src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Fri, 09 May 2008 08:55:13 -0700

author
dcubed
date
Fri, 09 May 2008 08:55:13 -0700
changeset 587
c70a245cad3a
parent 444
173195ff483a
child 529
0834225a7916
permissions
-rw-r--r--

6670684: 4/5 SA command universe did not print out CMS space information
Summary: Forward port of Yumin's fix for 6670684 from HSX-11; Yumin verified the port was correct.
Reviewed-by: dcubed

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   194            "Offset of FreeChunk::_prev within FreeChunk must match"
   195            "  that of OopDesc::_klass within OopDesc");
   196   )
   197   if (ParallelGCThreads > 0) {
   198     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   199     _par_gc_thread_states =
   200       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   201     if (_par_gc_thread_states == NULL) {
   202       vm_exit_during_initialization("Could not allocate par gc structs");
   203     }
   204     for (uint i = 0; i < ParallelGCThreads; i++) {
   205       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   206       if (_par_gc_thread_states[i] == NULL) {
   207         vm_exit_during_initialization("Could not allocate par gc structs");
   208       }
   209     }
   210   } else {
   211     _par_gc_thread_states = NULL;
   212   }
   213   _incremental_collection_failed = false;
   214   // The "dilatation_factor" is the expansion that can occur on
   215   // account of the fact that the minimum object size in the CMS
   216   // generation may be larger than that in, say, a contiguous young
   217   //  generation.
   218   // Ideally, in the calculation below, we'd compute the dilatation
   219   // factor as: MinChunkSize/(promoting_gen's min object size)
   220   // Since we do not have such a general query interface for the
   221   // promoting generation, we'll instead just use the mimimum
   222   // object size (which today is a header's worth of space);
   223   // note that all arithmetic is in units of HeapWords.
   224   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   225   assert(_dilatation_factor >= 1.0, "from previous assert");
   226 }
   228 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   229   assert(collector() != NULL, "no collector");
   230   collector()->ref_processor_init();
   231 }
   233 void CMSCollector::ref_processor_init() {
   234   if (_ref_processor == NULL) {
   235     // Allocate and initialize a reference processor
   236     _ref_processor = ReferenceProcessor::create_ref_processor(
   237         _span,                               // span
   238         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   239         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   240         &_is_alive_closure,
   241         ParallelGCThreads,
   242         ParallelRefProcEnabled);
   243     // Initialize the _ref_processor field of CMSGen
   244     _cmsGen->set_ref_processor(_ref_processor);
   246     // Allocate a dummy ref processor for perm gen.
   247     ReferenceProcessor* rp2 = new ReferenceProcessor();
   248     if (rp2 == NULL) {
   249       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   250     }
   251     _permGen->set_ref_processor(rp2);
   252   }
   253 }
   255 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   256   GenCollectedHeap* gch = GenCollectedHeap::heap();
   257   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   258     "Wrong type of heap");
   259   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   260     gch->gen_policy()->size_policy();
   261   assert(sp->is_gc_cms_adaptive_size_policy(),
   262     "Wrong type of size policy");
   263   return sp;
   264 }
   266 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   267   CMSGCAdaptivePolicyCounters* results =
   268     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   269   assert(
   270     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   271     "Wrong gc policy counter kind");
   272   return results;
   273 }
   276 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   278   const char* gen_name = "old";
   280   // Generation Counters - generation 1, 1 subspace
   281   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   283   _space_counters = new GSpaceCounters(gen_name, 0,
   284                                        _virtual_space.reserved_size(),
   285                                        this, _gen_counters);
   286 }
   288 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   289   _cms_gen(cms_gen)
   290 {
   291   assert(alpha <= 100, "bad value");
   292   _saved_alpha = alpha;
   294   // Initialize the alphas to the bootstrap value of 100.
   295   _gc0_alpha = _cms_alpha = 100;
   297   _cms_begin_time.update();
   298   _cms_end_time.update();
   300   _gc0_duration = 0.0;
   301   _gc0_period = 0.0;
   302   _gc0_promoted = 0;
   304   _cms_duration = 0.0;
   305   _cms_period = 0.0;
   306   _cms_allocated = 0;
   308   _cms_used_at_gc0_begin = 0;
   309   _cms_used_at_gc0_end = 0;
   310   _allow_duty_cycle_reduction = false;
   311   _valid_bits = 0;
   312   _icms_duty_cycle = CMSIncrementalDutyCycle;
   313 }
   315 // If promotion failure handling is on use
   316 // the padded average size of the promotion for each
   317 // young generation collection.
   318 double CMSStats::time_until_cms_gen_full() const {
   319   size_t cms_free = _cms_gen->cmsSpace()->free();
   320   GenCollectedHeap* gch = GenCollectedHeap::heap();
   321   size_t expected_promotion = gch->get_gen(0)->capacity();
   322   if (HandlePromotionFailure) {
   323     expected_promotion = MIN2(
   324         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   325         expected_promotion);
   326   }
   327   if (cms_free > expected_promotion) {
   328     // Start a cms collection if there isn't enough space to promote
   329     // for the next minor collection.  Use the padded average as
   330     // a safety factor.
   331     cms_free -= expected_promotion;
   333     // Adjust by the safety factor.
   334     double cms_free_dbl = (double)cms_free;
   335     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   337     if (PrintGCDetails && Verbose) {
   338       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   339         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   340         cms_free, expected_promotion);
   341       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   342         cms_free_dbl, cms_consumption_rate() + 1.0);
   343     }
   344     // Add 1 in case the consumption rate goes to zero.
   345     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   346   }
   347   return 0.0;
   348 }
   350 // Compare the duration of the cms collection to the
   351 // time remaining before the cms generation is empty.
   352 // Note that the time from the start of the cms collection
   353 // to the start of the cms sweep (less than the total
   354 // duration of the cms collection) can be used.  This
   355 // has been tried and some applications experienced
   356 // promotion failures early in execution.  This was
   357 // possibly because the averages were not accurate
   358 // enough at the beginning.
   359 double CMSStats::time_until_cms_start() const {
   360   // We add "gc0_period" to the "work" calculation
   361   // below because this query is done (mostly) at the
   362   // end of a scavenge, so we need to conservatively
   363   // account for that much possible delay
   364   // in the query so as to avoid concurrent mode failures
   365   // due to starting the collection just a wee bit too
   366   // late.
   367   double work = cms_duration() + gc0_period();
   368   double deadline = time_until_cms_gen_full();
   369   if (work > deadline) {
   370     if (Verbose && PrintGCDetails) {
   371       gclog_or_tty->print(
   372         " CMSCollector: collect because of anticipated promotion "
   373         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   374         gc0_period(), time_until_cms_gen_full());
   375     }
   376     return 0.0;
   377   }
   378   return work - deadline;
   379 }
   381 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   382 // amount of change to prevent wild oscillation.
   383 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   384                                               unsigned int new_duty_cycle) {
   385   assert(old_duty_cycle <= 100, "bad input value");
   386   assert(new_duty_cycle <= 100, "bad input value");
   388   // Note:  use subtraction with caution since it may underflow (values are
   389   // unsigned).  Addition is safe since we're in the range 0-100.
   390   unsigned int damped_duty_cycle = new_duty_cycle;
   391   if (new_duty_cycle < old_duty_cycle) {
   392     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   393     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   394       damped_duty_cycle = old_duty_cycle - largest_delta;
   395     }
   396   } else if (new_duty_cycle > old_duty_cycle) {
   397     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   398     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   399       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   400     }
   401   }
   402   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   404   if (CMSTraceIncrementalPacing) {
   405     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   406                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   407   }
   408   return damped_duty_cycle;
   409 }
   411 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   412   assert(CMSIncrementalPacing && valid(),
   413          "should be handled in icms_update_duty_cycle()");
   415   double cms_time_so_far = cms_timer().seconds();
   416   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   417   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   419   // Avoid division by 0.
   420   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   421   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   423   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   424   if (new_duty_cycle > _icms_duty_cycle) {
   425     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   426     if (new_duty_cycle > 2) {
   427       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   428                                                 new_duty_cycle);
   429     }
   430   } else if (_allow_duty_cycle_reduction) {
   431     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   432     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   433     // Respect the minimum duty cycle.
   434     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   435     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   436   }
   438   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   439     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   440   }
   442   _allow_duty_cycle_reduction = false;
   443   return _icms_duty_cycle;
   444 }
   446 #ifndef PRODUCT
   447 void CMSStats::print_on(outputStream *st) const {
   448   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   449   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   450                gc0_duration(), gc0_period(), gc0_promoted());
   451   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   452             cms_duration(), cms_duration_per_mb(),
   453             cms_period(), cms_allocated());
   454   st->print(",cms_since_beg=%g,cms_since_end=%g",
   455             cms_time_since_begin(), cms_time_since_end());
   456   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   457             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   458   if (CMSIncrementalMode) {
   459     st->print(",dc=%d", icms_duty_cycle());
   460   }
   462   if (valid()) {
   463     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   464               promotion_rate(), cms_allocation_rate());
   465     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   466               cms_consumption_rate(), time_until_cms_gen_full());
   467   }
   468   st->print(" ");
   469 }
   470 #endif // #ifndef PRODUCT
   472 CMSCollector::CollectorState CMSCollector::_collectorState =
   473                              CMSCollector::Idling;
   474 bool CMSCollector::_foregroundGCIsActive = false;
   475 bool CMSCollector::_foregroundGCShouldWait = false;
   477 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   478                            ConcurrentMarkSweepGeneration* permGen,
   479                            CardTableRS*                   ct,
   480                            ConcurrentMarkSweepPolicy*     cp):
   481   _cmsGen(cmsGen),
   482   _permGen(permGen),
   483   _ct(ct),
   484   _ref_processor(NULL),    // will be set later
   485   _conc_workers(NULL),     // may be set later
   486   _abort_preclean(false),
   487   _start_sampling(false),
   488   _between_prologue_and_epilogue(false),
   489   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   490   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   491   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   492                  -1 /* lock-free */, "No_lock" /* dummy */),
   493   _modUnionClosure(&_modUnionTable),
   494   _modUnionClosurePar(&_modUnionTable),
   495   _is_alive_closure(&_markBitMap),
   496   _restart_addr(NULL),
   497   _overflow_list(NULL),
   498   _preserved_oop_stack(NULL),
   499   _preserved_mark_stack(NULL),
   500   _stats(cmsGen),
   501   _eden_chunk_array(NULL),     // may be set in ctor body
   502   _eden_chunk_capacity(0),     // -- ditto --
   503   _eden_chunk_index(0),        // -- ditto --
   504   _survivor_plab_array(NULL),  // -- ditto --
   505   _survivor_chunk_array(NULL), // -- ditto --
   506   _survivor_chunk_capacity(0), // -- ditto --
   507   _survivor_chunk_index(0),    // -- ditto --
   508   _ser_pmc_preclean_ovflw(0),
   509   _ser_pmc_remark_ovflw(0),
   510   _par_pmc_remark_ovflw(0),
   511   _ser_kac_ovflw(0),
   512   _par_kac_ovflw(0),
   513 #ifndef PRODUCT
   514   _num_par_pushes(0),
   515 #endif
   516   _collection_count_start(0),
   517   _verifying(false),
   518   _icms_start_limit(NULL),
   519   _icms_stop_limit(NULL),
   520   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   521   _completed_initialization(false),
   522   _collector_policy(cp),
   523   _unload_classes(false),
   524   _unloaded_classes_last_cycle(false),
   525   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   526 {
   527   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   528     ExplicitGCInvokesConcurrent = true;
   529   }
   530   // Now expand the span and allocate the collection support structures
   531   // (MUT, marking bit map etc.) to cover both generations subject to
   532   // collection.
   534   // First check that _permGen is adjacent to _cmsGen and above it.
   535   assert(   _cmsGen->reserved().word_size()  > 0
   536          && _permGen->reserved().word_size() > 0,
   537          "generations should not be of zero size");
   538   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   539          "_cmsGen and _permGen should not overlap");
   540   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   541          "_cmsGen->end() different from _permGen->start()");
   543   // For use by dirty card to oop closures.
   544   _cmsGen->cmsSpace()->set_collector(this);
   545   _permGen->cmsSpace()->set_collector(this);
   547   // Adjust my span to cover old (cms) gen and perm gen
   548   _span = _cmsGen->reserved()._union(_permGen->reserved());
   549   // Initialize the span of is_alive_closure
   550   _is_alive_closure.set_span(_span);
   552   // Allocate MUT and marking bit map
   553   {
   554     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   555     if (!_markBitMap.allocate(_span)) {
   556       warning("Failed to allocate CMS Bit Map");
   557       return;
   558     }
   559     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   560   }
   561   {
   562     _modUnionTable.allocate(_span);
   563     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   564   }
   566   if (!_markStack.allocate(CMSMarkStackSize)) {
   567     warning("Failed to allocate CMS Marking Stack");
   568     return;
   569   }
   570   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   571     warning("Failed to allocate CMS Revisit Stack");
   572     return;
   573   }
   575   // Support for multi-threaded concurrent phases
   576   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   577     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   578       // just for now
   579       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   580     }
   581     if (ParallelCMSThreads > 1) {
   582       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   583                                  ParallelCMSThreads, true);
   584       if (_conc_workers == NULL) {
   585         warning("GC/CMS: _conc_workers allocation failure: "
   586               "forcing -CMSConcurrentMTEnabled");
   587         CMSConcurrentMTEnabled = false;
   588       }
   589     } else {
   590       CMSConcurrentMTEnabled = false;
   591     }
   592   }
   593   if (!CMSConcurrentMTEnabled) {
   594     ParallelCMSThreads = 0;
   595   } else {
   596     // Turn off CMSCleanOnEnter optimization temporarily for
   597     // the MT case where it's not fixed yet; see 6178663.
   598     CMSCleanOnEnter = false;
   599   }
   600   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   601          "Inconsistency");
   603   // Parallel task queues; these are shared for the
   604   // concurrent and stop-world phases of CMS, but
   605   // are not shared with parallel scavenge (ParNew).
   606   {
   607     uint i;
   608     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   610     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   611          || ParallelRefProcEnabled)
   612         && num_queues > 0) {
   613       _task_queues = new OopTaskQueueSet(num_queues);
   614       if (_task_queues == NULL) {
   615         warning("task_queues allocation failure.");
   616         return;
   617       }
   618       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   619       if (_hash_seed == NULL) {
   620         warning("_hash_seed array allocation failure");
   621         return;
   622       }
   624       // XXX use a global constant instead of 64!
   625       typedef struct OopTaskQueuePadded {
   626         OopTaskQueue work_queue;
   627         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   628       } OopTaskQueuePadded;
   630       for (i = 0; i < num_queues; i++) {
   631         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   632         if (q_padded == NULL) {
   633           warning("work_queue allocation failure.");
   634           return;
   635         }
   636         _task_queues->register_queue(i, &q_padded->work_queue);
   637       }
   638       for (i = 0; i < num_queues; i++) {
   639         _task_queues->queue(i)->initialize();
   640         _hash_seed[i] = 17;  // copied from ParNew
   641       }
   642     }
   643   }
   645   // "initiatingOccupancy" is the occupancy ratio at which we trigger
   646   // a new collection cycle.  Unless explicitly specified via
   647   // CMSTriggerRatio, it is calculated by:
   648   //   Let "f" be MinHeapFreeRatio in
   649   //
   650   //    intiatingOccupancy = 100-f +
   651   //                         f * (CMSTriggerRatio/100)
   652   // That is, if we assume the heap is at its desired maximum occupancy at the
   653   // end of a collection, we let CMSTriggerRatio of the (purported) free
   654   // space be allocated before initiating a new collection cycle.
   655   if (CMSInitiatingOccupancyFraction > 0) {
   656     _initiatingOccupancy = (double)CMSInitiatingOccupancyFraction / 100.0;
   657   } else {
   658     _initiatingOccupancy = ((100 - MinHeapFreeRatio) +
   659                            (double)(CMSTriggerRatio *
   660                                     MinHeapFreeRatio) / 100.0)
   661                            / 100.0;
   662   }
   663   // Clip CMSBootstrapOccupancy between 0 and 100.
   664   _bootstrap_occupancy = ((double)MIN2((intx)100, MAX2((intx)0, CMSBootstrapOccupancy)))
   665                          /(double)100;
   667   _full_gcs_since_conc_gc = 0;
   669   // Now tell CMS generations the identity of their collector
   670   ConcurrentMarkSweepGeneration::set_collector(this);
   672   // Create & start a CMS thread for this CMS collector
   673   _cmsThread = ConcurrentMarkSweepThread::start(this);
   674   assert(cmsThread() != NULL, "CMS Thread should have been created");
   675   assert(cmsThread()->collector() == this,
   676          "CMS Thread should refer to this gen");
   677   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   679   // Support for parallelizing young gen rescan
   680   GenCollectedHeap* gch = GenCollectedHeap::heap();
   681   _young_gen = gch->prev_gen(_cmsGen);
   682   if (gch->supports_inline_contig_alloc()) {
   683     _top_addr = gch->top_addr();
   684     _end_addr = gch->end_addr();
   685     assert(_young_gen != NULL, "no _young_gen");
   686     _eden_chunk_index = 0;
   687     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   688     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   689     if (_eden_chunk_array == NULL) {
   690       _eden_chunk_capacity = 0;
   691       warning("GC/CMS: _eden_chunk_array allocation failure");
   692     }
   693   }
   694   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   696   // Support for parallelizing survivor space rescan
   697   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   698     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   699     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   700     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   701     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   702     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   703         || _cursor == NULL) {
   704       warning("Failed to allocate survivor plab/chunk array");
   705       if (_survivor_plab_array  != NULL) {
   706         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   707         _survivor_plab_array = NULL;
   708       }
   709       if (_survivor_chunk_array != NULL) {
   710         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   711         _survivor_chunk_array = NULL;
   712       }
   713       if (_cursor != NULL) {
   714         FREE_C_HEAP_ARRAY(size_t, _cursor);
   715         _cursor = NULL;
   716       }
   717     } else {
   718       _survivor_chunk_capacity = 2*max_plab_samples;
   719       for (uint i = 0; i < ParallelGCThreads; i++) {
   720         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   721         if (vec == NULL) {
   722           warning("Failed to allocate survivor plab array");
   723           for (int j = i; j > 0; j--) {
   724             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   725           }
   726           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   727           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   728           _survivor_plab_array = NULL;
   729           _survivor_chunk_array = NULL;
   730           _survivor_chunk_capacity = 0;
   731           break;
   732         } else {
   733           ChunkArray* cur =
   734             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   735                                                         max_plab_samples);
   736           assert(cur->end() == 0, "Should be 0");
   737           assert(cur->array() == vec, "Should be vec");
   738           assert(cur->capacity() == max_plab_samples, "Error");
   739         }
   740       }
   741     }
   742   }
   743   assert(   (   _survivor_plab_array  != NULL
   744              && _survivor_chunk_array != NULL)
   745          || (   _survivor_chunk_capacity == 0
   746              && _survivor_chunk_index == 0),
   747          "Error");
   749   // Choose what strong roots should be scanned depending on verification options
   750   // and perm gen collection mode.
