src/share/vm/memory/referenceProcessor.hpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2337
8df09fb45352
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "oops/instanceRefKlass.hpp"
    31 // ReferenceProcessor class encapsulates the per-"collector" processing
    32 // of java.lang.Reference objects for GC. The interface is useful for supporting
    33 // a generational abstraction, in particular when there are multiple
    34 // generations that are being independently collected -- possibly
    35 // concurrently and/or incrementally.  Note, however, that the
    36 // ReferenceProcessor class abstracts away from a generational setting
    37 // by using only a heap interval (called "span" below), thus allowing
    38 // its use in a straightforward manner in a general, non-generational
    39 // setting.
    40 //
    41 // The basic idea is that each ReferenceProcessor object concerns
    42 // itself with ("weak") reference processing in a specific "span"
    43 // of the heap of interest to a specific collector. Currently,
    44 // the span is a convex interval of the heap, but, efficiency
    45 // apart, there seems to be no reason it couldn't be extended
    46 // (with appropriate modifications) to any "non-convex interval".
    48 // forward references
    49 class ReferencePolicy;
    50 class AbstractRefProcTaskExecutor;
    51 class DiscoveredList;
    53 class ReferenceProcessor : public CHeapObj {
    54  protected:
    55   // End of list marker
    56   static oop  _sentinelRef;
    57   MemRegion   _span; // (right-open) interval of heap
    58                      // subject to wkref discovery
    59   bool        _discovering_refs;      // true when discovery enabled
    60   bool        _discovery_is_atomic;   // if discovery is atomic wrt
    61                                       // other collectors in configuration
    62   bool        _discovery_is_mt;       // true if reference discovery is MT.
    63   // If true, setting "next" field of a discovered refs list requires
    64   // write barrier(s).  (Must be true if used in a collector in which
    65   // elements of a discovered list may be moved during discovery: for
    66   // example, a collector like Garbage-First that moves objects during a
    67   // long-term concurrent marking phase that does weak reference
    68   // discovery.)
    69   bool        _discovered_list_needs_barrier;
    70   BarrierSet* _bs;                    // Cached copy of BarrierSet.
    71   bool        _enqueuing_is_done;     // true if all weak references enqueued
    72   bool        _processing_is_mt;      // true during phases when
    73                                       // reference processing is MT.
    74   int         _next_id;               // round-robin counter in
    75                                       // support of work distribution
    77   // For collectors that do not keep GC marking information
    78   // in the object header, this field holds a closure that
    79   // helps the reference processor determine the reachability
    80   // of an oop (the field is currently initialized to NULL for
    81   // all collectors but the CMS collector).
    82   BoolObjectClosure* _is_alive_non_header;
    84   // Soft ref clearing policies
    85   // . the default policy
    86   static ReferencePolicy*   _default_soft_ref_policy;
    87   // . the "clear all" policy
    88   static ReferencePolicy*   _always_clear_soft_ref_policy;
    89   // . the current policy below is either one of the above
    90   ReferencePolicy*          _current_soft_ref_policy;
    92   // The discovered ref lists themselves
    94   // The active MT'ness degree of the queues below
    95   int             _num_q;
    96   // The maximum MT'ness degree of the queues below
    97   int             _max_num_q;
    98   // Arrays of lists of oops, one per thread
    99   DiscoveredList* _discoveredSoftRefs;
   100   DiscoveredList* _discoveredWeakRefs;
   101   DiscoveredList* _discoveredFinalRefs;
   102   DiscoveredList* _discoveredPhantomRefs;
   104  public:
   105   int num_q()                            { return _num_q; }
   106   void set_mt_degree(int v)              { _num_q = v; }
   107   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
   108   static oop  sentinel_ref()             { return _sentinelRef; }
   109   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
   110   ReferencePolicy* setup_policy(bool always_clear) {
   111     _current_soft_ref_policy = always_clear ?
   112       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   113     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   114     return _current_soft_ref_policy;
   115   }
   117  public:
   118   // Process references with a certain reachability level.
   119   void process_discovered_reflist(DiscoveredList               refs_lists[],
   120                                   ReferencePolicy*             policy,
   121                                   bool                         clear_referent,
   122                                   BoolObjectClosure*           is_alive,
   123                                   OopClosure*                  keep_alive,
   124                                   VoidClosure*                 complete_gc,
   125                                   AbstractRefProcTaskExecutor* task_executor);
   127   void process_phaseJNI(BoolObjectClosure* is_alive,
   128                         OopClosure*        keep_alive,
   129                         VoidClosure*       complete_gc);
   131   // Work methods used by the method process_discovered_reflist
   132   // Phase1: keep alive all those referents that are otherwise
   133   // dead but which must be kept alive by policy (and their closure).
