src/share/vm/memory/referenceProcessor.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2316
fd1d227ef1b9
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/referencePolicy.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/jniHandles.hpp"
    36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    38 oop              ReferenceProcessor::_sentinelRef = NULL;
    39 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
    41 // List of discovered references.
    42 class DiscoveredList {
    43 public:
    44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    45   oop head() const     {
    46      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
    47                                 _oop_head;
    48   }
    49   HeapWord* adr_head() {
    50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    51                                (HeapWord*)&_oop_head;
    52   }
    53   void   set_head(oop o) {
    54     if (UseCompressedOops) {
    55       // Must compress the head ptr.
    56       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
    57     } else {
    58       _oop_head = o;
    59     }
    60   }
    61   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
    62   size_t length()               { return _len; }
    63   void   set_length(size_t len) { _len = len;  }
    64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    65   void   dec_length(size_t dec) { _len -= dec; }
    66 private:
    67   // Set value depending on UseCompressedOops. This could be a template class
    68   // but then we have to fix all the instantiations and declarations that use this class.
    69   oop       _oop_head;
    70   narrowOop _compressed_head;
    71   size_t _len;
    72 };
    74 void referenceProcessor_init() {
    75   ReferenceProcessor::init_statics();
    76 }
    78 void ReferenceProcessor::init_statics() {
    79   assert(_sentinelRef == NULL, "should be initialized precisely once");
    80   EXCEPTION_MARK;
    81   _sentinelRef = instanceKlass::cast(
    82                     SystemDictionary::Reference_klass())->
    83                       allocate_permanent_instance(THREAD);
    85   // Initialize the master soft ref clock.
    86   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
    88   if (HAS_PENDING_EXCEPTION) {
    89       Handle ex(THREAD, PENDING_EXCEPTION);
    90       vm_exit_during_initialization(ex);
    91   }
    92   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
    93          "Just constructed it!");
    94   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    95   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    96                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    97   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    98     vm_exit_during_initialization("Could not allocate reference policy object");
    99   }
   100   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
   101             RefDiscoveryPolicy == ReferentBasedDiscovery,
   102             "Unrecongnized RefDiscoveryPolicy");
   103 }
   105 ReferenceProcessor*
   106 ReferenceProcessor::create_ref_processor(MemRegion          span,
   107                                          bool               atomic_discovery,
   108                                          bool               mt_discovery,
   109                                          BoolObjectClosure* is_alive_non_header,
   110                                          int                parallel_gc_threads,
   111                                          bool               mt_processing,
   112                                          bool               dl_needs_barrier) {
   113   int mt_degree = 1;
   114   if (parallel_gc_threads > 1) {
   115     mt_degree = parallel_gc_threads;
   116   }
   117   ReferenceProcessor* rp =
   118     new ReferenceProcessor(span, atomic_discovery,
   119                            mt_discovery, mt_degree,
   120                            mt_processing && (parallel_gc_threads > 0),
   121                            dl_needs_barrier);
   122   if (rp == NULL) {
   123     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   124   }
   125   rp->set_is_alive_non_header(is_alive_non_header);
   126   rp->setup_policy(false /* default soft ref policy */);
   127   return rp;
   128 }
   130 ReferenceProcessor::ReferenceProcessor(MemRegion span,
   131                                        bool      atomic_discovery,
   132                                        bool      mt_discovery,
   133                                        int       mt_degree,
   134                                        bool      mt_processing,
   135                                        bool      discovered_list_needs_barrier)  :
   136   _discovering_refs(false),
   137   _enqueuing_is_done(false),
   138   _is_alive_non_header(NULL),
   139   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   140   _bs(NULL),
   141   _processing_is_mt(mt_processing),
   142   _next_id(0)
   143 {
   144   _span = span;
   145   _discovery_is_atomic = atomic_discovery;
   146   _discovery_is_mt     = mt_discovery;
   147   _num_q               = mt_degree;
   148   _max_num_q           = mt_degree;
   149   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * subclasses_of_ref);
   150   if (_discoveredSoftRefs == NULL) {
   151     vm_exit_during_initialization("Could not allocated RefProc Array");
   152   }
   153   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   154   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   155   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   156   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
   157   // Initialized all entries to _sentinelRef
   158   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   159         _discoveredSoftRefs[i].set_head(sentinel_ref());
   160     _discoveredSoftRefs[i].set_length(0);
   161   }
   162   // If we do barreirs, cache a copy of the barrier set.
   163   if (discovered_list_needs_barrier) {
   164     _bs = Universe::heap()->barrier_set();
   165   }
   166 }
   168 #ifndef PRODUCT
   169 void ReferenceProcessor::verify_no_references_recorded() {
   170   guarantee(!_discovering_refs, "Discovering refs?");
   171   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   172     guarantee(_discoveredSoftRefs[i].empty(),
   173               "Found non-empty discovered list");
   174   }
   175 }
   176 #endif
   178 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   179   // Should this instead be
   180   // for (int i = 0; i < subclasses_of_ref; i++_ {
   181   //   for (int j = 0; j < _num_q; j++) {
   182   //     int index = i * _max_num_q + j;
   183   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   184     if (UseCompressedOops) {
   185       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
   186     } else {
   187       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
   188     }
   189   }
   190 }
   192 void ReferenceProcessor::oops_do(OopClosure* f) {
   193   f->do_oop(adr_sentinel_ref());
   194 }
   196 void ReferenceProcessor::update_soft_ref_master_clock() {
   197   // Update (advance) the soft ref master clock field. This must be done
   198   // after processing the soft ref list.
   199   jlong now = os::javaTimeMillis();
   200   jlong clock = java_lang_ref_SoftReference::clock();
   201   NOT_PRODUCT(
   202   if (now < clock) {
   203     warning("time warp: %d to %d", clock, now);
   204   }
   205   )
   206   // In product mode, protect ourselves from system time being adjusted
   207   // externally and going backward; see note in the implementation of
   208   // GenCollectedHeap::time_since_last_gc() for the right way to fix
   209   // this uniformly throughout the VM; see bug-id 4741166. XXX
   210   if (now > clock) {
   211     java_lang_ref_SoftReference::set_clock(now);
   212   }
   213   // Else leave clock stalled at its old value until time progresses
   214   // past clock value.