   751   if (!CMSClassUnloadingEnabled) {
   752     // If class unloading is disabled we want to include all classes into the root set.
   753     add_root_scanning_option(SharedHeap::SO_AllClasses);
   754   } else {
   755     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   756   }
   758   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   759   _gc_counters = new CollectorCounters("CMS", 1);
   760   _completed_initialization = true;
   761   _sweep_timer.start();  // start of time
   762 }
   764 const char* ConcurrentMarkSweepGeneration::name() const {
   765   return "concurrent mark-sweep generation";
   766 }
   767 void ConcurrentMarkSweepGeneration::update_counters() {
   768   if (UsePerfData) {
   769     _space_counters->update_all();
   770     _gen_counters->update_all();
   771   }
   772 }
   774 // this is an optimized version of update_counters(). it takes the
   775 // used value as a parameter rather than computing it.
   776 //
   777 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   778   if (UsePerfData) {
   779     _space_counters->update_used(used);
   780     _space_counters->update_capacity();
   781     _gen_counters->update_all();
   782   }
   783 }
   785 void ConcurrentMarkSweepGeneration::print() const {
   786   Generation::print();
   787   cmsSpace()->print();
   788 }
   790 #ifndef PRODUCT
   791 void ConcurrentMarkSweepGeneration::print_statistics() {
   792   cmsSpace()->printFLCensus(0);
   793 }
   794 #endif
   796 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   797   GenCollectedHeap* gch = GenCollectedHeap::heap();
   798   if (PrintGCDetails) {
   799     if (Verbose) {
   800       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   801         level(), short_name(), s, used(), capacity());
   802     } else {
   803       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   804         level(), short_name(), s, used() / K, capacity() / K);
   805     }
   806   }
   807   if (Verbose) {
   808     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   809               gch->used(), gch->capacity());
   810   } else {
   811     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   812               gch->used() / K, gch->capacity() / K);
   813   }
   814 }
   816 size_t
   817 ConcurrentMarkSweepGeneration::contiguous_available() const {
   818   // dld proposes an improvement in precision here. If the committed
   819   // part of the space ends in a free block we should add that to
   820   // uncommitted size in the calculation below. Will make this
   821   // change later, staying with the approximation below for the
   822   // time being. -- ysr.
   823   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   824 }
   826 size_t
   827 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   828   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   829 }
   831 size_t ConcurrentMarkSweepGeneration::max_available() const {
   832   return free() + _virtual_space.uncommitted_size();
   833 }
   835 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   836     size_t max_promotion_in_bytes,
   837     bool younger_handles_promotion_failure) const {
   839   // This is the most conservative test.  Full promotion is
   840   // guaranteed if this is used. The multiplicative factor is to
   841   // account for the worst case "dilatation".
   842   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   843   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   844     adjusted_max_promo_bytes = (double)max_uintx;
   845   }
   846   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   848   if (younger_handles_promotion_failure && !result) {
   849     // Full promotion is not guaranteed because fragmentation
   850     // of the cms generation can prevent the full promotion.
   851     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   853     if (!result) {
   854       // With promotion failure handling the test for the ability
   855       // to support the promotion does not have to be guaranteed.
   856       // Use an average of the amount promoted.
   857       result = max_available() >= (size_t)
   858         gc_stats()->avg_promoted()->padded_average();
   859       if (PrintGC && Verbose && result) {
   860         gclog_or_tty->print_cr(
   861           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   862           " max_available: " SIZE_FORMAT
   863           " avg_promoted: " SIZE_FORMAT,
   864           max_available(), (size_t)
   865           gc_stats()->avg_promoted()->padded_average());
   866       }
   867     } else {
   868       if (PrintGC && Verbose) {
   869         gclog_or_tty->print_cr(
   870           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   871           " max_available: " SIZE_FORMAT
   872           " adj_max_promo_bytes: " SIZE_FORMAT,
   873           max_available(), (size_t)adjusted_max_promo_bytes);
   874       }
   875     }
   876   } else {
   877     if (PrintGC && Verbose) {
   878       gclog_or_tty->print_cr(
   879         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   880         " contiguous_available: " SIZE_FORMAT
   881         " adj_max_promo_bytes: " SIZE_FORMAT,
   882         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   883     }
   884   }
   885   return result;
   886 }
   888 CompactibleSpace*
   889 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   890   return _cmsSpace;
   891 }
   893 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   894   // Clear the promotion information.  These pointers can be adjusted
   895   // along with all the other pointers into the heap but
   896   // compaction is expected to be a rare event with
   897   // a heap using cms so don't do it without seeing the need.
   898   if (ParallelGCThreads > 0) {
   899     for (uint i = 0; i < ParallelGCThreads; i++) {
   900       _par_gc_thread_states[i]->promo.reset();
   901     }
   902   }
   903 }
   905 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   906   blk->do_space(_cmsSpace);
   907 }
   909 void ConcurrentMarkSweepGeneration::compute_new_size() {
   910   assert_locked_or_safepoint(Heap_lock);
   912   // If incremental collection failed, we just want to expand
   913   // to the limit.
   914   if (incremental_collection_failed()) {
   915     clear_incremental_collection_failed();
   916     grow_to_reserved();
   917     return;
   918   }
   920   size_t expand_bytes = 0;
   921   double free_percentage = ((double) free()) / capacity();
   922   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   923   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   925   // compute expansion delta needed for reaching desired free percentage
   926   if (free_percentage < desired_free_percentage) {
   927     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   928     assert(desired_capacity >= capacity(), "invalid expansion size");
   929     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   930   }
   931   if (expand_bytes > 0) {
   932     if (PrintGCDetails && Verbose) {
   933       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   934       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   935       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   936       gclog_or_tty->print_cr("  Desired free fraction %f",
   937         desired_free_percentage);
   938       gclog_or_tty->print_cr("  Maximum free fraction %f",
   939         maximum_free_percentage);
   940       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   941       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   942         desired_capacity/1000);
   943       int prev_level = level() - 1;
   944       if (prev_level >= 0) {
   945         size_t prev_size = 0;
   946         GenCollectedHeap* gch = GenCollectedHeap::heap();
   947         Generation* prev_gen = gch->_gens[prev_level];
   948         prev_size = prev_gen->capacity();
   949           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   950                                  prev_size/1000);
   951       }
   952       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   953         unsafe_max_alloc_nogc()/1000);
   954       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   955         contiguous_available()/1000);
   956       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   957         expand_bytes);
   958     }
   959     // safe if expansion fails
   960     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   961     if (PrintGCDetails && Verbose) {
   962       gclog_or_tty->print_cr("  Expanded free fraction %f",
   963         ((double) free()) / capacity());
   964     }
   965   }
   966 }
   968 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   969   return cmsSpace()->freelistLock();
   970 }
   972 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   973                                                   bool   tlab) {
   974   CMSSynchronousYieldRequest yr;
   975   MutexLockerEx x(freelistLock(),
   976                   Mutex::_no_safepoint_check_flag);
   977   return have_lock_and_allocate(size, tlab);
   978 }
   980 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   981                                                   bool   tlab) {
   982   assert_lock_strong(freelistLock());
   983   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   984   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   985   // Allocate the object live (grey) if the background collector has
   986   // started marking. This is necessary because the marker may
   987   // have passed this address and consequently this object will
   988   // not otherwise be greyed and would be incorrectly swept up.
   989   // Note that if this object contains references, the writing
   990   // of those references will dirty the card containing this object
   991   // allowing the object to be blackened (and its references scanned)
   992   // either during a preclean phase or at the final checkpoint.
   993   if (res != NULL) {
   994     collector()->direct_allocated(res, adjustedSize);
   995     _direct_allocated_words += adjustedSize;
   996     // allocation counters
   997     NOT_PRODUCT(
   998       _numObjectsAllocated++;
   999       _numWordsAllocated += (int)adjustedSize;
  1002   return res;
  1005 // In the case of direct allocation by mutators in a generation that
  1006 // is being concurrently collected, the object must be allocated
  1007 // live (grey) if the background collector has started marking.
  1008 // This is necessary because the marker may
  1009 // have passed this address and consequently this object will
  1010 // not otherwise be greyed and would be incorrectly swept up.
  1011 // Note that if this object contains references, the writing
  1012 // of those references will dirty the card containing this object
  1013 // allowing the object to be blackened (and its references scanned)
  1014 // either during a preclean phase or at the final checkpoint.
  1015 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1016   assert(_markBitMap.covers(start, size), "Out of bounds");
  1017   if (_collectorState >= Marking) {
  1018     MutexLockerEx y(_markBitMap.lock(),
  1019                     Mutex::_no_safepoint_check_flag);
  1020     // [see comments preceding SweepClosure::do_blk() below for details]
  1021     // 1. need to mark the object as live so it isn't collected
  1022     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1023     // 3. need to mark the end of the object so sweeper can skip over it
  1024     //    if it's uninitialized when the sweeper reaches it.
  1025     _markBitMap.mark(start);          // object is live
  1026     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1027     _markBitMap.mark(start + size - 1);
  1028                                       // mark end of object
  1030   // check that oop looks uninitialized
  1031   assert(oop(start)->klass() == NULL, "_klass should be NULL");
  1034 void CMSCollector::promoted(bool par, HeapWord* start,
  1035                             bool is_obj_array, size_t obj_size) {
  1036   assert(_markBitMap.covers(start), "Out of bounds");
  1037   // See comment in direct_allocated() about when objects should
  1038   // be allocated live.
  1039   if (_collectorState >= Marking) {
  1040     // we already hold the marking bit map lock, taken in
  1041     // the prologue
  1042     if (par) {
  1043       _markBitMap.par_mark(start);
  1044     } else {
  1045       _markBitMap.mark(start);
  1047     // We don't need to mark the object as uninitialized (as
  1048     // in direct_allocated above) because this is being done with the
  1049     // world stopped and the object will be initialized by the
  1050     // time the sweeper gets to look at it.
  1051     assert(SafepointSynchronize::is_at_safepoint(),
  1052            "expect promotion only at safepoints");
  1054     if (_collectorState < Sweeping) {
  1055       // Mark the appropriate cards in the modUnionTable, so that
  1056       // this object gets scanned before the sweep. If this is
  1057       // not done, CMS generation references in the object might
  1058       // not get marked.
  1059       // For the case of arrays, which are otherwise precisely
  1060       // marked, we need to dirty the entire array, not just its head.
  1061       if (is_obj_array) {
  1062         // The [par_]mark_range() method expects mr.end() below to
  1063         // be aligned to the granularity of a bit's representation
  1064         // in the heap. In the case of the MUT below, that's a
  1065         // card size.
  1066         MemRegion mr(start,
  1067                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1068                         CardTableModRefBS::card_size /* bytes */));
  1069         if (par) {
  1070           _modUnionTable.par_mark_range(mr);
  1071         } else {
  1072           _modUnionTable.mark_range(mr);
  1074       } else {  // not an obj array; we can just mark the head
  1075         if (par) {
  1076           _modUnionTable.par_mark(start);
  1077         } else {
  1078           _modUnionTable.mark(start);
  1085 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1087   size_t delta = pointer_delta(addr, space->bottom());
  1088   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1091 void CMSCollector::icms_update_allocation_limits()
  1093   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1094   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1096   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1097   if (CMSTraceIncrementalPacing) {
  1098     stats().print();
  1101   assert(duty_cycle <= 100, "invalid duty cycle");
  1102   if (duty_cycle != 0) {
  1103     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1104     // then compute the offset from the endpoints of the space.
  1105     size_t free_words = eden->free() / HeapWordSize;
  1106     double free_words_dbl = (double)free_words;
  1107     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1108     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1110     _icms_start_limit = eden->top() + offset_words;
  1111     _icms_stop_limit = eden->end() - offset_words;
  1113     // The limits may be adjusted (shifted to the right) by
  1114     // CMSIncrementalOffset, to allow the application more mutator time after a
  1115     // young gen gc (when all mutators were stopped) and before CMS starts and
  1116     // takes away one or more cpus.
  1117     if (CMSIncrementalOffset != 0) {
  1118       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1119       size_t adjustment = (size_t)adjustment_dbl;
  1120       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1121       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1122         _icms_start_limit += adjustment;
  1123         _icms_stop_limit = tmp_stop;
  1127   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1128     _icms_start_limit = _icms_stop_limit = eden->end();
  1131   // Install the new start limit.
  1132   eden->set_soft_end(_icms_start_limit);
  1134   if (CMSTraceIncrementalMode) {
  1135     gclog_or_tty->print(" icms alloc limits:  "
  1136                            PTR_FORMAT "," PTR_FORMAT
  1137                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1138                            _icms_start_limit, _icms_stop_limit,
  1139                            percent_of_space(eden, _icms_start_limit),
  1140                            percent_of_space(eden, _icms_stop_limit));
  1141     if (Verbose) {
  1142       gclog_or_tty->print("eden:  ");
  1143       eden->print_on(gclog_or_tty);
  1148 // Any changes here should try to maintain the invariant
  1149 // that if this method is called with _icms_start_limit
  1150 // and _icms_stop_limit both NULL, then it should return NULL
  1151 // and not notify the icms thread.
  1152 HeapWord*
  1153 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1154                                        size_t word_size)
  1156   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1157   // nop.
  1158   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1159     if (top <= _icms_start_limit) {
  1160       if (CMSTraceIncrementalMode) {
  1161         space->print_on(gclog_or_tty);
  1162         gclog_or_tty->stamp();
  1163         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1164                                ", new limit=" PTR_FORMAT
  1165                                " (" SIZE_FORMAT "%%)",
  1166                                top, _icms_stop_limit,
  1167                                percent_of_space(space, _icms_stop_limit));
  1169       ConcurrentMarkSweepThread::start_icms();
  1170       assert(top < _icms_stop_limit, "Tautology");
  1171       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1172         return _icms_stop_limit;
  1175       // The allocation will cross both the _start and _stop limits, so do the
  1176       // stop notification also and return end().
  1177       if (CMSTraceIncrementalMode) {
  1178         space->print_on(gclog_or_tty);
  1179         gclog_or_tty->stamp();
  1180         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1181                                ", new limit=" PTR_FORMAT
  1182                                " (" SIZE_FORMAT "%%)",
  1183                                top, space->end(),
  1184                                percent_of_space(space, space->end()));
  1186       ConcurrentMarkSweepThread::stop_icms();
  1187       return space->end();
  1190     if (top <= _icms_stop_limit) {
  1191       if (CMSTraceIncrementalMode) {
  1192         space->print_on(gclog_or_tty);
  1193         gclog_or_tty->stamp();
  1194         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1195                                ", new limit=" PTR_FORMAT
  1196                                " (" SIZE_FORMAT "%%)",
  1197                                top, space->end(),
  1198                                percent_of_space(space, space->end()));
  1200       ConcurrentMarkSweepThread::stop_icms();
  1201       return space->end();
  1204     if (CMSTraceIncrementalMode) {
  1205       space->print_on(gclog_or_tty);
  1206       gclog_or_tty->stamp();
  1207       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1208                              ", new limit=" PTR_FORMAT,
  1209                              top, NULL);
  1213   return NULL;
  1216 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size, oop* ref) {
  1217   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1218   // allocate, copy and if necessary update promoinfo --
  1219   // delegate to underlying space.
  1220   assert_lock_strong(freelistLock());
  1222 #ifndef PRODUCT
  1223   if (Universe::heap()->promotion_should_fail()) {
  1224     return NULL;
  1226 #endif  // #ifndef PRODUCT
  1228   oop res = _cmsSpace->promote(obj, obj_size, ref);
  1229   if (res == NULL) {
  1230     // expand and retry
  1231     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1232     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1233       CMSExpansionCause::_satisfy_promotion);
  1234     // Since there's currently no next generation, we don't try to promote
  1235     // into a more senior generation.
  1236     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1237                                "is made to pass on a possibly failing "
  1238                                "promotion to next generation");
  1239     res = _cmsSpace->promote(obj, obj_size, ref);
  1241   if (res != NULL) {
  1242     // See comment in allocate() about when objects should
  1243     // be allocated live.
  1244     assert(obj->is_oop(), "Will dereference klass pointer below");
  1245     collector()->promoted(false,           // Not parallel
  1246                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1247     // promotion counters
  1248     NOT_PRODUCT(
  1249       _numObjectsPromoted++;
  1250       _numWordsPromoted +=
  1251         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1254   return res;
  1258 HeapWord*
  1259 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1260                                              HeapWord* top,
  1261                                              size_t word_sz)
  1263   return collector()->allocation_limit_reached(space, top, word_sz);
  1266 // Things to support parallel young-gen collection.
  1267 oop
  1268 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1269                                            oop old, markOop m,
  1270                                            size_t word_sz) {
  1271 #ifndef PRODUCT
  1272   if (Universe::heap()->promotion_should_fail()) {
  1273     return NULL;
  1275 #endif  // #ifndef PRODUCT
  1277   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1278   PromotionInfo* promoInfo = &ps->promo;
  1279   // if we are tracking promotions, then first ensure space for
  1280   // promotion (including spooling space for saving header if necessary).
  1281   // then allocate and copy, then track promoted info if needed.
  1282   // When tracking (see PromotionInfo::track()), the mark word may
  1283   // be displaced and in this case restoration of the mark word
  1284   // occurs in the (oop_since_save_marks_)iterate phase.
  1285   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1286     // Out of space for allocating spooling buffers;
  1287     // try expanding and allocating spooling buffers.
