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1932   // thread is not the current thread. In older versions of jdbx, jdbx
  1933   // threads could call into the VM with another thread's JNIEnv so we
  1934   // can be here operating on behalf of a suspended thread (4432884).
  1935   bool do_self_suspend = is_external_suspend_with_lock();
  1936   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1937     //
  1938     // Because thread is external suspended the safepoint code will count
  1939     // thread as at a safepoint. This can be odd because we can be here
  1940     // as _thread_in_Java which would normally transition to _thread_blocked
  1941     // at a safepoint. We would like to mark the thread as _thread_blocked
  1942     // before calling java_suspend_self like all other callers of it but
  1943     // we must then observe proper safepoint protocol. (We can't leave
  1944     // _thread_blocked with a safepoint in progress). However we can be
  1945     // here as _thread_in_native_trans so we can't use a normal transition
  1946     // constructor/destructor pair because they assert on that type of
  1947     // transition. We could do something like:
  1948     //
  1949     // JavaThreadState state = thread_state();
  1950     // set_thread_state(_thread_in_vm);
  1951     // {
  1952     //   ThreadBlockInVM tbivm(this);
  1953     //   java_suspend_self()
  1954     // }
  1955     // set_thread_state(_thread_in_vm_trans);
  1956     // if (safepoint) block;
  1957     // set_thread_state(state);
  1958     //
  1959     // but that is pretty messy. Instead we just go with the way the
  1960     // code has worked before and note that this is the only path to
  1961     // java_suspend_self that doesn't put the thread in _thread_blocked
  1962     // mode.
  1964     frame_anchor()->make_walkable(this);
  1965     java_suspend_self();
  1967     // We might be here for reasons in addition to the self-suspend request
  1968     // so check for other async requests.
  1971   if (check_asyncs) {
  1972     check_and_handle_async_exceptions();
  1976 void JavaThread::send_thread_stop(oop java_throwable)  {
  1977   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1978   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1979   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1981   // Do not throw asynchronous exceptions against the compiler thread
  1982   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1983   if (is_Compiler_thread()) return;
  1985   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1986   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1987     java_lang_Thread::set_stillborn(threadObj());
  1991     // Actually throw the Throwable against the target Thread - however
  1992     // only if there is no thread death exception installed already.
  1993     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1994       // If the topmost frame is a runtime stub, then we are calling into
  1995       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1996       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1997       // may not be valid
  1998       if (has_last_Java_frame()) {
  1999         frame f = last_frame();
  2000         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2001           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2002           RegisterMap reg_map(this, UseBiasedLocking);
  2003           frame compiled_frame = f.sender(&reg_map);
  2004           if (compiled_frame.can_be_deoptimized()) {
  2005             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2010       // Set async. pending exception in thread.
  2011       set_pending_async_exception(java_throwable);
  2013       if (TraceExceptions) {
  2014        ResourceMark rm;
  2015        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2017       // for AbortVMOnException flag
  2018       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2023   // Interrupt thread so it will wake up from a potential wait()
  2024   Thread::interrupt(this);
  2027 // External suspension mechanism.
  2028 //
  2029 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2030 // to any VM_locks and it is at a transition
  2031 // Self-suspension will happen on the transition out of the vm.
  2032 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2033 //
  2034 // Guarantees on return:
  2035 //   + Target thread will not execute any new bytecode (that's why we need to
  2036 //     force a safepoint)
  2037 //   + Target thread will not enter any new monitors
  2038 //
  2039 void JavaThread::java_suspend() {
  2040   { MutexLocker mu(Threads_lock);
  2041     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2042        return;
  2046   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2047     if (!is_external_suspend()) {
  2048       // a racing resume has cancelled us; bail out now
  2049       return;
  2052     // suspend is done
  2053     uint32_t debug_bits = 0;
  2054     // Warning: is_ext_suspend_completed() may temporarily drop the
  2055     // SR_lock to allow the thread to reach a stable thread state if
  2056     // it is currently in a transient thread state.
  2057     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2058                                  SuspendRetryDelay, &debug_bits) ) {
  2059       return;
  2063   VM_ForceSafepoint vm_suspend;
  2064   VMThread::execute(&vm_suspend);
  2067 // Part II of external suspension.
  2068 // A JavaThread self suspends when it detects a pending external suspend
  2069 // request. This is usually on transitions. It is also done in places
  2070 // where continuing to the next transition would surprise the caller,
  2071 // e.g., monitor entry.
  2072 //
  2073 // Returns the number of times that the thread self-suspended.
  2074 //
  2075 // Note: DO NOT call java_suspend_self() when you just want to block current
  2076 //       thread. java_suspend_self() is the second stage of cooperative
  2077 //       suspension for external suspend requests and should only be used
  2078 //       to complete an external suspend request.
  2079 //
  2080 int JavaThread::java_suspend_self() {
  2081   int ret = 0;
  2083   // we are in the process of exiting so don't suspend
  2084   if (is_exiting()) {
  2085      clear_external_suspend();
  2086      return ret;
  2089   assert(_anchor.walkable() ||
  2090     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2091     "must have walkable stack");
  2093   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2095   assert(!this->is_ext_suspended(),
  2096     "a thread trying to self-suspend should not already be suspended");
  2098   if (this->is_suspend_equivalent()) {
  2099     // If we are self-suspending as a result of the lifting of a
  2100     // suspend equivalent condition, then the suspend_equivalent
  2101     // flag is not cleared until we set the ext_suspended flag so
  2102     // that wait_for_ext_suspend_completion() returns consistent
  2103     // results.
  2104     this->clear_suspend_equivalent();
  2107   // A racing resume may have cancelled us before we grabbed SR_lock
  2108   // above. Or another external suspend request could be waiting for us
  2109   // by the time we return from SR_lock()->wait(). The thread
  2110   // that requested the suspension may already be trying to walk our
  2111   // stack and if we return now, we can change the stack out from under
  2112   // it. This would be a "bad thing (TM)" and cause the stack walker
  2113   // to crash. We stay self-suspended until there are no more pending
  2114   // external suspend requests.
  2115   while (is_external_suspend()) {
  2116     ret++;
  2117     this->set_ext_suspended();
  2119     // _ext_suspended flag is cleared by java_resume()
  2120     while (is_ext_suspended()) {
  2121       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2125   return ret;
  2128 #ifdef ASSERT
  2129 // verify the JavaThread has not yet been published in the Threads::list, and
  2130 // hence doesn't need protection from concurrent access at this stage
  2131 void JavaThread::verify_not_published() {
  2132   if (!Threads_lock->owned_by_self()) {
  2133    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2134    assert( !Threads::includes(this),
  2135            "java thread shouldn't have been published yet!");
  2137   else {
  2138    assert( !Threads::includes(this),
  2139            "java thread shouldn't have been published yet!");
  2142 #endif
  2144 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2145 // progress or when _suspend_flags is non-zero.
  2146 // Current thread needs to self-suspend if there is a suspend request and/or
  2147 // block if a safepoint is in progress.
  2148 // Async exception ISN'T checked.
  2149 // Note only the ThreadInVMfromNative transition can call this function
  2150 // directly and when thread state is _thread_in_native_trans
  2151 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2152   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2154   JavaThread *curJT = JavaThread::current();
  2155   bool do_self_suspend = thread->is_external_suspend();
  2157   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2159   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2160   // thread is not the current thread. In older versions of jdbx, jdbx
  2161   // threads could call into the VM with another thread's JNIEnv so we
  2162   // can be here operating on behalf of a suspended thread (4432884).
  2163   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2164     JavaThreadState state = thread->thread_state();
  2166     // We mark this thread_blocked state as a suspend-equivalent so
  2167     // that a caller to is_ext_suspend_completed() won't be confused.
  2168     // The suspend-equivalent state is cleared by java_suspend_self().
  2169     thread->set_suspend_equivalent();
  2171     // If the safepoint code sees the _thread_in_native_trans state, it will
  2172     // wait until the thread changes to other thread state. There is no
  2173     // guarantee on how soon we can obtain the SR_lock and complete the
  2174     // self-suspend request. It would be a bad idea to let safepoint wait for
  2175     // too long. Temporarily change the state to _thread_blocked to
  2176     // let the VM thread know that this thread is ready for GC. The problem
  2177     // of changing thread state is that safepoint could happen just after
  2178     // java_suspend_self() returns after being resumed, and VM thread will
  2179     // see the _thread_blocked state. We must check for safepoint
  2180     // after restoring the state and make sure we won't leave while a safepoint
  2181     // is in progress.
  2182     thread->set_thread_state(_thread_blocked);
  2183     thread->java_suspend_self();
  2184     thread->set_thread_state(state);
  2185     // Make sure new state is seen by VM thread
  2186     if (os::is_MP()) {
  2187       if (UseMembar) {
  2188         // Force a fence between the write above and read below
  2189         OrderAccess::fence();
  2190       } else {
  2191         // Must use this rather than serialization page in particular on Windows
  2192         InterfaceSupport::serialize_memory(thread);
  2197   if (SafepointSynchronize::do_call_back()) {
  2198     // If we are safepointing, then block the caller which may not be
  2199     // the same as the target thread (see above).