   215 }
   217 void ReferenceProcessor::process_discovered_references(
   218   BoolObjectClosure*           is_alive,
   219   OopClosure*                  keep_alive,
   220   VoidClosure*                 complete_gc,
   221   AbstractRefProcTaskExecutor* task_executor) {
   222   NOT_PRODUCT(verify_ok_to_handle_reflists());
   224   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   225   // Stop treating discovered references specially.
   226   disable_discovery();
   228   bool trace_time = PrintGCDetails && PrintReferenceGC;
   229   // Soft references
   230   {
   231     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   232     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   233                                is_alive, keep_alive, complete_gc, task_executor);
   234   }
   236   update_soft_ref_master_clock();
   238   // Weak references
   239   {
   240     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   241     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   242                                is_alive, keep_alive, complete_gc, task_executor);
   243   }
   245   // Final references
   246   {
   247     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   248     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   249                                is_alive, keep_alive, complete_gc, task_executor);
   250   }
   252   // Phantom references
   253   {
   254     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   255     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   256                                is_alive, keep_alive, complete_gc, task_executor);
   257   }
   259   // Weak global JNI references. It would make more sense (semantically) to
   260   // traverse these simultaneously with the regular weak references above, but
   261   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   262   // thus use JNI weak references to circumvent the phantom references and
   263   // resurrect a "post-mortem" object.
   264   {
   265     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   266     if (task_executor != NULL) {
   267       task_executor->set_single_threaded_mode();
   268     }
   269     process_phaseJNI(is_alive, keep_alive, complete_gc);
   270   }
   271 }
   273 #ifndef PRODUCT
   274 // Calculate the number of jni handles.
   275 uint ReferenceProcessor::count_jni_refs() {
   276   class AlwaysAliveClosure: public BoolObjectClosure {
   277   public:
   278     virtual bool do_object_b(oop obj) { return true; }
   279     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   280   };
   282   class CountHandleClosure: public OopClosure {
   283   private:
   284     int _count;
   285   public:
   286     CountHandleClosure(): _count(0) {}
   287     void do_oop(oop* unused)       { _count++; }
   288     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   289     int count() { return _count; }
   290   };
   291   CountHandleClosure global_handle_count;
   292   AlwaysAliveClosure always_alive;
   293   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   294   return global_handle_count.count();
   295 }
   296 #endif
   298 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   299                                           OopClosure*        keep_alive,
   300                                           VoidClosure*       complete_gc) {
   301 #ifndef PRODUCT
   302   if (PrintGCDetails && PrintReferenceGC) {
   303     unsigned int count = count_jni_refs();
   304     gclog_or_tty->print(", %u refs", count);
   305   }
   306 #endif
   307   JNIHandles::weak_oops_do(is_alive, keep_alive);
   308   // Finally remember to keep sentinel around
   309   keep_alive->do_oop(adr_sentinel_ref());
   310   complete_gc->do_void();
   311 }
   314 template <class T>
   315 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   316                                    AbstractRefProcTaskExecutor* task_executor) {
   318   // Remember old value of pending references list
   319   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   320   T old_pending_list_value = *pending_list_addr;
   322   // Enqueue references that are not made active again, and
   323   // clear the decks for the next collection (cycle).
   324   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   325   // Do the oop-check on pending_list_addr missed in
   326   // enqueue_discovered_reflist. We should probably
   327   // do a raw oop_check so that future such idempotent
   328   // oop_stores relying on the oop-check side-effect
   329   // may be elided automatically and safely without
   330   // affecting correctness.
   331   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   333   // Stop treating discovered references specially.
   334   ref->disable_discovery();
   336   // Return true if new pending references were added
   337   return old_pending_list_value != *pending_list_addr;
   338 }
   340 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   341   NOT_PRODUCT(verify_ok_to_handle_reflists());
   342   if (UseCompressedOops) {
   343     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   344   } else {
   345     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   346   }
   347 }
   349 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   350                                                     HeapWord* pending_list_addr) {
   351   // Given a list of refs linked through the "discovered" field
   352   // (java.lang.ref.Reference.discovered) chain them through the
   353   // "next" field (java.lang.ref.Reference.next) and prepend
   354   // to the pending list.
   355   if (TraceReferenceGC && PrintGCDetails) {
   356     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   357                            INTPTR_FORMAT, (address)refs_list.head());
   358   }
   359   oop obj = refs_list.head();
   360   // Walk down the list, copying the discovered field into
   361   // the next field and clearing it (except for the last
   362   // non-sentinel object which is treated specially to avoid
   363   // confusion with an active reference).
   364   while (obj != sentinel_ref()) {
   365     assert(obj->is_instanceRef(), "should be reference object");
   366     oop next = java_lang_ref_Reference::discovered(obj);
   367     if (TraceReferenceGC && PrintGCDetails) {
   368       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
   369                              obj, next);
   370     }
   371     assert(java_lang_ref_Reference::next(obj) == NULL,
   372            "The reference should not be enqueued");
   373     if (next == sentinel_ref()) {  // obj is last
   374       // Swap refs_list into pendling_list_addr and
   375       // set obj's next to what we read from pending_list_addr.
   376       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   377       // Need oop_check on pending_list_addr above;
   378       // see special oop-check code at the end of
   379       // enqueue_discovered_reflists() further below.
   380       if (old == NULL) {
   381         // obj should be made to point to itself, since
   382         // pending list was empty.
