src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Fri, 09 May 2008 08:55:13 -0700

author
dcubed
date
Fri, 09 May 2008 08:55:13 -0700
changeset 587
c70a245cad3a
parent 435
a61af66fc99e
child 529
0834225a7916
permissions
-rw-r--r--

6670684: 4/5 SA command universe did not print out CMS space information
Summary: Forward port of Yumin's fix for 6670684 from HSX-11; Yumin verified the port was correct.
Reviewed-by: dcubed

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // ConcurrentMarkSweepGeneration is in support of a concurrent
    26 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    27 // style. We assume, for now, that this generation is always the
    28 // seniormost generation (modulo the PermGeneration), and for simplicity
    29 // in the first implementation, that this generation is a single compactible
    30 // space. Neither of these restrictions appears essential, and will be
    31 // relaxed in the future when more time is available to implement the
    32 // greater generality (and there's a need for it).
    33 //
    34 // Concurrent mode failures are currently handled by
    35 // means of a sliding mark-compact.
    37 class CMSAdaptiveSizePolicy;
    38 class CMSConcMarkingTask;
    39 class CMSGCAdaptivePolicyCounters;
    40 class ConcurrentMarkSweepGeneration;
    41 class ConcurrentMarkSweepPolicy;
    42 class ConcurrentMarkSweepThread;
    43 class CompactibleFreeListSpace;
    44 class FreeChunk;
    45 class PromotionInfo;
    46 class ScanMarkedObjectsAgainCarefullyClosure;
    48 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    49 // as well as for the mod union table (in each case only a subset of the
    50 // methods are used). This is essentially a wrapper around the BitMap class,
    51 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    52 // we have _shifter == 0. and for the mod union table we have
    53 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    54 // XXX 64-bit issues in BitMap?
    55 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    56   friend class VMStructs;
    58   HeapWord* _bmStartWord;   // base address of range covered by map
    59   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    60   const int _shifter;       // shifts to convert HeapWord to bit position
    61   VirtualSpace _virtual_space; // underlying the bit map
    62   BitMap    _bm;            // the bit map itself
    63  public:
    64   Mutex* const _lock;       // mutex protecting _bm;
    66  public:
    67   // constructor
    68   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    70   // allocates the actual storage for the map
    71   bool allocate(MemRegion mr);
    72   // field getter
    73   Mutex* lock() const { return _lock; }
    74   // locking verifier convenience function
    75   void assert_locked() const PRODUCT_RETURN;
    77   // inquiries
    78   HeapWord* startWord()   const { return _bmStartWord; }
    79   size_t    sizeInWords() const { return _bmWordSize;  }
    80   size_t    sizeInBits()  const { return _bm.size();   }
    81   // the following is one past the last word in space
    82   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    84   // reading marks
    85   bool isMarked(HeapWord* addr) const;
    86   bool par_isMarked(HeapWord* addr) const; // do not lock checks
    87   bool isUnmarked(HeapWord* addr) const;
    88   bool isAllClear() const;
    90   // writing marks
    91   void mark(HeapWord* addr);
    92   // For marking by parallel GC threads;
    93   // returns true if we did, false if another thread did
    94   bool par_mark(HeapWord* addr);
    96   void mark_range(MemRegion mr);
    97   void par_mark_range(MemRegion mr);
    98   void mark_large_range(MemRegion mr);
    99   void par_mark_large_range(MemRegion mr);
   100   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   101   void clear_range(MemRegion mr);
   102   void par_clear_range(MemRegion mr);
   103   void clear_large_range(MemRegion mr);
   104   void par_clear_large_range(MemRegion mr);
   105   void clear_all();
   106   void clear_all_incrementally();  // Not yet implemented!!
   108   NOT_PRODUCT(
   109     // checks the memory region for validity
   110     void region_invariant(MemRegion mr);
   111   )
   113   // iteration
   114   void iterate(BitMapClosure* cl) {
   115     _bm.iterate(cl);
   116   }
   117   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   118   void dirty_range_iterate_clear(MemRegionClosure* cl);
   119   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   121   // auxiliary support for iteration
   122   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   123   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   124                                             HeapWord* end_addr) const;
   125   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   126   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   127                                               HeapWord* end_addr) const;
   128   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   129   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   130                                            HeapWord* end_addr);
   132   // conversion utilities
   133   HeapWord* offsetToHeapWord(size_t offset) const;
   134   size_t    heapWordToOffset(HeapWord* addr) const;
   135   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   137   // debugging
   138   // is this address range covered by the bit-map?
   139   NOT_PRODUCT(
   140     bool covers(MemRegion mr) const;
   141     bool covers(HeapWord* start, size_t size = 0) const;
   142   )
   143   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   144 };
   146 // Represents a marking stack used by the CMS collector.
   147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   148 class CMSMarkStack: public CHeapObj  {
   149   //
   150   friend class CMSCollector;   // to get at expasion stats further below
   151   //
   153   VirtualSpace _virtual_space;  // space for the stack
   154   oop*   _base;      // bottom of stack
   155   size_t _index;     // one more than last occupied index
   156   size_t _capacity;  // max #elements
   157   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   158   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   160  protected:
   161   size_t _hit_limit;      // we hit max stack size limit
   162   size_t _failed_double;  // we failed expansion before hitting limit
   164  public:
   165   CMSMarkStack():
   166     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   167     _hit_limit(0),
   168     _failed_double(0) {}
   170   bool allocate(size_t size);
   172   size_t capacity() const { return _capacity; }
   174   oop pop() {
   175     if (!isEmpty()) {
   176       return _base[--_index] ;
   177     }
   178     return NULL;
   179   }
   181   bool push(oop ptr) {
   182     if (isFull()) {
   183       return false;
   184     } else {
   185       _base[_index++] = ptr;
   186       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   187       return true;
   188     }
   189   }
   191   bool isEmpty() const { return _index == 0; }
   192   bool isFull()  const {
   193     assert(_index <= _capacity, "buffer overflow");
   194     return _index == _capacity;
   195   }
   197   size_t length() { return _index; }
   199   // "Parallel versions" of some of the above
   200   oop par_pop() {
   201     // lock and pop
   202     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   203     return pop();
   204   }
   206   bool par_push(oop ptr) {
   207     // lock and push
   208     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   209     return push(ptr);
   210   }
   212   // Forcibly reset the stack, losing all of its contents.
   213   void reset() {
   214     _index = 0;
   215   }
   217   // Expand the stack, typically in response to an overflow condition
   218   void expand();
   220   // Compute the least valued stack element.
   221   oop least_value(HeapWord* low) {
   222      oop least = (oop)low;
   223      for (size_t i = 0; i < _index; i++) {
   224        least = MIN2(least, _base[i]);
   225      }
   226      return least;
   227   }
   229   // Exposed here to allow stack expansion in || case
   230   Mutex* par_lock() { return &_par_lock; }
   231 };
   233 class CardTableRS;
   234 class CMSParGCThreadState;
   236 class ModUnionClosure: public MemRegionClosure {
   237  protected:
   238   CMSBitMap* _t;
   239  public:
   240   ModUnionClosure(CMSBitMap* t): _t(t) { }
   241   void do_MemRegion(MemRegion mr);
   242 };
   244 class ModUnionClosurePar: public ModUnionClosure {
   245  public:
   246   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   247   void do_MemRegion(MemRegion mr);
   248 };
   250 // Survivor Chunk Array in support of parallelization of
   251 // Survivor Space rescan.