   134   void process_phase1(DiscoveredList&     refs_list,
   135                       ReferencePolicy*    policy,
   136                       BoolObjectClosure*  is_alive,
   137                       OopClosure*         keep_alive,
   138                       VoidClosure*        complete_gc);
   139   // Phase2: remove all those references whose referents are
   140   // reachable.
   141   inline void process_phase2(DiscoveredList&    refs_list,
   142                              BoolObjectClosure* is_alive,
   143                              OopClosure*        keep_alive,
   144                              VoidClosure*       complete_gc) {
   145     if (discovery_is_atomic()) {
   146       // complete_gc is ignored in this case for this phase
   147       pp2_work(refs_list, is_alive, keep_alive);
   148     } else {
   149       assert(complete_gc != NULL, "Error");
   150       pp2_work_concurrent_discovery(refs_list, is_alive,
   151                                     keep_alive, complete_gc);
   152     }
   153   }
   154   // Work methods in support of process_phase2
   155   void pp2_work(DiscoveredList&    refs_list,
   156                 BoolObjectClosure* is_alive,
   157                 OopClosure*        keep_alive);
   158   void pp2_work_concurrent_discovery(
   159                 DiscoveredList&    refs_list,
   160                 BoolObjectClosure* is_alive,
   161                 OopClosure*        keep_alive,
   162                 VoidClosure*       complete_gc);
   163   // Phase3: process the referents by either clearing them
   164   // or keeping them alive (and their closure)
   165   void process_phase3(DiscoveredList&    refs_list,
   166                       bool               clear_referent,
   167                       BoolObjectClosure* is_alive,
   168                       OopClosure*        keep_alive,
   169                       VoidClosure*       complete_gc);
   171   // Enqueue references with a certain reachability level
   172   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   174   // "Preclean" all the discovered reference lists
   175   // by removing references with strongly reachable referents.
   176   // The first argument is a predicate on an oop that indicates
   177   // its (strong) reachability and the second is a closure that
   178   // may be used to incrementalize or abort the precleaning process.
   179   // The caller is responsible for taking care of potential
   180   // interference with concurrent operations on these lists
   181   // (or predicates involved) by other threads. Currently
   182   // only used by the CMS collector.  should_unload_classes is
   183   // used to aid assertion checking when classes are collected.
   184   void preclean_discovered_references(BoolObjectClosure* is_alive,
   185                                       OopClosure*        keep_alive,
   186                                       VoidClosure*       complete_gc,
   187                                       YieldClosure*      yield,
   188                                       bool               should_unload_classes);
   190   // Delete entries in the discovered lists that have
   191   // either a null referent or are not active. Such
   192   // Reference objects can result from the clearing
   193   // or enqueueing of Reference objects concurrent
   194   // with their discovery by a (concurrent) collector.
   195   // For a definition of "active" see java.lang.ref.Reference;
   196   // Refs are born active, become inactive when enqueued,
   197   // and never become active again. The state of being
   198   // active is encoded as follows: A Ref is active
   199   // if and only if its "next" field is NULL.
   200   void clean_up_discovered_references();
   201   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   203   // Returns the name of the discovered reference list
   204   // occupying the i / _num_q slot.
   205   const char* list_name(int i);
   207   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   209  protected:
   210   // "Preclean" the given discovered reference list
   211   // by removing references with strongly reachable referents.
   212   // Currently used in support of CMS only.
   213   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   214                                    BoolObjectClosure* is_alive,
   215                                    OopClosure*        keep_alive,
   216                                    VoidClosure*       complete_gc,
   217                                    YieldClosure*      yield);
   219   int next_id() {
   220     int id = _next_id;
   221     if (++_next_id == _num_q) {
   222       _next_id = 0;
   223     }
   224     return id;
   225   }
   226   DiscoveredList* get_discovered_list(ReferenceType rt);
   227   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   228                                         HeapWord* discovered_addr);
   229   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   231   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   233   // Calculate the number of jni handles.
   234   unsigned int count_jni_refs();
   236   // Balances reference queues.
   237   void balance_queues(DiscoveredList ref_lists[]);
   239   // Update (advance) the soft ref master clock field.
   240   void update_soft_ref_master_clock();
   242  public:
   243   // constructor
   244   ReferenceProcessor():
   245     _span((HeapWord*)NULL, (HeapWord*)NULL),
   246     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   247     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   248     _discovering_refs(false),
   249     _discovery_is_atomic(true),
   250     _enqueuing_is_done(false),
   251     _discovery_is_mt(false),
   252     _discovered_list_needs_barrier(false),
   253     _bs(NULL),
   254     _is_alive_non_header(NULL),
   255     _num_q(0),
   256     _max_num_q(0),
   257     _processing_is_mt(false),
   258     _next_id(0)
   259   {}
   261   ReferenceProcessor(MemRegion span, bool atomic_discovery,
   262                      bool mt_discovery,
   263                      int mt_degree = 1,
   264                      bool mt_processing = false,
   265                      bool discovered_list_needs_barrier = false);
   267   // Allocates and initializes a reference processor.