  1288     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1289       return NULL;
  1292   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1293   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1294   if (obj_ptr == NULL) {
  1295      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1296      if (obj_ptr == NULL) {
  1297        return NULL;
  1300   oop obj = oop(obj_ptr);
  1301   assert(obj->klass() == NULL, "Object should be uninitialized here.");
  1302   // Otherwise, copy the object.  Here we must be careful to insert the
  1303   // klass pointer last, since this marks the block as an allocated object.
  1304   HeapWord* old_ptr = (HeapWord*)old;
  1305   if (word_sz > (size_t)oopDesc::header_size()) {
  1306     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1307                                  obj_ptr + oopDesc::header_size(),
  1308                                  word_sz - oopDesc::header_size());
  1310   // Restore the mark word copied above.
  1311   obj->set_mark(m);
  1312   // Now we can track the promoted object, if necessary.  We take care
  1313   // To delay the transition from uninitialized to full object
  1314   // (i.e., insertion of klass pointer) until after, so that it
  1315   // atomically becomes a promoted object.
  1316   if (promoInfo->tracking()) {
  1317     promoInfo->track((PromotedObject*)obj, old->klass());
  1319   // Finally, install the klass pointer.
  1320   obj->set_klass(old->klass());
  1322   assert(old->is_oop(), "Will dereference klass ptr below");
  1323   collector()->promoted(true,          // parallel
  1324                         obj_ptr, old->is_objArray(), word_sz);
  1326   NOT_PRODUCT(
  1327     Atomic::inc(&_numObjectsPromoted);
  1328     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1329                 &_numWordsPromoted);
  1332   return obj;
  1335 void
  1336 ConcurrentMarkSweepGeneration::
  1337 par_promote_alloc_undo(int thread_num,
  1338                        HeapWord* obj, size_t word_sz) {
  1339   // CMS does not support promotion undo.
  1340   ShouldNotReachHere();
  1343 void
  1344 ConcurrentMarkSweepGeneration::
  1345 par_promote_alloc_done(int thread_num) {
  1346   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1347   ps->lab.retire();
  1348 #if CFLS_LAB_REFILL_STATS
  1349   if (thread_num == 0) {
  1350     _cmsSpace->print_par_alloc_stats();
  1352 #endif
  1355 void
  1356 ConcurrentMarkSweepGeneration::
  1357 par_oop_since_save_marks_iterate_done(int thread_num) {
  1358   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1359   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1360   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1363 // XXXPERM
  1364 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1365                                                    size_t size,
  1366                                                    bool   tlab)
  1368   // We allow a STW collection only if a full
  1369   // collection was requested.
  1370   return full || should_allocate(size, tlab); // FIX ME !!!
  1371   // This and promotion failure handling are connected at the
  1372   // hip and should be fixed by untying them.
  1375 bool CMSCollector::shouldConcurrentCollect() {
  1376   if (_full_gc_requested) {
  1377     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1378     if (Verbose && PrintGCDetails) {
  1379       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1380                              " gc request");
  1382     return true;
  1385   // For debugging purposes, change the type of collection.
  1386   // If the rotation is not on the concurrent collection
  1387   // type, don't start a concurrent collection.
  1388   NOT_PRODUCT(
  1389     if (RotateCMSCollectionTypes &&
  1390         (_cmsGen->debug_collection_type() !=
  1391           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1392       assert(_cmsGen->debug_collection_type() !=
  1393         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1394         "Bad cms collection type");
  1395       return false;
  1399   FreelistLocker x(this);
  1400   // ------------------------------------------------------------------
  1401   // Print out lots of information which affects the initiation of
  1402   // a collection.
  1403   if (PrintCMSInitiationStatistics && stats().valid()) {
  1404     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1405     gclog_or_tty->stamp();
  1406     gclog_or_tty->print_cr("");
  1407     stats().print_on(gclog_or_tty);
  1408     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1409       stats().time_until_cms_gen_full());
  1410     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1411     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1412                            _cmsGen->contiguous_available());
  1413     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1414     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1415     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1416     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", initiatingOccupancy());
  1418   // ------------------------------------------------------------------
  1420   // If the estimated time to complete a cms collection (cms_duration())
  1421   // is less than the estimated time remaining until the cms generation
  1422   // is full, start a collection.
  1423   if (!UseCMSInitiatingOccupancyOnly) {
  1424     if (stats().valid()) {
  1425       if (stats().time_until_cms_start() == 0.0) {
  1426         return true;
  1428     } else {
  1429       // We want to conservatively collect somewhat early in order
  1430       // to try and "bootstrap" our CMS/promotion statistics;
  1431       // this branch will not fire after the first successful CMS
  1432       // collection because the stats should then be valid.
  1433       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1434         if (Verbose && PrintGCDetails) {
  1435           gclog_or_tty->print_cr(
  1436             " CMSCollector: collect for bootstrapping statistics:"
  1437             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1438             _bootstrap_occupancy);
  1440         return true;
  1445   // Otherwise, we start a collection cycle if either the perm gen or
  1446   // old gen want a collection cycle started. Each may use
  1447   // an appropriate criterion for making this decision.
  1448   // XXX We need to make sure that the gen expansion
  1449   // criterion dovetails well with this.
  1450   if (_cmsGen->shouldConcurrentCollect(initiatingOccupancy())) {
  1451     if (Verbose && PrintGCDetails) {
  1452       gclog_or_tty->print_cr("CMS old gen initiated");
  1454     return true;
  1457   if (cms_should_unload_classes() &&
  1458       _permGen->shouldConcurrentCollect(initiatingOccupancy())) {
  1459     if (Verbose && PrintGCDetails) {
  1460      gclog_or_tty->print_cr("CMS perm gen initiated");
  1462     return true;
  1465   return false;
  1468 // Clear _expansion_cause fields of constituent generations
  1469 void CMSCollector::clear_expansion_cause() {
  1470   _cmsGen->clear_expansion_cause();
  1471   _permGen->clear_expansion_cause();
  1474 bool ConcurrentMarkSweepGeneration::shouldConcurrentCollect(
  1475   double initiatingOccupancy) {
  1476   // We should be conservative in starting a collection cycle.  To
  1477   // start too eagerly runs the risk of collecting too often in the
  1478   // extreme.  To collect too rarely falls back on full collections,
  1479   // which works, even if not optimum in terms of concurrent work.
  1480   // As a work around for too eagerly collecting, use the flag
  1481   // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1482   // giving the user an easily understandable way of controlling the
  1483   // collections.
  1484   // We want to start a new collection cycle if any of the following
  1485   // conditions hold:
  1486   // . our current occupancy exceeds the initiating occupancy, or
  1487   // . we recently needed to expand and have not since that expansion,
  1488   //   collected, or
  1489   // . we are not using adaptive free lists and linear allocation is
  1490   //   going to fail, or
  1491   // . (for old gen) incremental collection has already failed or
  1492   //   may soon fail in the near future as we may not be able to absorb
  1493   //   promotions.
  1494   assert_lock_strong(freelistLock());
  1496   if (occupancy() > initiatingOccupancy) {
  1497     if (PrintGCDetails && Verbose) {
  1498       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1499         short_name(), occupancy(), initiatingOccupancy);
  1501     return true;
  1503   if (UseCMSInitiatingOccupancyOnly) {
  1504     return false;
  1506   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1507     if (PrintGCDetails && Verbose) {
  1508       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1509         short_name());
  1511     return true;
  1513   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1514   assert(gch->collector_policy()->is_two_generation_policy(),
  1515          "You may want to check the correctness of the following");
  1516   if (gch->incremental_collection_will_fail()) {
  1517     if (PrintGCDetails && Verbose) {
  1518       gclog_or_tty->print(" %s: collect because incremental collection will fail ",
  1519         short_name());
  1521     return true;
  1523   if (!_cmsSpace->adaptive_freelists() &&
  1524       _cmsSpace->linearAllocationWouldFail()) {
  1525     if (PrintGCDetails && Verbose) {
  1526       gclog_or_tty->print(" %s: collect because of linAB ",
  1527         short_name());
  1529     return true;
  1531   return false;
  1534 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1535                                             bool   clear_all_soft_refs,
  1536                                             size_t size,
  1537                                             bool   tlab)
  1539   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1542 void CMSCollector::collect(bool   full,
  1543                            bool   clear_all_soft_refs,
  1544                            size_t size,
  1545                            bool   tlab)
  1547   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1548     // For debugging purposes skip the collection if the state
  1549     // is not currently idle
  1550     if (TraceCMSState) {
  1551       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1552         Thread::current(), full, _collectorState);
  1554     return;
  1557   // The following "if" branch is present for defensive reasons.
  1558   // In the current uses of this interface, it can be replaced with:
  1559   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1560   // But I am not placing that assert here to allow future
  1561   // generality in invoking this interface.
  1562   if (GC_locker::is_active()) {
  1563     // A consistency test for GC_locker
  1564     assert(GC_locker::needs_gc(), "Should have been set already");
  1565     // Skip this foreground collection, instead
  1566     // expanding the heap if necessary.
  1567     // Need the free list locks for the call to free() in compute_new_size()
  1568     compute_new_size();
  1569     return;
  1571   acquire_control_and_collect(full, clear_all_soft_refs);
  1572   _full_gcs_since_conc_gc++;
  1576 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1577   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1578   unsigned int gc_count = gch->total_full_collections();
  1579   if (gc_count == full_gc_count) {
  1580     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1581     _full_gc_requested = true;
  1582     CGC_lock->notify();   // nudge CMS thread
  1587 // The foreground and background collectors need to coordinate in order
  1588 // to make sure that they do not mutually interfere with CMS collections.
  1589 // When a background collection is active,
  1590 // the foreground collector may need to take over (preempt) and
  1591 // synchronously complete an ongoing collection. Depending on the
  1592 // frequency of the background collections and the heap usage
  1593 // of the application, this preemption can be seldom or frequent.
  1594 // There are only certain
  1595 // points in the background collection that the "collection-baton"
  1596 // can be passed to the foreground collector.
  1597 //
  1598 // The foreground collector will wait for the baton before
  1599 // starting any part of the collection.  The foreground collector
  1600 // will only wait at one location.
  1601 //
  1602 // The background collector will yield the baton before starting a new
  1603 // phase of the collection (e.g., before initial marking, marking from roots,
  1604 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1605 // of the loop which switches the phases. The background collector does some
  1606 // of the phases (initial mark, final re-mark) with the world stopped.
  1607 // Because of locking involved in stopping the world,
  1608 // the foreground collector should not block waiting for the background
  1609 // collector when it is doing a stop-the-world phase.  The background
  1610 // collector will yield the baton at an additional point just before
  1611 // it enters a stop-the-world phase.  Once the world is stopped, the
  1612 // background collector checks the phase of the collection.  If the
  1613 // phase has not changed, it proceeds with the collection.  If the
  1614 // phase has changed, it skips that phase of the collection.  See
  1615 // the comments on the use of the Heap_lock in collect_in_background().
  1616 //
  1617 // Variable used in baton passing.
  1618 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1619 //      it wants the baton.  The foreground clears it when it has finished
  1620 //      the collection.
  1621 //   _foregroundGCShouldWait - Set to true by the background collector
  1622 //        when it is running.  The foreground collector waits while
  1623 //      _foregroundGCShouldWait is true.
  1624 //  CGC_lock - monitor used to protect access to the above variables
  1625 //      and to notify the foreground and background collectors.
  1626 //  _collectorState - current state of the CMS collection.
  1627 //
  1628 // The foreground collector
  1629 //   acquires the CGC_lock
  1630 //   sets _foregroundGCIsActive
  1631 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1632 //     various locks acquired in preparation for the collection
  1633 //     are released so as not to block the background collector
  1634 //     that is in the midst of a collection
  1635 //   proceeds with the collection
  1636 //   clears _foregroundGCIsActive
  1637 //   returns
  1638 //
  1639 // The background collector in a loop iterating on the phases of the
  1640 //      collection
  1641 //   acquires the CGC_lock
  1642 //   sets _foregroundGCShouldWait
  1643 //   if _foregroundGCIsActive is set
  1644 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1645 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1646 //     and exits the loop.
  1647 //   otherwise
  1648 //     proceed with that phase of the collection
  1649 //     if the phase is a stop-the-world phase,
  1650 //       yield the baton once more just before enqueueing
  1651 //       the stop-world CMS operation (executed by the VM thread).
  1652 //   returns after all phases of the collection are done
  1653 //
  1655 void CMSCollector::acquire_control_and_collect(bool full,
  1656         bool clear_all_soft_refs) {
  1657   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1658   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1659          "shouldn't try to acquire control from self!");
  1661   // Start the protocol for acquiring control of the
  1662   // collection from the background collector (aka CMS thread).
  1663   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1664          "VM thread should have CMS token");
  1665   // Remember the possibly interrupted state of an ongoing
  1666   // concurrent collection
  1667   CollectorState first_state = _collectorState;
  1669   // Signal to a possibly ongoing concurrent collection that
  1670   // we want to do a foreground collection.
  1671   _foregroundGCIsActive = true;
  1673   // Disable incremental mode during a foreground collection.
  1674   ICMSDisabler icms_disabler;
  1676   // release locks and wait for a notify from the background collector
  1677   // releasing the locks in only necessary for phases which
  1678   // do yields to improve the granularity of the collection.
  1679   assert_lock_strong(bitMapLock());
  1680   // We need to lock the Free list lock for the space that we are
  1681   // currently collecting.
  1682   assert(haveFreelistLocks(), "Must be holding free list locks");
  1683   bitMapLock()->unlock();
  1684   releaseFreelistLocks();
  1686     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1687     if (_foregroundGCShouldWait) {
  1688       // We are going to be waiting for action for the CMS thread;
  1689       // it had better not be gone (for instance at shutdown)!
  1690       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1691              "CMS thread must be running");
  1692       // Wait here until the background collector gives us the go-ahead
  1693       ConcurrentMarkSweepThread::clear_CMS_flag(
  1694         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1695       // Get a possibly blocked CMS thread going:
  1696       //   Note that we set _foregroundGCIsActive true above,
  1697       //   without protection of the CGC_lock.
  1698       CGC_lock->notify();
  1699       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1700              "Possible deadlock");
  1701       while (_foregroundGCShouldWait) {
  1702         // wait for notification
  1703         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1704         // Possibility of delay/starvation here, since CMS token does
  1705         // not know to give priority to VM thread? Actually, i think
  1706         // there wouldn't be any delay/starvation, but the proof of
  1707         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1709       ConcurrentMarkSweepThread::set_CMS_flag(
  1710         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1713   // The CMS_token is already held.  Get back the other locks.
  1714   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1715          "VM thread should have CMS token");
  1716   getFreelistLocks();
  1717   bitMapLock()->lock_without_safepoint_check();
  1718   if (TraceCMSState) {
  1719     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1720       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1721     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1724   // Check if we need to do a compaction, or if not, whether
  1725   // we need to start the mark-sweep from scratch.
  1726   bool should_compact    = false;
  1727   bool should_start_over = false;
  1728   decide_foreground_collection_type(clear_all_soft_refs,
  1729     &should_compact, &should_start_over);
  1731 NOT_PRODUCT(
  1732   if (RotateCMSCollectionTypes) {
  1733     if (_cmsGen->debug_collection_type() ==
  1734         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1735       should_compact = true;
  1736     } else if (_cmsGen->debug_collection_type() ==
  1737                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1738       should_compact = false;
  1743   if (PrintGCDetails && first_state > Idling) {
  1744     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1745     if (GCCause::is_user_requested_gc(cause) ||
  1746         GCCause::is_serviceability_requested_gc(cause)) {
  1747       gclog_or_tty->print(" (concurrent mode interrupted)");
  1748     } else {
  1749       gclog_or_tty->print(" (concurrent mode failure)");
  1753   if (should_compact) {
  1754     // If the collection is being acquired from the background
  1755     // collector, there may be references on the discovered
  1756     // references lists that have NULL referents (being those
  1757     // that were concurrently cleared by a mutator) or
  1758     // that are no longer active (having been enqueued concurrently
  1759     // by the mutator).
  1760     // Scrub the list of those references because Mark-Sweep-Compact
  1761     // code assumes referents are not NULL and that all discovered
  1762     // Reference objects are active.
  1763     ref_processor()->clean_up_discovered_references();
  1765     do_compaction_work(clear_all_soft_refs);
  1767     // Has the GC time limit been exceeded?
  1768     check_gc_time_limit();
  1770   } else {
  1771     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1772       should_start_over);
  1774   // Reset the expansion cause, now that we just completed
  1775   // a collection cycle.
  1776   clear_expansion_cause();
  1777   _foregroundGCIsActive = false;
  1778   return;
  1781 void CMSCollector::check_gc_time_limit() {
  1783   // Ignore explicit GC's.  Exiting here does not set the flag and
  1784   // does not reset the count.  Updating of the averages for system
  1785   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1786   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1787   if (GCCause::is_user_requested_gc(gc_cause) ||
  1788       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1789     return;
  1792   // Calculate the fraction of the CMS generation was freed during
  1793   // the last collection.
  1794   // Only consider the STW compacting cost for now.
  1795   //
  1796   // Note that the gc time limit test only works for the collections
  1797   // of the young gen + tenured gen and not for collections of the
  1798   // permanent gen.  That is because the calculation of the space
  1799   // freed by the collection is the free space in the young gen +
  1800   // tenured gen.
  1802   double fraction_free =
  1803     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1804   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1805          ((double) GCTimeLimit) &&
  1806         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1807     size_policy()->inc_gc_time_limit_count();
  1808     if (UseGCOverheadLimit &&
  1809         (size_policy()->gc_time_limit_count() >
  1810          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1811       size_policy()->set_gc_time_limit_exceeded(true);
  1812       // Avoid consecutive OOM due to the gc time limit by resetting
  1813       // the counter.
  1814       size_policy()->reset_gc_time_limit_count();
  1815       if (PrintGCDetails) {
  1816         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1817           "of %d%%", GCTimeLimit);
  1819     } else {
  1820       if (PrintGCDetails) {
  1821         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1822           "of %d%%", GCTimeLimit);
  1825   } else {
  1826     size_policy()->reset_gc_time_limit_count();
  1830 // Resize the perm generation and the tenured generation
  1831 // after obtaining the free list locks for the
  1832 // two generations.