  2200     SafepointSynchronize::block(curJT);
  2203   if (thread->is_deopt_suspend()) {
  2204     thread->clear_deopt_suspend();
  2205     RegisterMap map(thread, false);
  2206     frame f = thread->last_frame();
  2207     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2208       f = f.sender(&map);
  2210     if (f.id() == thread->must_deopt_id()) {
  2211       thread->clear_must_deopt_id();
  2212       f.deoptimize(thread);
  2213     } else {
  2214       fatal("missed deoptimization!");
  2219 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2220 // progress or when _suspend_flags is non-zero.
  2221 // Current thread needs to self-suspend if there is a suspend request and/or
  2222 // block if a safepoint is in progress.
  2223 // Also check for pending async exception (not including unsafe access error).
  2224 // Note only the native==>VM/Java barriers can call this function and when
  2225 // thread state is _thread_in_native_trans.
  2226 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2227   check_safepoint_and_suspend_for_native_trans(thread);
  2229   if (thread->has_async_exception()) {
  2230     // We are in _thread_in_native_trans state, don't handle unsafe
  2231     // access error since that may block.
  2232     thread->check_and_handle_async_exceptions(false);
  2236 // We need to guarantee the Threads_lock here, since resumes are not
  2237 // allowed during safepoint synchronization
  2238 // Can only resume from an external suspension
  2239 void JavaThread::java_resume() {
  2240   assert_locked_or_safepoint(Threads_lock);
  2242   // Sanity check: thread is gone, has started exiting or the thread
  2243   // was not externally suspended.
  2244   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2245     return;
  2248   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2250   clear_external_suspend();
  2252   if (is_ext_suspended()) {
  2253     clear_ext_suspended();
  2254     SR_lock()->notify_all();
  2258 void JavaThread::create_stack_guard_pages() {
  2259   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2260   address low_addr = stack_base() - stack_size();
  2261   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2263   int allocate = os::allocate_stack_guard_pages();
  2264   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2266   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2267     warning("Attempt to allocate stack guard pages failed.");
  2268     return;
  2271   if (os::guard_memory((char *) low_addr, len)) {
  2272     _stack_guard_state = stack_guard_enabled;
  2273   } else {
  2274     warning("Attempt to protect stack guard pages failed.");
  2275     if (os::uncommit_memory((char *) low_addr, len)) {
  2276       warning("Attempt to deallocate stack guard pages failed.");
  2281 void JavaThread::remove_stack_guard_pages() {
  2282   if (_stack_guard_state == stack_guard_unused) return;
  2283   address low_addr = stack_base() - stack_size();
  2284   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2286   if (os::allocate_stack_guard_pages()) {
  2287     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2288       _stack_guard_state = stack_guard_unused;
  2289     } else {
  2290       warning("Attempt to deallocate stack guard pages failed.");
  2292   } else {
  2293     if (_stack_guard_state == stack_guard_unused) return;
  2294     if (os::unguard_memory((char *) low_addr, len)) {
  2295       _stack_guard_state = stack_guard_unused;
  2296     } else {
  2297         warning("Attempt to unprotect stack guard pages failed.");
  2302 void JavaThread::enable_stack_yellow_zone() {
  2303   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2304   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2306   // The base notation is from the stacks point of view, growing downward.
  2307   // We need to adjust it to work correctly with guard_memory()
  2308   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2310   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2311   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2313   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2314     _stack_guard_state = stack_guard_enabled;
  2315   } else {
  2316     warning("Attempt to guard stack yellow zone failed.");
  2318   enable_register_stack_guard();
  2321 void JavaThread::disable_stack_yellow_zone() {
  2322   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2323   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2325   // Simply return if called for a thread that does not use guard pages.
  2326   if (_stack_guard_state == stack_guard_unused) return;
  2328   // The base notation is from the stacks point of view, growing downward.
  2329   // We need to adjust it to work correctly with guard_memory()
  2330   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2332   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2333     _stack_guard_state = stack_guard_yellow_disabled;
  2334   } else {
  2335     warning("Attempt to unguard stack yellow zone failed.");
  2337   disable_register_stack_guard();
  2340 void JavaThread::enable_stack_red_zone() {
  2341   // The base notation is from the stacks point of view, growing downward.
  2342   // We need to adjust it to work correctly with guard_memory()
  2343   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2344   address base = stack_red_zone_base() - stack_red_zone_size();
  2346   guarantee(base < stack_base(),"Error calculating stack red zone");
  2347   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2349   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2350     warning("Attempt to guard stack red zone failed.");
  2354 void JavaThread::disable_stack_red_zone() {
  2355   // The base notation is from the stacks point of view, growing downward.
  2356   // We need to adjust it to work correctly with guard_memory()
  2357   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2358   address base = stack_red_zone_base() - stack_red_zone_size();
  2359   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2360     warning("Attempt to unguard stack red zone failed.");
  2364 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2365   // ignore is there is no stack
  2366   if (!has_last_Java_frame()) return;
  2367   // traverse the stack frames. Starts from top frame.
  2368   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2369     frame* fr = fst.current();
  2370     f(fr, fst.register_map());
  2375 #ifndef PRODUCT
  2376 // Deoptimization
  2377 // Function for testing deoptimization
  2378 void JavaThread::deoptimize() {
  2379   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2380   StackFrameStream fst(this, UseBiasedLocking);
  2381   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2382   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2383   // Iterate over all frames in the thread and deoptimize
  2384   for(; !fst.is_done(); fst.next()) {
  2385     if(fst.current()->can_be_deoptimized()) {
  2387       if (only_at) {
  2388         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2389         // consists of comma or carriage return separated numbers so
  2390         // search for the current bci in that string.
  2391         address pc = fst.current()->pc();
  2392         nmethod* nm =  (nmethod*) fst.current()->cb();
  2393         ScopeDesc* sd = nm->scope_desc_at( pc);
  2394         char buffer[8];
  2395         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2396         size_t len = strlen(buffer);
  2397         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2398         while (found != NULL) {
  2399           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2400               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2401             // Check that the bci found is bracketed by terminators.
  2402             break;
  2404           found = strstr(found + 1, buffer);
  2406         if (!found) {
  2407           continue;
  2411       if (DebugDeoptimization && !deopt) {
  2412         deopt = true; // One-time only print before deopt
  2413         tty->print_cr("[BEFORE Deoptimization]");
  2414         trace_frames();
  2415         trace_stack();
  2417       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2421   if (DebugDeoptimization && deopt) {
  2422     tty->print_cr("[AFTER Deoptimization]");
  2423     trace_frames();
  2428 // Make zombies
  2429 void JavaThread::make_zombies() {
  2430   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2431     if (fst.current()->can_be_deoptimized()) {
  2432       // it is a Java nmethod
  2433       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2434       nm->make_not_entrant();
  2438 #endif // PRODUCT
  2441 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2442   if (!has_last_Java_frame()) return;
  2443   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2444   StackFrameStream fst(this, UseBiasedLocking);
  2445   for(; !fst.is_done(); fst.next()) {
  2446     if (fst.current()->should_be_deoptimized()) {
  2447       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2453 // GC support
  2454 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2456 void JavaThread::gc_epilogue() {
  2457   frames_do(frame_gc_epilogue);
  2461 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2463 void JavaThread::gc_prologue() {
  2464   frames_do(frame_gc_prologue);
  2467 // If the caller is a NamedThread, then remember, in the current scope,
  2468 // the given JavaThread in its _processed_thread field.
  2469 class RememberProcessedThread: public StackObj {
  2470   NamedThread* _cur_thr;
  2471 public:
  2472   RememberProcessedThread(JavaThread* jthr) {
  2473     Thread* thread = Thread::current();
  2474     if (thread->is_Named_thread()) {
  2475       _cur_thr = (NamedThread *)thread;
  2476       _cur_thr->set_processed_thread(jthr);
  2477     } else {
  2478       _cur_thr = NULL;
  2482   ~RememberProcessedThread() {
  2483     if (_cur_thr) {
  2484       _cur_thr->set_processed_thread(NULL);
  2487 };
  2489 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2490   // Verify that the deferred card marks have been flushed.
  2491   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2493   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2494   // since there may be more than one thread using each ThreadProfiler.
  2496   // Traverse the GCHandles
  2497   Thread::oops_do(f, cf);
  2499   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2500           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2502   if (has_last_Java_frame()) {
  2503     // Record JavaThread to GC thread
  2504     RememberProcessedThread rpt(this);
  2506     // Traverse the privileged stack
  2507     if (_privileged_stack_top != NULL) {
  2508       _privileged_stack_top->oops_do(f);
  2511     // traverse the registered growable array
  2512     if (_array_for_gc != NULL) {
  2513       for (int index = 0; index < _array_for_gc->length(); index++) {
  2514         f->do_oop(_array_for_gc->adr_at(index));
  2518     // Traverse the monitor chunks
  2519     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2520       chunk->oops_do(f);
  2523     // Traverse the execution stack
  2524     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2525       fst.current()->oops_do(f, cf, fst.register_map());
  2529   // callee_target is never live across a gc point so NULL it here should
  2530   // it still contain a methdOop.