   268   static ReferenceProcessor* create_ref_processor(
   269     MemRegion          span,
   270     bool               atomic_discovery,
   271     bool               mt_discovery,
   272     BoolObjectClosure* is_alive_non_header = NULL,
   273     int                parallel_gc_threads = 1,
   274     bool               mt_processing = false,
   275     bool               discovered_list_needs_barrier = false);
   277   // RefDiscoveryPolicy values
   278   enum DiscoveryPolicy {
   279     ReferenceBasedDiscovery = 0,
   280     ReferentBasedDiscovery  = 1,
   281     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   282     DiscoveryPolicyMax      = ReferentBasedDiscovery
   283   };
   285   static void init_statics();
   287  public:
   288   // get and set "is_alive_non_header" field
   289   BoolObjectClosure* is_alive_non_header() {
   290     return _is_alive_non_header;
   291   }
   292   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   293     _is_alive_non_header = is_alive_non_header;
   294   }
   296   // get and set span
   297   MemRegion span()                   { return _span; }
   298   void      set_span(MemRegion span) { _span = span; }
   300   // start and stop weak ref discovery
   301   void enable_discovery()   { _discovering_refs = true;  }
   302   void disable_discovery()  { _discovering_refs = false; }
   303   bool discovery_enabled()  { return _discovering_refs;  }
   305   // whether discovery is atomic wrt other collectors
   306   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   307   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   309   // whether discovery is done by multiple threads same-old-timeously
   310   bool discovery_is_mt() const { return _discovery_is_mt; }
   311   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   313   // Whether we are in a phase when _processing_ is MT.
   314   bool processing_is_mt() const { return _processing_is_mt; }
   315   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   317   // whether all enqueuing of weak references is complete
   318   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   319   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   321   // iterate over oops
   322   void weak_oops_do(OopClosure* f);       // weak roots
   323   static void oops_do(OopClosure* f);     // strong root(s)
   325   // Balance each of the discovered lists.
   326   void balance_all_queues();
   328   // Discover a Reference object, using appropriate discovery criteria
   329   bool discover_reference(oop obj, ReferenceType rt);
   331   // Process references found during GC (called by the garbage collector)
   332   void process_discovered_references(BoolObjectClosure*           is_alive,
   333                                      OopClosure*                  keep_alive,
   334                                      VoidClosure*                 complete_gc,
   335                                      AbstractRefProcTaskExecutor* task_executor);
   337  public:
   338   // Enqueue references at end of GC (called by the garbage collector)
   339   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   341   // If a discovery is in process that is being superceded, abandon it: all
   342   // the discovered lists will be empty, and all the objects on them will
   343   // have NULL discovered fields.  Must be called only at a safepoint.
   344   void abandon_partial_discovery();
   346   // debugging
   347   void verify_no_references_recorded() PRODUCT_RETURN;
   348   static void verify();
   350   // clear the discovered lists (unlinking each entry).
   351   void clear_discovered_references() PRODUCT_RETURN;
   352 };
   354 // A utility class to disable reference discovery in
   355 // the scope which contains it, for given ReferenceProcessor.
   356 class NoRefDiscovery: StackObj {
   357  private:
   358   ReferenceProcessor* _rp;
   359   bool _was_discovering_refs;
   360  public:
   361   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   362     _was_discovering_refs = _rp->discovery_enabled();
   363     if (_was_discovering_refs) {
   364       _rp->disable_discovery();
   365     }
   366   }
   368   ~NoRefDiscovery() {
   369     if (_was_discovering_refs) {
   370       _rp->enable_discovery();
   371     }
   372   }
   373 };
   376 // A utility class to temporarily mutate the span of the
   377 // given ReferenceProcessor in the scope that contains it.
   378 class ReferenceProcessorSpanMutator: StackObj {
   379  private:
   380   ReferenceProcessor* _rp;
   381   MemRegion           _saved_span;
   383  public:
   384   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   385                                 MemRegion span):
   386     _rp(rp) {
   387     _saved_span = _rp->span();
   388     _rp->set_span(span);
   389   }
   391   ~ReferenceProcessorSpanMutator() {
   392     _rp->set_span(_saved_span);
   393   }
   394 };
   396 // A utility class to temporarily change the MT'ness of
   397 // reference discovery for the given ReferenceProcessor
   398 // in the scope that contains it.