  1833 void CMSCollector::compute_new_size() {
  1834   assert_locked_or_safepoint(Heap_lock);
  1835   FreelistLocker z(this);
  1836   _permGen->compute_new_size();
  1837   _cmsGen->compute_new_size();
  1840 // A work method used by foreground collection to determine
  1841 // what type of collection (compacting or not, continuing or fresh)
  1842 // it should do.
  1843 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1844 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1845 // and do away with the flags after a suitable period.
  1846 void CMSCollector::decide_foreground_collection_type(
  1847   bool clear_all_soft_refs, bool* should_compact,
  1848   bool* should_start_over) {
  1849   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1850   // flag is set, and we have either requested a System.gc() or
  1851   // the number of full gc's since the last concurrent cycle
  1852   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1853   // or if an incremental collection has failed
  1854   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1855   assert(gch->collector_policy()->is_two_generation_policy(),
  1856          "You may want to check the correctness of the following");
  1857   // Inform cms gen if this was due to partial collection failing.
  1858   // The CMS gen may use this fact to determine its expansion policy.
  1859   if (gch->incremental_collection_will_fail()) {
  1860     assert(!_cmsGen->incremental_collection_failed(),
  1861            "Should have been noticed, reacted to and cleared");
  1862     _cmsGen->set_incremental_collection_failed();
  1864   *should_compact =
  1865     UseCMSCompactAtFullCollection &&
  1866     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1867      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1868      gch->incremental_collection_will_fail());
  1869   *should_start_over = false;
  1870   if (clear_all_soft_refs && !*should_compact) {
  1871     // We are about to do a last ditch collection attempt
  1872     // so it would normally make sense to do a compaction
  1873     // to reclaim as much space as possible.
  1874     if (CMSCompactWhenClearAllSoftRefs) {
  1875       // Default: The rationale is that in this case either
  1876       // we are past the final marking phase, in which case
  1877       // we'd have to start over, or so little has been done
  1878       // that there's little point in saving that work. Compaction
  1879       // appears to be the sensible choice in either case.
  1880       *should_compact = true;
  1881     } else {
  1882       // We have been asked to clear all soft refs, but not to
  1883       // compact. Make sure that we aren't past the final checkpoint
  1884       // phase, for that is where we process soft refs. If we are already
  1885       // past that phase, we'll need to redo the refs discovery phase and
  1886       // if necessary clear soft refs that weren't previously
  1887       // cleared. We do so by remembering the phase in which
  1888       // we came in, and if we are past the refs processing
  1889       // phase, we'll choose to just redo the mark-sweep
  1890       // collection from scratch.
  1891       if (_collectorState > FinalMarking) {
  1892         // We are past the refs processing phase;
  1893         // start over and do a fresh synchronous CMS cycle
  1894         _collectorState = Resetting; // skip to reset to start new cycle
  1895         reset(false /* == !asynch */);
  1896         *should_start_over = true;
  1897       } // else we can continue a possibly ongoing current cycle
  1902 // A work method used by the foreground collector to do
  1903 // a mark-sweep-compact.
  1904 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1905   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1906   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1907   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1908     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1909       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1912   // Sample collection interval time and reset for collection pause.
  1913   if (UseAdaptiveSizePolicy) {
  1914     size_policy()->msc_collection_begin();
  1917   // Temporarily widen the span of the weak reference processing to
  1918   // the entire heap.
  1919   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1920   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1922   // Temporarily, clear the "is_alive_non_header" field of the
  1923   // reference processor.
  1924   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1926   // Temporarily make reference _processing_ single threaded (non-MT).
  1927   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1929   // Temporarily make refs discovery atomic
  1930   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1932   ref_processor()->set_enqueuing_is_done(false);
  1933   ref_processor()->enable_discovery();
  1934   // If an asynchronous collection finishes, the _modUnionTable is
  1935   // all clear.  If we are assuming the collection from an asynchronous
  1936   // collection, clear the _modUnionTable.
  1937   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1938     "_modUnionTable should be clear if the baton was not passed");
  1939   _modUnionTable.clear_all();
  1941   // We must adjust the allocation statistics being maintained
  1942   // in the free list space. We do so by reading and clearing
  1943   // the sweep timer and updating the block flux rate estimates below.
  1944   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1945   _sweep_timer.stop();
  1946   // Note that we do not use this sample to update the _sweep_estimate.
  1947   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1948                                           _sweep_estimate.padded_average());
  1950   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1951     ref_processor(), clear_all_soft_refs);
  1952   #ifdef ASSERT
  1953     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1954     size_t free_size = cms_space->free();
  1955     assert(free_size ==
  1956            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1957            * HeapWordSize,
  1958       "All the free space should be compacted into one chunk at top");
  1959     assert(cms_space->dictionary()->totalChunkSize(
  1960                                       debug_only(cms_space->freelistLock())) == 0 ||
  1961            cms_space->totalSizeInIndexedFreeLists() == 0,
  1962       "All the free space should be in a single chunk");
  1963     size_t num = cms_space->totalCount();
  1964     assert((free_size == 0 && num == 0) ||
  1965            (free_size > 0  && (num == 1 || num == 2)),
  1966          "There should be at most 2 free chunks after compaction");
  1967   #endif // ASSERT
  1968   _collectorState = Resetting;
  1969   assert(_restart_addr == NULL,
  1970          "Should have been NULL'd before baton was passed");
  1971   reset(false /* == !asynch */);
  1972   _cmsGen->reset_after_compaction();
  1974   if (verifying() && !cms_should_unload_classes()) {
  1975     perm_gen_verify_bit_map()->clear_all();
  1978   // Clear any data recorded in the PLAB chunk arrays.
  1979   if (_survivor_plab_array != NULL) {
  1980     reset_survivor_plab_arrays();
  1983   // Adjust the per-size allocation stats for the next epoch.
  1984   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  1985   // Restart the "sweep timer" for next epoch.
  1986   _sweep_timer.reset();
  1987   _sweep_timer.start();
  1989   // Sample collection pause time and reset for collection interval.
  1990   if (UseAdaptiveSizePolicy) {
  1991     size_policy()->msc_collection_end(gch->gc_cause());
  1994   // For a mark-sweep-compact, compute_new_size() will be called
  1995   // in the heap's do_collection() method.
  1998 // A work method used by the foreground collector to do
  1999 // a mark-sweep, after taking over from a possibly on-going
  2000 // concurrent mark-sweep collection.
  2001 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2002   CollectorState first_state, bool should_start_over) {
  2003   if (PrintGC && Verbose) {
  2004     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2005       "collector with count %d",
  2006       _full_gcs_since_conc_gc);
  2008   switch (_collectorState) {
  2009     case Idling:
  2010       if (first_state == Idling || should_start_over) {
  2011         // The background GC was not active, or should
  2012         // restarted from scratch;  start the cycle.
  2013         _collectorState = InitialMarking;
  2015       // If first_state was not Idling, then a background GC
  2016       // was in progress and has now finished.  No need to do it
  2017       // again.  Leave the state as Idling.
  2018       break;
  2019     case Precleaning:
  2020       // In the foreground case don't do the precleaning since
  2021       // it is not done concurrently and there is extra work
  2022       // required.
  2023       _collectorState = FinalMarking;
  2025   if (PrintGCDetails &&
  2026       (_collectorState > Idling ||
  2027        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2028     gclog_or_tty->print(" (concurrent mode failure)");
  2030   collect_in_foreground(clear_all_soft_refs);
  2032   // For a mark-sweep, compute_new_size() will be called
  2033   // in the heap's do_collection() method.
  2037 void CMSCollector::getFreelistLocks() const {
  2038   // Get locks for all free lists in all generations that this
  2039   // collector is responsible for
  2040   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2041   _permGen->freelistLock()->lock_without_safepoint_check();
  2044 void CMSCollector::releaseFreelistLocks() const {
  2045   // Release locks for all free lists in all generations that this
  2046   // collector is responsible for
  2047   _cmsGen->freelistLock()->unlock();
  2048   _permGen->freelistLock()->unlock();
  2051 bool CMSCollector::haveFreelistLocks() const {
  2052   // Check locks for all free lists in all generations that this
  2053   // collector is responsible for
  2054   assert_lock_strong(_cmsGen->freelistLock());
  2055   assert_lock_strong(_permGen->freelistLock());
  2056   PRODUCT_ONLY(ShouldNotReachHere());
  2057   return true;
  2060 // A utility class that is used by the CMS collector to
  2061 // temporarily "release" the foreground collector from its
  2062 // usual obligation to wait for the background collector to
  2063 // complete an ongoing phase before proceeding.
  2064 class ReleaseForegroundGC: public StackObj {
  2065  private:
  2066   CMSCollector* _c;
  2067  public:
  2068   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2069     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2070     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2071     // allow a potentially blocked foreground collector to proceed
  2072     _c->_foregroundGCShouldWait = false;
  2073     if (_c->_foregroundGCIsActive) {
  2074       CGC_lock->notify();
  2076     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2077            "Possible deadlock");
  2080   ~ReleaseForegroundGC() {
  2081     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2082     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2083     _c->_foregroundGCShouldWait = true;
  2085 };
  2087 // There are separate collect_in_background and collect_in_foreground because of
  2088 // the different locking requirements of the background collector and the
  2089 // foreground collector.  There was originally an attempt to share
  2090 // one "collect" method between the background collector and the foreground
  2091 // collector but the if-then-else required made it cleaner to have
  2092 // separate methods.
  2093 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2094   assert(Thread::current()->is_ConcurrentGC_thread(),
  2095     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2097   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2099     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2100     MutexLockerEx hl(Heap_lock, safepoint_check);
  2101     MutexLockerEx x(CGC_lock, safepoint_check);
  2102     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2103       // The foreground collector is active or we're
  2104       // not using asynchronous collections.  Skip this
  2105       // background collection.
  2106       assert(!_foregroundGCShouldWait, "Should be clear");
  2107       return;
  2108     } else {
  2109       assert(_collectorState == Idling, "Should be idling before start.");
  2110       _collectorState = InitialMarking;
  2111       // Reset the expansion cause, now that we are about to begin
  2112       // a new cycle.
  2113       clear_expansion_cause();
  2115     _unloaded_classes_last_cycle = cms_should_unload_classes(); // ... from last cycle
  2116     // This controls class unloading in response to an explicit gc request.
  2117     // If ExplicitGCInvokesConcurrentAndUnloadsClasses is set, then
  2118     // we will unload classes even if CMSClassUnloadingEnabled is not set.
  2119     // See CR 6541037 and related CRs.
  2120     _unload_classes = _full_gc_requested                      // ... for this cycle
  2121                       && ExplicitGCInvokesConcurrentAndUnloadsClasses;
  2122     _full_gc_requested = false;           // acks all outstanding full gc requests
  2123     // Signal that we are about to start a collection
  2124     gch->increment_total_full_collections();  // ... starting a collection cycle
  2125     _collection_count_start = gch->total_full_collections();
  2128   // Used for PrintGC
  2129   size_t prev_used;
  2130   if (PrintGC && Verbose) {
  2131     prev_used = _cmsGen->used(); // XXXPERM
  2134   // The change of the collection state is normally done at this level;
  2135   // the exceptions are phases that are executed while the world is
  2136   // stopped.  For those phases the change of state is done while the
  2137   // world is stopped.  For baton passing purposes this allows the
  2138   // background collector to finish the phase and change state atomically.
  2139   // The foreground collector cannot wait on a phase that is done
  2140   // while the world is stopped because the foreground collector already
  2141   // has the world stopped and would deadlock.
  2142   while (_collectorState != Idling) {
  2143     if (TraceCMSState) {
  2144       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2145         Thread::current(), _collectorState);
  2147     // The foreground collector
  2148     //   holds the Heap_lock throughout its collection.
  2149     //   holds the CMS token (but not the lock)
  2150     //     except while it is waiting for the background collector to yield.
  2151     //
  2152     // The foreground collector should be blocked (not for long)
  2153     //   if the background collector is about to start a phase
  2154     //   executed with world stopped.  If the background
  2155     //   collector has already started such a phase, the
  2156     //   foreground collector is blocked waiting for the
  2157     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2158     //   are executed in the VM thread.
  2159     //
  2160     // The locking order is
  2161     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2162     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2163     //   CMS token  (claimed in
  2164     //                stop_world_and_do() -->
  2165     //                  safepoint_synchronize() -->
  2166     //                    CMSThread::synchronize())
  2169       // Check if the FG collector wants us to yield.
  2170       CMSTokenSync x(true); // is cms thread
  2171       if (waitForForegroundGC()) {
  2172         // We yielded to a foreground GC, nothing more to be
  2173         // done this round.
  2174         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2175                "waitForForegroundGC()");
  2176         if (TraceCMSState) {
  2177           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2178             " exiting collection CMS state %d",
  2179             Thread::current(), _collectorState);
  2181         return;
  2182       } else {
  2183         // The background collector can run but check to see if the
  2184         // foreground collector has done a collection while the
  2185         // background collector was waiting to get the CGC_lock
  2186         // above.  If yes, break so that _foregroundGCShouldWait
  2187         // is cleared before returning.
  2188         if (_collectorState == Idling) {
  2189           break;
  2194     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2195       "should be waiting");
  2197     switch (_collectorState) {
  2198       case InitialMarking:
  2200           ReleaseForegroundGC x(this);
  2201           stats().record_cms_begin();
  2203           VM_CMS_Initial_Mark initial_mark_op(this);
  2204           VMThread::execute(&initial_mark_op);
  2206         // The collector state may be any legal state at this point
  2207         // since the background collector may have yielded to the
  2208         // foreground collector.
  2209         break;
  2210       case Marking:
  2211         // initial marking in checkpointRootsInitialWork has been completed
  2212         if (markFromRoots(true)) { // we were successful
  2213           assert(_collectorState == Precleaning, "Collector state should "
  2214             "have changed");
  2215         } else {
  2216           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2218         break;
  2219       case Precleaning:
  2220         if (UseAdaptiveSizePolicy) {
  2221           size_policy()->concurrent_precleaning_begin();
  2223         // marking from roots in markFromRoots has been completed
  2224         preclean();
  2225         if (UseAdaptiveSizePolicy) {
  2226           size_policy()->concurrent_precleaning_end();
  2228         assert(_collectorState == AbortablePreclean ||
  2229                _collectorState == FinalMarking,
  2230                "Collector state should have changed");
  2231         break;
  2232       case AbortablePreclean:
  2233         if (UseAdaptiveSizePolicy) {
  2234         size_policy()->concurrent_phases_resume();
  2236         abortable_preclean();
  2237         if (UseAdaptiveSizePolicy) {
  2238           size_policy()->concurrent_precleaning_end();
  2240         assert(_collectorState == FinalMarking, "Collector state should "
  2241           "have changed");
  2242         break;
  2243       case FinalMarking:
  2245           ReleaseForegroundGC x(this);
  2247           VM_CMS_Final_Remark final_remark_op(this);
  2248           VMThread::execute(&final_remark_op);
  2250         assert(_foregroundGCShouldWait, "block post-condition");
  2251         break;
  2252       case Sweeping:
  2253         if (UseAdaptiveSizePolicy) {
  2254           size_policy()->concurrent_sweeping_begin();
  2256         // final marking in checkpointRootsFinal has been completed
  2257         sweep(true);
  2258         assert(_collectorState == Resizing, "Collector state change "
  2259           "to Resizing must be done under the free_list_lock");
  2260         _full_gcs_since_conc_gc = 0;
  2262         // Stop the timers for adaptive size policy for the concurrent phases
  2263         if (UseAdaptiveSizePolicy) {
  2264           size_policy()->concurrent_sweeping_end();
  2265           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2266                                              gch->prev_gen(_cmsGen)->capacity(),
  2267                                              _cmsGen->free());
  2270       case Resizing: {
  2271         // Sweeping has been completed...
  2272         // At this point the background collection has completed.
  2273         // Don't move the call to compute_new_size() down
  2274         // into code that might be executed if the background
  2275         // collection was preempted.
  2277           ReleaseForegroundGC x(this);   // unblock FG collection
  2278           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2279           CMSTokenSync        z(true);   // not strictly needed.
  2280           if (_collectorState == Resizing) {
  2281             compute_new_size();
  2282             _collectorState = Resetting;
  2283           } else {
  2284             assert(_collectorState == Idling, "The state should only change"
  2285                    " because the foreground collector has finished the collection");
  2288         break;
  2290       case Resetting:
  2291         // CMS heap resizing has been completed
  2292         reset(true);
  2293         assert(_collectorState == Idling, "Collector state should "
  2294           "have changed");
  2295         stats().record_cms_end();
  2296         // Don't move the concurrent_phases_end() and compute_new_size()
  2297         // calls to here because a preempted background collection
  2298         // has it's state set to "Resetting".
  2299         break;
  2300       case Idling:
  2301       default:
  2302         ShouldNotReachHere();
  2303         break;
  2305     if (TraceCMSState) {
  2306       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2307         Thread::current(), _collectorState);
  2309     assert(_foregroundGCShouldWait, "block post-condition");
  2312   // Should this be in gc_epilogue?
  2313   collector_policy()->counters()->update_counters();
  2316     // Clear _foregroundGCShouldWait and, in the event that the
  2317     // foreground collector is waiting, notify it, before
  2318     // returning.