   252 class ChunkArray: public CHeapObj {
   253   size_t _index;
   254   size_t _capacity;
   255   HeapWord** _array;   // storage for array
   257  public:
   258   ChunkArray() : _index(0), _capacity(0), _array(NULL) {}
   259   ChunkArray(HeapWord** a, size_t c):
   260     _index(0), _capacity(c), _array(a) {}
   262   HeapWord** array() { return _array; }
   263   void set_array(HeapWord** a) { _array = a; }
   265   size_t capacity() { return _capacity; }
   266   void set_capacity(size_t c) { _capacity = c; }
   268   size_t end() {
   269     assert(_index < capacity(), "_index out of bounds");
   270     return _index;
   271   }  // exclusive
   273   HeapWord* nth(size_t n) {
   274     assert(n < end(), "Out of bounds access");
   275     return _array[n];
   276   }
   278   void reset() {
   279     _index = 0;
   280   }
   282   void record_sample(HeapWord* p, size_t sz) {
   283     // For now we do not do anything with the size
   284     if (_index < _capacity) {
   285       _array[_index++] = p;
   286     }
   287   }
   288 };
   290 //
   291 // Timing, allocation and promotion statistics for gc scheduling and incremental
   292 // mode pacing.  Most statistics are exponential averages.
   293 //
   294 class CMSStats VALUE_OBJ_CLASS_SPEC {
   295  private:
   296   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   298   // The following are exponential averages with factor alpha:
   299   //   avg = (100 - alpha) * avg + alpha * cur_sample
   300   //
   301   //   The durations measure:  end_time[n] - start_time[n]
   302   //   The periods measure:    start_time[n] - start_time[n-1]
   303   //
   304   // The cms period and duration include only concurrent collections; time spent
   305   // in foreground cms collections due to System.gc() or because of a failure to
   306   // keep up are not included.
   307   //
   308   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   309   // real value, but is used only after the first period.  A value of 100 is
   310   // used for the first sample so it gets the entire weight.
   311   unsigned int _saved_alpha; // 0-100
   312   unsigned int _gc0_alpha;
   313   unsigned int _cms_alpha;
   315   double _gc0_duration;
   316   double _gc0_period;
   317   size_t _gc0_promoted;         // bytes promoted per gc0
   318   double _cms_duration;
   319   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   320   double _cms_duration_per_mb;
   321   double _cms_period;
   322   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   324   // Timers.
   325   elapsedTimer _cms_timer;
   326   TimeStamp    _gc0_begin_time;
   327   TimeStamp    _cms_begin_time;
   328   TimeStamp    _cms_end_time;
   330   // Snapshots of the amount used in the CMS generation.
   331   size_t _cms_used_at_gc0_begin;
   332   size_t _cms_used_at_gc0_end;
   333   size_t _cms_used_at_cms_begin;
   335   // Used to prevent the duty cycle from being reduced in the middle of a cms
   336   // cycle.
   337   bool _allow_duty_cycle_reduction;
   339   enum {
   340     _GC0_VALID = 0x1,
   341     _CMS_VALID = 0x2,
   342     _ALL_VALID = _GC0_VALID | _CMS_VALID
   343   };
   345   unsigned int _valid_bits;
   347   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   349  protected:
   351   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   352   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   353   // as a recommended value).
   354   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   355                                              unsigned int new_duty_cycle);
   356   unsigned int icms_update_duty_cycle_impl();
   358  public:
   359   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   360            unsigned int alpha = CMSExpAvgFactor);
   362   // Whether or not the statistics contain valid data; higher level statistics
   363   // cannot be called until this returns true (they require at least one young
   364   // gen and one cms cycle to have completed).
   365   bool valid() const;
   367   // Record statistics.
   368   void record_gc0_begin();
   369   void record_gc0_end(size_t cms_gen_bytes_used);
   370   void record_cms_begin();
   371   void record_cms_end();
   373   // Allow management of the cms timer, which must be stopped/started around
   374   // yield points.
   375   elapsedTimer& cms_timer()     { return _cms_timer; }
   376   void start_cms_timer()        { _cms_timer.start(); }
   377   void stop_cms_timer()         { _cms_timer.stop(); }
   379   // Basic statistics; units are seconds or bytes.
   380   double gc0_period() const     { return _gc0_period; }
   381   double gc0_duration() const   { return _gc0_duration; }
   382   size_t gc0_promoted() const   { return _gc0_promoted; }
   383   double cms_period() const          { return _cms_period; }
   384   double cms_duration() const        { return _cms_duration; }
   385   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   386   size_t cms_allocated() const       { return _cms_allocated; }
   388   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   390   // Seconds since the last background cms cycle began or ended.
   391   double cms_time_since_begin() const;
   392   double cms_time_since_end() const;
   394   // Higher level statistics--caller must check that valid() returns true before
   395   // calling.
   397   // Returns bytes promoted per second of wall clock time.
   398   double promotion_rate() const;
   400   // Returns bytes directly allocated per second of wall clock time.
   401   double cms_allocation_rate() const;
   403   // Rate at which space in the cms generation is being consumed (sum of the
   404   // above two).
   405   double cms_consumption_rate() const;
   407   // Returns an estimate of the number of seconds until the cms generation will
   408   // fill up, assuming no collection work is done.
   409   double time_until_cms_gen_full() const;
   411   // Returns an estimate of the number of seconds remaining until
   412   // the cms generation collection should start.
   413   double time_until_cms_start() const;
   415   // End of higher level statistics.
   417   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   418   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   420   // Update the duty cycle and return the new value.
   421   unsigned int icms_update_duty_cycle();
   423   // Debugging.
   424   void print_on(outputStream* st) const PRODUCT_RETURN;
   425   void print() const { print_on(gclog_or_tty); }
   426 };
   428 // A closure related to weak references processing which
   429 // we embed in the CMSCollector, since we need to pass
   430 // it to the reference processor for secondary filtering
   431 // of references based on reachability of referent;
   432 // see role of _is_alive_non_header closure in the
   433 // ReferenceProcessor class.
   434 // For objects in the CMS generation, this closure checks
   435 // if the object is "live" (reachable). Used in weak
   436 // reference processing.
   437 class CMSIsAliveClosure: public BoolObjectClosure {
   438   MemRegion  _span;
   439   const CMSBitMap* _bit_map;
   441   friend class CMSCollector;
   442  protected:
   443   void set_span(MemRegion span) { _span = span; }
   444  public:
   445   CMSIsAliveClosure(CMSBitMap* bit_map):
   446     _bit_map(bit_map) { }
   448   CMSIsAliveClosure(MemRegion span,
   449                     CMSBitMap* bit_map):
   450     _span(span),
   451     _bit_map(bit_map) { }
   452   void do_object(oop obj) {
   453     assert(false, "not to be invoked");
   454   }
   455   bool do_object_b(oop obj);
   456 };
   459 // Implements AbstractRefProcTaskExecutor for CMS.
   460 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   461 public:
   463   CMSRefProcTaskExecutor(CMSCollector& collector)
   464     : _collector(collector)
   465   { }
   467   // Executes a task using worker threads.
   468   virtual void execute(ProcessTask& task);
   469   virtual void execute(EnqueueTask& task);
   470 private:
   471   CMSCollector& _collector;
   472 };
   475 class CMSCollector: public CHeapObj {
   476   friend class VMStructs;
   477   friend class ConcurrentMarkSweepThread;
   478   friend class ConcurrentMarkSweepGeneration;
   479   friend class CompactibleFreeListSpace;
   480   friend class CMSParRemarkTask;
   481   friend class CMSConcMarkingTask;
   482   friend class CMSRefProcTaskProxy;
   483   friend class CMSRefProcTaskExecutor;
   484   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   485   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   486   friend class PushOrMarkClosure;             // to access _restart_addr
   487   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   488   friend class MarkFromRootsClosure;          //  -- ditto --
   489                                               // ... and for clearing cards
   490   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   491                                               // ... and for clearing cards
   492   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   493   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   494   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   495   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   496   friend class PushAndMarkClosure;            //  -- ditto --
   497   friend class Par_PushAndMarkClosure;        //  -- ditto --
   498   friend class CMSKeepAliveClosure;           //  -- ditto --
   499   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   500   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   501   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   502   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   503   friend class VM_CMS_Operation;
   504   friend class VM_CMS_Initial_Mark;
   505   friend class VM_CMS_Final_Remark;
   507  private:
   508   jlong _time_of_last_gc;
   509   void update_time_of_last_gc(jlong now) {
   510     _time_of_last_gc = now;
   511   }
   513   OopTaskQueueSet* _task_queues;
   515   // Overflow list of grey objects, threaded through mark-word
   516   // Manipulated with CAS in the parallel/multi-threaded case.