   383         java_lang_ref_Reference::set_next(obj, obj);
   384       } else {
   385         java_lang_ref_Reference::set_next(obj, old);
   386       }
   387     } else {
   388       java_lang_ref_Reference::set_next(obj, next);
   389     }
   390     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   391     obj = next;
   392   }
   393 }
   395 // Parallel enqueue task
   396 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   397 public:
   398   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   399                      DiscoveredList      discovered_refs[],
   400                      HeapWord*           pending_list_addr,
   401                      oop                 sentinel_ref,
   402                      int                 n_queues)
   403     : EnqueueTask(ref_processor, discovered_refs,
   404                   pending_list_addr, sentinel_ref, n_queues)
   405   { }
   407   virtual void work(unsigned int work_id) {
   408     assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
   409     // Simplest first cut: static partitioning.
   410     int index = work_id;
   411     // The increment on "index" must correspond to the maximum number of queues
   412     // (n_queues) with which that ReferenceProcessor was created.  That
   413     // is because of the "clever" way the discovered references lists were
   414     // allocated and are indexed into.  That number is ParallelGCThreads
   415     // currently.  Assert that.
   416     assert(_n_queues == (int) ParallelGCThreads, "Different number not expected");
   417     for (int j = 0;
   418          j < subclasses_of_ref;
   419          j++, index += _n_queues) {
   420       _ref_processor.enqueue_discovered_reflist(
   421         _refs_lists[index], _pending_list_addr);
   422       _refs_lists[index].set_head(_sentinel_ref);
   423       _refs_lists[index].set_length(0);
   424     }
   425   }
   426 };
   428 // Enqueue references that are not made active again
   429 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   430   AbstractRefProcTaskExecutor* task_executor) {
   431   if (_processing_is_mt && task_executor != NULL) {
   432     // Parallel code
   433     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
   434                            pending_list_addr, sentinel_ref(), _max_num_q);
   435     task_executor->execute(tsk);
   436   } else {
   437     // Serial code: call the parent class's implementation
   438     for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   439       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
   440       _discoveredSoftRefs[i].set_head(sentinel_ref());
   441       _discoveredSoftRefs[i].set_length(0);
   442     }
   443   }
   444 }
   446 // Iterator for the list of discovered references.
   447 class DiscoveredListIterator {
   448 public:
   449   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   450                                 OopClosure*        keep_alive,
   451                                 BoolObjectClosure* is_alive);
   453   // End Of List.
   454   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
   456   // Get oop to the Reference object.
   457   inline oop obj() const { return _ref; }
   459   // Get oop to the referent object.
   460   inline oop referent() const { return _referent; }
   462   // Returns true if referent is alive.
   463   inline bool is_referent_alive() const;
   465   // Loads data for the current reference.
   466   // The "allow_null_referent" argument tells us to allow for the possibility
   467   // of a NULL referent in the discovered Reference object. This typically
   468   // happens in the case of concurrent collectors that may have done the
   469   // discovery concurrently, or interleaved, with mutator execution.
   470   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   472   // Move to the next discovered reference.
   473   inline void next();
   475   // Remove the current reference from the list
   476   inline void remove();
   478   // Make the Reference object active again.
   479   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
   481   // Make the referent alive.
   482   inline void make_referent_alive() {
   483     if (UseCompressedOops) {
   484       _keep_alive->do_oop((narrowOop*)_referent_addr);
   485     } else {
   486       _keep_alive->do_oop((oop*)_referent_addr);
   487     }
   488   }
   490   // Update the discovered field.
   491   inline void update_discovered() {
   492     // First _prev_next ref actually points into DiscoveredList (gross).
   493     if (UseCompressedOops) {
   494       _keep_alive->do_oop((narrowOop*)_prev_next);
   495     } else {
   496       _keep_alive->do_oop((oop*)_prev_next);
   497     }
   498   }
   500   // NULL out referent pointer.
   501   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
   503   // Statistics
   504   NOT_PRODUCT(
   505   inline size_t processed() const { return _processed; }
   506   inline size_t removed() const   { return _removed; }
   507   )
   509   inline void move_to_next();
   511 private:
   512   DiscoveredList&    _refs_list;
   513   HeapWord*          _prev_next;
   514   oop                _ref;
   515   HeapWord*          _discovered_addr;
   516   oop                _next;
   517   HeapWord*          _referent_addr;
   518   oop                _referent;
   519   OopClosure*        _keep_alive;
   520   BoolObjectClosure* _is_alive;
   521   DEBUG_ONLY(
   522   oop                _first_seen; // cyclic linked list check
   523   )
   524   NOT_PRODUCT(
   525   size_t             _processed;
   526   size_t             _removed;
   527   )
   528 };
   530 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
   531                                                       OopClosure*        keep_alive,
   532                                                       BoolObjectClosure* is_alive)
   533   : _refs_list(refs_list),
   534     _prev_next(refs_list.adr_head()),
   535     _ref(refs_list.head()),
   536 #ifdef ASSERT
   537     _first_seen(refs_list.head()),
   538 #endif
   539 #ifndef PRODUCT
   540     _processed(0),
   541     _removed(0),
   542 #endif
   543     _next(refs_list.head()),
   544     _keep_alive(keep_alive),
   545     _is_alive(is_alive)
   546 { }
   548 inline bool DiscoveredListIterator::is_referent_alive() const {
   549   return _is_alive->do_object_b(_referent);
   550 }
   552 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   553   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   554   oop discovered = java_lang_ref_Reference::discovered(_ref);
   555   assert(_discovered_addr && discovered->is_oop_or_null(),
   556          "discovered field is bad");
   557   _next = discovered;
   558   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   559   _referent = java_lang_ref_Reference::referent(_ref);
   560   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   561          "Wrong oop found in java.lang.Reference object");
   562   assert(allow_null_referent ?
   563              _referent->is_oop_or_null()
   564            : _referent->is_oop(),
   565          "bad referent");
   566 }
   568 inline void DiscoveredListIterator::next() {
   569   _prev_next = _discovered_addr;
   570   move_to_next();
   571 }
   573 inline void DiscoveredListIterator::remove() {
   574   assert(_ref->is_oop(), "Dropping a bad reference");
   575   oop_store_raw(_discovered_addr, NULL);
   576   // First _prev_next ref actually points into DiscoveredList (gross).
   577   if (UseCompressedOops) {
   578     // Remove Reference object from list.
   579     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
   580   } else {
   581     // Remove Reference object from list.
   582     oopDesc::store_heap_oop((oop*)_prev_next, _next);
   583   }
   584   NOT_PRODUCT(_removed++);
   585   _refs_list.dec_length(1);
   586 }
   588 inline void DiscoveredListIterator::move_to_next() {
   589   _ref = _next;
   590   assert(_ref != _first_seen, "cyclic ref_list found");
   591   NOT_PRODUCT(_processed++);
   592 }
   594 // NOTE: process_phase*() are largely similar, and at a high level
   595 // merely iterate over the extant list applying a predicate to
   596 // each of its elements and possibly removing that element from the
   597 // list and applying some further closures to that element.
   598 // We should consider the possibility of replacing these
   599 // process_phase*() methods by abstracting them into
   600 // a single general iterator invocation that receives appropriate
   601 // closures that accomplish this work.
   603 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   604 // referents are not alive, but that should be kept alive for policy reasons.
   605 // Keep alive the transitive closure of all such referents.
   606 void
   607 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   608                                    ReferencePolicy*   policy,
   609                                    BoolObjectClosure* is_alive,
   610                                    OopClosure*        keep_alive,
   611                                    VoidClosure*       complete_gc) {
   612   assert(policy != NULL, "Must have a non-NULL policy");
   613   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   614   // Decide which softly reachable refs should be kept alive.
   615   while (iter.has_next()) {
   616     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   617     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   618     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
   619       if (TraceReferenceGC) {
   620         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   621                                iter.obj(), iter.obj()->blueprint()->internal_name());
   622       }
   623       // Remove Reference object from list
   624       iter.remove();
   625       // Make the Reference object active again
   626       iter.make_active();
   627       // keep the referent around
   628       iter.make_referent_alive();
   629       iter.move_to_next();
   630     } else {
   631       iter.next();
   632     }
   633   }
   634   // Close the reachable set
   635   complete_gc->do_void();
   636   NOT_PRODUCT(
   637     if (PrintGCDetails && TraceReferenceGC) {
   638       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   639         "discovered Refs by policy  list " INTPTR_FORMAT,
   640         iter.removed(), iter.processed(), (address)refs_list.head());
   641     }
   642   )
   643 }
   645 // Traverse the list and remove any Refs that are not active, or
   646 // whose referents are either alive or NULL.
   647 void
   648 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   649                              BoolObjectClosure* is_alive,
   650                              OopClosure*        keep_alive) {
   651   assert(discovery_is_atomic(), "Error");
   652   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   653   while (iter.has_next()) {
   654     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   655     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   656     assert(next == NULL, "Should not discover inactive Reference");
   657     if (iter.is_referent_alive()) {
   658       if (TraceReferenceGC) {
   659         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   660                                iter.obj(), iter.obj()->blueprint()->internal_name());
   661       }
   662       // The referent is reachable after all.
   663       // Remove Reference object from list.
   664       iter.remove();
   665       // Update the referent pointer as necessary: Note that this
   666       // should not entail any recursive marking because the
   667       // referent must already have been traversed.
   668       iter.make_referent_alive();
   669       iter.move_to_next();
   670     } else {
   671       iter.next();
   672     }
   673   }
   674   NOT_PRODUCT(
   675     if (PrintGCDetails && TraceReferenceGC) {
   676       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   677         "Refs in discovered list " INTPTR_FORMAT,
   678         iter.removed(), iter.processed(), (address)refs_list.head());
   679     }
   680   )
   681 }
   683 void
   684 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   685                                                   BoolObjectClosure* is_alive,
   686                                                   OopClosure*        keep_alive,
   687                                                   VoidClosure*       complete_gc) {
   688   assert(!discovery_is_atomic(), "Error");
   689   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   690   while (iter.has_next()) {
   691     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   692     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   693     oop next = java_lang_ref_Reference::next(iter.obj());
   694     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   695          next != NULL)) {
   696       assert(next->is_oop_or_null(), "bad next field");
   697       // Remove Reference object from list
   698       iter.remove();
   699       // Trace the cohorts
   700       iter.make_referent_alive();
   701       if (UseCompressedOops) {
   702         keep_alive->do_oop((narrowOop*)next_addr);
   703       } else {
   704         keep_alive->do_oop((oop*)next_addr);
   705       }
   706       iter.move_to_next();
   707     } else {
   708       iter.next();
   709     }
   710   }
   711   // Now close the newly reachable set
   712   complete_gc->do_void();
   713   NOT_PRODUCT(
   714     if (PrintGCDetails && TraceReferenceGC) {
   715       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   716         "Refs in discovered list " INTPTR_FORMAT,
   717         iter.removed(), iter.processed(), (address)refs_list.head());
   718     }
   719   )
   720 }
   722 // Traverse the list and process the referents, by either
   723 // clearing them or keeping them (and their reachable
   724 // closure) alive.
   725 void
   726 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   727                                    bool               clear_referent,
   728                                    BoolObjectClosure* is_alive,
   729                                    OopClosure*        keep_alive,
   730                                    VoidClosure*       complete_gc) {
   731   ResourceMark rm;
   732   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   733   while (iter.has_next()) {
   734     iter.update_discovered();
   735     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   736     if (clear_referent) {
   737       // NULL out referent pointer
   738       iter.clear_referent();
   739     } else {
   740       // keep the referent around
   741       iter.make_referent_alive();
   742     }
   743     if (TraceReferenceGC) {
   744       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   745                              clear_referent ? "cleared " : "",
   746                              iter.obj(), iter.obj()->blueprint()->internal_name());
   747     }
   748     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   749     iter.next();
   750   }
   751   // Remember to keep sentinel pointer around
   752   iter.update_discovered();
   753   // Close the reachable set
   754   complete_gc->do_void();
   755 }
   757 void
   758 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   759   oop obj = refs_list.head();
   760   while (obj != sentinel_ref()) {
   761     oop discovered = java_lang_ref_Reference::discovered(obj);
   762     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   763     obj = discovered;
   764   }
   765   refs_list.set_head(sentinel_ref());
   766   refs_list.set_length(0);
   767 }
   769 void ReferenceProcessor::abandon_partial_discovery() {
   770   // loop over the lists
   771   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
   772     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   773       gclog_or_tty->print_cr(
   774         "\nAbandoning %s discovered list",
   775         list_name(i));
   776     }
   777     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
   778   }
   779 }
   781 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   782 public:
   783   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   784                     DiscoveredList      refs_lists[],
   785                     ReferencePolicy*    policy,
   786                     bool                marks_oops_alive)
   787     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   788       _policy(policy)
   789   { }
   790   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   791                     OopClosure& keep_alive,
   792                     VoidClosure& complete_gc)
   793   {
   794     Thread* thr = Thread::current();
   795     int refs_list_index = ((WorkerThread*)thr)->id();
   796     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   797                                   &is_alive, &keep_alive, &complete_gc);
   798   }
   799 private:
   800   ReferencePolicy* _policy;
   801 };
   803 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   804 public:
   805   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   806                     DiscoveredList      refs_lists[],
   807                     bool                marks_oops_alive)
   808     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   809   { }
   810   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   811                     OopClosure& keep_alive,
   812                     VoidClosure& complete_gc)
   813   {
   814     _ref_processor.process_phase2(_refs_lists[i],
   815                                   &is_alive, &keep_alive, &complete_gc);
   816   }
   817 };
   819 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   820 public:
   821   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   822                     DiscoveredList      refs_lists[],
   823                     bool                clear_referent,
   824                     bool                marks_oops_alive)
   825     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   826       _clear_referent(clear_referent)
   827   { }
   828   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   829                     OopClosure& keep_alive,
   830                     VoidClosure& complete_gc)
   831   {
   832     // Don't use "refs_list_index" calculated in this way because
   833     // balance_queues() has moved the Ref's into the first n queues.
   834     // Thread* thr = Thread::current();
   835     // int refs_list_index = ((WorkerThread*)thr)->id();
   836     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   837     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   838                                   &is_alive, &keep_alive, &complete_gc);
   839   }
   840 private:
   841   bool _clear_referent;
   842 };
   844 // Balances reference queues.
   845 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   846 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   847 // corresponding to the active workers will be processed.
   848 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   849 {
   850   // calculate total length
   851   size_t total_refs = 0;
   852   if (TraceReferenceGC && PrintGCDetails) {
   853     gclog_or_tty->print_cr("\nBalance ref_lists ");
   854   }
   856   for (int i = 0; i < _max_num_q; ++i) {
   857     total_refs += ref_lists[i].length();
   858     if (TraceReferenceGC && PrintGCDetails) {
   859       gclog_or_tty->print("%d ", ref_lists[i].length());
   860     }
   861   }
   862   if (TraceReferenceGC && PrintGCDetails) {
   863     gclog_or_tty->print_cr(" = %d", total_refs);
   864   }
   865   size_t avg_refs = total_refs / _num_q + 1;
   866   int to_idx = 0;
   867   for (int from_idx = 0; from_idx < _max_num_q; from_idx++) {
   868     bool move_all = false;
   869     if (from_idx >= _num_q) {
   870       move_all = ref_lists[from_idx].length() > 0;
   871     }
   872     while ((ref_lists[from_idx].length() > avg_refs) ||
   873            move_all) {
   874       assert(to_idx < _num_q, "Sanity Check!");
   875       if (ref_lists[to_idx].length() < avg_refs) {
   876         // move superfluous refs
   877         size_t refs_to_move;
   878         // Move all the Ref's if the from queue will not be processed.
   879         if (move_all) {
   880           refs_to_move = MIN2(ref_lists[from_idx].length(),
   881                               avg_refs - ref_lists[to_idx].length());
   882         } else {
   883           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   884                               avg_refs - ref_lists[to_idx].length());
   885         }
   886         oop move_head = ref_lists[from_idx].head();
   887         oop move_tail = move_head;
   888         oop new_head  = move_head;
   889         // find an element to split the list on
   890         for (size_t j = 0; j < refs_to_move; ++j) {
   891           move_tail = new_head;
   892           new_head = java_lang_ref_Reference::discovered(new_head);
   893         }
   894         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
   895         ref_lists[to_idx].set_head(move_head);
   896         ref_lists[to_idx].inc_length(refs_to_move);
   897         ref_lists[from_idx].set_head(new_head);
   898         ref_lists[from_idx].dec_length(refs_to_move);
   899         if (ref_lists[from_idx].length() == 0) {
   900           break;
   901         }
   902       } else {
   903         to_idx = (to_idx + 1) % _num_q;
   904       }
   905     }
   906   }
   907 #ifdef ASSERT
   908   size_t balanced_total_refs = 0;
   909   for (int i = 0; i < _max_num_q; ++i) {
   910     balanced_total_refs += ref_lists[i].length();
   911     if (TraceReferenceGC && PrintGCDetails) {
   912       gclog_or_tty->print("%d ", ref_lists[i].length());
   913     }
   914   }
   915   if (TraceReferenceGC && PrintGCDetails) {
   916     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   917     gclog_or_tty->flush();
   918   }
   919   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   920 #endif
   921 }
   923 void ReferenceProcessor::balance_all_queues() {
   924   balance_queues(_discoveredSoftRefs);
   925   balance_queues(_discoveredWeakRefs);
   926   balance_queues(_discoveredFinalRefs);
   927   balance_queues(_discoveredPhantomRefs);
   928 }
   930 void
   931 ReferenceProcessor::process_discovered_reflist(
   932   DiscoveredList               refs_lists[],
   933   ReferencePolicy*             policy,
   934   bool                         clear_referent,
   935   BoolObjectClosure*           is_alive,
   936   OopClosure*                  keep_alive,
   937   VoidClosure*                 complete_gc,
   938   AbstractRefProcTaskExecutor* task_executor)
   939 {
   940   bool mt_processing = task_executor != NULL && _processing_is_mt;
   941   // If discovery used MT and a dynamic number of GC threads, then
   942   // the queues must be balanced for correctness if fewer than the
   943   // maximum number of queues were used.  The number of queue used
   944   // during discovery may be different than the number to be used
   945   // for processing so don't depend of _num_q < _max_num_q as part
   946   // of the test.
   947   bool must_balance = _discovery_is_mt;
   949   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   950       must_balance) {
   951     balance_queues(refs_lists);
   952   }
   953   if (PrintReferenceGC && PrintGCDetails) {
   954     size_t total = 0;
   955     for (int i = 0; i < _num_q; ++i) {
   956       total += refs_lists[i].length();
   957     }
   958     gclog_or_tty->print(", %u refs", total);
   959   }
   961   // Phase 1 (soft refs only):
   962   // . Traverse the list and remove any SoftReferences whose
   963   //   referents are not alive, but that should be kept alive for
   964   //   policy reasons. Keep alive the transitive closure of all
   965   //   such referents.
   966   if (policy != NULL) {
   967     if (mt_processing) {
   968       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   969       task_executor->execute(phase1);
   970     } else {
   971       for (int i = 0; i < _num_q; i++) {
   972         process_phase1(refs_lists[i], policy,
   973                        is_alive, keep_alive, complete_gc);
   974       }
   975     }
   976   } else { // policy == NULL
   977     assert(refs_lists != _discoveredSoftRefs,
   978            "Policy must be specified for soft references.");
   979   }
   981   // Phase 2:
   982   // . Traverse the list and remove any refs whose referents are alive.
   983   if (mt_processing) {
   984     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   985     task_executor->execute(phase2);
   986   } else {
   987     for (int i = 0; i < _num_q; i++) {
   988       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   989     }
   990   }
   992   // Phase 3:
   993   // . Traverse the list and process referents as appropriate.
   994   if (mt_processing) {
   995     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   996     task_executor->execute(phase3);
   997   } else {
   998     for (int i = 0; i < _num_q; i++) {
   999       process_phase3(refs_lists[i], clear_referent,
  1000                      is_alive, keep_alive, complete_gc);
  1005 void ReferenceProcessor::clean_up_discovered_references() {
  1006   // loop over the lists
  1007   // Should this instead be
  1008   // for (int i = 0; i < subclasses_of_ref; i++_ {
  1009   //   for (int j = 0; j < _num_q; j++) {
  1010   //     int index = i * _max_num_q + j;
  1011   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
  1012     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
  1013       gclog_or_tty->print_cr(
  1014         "\nScrubbing %s discovered list of Null referents",
  1015         list_name(i));
  1017     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
  1021 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
  1022   assert(!discovery_is_atomic(), "Else why call this method?");
  1023   DiscoveredListIterator iter(refs_list, NULL, NULL);
  1024   while (iter.has_next()) {
  1025     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1026     oop next = java_lang_ref_Reference::next(iter.obj());
  1027     assert(next->is_oop_or_null(), "bad next field");
  1028     // If referent has been cleared or Reference is not active,
  1029     // drop it.
  1030     if (iter.referent() == NULL || next != NULL) {
  1031       debug_only(
  1032         if (PrintGCDetails && TraceReferenceGC) {
  1033           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
  1034             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
  1035             " and referent: " INTPTR_FORMAT,
  1036             iter.obj(), next, iter.referent());
  1039       // Remove Reference object from list
  1040       iter.remove();
  1041       iter.move_to_next();
  1042     } else {
  1043       iter.next();
  1046   NOT_PRODUCT(
  1047     if (PrintGCDetails && TraceReferenceGC) {
  1048       gclog_or_tty->print(
  1049         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1050         iter.removed(), iter.processed());
  1055 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1056   int id = 0;
  1057   // Determine the queue index to use for this object.
  1058   if (_discovery_is_mt) {
  1059     // During a multi-threaded discovery phase,
  1060     // each thread saves to its "own" list.
  1061     Thread* thr = Thread::current();
  1062     assert(thr->is_GC_task_thread(),
  1063            "Dubious cast from Thread* to WorkerThread*?");
  1064     id = ((WorkerThread*)thr)->id();
  1065   } else {
  1066     // single-threaded discovery, we save in round-robin
  1067     // fashion to each of the lists.
  1068     if (_processing_is_mt) {
  1069       id = next_id();
  1072   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1074   // Get the discovered queue to which we will add
  1075   DiscoveredList* list = NULL;
  1076   switch (rt) {
  1077     case REF_OTHER:
  1078       // Unknown reference type, no special treatment
  1079       break;
  1080     case REF_SOFT:
  1081       list = &_discoveredSoftRefs[id];
  1082       break;
  1083     case REF_WEAK:
  1084       list = &_discoveredWeakRefs[id];
  1085       break;
  1086     case REF_FINAL:
  1087       list = &_discoveredFinalRefs[id];
  1088       break;
  1089     case REF_PHANTOM:
  1090       list = &_discoveredPhantomRefs[id];
  1091       break;
  1092     case REF_NONE:
  1093       // we should not reach here if we are an instanceRefKlass
  1094     default:
  1095       ShouldNotReachHere();
  1097   if (TraceReferenceGC && PrintGCDetails) {
  1098     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT,
  1099       id, list);
  1101   return list;
  1104 inline void
  1105 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1106                                               oop             obj,
  1107                                               HeapWord*       discovered_addr) {
  1108   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1109   // First we must make sure this object is only enqueued once. CAS in a non null
  1110   // discovered_addr.
  1111   oop current_head = refs_list.head();
  1113   // Note: In the case of G1, this specific pre-barrier is strictly
  1114   // not necessary because the only case we are interested in
  1115   // here is when *discovered_addr is NULL (see the CAS further below),
  1116   // so this will expand to nothing. As a result, we have manually
  1117   // elided this out for G1, but left in the test for some future
  1118   // collector that might have need for a pre-barrier here.