  2319     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2320     _foregroundGCShouldWait = false;
  2321     if (_foregroundGCIsActive) {
  2322       CGC_lock->notify();
  2324     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2325            "Possible deadlock");
  2327   if (TraceCMSState) {
  2328     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2329       " exiting collection CMS state %d",
  2330       Thread::current(), _collectorState);
  2332   if (PrintGC && Verbose) {
  2333     _cmsGen->print_heap_change(prev_used);
  2337 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2338   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2339          "Foreground collector should be waiting, not executing");
  2340   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2341     "may only be done by the VM Thread with the world stopped");
  2342   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2343          "VM thread should have CMS token");
  2345   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2346     true, gclog_or_tty);)
  2347   if (UseAdaptiveSizePolicy) {
  2348     size_policy()->ms_collection_begin();
  2350   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2352   HandleMark hm;  // Discard invalid handles created during verification
  2354   if (VerifyBeforeGC &&
  2355       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2356     Universe::verify(true);
  2359   bool init_mark_was_synchronous = false; // until proven otherwise
  2360   while (_collectorState != Idling) {
  2361     if (TraceCMSState) {
  2362       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2363         Thread::current(), _collectorState);
  2365     switch (_collectorState) {
  2366       case InitialMarking:
  2367         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2368         checkpointRootsInitial(false);
  2369         assert(_collectorState == Marking, "Collector state should have changed"
  2370           " within checkpointRootsInitial()");
  2371         break;
  2372       case Marking:
  2373         // initial marking in checkpointRootsInitialWork has been completed
  2374         if (VerifyDuringGC &&
  2375             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2376           gclog_or_tty->print("Verify before initial mark: ");
  2377           Universe::verify(true);
  2380           bool res = markFromRoots(false);
  2381           assert(res && _collectorState == FinalMarking, "Collector state should "
  2382             "have changed");
  2383           break;
  2385       case FinalMarking:
  2386         if (VerifyDuringGC &&
  2387             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2388           gclog_or_tty->print("Verify before re-mark: ");
  2389           Universe::verify(true);
  2391         checkpointRootsFinal(false, clear_all_soft_refs,
  2392                              init_mark_was_synchronous);
  2393         assert(_collectorState == Sweeping, "Collector state should not "
  2394           "have changed within checkpointRootsFinal()");
  2395         break;
  2396       case Sweeping:
  2397         // final marking in checkpointRootsFinal has been completed
  2398         if (VerifyDuringGC &&
  2399             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2400           gclog_or_tty->print("Verify before sweep: ");
  2401           Universe::verify(true);
  2403         sweep(false);
  2404         assert(_collectorState == Resizing, "Incorrect state");
  2405         break;
  2406       case Resizing: {
  2407         // Sweeping has been completed; the actual resize in this case
  2408         // is done separately; nothing to be done in this state.
  2409         _collectorState = Resetting;
  2410         break;
  2412       case Resetting:
  2413         // The heap has been resized.
  2414         if (VerifyDuringGC &&
  2415             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2416           gclog_or_tty->print("Verify before reset: ");
  2417           Universe::verify(true);
  2419         reset(false);
  2420         assert(_collectorState == Idling, "Collector state should "
  2421           "have changed");
  2422         break;
  2423       case Precleaning:
  2424       case AbortablePreclean:
  2425         // Elide the preclean phase
  2426         _collectorState = FinalMarking;
  2427         break;
  2428       default:
  2429         ShouldNotReachHere();
  2431     if (TraceCMSState) {
  2432       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2433         Thread::current(), _collectorState);
  2437   if (UseAdaptiveSizePolicy) {
  2438     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2439     size_policy()->ms_collection_end(gch->gc_cause());
  2442   if (VerifyAfterGC &&
  2443       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2444     Universe::verify(true);
  2446   if (TraceCMSState) {
  2447     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2448       " exiting collection CMS state %d",
  2449       Thread::current(), _collectorState);
  2453 bool CMSCollector::waitForForegroundGC() {
  2454   bool res = false;
  2455   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2456          "CMS thread should have CMS token");
  2457   // Block the foreground collector until the
  2458   // background collectors decides whether to
  2459   // yield.
  2460   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2461   _foregroundGCShouldWait = true;
  2462   if (_foregroundGCIsActive) {
  2463     // The background collector yields to the
  2464     // foreground collector and returns a value
  2465     // indicating that it has yielded.  The foreground
  2466     // collector can proceed.
  2467     res = true;
  2468     _foregroundGCShouldWait = false;
  2469     ConcurrentMarkSweepThread::clear_CMS_flag(
  2470       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2471     ConcurrentMarkSweepThread::set_CMS_flag(
  2472       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2473     // Get a possibly blocked foreground thread going
  2474     CGC_lock->notify();
  2475     if (TraceCMSState) {
  2476       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2477         Thread::current(), _collectorState);
  2479     while (_foregroundGCIsActive) {
  2480       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2482     ConcurrentMarkSweepThread::set_CMS_flag(
  2483       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2484     ConcurrentMarkSweepThread::clear_CMS_flag(
  2485       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2487   if (TraceCMSState) {
  2488     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2489       Thread::current(), _collectorState);
  2491   return res;
  2494 // Because of the need to lock the free lists and other structures in
  2495 // the collector, common to all the generations that the collector is
  2496 // collecting, we need the gc_prologues of individual CMS generations
  2497 // delegate to their collector. It may have been simpler had the
  2498 // current infrastructure allowed one to call a prologue on a
  2499 // collector. In the absence of that we have the generation's
  2500 // prologue delegate to the collector, which delegates back
  2501 // some "local" work to a worker method in the individual generations
  2502 // that it's responsible for collecting, while itself doing any
  2503 // work common to all generations it's responsible for. A similar
  2504 // comment applies to the  gc_epilogue()'s.
  2505 // The role of the varaible _between_prologue_and_epilogue is to
  2506 // enforce the invocation protocol.
  2507 void CMSCollector::gc_prologue(bool full) {
  2508   // Call gc_prologue_work() for each CMSGen and PermGen that
  2509   // we are responsible for.
  2511   // The following locking discipline assumes that we are only called
  2512   // when the world is stopped.
  2513   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2515   // The CMSCollector prologue must call the gc_prologues for the
  2516   // "generations" (including PermGen if any) that it's responsible
  2517   // for.
  2519   assert(   Thread::current()->is_VM_thread()
  2520          || (   CMSScavengeBeforeRemark
  2521              && Thread::current()->is_ConcurrentGC_thread()),
  2522          "Incorrect thread type for prologue execution");
  2524   if (_between_prologue_and_epilogue) {
  2525     // We have already been invoked; this is a gc_prologue delegation
  2526     // from yet another CMS generation that we are responsible for, just
  2527     // ignore it since all relevant work has already been done.
  2528     return;
  2531   // set a bit saying prologue has been called; cleared in epilogue
  2532   _between_prologue_and_epilogue = true;
  2533   // Claim locks for common data structures, then call gc_prologue_work()
  2534   // for each CMSGen and PermGen that we are responsible for.
  2536   getFreelistLocks();   // gets free list locks on constituent spaces
  2537   bitMapLock()->lock_without_safepoint_check();
  2539   // Should call gc_prologue_work() for all cms gens we are responsible for
  2540   bool registerClosure =    _collectorState >= Marking
  2541                          && _collectorState < Sweeping;
  2542   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2543                                                : &_modUnionClosure;
  2544   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2545   _permGen->gc_prologue_work(full, registerClosure, muc);
  2547   if (!full) {
  2548     stats().record_gc0_begin();
  2552 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2553   // Delegate to CMScollector which knows how to coordinate between
  2554   // this and any other CMS generations that it is responsible for
  2555   // collecting.
  2556   collector()->gc_prologue(full);
  2559 // This is a "private" interface for use by this generation's CMSCollector.
  2560 // Not to be called directly by any other entity (for instance,
  2561 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2562 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2563   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2564   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2565   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2566     "Should be NULL");
  2567   if (registerClosure) {
  2568     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2570   cmsSpace()->gc_prologue();
  2571   // Clear stat counters
  2572   NOT_PRODUCT(
  2573     assert(_numObjectsPromoted == 0, "check");
  2574     assert(_numWordsPromoted   == 0, "check");
  2575     if (Verbose && PrintGC) {
  2576       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2577                           SIZE_FORMAT" bytes concurrently",
  2578       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2580     _numObjectsAllocated = 0;
  2581     _numWordsAllocated   = 0;
  2585 void CMSCollector::gc_epilogue(bool full) {
  2586   // The following locking discipline assumes that we are only called
  2587   // when the world is stopped.
  2588   assert(SafepointSynchronize::is_at_safepoint(),
  2589          "world is stopped assumption");
  2591   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2592   // if linear allocation blocks need to be appropriately marked to allow the
  2593   // the blocks to be parsable. We also check here whether we need to nudge the
  2594   // CMS collector thread to start a new cycle (if it's not already active).
  2595   assert(   Thread::current()->is_VM_thread()
  2596          || (   CMSScavengeBeforeRemark
  2597              && Thread::current()->is_ConcurrentGC_thread()),
  2598          "Incorrect thread type for epilogue execution");
  2600   if (!_between_prologue_and_epilogue) {
  2601     // We have already been invoked; this is a gc_epilogue delegation
  2602     // from yet another CMS generation that we are responsible for, just
  2603     // ignore it since all relevant work has already been done.
  2604     return;
  2606   assert(haveFreelistLocks(), "must have freelist locks");
  2607   assert_lock_strong(bitMapLock());
  2609   _cmsGen->gc_epilogue_work(full);
  2610   _permGen->gc_epilogue_work(full);
  2612   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2613     // in case sampling was not already enabled, enable it
  2614     _start_sampling = true;
  2616   // reset _eden_chunk_array so sampling starts afresh
  2617   _eden_chunk_index = 0;
  2619   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2620   size_t perm_used  = _permGen->cmsSpace()->used();
  2622   // update performance counters - this uses a special version of
  2623   // update_counters() that allows the utilization to be passed as a
  2624   // parameter, avoiding multiple calls to used().
  2625   //
  2626   _cmsGen->update_counters(cms_used);
  2627   _permGen->update_counters(perm_used);
  2629   if (CMSIncrementalMode) {
  2630     icms_update_allocation_limits();
  2633   bitMapLock()->unlock();
  2634   releaseFreelistLocks();
  2636   _between_prologue_and_epilogue = false;  // ready for next cycle
  2639 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2640   collector()->gc_epilogue(full);
  2642   // Also reset promotion tracking in par gc thread states.
  2643   if (ParallelGCThreads > 0) {
  2644     for (uint i = 0; i < ParallelGCThreads; i++) {
  2645       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2650 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2651   assert(!incremental_collection_failed(), "Should have been cleared");
  2652   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2653   cmsSpace()->gc_epilogue();
  2654     // Print stat counters
  2655   NOT_PRODUCT(
  2656     assert(_numObjectsAllocated == 0, "check");
  2657     assert(_numWordsAllocated == 0, "check");
  2658     if (Verbose && PrintGC) {
  2659       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2660                           SIZE_FORMAT" bytes",
  2661                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2663     _numObjectsPromoted = 0;
  2664     _numWordsPromoted   = 0;
  2667   if (PrintGC && Verbose) {
  2668     // Call down the chain in contiguous_available needs the freelistLock
  2669     // so print this out before releasing the freeListLock.
  2670     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2671                         contiguous_available());
  2675 #ifndef PRODUCT
  2676 bool CMSCollector::have_cms_token() {
  2677   Thread* thr = Thread::current();
  2678   if (thr->is_VM_thread()) {
  2679     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2680   } else if (thr->is_ConcurrentGC_thread()) {
  2681     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2682   } else if (thr->is_GC_task_thread()) {
  2683     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2684            ParGCRareEvent_lock->owned_by_self();
  2686   return false;
  2688 #endif
  2690 // Check reachability of the given heap address in CMS generation,
  2691 // treating all other generations as roots.
  2692 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2693   // We could "guarantee" below, rather than assert, but i'll
  2694   // leave these as "asserts" so that an adventurous debugger
  2695   // could try this in the product build provided some subset of
  2696   // the conditions were met, provided they were intersted in the
  2697   // results and knew that the computation below wouldn't interfere
  2698   // with other concurrent computations mutating the structures
  2699   // being read or written.
  2700   assert(SafepointSynchronize::is_at_safepoint(),
  2701          "Else mutations in object graph will make answer suspect");
  2702   assert(have_cms_token(), "Should hold cms token");
  2703   assert(haveFreelistLocks(), "must hold free list locks");
  2704   assert_lock_strong(bitMapLock());
  2706   // Clear the marking bit map array before starting, but, just
  2707   // for kicks, first report if the given address is already marked
  2708   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2709                 _markBitMap.isMarked(addr) ? "" : " not");
  2711   if (verify_after_remark()) {
  2712     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2713     bool result = verification_mark_bm()->isMarked(addr);
  2714     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2715                            result ? "IS" : "is NOT");
  2716     return result;
  2717   } else {
  2718     gclog_or_tty->print_cr("Could not compute result");
  2719     return false;
  2723 ////////////////////////////////////////////////////////
  2724 // CMS Verification Support
  2725 ////////////////////////////////////////////////////////
  2726 // Following the remark phase, the following invariant
  2727 // should hold -- each object in the CMS heap which is
  2728 // marked in markBitMap() should be marked in the verification_mark_bm().
  2730 class VerifyMarkedClosure: public BitMapClosure {
  2731   CMSBitMap* _marks;
  2732   bool       _failed;
  2734  public:
  2735   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2737   void do_bit(size_t offset) {
  2738     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2739     if (!_marks->isMarked(addr)) {
  2740       oop(addr)->print();
  2741       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2742       _failed = true;
  2746   bool failed() { return _failed; }
  2747 };
  2749 bool CMSCollector::verify_after_remark() {
  2750   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2751   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2752   static bool init = false;
  2754   assert(SafepointSynchronize::is_at_safepoint(),
  2755          "Else mutations in object graph will make answer suspect");
  2756   assert(have_cms_token(),
  2757          "Else there may be mutual interference in use of "
  2758          " verification data structures");
  2759   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2760          "Else marking info checked here may be obsolete");
  2761   assert(haveFreelistLocks(), "must hold free list locks");
  2762   assert_lock_strong(bitMapLock());
  2765   // Allocate marking bit map if not already allocated
  2766   if (!init) { // first time
  2767     if (!verification_mark_bm()->allocate(_span)) {
  2768       return false;
  2770     init = true;
  2773   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2775   // Turn off refs discovery -- so we will be tracing through refs.
  2776   // This is as intended, because by this time
  2777   // GC must already have cleared any refs that need to be cleared,
  2778   // and traced those that need to be marked; moreover,
  2779   // the marking done here is not going to intefere in any
  2780   // way with the marking information used by GC.
  2781   NoRefDiscovery no_discovery(ref_processor());
  2783   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2785   // Clear any marks from a previous round
  2786   verification_mark_bm()->clear_all();
  2787   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2788   assert(overflow_list_is_empty(), "overflow list should be empty");
  2790   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2791   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2792   // Update the saved marks which may affect the root scans.
  2793   gch->save_marks();
  2795   if (CMSRemarkVerifyVariant == 1) {
  2796     // In this first variant of verification, we complete
  2797     // all marking, then check if the new marks-verctor is
  2798     // a subset of the CMS marks-vector.
  2799     verify_after_remark_work_1();
  2800   } else if (CMSRemarkVerifyVariant == 2) {
  2801     // In this second variant of verification, we flag an error
  2802     // (i.e. an object reachable in the new marks-vector not reachable
  2803     // in the CMS marks-vector) immediately, also indicating the
  2804     // identify of an object (A) that references the unmarked object (B) --
  2805     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2806     verify_after_remark_work_2();
  2807   } else {
  2808     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2809             CMSRemarkVerifyVariant);
  2811   gclog_or_tty->print(" done] ");
  2812   return true;
  2815 void CMSCollector::verify_after_remark_work_1() {
  2816   ResourceMark rm;
  2817   HandleMark  hm;
  2818   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2820   // Mark from roots one level into CMS
  2821   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2822   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2824   gch->gen_process_strong_roots(_cmsGen->level(),
  2825                                 true,   // younger gens are roots
  2826                                 true,   // collecting perm gen
  2827                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2828                                 NULL, &notOlder);
  2830   // Now mark from the roots
  2831   assert(_revisitStack.isEmpty(), "Should be empty");
  2832   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2833     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2834     false /* don't yield */, true /* verifying */);
  2835   assert(_restart_addr == NULL, "Expected pre-condition");
  2836   verification_mark_bm()->iterate(&markFromRootsClosure);
  2837   while (_restart_addr != NULL) {
  2838     // Deal with stack overflow: by restarting at the indicated
  2839     // address.
  2840     HeapWord* ra = _restart_addr;
  2841     markFromRootsClosure.reset(ra);
  2842     _restart_addr = NULL;
  2843     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2845   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2846   verify_work_stacks_empty();
  2847   // Should reset the revisit stack above, since no class tree
  2848   // surgery is forthcoming.
  2849   _revisitStack.reset(); // throwing away all contents
  2851   // Marking completed -- now verify that each bit marked in
  2852   // verification_mark_bm() is also marked in markBitMap(); flag all
  2853   // errors by printing corresponding objects.
  2854   VerifyMarkedClosure vcl(markBitMap());
  2855   verification_mark_bm()->iterate(&vcl);
  2856   if (vcl.failed()) {
  2857     gclog_or_tty->print("Verification failed");
  2858     Universe::heap()->print();
  2859     fatal(" ... aborting");
  2863 void CMSCollector::verify_after_remark_work_2() {
  2864   ResourceMark rm;
  2865   HandleMark  hm;
  2866   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2868   // Mark from roots one level into CMS
  2869   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2870                                      markBitMap(), true /* nmethods */);
  2871   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2872   gch->gen_process_strong_roots(_cmsGen->level(),
  2873                                 true,   // younger gens are roots
  2874                                 true,   // collecting perm gen
  2875                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2876                                 NULL, &notOlder);
  2878   // Now mark from the roots
  2879   assert(_revisitStack.isEmpty(), "Should be empty");
  2880   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2881     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2882   assert(_restart_addr == NULL, "Expected pre-condition");
  2883   verification_mark_bm()->iterate(&markFromRootsClosure);
  2884   while (_restart_addr != NULL) {
  2885     // Deal with stack overflow: by restarting at the indicated
  2886     // address.
  2887     HeapWord* ra = _restart_addr;
  2888     markFromRootsClosure.reset(ra);
  2889     _restart_addr = NULL;
  2890     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2892   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2893   verify_work_stacks_empty();
  2894   // Should reset the revisit stack above, since no class tree
  2895   // surgery is forthcoming.
  2896   _revisitStack.reset(); // throwing away all contents
  2898   // Marking completed -- now verify that each bit marked in
  2899   // verification_mark_bm() is also marked in markBitMap(); flag all
  2900   // errors by printing corresponding objects.
  2901   VerifyMarkedClosure vcl(markBitMap());
  2902   verification_mark_bm()->iterate(&vcl);
  2903   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2906 void ConcurrentMarkSweepGeneration::save_marks() {
  2907   // delegate to CMS space
  2908   cmsSpace()->save_marks();
  2909   for (uint i = 0; i < ParallelGCThreads; i++) {
  2910     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2914 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2915   return cmsSpace()->no_allocs_since_save_marks();
  2918 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2920 void ConcurrentMarkSweepGeneration::                            \
  2921 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2922   cl->set_generation(this);                                     \
  2923   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2924   cl->reset_generation();                                       \
  2925   save_marks();                                                 \
  2928 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2930 void
  2931 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2933   // Not currently implemented; need to do the following. -- ysr.