   517   oop _overflow_list;
   518   // The following array-pair keeps track of mark words
   519   // displaced for accomodating overflow list above.
   520   // This code will likely be revisited under RFE#4922830.
   521   GrowableArray<oop>*     _preserved_oop_stack;
   522   GrowableArray<markOop>* _preserved_mark_stack;
   524   int*             _hash_seed;
   526   // In support of multi-threaded concurrent phases
   527   YieldingFlexibleWorkGang* _conc_workers;
   529   // Performance Counters
   530   CollectorCounters* _gc_counters;
   532   // Initialization Errors
   533   bool _completed_initialization;
   535   // In support of ExplicitGCInvokesConcurrent
   536   static   bool _full_gc_requested;
   537   unsigned int  _collection_count_start;
   538   // Should we unload classes this concurrent cycle?
   539   // Set in response to a concurrent full gc request.
   540   bool _unload_classes;
   541   bool _unloaded_classes_last_cycle;
   542   // Did we (allow) unload classes in the previous concurrent cycle?
   543   bool cms_unloaded_classes_last_cycle() const {
   544     return _unloaded_classes_last_cycle || CMSClassUnloadingEnabled;
   545   }
   547   // Verification support
   548   CMSBitMap     _verification_mark_bm;
   549   void verify_after_remark_work_1();
   550   void verify_after_remark_work_2();
   552   // true if any verification flag is on.
   553   bool _verifying;
   554   bool verifying() const { return _verifying; }
   555   void set_verifying(bool v) { _verifying = v; }
   557   // Collector policy
   558   ConcurrentMarkSweepPolicy* _collector_policy;
   559   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   561   // Check whether the gc time limit has been
   562   // exceeded and set the size policy flag
   563   // appropriately.
   564   void check_gc_time_limit();
   565   // XXX Move these to CMSStats ??? FIX ME !!!
   566   elapsedTimer _sweep_timer;
   567   AdaptivePaddedAverage _sweep_estimate;
   569  protected:
   570   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   571   ConcurrentMarkSweepGeneration* _permGen; // perm gen
   572   MemRegion                      _span;    // span covering above two
   573   CardTableRS*                   _ct;      // card table
   575   // CMS marking support structures
   576   CMSBitMap     _markBitMap;
   577   CMSBitMap     _modUnionTable;
   578   CMSMarkStack  _markStack;
   579   CMSMarkStack  _revisitStack;            // used to keep track of klassKlass objects
   580                                           // to revisit
   581   CMSBitMap     _perm_gen_verify_bit_map; // Mark bit map for perm gen verification support.
   583   HeapWord*     _restart_addr; // in support of marking stack overflow
   584   void          lower_restart_addr(HeapWord* low);
   586   // Counters in support of marking stack / work queue overflow handling:
   587   // a non-zero value indicates certain types of overflow events during
   588   // the current CMS cycle and could lead to stack resizing efforts at
   589   // an opportune future time.
   590   size_t        _ser_pmc_preclean_ovflw;
   591   size_t        _ser_pmc_remark_ovflw;
   592   size_t        _par_pmc_remark_ovflw;
   593   size_t        _ser_kac_ovflw;
   594   size_t        _par_kac_ovflw;
   595   NOT_PRODUCT(size_t _num_par_pushes;)
   597   // ("Weak") Reference processing support
   598   ReferenceProcessor*            _ref_processor;
   599   CMSIsAliveClosure              _is_alive_closure;
   600       // keep this textually after _markBitMap; c'tor dependency
   602   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   603   ModUnionClosure    _modUnionClosure;
   604   ModUnionClosurePar _modUnionClosurePar;
   606   // CMS abstract state machine
   607   // initial_state: Idling
   608   // next_state(Idling)            = {Marking}
   609   // next_state(Marking)           = {Precleaning, Sweeping}
   610   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   611   // next_state(AbortablePreclean) = {FinalMarking}
   612   // next_state(FinalMarking)      = {Sweeping}
   613   // next_state(Sweeping)          = {Resizing}
   614   // next_state(Resizing)          = {Resetting}
   615   // next_state(Resetting)         = {Idling}
   616   // The numeric values below are chosen so that:
   617   // . _collectorState <= Idling ==  post-sweep && pre-mark
   618   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   619   //                                            precleaning || abortablePrecleanb
   620   enum CollectorState {
   621     Resizing            = 0,
   622     Resetting           = 1,
   623     Idling              = 2,
   624     InitialMarking      = 3,
   625     Marking             = 4,
   626     Precleaning         = 5,
   627     AbortablePreclean   = 6,
   628     FinalMarking        = 7,
   629     Sweeping            = 8
   630   };
   631   static CollectorState _collectorState;
   633   // State related to prologue/epilogue invocation for my generations
   634   bool _between_prologue_and_epilogue;
   636   // Signalling/State related to coordination between fore- and backgroud GC
   637   // Note: When the baton has been passed from background GC to foreground GC,
   638   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   639   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   640                                  // wants to go active
   641   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   642                                  // yet passed the baton to the foreground GC
   644   // Support for CMSScheduleRemark (abortable preclean)
   645   bool _abort_preclean;
   646   bool _start_sampling;
   648   int    _numYields;
   649   size_t _numDirtyCards;
   650   uint   _sweepCount;
   651   // number of full gc's since the last concurrent gc.
   652   uint   _full_gcs_since_conc_gc;
   654   // if occupancy exceeds this, start a new gc cycle
   655   double _initiatingOccupancy;
   656   // occupancy used for bootstrapping stats
   657   double _bootstrap_occupancy;
   659   // timer
   660   elapsedTimer _timer;
   662   // Timing, allocation and promotion statistics, used for scheduling.
   663   CMSStats      _stats;
   665   // Allocation limits installed in the young gen, used only in
   666   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   667   // these limits, the cms generation is notified and the cms thread is started
   668   // or stopped, respectively.