  2532   set_callee_target(NULL);
  2534   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2535   // If we have deferred set_locals there might be oops waiting to be
  2536   // written
  2537   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2538   if (list != NULL) {
  2539     for (int i = 0; i < list->length(); i++) {
  2540       list->at(i)->oops_do(f);
  2544   // Traverse instance variables at the end since the GC may be moving things
  2545   // around using this function
  2546   f->do_oop((oop*) &_threadObj);
  2547   f->do_oop((oop*) &_vm_result);
  2548   f->do_oop((oop*) &_vm_result_2);
  2549   f->do_oop((oop*) &_exception_oop);
  2550   f->do_oop((oop*) &_pending_async_exception);
  2552   if (jvmti_thread_state() != NULL) {
  2553     jvmti_thread_state()->oops_do(f);
  2557 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2558   Thread::nmethods_do(cf);  // (super method is a no-op)
  2560   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2561           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2563   if (has_last_Java_frame()) {
  2564     // Traverse the execution stack
  2565     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2566       fst.current()->nmethods_do(cf);
  2571 // Printing
  2572 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2573   switch (_thread_state) {
  2574   case _thread_uninitialized:     return "_thread_uninitialized";
  2575   case _thread_new:               return "_thread_new";
  2576   case _thread_new_trans:         return "_thread_new_trans";
  2577   case _thread_in_native:         return "_thread_in_native";
  2578   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2579   case _thread_in_vm:             return "_thread_in_vm";
  2580   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2581   case _thread_in_Java:           return "_thread_in_Java";
  2582   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2583   case _thread_blocked:           return "_thread_blocked";
  2584   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2585   default:                        return "unknown thread state";
  2589 #ifndef PRODUCT
  2590 void JavaThread::print_thread_state_on(outputStream *st) const {
  2591   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2592 };
  2593 void JavaThread::print_thread_state() const {
  2594   print_thread_state_on(tty);
  2595 };
  2596 #endif // PRODUCT
  2598 // Called by Threads::print() for VM_PrintThreads operation
  2599 void JavaThread::print_on(outputStream *st) const {
  2600   st->print("\"%s\" ", get_thread_name());
  2601   oop thread_oop = threadObj();
  2602   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2603   Thread::print_on(st);
  2604   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2605   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2606   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2607     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2609 #ifndef PRODUCT
  2610   print_thread_state_on(st);
  2611   _safepoint_state->print_on(st);
  2612 #endif // PRODUCT
  2615 // Called by fatal error handler. The difference between this and
  2616 // JavaThread::print() is that we can't grab lock or allocate memory.
  2617 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2618   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2619   oop thread_obj = threadObj();
  2620   if (thread_obj != NULL) {
  2621      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2623   st->print(" [");
  2624   st->print("%s", _get_thread_state_name(_thread_state));
  2625   if (osthread()) {
  2626     st->print(", id=%d", osthread()->thread_id());
  2628   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2629             _stack_base - _stack_size, _stack_base);
  2630   st->print("]");
  2631   return;
  2634 // Verification
  2636 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2638 void JavaThread::verify() {
  2639   // Verify oops in the thread.
  2640   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2642   // Verify the stack frames.
  2643   frames_do(frame_verify);
  2646 // CR 6300358 (sub-CR 2137150)
  2647 // Most callers of this method assume that it can't return NULL but a
  2648 // thread may not have a name whilst it is in the process of attaching to
  2649 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2650 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2651 // if vm exit occurs during initialization). These cases can all be accounted
  2652 // for such that this method never returns NULL.
  2653 const char* JavaThread::get_thread_name() const {
  2654 #ifdef ASSERT
  2655   // early safepoints can hit while current thread does not yet have TLS
  2656   if (!SafepointSynchronize::is_at_safepoint()) {
  2657     Thread *cur = Thread::current();
  2658     if (!(cur->is_Java_thread() && cur == this)) {
  2659       // Current JavaThreads are allowed to get their own name without
  2660       // the Threads_lock.
  2661       assert_locked_or_safepoint(Threads_lock);
  2664 #endif // ASSERT
  2665     return get_thread_name_string();
  2668 // Returns a non-NULL representation of this thread's name, or a suitable
  2669 // descriptive string if there is no set name
  2670 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2671   const char* name_str;
  2672   oop thread_obj = threadObj();
  2673   if (thread_obj != NULL) {
  2674     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2675     if (name != NULL) {
  2676       if (buf == NULL) {
  2677         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2679       else {
  2680         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2683     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2684       name_str = "<no-name - thread is attaching>";
  2686     else {
  2687       name_str = Thread::name();
  2690   else {
  2691     name_str = Thread::name();
  2693   assert(name_str != NULL, "unexpected NULL thread name");
  2694   return name_str;
  2698 const char* JavaThread::get_threadgroup_name() const {
  2699   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2700   oop thread_obj = threadObj();
  2701   if (thread_obj != NULL) {
  2702     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2703     if (thread_group != NULL) {
  2704       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2705       // ThreadGroup.name can be null
  2706       if (name != NULL) {
  2707         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2708         return str;
  2712   return NULL;
  2715 const char* JavaThread::get_parent_name() const {
  2716   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2717   oop thread_obj = threadObj();
  2718   if (thread_obj != NULL) {
  2719     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2720     if (thread_group != NULL) {
  2721       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2722       if (parent != NULL) {
  2723         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2724         // ThreadGroup.name can be null
  2725         if (name != NULL) {
  2726           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2727           return str;
  2732   return NULL;
  2735 ThreadPriority JavaThread::java_priority() const {
  2736   oop thr_oop = threadObj();
  2737   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2738   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2739   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2740   return priority;
  2743 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2745   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2746   // Link Java Thread object <-> C++ Thread
  2748   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2749   // and put it into a new Handle.  The Handle "thread_oop" can then
  2750   // be used to pass the C++ thread object to other methods.
  2752   // Set the Java level thread object (jthread) field of the
  2753   // new thread (a JavaThread *) to C++ thread object using the
  2754   // "thread_oop" handle.
  2756   // Set the thread field (a JavaThread *) of the
  2757   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2759   Handle thread_oop(Thread::current(),
  2760                     JNIHandles::resolve_non_null(jni_thread));
  2761   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2762     "must be initialized");
  2763   set_threadObj(thread_oop());
  2764   java_lang_Thread::set_thread(thread_oop(), this);
  2766   if (prio == NoPriority) {
  2767     prio = java_lang_Thread::priority(thread_oop());
  2768     assert(prio != NoPriority, "A valid priority should be present");
  2771   // Push the Java priority down to the native thread; needs Threads_lock
  2772   Thread::set_priority(this, prio);
  2774   // Add the new thread to the Threads list and set it in motion.
  2775   // We must have threads lock in order to call Threads::add.
  2776   // It is crucial that we do not block before the thread is
  2777   // added to the Threads list for if a GC happens, then the java_thread oop
  2778   // will not be visited by GC.