  2934   // dld -- I think that is used for some sort of allocation profiler.  So it
  2935   // really means the objects allocated by the mutator since the last
  2936   // GC.  We could potentially implement this cheaply by recording only
  2937   // the direct allocations in a side data structure.
  2938   //
  2939   // I think we probably ought not to be required to support these
  2940   // iterations at any arbitrary point; I think there ought to be some
  2941   // call to enable/disable allocation profiling in a generation/space,
  2942   // and the iterator ought to return the objects allocated in the
  2943   // gen/space since the enable call, or the last iterator call (which
  2944   // will probably be at a GC.)  That way, for gens like CM&S that would
  2945   // require some extra data structure to support this, we only pay the
  2946   // cost when it's in use...
  2947   cmsSpace()->object_iterate_since_last_GC(blk);
  2950 void
  2951 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2952   cl->set_generation(this);
  2953   younger_refs_in_space_iterate(_cmsSpace, cl);
  2954   cl->reset_generation();
  2957 void
  2958 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2959   if (freelistLock()->owned_by_self()) {
  2960     Generation::oop_iterate(mr, cl);
  2961   } else {
  2962     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2963     Generation::oop_iterate(mr, cl);
  2967 void
  2968 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  2969   if (freelistLock()->owned_by_self()) {
  2970     Generation::oop_iterate(cl);
  2971   } else {
  2972     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2973     Generation::oop_iterate(cl);
  2977 void
  2978 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  2979   if (freelistLock()->owned_by_self()) {
  2980     Generation::object_iterate(cl);
  2981   } else {
  2982     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2983     Generation::object_iterate(cl);
  2987 void
  2988 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  2991 void
  2992 ConcurrentMarkSweepGeneration::post_compact() {
  2995 void
  2996 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  2997   // Fix the linear allocation blocks to look like free blocks.
  2999   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3000   // are not called when the heap is verified during universe initialization and
  3001   // at vm shutdown.
  3002   if (freelistLock()->owned_by_self()) {
  3003     cmsSpace()->prepare_for_verify();
  3004   } else {
  3005     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3006     cmsSpace()->prepare_for_verify();
  3010 void
  3011 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3012   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3013   // are not called when the heap is verified during universe initialization and
  3014   // at vm shutdown.
  3015   if (freelistLock()->owned_by_self()) {
  3016     cmsSpace()->verify(false /* ignored */);
  3017   } else {
  3018     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3019     cmsSpace()->verify(false /* ignored */);
  3023 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3024   _cmsGen->verify(allow_dirty);
  3025   _permGen->verify(allow_dirty);
  3028 #ifndef PRODUCT
  3029 bool CMSCollector::overflow_list_is_empty() const {
  3030   assert(_num_par_pushes >= 0, "Inconsistency");
  3031   if (_overflow_list == NULL) {
  3032     assert(_num_par_pushes == 0, "Inconsistency");
  3034   return _overflow_list == NULL;
  3037 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3038 // merely consolidate assertion checks that appear to occur together frequently.
  3039 void CMSCollector::verify_work_stacks_empty() const {
  3040   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3041   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3044 void CMSCollector::verify_overflow_empty() const {
  3045   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3046   assert(no_preserved_marks(), "No preserved marks");
  3048 #endif // PRODUCT
  3050 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3051   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3052                              || VerifyBeforeExit;
  3053   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3054                              |   SharedHeap::SO_CodeCache;
  3056   if (cms_should_unload_classes()) {   // Should unload classes this cycle
  3057     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3058     set_verifying(should_verify);    // Set verification state for this cycle
  3059     return;                            // Nothing else needs to be done at this time
  3062   // Not unloading classes this cycle
  3063   assert(!cms_should_unload_classes(), "Inconsitency!");
  3064   if ((!verifying() || cms_unloaded_classes_last_cycle()) && should_verify) {
  3065     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3066     // AND some verification options are enabled this cycle; in this case,
  3067     // we must make sure that the deadness map is allocated if not already so,
  3068     // and cleared (if already allocated previously --
  3069     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3070     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3071       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3072         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3073                 "permanent generation verification disabled");
  3074         return;  // Note that we leave verification disabled, so we'll retry this
  3075                  // allocation next cycle. We _could_ remember this failure
  3076                  // and skip further attempts and permanently disable verification
  3077                  // attempts if that is considered more desirable.
  3079       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3080               "_perm_gen_ver_bit_map inconsistency?");
  3081     } else {
  3082       perm_gen_verify_bit_map()->clear_all();
  3084     // Include symbols, strings and code cache elements to prevent their resurrection.
  3085     add_root_scanning_option(rso);
  3086     set_verifying(true);
  3087   } else if (verifying() && !should_verify) {
  3088     // We were verifying, but some verification flags got disabled.
  3089     set_verifying(false);
  3090     // Exclude symbols, strings and code cache elements from root scanning to
  3091     // reduce IM and RM pauses.
  3092     remove_root_scanning_option(rso);
  3097 #ifndef PRODUCT
  3098 HeapWord* CMSCollector::block_start(const void* p) const {
  3099   const HeapWord* addr = (HeapWord*)p;
  3100   if (_span.contains(p)) {
  3101     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3102       return _cmsGen->cmsSpace()->block_start(p);
  3103     } else {
  3104       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3105              "Inconsistent _span?");
  3106       return _permGen->cmsSpace()->block_start(p);
  3109   return NULL;
  3111 #endif
  3113 HeapWord*
  3114 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3115                                                    bool   tlab,
  3116                                                    bool   parallel) {
  3117   assert(!tlab, "Can't deal with TLAB allocation");
  3118   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3119   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3120     CMSExpansionCause::_satisfy_allocation);
  3121   if (GCExpandToAllocateDelayMillis > 0) {
  3122     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3124   return have_lock_and_allocate(word_size, tlab);
  3127 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3128 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3129 // to CardGeneration and share it...
  3130 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3131   CMSExpansionCause::Cause cause)
  3133   assert_locked_or_safepoint(Heap_lock);
  3135   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
  3136   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  3137   bool success = false;
  3138   if (aligned_expand_bytes > aligned_bytes) {
  3139     success = grow_by(aligned_expand_bytes);
  3141   if (!success) {
  3142     success = grow_by(aligned_bytes);
  3144   if (!success) {
  3145     size_t remaining_bytes = _virtual_space.uncommitted_size();
  3146     if (remaining_bytes > 0) {
  3147       success = grow_by(remaining_bytes);
  3150   if (GC_locker::is_active()) {
  3151     if (PrintGC && Verbose) {
  3152       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
  3155   // remember why we expanded; this information is used
  3156   // by shouldConcurrentCollect() when making decisions on whether to start
  3157   // a new CMS cycle.
  3158   if (success) {
  3159     set_expansion_cause(cause);
  3160     if (PrintGCDetails && Verbose) {
  3161       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3162         CMSExpansionCause::to_string(cause));
  3167 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3168   HeapWord* res = NULL;
  3169   MutexLocker x(ParGCRareEvent_lock);
  3170   while (true) {
  3171     // Expansion by some other thread might make alloc OK now:
  3172     res = ps->lab.alloc(word_sz);
  3173     if (res != NULL) return res;
  3174     // If there's not enough expansion space available, give up.
  3175     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3176       return NULL;
  3178     // Otherwise, we try expansion.
  3179     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3180       CMSExpansionCause::_allocate_par_lab);
  3181     // Now go around the loop and try alloc again;
  3182     // A competing par_promote might beat us to the expansion space,
  3183     // so we may go around the loop again if promotion fails agaion.
  3184     if (GCExpandToAllocateDelayMillis > 0) {
  3185       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3191 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3192   PromotionInfo* promo) {
  3193   MutexLocker x(ParGCRareEvent_lock);
  3194   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3195   while (true) {
  3196     // Expansion by some other thread might make alloc OK now:
  3197     if (promo->ensure_spooling_space()) {
  3198       assert(promo->has_spooling_space(),
  3199              "Post-condition of successful ensure_spooling_space()");
  3200       return true;
  3202     // If there's not enough expansion space available, give up.
  3203     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3204       return false;
  3206     // Otherwise, we try expansion.
  3207     expand(refill_size_bytes, MinHeapDeltaBytes,
  3208       CMSExpansionCause::_allocate_par_spooling_space);
  3209     // Now go around the loop and try alloc again;
  3210     // A competing allocation might beat us to the expansion space,
  3211     // so we may go around the loop again if allocation fails again.
  3212     if (GCExpandToAllocateDelayMillis > 0) {
  3213       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3220 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3221   assert_locked_or_safepoint(Heap_lock);
  3222   size_t size = ReservedSpace::page_align_size_down(bytes);
  3223   if (size > 0) {
  3224     shrink_by(size);
  3228 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3229   assert_locked_or_safepoint(Heap_lock);
  3230   bool result = _virtual_space.expand_by(bytes);
  3231   if (result) {
  3232     HeapWord* old_end = _cmsSpace->end();
  3233     size_t new_word_size =
  3234       heap_word_size(_virtual_space.committed_size());
  3235     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3236     _bts->resize(new_word_size);  // resize the block offset shared array
  3237     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3238     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3239     // This is quite ugly; FIX ME XXX
  3240     _cmsSpace->assert_locked();
  3241     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3243     // update the space and generation capacity counters
  3244     if (UsePerfData) {
  3245       _space_counters->update_capacity();
  3246       _gen_counters->update_all();
  3249     if (Verbose && PrintGC) {
  3250       size_t new_mem_size = _virtual_space.committed_size();
  3251       size_t old_mem_size = new_mem_size - bytes;
  3252       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3253                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3256   return result;
  3259 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3260   assert_locked_or_safepoint(Heap_lock);
  3261   bool success = true;
  3262   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3263   if (remaining_bytes > 0) {
  3264     success = grow_by(remaining_bytes);
  3265     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3267   return success;
  3270 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3271   assert_locked_or_safepoint(Heap_lock);
  3272   assert_lock_strong(freelistLock());
  3273   // XXX Fix when compaction is implemented.
  3274   warning("Shrinking of CMS not yet implemented");
  3275   return;
  3279 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3280 // phases.
  3281 class CMSPhaseAccounting: public StackObj {
  3282  public:
  3283   CMSPhaseAccounting(CMSCollector *collector,
  3284                      const char *phase,
  3285                      bool print_cr = true);
  3286   ~CMSPhaseAccounting();
  3288  private:
  3289   CMSCollector *_collector;
  3290   const char *_phase;
  3291   elapsedTimer _wallclock;
  3292   bool _print_cr;
  3294  public:
  3295   // Not MT-safe; so do not pass around these StackObj's
  3296   // where they may be accessed by other threads.
  3297   jlong wallclock_millis() {
  3298     assert(_wallclock.is_active(), "Wall clock should not stop");
  3299     _wallclock.stop();  // to record time
  3300     jlong ret = _wallclock.milliseconds();
  3301     _wallclock.start(); // restart
  3302     return ret;
  3304 };
  3306 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3307                                        const char *phase,
  3308                                        bool print_cr) :
  3309   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3311   if (PrintCMSStatistics != 0) {
  3312     _collector->resetYields();
  3314   if (PrintGCDetails && PrintGCTimeStamps) {
  3315     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3316     gclog_or_tty->stamp();
  3317     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3318       _collector->cmsGen()->short_name(), _phase);
  3320   _collector->resetTimer();
  3321   _wallclock.start();
  3322   _collector->startTimer();
  3325 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3326   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3327   _collector->stopTimer();
  3328   _wallclock.stop();
  3329   if (PrintGCDetails) {
  3330     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3331     if (PrintGCTimeStamps) {
  3332       gclog_or_tty->stamp();
  3333       gclog_or_tty->print(": ");
  3335     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3336                  _collector->cmsGen()->short_name(),
  3337                  _phase, _collector->timerValue(), _wallclock.seconds());
  3338     if (_print_cr) {
  3339       gclog_or_tty->print_cr("");
  3341     if (PrintCMSStatistics != 0) {
  3342       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3343                     _collector->yields());
  3348 // CMS work
  3350 // Checkpoint the roots into this generation from outside
  3351 // this generation. [Note this initial checkpoint need only
  3352 // be approximate -- we'll do a catch up phase subsequently.]
  3353 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3354   assert(_collectorState == InitialMarking, "Wrong collector state");
  3355   check_correct_thread_executing();
  3356   ReferenceProcessor* rp = ref_processor();
  3357   SpecializationStats::clear();
  3358   assert(_restart_addr == NULL, "Control point invariant");
  3359   if (asynch) {
  3360     // acquire locks for subsequent manipulations
  3361     MutexLockerEx x(bitMapLock(),
  3362                     Mutex::_no_safepoint_check_flag);
  3363     checkpointRootsInitialWork(asynch);
  3364     rp->verify_no_references_recorded();
  3365     rp->enable_discovery(); // enable ("weak") refs discovery
  3366     _collectorState = Marking;
  3367   } else {
  3368     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3369     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3370     // discovery; verify that they aren't meddling.
  3371     assert(!rp->discovery_is_atomic(),
  3372            "incorrect setting of discovery predicate");
  3373     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3374            "ref discovery for this generation kind");
  3375     // already have locks
  3376     checkpointRootsInitialWork(asynch);
  3377     rp->enable_discovery(); // now enable ("weak") refs discovery
  3378     _collectorState = Marking;
  3380   SpecializationStats::print();
  3383 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3384   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3385   assert(_collectorState == InitialMarking, "just checking");
  3387   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3388   // precede our marking with a collection of all
  3389   // younger generations to keep floating garbage to a minimum.
  3390   // XXX: we won't do this for now -- it's an optimization to be done later.
  3392   // already have locks
  3393   assert_lock_strong(bitMapLock());
  3394   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3396   // Setup the verification and class unloading state for this
  3397   // CMS collection cycle.
  3398   setup_cms_unloading_and_verification_state();
  3400   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3401     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3402   if (UseAdaptiveSizePolicy) {
  3403     size_policy()->checkpoint_roots_initial_begin();
  3406   // Reset all the PLAB chunk arrays if necessary.
  3407   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3408     reset_survivor_plab_arrays();
  3411   ResourceMark rm;
  3412   HandleMark  hm;
  3414   FalseClosure falseClosure;
  3415   // In the case of a synchronous collection, we will elide the
  3416   // remark step, so it's important to catch all the nmethod oops
  3417   // in this step; hence the last argument to the constrcutor below.
  3418   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3419   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3421   verify_work_stacks_empty();
  3422   verify_overflow_empty();
  3424   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3425   // Update the saved marks which may affect the root scans.
  3426   gch->save_marks();
  3428   // weak reference processing has not started yet.
  3429   ref_processor()->set_enqueuing_is_done(false);
  3432     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3433     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3434     gch->gen_process_strong_roots(_cmsGen->level(),
  3435                                   true,   // younger gens are roots
  3436                                   true,   // collecting perm gen
  3437                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3438                                   NULL, &notOlder);
  3441   // Clear mod-union table; it will be dirtied in the prologue of
  3442   // CMS generation per each younger generation collection.
  3444   assert(_modUnionTable.isAllClear(),
  3445        "Was cleared in most recent final checkpoint phase"
  3446        " or no bits are set in the gc_prologue before the start of the next "
  3447        "subsequent marking phase.");
  3449   // Temporarily disabled, since pre/post-consumption closures don't
  3450   // care about precleaned cards
  3451   #if 0
  3453     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3454                              (HeapWord*)_virtual_space.high());
  3455     _ct->ct_bs()->preclean_dirty_cards(mr);
  3457   #endif
  3459   // Save the end of the used_region of the constituent generations
  3460   // to be used to limit the extent of sweep in each generation.
  3461   save_sweep_limits();
  3462   if (UseAdaptiveSizePolicy) {
  3463     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3465   verify_overflow_empty();
  3468 bool CMSCollector::markFromRoots(bool asynch) {
  3469   // we might be tempted to assert that:
  3470   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3471   //        "inconsistent argument?");
  3472   // However that wouldn't be right, because it's possible that
  3473   // a safepoint is indeed in progress as a younger generation
  3474   // stop-the-world GC happens even as we mark in this generation.
  3475   assert(_collectorState == Marking, "inconsistent state?");
  3476   check_correct_thread_executing();
  3477   verify_overflow_empty();
  3479   bool res;
  3480   if (asynch) {
  3482     // Start the timers for adaptive size policy for the concurrent phases
  3483     // Do it here so that the foreground MS can use the concurrent
  3484     // timer since a foreground MS might has the sweep done concurrently
  3485     // or STW.
  3486     if (UseAdaptiveSizePolicy) {
  3487       size_policy()->concurrent_marking_begin();
  3490     // Weak ref discovery note: We may be discovering weak
  3491     // refs in this generation concurrent (but interleaved) with
  3492     // weak ref discovery by a younger generation collector.
  3494     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3495     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3496     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3497     res = markFromRootsWork(asynch);
  3498     if (res) {
  3499       _collectorState = Precleaning;
  3500     } else { // We failed and a foreground collection wants to take over
  3501       assert(_foregroundGCIsActive, "internal state inconsistency");
  3502       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3503       if (PrintGCDetails) {
  3504         gclog_or_tty->print_cr("bailing out to foreground collection");
  3507     if (UseAdaptiveSizePolicy) {
  3508       size_policy()->concurrent_marking_end();
  3510   } else {
  3511     assert(SafepointSynchronize::is_at_safepoint(),
  3512            "inconsistent with asynch == false");
  3513     if (UseAdaptiveSizePolicy) {
  3514       size_policy()->ms_collection_marking_begin();
  3516     // already have locks
  3517     res = markFromRootsWork(asynch);
  3518     _collectorState = FinalMarking;
  3519     if (UseAdaptiveSizePolicy) {
  3520       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3521       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3524   verify_overflow_empty();
  3525   return res;
  3528 bool CMSCollector::markFromRootsWork(bool asynch) {
  3529   // iterate over marked bits in bit map, doing a full scan and mark
  3530   // from these roots using the following algorithm:
  3531   // . if oop is to the right of the current scan pointer,
  3532   //   mark corresponding bit (we'll process it later)
  3533   // . else (oop is to left of current scan pointer)
  3534   //   push oop on marking stack
  3535   // . drain the marking stack
  3537   // Note that when we do a marking step we need to hold the
  3538   // bit map lock -- recall that direct allocation (by mutators)
  3539   // and promotion (by younger generation collectors) is also
  3540   // marking the bit map. [the so-called allocate live policy.]
  3541   // Because the implementation of bit map marking is not
  3542   // robust wrt simultaneous marking of bits in the same word,
  3543   // we need to make sure that there is no such interference
  3544   // between concurrent such updates.
  3546   // already have locks
  3547   assert_lock_strong(bitMapLock());
  3549   // Clear the revisit stack, just in case there are any
  3550   // obsolete contents from a short-circuited previous CMS cycle.
  3551   _revisitStack.reset();
  3552   verify_work_stacks_empty();
  3553   verify_overflow_empty();
  3554   assert(_revisitStack.isEmpty(), "tabula rasa");
  3556   bool result = false;
  3557   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3558     result = do_marking_mt(asynch);
  3559   } else {
  3560     result = do_marking_st(asynch);
  3562   return result;
  3565 // Forward decl
  3566 class CMSConcMarkingTask;
  3568 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3569   CMSCollector*       _collector;
  3570   CMSConcMarkingTask* _task;
  3571   bool _yield;
  3572  protected:
  3573   virtual void yield();
  3574  public:
  3575   // "n_threads" is the number of threads to be terminated.
  3576   // "queue_set" is a set of work queues of other threads.
  3577   // "collector" is the CMS collector associated with this task terminator.
  3578   // "yield" indicates whether we need the gang as a whole to yield.
  3579   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3580                            CMSCollector* collector, bool yield) :
  3581     ParallelTaskTerminator(n_threads, queue_set),
  3582     _collector(collector),
  3583     _yield(yield) { }
  3585   void set_task(CMSConcMarkingTask* task) {
  3586     _task = task;
  3588 };
  3590 // MT Concurrent Marking Task
  3591 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3592   CMSCollector* _collector;
  3593   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3594   int           _n_workers;                  // requested/desired # workers
  3595   bool          _asynch;
  3596   bool          _result;
  3597   CompactibleFreeListSpace*  _cms_space;
  3598   CompactibleFreeListSpace* _perm_space;
  3599   HeapWord*     _global_finger;
  3601   //  Exposed here for yielding support
  3602   Mutex* const _bit_map_lock;
  3604   // The per thread work queues, available here for stealing
  3605   OopTaskQueueSet*  _task_queues;
  3606   CMSConcMarkingTerminator _term;
  3608  public:
  3609   CMSConcMarkingTask(CMSCollector* collector,
  3610                  CompactibleFreeListSpace* cms_space,
  3611                  CompactibleFreeListSpace* perm_space,
  3612                  bool asynch, int n_workers,
  3613                  YieldingFlexibleWorkGang* workers,
  3614                  OopTaskQueueSet* task_queues):
  3615     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3616     _collector(collector),
  3617     _cms_space(cms_space),
  3618     _perm_space(perm_space),
  3619     _asynch(asynch), _n_workers(n_workers), _result(true),
  3620     _workers(workers), _task_queues(task_queues),
  3621     _term(n_workers, task_queues, _collector, asynch),
  3622     _bit_map_lock(collector->bitMapLock())
  3624     assert(n_workers <= workers->total_workers(),
  3625            "Else termination won't work correctly today"); // XXX FIX ME!
  3626     _requested_size = n_workers;
  3627     _term.set_task(this);
  3628     assert(_cms_space->bottom() < _perm_space->bottom(),
  3629            "Finger incorrectly initialized below");
  3630     _global_finger = _cms_space->bottom();
  3634   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3636   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3638   HeapWord** global_finger_addr() { return &_global_finger; }
  3640   CMSConcMarkingTerminator* terminator() { return &_term; }
  3642   void work(int i);
  3644   virtual void coordinator_yield();  // stuff done by coordinator
  3645   bool result() { return _result; }
  3647   void reset(HeapWord* ra) {
  3648     _term.reset_for_reuse();
  3651   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3652                                            OopTaskQueue* work_q);
  3654  private:
  3655   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3656   void do_work_steal(int i);
  3657   void bump_global_finger(HeapWord* f);
  3658 };
  3660 void CMSConcMarkingTerminator::yield() {
  3661   if (ConcurrentMarkSweepThread::should_yield() &&
  3662       !_collector->foregroundGCIsActive() &&
  3663       _yield) {
  3664     _task->yield();
  3665   } else {
  3666     ParallelTaskTerminator::yield();
  3670 ////////////////////////////////////////////////////////////////
  3671 // Concurrent Marking Algorithm Sketch
  3672 ////////////////////////////////////////////////////////////////
  3673 // Until all tasks exhausted (both spaces):
  3674 // -- claim next available chunk
  3675 // -- bump global finger via CAS
  3676 // -- find first object that starts in this chunk
  3677 //    and start scanning bitmap from that position
  3678 // -- scan marked objects for oops
  3679 // -- CAS-mark target, and if successful:
  3680 //    . if target oop is above global finger (volatile read)
  3681 //      nothing to do
  3682 //    . if target oop is in chunk and above local finger
  3683 //        then nothing to do
  3684 //    . else push on work-queue
  3685 // -- Deal with possible overflow issues:
  3686 //    . local work-queue overflow causes stuff to be pushed on
  3687 //      global (common) overflow queue
  3688 //    . always first empty local work queue
  3689 //    . then get a batch of oops from global work queue if any
  3690 //    . then do work stealing
  3691 // -- When all tasks claimed (both spaces)
  3692 //    and local work queue empty,
  3693 //    then in a loop do:
  3694 //    . check global overflow stack; steal a batch of oops and trace
  3695 //    . try to steal from other threads oif GOS is empty
  3696 //    . if neither is available, offer termination
  3697 // -- Terminate and return result
  3698 //
  3699 void CMSConcMarkingTask::work(int i) {
  3700   elapsedTimer _timer;
  3701   ResourceMark rm;
  3702   HandleMark hm;
  3704   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3706   // Before we begin work, our work queue should be empty
  3707   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3708   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3709   _timer.start();
  3710   do_scan_and_mark(i, _cms_space);
  3711   _timer.stop();
  3712   if (PrintCMSStatistics != 0) {
  3713     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3714       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3717   // ... do the same for the _perm_space
  3718   _timer.reset();
  3719   _timer.start();
  3720   do_scan_and_mark(i, _perm_space);
  3721   _timer.stop();
  3722   if (PrintCMSStatistics != 0) {
  3723     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3724       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3727   // ... do work stealing
  3728   _timer.reset();
  3729   _timer.start();
  3730   do_work_steal(i);
  3731   _timer.stop();
  3732   if (PrintCMSStatistics != 0) {
  3733     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3734       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3736   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3737   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3738   // Note that under the current task protocol, the
  3739   // following assertion is true even of the spaces
  3740   // expanded since the completion of the concurrent
  3741   // marking. XXX This will likely change under a strict
  3742   // ABORT semantics.
  3743   assert(_global_finger >  _cms_space->end() &&
  3744          _global_finger >= _perm_space->end(),
  3745          "All tasks have been completed");
  3746   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3749 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3750   HeapWord* read = _global_finger;
  3751   HeapWord* cur  = read;
  3752   while (f > read) {
  3753     cur = read;
  3754     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3755     if (cur == read) {
  3756       // our cas succeeded
  3757       assert(_global_finger >= f, "protocol consistency");
  3758       break;
  3763 // This is really inefficient, and should be redone by
  3764 // using (not yet available) block-read and -write interfaces to the
  3765 // stack and the work_queue. XXX FIX ME !!!
  3766 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3767                                                       OopTaskQueue* work_q) {
  3768   // Fast lock-free check
  3769   if (ovflw_stk->length() == 0) {
  3770     return false;
  3772   assert(work_q->size() == 0, "Shouldn't steal");
  3773   MutexLockerEx ml(ovflw_stk->par_lock(),
  3774                    Mutex::_no_safepoint_check_flag);
  3775   // Grab up to 1/4 the size of the work queue
  3776   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3777                     (size_t)ParGCDesiredObjsFromOverflowList);
  3778   num = MIN2(num, ovflw_stk->length());
  3779   for (int i = (int) num; i > 0; i--) {
  3780     oop cur = ovflw_stk->pop();
  3781     assert(cur != NULL, "Counted wrong?");
  3782     work_q->push(cur);
  3784   return num > 0;
  3787 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3788   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3789   int n_tasks = pst->n_tasks();
  3790   // We allow that there may be no tasks to do here because
  3791   // we are restarting after a stack overflow.
  3792   assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
  3793   int nth_task = 0;
  3795   HeapWord* start = sp->bottom();
  3796   size_t chunk_size = sp->marking_task_size();
  3797   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3798     // Having claimed the nth task in this space,
  3799     // compute the chunk that it corresponds to:
  3800     MemRegion span = MemRegion(start + nth_task*chunk_size,
  3801                                start + (nth_task+1)*chunk_size);
  3802     // Try and bump the global finger via a CAS;
  3803     // note that we need to do the global finger bump
  3804     // _before_ taking the intersection below, because
  3805     // the task corresponding to that region will be
  3806     // deemed done even if the used_region() expands
  3807     // because of allocation -- as it almost certainly will
  3808     // during start-up while the threads yield in the
  3809     // closure below.
  3810     HeapWord* finger = span.end();
  3811     bump_global_finger(finger);   // atomically
  3812     // There are null tasks here corresponding to chunks
  3813     // beyond the "top" address of the space.
  3814     span = span.intersection(sp->used_region());
  3815     if (!span.is_empty()) {  // Non-null task
  3816       // We want to skip the first object because
  3817       // the protocol is to scan any object in its entirety
  3818       // that _starts_ in this span; a fortiori, any
  3819       // object starting in an earlier span is scanned
  3820       // as part of an earlier claimed task.
  3821       // Below we use the "careful" version of block_start
  3822       // so we do not try to navigate uninitialized objects.
  3823       HeapWord* prev_obj = sp->block_start_careful(span.start());
  3824       // Below we use a variant of block_size that uses the
  3825       // Printezis bits to avoid waiting for allocated
  3826       // objects to become initialized/parsable.
  3827       while (prev_obj < span.start()) {
  3828         size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3829         if (sz > 0) {
  3830           prev_obj += sz;
  3831         } else {
  3832           // In this case we may end up doing a bit of redundant
  3833           // scanning, but that appears unavoidable, short of
  3834           // locking the free list locks; see bug 6324141.
  3835           break;
  3838       if (prev_obj < span.end()) {
  3839         MemRegion my_span = MemRegion(prev_obj, span.end());
  3840         // Do the marking work within a non-empty span --
  3841         // the last argument to the constructor indicates whether the
  3842         // iteration should be incremental with periodic yields.
  3843         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3844                                     &_collector->_markBitMap,
  3845                                     work_queue(i),
  3846                                     &_collector->_markStack,
  3847                                     &_collector->_revisitStack,
  3848                                     _asynch);
  3849         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3850       } // else nothing to do for this task
  3851     }   // else nothing to do for this task
  3853   // We'd be tempted to assert here that since there are no
  3854   // more tasks left to claim in this space, the global_finger
  3855   // must exceed space->top() and a fortiori space->end(). However,
  3856   // that would not quite be correct because the bumping of
  3857   // global_finger occurs strictly after the claiming of a task,
  3858   // so by the time we reach here the global finger may not yet
  3859   // have been bumped up by the thread that claimed the last
  3860   // task.
  3861   pst->all_tasks_completed();
  3864 class Par_ConcMarkingClosure: public OopClosure {
  3865   CMSCollector* _collector;
  3866   MemRegion     _span;
  3867   CMSBitMap*    _bit_map;
  3868   CMSMarkStack* _overflow_stack;
  3869   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3870   OopTaskQueue* _work_queue;
  3872  public:
  3873   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3874                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3875     _collector(collector),
  3876     _span(_collector->_span),
  3877     _work_queue(work_queue),
  3878     _bit_map(bit_map),
  3879     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3881   void do_oop(oop* p);
  3882   void trim_queue(size_t max);
  3883   void handle_stack_overflow(HeapWord* lost);
  3884 };
  3886 // Grey object rescan during work stealing phase --
  3887 // the salient assumption here is that stolen oops must
  3888 // always be initialized, so we do not need to check for
  3889 // uninitialized objects before scanning here.
  3890 void Par_ConcMarkingClosure::do_oop(oop* p) {
  3891   oop    this_oop = *p;
  3892   assert(this_oop->is_oop_or_null(),
  3893          "expected an oop or NULL");
  3894   HeapWord* addr = (HeapWord*)this_oop;
  3895   // Check if oop points into the CMS generation
  3896   // and is not marked
  3897   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3898     // a white object ...
  3899     // If we manage to "claim" the object, by being the
  3900     // first thread to mark it, then we push it on our
  3901     // marking stack
  3902     if (_bit_map->par_mark(addr)) {     // ... now grey
  3903       // push on work queue (grey set)
  3904       bool simulate_overflow = false;
  3905       NOT_PRODUCT(
  3906         if (CMSMarkStackOverflowALot &&
  3907             _collector->simulate_overflow()) {
  3908           // simulate a stack overflow
  3909           simulate_overflow = true;
  3912       if (simulate_overflow ||
  3913           !(_work_queue->push(this_oop) || _overflow_stack->par_push(this_oop))) {
  3914         // stack overflow
  3915         if (PrintCMSStatistics != 0) {
  3916           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  3917                                  SIZE_FORMAT, _overflow_stack->capacity());
  3919         // We cannot assert that the overflow stack is full because
  3920         // it may have been emptied since.
  3921         assert(simulate_overflow ||
  3922                _work_queue->size() == _work_queue->max_elems(),
  3923               "Else push should have succeeded");
  3924         handle_stack_overflow(addr);
  3926     } // Else, some other thread got there first
  3930 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  3931   while (_work_queue->size() > max) {
  3932     oop new_oop;
  3933     if (_work_queue->pop_local(new_oop)) {
  3934       assert(new_oop->is_oop(), "Should be an oop");
  3935       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  3936       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  3937       assert(new_oop->is_parsable(), "Should be parsable");
  3938       new_oop->oop_iterate(this);  // do_oop() above
  3943 // Upon stack overflow, we discard (part of) the stack,
  3944 // remembering the least address amongst those discarded
  3945 // in CMSCollector's _restart_address.
  3946 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  3947   // We need to do this under a mutex to prevent other
  3948   // workers from interfering with the expansion below.
  3949   MutexLockerEx ml(_overflow_stack->par_lock(),
  3950                    Mutex::_no_safepoint_check_flag);
  3951   // Remember the least grey address discarded
  3952   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  3953   _collector->lower_restart_addr(ra);
  3954   _overflow_stack->reset();  // discard stack contents
  3955   _overflow_stack->expand(); // expand the stack if possible
  3959 void CMSConcMarkingTask::do_work_steal(int i) {
  3960   OopTaskQueue* work_q = work_queue(i);
  3961   oop obj_to_scan;
  3962   CMSBitMap* bm = &(_collector->_markBitMap);
  3963   CMSMarkStack* ovflw = &(_collector->_markStack);
  3964   int* seed = _collector->hash_seed(i);
  3965   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  3966   while (true) {
  3967     cl.trim_queue(0);
  3968     assert(work_q->size() == 0, "Should have been emptied above");
  3969     if (get_work_from_overflow_stack(ovflw, work_q)) {
  3970       // Can't assert below because the work obtained from the
  3971       // overflow stack may already have been stolen from us.
  3972       // assert(work_q->size() > 0, "Work from overflow stack");
  3973       continue;
  3974     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  3975       assert(obj_to_scan->is_oop(), "Should be an oop");
  3976       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  3977       obj_to_scan->oop_iterate(&cl);
  3978     } else if (terminator()->offer_termination()) {
  3979       assert(work_q->size() == 0, "Impossible!");
  3980       break;
  3985 // This is run by the CMS (coordinator) thread.
  3986 void CMSConcMarkingTask::coordinator_yield() {
  3987   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  3988          "CMS thread should hold CMS token");
  3990   // First give up the locks, then yield, then re-lock
  3991   // We should probably use a constructor/destructor idiom to
  3992   // do this unlock/lock or modify the MutexUnlocker class to
  3993   // serve our purpose. XXX
  3994   assert_lock_strong(_bit_map_lock);
  3995   _bit_map_lock->unlock();
  3996   ConcurrentMarkSweepThread::desynchronize(true);
  3997   ConcurrentMarkSweepThread::acknowledge_yield_request();
  3998   _collector->stopTimer();
  3999   if (PrintCMSStatistics != 0) {
  4000     _collector->incrementYields();
  4002   _collector->icms_wait();
  4004   // It is possible for whichever thread initiated the yield request
  4005   // not to get a chance to wake up and take the bitmap lock between
  4006   // this thread releasing it and reacquiring it. So, while the
  4007   // should_yield() flag is on, let's sleep for a bit to give the
  4008   // other thread a chance to wake up. The limit imposed on the number
  4009   // of iterations is defensive, to avoid any unforseen circumstances
  4010   // putting us into an infinite loop. Since it's always been this
  4011   // (coordinator_yield()) method that was observed to cause the
  4012   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4013   // which is by default non-zero. For the other seven methods that
  4014   // also perform the yield operation, as are using a different
  4015   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4016   // can enable the sleeping for those methods too, if necessary.
  4017   // See 6442774.
  4018   //
  4019   // We really need to reconsider the synchronization between the GC
  4020   // thread and the yield-requesting threads in the future and we
  4021   // should really use wait/notify, which is the recommended
  4022   // way of doing this type of interaction. Additionally, we should
  4023   // consolidate the eight methods that do the yield operation and they
  4024   // are almost identical into one for better maintenability and
  4025   // readability. See 6445193.
  4026   //
  4027   // Tony 2006.06.29
  4028   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4029                        ConcurrentMarkSweepThread::should_yield() &&
  4030                        !CMSCollector::foregroundGCIsActive(); ++i) {
  4031     os::sleep(Thread::current(), 1, false);
  4032     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4035   ConcurrentMarkSweepThread::synchronize(true);
  4036   _bit_map_lock->lock_without_safepoint_check();
  4037   _collector->startTimer();
  4040 bool CMSCollector::do_marking_mt(bool asynch) {
  4041   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4042   // In the future this would be determined ergonomically, based
  4043   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4044   int num_workers = ParallelCMSThreads;
  4046   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4047   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4049   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4050                          asynch, num_workers /* number requested XXX */,
  4051                          conc_workers(), task_queues());
  4053   // Since the actual number of workers we get may be different
  4054   // from the number we requested above, do we need to do anything different
  4055   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4056   // class?? XXX
  4057   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4058   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4060   // Refs discovery is already non-atomic.