   669   HeapWord*     _icms_start_limit;
   670   HeapWord*     _icms_stop_limit;
   672   enum CMS_op_type {
   673     CMS_op_checkpointRootsInitial,
   674     CMS_op_checkpointRootsFinal
   675   };
   677   void do_CMS_operation(CMS_op_type op);
   678   bool stop_world_and_do(CMS_op_type op);
   680   OopTaskQueueSet* task_queues() { return _task_queues; }
   681   int*             hash_seed(int i) { return &_hash_seed[i]; }
   682   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   684   // Support for parallelizing Eden rescan in CMS remark phase
   685   void sample_eden(); // ... sample Eden space top
   687  private:
   688   // Support for parallelizing young gen rescan in CMS remark phase
   689   Generation* _young_gen;  // the younger gen
   690   HeapWord** _top_addr;    // ... Top of Eden
   691   HeapWord** _end_addr;    // ... End of Eden
   692   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   693   size_t     _eden_chunk_index; // ... top (exclusive) of array
   694   size_t     _eden_chunk_capacity;  // ... max entries in array
   696   // Support for parallelizing survivor space rescan
   697   HeapWord** _survivor_chunk_array;
   698   size_t     _survivor_chunk_index;
   699   size_t     _survivor_chunk_capacity;
   700   size_t*    _cursor;
   701   ChunkArray* _survivor_plab_array;
   703   // Support for marking stack overflow handling
   704   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   705   bool par_take_from_overflow_list(size_t num, OopTaskQueue* to_work_q);
   706   void push_on_overflow_list(oop p);
   707   void par_push_on_overflow_list(oop p);
   708   // the following is, obviously, not, in general, "MT-stable"
   709   bool overflow_list_is_empty() const;
   711   void preserve_mark_if_necessary(oop p);
   712   void par_preserve_mark_if_necessary(oop p);
   713   void preserve_mark_work(oop p, markOop m);
   714   void restore_preserved_marks_if_any();
   715   NOT_PRODUCT(bool no_preserved_marks() const;)
   716   // in support of testing overflow code
   717   NOT_PRODUCT(int _overflow_counter;)
   718   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   719   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   721   int _roots_scanning_options;
   722   int roots_scanning_options() const      { return _roots_scanning_options; }
   723   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   724   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   726   // CMS work methods
   727   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   729   // a return value of false indicates failure due to stack overflow
   730   bool markFromRootsWork(bool asynch);  // concurrent marking work
   732  public:   // FIX ME!!! only for testing
   733   bool do_marking_st(bool asynch);      // single-threaded marking
   734   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   736  private:
   738   // concurrent precleaning work
   739   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   740                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   741   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   742                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   743   // Does precleaning work, returning a quantity indicative of
   744   // the amount of "useful work" done.
   745   size_t preclean_work(bool clean_refs, bool clean_survivors);
   746   void abortable_preclean(); // Preclean while looking for possible abort
   747   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   748   // Helper function for above; merge-sorts the per-thread plab samples
   749   void merge_survivor_plab_arrays(ContiguousSpace* surv);
   750   // Resets (i.e. clears) the per-thread plab sample vectors
   751   void reset_survivor_plab_arrays();
   753   // final (second) checkpoint work
   754   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   755                                 bool init_mark_was_synchronous);
   756   // work routine for parallel version of remark
   757   void do_remark_parallel();
   758   // work routine for non-parallel version of remark
   759   void do_remark_non_parallel();
   760   // reference processing work routine (during second checkpoint)
   761   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   763   // concurrent sweeping work
   764   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   766   // (concurrent) resetting of support data structures
   767   void reset(bool asynch);
   769   // Clear _expansion_cause fields of constituent generations
   770   void clear_expansion_cause();
   772   // An auxilliary method used to record the ends of
   773   // used regions of each generation to limit the extent of sweep
   774   void save_sweep_limits();
   776   // Resize the generations included in the collector.
   777   void compute_new_size();
   779   // A work method used by foreground collection to determine
   780   // what type of collection (compacting or not, continuing or fresh)
   781   // it should do.
   782   void decide_foreground_collection_type(bool clear_all_soft_refs,
   783     bool* should_compact, bool* should_start_over);
   785   // A work method used by the foreground collector to do
   786   // a mark-sweep-compact.
   787   void do_compaction_work(bool clear_all_soft_refs);
   789   // A work method used by the foreground collector to do
   790   // a mark-sweep, after taking over from a possibly on-going
   791   // concurrent mark-sweep collection.
   792   void do_mark_sweep_work(bool clear_all_soft_refs,
   793     CollectorState first_state, bool should_start_over);
   795   // If the backgrould GC is active, acquire control from the background
   796   // GC and do the collection.
   797   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   799   // For synchronizing passing of control from background to foreground
   800   // GC.  waitForForegroundGC() is called by the background
   801   // collector.  It if had to wait for a foreground collection,
   802   // it returns true and the background collection should assume
   803   // that the collection was finished by the foreground
   804   // collector.
   805   bool waitForForegroundGC();
   807   // Incremental mode triggering:  recompute the icms duty cycle and set the
   808   // allocation limits in the young gen.
   809   void icms_update_allocation_limits();
   811   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   812   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   813   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   815   void setup_cms_unloading_and_verification_state();
   816  public:
   817   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   818                ConcurrentMarkSweepGeneration* permGen,
   819                CardTableRS*                   ct,
   820                ConcurrentMarkSweepPolicy*     cp);
   821   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   823   ReferenceProcessor* ref_processor() { return _ref_processor; }
   824   void ref_processor_init();
   826   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   827   static CollectorState abstract_state() { return _collectorState;  }
   828   double initiatingOccupancy() const { return _initiatingOccupancy; }
   830   bool should_abort_preclean() const; // Whether preclean should be aborted.
   831   size_t get_eden_used() const;
   832   size_t get_eden_capacity() const;
   834   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   836   // locking checks
   837   NOT_PRODUCT(static bool have_cms_token();)
   839   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   840   bool shouldConcurrentCollect();
   842   void collect(bool   full,
   843                bool   clear_all_soft_refs,
   844                size_t size,
   845                bool   tlab);
   846   void collect_in_background(bool clear_all_soft_refs);
   847   void collect_in_foreground(bool clear_all_soft_refs);
   849   // In support of ExplicitGCInvokesConcurrent
   850   static void request_full_gc(unsigned int full_gc_count);
   851   // Should we unload classes in a particular concurrent cycle?
   852   bool cms_should_unload_classes() const {
   853     assert(!_unload_classes ||  ExplicitGCInvokesConcurrentAndUnloadsClasses,
   854            "Inconsistency; see CR 6541037");
   855     return _unload_classes || CMSClassUnloadingEnabled;
   856   }
   858   void direct_allocated(HeapWord* start, size_t size);
   860   // Object is dead if not marked and current phase is sweeping.
   861   bool is_dead_obj(oop obj) const;
   863   // After a promotion (of "start"), do any necessary marking.
   864   // If "par", then it's being done by a parallel GC thread.
   865   // The last two args indicate if we need precise marking
   866   // and if so the size of the object so it can be dirtied
   867   // in its entirety.
   868   void promoted(bool par, HeapWord* start,
   869                 bool is_obj_array, size_t obj_size);
   871   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   872                                      size_t word_size);
   874   void getFreelistLocks() const;
   875   void releaseFreelistLocks() const;
   876   bool haveFreelistLocks() const;
   878   // GC prologue and epilogue
   879   void gc_prologue(bool full);
   880   void gc_epilogue(bool full);
   882   jlong time_of_last_gc(jlong now) {
   883     if (_collectorState <= Idling) {
   884       // gc not in progress
   885       return _time_of_last_gc;
   886     } else {
   887       // collection in progress
   888       return now;
   889     }
   890   }
   892   // Support for parallel remark of survivor space
   893   void* get_data_recorder(int thr_num);
   895   CMSBitMap* markBitMap()  { return &_markBitMap; }
   896   void directAllocated(HeapWord* start, size_t size);
   898   // main CMS steps and related support
   899   void checkpointRootsInitial(bool asynch);
   900   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   901                                     // due to stack overflow
   902   void preclean();
   903   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   904                             bool init_mark_was_synchronous);
   905   void sweep(bool asynch);
   907   // Check that the currently executing thread is the expected
   908   // one (foreground collector or background collector).
   909   void check_correct_thread_executing()        PRODUCT_RETURN;
   910   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   912   bool is_cms_reachable(HeapWord* addr);
   914   // Performance Counter Support
   915   CollectorCounters* counters()    { return _gc_counters; }
   917   // timer stuff
   918   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   919   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   920   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   921   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   923   int  yields()          { return _numYields; }
   924   void resetYields()     { _numYields = 0;    }
   925   void incrementYields() { _numYields++;      }
   926   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   927   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   928   size_t  numDirtyCards()                 { return _numDirtyCards; }
   930   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   931   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   932   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
   933   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
   934   uint  sweepCount() const             { return _sweepCount; }
   935   void incrementSweepCount()           { _sweepCount++; }
   937   // Timers/stats for gc scheduling and incremental mode pacing.
   938   CMSStats& stats() { return _stats; }
   940   // Convenience methods that check whether CMSIncrementalMode is enabled and
   941   // forward to the corresponding methods in ConcurrentMarkSweepThread.
   942   static void start_icms();
   943   static void stop_icms();    // Called at the end of the cms cycle.
   944   static void disable_icms(); // Called before a foreground collection.
   945   static void enable_icms();  // Called after a foreground collection.
   946   void icms_wait();          // Called at yield points.
   948   // Adaptive size policy
   949   CMSAdaptiveSizePolicy* size_policy();
   950   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
   952   // debugging
   953   void verify(bool);
   954   bool verify_after_remark();
   955   void verify_ok_to_terminate() const PRODUCT_RETURN;
   956   void verify_work_stacks_empty() const PRODUCT_RETURN;
   957   void verify_overflow_empty() const PRODUCT_RETURN;
   959   // convenience methods in support of debugging
   960   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
   961   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
   963   // accessors
   964   CMSMarkStack* verification_mark_stack() { return &_markStack; }
   965   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
   967   // Get the bit map with a perm gen "deadness" information.
   968   CMSBitMap* perm_gen_verify_bit_map()       { return &_perm_gen_verify_bit_map; }
   970   // Initialization errors
   971   bool completed_initialization() { return _completed_initialization; }
   972 };
   974 class CMSExpansionCause : public AllStatic  {
   975  public:
   976   enum Cause {
   977     _no_expansion,
   978     _satisfy_free_ratio,
   979     _satisfy_promotion,
   980     _satisfy_allocation,
   981     _allocate_par_lab,
   982     _allocate_par_spooling_space,
   983     _adaptive_size_policy
   984   };
   985   // Return a string describing the cause of the expansion.
   986   static const char* to_string(CMSExpansionCause::Cause cause);
   987 };
   989 class ConcurrentMarkSweepGeneration: public CardGeneration {
   990   friend class VMStructs;
   991   friend class ConcurrentMarkSweepThread;
   992   friend class ConcurrentMarkSweep;
   993   friend class CMSCollector;
   994  protected:
   995   static CMSCollector*       _collector; // the collector that collects us
   996   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
   998   // Performance Counters
   999   GenerationCounters*      _gen_counters;
  1000   GSpaceCounters*          _space_counters;
  1002   // Words directly allocated, used by CMSStats.
  1003   size_t _direct_allocated_words;
  1005   // Non-product stat counters
  1006   NOT_PRODUCT(
  1007     int _numObjectsPromoted;
  1008     int _numWordsPromoted;
  1009     int _numObjectsAllocated;
  1010     int _numWordsAllocated;
  1013   // Used for sizing decisions
  1014   bool _incremental_collection_failed;
  1015   bool incremental_collection_failed() {
  1016     return _incremental_collection_failed;
  1018   void set_incremental_collection_failed() {
  1019     _incremental_collection_failed = true;
  1021   void clear_incremental_collection_failed() {
  1022     _incremental_collection_failed = false;
  1025  private:
  1026   // For parallel young-gen GC support.
  1027   CMSParGCThreadState** _par_gc_thread_states;
  1029   // Reason generation was expanded
  1030   CMSExpansionCause::Cause _expansion_cause;
  1032   // accessors
  1033   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1034   CMSExpansionCause::Cause expansion_cause() { return _expansion_cause; }
  1036   // In support of MinChunkSize being larger than min object size
  1037   const double _dilatation_factor;
  1039   enum CollectionTypes {
  1040     Concurrent_collection_type          = 0,
  1041     MS_foreground_collection_type       = 1,
  1042     MSC_foreground_collection_type      = 2,
  1043     Unknown_collection_type             = 3
  1044   };
  1046   CollectionTypes _debug_collection_type;
  1048  protected:
  1049   // Grow generation by specified size (returns false if unable to grow)
  1050   bool grow_by(size_t bytes);
  1051   // Grow generation to reserved size.
  1052   bool grow_to_reserved();
  1053   // Shrink generation by specified size (returns false if unable to shrink)
  1054   virtual void shrink_by(size_t bytes);
  1056   // Update statistics for GC
  1057   virtual void update_gc_stats(int level, bool full);
  1059   // Maximum available space in the generation (including uncommitted)
  1060   // space.
  1061   size_t max_available() const;
  1063  public:
  1064   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1065                                 int level, CardTableRS* ct,
  1066                                 bool use_adaptive_freelists,
  1067                                 FreeBlockDictionary::DictionaryChoice);
  1069   // Accessors
  1070   CMSCollector* collector() const { return _collector; }
  1071   static void set_collector(CMSCollector* collector) {
  1072     assert(_collector == NULL, "already set");
  1073     _collector = collector;
  1075   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1077   Mutex* freelistLock() const;
  1079   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1081   // Adaptive size policy
  1082   CMSAdaptiveSizePolicy* size_policy();
  1084   bool refs_discovery_is_atomic() const { return false; }
  1085   bool refs_discovery_is_mt()     const {
  1086     // Note: CMS does MT-discovery during the parallel-remark
  1087     // phases. Use ReferenceProcessorMTMutator to make refs
  1088     // discovery MT-safe during such phases or other parallel
  1089     // discovery phases in the future. This may all go away
  1090     // if/when we decide that refs discovery is sufficiently
  1091     // rare that the cost of the CAS's involved is in the
  1092     // noise. That's a measurement that should be done, and
  1093     // the code simplified if that turns out to be the case.
  1094     return false;
  1097   // Override
  1098   virtual void ref_processor_init();
  1100   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1102   // Space enquiries
  1103   size_t capacity() const;
  1104   size_t used() const;
  1105   size_t free() const;
  1106   double occupancy()      { return ((double)used())/((double)capacity()); }
  1107   size_t contiguous_available() const;
  1108   size_t unsafe_max_alloc_nogc() const;
  1110   // over-rides
  1111   MemRegion used_region() const;
  1112   MemRegion used_region_at_save_marks() const;
  1114   // Does a "full" (forced) collection invoked on this generation collect
  1115   // all younger generations as well? Note that the second conjunct is a
  1116   // hack to allow the collection of the younger gen first if the flag is
  1117   // set. This is better than using th policy's should_collect_gen0_first()
  1118   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1119   virtual bool full_collects_younger_generations() const {
  1120     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1123   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1125   // Support for compaction
  1126   CompactibleSpace* first_compaction_space() const;
  1127   // Adjust quantites in the generation affected by
  1128   // the compaction.
  1129   void reset_after_compaction();
  1131   // Allocation support
  1132   HeapWord* allocate(size_t size, bool tlab);
  1133   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1134   oop       promote(oop obj, size_t obj_size, oop* ref);
  1135   HeapWord* par_allocate(size_t size, bool tlab) {
  1136     return allocate(size, tlab);
  1139   // Incremental mode triggering.
  1140   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1141                                      size_t word_size);
  1143   // Used by CMSStats to track direct allocation.  The value is sampled and
  1144   // reset after each young gen collection.
  1145   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1146   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1148   // Overrides for parallel promotion.
  1149   virtual oop par_promote(int thread_num,
  1150                           oop obj, markOop m, size_t word_sz);
  1151   // This one should not be called for CMS.
  1152   virtual void par_promote_alloc_undo(int thread_num,
  1153                                       HeapWord* obj, size_t word_sz);
  1154   virtual void par_promote_alloc_done(int thread_num);
  1155   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1157   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
  1158     bool younger_handles_promotion_failure) const;
  1160   bool should_collect(bool full, size_t size, bool tlab);
  1161     // XXXPERM
  1162   bool shouldConcurrentCollect(double initiatingOccupancy); // XXXPERM
  1163   void collect(bool   full,
  1164                bool   clear_all_soft_refs,
  1165                size_t size,
  1166                bool   tlab);
  1168   HeapWord* expand_and_allocate(size_t word_size,
  1169                                 bool tlab,
  1170                                 bool parallel = false);
  1172   // GC prologue and epilogue
  1173   void gc_prologue(bool full);
  1174   void gc_prologue_work(bool full, bool registerClosure,
  1175                         ModUnionClosure* modUnionClosure);
  1176   void gc_epilogue(bool full);
  1177   void gc_epilogue_work(bool full);
  1179   // Time since last GC of this generation
  1180   jlong time_of_last_gc(jlong now) {
  1181     return collector()->time_of_last_gc(now);
  1183   void update_time_of_last_gc(jlong now) {
  1184     collector()-> update_time_of_last_gc(now);
  1187   // Allocation failure
  1188   void expand(size_t bytes, size_t expand_bytes,
  1189     CMSExpansionCause::Cause cause);
  1190   void shrink(size_t bytes);
  1191   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1192   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1194   // Iteration support and related enquiries
  1195   void save_marks();
  1196   bool no_allocs_since_save_marks();
  1197   void object_iterate_since_last_GC(ObjectClosure* cl);
  1198   void younger_refs_iterate(OopsInGenClosure* cl);
  1200   // Iteration support specific to CMS generations
  1201   void save_sweep_limit();
  1203   // More iteration support
  1204   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
  1205   virtual void oop_iterate(OopClosure* cl);
  1206   virtual void object_iterate(ObjectClosure* cl);
  1208   // Need to declare the full complement of closures, whether we'll
  1209   // override them or not, or get message from the compiler:
  1210   //   oop_since_save_marks_iterate_nv hides virtual function...
  1211   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1212     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1213   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1215   // Smart allocation  XXX -- move to CFLSpace?
  1216   void setNearLargestChunk();
  1217   bool isNearLargestChunk(HeapWord* addr);
  1219   // Get the chunk at the end of the space.  Delagates to
  1220   // the space.
  1221   FreeChunk* find_chunk_at_end();
  1223   // Overriding of unused functionality (sharing not yet supported with CMS)
  1224   void pre_adjust_pointers();
  1225   void post_compact();
  1227   // Debugging
  1228   void prepare_for_verify();
  1229   void verify(bool allow_dirty);
  1230   void print_statistics()               PRODUCT_RETURN;
  1232   // Performance Counters support
  1233   virtual void update_counters();
  1234   virtual void update_counters(size_t used);
  1235   void initialize_performance_counters();
  1236   CollectorCounters* counters()  { return collector()->counters(); }
  1238   // Support for parallel remark of survivor space
  1239   void* get_data_recorder(int thr_num) {
  1240     //Delegate to collector
  1241     return collector()->get_data_recorder(thr_num);
  1244   // Printing
  1245   const char* name() const;
  1246   virtual const char* short_name() const { return "CMS"; }
  1247   void        print() const;
  1248   void printOccupancy(const char* s);
  1249   bool must_be_youngest() const { return false; }
  1250   bool must_be_oldest()   const { return true; }
  1252   void compute_new_size();
  1254   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1255   void rotate_debug_collection_type();
  1256 };
  1258 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1260   // Return the size policy from the heap's collector
  1261   // policy casted to CMSAdaptiveSizePolicy*.
  1262   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1264   // Resize the generation based on the adaptive size
  1265   // policy.
  1266   void resize(size_t cur_promo, size_t desired_promo);
  1268   // Return the GC counters from the collector policy
  1269   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1271   virtual void shrink_by(size_t bytes);
  1273  public:
  1274   virtual void compute_new_size();
  1275   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1276                                   int level, CardTableRS* ct,
  1277                                   bool use_adaptive_freelists,
  1278                                   FreeBlockDictionary::DictionaryChoice
  1279                                     dictionaryChoice) :
  1280     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1281       use_adaptive_freelists, dictionaryChoice) {}
  1283   virtual const char* short_name() const { return "ASCMS"; }
  1284   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1286   virtual void update_counters();
  1287   virtual void update_counters(size_t used);
  1288 };
  1290 //
  1291 // Closures of various sorts used by CMS to accomplish its work
  1292 //
  1294 // This closure is used to check that a certain set of oops is empty.
  1295 class FalseClosure: public OopClosure {
  1296  public:
  1297   void do_oop(oop* p) {
  1298     guarantee(false, "Should be an empty set");
  1300 };
  1302 // This closure is used to do concurrent marking from the roots
  1303 // following the first checkpoint.
  1304 class MarkFromRootsClosure: public BitMapClosure {
  1305   CMSCollector*  _collector;
  1306   MemRegion      _span;
  1307   CMSBitMap*     _bitMap;
  1308   CMSBitMap*     _mut;
  1309   CMSMarkStack*  _markStack;
  1310   CMSMarkStack*  _revisitStack;
  1311   bool           _yield;
  1312   int            _skipBits;
  1313   HeapWord*      _finger;
  1314   HeapWord*      _threshold;
  1315   DEBUG_ONLY(bool _verifying;)
  1317  public:
  1318   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1319                        CMSBitMap* bitMap,
  1320                        CMSMarkStack*  markStack,
  1321                        CMSMarkStack*  revisitStack,
  1322                        bool should_yield, bool verifying = false);
  1323   void do_bit(size_t offset);
  1324   void reset(HeapWord* addr);
  1325   inline void do_yield_check();
  1327  private:
  1328   void scanOopsInOop(HeapWord* ptr);
  1329   void do_yield_work();
  1330 };
  1332 // This closure is used to do concurrent multi-threaded
  1333 // marking from the roots following the first checkpoint.
  1334 // XXX This should really be a subclass of The serial version
  1335 // above, but i have not had the time to refactor things cleanly.
  1336 // That willbe done for Dolphin.
  1337 class Par_MarkFromRootsClosure: public BitMapClosure {
  1338   CMSCollector*  _collector;
  1339   MemRegion      _whole_span;
  1340   MemRegion      _span;
  1341   CMSBitMap*     _bit_map;
  1342   CMSBitMap*     _mut;
  1343   OopTaskQueue*  _work_queue;
  1344   CMSMarkStack*  _overflow_stack;
  1345   CMSMarkStack*  _revisit_stack;
  1346   bool           _yield;
  1347   int            _skip_bits;
  1348   HeapWord*      _finger;
  1349   HeapWord*      _threshold;
  1350   CMSConcMarkingTask* _task;
  1351  public:
  1352   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1353                        MemRegion span,
  1354                        CMSBitMap* bit_map,
  1355                        OopTaskQueue* work_queue,
  1356                        CMSMarkStack*  overflow_stack,
  1357                        CMSMarkStack*  revisit_stack,
  1358                        bool should_yield);
  1359   void do_bit(size_t offset);
  1360   inline void do_yield_check();
  1362  private:
  1363   void scan_oops_in_oop(HeapWord* ptr);
  1364   void do_yield_work();
  1365   bool get_work_from_overflow_stack();
  1366 };
  1368 // The following closures are used to do certain kinds of verification of
  1369 // CMS marking.
  1370 class PushAndMarkVerifyClosure: public OopClosure {
  1371   CMSCollector*    _collector;
  1372   MemRegion        _span;
  1373   CMSBitMap*       _verification_bm;
  1374   CMSBitMap*       _cms_bm;
  1375   CMSMarkStack*    _mark_stack;
  1376  public:
  1377   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1378                            MemRegion span,
  1379                            CMSBitMap* verification_bm,
  1380                            CMSBitMap* cms_bm,
  1381                            CMSMarkStack*  mark_stack);
  1382   void do_oop(oop* p);
  1383   // Deal with a stack overflow condition
  1384   void handle_stack_overflow(HeapWord* lost);
  1385 };
  1387 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1388   CMSCollector*  _collector;
  1389   MemRegion      _span;
  1390   CMSBitMap*     _verification_bm;
  1391   CMSBitMap*     _cms_bm;
  1392   CMSMarkStack*  _mark_stack;
  1393   HeapWord*      _finger;
  1394   PushAndMarkVerifyClosure _pam_verify_closure;
  1395  public:
  1396   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1397                              CMSBitMap* verification_bm,
  1398                              CMSBitMap* cms_bm,
  1399                              CMSMarkStack*  mark_stack);
  1400   void do_bit(size_t offset);
  1401   void reset(HeapWord* addr);
  1402 };
  1405 // This closure is used to check that a certain set of bits is
  1406 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1407 class FalseBitMapClosure: public BitMapClosure {
  1408  public:
  1409   void do_bit(size_t offset) {
  1410     guarantee(false, "Should not have a 1 bit");
  1412 };
  1414 // This closure is used during the second checkpointing phase
  1415 // to rescan the marked objects on the dirty cards in the mod
  1416 // union table and the card table proper. It's invoked via
  1417 // MarkFromDirtyCardsClosure below. It uses either
  1418 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1419 // declared in genOopClosures.hpp to accomplish some of its work.
  1420 // In the parallel case the bitMap is shared, so access to
  1421 // it needs to be suitably synchronized for updates by embedded
  1422 // closures that update it; however, this closure itself only
  1423 // reads the bit_map and because it is idempotent, is immune to
  1424 // reading stale values.
  1425 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1426   #ifdef ASSERT
  1427     CMSCollector*          _collector;
  1428     MemRegion              _span;
  1429     union {
  1430       CMSMarkStack*        _mark_stack;
  1431       OopTaskQueue*        _work_queue;
  1432     };
  1433   #endif // ASSERT
  1434   bool                       _parallel;
  1435   CMSBitMap*                 _bit_map;
  1436   union {
  1437     MarkRefsIntoAndScanClosure*     _scan_closure;
  1438     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1439   };
  1441  public:
  1442   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1443                                 MemRegion span,
  1444                                 ReferenceProcessor* rp,
  1445                                 CMSBitMap* bit_map,
  1446                                 CMSMarkStack*  mark_stack,
  1447                                 CMSMarkStack*  revisit_stack,
  1448                                 MarkRefsIntoAndScanClosure* cl):
  1449     #ifdef ASSERT
  1450       _collector(collector),
  1451       _span(span),
  1452       _mark_stack(mark_stack),
  1453     #endif // ASSERT
  1454     _parallel(false),
  1455     _bit_map(bit_map),
  1456     _scan_closure(cl) { }
  1458   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1459                                 MemRegion span,
  1460                                 ReferenceProcessor* rp,
  1461                                 CMSBitMap* bit_map,
  1462                                 OopTaskQueue* work_queue,
  1463                                 CMSMarkStack* revisit_stack,
  1464                                 Par_MarkRefsIntoAndScanClosure* cl):
  1465     #ifdef ASSERT
  1466       _collector(collector),
  1467       _span(span),
  1468       _work_queue(work_queue),
  1469     #endif // ASSERT
  1470     _parallel(true),
  1471     _bit_map(bit_map),
  1472     _par_scan_closure(cl) { }
  1474   void do_object(oop obj) {
  1475     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
  1477   bool do_object_b(oop obj) {
  1478     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1479     return false;
  1481   bool do_object_bm(oop p, MemRegion mr);
  1482 };
  1484 // This closure is used during the second checkpointing phase
  1485 // to rescan the marked objects on the dirty cards in the mod
  1486 // union table and the card table proper. It invokes
  1487 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1488 // In the parallel case, the bit map is shared and requires
  1489 // synchronized access.
  1490 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1491   CompactibleFreeListSpace*      _space;
  1492   ScanMarkedObjectsAgainClosure  _scan_cl;
  1493   size_t                         _num_dirty_cards;
  1495  public:
  1496   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1497                             MemRegion span,
  1498                             CompactibleFreeListSpace* space,
  1499                             CMSBitMap* bit_map,
  1500                             CMSMarkStack* mark_stack,
  1501                             CMSMarkStack* revisit_stack,
  1502                             MarkRefsIntoAndScanClosure* cl):
  1503     _space(space),
  1504     _num_dirty_cards(0),
  1505     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1506                  mark_stack, revisit_stack, cl) { }
  1508   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1509                             MemRegion span,
  1510                             CompactibleFreeListSpace* space,
  1511                             CMSBitMap* bit_map,
  1512                             OopTaskQueue* work_queue,
  1513                             CMSMarkStack* revisit_stack,
  1514                             Par_MarkRefsIntoAndScanClosure* cl):
  1515     _space(space),
  1516     _num_dirty_cards(0),
  1517     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1518              work_queue, revisit_stack, cl) { }
  1520   void do_MemRegion(MemRegion mr);
  1521   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1522   size_t num_dirty_cards() { return _num_dirty_cards; }
  1523 };
  1525 // This closure is used in the non-product build to check
  1526 // that there are no MemRegions with a certain property.
  1527 class FalseMemRegionClosure: public MemRegionClosure {
  1528   void do_MemRegion(MemRegion mr) {
  1529     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1530     guarantee(false, "Should never be here");
  1532 };
  1534 // This closure is used during the precleaning phase
  1535 // to "carefully" rescan marked objects on dirty cards.
  1536 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1537 // to accomplish some of its work.
  1538 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1539   CMSCollector*                  _collector;
  1540   MemRegion                      _span;
  1541   bool                           _yield;
  1542   Mutex*                         _freelistLock;
  1543   CMSBitMap*                     _bitMap;
  1544   CMSMarkStack*                  _markStack;
  1545   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1547  public:
  1548   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1549                                          MemRegion     span,
  1550                                          CMSBitMap* bitMap,
  1551                                          CMSMarkStack*  markStack,
  1552                                          CMSMarkStack*  revisitStack,
  1553                                          MarkRefsIntoAndScanClosure* cl,
  1554                                          bool should_yield):
  1555     _collector(collector),
  1556     _span(span),
  1557     _yield(should_yield),
  1558     _bitMap(bitMap),
  1559     _markStack(markStack),
  1560     _scanningClosure(cl) {
  1563   void do_object(oop p) {
  1564     guarantee(false, "call do_object_careful instead");
  1567   size_t      do_object_careful(oop p) {
  1568     guarantee(false, "Unexpected caller");
  1569     return 0;
  1572   size_t      do_object_careful_m(oop p, MemRegion mr);
  1574   void setFreelistLock(Mutex* m) {
  1575     _freelistLock = m;
  1576     _scanningClosure->set_freelistLock(m);
  1579  private:
  1580   inline bool do_yield_check();
  1582   void do_yield_work();
  1583 };
  1585 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1586   CMSCollector*                  _collector;
  1587   MemRegion                      _span;
  1588   bool                           _yield;
  1589   CMSBitMap*                     _bit_map;
  1590   CMSMarkStack*                  _mark_stack;
  1591   PushAndMarkClosure*            _scanning_closure;
  1592   unsigned int                   _before_count;
  1594  public:
  1595   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1596                                MemRegion     span,
  1597                                CMSBitMap*    bit_map,
  1598                                CMSMarkStack* mark_stack,
  1599                                PushAndMarkClosure* cl,
  1600                                unsigned int  before_count,
  1601                                bool          should_yield):
  1602     _collector(collector),
  1603     _span(span),
  1604     _yield(should_yield),
  1605     _bit_map(bit_map),
  1606     _mark_stack(mark_stack),
  1607     _scanning_closure(cl),
  1608     _before_count(before_count)
  1609   { }
  1611   void do_object(oop p) {
  1612     guarantee(false, "call do_object_careful instead");
  1615   size_t      do_object_careful(oop p);
  1617   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1618     guarantee(false, "Unexpected caller");
  1619     return 0;
  1622  private:
  1623   inline void do_yield_check();
  1624   void do_yield_work();
  1625 };
  1627 // This closure is used to accomplish the sweeping work
  1628 // after the second checkpoint but before the concurrent reset
  1629 // phase.
  1630 //
  1631 // Terminology
  1632 //   left hand chunk (LHC) - block of one or more chunks currently being
  1633 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1634 //   right hand chunk (RHC) - block that is currently being swept that is
  1635 //     free or garbage that can be coalesced with the LHC.
  1636 // _inFreeRange is true if there is currently a LHC
  1637 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1638 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1639 // _freeFinger is the address of the current LHC
  1640 class SweepClosure: public BlkClosureCareful {
  1641   CMSCollector*                  _collector;  // collector doing the work
  1642   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1643   CompactibleFreeListSpace*      _sp;   // Space being swept
  1644   HeapWord*                      _limit;
  1645   Mutex*                         _freelistLock; // Free list lock (in space)
  1646   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1647                                                 // generation)
  1648   bool                           _inFreeRange;  // Indicates if we are in the
  1649                                                 // midst of a free run
  1650   bool                           _freeRangeInFreeLists;
  1651                                         // Often, we have just found
  1652                                         // a free chunk and started
  1653                                         // a new free range; we do not
  1654                                         // eagerly remove this chunk from
  1655                                         // the free lists unless there is
  1656                                         // a possibility of coalescing.
  1657                                         // When true, this flag indicates
  1658                                         // that the _freeFinger below
  1659                                         // points to a potentially free chunk
  1660                                         // that may still be in the free lists
  1661   bool                           _lastFreeRangeCoalesced;
  1662                                         // free range contains chunks
  1663                                         // coalesced
  1664   bool                           _yield;
  1665                                         // Whether sweeping should be
  1666                                         // done with yields. For instance
  1667                                         // when done by the foreground
  1668                                         // collector we shouldn't yield.
  1669   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1670                                                 // pointer to the "left hand
  1671                                                 // chunk"
  1672   size_t                         _freeRangeSize;
  1673                                         // When _inFreeRange is set, this
  1674                                         // indicates the accumulated size
  1675                                         // of the "left hand chunk"
  1676   NOT_PRODUCT(
  1677     size_t                       _numObjectsFreed;
  1678     size_t                       _numWordsFreed;
  1679     size_t                       _numObjectsLive;
  1680     size_t                       _numWordsLive;
  1681     size_t                       _numObjectsAlreadyFree;
  1682     size_t                       _numWordsAlreadyFree;
  1683     FreeChunk*                   _last_fc;
  1685  private:
  1686   // Code that is common to a free chunk or garbage when
  1687   // encountered during sweeping.
  1688   void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
  1689                                   size_t chunkSize);
  1690   // Process a free chunk during sweeping.
  1691   void doAlreadyFreeChunk(FreeChunk *fc);
  1692   // Process a garbage chunk during sweeping.
  1693   size_t doGarbageChunk(FreeChunk *fc);
  1694   // Process a live chunk during sweeping.
  1695   size_t doLiveChunk(FreeChunk* fc);
  1697   // Accessors.
  1698   HeapWord* freeFinger() const          { return _freeFinger; }
  1699   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1700   size_t freeRangeSize() const          { return _freeRangeSize; }
  1701   void set_freeRangeSize(size_t v)      { _freeRangeSize = v; }
  1702   bool inFreeRange()    const           { return _inFreeRange; }
  1703   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1704   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1705   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1706   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1707   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1709   // Initialize a free range.
  1710   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1711   // Return this chunk to the free lists.
  1712   void flushCurFreeChunk(HeapWord* chunk, size_t size);
  1714   // Check if we should yield and do so when necessary.
  1715   inline void do_yield_check(HeapWord* addr);
  1717   // Yield
  1718   void do_yield_work(HeapWord* addr);
  1720   // Debugging/Printing
  1721   void record_free_block_coalesced(FreeChunk* fc) const PRODUCT_RETURN;
  1723  public:
  1724   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1725                CMSBitMap* bitMap, bool should_yield);
  1726   ~SweepClosure();
  1728   size_t       do_blk_careful(HeapWord* addr);
  1729 };
  1731 // Closures related to weak references processing
  1733 // During CMS' weak reference processing, this is a
  1734 // work-routine/closure used to complete transitive
  1735 // marking of objects as live after a certain point
  1736 // in which an initial set has been completely accumulated.
  1737 class CMSDrainMarkingStackClosure: public VoidClosure {
  1738   CMSCollector*        _collector;
  1739   MemRegion            _span;
  1740   CMSMarkStack*        _mark_stack;
  1741   CMSBitMap*           _bit_map;
  1742   CMSKeepAliveClosure* _keep_alive;
  1743  public:
  1744   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1745                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1746                       CMSKeepAliveClosure* keep_alive):
  1747     _collector(collector),
  1748     _span(span),
  1749     _bit_map(bit_map),
  1750     _mark_stack(mark_stack),
  1751     _keep_alive(keep_alive) { }
  1753   void do_void();
  1754 };
  1756 // A parallel version of CMSDrainMarkingStackClosure above.
  1757 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1758   CMSCollector*           _collector;
  1759   MemRegion               _span;
  1760   OopTaskQueue*           _work_queue;
  1761   CMSBitMap*              _bit_map;
  1762   CMSInnerParMarkAndPushClosure _mark_and_push;
  1764  public:
  1765   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1766                                  MemRegion span, CMSBitMap* bit_map,
  1767                                  OopTaskQueue* work_queue):
  1768     _collector(collector),
  1769     _span(span),
  1770     _bit_map(bit_map),
  1771     _work_queue(work_queue),
  1772     _mark_and_push(collector, span, bit_map, work_queue) { }
  1774  public:
  1775   void trim_queue(uint max);
  1776   void do_void();
  1777 };
  1779 // Allow yielding or short-circuiting of reference list
  1780 // prelceaning work.
  1781 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1782   CMSCollector* _collector;
  1783   void do_yield_work();
  1784  public:
  1785   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1786     _collector(collector) {}
  1787   virtual bool should_return();
  1788 };
  1791 // Convenience class that locks free list locks for given CMS collector
  1792 class FreelistLocker: public StackObj {
  1793  private:
  1794   CMSCollector* _collector;
  1795  public:
  1796   FreelistLocker(CMSCollector* collector):
  1797     _collector(collector) {
  1798     _collector->getFreelistLocks();
  1801   ~FreelistLocker() {
  1802     _collector->releaseFreelistLocks();
  1804 };
  1806 // Mark all dead objects in a given space.
  1807 class MarkDeadObjectsClosure: public BlkClosure {
  1808   const CMSCollector*             _collector;
  1809   const CompactibleFreeListSpace* _sp;
  1810   CMSBitMap*                      _live_bit_map;
  1811   CMSBitMap*                      _dead_bit_map;
  1812 public:
  1813   MarkDeadObjectsClosure(const CMSCollector* collector,
  1814                          const CompactibleFreeListSpace* sp,
  1815                          CMSBitMap *live_bit_map,
  1816                          CMSBitMap *dead_bit_map) :
  1817     _collector(collector),
  1818     _sp(sp),
  1819     _live_bit_map(live_bit_map),
  1820     _dead_bit_map(dead_bit_map) {}
  1821   size_t do_blk(HeapWord* addr);
  1822 };

mercurial