  2779   Threads::add(this);
  2782 oop JavaThread::current_park_blocker() {
  2783   // Support for JSR-166 locks
  2784   oop thread_oop = threadObj();
  2785   if (thread_oop != NULL &&
  2786       JDK_Version::current().supports_thread_park_blocker()) {
  2787     return java_lang_Thread::park_blocker(thread_oop);
  2789   return NULL;
  2793 void JavaThread::print_stack_on(outputStream* st) {
  2794   if (!has_last_Java_frame()) return;
  2795   ResourceMark rm;
  2796   HandleMark   hm;
  2798   RegisterMap reg_map(this);
  2799   vframe* start_vf = last_java_vframe(&reg_map);
  2800   int count = 0;
  2801   for (vframe* f = start_vf; f; f = f->sender() ) {
  2802     if (f->is_java_frame()) {
  2803       javaVFrame* jvf = javaVFrame::cast(f);
  2804       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2806       // Print out lock information
  2807       if (JavaMonitorsInStackTrace) {
  2808         jvf->print_lock_info_on(st, count);
  2810     } else {
  2811       // Ignore non-Java frames
  2814     // Bail-out case for too deep stacks
  2815     count++;
  2816     if (MaxJavaStackTraceDepth == count) return;
  2821 // JVMTI PopFrame support
  2822 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2823   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2824   if (in_bytes(size_in_bytes) != 0) {
  2825     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2826     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2827     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2831 void* JavaThread::popframe_preserved_args() {
  2832   return _popframe_preserved_args;
  2835 ByteSize JavaThread::popframe_preserved_args_size() {
  2836   return in_ByteSize(_popframe_preserved_args_size);
  2839 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2840   int sz = in_bytes(popframe_preserved_args_size());
  2841   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2842   return in_WordSize(sz / wordSize);
  2845 void JavaThread::popframe_free_preserved_args() {
  2846   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2847   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2848   _popframe_preserved_args = NULL;
  2849   _popframe_preserved_args_size = 0;
  2852 #ifndef PRODUCT
  2854 void JavaThread::trace_frames() {
  2855   tty->print_cr("[Describe stack]");
  2856   int frame_no = 1;
  2857   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2858     tty->print("  %d. ", frame_no++);
  2859     fst.current()->print_value_on(tty,this);
  2860     tty->cr();
  2865 void JavaThread::trace_stack_from(vframe* start_vf) {
  2866   ResourceMark rm;
  2867   int vframe_no = 1;
  2868   for (vframe* f = start_vf; f; f = f->sender() ) {
  2869     if (f->is_java_frame()) {
  2870       javaVFrame::cast(f)->print_activation(vframe_no++);
  2871     } else {
  2872       f->print();
  2874     if (vframe_no > StackPrintLimit) {
  2875       tty->print_cr("...<more frames>...");
  2876       return;
  2882 void JavaThread::trace_stack() {
  2883   if (!has_last_Java_frame()) return;
  2884   ResourceMark rm;
  2885   HandleMark   hm;
  2886   RegisterMap reg_map(this);
  2887   trace_stack_from(last_java_vframe(&reg_map));
  2891 #endif // PRODUCT
  2894 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2895   assert(reg_map != NULL, "a map must be given");
  2896   frame f = last_frame();
  2897   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2898     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2900   return NULL;
  2904 klassOop JavaThread::security_get_caller_class(int depth) {
  2905   vframeStream vfst(this);
  2906   vfst.security_get_caller_frame(depth);
  2907   if (!vfst.at_end()) {
  2908     return vfst.method()->method_holder();
  2910   return NULL;
  2913 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2914   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2915   CompileBroker::compiler_thread_loop();
  2918 // Create a CompilerThread
  2919 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2920 : JavaThread(&compiler_thread_entry) {
  2921   _env   = NULL;
  2922   _log   = NULL;
  2923   _task  = NULL;
  2924   _queue = queue;
  2925   _counters = counters;
  2926   _buffer_blob = NULL;
  2928 #ifndef PRODUCT
  2929   _ideal_graph_printer = NULL;
  2930 #endif
  2934 // ======= Threads ========
  2936 // The Threads class links together all active threads, and provides
  2937 // operations over all threads.  It is protected by its own Mutex
  2938 // lock, which is also used in other contexts to protect thread
  2939 // operations from having the thread being operated on from exiting
  2940 // and going away unexpectedly (e.g., safepoint synchronization)
  2942 JavaThread* Threads::_thread_list = NULL;
  2943 int         Threads::_number_of_threads = 0;
  2944 int         Threads::_number_of_non_daemon_threads = 0;
  2945 int         Threads::_return_code = 0;
  2946 size_t      JavaThread::_stack_size_at_create = 0;
  2948 // All JavaThreads
  2949 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2951 void os_stream();
  2953 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2954 void Threads::threads_do(ThreadClosure* tc) {
  2955   assert_locked_or_safepoint(Threads_lock);
  2956   // ALL_JAVA_THREADS iterates through all JavaThreads
  2957   ALL_JAVA_THREADS(p) {
  2958     tc->do_thread(p);
  2960   // Someday we could have a table or list of all non-JavaThreads.
  2961   // For now, just manually iterate through them.
  2962   tc->do_thread(VMThread::vm_thread());
  2963   Universe::heap()->gc_threads_do(tc);
  2964   WatcherThread *wt = WatcherThread::watcher_thread();
  2965   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2966   // the data for WatcherThread is still valid upon being examined. However,
  2967   // considering that WatchThread terminates when the VM is on the way to
  2968   // exit at safepoint, the chance of the above is extremely small. The right
  2969   // way to prevent termination of WatcherThread would be to acquire
  2970   // Terminator_lock, but we can't do that without violating the lock rank
  2971   // checking in some cases.
  2972   if (wt != NULL)
  2973     tc->do_thread(wt);
  2975   // If CompilerThreads ever become non-JavaThreads, add them here
  2978 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2980   extern void JDK_Version_init();
  2982   // Check version
  2983   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2985   // Initialize the output stream module
  2986   ostream_init();
  2988   // Process java launcher properties.
  2989   Arguments::process_sun_java_launcher_properties(args);
  2991   // Initialize the os module before using TLS
  2992   os::init();
  2994   // Initialize system properties.
  2995   Arguments::init_system_properties();
  2997   // So that JDK version can be used as a discrimintor when parsing arguments
  2998   JDK_Version_init();
  3000   // Update/Initialize System properties after JDK version number is known
  3001   Arguments::init_version_specific_system_properties();
  3003   // Parse arguments
  3004   jint parse_result = Arguments::parse(args);
  3005   if (parse_result != JNI_OK) return parse_result;
  3007   if (PauseAtStartup) {
  3008     os::pause();
  3011   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3013   // Record VM creation timing statistics
  3014   TraceVmCreationTime create_vm_timer;
  3015   create_vm_timer.start();
  3017   // Timing (must come after argument parsing)
  3018   TraceTime timer("Create VM", TraceStartupTime);
  3020   // Initialize the os module after parsing the args
  3021   jint os_init_2_result = os::init_2();
  3022   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3024   // Initialize output stream logging
  3025   ostream_init_log();
  3027   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3028   // Must be before create_vm_init_agents()
  3029   if (Arguments::init_libraries_at_startup()) {
  3030     convert_vm_init_libraries_to_agents();
  3033   // Launch -agentlib/-agentpath and converted -Xrun agents
  3034   if (Arguments::init_agents_at_startup()) {
  3035     create_vm_init_agents();
  3038   // Initialize Threads state
  3039   _thread_list = NULL;
  3040   _number_of_threads = 0;
  3041   _number_of_non_daemon_threads = 0;
  3043   // Initialize TLS
  3044   ThreadLocalStorage::init();
  3046   // Initialize global data structures and create system classes in heap
  3047   vm_init_globals();
  3049   // Attach the main thread to this os thread
  3050   JavaThread* main_thread = new JavaThread();
  3051   main_thread->set_thread_state(_thread_in_vm);
  3052   // must do this before set_active_handles and initialize_thread_local_storage
  3053   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3054   // change the stack size recorded here to one based on the java thread
  3055   // stacksize. This adjusted size is what is used to figure the placement
  3056   // of the guard pages.
  3057   main_thread->record_stack_base_and_size();
  3058   main_thread->initialize_thread_local_storage();
  3060   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3062   if (!main_thread->set_as_starting_thread()) {
  3063     vm_shutdown_during_initialization(
  3064       "Failed necessary internal allocation. Out of swap space");
  3065     delete main_thread;
  3066     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3067     return JNI_ENOMEM;
  3070   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3071   // crash Linux VM, see notes in os_linux.cpp.
  3072   main_thread->create_stack_guard_pages();
  3074   // Initialize Java-Level synchronization subsystem
  3075   ObjectMonitor::Initialize() ;
  3077   // Initialize global modules
  3078   jint status = init_globals();
  3079   if (status != JNI_OK) {
  3080     delete main_thread;
  3081     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3082     return status;
  3085   // Should be done after the heap is fully created
  3086   main_thread->cache_global_variables();
  3088   HandleMark hm;
  3090   { MutexLocker mu(Threads_lock);
  3091     Threads::add(main_thread);
  3094   // Any JVMTI raw monitors entered in onload will transition into
  3095   // real raw monitor. VM is setup enough here for raw monitor enter.
  3096   JvmtiExport::transition_pending_onload_raw_monitors();
  3098   if (VerifyBeforeGC &&
  3099       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3100     Universe::heap()->prepare_for_verify();
  3101     Universe::verify();   // make sure we're starting with a clean slate
  3104   // Create the VMThread
  3105   { TraceTime timer("Start VMThread", TraceStartupTime);
  3106     VMThread::create();
  3107     Thread* vmthread = VMThread::vm_thread();
  3109     if (!os::create_thread(vmthread, os::vm_thread))
  3110       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3112     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3113     // Monitors can have spurious returns, must always check another state flag
  3115       MutexLocker ml(Notify_lock);
  3116       os::start_thread(vmthread);
  3117       while (vmthread->active_handles() == NULL) {
  3118         Notify_lock->wait();
  3123   assert (Universe::is_fully_initialized(), "not initialized");
  3124   EXCEPTION_MARK;
  3126   // At this point, the Universe is initialized, but we have not executed
  3127   // any byte code.  Now is a good time (the only time) to dump out the
  3128   // internal state of the JVM for sharing.
  3130   if (DumpSharedSpaces) {
  3131     Universe::heap()->preload_and_dump(CHECK_0);
  3132     ShouldNotReachHere();
  3135   // Always call even when there are not JVMTI environments yet, since environments
  3136   // may be attached late and JVMTI must track phases of VM execution
  3137   JvmtiExport::enter_start_phase();
  3139   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3140   JvmtiExport::post_vm_start();
  3143     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3145     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3146       create_vm_init_libraries();
  3149     if (InitializeJavaLangString) {
  3150       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3151     } else {
  3152       warning("java.lang.String not initialized");
  3155     if (AggressiveOpts) {
  3157         // Forcibly initialize java/util/HashMap and mutate the private
  3158         // static final "frontCacheEnabled" field before we start creating instances
  3159 #ifdef ASSERT
  3160         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3161         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3162 #endif
  3163         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3164         KlassHandle k = KlassHandle(THREAD, k_o);
  3165         guarantee(k.not_null(), "Must find java/util/HashMap");
  3166         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3167         ik->initialize(CHECK_0);
  3168         fieldDescriptor fd;
  3169         // Possible we might not find this field; if so, don't break
  3170         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3171           k()->bool_field_put(fd.offset(), true);
  3175       if (UseStringCache) {
  3176         // Forcibly initialize java/lang/StringValue and mutate the private
  3177         // static final "stringCacheEnabled" field before we start creating instances
  3178         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3179         // Possible that StringValue isn't present: if so, silently don't break
  3180         if (k_o != NULL) {
  3181           KlassHandle k = KlassHandle(THREAD, k_o);
  3182           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3183           ik->initialize(CHECK_0);
  3184           fieldDescriptor fd;
  3185           // Possible we might not find this field: if so, silently don't break
  3186           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3187             k()->bool_field_put(fd.offset(), true);
  3193     // Initialize java_lang.System (needed before creating the thread)
  3194     if (InitializeJavaLangSystem) {
  3195       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3196       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3197       Handle thread_group = create_initial_thread_group(CHECK_0);
  3198       Universe::set_main_thread_group(thread_group());
  3199       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3200       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3201       main_thread->set_threadObj(thread_object);
  3202       // Set thread status to running since main thread has
  3203       // been started and running.
  3204       java_lang_Thread::set_thread_status(thread_object,
  3205                                           java_lang_Thread::RUNNABLE);
  3207       // The VM preresolve methods to these classes. Make sure that get initialized
  3208       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3209       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3210       // The VM creates & returns objects of this class. Make sure it's initialized.
  3211       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3212       call_initializeSystemClass(CHECK_0);
  3213     } else {
  3214       warning("java.lang.System not initialized");
  3217     // an instance of OutOfMemory exception has been allocated earlier
  3218     if (InitializeJavaLangExceptionsErrors) {
  3219       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3220       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3221       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3222       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3223       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3224       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3225       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3226     } else {
  3227       warning("java.lang.OutOfMemoryError has not been initialized");
  3228       warning("java.lang.NullPointerException has not been initialized");
  3229       warning("java.lang.ClassCastException has not been initialized");
  3230       warning("java.lang.ArrayStoreException has not been initialized");
  3231       warning("java.lang.ArithmeticException has not been initialized");
  3232       warning("java.lang.StackOverflowError has not been initialized");
  3235     if (EnableInvokeDynamic) {
  3236       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3237       // the compiler.
  3238       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3242   // See        : bugid 4211085.
  3243   // Background : the static initializer of java.lang.Compiler tries to read
  3244   //              property"java.compiler" and read & write property "java.vm.info".
  3245   //              When a security manager is installed through the command line
  3246   //              option "-Djava.security.manager", the above properties are not
  3247   //              readable and the static initializer for java.lang.Compiler fails
  3248   //              resulting in a NoClassDefFoundError.  This can happen in any
  3249   //              user code which calls methods in java.lang.Compiler.
  3250   // Hack :       the hack is to pre-load and initialize this class, so that only
  3251   //              system domains are on the stack when the properties are read.
  3252   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3253   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3254   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3255   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3256   //              Once that is done, we should remove this hack.
  3257   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3259   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3260   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3261   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3262   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3263   // This should also be taken out as soon as 4211383 gets fixed.
  3264   reset_vm_info_property(CHECK_0);
  3266   quicken_jni_functions();
  3268   // Set flag that basic initialization has completed. Used by exceptions and various
  3269   // debug stuff, that does not work until all basic classes have been initialized.
  3270   set_init_completed();
  3272   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3274   // record VM initialization completion time
  3275   Management::record_vm_init_completed();
  3277   // Compute system loader. Note that this has to occur after set_init_completed, since
  3278   // valid exceptions may be thrown in the process.
  3279   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3280   // set_init_completed has just been called, causing exceptions not to be shortcut
  3281   // anymore. We call vm_exit_during_initialization directly instead.
  3282   SystemDictionary::compute_java_system_loader(THREAD);
  3283   if (HAS_PENDING_EXCEPTION) {
  3284     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3287 #ifdef KERNEL
  3288   if (JDK_Version::is_gte_jdk17x_version()) {
  3289     set_jkernel_boot_classloader_hook(THREAD);
  3291 #endif // KERNEL
  3293 #ifndef SERIALGC
  3294   // Support for ConcurrentMarkSweep. This should be cleaned up
  3295   // and better encapsulated. The ugly nested if test would go away
  3296   // once things are properly refactored. XXX YSR
  3297   if (UseConcMarkSweepGC || UseG1GC) {
  3298     if (UseConcMarkSweepGC) {
  3299       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3300     } else {
  3301       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3303     if (HAS_PENDING_EXCEPTION) {
  3304       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3307 #endif // SERIALGC
  3309   // Always call even when there are not JVMTI environments yet, since environments
  3310   // may be attached late and JVMTI must track phases of VM execution
  3311   JvmtiExport::enter_live_phase();
  3313   // Signal Dispatcher needs to be started before VMInit event is posted
  3314   os::signal_init();
  3316   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3317   if (!DisableAttachMechanism) {
  3318     if (StartAttachListener || AttachListener::init_at_startup()) {
  3319       AttachListener::init();
  3323   // Launch -Xrun agents
  3324   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3325   // back-end can launch with -Xdebug -Xrunjdwp.
  3326   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3327     create_vm_init_libraries();
  3330   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3331   JvmtiExport::post_vm_initialized();
  3333   Chunk::start_chunk_pool_cleaner_task();
  3335   // initialize compiler(s)
  3336   CompileBroker::compilation_init();
  3338   Management::initialize(THREAD);
  3339   if (HAS_PENDING_EXCEPTION) {
  3340     // management agent fails to start possibly due to
  3341     // configuration problem and is responsible for printing
  3342     // stack trace if appropriate. Simply exit VM.
  3343     vm_exit(1);
  3346   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3347   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3348   if (MemProfiling)                   MemProfiler::engage();
  3349   StatSampler::engage();
  3350   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3352   BiasedLocking::init();
  3355   // Start up the WatcherThread if there are any periodic tasks
  3356   // NOTE:  All PeriodicTasks should be registered by now. If they
  3357   //   aren't, late joiners might appear to start slowly (we might
  3358   //   take a while to process their first tick).
  3359   if (PeriodicTask::num_tasks() > 0) {
  3360     WatcherThread::start();
  3363   // Give os specific code one last chance to start
  3364   os::init_3();
  3366   create_vm_timer.end();
  3367   return JNI_OK;
  3370 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3371 extern "C" {
  3372   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3374 // Find a command line agent library and return its entry point for
  3375 //         -agentlib:  -agentpath:   -Xrun
  3376 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3377 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3378   OnLoadEntry_t on_load_entry = NULL;
  3379   void *library = agent->os_lib();  // check if we have looked it up before
  3381   if (library == NULL) {
  3382     char buffer[JVM_MAXPATHLEN];
  3383     char ebuf[1024];
  3384     const char *name = agent->name();
  3385     const char *msg = "Could not find agent library ";
  3387     if (agent->is_absolute_path()) {
  3388       library = os::dll_load(name, ebuf, sizeof ebuf);
  3389       if (library == NULL) {
  3390         const char *sub_msg = " in absolute path, with error: ";
  3391         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3392         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3393         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3394         // If we can't find the agent, exit.
  3395         vm_exit_during_initialization(buf, NULL);
  3396         FREE_C_HEAP_ARRAY(char, buf);
  3398     } else {
  3399       // Try to load the agent from the standard dll directory
  3400       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3401       library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3402 #ifdef KERNEL
  3403       // Download instrument dll
  3404       if (library == NULL && strcmp(name, "instrument") == 0) {
  3405         char *props = Arguments::get_kernel_properties();
  3406         char *home  = Arguments::get_java_home();
  3407         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3408                       " sun.jkernel.DownloadManager -download client_jvm";
  3409         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3410         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3411         jio_snprintf(cmd, length, fmt, home, props);
  3412         int status = os::fork_and_exec(cmd);
  3413         FreeHeap(props);
  3414         if (status == -1) {
  3415           warning(cmd);
  3416           vm_exit_during_initialization("fork_and_exec failed: %s",
  3417                                          strerror(errno));
  3419         FREE_C_HEAP_ARRAY(char, cmd);
  3420         // when this comes back the instrument.dll should be where it belongs.