   399 class ReferenceProcessorMTMutator: StackObj {
   400  private:
   401   ReferenceProcessor* _rp;
   402   bool                _saved_mt;
   404  public:
   405   ReferenceProcessorMTMutator(ReferenceProcessor* rp,
   406                               bool mt):
   407     _rp(rp) {
   408     _saved_mt = _rp->discovery_is_mt();
   409     _rp->set_mt_discovery(mt);
   410   }
   412   ~ReferenceProcessorMTMutator() {
   413     _rp->set_mt_discovery(_saved_mt);
   414   }
   415 };
   418 // A utility class to temporarily change the disposition
   419 // of the "is_alive_non_header" closure field of the
   420 // given ReferenceProcessor in the scope that contains it.
   421 class ReferenceProcessorIsAliveMutator: StackObj {
   422  private:
   423   ReferenceProcessor* _rp;
   424   BoolObjectClosure*  _saved_cl;
   426  public:
   427   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   428                                    BoolObjectClosure*  cl):
   429     _rp(rp) {
   430     _saved_cl = _rp->is_alive_non_header();
   431     _rp->set_is_alive_non_header(cl);
   432   }
   434   ~ReferenceProcessorIsAliveMutator() {
   435     _rp->set_is_alive_non_header(_saved_cl);
   436   }
   437 };
   439 // A utility class to temporarily change the disposition
   440 // of the "discovery_is_atomic" field of the
   441 // given ReferenceProcessor in the scope that contains it.
   442 class ReferenceProcessorAtomicMutator: StackObj {
   443  private:
   444   ReferenceProcessor* _rp;
   445   bool                _saved_atomic_discovery;
   447  public:
   448   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   449                                   bool atomic):
   450     _rp(rp) {
   451     _saved_atomic_discovery = _rp->discovery_is_atomic();
   452     _rp->set_atomic_discovery(atomic);
   453   }
   455   ~ReferenceProcessorAtomicMutator() {
   456     _rp->set_atomic_discovery(_saved_atomic_discovery);
   457   }
   458 };
   461 // A utility class to temporarily change the MT processing
   462 // disposition of the given ReferenceProcessor instance
   463 // in the scope that contains it.
   464 class ReferenceProcessorMTProcMutator: StackObj {
   465  private:
   466   ReferenceProcessor* _rp;
   467   bool  _saved_mt;
   469  public:
   470   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   471                                   bool mt):
   472     _rp(rp) {
   473     _saved_mt = _rp->processing_is_mt();
   474     _rp->set_mt_processing(mt);
   475   }
   477   ~ReferenceProcessorMTProcMutator() {
   478     _rp->set_mt_processing(_saved_mt);
   479   }
   480 };
   483 // This class is an interface used to implement task execution for the
   484 // reference processing.
   485 class AbstractRefProcTaskExecutor {
   486 public:
   488   // Abstract tasks to execute.
   489   class ProcessTask;
   490   class EnqueueTask;
   492   // Executes a task using worker threads.
   493   virtual void execute(ProcessTask& task) = 0;
   494   virtual void execute(EnqueueTask& task) = 0;
   496   // Switch to single threaded mode.
   497   virtual void set_single_threaded_mode() { };
   498 };
   500 // Abstract reference processing task to execute.
   501 class AbstractRefProcTaskExecutor::ProcessTask {
   502 protected:
   503   ProcessTask(ReferenceProcessor& ref_processor,
   504               DiscoveredList      refs_lists[],
   505               bool                marks_oops_alive)
   506     : _ref_processor(ref_processor),
   507       _refs_lists(refs_lists),
   508       _marks_oops_alive(marks_oops_alive)
   509   { }
   511 public:
   512   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   513                     OopClosure& keep_alive,
   514                     VoidClosure& complete_gc) = 0;
   516   // Returns true if a task marks some oops as alive.
   517   bool marks_oops_alive() const
   518   { return _marks_oops_alive; }
   520 protected:
   521   ReferenceProcessor& _ref_processor;
   522   DiscoveredList*     _refs_lists;
   523   const bool          _marks_oops_alive;
   524 };
   526 // Abstract reference processing task to execute.
   527 class AbstractRefProcTaskExecutor::EnqueueTask {
   528 protected:
   529   EnqueueTask(ReferenceProcessor& ref_processor,
   530               DiscoveredList      refs_lists[],
   531               HeapWord*           pending_list_addr,
   532               oop                 sentinel_ref,
   533               int                 n_queues)
   534     : _ref_processor(ref_processor),
   535       _refs_lists(refs_lists),
   536       _pending_list_addr(pending_list_addr),
   537       _sentinel_ref(sentinel_ref),
   538       _n_queues(n_queues)
   539   { }
   541 public:
   542   virtual void work(unsigned int work_id) = 0;
   544 protected:
   545   ReferenceProcessor& _ref_processor;
   546   DiscoveredList*     _refs_lists;
   547   HeapWord*           _pending_list_addr;
   548   oop                 _sentinel_ref;
   549   int                 _n_queues;
   550 };
   552 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial