src/share/vm/memory/genCollectedHeap.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2336
6cd6d394f280
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/collectedHeap.inline.hpp"
    33 #include "memory/compactPermGen.hpp"
    34 #include "memory/filemap.hpp"
    35 #include "memory/gcLocker.inline.hpp"
    36 #include "memory/genCollectedHeap.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.inline.hpp"
    39 #include "memory/generationSpec.hpp"
    40 #include "memory/permGen.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "memory/space.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.inline2.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/vmError.hpp"
    55 #include "utilities/workgroup.hpp"
    56 #ifndef SERIALGC
    57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    59 #endif
    61 GenCollectedHeap* GenCollectedHeap::_gch;
    62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    64 // The set of potentially parallel tasks in strong root scanning.
    65 enum GCH_process_strong_roots_tasks {
    66   // We probably want to parallelize both of these internally, but for now...
    67   GCH_PS_younger_gens,
    68   // Leave this one last.
    69   GCH_PS_NumElements
    70 };
    72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    73   SharedHeap(policy),
    74   _gen_policy(policy),
    75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    76   _full_collections_completed(0)
    77 {
    78   if (_gen_process_strong_tasks == NULL ||
    79       !_gen_process_strong_tasks->valid()) {
    80     vm_exit_during_initialization("Failed necessary allocation.");
    81   }
    82   assert(policy != NULL, "Sanity check");
    83   _preloading_shared_classes = false;
    84 }
    86 jint GenCollectedHeap::initialize() {
    87   CollectedHeap::pre_initialize();
    89   int i;
    90   _n_gens = gen_policy()->number_of_generations();
    92   // While there are no constraints in the GC code that HeapWordSize
    93   // be any particular value, there are multiple other areas in the
    94   // system which believe this to be true (e.g. oop->object_size in some
    95   // cases incorrectly returns the size in wordSize units rather than
    96   // HeapWordSize).
    97   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    99   // The heap must be at least as aligned as generations.
   100   size_t alignment = Generation::GenGrain;
   102   _gen_specs = gen_policy()->generations();
   103   PermanentGenerationSpec *perm_gen_spec =
   104                                 collector_policy()->permanent_generation();
   106   // Make sure the sizes are all aligned.
   107   for (i = 0; i < _n_gens; i++) {
   108     _gen_specs[i]->align(alignment);
   109   }
   110   perm_gen_spec->align(alignment);
   112   // If we are dumping the heap, then allocate a wasted block of address
   113   // space in order to push the heap to a lower address.  This extra
   114   // address range allows for other (or larger) libraries to be loaded
   115   // without them occupying the space required for the shared spaces.
   117   if (DumpSharedSpaces) {
   118     uintx reserved = 0;
   119     uintx block_size = 64*1024*1024;
   120     while (reserved < SharedDummyBlockSize) {
   121       char* dummy = os::reserve_memory(block_size);
   122       reserved += block_size;
   123     }
   124   }
   126   // Allocate space for the heap.
   128   char* heap_address;
   129   size_t total_reserved = 0;
   130   int n_covered_regions = 0;
   131   ReservedSpace heap_rs(0);
   133   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
   134                           &n_covered_regions, &heap_rs);
   136   if (UseSharedSpaces) {
   137     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   138       if (heap_rs.is_reserved()) {
   139         heap_rs.release();
   140       }
   141       FileMapInfo* mapinfo = FileMapInfo::current_info();
   142       mapinfo->fail_continue("Unable to reserve shared region.");
   143       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   144                &heap_rs);
   145     }
   146   }
   148   if (!heap_rs.is_reserved()) {
   149     vm_shutdown_during_initialization(
   150       "Could not reserve enough space for object heap");
   151     return JNI_ENOMEM;
   152   }
   154   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   155                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   157   // It is important to do this in a way such that concurrent readers can't
   158   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   159   _reserved.set_word_size(0);
   160   _reserved.set_start((HeapWord*)heap_rs.base());
   161   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   162                                            - perm_gen_spec->misc_code_size();
   163   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   165   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   166   set_barrier_set(rem_set()->bs());
   168   _gch = this;
   170   for (i = 0; i < _n_gens; i++) {
   171     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   172                                               UseSharedSpaces, UseSharedSpaces);
   173     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   174     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   175   }
   176   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   178   clear_incremental_collection_failed();
   180 #ifndef SERIALGC
   181   // If we are running CMS, create the collector responsible
   182   // for collecting the CMS generations.
   183   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   184     bool success = create_cms_collector();
   185     if (!success) return JNI_ENOMEM;
   186   }
   187 #endif // SERIALGC
   189   return JNI_OK;
   190 }
   193 char* GenCollectedHeap::allocate(size_t alignment,
   194                                  PermanentGenerationSpec* perm_gen_spec,
   195                                  size_t* _total_reserved,
   196                                  int* _n_covered_regions,
   197                                  ReservedSpace* heap_rs){
   198   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   199     "the maximum representable size";
   201   // Now figure out the total size.
   202   size_t total_reserved = 0;
   203   int n_covered_regions = 0;
   204   const size_t pageSize = UseLargePages ?
   205       os::large_page_size() : os::vm_page_size();
   207   for (int i = 0; i < _n_gens; i++) {
   208     total_reserved += _gen_specs[i]->max_size();
   209     if (total_reserved < _gen_specs[i]->max_size()) {
   210       vm_exit_during_initialization(overflow_msg);
   211     }
   212     n_covered_regions += _gen_specs[i]->n_covered_regions();
   213   }
   214   assert(total_reserved % pageSize == 0,
   215          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
   216                  SIZE_FORMAT, total_reserved, pageSize));
   217   total_reserved += perm_gen_spec->max_size();
   218   assert(total_reserved % pageSize == 0,
   219          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
   220                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
   221                  pageSize, perm_gen_spec->max_size()));
   223   if (total_reserved < perm_gen_spec->max_size()) {
   224     vm_exit_during_initialization(overflow_msg);
   225   }
   226   n_covered_regions += perm_gen_spec->n_covered_regions();
   228   // Add the size of the data area which shares the same reserved area
   229   // as the heap, but which is not actually part of the heap.
   230   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   232   total_reserved += s;
   233   if (total_reserved < s) {
   234     vm_exit_during_initialization(overflow_msg);
   235   }
   237   if (UseLargePages) {
   238     assert(total_reserved != 0, "total_reserved cannot be 0");
   239     total_reserved = round_to(total_reserved, os::large_page_size());
   240     if (total_reserved < os::large_page_size()) {
   241       vm_exit_during_initialization(overflow_msg);
   242     }
   243   }
   245   // Calculate the address at which the heap must reside in order for
   246   // the shared data to be at the required address.
   248   char* heap_address;
   249   if (UseSharedSpaces) {
   251     // Calculate the address of the first word beyond the heap.
   252     FileMapInfo* mapinfo = FileMapInfo::current_info();
   253     int lr = CompactingPermGenGen::n_regions - 1;
   254     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   255     heap_address = mapinfo->region_base(lr) + capacity;
   257     // Calculate the address of the first word of the heap.
   258     heap_address -= total_reserved;
   259   } else {
   260     heap_address = NULL;  // any address will do.
   261     if (UseCompressedOops) {
   262       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   263       *_total_reserved = total_reserved;
   264       *_n_covered_regions = n_covered_regions;
   265       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   266                                    UseLargePages, heap_address);
   268       if (heap_address != NULL && !heap_rs->is_reserved()) {
   269         // Failed to reserve at specified address - the requested memory
   270         // region is taken already, for example, by 'java' launcher.
   271         // Try again to reserver heap higher.
   272         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   273         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   274                                      UseLargePages, heap_address);
   276         if (heap_address != NULL && !heap_rs->is_reserved()) {
   277           // Failed to reserve at specified address again - give up.
   278           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   279           assert(heap_address == NULL, "");
   280           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   281                                        UseLargePages, heap_address);
   282         }
   283       }
   284       return heap_address;
   285     }
   286   }
   288   *_total_reserved = total_reserved;
   289   *_n_covered_regions = n_covered_regions;
   290   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   291                                UseLargePages, heap_address);
   293   return heap_address;
   294 }
   297 void GenCollectedHeap::post_initialize() {
   298   SharedHeap::post_initialize();
   299   TwoGenerationCollectorPolicy *policy =
   300     (TwoGenerationCollectorPolicy *)collector_policy();
   301   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   302   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   303   assert(def_new_gen->kind() == Generation::DefNew ||
   304          def_new_gen->kind() == Generation::ParNew ||
   305          def_new_gen->kind() == Generation::ASParNew,
   306          "Wrong generation kind");
   308   Generation* old_gen = get_gen(1);
   309   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   310          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   311          old_gen->kind() == Generation::MarkSweepCompact,
   312     "Wrong generation kind");
   314   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   315                                  old_gen->capacity(),
   316                                  def_new_gen->from()->capacity());
   317   policy->initialize_gc_policy_counters();
   318 }
   320 void GenCollectedHeap::ref_processing_init() {
   321   SharedHeap::ref_processing_init();
   322   for (int i = 0; i < _n_gens; i++) {
   323     _gens[i]->ref_processor_init();
   324   }
   325 }
   327 size_t GenCollectedHeap::capacity() const {
   328   size_t res = 0;
   329   for (int i = 0; i < _n_gens; i++) {
   330     res += _gens[i]->capacity();
   331   }
   332   return res;
   333 }
   335 size_t GenCollectedHeap::used() const {
   336   size_t res = 0;
   337   for (int i = 0; i < _n_gens; i++) {
   338     res += _gens[i]->used();
   339   }
   340   return res;
   341 }
   343 // Save the "used_region" for generations level and lower,
   344 // and, if perm is true, for perm gen.
   345 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   346   assert(level < _n_gens, "Illegal level parameter");
   347   for (int i = level; i >= 0; i--) {
   348     _gens[i]->save_used_region();
   349   }
   350   if (perm) {
   351     perm_gen()->save_used_region();
   352   }
   353 }
   355 size_t GenCollectedHeap::max_capacity() const {
   356   size_t res = 0;
   357   for (int i = 0; i < _n_gens; i++) {
   358     res += _gens[i]->max_capacity();
   359   }
   360   return res;
   361 }
   363 // Update the _full_collections_completed counter
   364 // at the end of a stop-world full GC.
   365 unsigned int GenCollectedHeap::update_full_collections_completed() {
   366   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   367   assert(_full_collections_completed <= _total_full_collections,
   368          "Can't complete more collections than were started");
   369   _full_collections_completed = _total_full_collections;
   370   ml.notify_all();
   371   return _full_collections_completed;
   372 }
   374 // Update the _full_collections_completed counter, as appropriate,
   375 // at the end of a concurrent GC cycle. Note the conditional update
   376 // below to allow this method to be called by a concurrent collector
   377 // without synchronizing in any manner with the VM thread (which
   378 // may already have initiated a STW full collection "concurrently").
   379 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   380   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   381   assert((_full_collections_completed <= _total_full_collections) &&
   382          (count <= _total_full_collections),
   383          "Can't complete more collections than were started");
   384   if (count > _full_collections_completed) {
   385     _full_collections_completed = count;
   386     ml.notify_all();
   387   }
   388   return _full_collections_completed;
   389 }
   392 #ifndef PRODUCT
   393 // Override of memory state checking method in CollectedHeap:
   394 // Some collectors (CMS for example) can't have badHeapWordVal written
   395 // in the first two words of an object. (For instance , in the case of
   396 // CMS these words hold state used to synchronize between certain
   397 // (concurrent) GC steps and direct allocating mutators.)
   398 // The skip_header_HeapWords() method below, allows us to skip
   399 // over the requisite number of HeapWord's. Note that (for
   400 // generational collectors) this means that those many words are
   401 // skipped in each object, irrespective of the generation in which
   402 // that object lives. The resultant loss of precision seems to be
   403 // harmless and the pain of avoiding that imprecision appears somewhat
   404 // higher than we are prepared to pay for such rudimentary debugging
   405 // support.
   406 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   407                                                          size_t size) {
   408   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   409     // We are asked to check a size in HeapWords,
   410     // but the memory is mangled in juint words.
   411     juint* start = (juint*) (addr + skip_header_HeapWords());
   412     juint* end   = (juint*) (addr + size);
   413     for (juint* slot = start; slot < end; slot += 1) {
   414       assert(*slot == badHeapWordVal,
   415              "Found non badHeapWordValue in pre-allocation check");
   416     }
   417   }
   418 }
   419 #endif
   421 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   422                                                bool is_tlab,
   423                                                bool first_only) {
   424   HeapWord* res;
   425   for (int i = 0; i < _n_gens; i++) {
   426     if (_gens[i]->should_allocate(size, is_tlab)) {
   427       res = _gens[i]->allocate(size, is_tlab);
   428       if (res != NULL) return res;
   429       else if (first_only) break;
   430     }
   431   }
   432   // Otherwise...
   433   return NULL;
   434 }
   436 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   437                                          bool is_large_noref,
   438                                          bool is_tlab,
   439                                          bool* gc_overhead_limit_was_exceeded) {
   440   return collector_policy()->mem_allocate_work(size,
   441                                                is_tlab,
   442                                                gc_overhead_limit_was_exceeded);
   443 }
   445 bool GenCollectedHeap::must_clear_all_soft_refs() {
   446   return _gc_cause == GCCause::_last_ditch_collection;
   447 }
   449 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   450   return UseConcMarkSweepGC &&
   451          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   452           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   453 }
   455 void GenCollectedHeap::do_collection(bool  full,
   456                                      bool   clear_all_soft_refs,
   457                                      size_t size,
   458                                      bool   is_tlab,
   459                                      int    max_level) {
   460   bool prepared_for_verification = false;
   461   ResourceMark rm;
   462   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   464   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   465   assert(my_thread->is_VM_thread() ||
   466          my_thread->is_ConcurrentGC_thread(),
   467          "incorrect thread type capability");
   468   assert(Heap_lock->is_locked(),
   469          "the requesting thread should have the Heap_lock");
   470   guarantee(!is_gc_active(), "collection is not reentrant");
   471   assert(max_level < n_gens(), "sanity check");
   473   if (GC_locker::check_active_before_gc()) {
   474     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   475   }
   477   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   478                           collector_policy()->should_clear_all_soft_refs();
   480   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   482   const size_t perm_prev_used = perm_gen()->used();
   484   if (PrintHeapAtGC) {
   485     Universe::print_heap_before_gc();
   486     if (Verbose) {
   487       gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
   488     }
   489   }
   491   {
   492     FlagSetting fl(_is_gc_active, true);
   494     bool complete = full && (max_level == (n_gens()-1));
   495     const char* gc_cause_str = "GC ";
   496     if (complete) {
   497       GCCause::Cause cause = gc_cause();
   498       if (cause == GCCause::_java_lang_system_gc) {
   499         gc_cause_str = "Full GC (System) ";
   500       } else {
   501         gc_cause_str = "Full GC ";
   502       }
   503     }
   504     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   505     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   506     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
   508     gc_prologue(complete);
   509     increment_total_collections(complete);
   511     size_t gch_prev_used = used();
   513     int starting_level = 0;
   514     if (full) {
   515       // Search for the oldest generation which will collect all younger
   516       // generations, and start collection loop there.
   517       for (int i = max_level; i >= 0; i--) {
   518         if (_gens[i]->full_collects_younger_generations()) {
   519           starting_level = i;
   520           break;
   521         }
   522       }
   523     }
   525     bool must_restore_marks_for_biased_locking = false;
   527     int max_level_collected = starting_level;
   528     for (int i = starting_level; i <= max_level; i++) {
   529       if (_gens[i]->should_collect(full, size, is_tlab)) {
   530         if (i == n_gens() - 1) {  // a major collection is to happen
   531           if (!complete) {
   532             // The full_collections increment was missed above.
   533             increment_total_full_collections();
   534           }
   535           pre_full_gc_dump();    // do any pre full gc dumps
   536         }
   537         // Timer for individual generations. Last argument is false: no CR
   538         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   539         TraceCollectorStats tcs(_gens[i]->counters());
   540         TraceMemoryManagerStats tmms(_gens[i]->kind());
   542         size_t prev_used = _gens[i]->used();
   543         _gens[i]->stat_record()->invocations++;
   544         _gens[i]->stat_record()->accumulated_time.start();
   546         // Must be done anew before each collection because
   547         // a previous collection will do mangling and will
   548         // change top of some spaces.
   549         record_gen_tops_before_GC();
   551         if (PrintGC && Verbose) {
   552           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   553                      i,
   554                      _gens[i]->stat_record()->invocations,
   555                      size*HeapWordSize);
   556         }
   558         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   559             total_collections() >= VerifyGCStartAt) {
   560           HandleMark hm;  // Discard invalid handles created during verification
   561           if (!prepared_for_verification) {
   562             prepare_for_verify();
   563             prepared_for_verification = true;
   564           }
   565           gclog_or_tty->print(" VerifyBeforeGC:");
   566           Universe::verify(true);
   567         }
   568         COMPILER2_PRESENT(DerivedPointerTable::clear());
   570         if (!must_restore_marks_for_biased_locking &&
   571             _gens[i]->performs_in_place_marking()) {
   572           // We perform this mark word preservation work lazily
   573           // because it's only at this point that we know whether we
   574           // absolutely have to do it; we want to avoid doing it for
   575           // scavenge-only collections where it's unnecessary
   576           must_restore_marks_for_biased_locking = true;
   577           BiasedLocking::preserve_marks();
   578         }
   580         // Do collection work
   581         {
   582           // Note on ref discovery: For what appear to be historical reasons,
   583           // GCH enables and disabled (by enqueing) refs discovery.
   584           // In the future this should be moved into the generation's
   585           // collect method so that ref discovery and enqueueing concerns
   586           // are local to a generation. The collect method could return
   587           // an appropriate indication in the case that notification on
   588           // the ref lock was needed. This will make the treatment of
   589           // weak refs more uniform (and indeed remove such concerns
   590           // from GCH). XXX
   592           HandleMark hm;  // Discard invalid handles created during gc
   593           save_marks();   // save marks for all gens
   594           // We want to discover references, but not process them yet.
   595           // This mode is disabled in process_discovered_references if the
   596           // generation does some collection work, or in
   597           // enqueue_discovered_references if the generation returns
   598           // without doing any work.
   599           ReferenceProcessor* rp = _gens[i]->ref_processor();
   600           // If the discovery of ("weak") refs in this generation is
   601           // atomic wrt other collectors in this configuration, we
   602           // are guaranteed to have empty discovered ref lists.
   603           if (rp->discovery_is_atomic()) {
   604             rp->verify_no_references_recorded();
   605             rp->enable_discovery();
   606             rp->setup_policy(do_clear_all_soft_refs);
   607           } else {
   608             // collect() below will enable discovery as appropriate
   609           }
   610           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   611           if (!rp->enqueuing_is_done()) {
   612             rp->enqueue_discovered_references();
   613           } else {
   614             rp->set_enqueuing_is_done(false);
   615           }
   616           rp->verify_no_references_recorded();
   617         }
   618         max_level_collected = i;
   620         // Determine if allocation request was met.
   621         if (size > 0) {
   622           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   623             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   624               size = 0;
   625             }
   626           }
   627         }
   629         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   631         _gens[i]->stat_record()->accumulated_time.stop();
   633         update_gc_stats(i, full);
   635         if (VerifyAfterGC && i >= VerifyGCLevel &&
   636             total_collections() >= VerifyGCStartAt) {
   637           HandleMark hm;  // Discard invalid handles created during verification
   638           gclog_or_tty->print(" VerifyAfterGC:");
   639           Universe::verify(false);
   640         }
   642         if (PrintGCDetails) {
   643           gclog_or_tty->print(":");
   644           _gens[i]->print_heap_change(prev_used);
   645         }
   646       }
   647     }
   649     // Update "complete" boolean wrt what actually transpired --
   650     // for instance, a promotion failure could have led to
   651     // a whole heap collection.
   652     complete = complete || (max_level_collected == n_gens() - 1);
   654     if (complete) { // We did a "major" collection
   655       post_full_gc_dump();   // do any post full gc dumps
   656     }
   658     if (PrintGCDetails) {
   659       print_heap_change(gch_prev_used);
   661       // Print perm gen info for full GC with PrintGCDetails flag.
   662       if (complete) {
   663         print_perm_heap_change(perm_prev_used);
   664       }
   665     }
   667     for (int j = max_level_collected; j >= 0; j -= 1) {
   668       // Adjust generation sizes.
   669       _gens[j]->compute_new_size();
   670     }
   672     if (complete) {
   673       // Ask the permanent generation to adjust size for full collections
   674       perm()->compute_new_size();
   675       update_full_collections_completed();
   676     }
   678     // Track memory usage and detect low memory after GC finishes
   679     MemoryService::track_memory_usage();
   681     gc_epilogue(complete);
   683     if (must_restore_marks_for_biased_locking) {
   684       BiasedLocking::restore_marks();
   685     }
   686   }
   688   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   689   AdaptiveSizePolicyOutput(sp, total_collections());
   691   if (PrintHeapAtGC) {
   692     Universe::print_heap_after_gc();
   693   }
   695 #ifdef TRACESPINNING
   696   ParallelTaskTerminator::print_termination_counts();
   697 #endif
   699   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
   700     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
   701     vm_exit(-1);
   702   }
   703 }
   705 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   706   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   707 }
   709 void GenCollectedHeap::set_par_threads(int t) {
   710   SharedHeap::set_par_threads(t);
   711   _gen_process_strong_tasks->set_n_threads(t);
   712 }
   714 class AssertIsPermClosure: public OopClosure {
   715 public:
   716   void do_oop(oop* p) {
   717     assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
   718   }
   719   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
   720 };
   721 static AssertIsPermClosure assert_is_perm_closure;
   723 void GenCollectedHeap::
   724 gen_process_strong_roots(int level,
   725                          bool younger_gens_as_roots,
   726                          bool activate_scope,
   727                          bool collecting_perm_gen,
   728                          SharedHeap::ScanningOption so,
   729                          OopsInGenClosure* not_older_gens,
   730                          bool do_code_roots,
   731                          OopsInGenClosure* older_gens) {
   732   // General strong roots.
   734   if (!do_code_roots) {
   735     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   736                                      not_older_gens, NULL, older_gens);
   737   } else {
   738     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   739     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   740     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   741                                      not_older_gens, &code_roots, older_gens);
   742   }
   744   if (younger_gens_as_roots) {
   745     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   746       for (int i = 0; i < level; i++) {
   747         not_older_gens->set_generation(_gens[i]);
   748         _gens[i]->oop_iterate(not_older_gens);
   749       }
   750       not_older_gens->reset_generation();
   751     }
   752   }
   753   // When collection is parallel, all threads get to cooperate to do
   754   // older-gen scanning.
   755   for (int i = level+1; i < _n_gens; i++) {
   756     older_gens->set_generation(_gens[i]);
   757     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   758     older_gens->reset_generation();
   759   }
   761   _gen_process_strong_tasks->all_tasks_completed();
   762 }
   764 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   765                                               CodeBlobClosure* code_roots,
   766                                               OopClosure* non_root_closure) {
   767   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
   768   // "Local" "weak" refs
   769   for (int i = 0; i < _n_gens; i++) {
   770     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   771   }
   772 }
   774 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   775 void GenCollectedHeap::                                                 \
   776 oop_since_save_marks_iterate(int level,                                 \
   777                              OopClosureType* cur,                       \
   778                              OopClosureType* older) {                   \
   779   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   780   for (int i = level+1; i < n_gens(); i++) {                            \
   781     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   782   }                                                                     \
   783   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   784 }
   786 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   788 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   790 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   791   for (int i = level; i < _n_gens; i++) {
   792     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   793   }
   794   return perm_gen()->no_allocs_since_save_marks();
   795 }
   797 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   798   return _gens[0]->supports_inline_contig_alloc();
   799 }
   801 HeapWord** GenCollectedHeap::top_addr() const {
   802   return _gens[0]->top_addr();
   803 }
   805 HeapWord** GenCollectedHeap::end_addr() const {
   806   return _gens[0]->end_addr();
   807 }
   809 size_t GenCollectedHeap::unsafe_max_alloc() {
   810   return _gens[0]->unsafe_max_alloc_nogc();
   811 }
   813 // public collection interfaces
   815 void GenCollectedHeap::collect(GCCause::Cause cause) {
   816   if (should_do_concurrent_full_gc(cause)) {
   817 #ifndef SERIALGC
   818     // mostly concurrent full collection
   819     collect_mostly_concurrent(cause);
   820 #else  // SERIALGC
   821     ShouldNotReachHere();
   822 #endif // SERIALGC
   823   } else {
   824 #ifdef ASSERT
   825     if (cause == GCCause::_scavenge_alot) {
   826       // minor collection only
   827       collect(cause, 0);
   828     } else {
   829       // Stop-the-world full collection
   830       collect(cause, n_gens() - 1);
   831     }
   832 #else
   833     // Stop-the-world full collection
   834     collect(cause, n_gens() - 1);
   835 #endif
   836   }
   837 }
   839 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   840   // The caller doesn't have the Heap_lock
   841   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   842   MutexLocker ml(Heap_lock);
   843   collect_locked(cause, max_level);
   844 }
   846 // This interface assumes that it's being called by the
   847 // vm thread. It collects the heap assuming that the
   848 // heap lock is already held and that we are executing in
   849 // the context of the vm thread.
   850 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   851   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   852   assert(Heap_lock->is_locked(), "Precondition#2");
   853   GCCauseSetter gcs(this, cause);
   854   switch (cause) {
   855     case GCCause::_heap_inspection:
   856     case GCCause::_heap_dump: {
   857       HandleMark hm;
   858       do_full_collection(false,         // don't clear all soft refs
   859                          n_gens() - 1);
   860       break;
   861     }
   862     default: // XXX FIX ME
   863       ShouldNotReachHere(); // Unexpected use of this function
   864   }
   865 }
   867 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   868   // The caller has the Heap_lock
   869   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   870   collect_locked(cause, n_gens() - 1);
   871 }
   873 // this is the private collection interface
   874 // The Heap_lock is expected to be held on entry.
   876 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   877   if (_preloading_shared_classes) {
   878     warning("\nThe permanent generation is not large enough to preload "
   879             "requested classes.\nUse -XX:PermSize= to increase the initial "
   880             "size of the permanent generation.\n");
   881     vm_exit(2);
   882   }
   883   // Read the GC count while holding the Heap_lock
   884   unsigned int gc_count_before      = total_collections();
   885   unsigned int full_gc_count_before = total_full_collections();
   886   {
   887     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   888     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   889                          cause, max_level);
   890     VMThread::execute(&op);
   891   }
   892 }
   894 #ifndef SERIALGC
   895 bool GenCollectedHeap::create_cms_collector() {
   897   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   898          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   899          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   900          "Unexpected generation kinds");
   901   // Skip two header words in the block content verification
   902   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   903   CMSCollector* collector = new CMSCollector(
   904     (ConcurrentMarkSweepGeneration*)_gens[1],
   905     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   906     _rem_set->as_CardTableRS(),
   907     (ConcurrentMarkSweepPolicy*) collector_policy());
   909   if (collector == NULL || !collector->completed_initialization()) {
   910     if (collector) {
   911       delete collector;  // Be nice in embedded situation
   912     }
   913     vm_shutdown_during_initialization("Could not create CMS collector");
   914     return false;
   915   }
   916   return true;  // success
   917 }
   919 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   920   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   922   MutexLocker ml(Heap_lock);
   923   // Read the GC counts while holding the Heap_lock
   924   unsigned int full_gc_count_before = total_full_collections();
   925   unsigned int gc_count_before      = total_collections();
   926   {
   927     MutexUnlocker mu(Heap_lock);
   928     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   929     VMThread::execute(&op);
   930   }
   931 }
   932 #endif // SERIALGC
   935 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   936                                           int max_level) {
   937   int local_max_level;
   938   if (!incremental_collection_will_fail() &&
   939       gc_cause() == GCCause::_gc_locker) {
   940     local_max_level = 0;
   941   } else {
   942     local_max_level = max_level;
   943   }
   945   do_collection(true                 /* full */,
   946                 clear_all_soft_refs  /* clear_all_soft_refs */,
   947                 0                    /* size */,
   948                 false                /* is_tlab */,
   949                 local_max_level      /* max_level */);
   950   // Hack XXX FIX ME !!!
   951   // A scavenge may not have been attempted, or may have
   952   // been attempted and failed, because the old gen was too full
   953   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   954       incremental_collection_will_fail()) {
   955     if (PrintGCDetails) {
   956       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   957                              "because scavenge failed");
   958     }
   959     // This time allow the old gen to be collected as well
   960     do_collection(true                 /* full */,
   961                   clear_all_soft_refs  /* clear_all_soft_refs */,
   962                   0                    /* size */,
   963                   false                /* is_tlab */,
   964                   n_gens() - 1         /* max_level */);
   965   }
   966 }
   968 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   969 bool GenCollectedHeap::is_in(const void* p) const {
   970   #ifndef ASSERT
   971   guarantee(VerifyBeforeGC   ||
   972             VerifyDuringGC   ||
   973             VerifyBeforeExit ||
   974             PrintAssembly    ||
   975             tty->count() != 0 ||   // already printing
   976             VerifyAfterGC    ||
   977     VMError::fatal_error_in_progress(), "too expensive");
   979   #endif
   980   // This might be sped up with a cache of the last generation that
   981   // answered yes.
   982   for (int i = 0; i < _n_gens; i++) {
   983     if (_gens[i]->is_in(p)) return true;
   984   }
   985   if (_perm_gen->as_gen()->is_in(p)) return true;
   986   // Otherwise...
   987   return false;
   988 }
   990 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   991 bool GenCollectedHeap::is_in_youngest(void* p) {
   992   return _gens[0]->is_in(p);
   993 }
   995 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   996   for (int i = 0; i < _n_gens; i++) {
   997     _gens[i]->oop_iterate(cl);
   998   }
   999 }
  1001 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  1002   for (int i = 0; i < _n_gens; i++) {
  1003     _gens[i]->oop_iterate(mr, cl);
  1007 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
  1008   for (int i = 0; i < _n_gens; i++) {
  1009     _gens[i]->object_iterate(cl);
  1011   perm_gen()->object_iterate(cl);
  1014 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
  1015   for (int i = 0; i < _n_gens; i++) {
  1016     _gens[i]->safe_object_iterate(cl);
  1018   perm_gen()->safe_object_iterate(cl);
  1021 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1022   for (int i = 0; i < _n_gens; i++) {
  1023     _gens[i]->object_iterate_since_last_GC(cl);
  1027 Space* GenCollectedHeap::space_containing(const void* addr) const {
  1028   for (int i = 0; i < _n_gens; i++) {
  1029     Space* res = _gens[i]->space_containing(addr);
  1030     if (res != NULL) return res;
  1032   Space* res = perm_gen()->space_containing(addr);
  1033   if (res != NULL) return res;
  1034   // Otherwise...
  1035   assert(false, "Could not find containing space");
  1036   return NULL;
  1040 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  1041   assert(is_in_reserved(addr), "block_start of address outside of heap");
  1042   for (int i = 0; i < _n_gens; i++) {
  1043     if (_gens[i]->is_in_reserved(addr)) {
  1044       assert(_gens[i]->is_in(addr),
  1045              "addr should be in allocated part of generation");
  1046       return _gens[i]->block_start(addr);
  1049   if (perm_gen()->is_in_reserved(addr)) {
  1050     assert(perm_gen()->is_in(addr),
  1051            "addr should be in allocated part of perm gen");
  1052     return perm_gen()->block_start(addr);
  1054   assert(false, "Some generation should contain the address");
  1055   return NULL;
  1058 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  1059   assert(is_in_reserved(addr), "block_size of address outside of heap");
  1060   for (int i = 0; i < _n_gens; i++) {
  1061     if (_gens[i]->is_in_reserved(addr)) {
  1062       assert(_gens[i]->is_in(addr),
  1063              "addr should be in allocated part of generation");
  1064       return _gens[i]->block_size(addr);
  1067   if (perm_gen()->is_in_reserved(addr)) {
  1068     assert(perm_gen()->is_in(addr),
  1069            "addr should be in allocated part of perm gen");
  1070     return perm_gen()->block_size(addr);
  1072   assert(false, "Some generation should contain the address");
  1073   return 0;
  1076 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1077   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1078   assert(block_start(addr) == addr, "addr must be a block start");
  1079   for (int i = 0; i < _n_gens; i++) {
  1080     if (_gens[i]->is_in_reserved(addr)) {
  1081       return _gens[i]->block_is_obj(addr);
  1084   if (perm_gen()->is_in_reserved(addr)) {
  1085     return perm_gen()->block_is_obj(addr);
  1087   assert(false, "Some generation should contain the address");
  1088   return false;
  1091 bool GenCollectedHeap::supports_tlab_allocation() const {
  1092   for (int i = 0; i < _n_gens; i += 1) {
  1093     if (_gens[i]->supports_tlab_allocation()) {
  1094       return true;
  1097   return false;
  1100 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1101   size_t result = 0;
  1102   for (int i = 0; i < _n_gens; i += 1) {
  1103     if (_gens[i]->supports_tlab_allocation()) {
  1104       result += _gens[i]->tlab_capacity();
  1107   return result;
  1110 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1111   size_t result = 0;
  1112   for (int i = 0; i < _n_gens; i += 1) {
  1113     if (_gens[i]->supports_tlab_allocation()) {
  1114       result += _gens[i]->unsafe_max_tlab_alloc();
  1117   return result;
  1120 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1121   bool gc_overhead_limit_was_exceeded;
  1122   HeapWord* result = mem_allocate(size   /* size */,
  1123                                   false  /* is_large_noref */,
  1124                                   true   /* is_tlab */,
  1125                                   &gc_overhead_limit_was_exceeded);
  1126   return result;
  1129 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1130 // from the list headed by "*prev_ptr".
  1131 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1132   bool first = true;
  1133   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1134   ScratchBlock **smallest_ptr, *smallest;
  1135   ScratchBlock  *cur = *prev_ptr;
  1136   while (cur) {
  1137     assert(*prev_ptr == cur, "just checking");
  1138     if (first || cur->num_words < min_size) {
  1139       smallest_ptr = prev_ptr;
  1140       smallest     = cur;
  1141       min_size     = smallest->num_words;
  1142       first        = false;
  1144     prev_ptr = &cur->next;
  1145     cur     =  cur->next;
  1147   smallest      = *smallest_ptr;
  1148   *smallest_ptr = smallest->next;
  1149   return smallest;
  1152 // Sort the scratch block list headed by res into decreasing size order,
  1153 // and set "res" to the result.
  1154 static void sort_scratch_list(ScratchBlock*& list) {
  1155   ScratchBlock* sorted = NULL;
  1156   ScratchBlock* unsorted = list;
  1157   while (unsorted) {
  1158     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1159     smallest->next  = sorted;
  1160     sorted          = smallest;
  1162   list = sorted;
  1165 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1166                                                size_t max_alloc_words) {
  1167   ScratchBlock* res = NULL;
  1168   for (int i = 0; i < _n_gens; i++) {
  1169     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1171   sort_scratch_list(res);
  1172   return res;
  1175 void GenCollectedHeap::release_scratch() {
  1176   for (int i = 0; i < _n_gens; i++) {
  1177     _gens[i]->reset_scratch();
  1181 size_t GenCollectedHeap::large_typearray_limit() {
  1182   return gen_policy()->large_typearray_limit();
  1185 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1186   void do_generation(Generation* gen) {
  1187     gen->prepare_for_verify();
  1189 };
  1191 void GenCollectedHeap::prepare_for_verify() {
  1192   ensure_parsability(false);        // no need to retire TLABs
  1193   GenPrepareForVerifyClosure blk;
  1194   generation_iterate(&blk, false);
  1195   perm_gen()->prepare_for_verify();
  1199 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1200                                           bool old_to_young) {
  1201   if (old_to_young) {
  1202     for (int i = _n_gens-1; i >= 0; i--) {
  1203       cl->do_generation(_gens[i]);
  1205   } else {
  1206     for (int i = 0; i < _n_gens; i++) {
  1207       cl->do_generation(_gens[i]);
  1212 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1213   for (int i = 0; i < _n_gens; i++) {
  1214     _gens[i]->space_iterate(cl, true);
  1216   perm_gen()->space_iterate(cl, true);
  1219 bool GenCollectedHeap::is_maximal_no_gc() const {
  1220   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1221     if (!_gens[i]->is_maximal_no_gc()) {
  1222       return false;
  1225   return true;
  1228 void GenCollectedHeap::save_marks() {
  1229   for (int i = 0; i < _n_gens; i++) {
  1230     _gens[i]->save_marks();
  1232   perm_gen()->save_marks();
  1235 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1236   for (int i = 0; i <= collectedGen; i++) {
  1237     _gens[i]->compute_new_size();
  1241 GenCollectedHeap* GenCollectedHeap::heap() {
  1242   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1243   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1244   return _gch;
  1248 void GenCollectedHeap::prepare_for_compaction() {
  1249   Generation* scanning_gen = _gens[_n_gens-1];
  1250   // Start by compacting into same gen.
  1251   CompactPoint cp(scanning_gen, NULL, NULL);
  1252   while (scanning_gen != NULL) {
  1253     scanning_gen->prepare_for_compaction(&cp);
  1254     scanning_gen = prev_gen(scanning_gen);
  1258 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1259   return _gens[level]->gc_stats();
  1262 void GenCollectedHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
  1263   if (!silent) {
  1264     gclog_or_tty->print("permgen ");
  1266   perm_gen()->verify(allow_dirty);
  1267   for (int i = _n_gens-1; i >= 0; i--) {
  1268     Generation* g = _gens[i];
  1269     if (!silent) {
  1270       gclog_or_tty->print(g->name());
  1271       gclog_or_tty->print(" ");
  1273     g->verify(allow_dirty);
  1275   if (!silent) {
  1276     gclog_or_tty->print("remset ");
  1278   rem_set()->verify();
  1279   if (!silent) {
  1280      gclog_or_tty->print("ref_proc ");
  1282   ReferenceProcessor::verify();
  1285 void GenCollectedHeap::print() const { print_on(tty); }
  1286 void GenCollectedHeap::print_on(outputStream* st) const {
  1287   for (int i = 0; i < _n_gens; i++) {
  1288     _gens[i]->print_on(st);
  1290   perm_gen()->print_on(st);
  1293 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1294   if (workers() != NULL) {
  1295     workers()->threads_do(tc);
  1297 #ifndef SERIALGC
  1298   if (UseConcMarkSweepGC) {
  1299     ConcurrentMarkSweepThread::threads_do(tc);
  1301 #endif // SERIALGC
  1304 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1305 #ifndef SERIALGC
  1306   if (UseParNewGC) {
  1307     workers()->print_worker_threads_on(st);
  1309   if (UseConcMarkSweepGC) {
  1310     ConcurrentMarkSweepThread::print_all_on(st);
  1312 #endif // SERIALGC
  1315 void GenCollectedHeap::print_tracing_info() const {
  1316   if (TraceGen0Time) {
  1317     get_gen(0)->print_summary_info();
  1319   if (TraceGen1Time) {
  1320     get_gen(1)->print_summary_info();
  1324 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1325   if (PrintGCDetails && Verbose) {
  1326     gclog_or_tty->print(" "  SIZE_FORMAT
  1327                         "->" SIZE_FORMAT
  1328                         "("  SIZE_FORMAT ")",
  1329                         prev_used, used(), capacity());
  1330   } else {
  1331     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1332                         "->" SIZE_FORMAT "K"
  1333                         "("  SIZE_FORMAT "K)",
  1334                         prev_used / K, used() / K, capacity() / K);
  1338 //New method to print perm gen info with PrintGCDetails flag
  1339 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1340   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1341   perm_gen()->print_heap_change(perm_prev_used);
  1342   gclog_or_tty->print("]");
  1345 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1346  private:
  1347   bool _full;
  1348  public:
  1349   void do_generation(Generation* gen) {
  1350     gen->gc_prologue(_full);
  1352   GenGCPrologueClosure(bool full) : _full(full) {};
  1353 };
  1355 void GenCollectedHeap::gc_prologue(bool full) {
  1356   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1358   always_do_update_barrier = false;
  1359   // Fill TLAB's and such
  1360   CollectedHeap::accumulate_statistics_all_tlabs();
  1361   ensure_parsability(true);   // retire TLABs
  1363   // Call allocation profiler
  1364   AllocationProfiler::iterate_since_last_gc();
  1365   // Walk generations
  1366   GenGCPrologueClosure blk(full);
  1367   generation_iterate(&blk, false);  // not old-to-young.
  1368   perm_gen()->gc_prologue(full);
  1369 };
  1371 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1372  private:
  1373   bool _full;
  1374  public:
  1375   void do_generation(Generation* gen) {
  1376     gen->gc_epilogue(_full);
  1378   GenGCEpilogueClosure(bool full) : _full(full) {};
  1379 };
  1381 void GenCollectedHeap::gc_epilogue(bool full) {
  1382 #ifdef COMPILER2
  1383   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1384   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1385   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1386 #endif /* COMPILER2 */
  1388   resize_all_tlabs();
  1390   GenGCEpilogueClosure blk(full);
  1391   generation_iterate(&blk, false);  // not old-to-young.
  1392   perm_gen()->gc_epilogue(full);
  1394   always_do_update_barrier = UseConcMarkSweepGC;
  1395 };
  1397 #ifndef PRODUCT
  1398 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1399  private:
  1400  public:
  1401   void do_generation(Generation* gen) {
  1402     gen->record_spaces_top();
  1404 };
  1406 void GenCollectedHeap::record_gen_tops_before_GC() {
  1407   if (ZapUnusedHeapArea) {
  1408     GenGCSaveTopsBeforeGCClosure blk;
  1409     generation_iterate(&blk, false);  // not old-to-young.
  1410     perm_gen()->record_spaces_top();
  1413 #endif  // not PRODUCT
  1415 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1416  public:
  1417   void do_generation(Generation* gen) {
  1418     gen->ensure_parsability();
  1420 };
  1422 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1423   CollectedHeap::ensure_parsability(retire_tlabs);
  1424   GenEnsureParsabilityClosure ep_cl;
  1425   generation_iterate(&ep_cl, false);
  1426   perm_gen()->ensure_parsability();
  1429 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1430                                               oop obj,
  1431                                               size_t obj_size) {
  1432   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1433   HeapWord* result = NULL;
  1435   // First give each higher generation a chance to allocate the promoted object.
  1436   Generation* allocator = next_gen(gen);
  1437   if (allocator != NULL) {
  1438     do {
  1439       result = allocator->allocate(obj_size, false);
  1440     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1443   if (result == NULL) {
  1444     // Then give gen and higher generations a chance to expand and allocate the
  1445     // object.
  1446     do {
  1447       result = gen->expand_and_allocate(obj_size, false);
  1448     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1451   if (result != NULL) {
  1452     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1454   return oop(result);
  1457 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1458   jlong _time;   // in ms
  1459   jlong _now;    // in ms
  1461  public:
  1462   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1464   jlong time() { return _time; }
  1466   void do_generation(Generation* gen) {
  1467     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1469 };
  1471 jlong GenCollectedHeap::millis_since_last_gc() {
  1472   jlong now = os::javaTimeMillis();
  1473   GenTimeOfLastGCClosure tolgc_cl(now);
  1474   // iterate over generations getting the oldest
  1475   // time that a generation was collected
  1476   generation_iterate(&tolgc_cl, false);
  1477   tolgc_cl.do_generation(perm_gen());
  1478   // XXX Despite the assert above, since javaTimeMillis()
  1479   // doesnot guarantee monotonically increasing return
  1480   // values (note, i didn't say "strictly monotonic"),
  1481   // we need to guard against getting back a time
  1482   // later than now. This should be fixed by basing
  1483   // on someting like gethrtime() which guarantees
  1484   // monotonicity. Note that cond_wait() is susceptible
  1485   // to a similar problem, because its interface is
  1486   // based on absolute time in the form of the
  1487   // system time's notion of UCT. See also 4506635
  1488   // for yet another problem of similar nature. XXX
  1489   jlong retVal = now - tolgc_cl.time();
  1490   if (retVal < 0) {
  1491     NOT_PRODUCT(warning("time warp: %d", retVal);)
  1492     return 0;
  1494   return retVal;

mercurial