  3421         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3423 #endif // KERNEL
  3424       if (library == NULL) { // Try the local directory
  3425         char ns[1] = {0};
  3426         os::dll_build_name(buffer, sizeof(buffer), ns, name);
  3427         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3428         if (library == NULL) {
  3429           const char *sub_msg = " on the library path, with error: ";
  3430           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3431           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3432           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3433           // If we can't find the agent, exit.
  3434           vm_exit_during_initialization(buf, NULL);
  3435           FREE_C_HEAP_ARRAY(char, buf);
  3439     agent->set_os_lib(library);
  3442   // Find the OnLoad function.
  3443   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3444     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3445     if (on_load_entry != NULL) break;
  3447   return on_load_entry;
  3450 // Find the JVM_OnLoad entry point
  3451 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3452   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3453   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3456 // Find the Agent_OnLoad entry point
  3457 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3458   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3459   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3462 // For backwards compatibility with -Xrun
  3463 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3464 // treated like -agentpath:
  3465 // Must be called before agent libraries are created
  3466 void Threads::convert_vm_init_libraries_to_agents() {
  3467   AgentLibrary* agent;
  3468   AgentLibrary* next;
  3470   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3471     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3472     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3474     // If there is an JVM_OnLoad function it will get called later,
  3475     // otherwise see if there is an Agent_OnLoad
  3476     if (on_load_entry == NULL) {
  3477       on_load_entry = lookup_agent_on_load(agent);
  3478       if (on_load_entry != NULL) {
  3479         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3480         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3481         Arguments::convert_library_to_agent(agent);
  3482       } else {
  3483         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3489 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3490 // Invokes Agent_OnLoad
  3491 // Called very early -- before JavaThreads exist
  3492 void Threads::create_vm_init_agents() {
  3493   extern struct JavaVM_ main_vm;
  3494   AgentLibrary* agent;
  3496   JvmtiExport::enter_onload_phase();
  3497   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3498     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3500     if (on_load_entry != NULL) {
  3501       // Invoke the Agent_OnLoad function
  3502       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3503       if (err != JNI_OK) {
  3504         vm_exit_during_initialization("agent library failed to init", agent->name());
  3506     } else {
  3507       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3510   JvmtiExport::enter_primordial_phase();
  3513 extern "C" {
  3514   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3517 void Threads::shutdown_vm_agents() {
  3518   // Send any Agent_OnUnload notifications
  3519   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3520   extern struct JavaVM_ main_vm;
  3521   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3523     // Find the Agent_OnUnload function.
  3524     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3525       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3526                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3528       // Invoke the Agent_OnUnload function
  3529       if (unload_entry != NULL) {
  3530         JavaThread* thread = JavaThread::current();
  3531         ThreadToNativeFromVM ttn(thread);
  3532         HandleMark hm(thread);
  3533         (*unload_entry)(&main_vm);
  3534         break;
  3540 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3541 // Invokes JVM_OnLoad
  3542 void Threads::create_vm_init_libraries() {
  3543   extern struct JavaVM_ main_vm;
  3544   AgentLibrary* agent;
  3546   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3547     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3549     if (on_load_entry != NULL) {
  3550       // Invoke the JVM_OnLoad function
  3551       JavaThread* thread = JavaThread::current();
  3552       ThreadToNativeFromVM ttn(thread);
  3553       HandleMark hm(thread);
  3554       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3555       if (err != JNI_OK) {
  3556         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3558     } else {
  3559       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3564 // Last thread running calls java.lang.Shutdown.shutdown()
  3565 void JavaThread::invoke_shutdown_hooks() {
  3566   HandleMark hm(this);
  3568   // We could get here with a pending exception, if so clear it now.
  3569   if (this->has_pending_exception()) {
  3570     this->clear_pending_exception();
  3573   EXCEPTION_MARK;
  3574   klassOop k =
  3575     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3576                                       THREAD);
  3577   if (k != NULL) {
  3578     // SystemDictionary::resolve_or_null will return null if there was
  3579     // an exception.  If we cannot load the Shutdown class, just don't
  3580     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3581     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3582     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3583     // was called, the Shutdown class would have already been loaded
  3584     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3585     instanceKlassHandle shutdown_klass (THREAD, k);
  3586     JavaValue result(T_VOID);
  3587     JavaCalls::call_static(&result,
  3588                            shutdown_klass,
  3589                            vmSymbolHandles::shutdown_method_name(),
  3590                            vmSymbolHandles::void_method_signature(),
  3591                            THREAD);
  3593   CLEAR_PENDING_EXCEPTION;
  3596 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3597 // the program falls off the end of main(). Another VM exit path is through
  3598 // vm_exit() when the program calls System.exit() to return a value or when
  3599 // there is a serious error in VM. The two shutdown paths are not exactly
  3600 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3601 // and VM_Exit op at VM level.
  3602 //
  3603 // Shutdown sequence:
  3604 //   + Wait until we are the last non-daemon thread to execute
  3605 //     <-- every thing is still working at this moment -->
  3606 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3607 //        shutdown hooks, run finalizers if finalization-on-exit
  3608 //   + Call before_exit(), prepare for VM exit
  3609 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3610 //        currently the only user of this mechanism is File.deleteOnExit())
  3611 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3612 //        post thread end and vm death events to JVMTI,
  3613 //        stop signal thread
  3614 //   + Call JavaThread::exit(), it will:
  3615 //      > release JNI handle blocks, remove stack guard pages
  3616 //      > remove this thread from Threads list
  3617 //     <-- no more Java code from this thread after this point -->
  3618 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3619 //     the compiler threads at safepoint
  3620 //     <-- do not use anything that could get blocked by Safepoint -->
  3621 //   + Disable tracing at JNI/JVM barriers
  3622 //   + Set _vm_exited flag for threads that are still running native code
  3623 //   + Delete this thread
  3624 //   + Call exit_globals()
  3625 //      > deletes tty
  3626 //      > deletes PerfMemory resources
  3627 //   + Return to caller
  3629 bool Threads::destroy_vm() {
  3630   JavaThread* thread = JavaThread::current();
  3632   // Wait until we are the last non-daemon thread to execute
  3633   { MutexLocker nu(Threads_lock);
  3634     while (Threads::number_of_non_daemon_threads() > 1 )
  3635       // This wait should make safepoint checks, wait without a timeout,
  3636       // and wait as a suspend-equivalent condition.
  3637       //
  3638       // Note: If the FlatProfiler is running and this thread is waiting
  3639       // for another non-daemon thread to finish, then the FlatProfiler
  3640       // is waiting for the external suspend request on this thread to
  3641       // complete. wait_for_ext_suspend_completion() will eventually
  3642       // timeout, but that takes time. Making this wait a suspend-
  3643       // equivalent condition solves that timeout problem.
  3644       //
  3645       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3646                          Mutex::_as_suspend_equivalent_flag);
  3649   // Hang forever on exit if we are reporting an error.
  3650   if (ShowMessageBoxOnError && is_error_reported()) {
  3651     os::infinite_sleep();
  3654   if (JDK_Version::is_jdk12x_version()) {
  3655     // We are the last thread running, so check if finalizers should be run.
  3656     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3657     HandleMark rm(thread);
  3658     Universe::run_finalizers_on_exit();
  3659   } else {
  3660     // run Java level shutdown hooks
  3661     thread->invoke_shutdown_hooks();
  3664   before_exit(thread);
  3666   thread->exit(true);
  3668   // Stop VM thread.
  3670     // 4945125 The vm thread comes to a safepoint during exit.
  3671     // GC vm_operations can get caught at the safepoint, and the
  3672     // heap is unparseable if they are caught. Grab the Heap_lock
  3673     // to prevent this. The GC vm_operations will not be able to
  3674     // queue until after the vm thread is dead.
  3675     MutexLocker ml(Heap_lock);
  3677     VMThread::wait_for_vm_thread_exit();
  3678     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3679     VMThread::destroy();
  3682   // clean up ideal graph printers
  3683 #if defined(COMPILER2) && !defined(PRODUCT)
  3684   IdealGraphPrinter::clean_up();
  3685 #endif
  3687   // Now, all Java threads are gone except daemon threads. Daemon threads
  3688   // running Java code or in VM are stopped by the Safepoint. However,
  3689   // daemon threads executing native code are still running.  But they
  3690   // will be stopped at native=>Java/VM barriers. Note that we can't
  3691   // simply kill or suspend them, as it is inherently deadlock-prone.
  3693 #ifndef PRODUCT
  3694   // disable function tracing at JNI/JVM barriers
  3695   TraceJNICalls = false;
  3696   TraceJVMCalls = false;
  3697   TraceRuntimeCalls = false;
  3698 #endif
  3700   VM_Exit::set_vm_exited();
  3702   notify_vm_shutdown();
  3704   delete thread;
  3706   // exit_globals() will delete tty
  3707   exit_globals();
  3709   return true;
  3713 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3714   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3715   return is_supported_jni_version(version);
  3719 jboolean Threads::is_supported_jni_version(jint version) {
  3720   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3721   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3722   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3723   return JNI_FALSE;
  3727 void Threads::add(JavaThread* p, bool force_daemon) {
  3728   // The threads lock must be owned at this point
  3729   assert_locked_or_safepoint(Threads_lock);
  3731   // See the comment for this method in thread.hpp for its purpose and
  3732   // why it is called here.
  3733   p->initialize_queues();
  3734   p->set_next(_thread_list);
  3735   _thread_list = p;
  3736   _number_of_threads++;
  3737   oop threadObj = p->threadObj();
  3738   bool daemon = true;
  3739   // Bootstrapping problem: threadObj can be null for initial
  3740   // JavaThread (or for threads attached via JNI)
  3741   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3742     _number_of_non_daemon_threads++;
  3743     daemon = false;
  3746   ThreadService::add_thread(p, daemon);
  3748   // Possible GC point.
  3749   Events::log("Thread added: " INTPTR_FORMAT, p);
  3752 void Threads::remove(JavaThread* p) {
  3753   // Extra scope needed for Thread_lock, so we can check
  3754   // that we do not remove thread without safepoint code notice
  3755   { MutexLocker ml(Threads_lock);
  3757     assert(includes(p), "p must be present");
  3759     JavaThread* current = _thread_list;
  3760     JavaThread* prev    = NULL;
  3762     while (current != p) {
  3763       prev    = current;
  3764       current = current->next();
  3767     if (prev) {
  3768       prev->set_next(current->next());
  3769     } else {
  3770       _thread_list = p->next();
  3772     _number_of_threads--;
  3773     oop threadObj = p->threadObj();
  3774     bool daemon = true;
  3775     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3776       _number_of_non_daemon_threads--;
  3777       daemon = false;
  3779       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3780       // on destroy_vm will wake up.
  3781       if (number_of_non_daemon_threads() == 1)
  3782         Threads_lock->notify_all();
  3784     ThreadService::remove_thread(p, daemon);
  3786     // Make sure that safepoint code disregard this thread. This is needed since
  3787     // the thread might mess around with locks after this point. This can cause it
  3788     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3789     // of this thread since it is removed from the queue.
  3790     p->set_terminated_value();
  3791   } // unlock Threads_lock
  3793   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3794   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3797 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3798 bool Threads::includes(JavaThread* p) {
  3799   assert(Threads_lock->is_locked(), "sanity check");
  3800   ALL_JAVA_THREADS(q) {
  3801     if (q == p ) {
  3802       return true;
  3805   return false;
  3808 // Operations on the Threads list for GC.  These are not explicitly locked,
  3809 // but the garbage collector must provide a safe context for them to run.
  3810 // In particular, these things should never be called when the Threads_lock
  3811 // is held by some other thread. (Note: the Safepoint abstraction also
  3812 // uses the Threads_lock to gurantee this property. It also makes sure that
  3813 // all threads gets blocked when exiting or starting).
  3815 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3816   ALL_JAVA_THREADS(p) {
  3817     p->oops_do(f, cf);
  3819   VMThread::vm_thread()->oops_do(f, cf);
  3822 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3823   // Introduce a mechanism allowing parallel threads to claim threads as
  3824   // root groups.  Overhead should be small enough to use all the time,
  3825   // even in sequential code.
  3826   SharedHeap* sh = SharedHeap::heap();
  3827   bool is_par = (sh->n_par_threads() > 0);
  3828   int cp = SharedHeap::heap()->strong_roots_parity();
  3829   ALL_JAVA_THREADS(p) {
  3830     if (p->claim_oops_do(is_par, cp)) {
  3831       p->oops_do(f, cf);
  3834   VMThread* vmt = VMThread::vm_thread();
  3835   if (vmt->claim_oops_do(is_par, cp))
  3836     vmt->oops_do(f, cf);
  3839 #ifndef SERIALGC
  3840 // Used by ParallelScavenge
  3841 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3842   ALL_JAVA_THREADS(p) {
  3843     q->enqueue(new ThreadRootsTask(p));
  3845   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3848 // Used by Parallel Old
  3849 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3850   ALL_JAVA_THREADS(p) {
  3851     q->enqueue(new ThreadRootsMarkingTask(p));
  3853   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3855 #endif // SERIALGC
  3857 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3858   ALL_JAVA_THREADS(p) {
  3859     p->nmethods_do(cf);
  3861   VMThread::vm_thread()->nmethods_do(cf);
  3864 void Threads::gc_epilogue() {
  3865   ALL_JAVA_THREADS(p) {
  3866     p->gc_epilogue();
  3870 void Threads::gc_prologue() {
  3871   ALL_JAVA_THREADS(p) {
  3872     p->gc_prologue();
  3876 void Threads::deoptimized_wrt_marked_nmethods() {
  3877   ALL_JAVA_THREADS(p) {
  3878     p->deoptimized_wrt_marked_nmethods();
  3883 // Get count Java threads that are waiting to enter the specified monitor.
  3884 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3885   address monitor, bool doLock) {
  3886   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3887     "must grab Threads_lock or be at safepoint");
  3888   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3890   int i = 0;
  3892     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3893     ALL_JAVA_THREADS(p) {
  3894       if (p->is_Compiler_thread()) continue;
  3896       address pending = (address)p->current_pending_monitor();
  3897       if (pending == monitor) {             // found a match
  3898         if (i < count) result->append(p);   // save the first count matches
  3899         i++;
  3903   return result;
  3907 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3908   assert(doLock ||
  3909          Threads_lock->owned_by_self() ||
  3910          SafepointSynchronize::is_at_safepoint(),
  3911          "must grab Threads_lock or be at safepoint");
  3913   // NULL owner means not locked so we can skip the search
  3914   if (owner == NULL) return NULL;
  3917     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3918     ALL_JAVA_THREADS(p) {
  3919       // first, see if owner is the address of a Java thread
  3920       if (owner == (address)p) return p;
  3923   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3924   if (UseHeavyMonitors) return NULL;
  3926   //
  3927   // If we didn't find a matching Java thread and we didn't force use of
  3928   // heavyweight monitors, then the owner is the stack address of the
  3929   // Lock Word in the owning Java thread's stack.
  3930   //
  3931   JavaThread* the_owner = NULL;
  3933     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3934     ALL_JAVA_THREADS(q) {
  3935       if (q->is_lock_owned(owner)) {
  3936         the_owner = q;
  3937         break;
  3941   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3942   return the_owner;
  3945 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3946 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3947   char buf[32];
  3948   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3950   st->print_cr("Full thread dump %s (%s %s):",
  3951                 Abstract_VM_Version::vm_name(),
  3952                 Abstract_VM_Version::vm_release(),
  3953                 Abstract_VM_Version::vm_info_string()
  3954                );
  3955   st->cr();
  3957 #ifndef SERIALGC
  3958   // Dump concurrent locks
  3959   ConcurrentLocksDump concurrent_locks;
  3960   if (print_concurrent_locks) {
  3961     concurrent_locks.dump_at_safepoint();
  3963 #endif // SERIALGC
  3965   ALL_JAVA_THREADS(p) {
  3966     ResourceMark rm;
  3967     p->print_on(st);
  3968     if (print_stacks) {
  3969       if (internal_format) {
  3970         p->trace_stack();
  3971       } else {
  3972         p->print_stack_on(st);
  3975     st->cr();
  3976 #ifndef SERIALGC
  3977     if (print_concurrent_locks) {
  3978       concurrent_locks.print_locks_on(p, st);
  3980 #endif // SERIALGC
  3983   VMThread::vm_thread()->print_on(st);
  3984   st->cr();
  3985   Universe::heap()->print_gc_threads_on(st);
  3986   WatcherThread* wt = WatcherThread::watcher_thread();
  3987   if (wt != NULL) wt->print_on(st);
  3988   st->cr();
  3989   CompileBroker::print_compiler_threads_on(st);
  3990   st->flush();
  3993 // Threads::print_on_error() is called by fatal error handler. It's possible
  3994 // that VM is not at safepoint and/or current thread is inside signal handler.
  3995 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3996 // memory (even in resource area), it might deadlock the error handler.
  3997 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3998   bool found_current = false;
  3999   st->print_cr("Java Threads: ( => current thread )");
  4000   ALL_JAVA_THREADS(thread) {
  4001     bool is_current = (current == thread);
  4002     found_current = found_current || is_current;
  4004     st->print("%s", is_current ? "=>" : "  ");
  4006     st->print(PTR_FORMAT, thread);
  4007     st->print(" ");
  4008     thread->print_on_error(st, buf, buflen);
  4009     st->cr();
  4011   st->cr();
  4013   st->print_cr("Other Threads:");
  4014   if (VMThread::vm_thread()) {
  4015     bool is_current = (current == VMThread::vm_thread());
  4016     found_current = found_current || is_current;
  4017     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4019     st->print(PTR_FORMAT, VMThread::vm_thread());
  4020     st->print(" ");
  4021     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4022     st->cr();
  4024   WatcherThread* wt = WatcherThread::watcher_thread();
  4025   if (wt != NULL) {
  4026     bool is_current = (current == wt);
  4027     found_current = found_current || is_current;
  4028     st->print("%s", is_current ? "=>" : "  ");
  4030     st->print(PTR_FORMAT, wt);
  4031     st->print(" ");
  4032     wt->print_on_error(st, buf, buflen);
  4033     st->cr();
  4035   if (!found_current) {
  4036     st->cr();
  4037     st->print("=>" PTR_FORMAT " (exited) ", current);
  4038     current->print_on_error(st, buf, buflen);
  4039     st->cr();
  4043 // Internal SpinLock and Mutex
  4044 // Based on ParkEvent
  4046 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4047 //
  4048 // We employ SpinLocks _only for low-contention, fixed-length
  4049 // short-duration critical sections where we're concerned
  4050 // about native mutex_t or HotSpot Mutex:: latency.
  4051 // The mux construct provides a spin-then-block mutual exclusion
  4052 // mechanism.
  4053 //
  4054 // Testing has shown that contention on the ListLock guarding gFreeList
  4055 // is common.  If we implement ListLock as a simple SpinLock it's common
  4056 // for the JVM to devolve to yielding with little progress.  This is true
  4057 // despite the fact that the critical sections protected by ListLock are
  4058 // extremely short.
  4059 //
  4060 // TODO-FIXME: ListLock should be of type SpinLock.
  4061 // We should make this a 1st-class type, integrated into the lock
  4062 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4063 // should have sufficient padding to avoid false-sharing and excessive
  4064 // cache-coherency traffic.
  4067 typedef volatile int SpinLockT ;
  4069 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4070   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4071      return ;   // normal fast-path return
  4074   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4075   TEVENT (SpinAcquire - ctx) ;
  4076   int ctr = 0 ;
  4077   int Yields = 0 ;
  4078   for (;;) {
  4079      while (*adr != 0) {
  4080         ++ctr ;
  4081         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4082            if (Yields > 5) {
  4083              // Consider using a simple NakedSleep() instead.
  4084              // Then SpinAcquire could be called by non-JVM threads
  4085              Thread::current()->_ParkEvent->park(1) ;
  4086            } else {
  4087              os::NakedYield() ;
  4088              ++Yields ;
  4090         } else {
  4091            SpinPause() ;
  4094      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4098 void Thread::SpinRelease (volatile int * adr) {
  4099   assert (*adr != 0, "invariant") ;
  4100   OrderAccess::fence() ;      // guarantee at least release consistency.
  4101   // Roach-motel semantics.
  4102   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4103   // but prior LDs and STs within the critical section can't be allowed
  4104   // to reorder or float past the ST that releases the lock.
  4105   *adr = 0 ;
  4108 // muxAcquire and muxRelease:
  4109 //
  4110 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4111 //    The LSB of the word is set IFF the lock is held.
  4112 //    The remainder of the word points to the head of a singly-linked list
  4113 //    of threads blocked on the lock.
  4114 //
  4115 // *  The current implementation of muxAcquire-muxRelease uses its own
  4116 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4117 //    minimizing the peak number of extant ParkEvent instances then
  4118 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4119 //    as certain invariants were satisfied.  Specifically, care would need
  4120 //    to be taken with regards to consuming unpark() "permits".
  4121 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4122 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4123 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4124 //    consume an unpark() permit intended for monitorenter, for instance.
  4125 //    One way around this would be to widen the restricted-range semaphore
  4126 //    implemented in park().  Another alternative would be to provide
  4127 //    multiple instances of the PlatformEvent() for each thread.  One
  4128 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4129 //
  4130 // *  Usage:
  4131 //    -- Only as leaf locks
  4132 //    -- for short-term locking only as muxAcquire does not perform
  4133 //       thread state transitions.
  4134 //
  4135 // Alternatives:
  4136 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4137 //    but with parking or spin-then-park instead of pure spinning.
  4138 // *  Use Taura-Oyama-Yonenzawa locks.
  4139 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4140 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4141 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4142 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4143 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4144 //    boundaries by using placement-new.
  4145 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4146 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4147 //    The validity of the backlinks must be ratified before we trust the value.
  4148 //    If the backlinks are invalid the exiting thread must back-track through the
  4149 //    the forward links, which are always trustworthy.
  4150 // *  Add a successor indication.  The LockWord is currently encoded as
  4151 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4152 //    to provide the usual futile-wakeup optimization.
  4153 //    See RTStt for details.
  4154 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4155 //
  4158 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4159 enum MuxBits { LOCKBIT = 1 } ;
  4161 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4162   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4163   if (w == 0) return ;
  4164   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4165      return ;
  4168   TEVENT (muxAcquire - Contention) ;
  4169   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4170   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4171   for (;;) {
  4172      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4174      // Optional spin phase: spin-then-park strategy
  4175      while (--its >= 0) {
  4176        w = *Lock ;
  4177        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4178           return ;
  4182      Self->reset() ;
  4183      Self->OnList = intptr_t(Lock) ;
  4184      // The following fence() isn't _strictly necessary as the subsequent
  4185      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4186      OrderAccess::fence();
  4187      for (;;) {
  4188         w = *Lock ;
  4189         if ((w & LOCKBIT) == 0) {
  4190             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4191                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4192                 return ;
  4194             continue ;      // Interference -- *Lock changed -- Just retry
  4196         assert (w & LOCKBIT, "invariant") ;
  4197         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4198         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4201      while (Self->OnList != 0) {
  4202         Self->park() ;
  4207 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4208   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4209   if (w == 0) return ;
  4210   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4211     return ;
  4214   TEVENT (muxAcquire - Contention) ;
  4215   ParkEvent * ReleaseAfter = NULL ;
  4216   if (ev == NULL) {
  4217     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4219   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4220   for (;;) {
  4221     guarantee (ev->OnList == 0, "invariant") ;
  4222     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4224     // Optional spin phase: spin-then-park strategy
  4225     while (--its >= 0) {
  4226       w = *Lock ;
  4227       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4228         if (ReleaseAfter != NULL) {
  4229           ParkEvent::Release (ReleaseAfter) ;
  4231         return ;
  4235     ev->reset() ;
  4236     ev->OnList = intptr_t(Lock) ;
  4237     // The following fence() isn't _strictly necessary as the subsequent
  4238     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4239     OrderAccess::fence();
  4240     for (;;) {
  4241       w = *Lock ;
  4242       if ((w & LOCKBIT) == 0) {
  4243         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4244           ev->OnList = 0 ;
  4245           // We call ::Release while holding the outer lock, thus
  4246           // artificially lengthening the critical section.
  4247           // Consider deferring the ::Release() until the subsequent unlock(),
  4248           // after we've dropped the outer lock.
  4249           if (ReleaseAfter != NULL) {
  4250             ParkEvent::Release (ReleaseAfter) ;
  4252           return ;
  4254         continue ;      // Interference -- *Lock changed -- Just retry
  4256       assert (w & LOCKBIT, "invariant") ;
  4257       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4258       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4261     while (ev->OnList != 0) {
  4262       ev->park() ;
  4267 // Release() must extract a successor from the list and then wake that thread.
  4268 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4269 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4270 // Release() would :
  4271 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4272 // (B) Extract a successor from the private list "in-hand"
  4273 // (C) attempt to CAS() the residual back into *Lock over null.
  4274 //     If there were any newly arrived threads and the CAS() would fail.
  4275 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4276 //     with the RATs and repeat as needed.  Alternately, Release() might
  4277 //     detach and extract a successor, but then pass the residual list to the wakee.
  4278 //     The wakee would be responsible for reattaching and remerging before it
  4279 //     competed for the lock.
  4280 //
  4281 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4282 // multiple concurrent pushers, but only one popper or detacher.
  4283 // This implementation pops from the head of the list.  This is unfair,
  4284 // but tends to provide excellent throughput as hot threads remain hot.
  4285 // (We wake recently run threads first).
  4287 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4288   for (;;) {
  4289     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4290     assert (w & LOCKBIT, "invariant") ;
  4291     if (w == LOCKBIT) return ;
  4292     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4293     assert (List != NULL, "invariant") ;
  4294     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4295     ParkEvent * nxt = List->ListNext ;
  4297     // The following CAS() releases the lock and pops the head element.
  4298     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4299       continue ;
  4301     List->OnList = 0 ;
  4302     OrderAccess::fence() ;
  4303     List->unpark () ;
  4304     return ;
  4309 void Threads::verify() {
  4310   ALL_JAVA_THREADS(p) {
  4311     p->verify();
  4313   VMThread* thread = VMThread::vm_thread();
  4314   if (thread != NULL) thread->verify();

mercurial