  1119   if (_discovered_list_needs_barrier && !UseG1GC) {
  1120     if (UseCompressedOops) {
  1121       _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
  1122     } else {
  1123       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1125     guarantee(false, "Need to check non-G1 collector");
  1127   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
  1128                                                     NULL);
  1129   if (retest == NULL) {
  1130     // This thread just won the right to enqueue the object.
  1131     // We have separate lists for enqueueing so no synchronization
  1132     // is necessary.
  1133     refs_list.set_head(obj);
  1134     refs_list.inc_length(1);
  1135     if (_discovered_list_needs_barrier) {
  1136       _bs->write_ref_field((void*)discovered_addr, current_head);
  1138   } else {
  1139     // If retest was non NULL, another thread beat us to it:
  1140     // The reference has already been discovered...
  1141     if (TraceReferenceGC) {
  1142       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1143                              obj, obj->blueprint()->internal_name());
  1148 // We mention two of several possible choices here:
  1149 // #0: if the reference object is not in the "originating generation"
  1150 //     (or part of the heap being collected, indicated by our "span"
  1151 //     we don't treat it specially (i.e. we scan it as we would
  1152 //     a normal oop, treating its references as strong references).
  1153 //     This means that references can't be enqueued unless their
  1154 //     referent is also in the same span. This is the simplest,
  1155 //     most "local" and most conservative approach, albeit one
  1156 //     that may cause weak references to be enqueued least promptly.
  1157 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1158 // #1: the reference object may be in any generation (span), but if
  1159 //     the referent is in the generation (span) being currently collected
  1160 //     then we can discover the reference object, provided
  1161 //     the object has not already been discovered by
  1162 //     a different concurrently running collector (as may be the
  1163 //     case, for instance, if the reference object is in CMS and
  1164 //     the referent in DefNewGeneration), and provided the processing
  1165 //     of this reference object by the current collector will
  1166 //     appear atomic to every other collector in the system.
  1167 //     (Thus, for instance, a concurrent collector may not
  1168 //     discover references in other generations even if the
  1169 //     referent is in its own generation). This policy may,
  1170 //     in certain cases, enqueue references somewhat sooner than
  1171 //     might Policy #0 above, but at marginally increased cost
  1172 //     and complexity in processing these references.
  1173 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1174 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1175   // We enqueue references only if we are discovering refs
  1176   // (rather than processing discovered refs).
  1177   if (!_discovering_refs || !RegisterReferences) {
  1178     return false;
  1180   // We only enqueue active references.
  1181   oop next = java_lang_ref_Reference::next(obj);
  1182   if (next != NULL) {
  1183     return false;
  1186   HeapWord* obj_addr = (HeapWord*)obj;
  1187   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1188       !_span.contains(obj_addr)) {
  1189     // Reference is not in the originating generation;
  1190     // don't treat it specially (i.e. we want to scan it as a normal
  1191     // object with strong references).
  1192     return false;
  1195   // We only enqueue references whose referents are not (yet) strongly
  1196   // reachable.
  1197   if (is_alive_non_header() != NULL) {
  1198     oop referent = java_lang_ref_Reference::referent(obj);
  1199     // In the case of non-concurrent discovery, the last
  1200     // disjunct below should hold. It may not hold in the
  1201     // case of concurrent discovery because mutators may
  1202     // concurrently clear() a Reference.
  1203     assert(UseConcMarkSweepGC || UseG1GC || referent != NULL,
  1204            "Refs with null referents already filtered");
  1205     if (is_alive_non_header()->do_object_b(referent)) {
  1206       return false;  // referent is reachable
  1209   if (rt == REF_SOFT) {
  1210     // For soft refs we can decide now if these are not
  1211     // current candidates for clearing, in which case we
  1212     // can mark through them now, rather than delaying that
  1213     // to the reference-processing phase. Since all current
  1214     // time-stamp policies advance the soft-ref clock only
  1215     // at a major collection cycle, this is always currently
  1216     // accurate.
  1217     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
  1218       return false;
  1222   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1223   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1224   assert(discovered->is_oop_or_null(), "bad discovered field");
  1225   if (discovered != NULL) {
  1226     // The reference has already been discovered...
  1227     if (TraceReferenceGC) {
  1228       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
  1229                              obj, obj->blueprint()->internal_name());
  1231     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1232       // assumes that an object is not processed twice;
  1233       // if it's been already discovered it must be on another
  1234       // generation's discovered list; so we won't discover it.
  1235       return false;
  1236     } else {
  1237       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1238              "Unrecognized policy");
  1239       // Check assumption that an object is not potentially
  1240       // discovered twice except by concurrent collectors that potentially
  1241       // trace the same Reference object twice.
  1242       assert(UseConcMarkSweepGC,
  1243              "Only possible with an incremental-update concurrent collector");
  1244       return true;
  1248   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1249     oop referent = java_lang_ref_Reference::referent(obj);
  1250     assert(referent->is_oop(), "bad referent");
  1251     // enqueue if and only if either:
  1252     // reference is in our span or
  1253     // we are an atomic collector and referent is in our span
  1254     if (_span.contains(obj_addr) ||
  1255         (discovery_is_atomic() && _span.contains(referent))) {
  1256       // should_enqueue = true;
  1257     } else {
  1258       return false;
  1260   } else {
  1261     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1262            _span.contains(obj_addr), "code inconsistency");
  1265   // Get the right type of discovered queue head.
  1266   DiscoveredList* list = get_discovered_list(rt);
  1267   if (list == NULL) {
  1268     return false;   // nothing special needs to be done
  1271   if (_discovery_is_mt) {
  1272     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1273   } else {
  1274     // If "_discovered_list_needs_barrier", we do write barriers when
  1275     // updating the discovered reference list.  Otherwise, we do a raw store
  1276     // here: the field will be visited later when processing the discovered
  1277     // references.
  1278     oop current_head = list->head();
  1279     // As in the case further above, since we are over-writing a NULL
  1280     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1281     assert(discovered == NULL, "control point invariant");
  1282     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
  1283       if (UseCompressedOops) {
  1284         _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
  1285       } else {
  1286         _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
  1288       guarantee(false, "Need to check non-G1 collector");
  1290     oop_store_raw(discovered_addr, current_head);
  1291     if (_discovered_list_needs_barrier) {
  1292       _bs->write_ref_field((void*)discovered_addr, current_head);
  1294     list->set_head(obj);
  1295     list->inc_length(1);
  1298   // In the MT discovery case, it is currently possible to see
  1299   // the following message multiple times if several threads
  1300   // discover a reference about the same time. Only one will
  1301   // however have actually added it to the disocvered queue.
  1302   // One could let add_to_discovered_list_mt() return an
  1303   // indication for success in queueing (by 1 thread) or
  1304   // failure (by all other threads), but I decided the extra
  1305   // code was not worth the effort for something that is
  1306   // only used for debugging support.
  1307   if (TraceReferenceGC) {
  1308     oop referent = java_lang_ref_Reference::referent(obj);
  1309     if (PrintGCDetails) {
  1310       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
  1311                              obj, obj->blueprint()->internal_name());
  1313     assert(referent->is_oop(), "Enqueued a bad referent");
  1315   assert(obj->is_oop(), "Enqueued a bad reference");
  1316   return true;
  1319 // Preclean the discovered references by removing those
  1320 // whose referents are alive, and by marking from those that
  1321 // are not active. These lists can be handled here
  1322 // in any order and, indeed, concurrently.
  1323 void ReferenceProcessor::preclean_discovered_references(
  1324   BoolObjectClosure* is_alive,
  1325   OopClosure* keep_alive,
  1326   VoidClosure* complete_gc,
  1327   YieldClosure* yield,
  1328   bool should_unload_classes) {
  1330   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1332 #ifdef ASSERT
  1333   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
  1334                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
  1335                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
  1336                                  UseConcMarkSweepGC && should_unload_classes;
  1337   RememberKlassesChecker mx(must_remember_klasses);
  1338 #endif
  1339   // Soft references
  1341     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1342               false, gclog_or_tty);
  1343     for (int i = 0; i < _max_num_q; i++) {
  1344       if (yield->should_return()) {
  1345         return;
  1347       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1348                                   keep_alive, complete_gc, yield);
  1352   // Weak references
  1354     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1355               false, gclog_or_tty);
  1356     for (int i = 0; i < _num_q; i++) {
  1357       if (yield->should_return()) {
  1358         return;
  1360       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1361                                   keep_alive, complete_gc, yield);
  1365   // Final references
  1367     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1368               false, gclog_or_tty);
  1369     for (int i = 0; i < _num_q; i++) {
  1370       if (yield->should_return()) {
  1371         return;
  1373       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1374                                   keep_alive, complete_gc, yield);
  1378   // Phantom references
  1380     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1381               false, gclog_or_tty);
  1382     for (int i = 0; i < _num_q; i++) {
  1383       if (yield->should_return()) {
  1384         return;
  1386       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1387                                   keep_alive, complete_gc, yield);
  1392 // Walk the given discovered ref list, and remove all reference objects
  1393 // whose referents are still alive, whose referents are NULL or which
  1394 // are not active (have a non-NULL next field). NOTE: When we are
  1395 // thus precleaning the ref lists (which happens single-threaded today),
  1396 // we do not disable refs discovery to honour the correct semantics of
  1397 // java.lang.Reference. As a result, we need to be careful below
  1398 // that ref removal steps interleave safely with ref discovery steps
  1399 // (in this thread).
  1400 void
  1401 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1402                                                 BoolObjectClosure* is_alive,
  1403                                                 OopClosure*        keep_alive,
  1404                                                 VoidClosure*       complete_gc,
  1405                                                 YieldClosure*      yield) {
  1406   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1407   while (iter.has_next()) {
  1408     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1409     oop obj = iter.obj();
  1410     oop next = java_lang_ref_Reference::next(obj);
  1411     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1412         next != NULL) {
  1413       // The referent has been cleared, or is alive, or the Reference is not
  1414       // active; we need to trace and mark its cohort.
  1415       if (TraceReferenceGC) {
  1416         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1417                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1419       // Remove Reference object from list
  1420       iter.remove();
  1421       // Keep alive its cohort.
  1422       iter.make_referent_alive();
  1423       if (UseCompressedOops) {
  1424         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1425         keep_alive->do_oop(next_addr);
  1426       } else {
  1427         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1428         keep_alive->do_oop(next_addr);
  1430       iter.move_to_next();
  1431     } else {
  1432       iter.next();
  1435   // Close the reachable set
  1436   complete_gc->do_void();
  1438   NOT_PRODUCT(
  1439     if (PrintGCDetails && PrintReferenceGC) {
  1440       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1441         "Refs in discovered list " INTPTR_FORMAT,
  1442         iter.removed(), iter.processed(), (address)refs_list.head());
  1447 const char* ReferenceProcessor::list_name(int i) {
  1448    assert(i >= 0 && i <= _max_num_q * subclasses_of_ref, "Out of bounds index");
  1449    int j = i / _max_num_q;
  1450    switch (j) {
  1451      case 0: return "SoftRef";
  1452      case 1: return "WeakRef";
  1453      case 2: return "FinalRef";
  1454      case 3: return "PhantomRef";
  1456    ShouldNotReachHere();
  1457    return NULL;
  1460 #ifndef PRODUCT
  1461 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1462   // empty for now
  1464 #endif
  1466 void ReferenceProcessor::verify() {
  1467   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
  1470 #ifndef PRODUCT
  1471 void ReferenceProcessor::clear_discovered_references() {
  1472   guarantee(!_discovering_refs, "Discovering refs?");
  1473   for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
  1474     oop obj = _discoveredSoftRefs[i].head();
  1475     while (obj != sentinel_ref()) {
  1476       oop next = java_lang_ref_Reference::discovered(obj);
  1477       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
  1478       obj = next;
  1480     _discoveredSoftRefs[i].set_head(sentinel_ref());
  1481     _discoveredSoftRefs[i].set_length(0);
  1484 #endif // PRODUCT

mercurial