  4061   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4062   // Mutate the Refs discovery so it is MT during the
  4063   // multi-threaded marking phase.
  4064   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4066   conc_workers()->start_task(&tsk);
  4067   while (tsk.yielded()) {
  4068     tsk.coordinator_yield();
  4069     conc_workers()->continue_task(&tsk);
  4071   // If the task was aborted, _restart_addr will be non-NULL
  4072   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4073   while (_restart_addr != NULL) {
  4074     // XXX For now we do not make use of ABORTED state and have not
  4075     // yet implemented the right abort semantics (even in the original
  4076     // single-threaded CMS case). That needs some more investigation
  4077     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4078     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4079     // If _restart_addr is non-NULL, a marking stack overflow
  4080     // occured; we need to do a fresh marking iteration from the
  4081     // indicated restart address.
  4082     if (_foregroundGCIsActive && asynch) {
  4083       // We may be running into repeated stack overflows, having
  4084       // reached the limit of the stack size, while making very
  4085       // slow forward progress. It may be best to bail out and
  4086       // let the foreground collector do its job.
  4087       // Clear _restart_addr, so that foreground GC
  4088       // works from scratch. This avoids the headache of
  4089       // a "rescan" which would otherwise be needed because
  4090       // of the dirty mod union table & card table.
  4091       _restart_addr = NULL;
  4092       return false;
  4094     // Adjust the task to restart from _restart_addr
  4095     tsk.reset(_restart_addr);
  4096     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4097                   _restart_addr);
  4098     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4099                   _restart_addr);
  4100     _restart_addr = NULL;
  4101     // Get the workers going again
  4102     conc_workers()->start_task(&tsk);
  4103     while (tsk.yielded()) {
  4104       tsk.coordinator_yield();
  4105       conc_workers()->continue_task(&tsk);
  4108   assert(tsk.completed(), "Inconsistency");
  4109   assert(tsk.result() == true, "Inconsistency");
  4110   return true;
  4113 bool CMSCollector::do_marking_st(bool asynch) {
  4114   ResourceMark rm;
  4115   HandleMark   hm;
  4117   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4118     &_markStack, &_revisitStack, CMSYield && asynch);
  4119   // the last argument to iterate indicates whether the iteration
  4120   // should be incremental with periodic yields.
  4121   _markBitMap.iterate(&markFromRootsClosure);
  4122   // If _restart_addr is non-NULL, a marking stack overflow
  4123   // occured; we need to do a fresh iteration from the
  4124   // indicated restart address.
  4125   while (_restart_addr != NULL) {
  4126     if (_foregroundGCIsActive && asynch) {
  4127       // We may be running into repeated stack overflows, having
  4128       // reached the limit of the stack size, while making very
  4129       // slow forward progress. It may be best to bail out and
  4130       // let the foreground collector do its job.
  4131       // Clear _restart_addr, so that foreground GC
  4132       // works from scratch. This avoids the headache of
  4133       // a "rescan" which would otherwise be needed because
  4134       // of the dirty mod union table & card table.
  4135       _restart_addr = NULL;
  4136       return false;  // indicating failure to complete marking
  4138     // Deal with stack overflow:
  4139     // we restart marking from _restart_addr
  4140     HeapWord* ra = _restart_addr;
  4141     markFromRootsClosure.reset(ra);
  4142     _restart_addr = NULL;
  4143     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4145   return true;
  4148 void CMSCollector::preclean() {
  4149   check_correct_thread_executing();
  4150   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4151   verify_work_stacks_empty();
  4152   verify_overflow_empty();
  4153   _abort_preclean = false;
  4154   if (CMSPrecleaningEnabled) {
  4155     _eden_chunk_index = 0;
  4156     size_t used = get_eden_used();
  4157     size_t capacity = get_eden_capacity();
  4158     // Don't start sampling unless we will get sufficiently
  4159     // many samples.
  4160     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4161                 * CMSScheduleRemarkEdenPenetration)) {
  4162       _start_sampling = true;
  4163     } else {
  4164       _start_sampling = false;
  4166     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4167     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4168     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4170   CMSTokenSync x(true); // is cms thread
  4171   if (CMSPrecleaningEnabled) {
  4172     sample_eden();
  4173     _collectorState = AbortablePreclean;
  4174   } else {
  4175     _collectorState = FinalMarking;
  4177   verify_work_stacks_empty();
  4178   verify_overflow_empty();
  4181 // Try and schedule the remark such that young gen
  4182 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4183 void CMSCollector::abortable_preclean() {
  4184   check_correct_thread_executing();
  4185   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4186   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4188   // If Eden's current occupancy is below this threshold,
  4189   // immediately schedule the remark; else preclean
  4190   // past the next scavenge in an effort to
  4191   // schedule the pause as described avove. By choosing
  4192   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4193   // we will never do an actual abortable preclean cycle.
  4194   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4195     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4196     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4197     // We need more smarts in the abortable preclean
  4198     // loop below to deal with cases where allocation
  4199     // in young gen is very very slow, and our precleaning
  4200     // is running a losing race against a horde of
  4201     // mutators intent on flooding us with CMS updates
  4202     // (dirty cards).
  4203     // One, admittedly dumb, strategy is to give up
  4204     // after a certain number of abortable precleaning loops
  4205     // or after a certain maximum time. We want to make
  4206     // this smarter in the next iteration.
  4207     // XXX FIX ME!!! YSR
  4208     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4209     while (!(should_abort_preclean() ||
  4210              ConcurrentMarkSweepThread::should_terminate())) {
  4211       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4212       cumworkdone += workdone;
  4213       loops++;
  4214       // Voluntarily terminate abortable preclean phase if we have
  4215       // been at it for too long.
  4216       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4217           loops >= CMSMaxAbortablePrecleanLoops) {
  4218         if (PrintGCDetails) {
  4219           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4221         break;
  4223       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4224         if (PrintGCDetails) {
  4225           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4227         break;
  4229       // If we are doing little work each iteration, we should
  4230       // take a short break.
  4231       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4232         // Sleep for some time, waiting for work to accumulate
  4233         stopTimer();
  4234         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4235         startTimer();
  4236         waited++;
  4239     if (PrintCMSStatistics > 0) {
  4240       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4241                           loops, waited, cumworkdone);
  4244   CMSTokenSync x(true); // is cms thread
  4245   if (_collectorState != Idling) {
  4246     assert(_collectorState == AbortablePreclean,
  4247            "Spontaneous state transition?");
  4248     _collectorState = FinalMarking;
  4249   } // Else, a foreground collection completed this CMS cycle.
  4250   return;
  4253 // Respond to an Eden sampling opportunity
  4254 void CMSCollector::sample_eden() {
  4255   // Make sure a young gc cannot sneak in between our
  4256   // reading and recording of a sample.
  4257   assert(Thread::current()->is_ConcurrentGC_thread(),
  4258          "Only the cms thread may collect Eden samples");
  4259   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4260          "Should collect samples while holding CMS token");
  4261   if (!_start_sampling) {
  4262     return;
  4264   if (_eden_chunk_array) {
  4265     if (_eden_chunk_index < _eden_chunk_capacity) {
  4266       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4267       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4268              "Unexpected state of Eden");
  4269       // We'd like to check that what we just sampled is an oop-start address;
  4270       // however, we cannot do that here since the object may not yet have been
  4271       // initialized. So we'll instead do the check when we _use_ this sample
  4272       // later.
  4273       if (_eden_chunk_index == 0 ||
  4274           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4275                          _eden_chunk_array[_eden_chunk_index-1])
  4276            >= CMSSamplingGrain)) {
  4277         _eden_chunk_index++;  // commit sample
  4281   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4282     size_t used = get_eden_used();
  4283     size_t capacity = get_eden_capacity();
  4284     assert(used <= capacity, "Unexpected state of Eden");
  4285     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4286       _abort_preclean = true;
  4292 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4293   assert(_collectorState == Precleaning ||
  4294          _collectorState == AbortablePreclean, "incorrect state");
  4295   ResourceMark rm;
  4296   HandleMark   hm;
  4297   // Do one pass of scrubbing the discovered reference lists
  4298   // to remove any reference objects with strongly-reachable
  4299   // referents.
  4300   if (clean_refs) {
  4301     ReferenceProcessor* rp = ref_processor();
  4302     CMSPrecleanRefsYieldClosure yield_cl(this);
  4303     assert(rp->span().equals(_span), "Spans should be equal");
  4304     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4305                                    &_markStack);
  4306     CMSDrainMarkingStackClosure complete_trace(this,
  4307                                   _span, &_markBitMap, &_markStack,
  4308                                   &keep_alive);
  4310     // We don't want this step to interfere with a young
  4311     // collection because we don't want to take CPU
  4312     // or memory bandwidth away from the young GC threads
  4313     // (which may be as many as there are CPUs).
  4314     // Note that we don't need to protect ourselves from
  4315     // interference with mutators because they can't
  4316     // manipulate the discovered reference lists nor affect
  4317     // the computed reachability of the referents, the
  4318     // only properties manipulated by the precleaning
  4319     // of these reference lists.
  4320     stopTimer();
  4321     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4322                             bitMapLock());
  4323     startTimer();
  4324     sample_eden();
  4325     // The following will yield to allow foreground
  4326     // collection to proceed promptly. XXX YSR:
  4327     // The code in this method may need further
  4328     // tweaking for better performance and some restructuring
  4329     // for cleaner interfaces.
  4330     rp->preclean_discovered_references(
  4331           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4332           &yield_cl);
  4335   if (clean_survivor) {  // preclean the active survivor space(s)
  4336     assert(_young_gen->kind() == Generation::DefNew ||
  4337            _young_gen->kind() == Generation::ParNew ||
  4338            _young_gen->kind() == Generation::ASParNew,
  4339          "incorrect type for cast");
  4340     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4341     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4342                              &_markBitMap, &_modUnionTable,
  4343                              &_markStack, &_revisitStack,
  4344                              true /* precleaning phase */);
  4345     stopTimer();
  4346     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4347                              bitMapLock());
  4348     startTimer();
  4349     unsigned int before_count =
  4350       GenCollectedHeap::heap()->total_collections();
  4351     SurvivorSpacePrecleanClosure
  4352       sss_cl(this, _span, &_markBitMap, &_markStack,
  4353              &pam_cl, before_count, CMSYield);
  4354     dng->from()->object_iterate_careful(&sss_cl);
  4355     dng->to()->object_iterate_careful(&sss_cl);
  4357   MarkRefsIntoAndScanClosure
  4358     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4359              &_markStack, &_revisitStack, this, CMSYield,
  4360              true /* precleaning phase */);
  4361   // CAUTION: The following closure has persistent state that may need to
  4362   // be reset upon a decrease in the sequence of addresses it
  4363   // processes.
  4364   ScanMarkedObjectsAgainCarefullyClosure
  4365     smoac_cl(this, _span,
  4366       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4368   // Preclean dirty cards in ModUnionTable and CardTable using
  4369   // appropriate convergence criterion;
  4370   // repeat CMSPrecleanIter times unless we find that
  4371   // we are losing.
  4372   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4373   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4374          "Bad convergence multiplier");
  4375   assert(CMSPrecleanThreshold >= 100,
  4376          "Unreasonably low CMSPrecleanThreshold");
  4378   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4379   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4380        numIter < CMSPrecleanIter;
  4381        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4382     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4383     if (CMSPermGenPrecleaningEnabled) {
  4384       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4386     if (Verbose && PrintGCDetails) {
  4387       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4389     // Either there are very few dirty cards, so re-mark
  4390     // pause will be small anyway, or our pre-cleaning isn't
  4391     // that much faster than the rate at which cards are being
  4392     // dirtied, so we might as well stop and re-mark since
  4393     // precleaning won't improve our re-mark time by much.
  4394     if (curNumCards <= CMSPrecleanThreshold ||
  4395         (numIter > 0 &&
  4396          (curNumCards * CMSPrecleanDenominator >
  4397          lastNumCards * CMSPrecleanNumerator))) {
  4398       numIter++;
  4399       cumNumCards += curNumCards;
  4400       break;
  4403   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4404   if (CMSPermGenPrecleaningEnabled) {
  4405     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4407   cumNumCards += curNumCards;
  4408   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4409     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4410                   curNumCards, cumNumCards, numIter);
  4412   return cumNumCards;   // as a measure of useful work done
  4415 // PRECLEANING NOTES:
  4416 // Precleaning involves:
  4417 // . reading the bits of the modUnionTable and clearing the set bits.
  4418 // . For the cards corresponding to the set bits, we scan the
  4419 //   objects on those cards. This means we need the free_list_lock
  4420 //   so that we can safely iterate over the CMS space when scanning
  4421 //   for oops.
  4422 // . When we scan the objects, we'll be both reading and setting
  4423 //   marks in the marking bit map, so we'll need the marking bit map.
  4424 // . For protecting _collector_state transitions, we take the CGC_lock.
  4425 //   Note that any races in the reading of of card table entries by the
  4426 //   CMS thread on the one hand and the clearing of those entries by the
  4427 //   VM thread or the setting of those entries by the mutator threads on the
  4428 //   other are quite benign. However, for efficiency it makes sense to keep
  4429 //   the VM thread from racing with the CMS thread while the latter is
  4430 //   dirty card info to the modUnionTable. We therefore also use the
  4431 //   CGC_lock to protect the reading of the card table and the mod union
  4432 //   table by the CM thread.
  4433 // . We run concurrently with mutator updates, so scanning
  4434 //   needs to be done carefully  -- we should not try to scan
  4435 //   potentially uninitialized objects.
  4436 //
  4437 // Locking strategy: While holding the CGC_lock, we scan over and
  4438 // reset a maximal dirty range of the mod union / card tables, then lock
  4439 // the free_list_lock and bitmap lock to do a full marking, then
  4440 // release these locks; and repeat the cycle. This allows for a
  4441 // certain amount of fairness in the sharing of these locks between
  4442 // the CMS collector on the one hand, and the VM thread and the
  4443 // mutators on the other.
  4445 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4446 // further below are largely identical; if you need to modify
  4447 // one of these methods, please check the other method too.
  4449 size_t CMSCollector::preclean_mod_union_table(
  4450   ConcurrentMarkSweepGeneration* gen,
  4451   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4452   verify_work_stacks_empty();
  4453   verify_overflow_empty();
  4455   // strategy: starting with the first card, accumulate contiguous
  4456   // ranges of dirty cards; clear these cards, then scan the region
  4457   // covered by these cards.
  4459   // Since all of the MUT is committed ahead, we can just use
  4460   // that, in case the generations expand while we are precleaning.
  4461   // It might also be fine to just use the committed part of the
  4462   // generation, but we might potentially miss cards when the
  4463   // generation is rapidly expanding while we are in the midst
  4464   // of precleaning.
  4465   HeapWord* startAddr = gen->reserved().start();
  4466   HeapWord* endAddr   = gen->reserved().end();
  4468   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4470   size_t numDirtyCards, cumNumDirtyCards;
  4471   HeapWord *nextAddr, *lastAddr;
  4472   for (cumNumDirtyCards = numDirtyCards = 0,
  4473        nextAddr = lastAddr = startAddr;
  4474        nextAddr < endAddr;
  4475        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4477     ResourceMark rm;
  4478     HandleMark   hm;
  4480     MemRegion dirtyRegion;
  4482       stopTimer();
  4483       CMSTokenSync ts(true);
  4484       startTimer();
  4485       sample_eden();
  4486       // Get dirty region starting at nextOffset (inclusive),
  4487       // simultaneously clearing it.
  4488       dirtyRegion =
  4489         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4490       assert(dirtyRegion.start() >= nextAddr,
  4491              "returned region inconsistent?");
  4493     // Remember where the next search should begin.
  4494     // The returned region (if non-empty) is a right open interval,
  4495     // so lastOffset is obtained from the right end of that
  4496     // interval.
  4497     lastAddr = dirtyRegion.end();
  4498     // Should do something more transparent and less hacky XXX
  4499     numDirtyCards =
  4500       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4502     // We'll scan the cards in the dirty region (with periodic
  4503     // yields for foreground GC as needed).
  4504     if (!dirtyRegion.is_empty()) {
  4505       assert(numDirtyCards > 0, "consistency check");
  4506       HeapWord* stop_point = NULL;
  4508         stopTimer();
  4509         CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4510                                  bitMapLock());
  4511         startTimer();
  4512         verify_work_stacks_empty();
  4513         verify_overflow_empty();
  4514         sample_eden();
  4515         stop_point =
  4516           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4518       if (stop_point != NULL) {
  4519         // The careful iteration stopped early either because it found an
  4520         // uninitialized object, or because we were in the midst of an
  4521         // "abortable preclean", which should now be aborted. Redirty
  4522         // the bits corresponding to the partially-scanned or unscanned
  4523         // cards. We'll either restart at the next block boundary or
  4524         // abort the preclean.
  4525         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4526                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4527                "Unparsable objects should only be in perm gen.");
  4529         stopTimer();
  4530         CMSTokenSyncWithLocks ts(true, bitMapLock());
  4531         startTimer();
  4532         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4533         if (should_abort_preclean()) {
  4534           break; // out of preclean loop
  4535         } else {
  4536           // Compute the next address at which preclean should pick up;
  4537           // might need bitMapLock in order to read P-bits.
  4538           lastAddr = next_card_start_after_block(stop_point);
  4541     } else {
  4542       assert(lastAddr == endAddr, "consistency check");
  4543       assert(numDirtyCards == 0, "consistency check");
  4544       break;
  4547   verify_work_stacks_empty();
  4548   verify_overflow_empty();
  4549   return cumNumDirtyCards;
  4552 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4553 // below are largely identical; if you need to modify
  4554 // one of these methods, please check the other method too.
  4556 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4557   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4558   // strategy: it's similar to precleamModUnionTable above, in that
  4559   // we accumulate contiguous ranges of dirty cards, mark these cards
  4560   // precleaned, then scan the region covered by these cards.
  4561   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4562   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4564   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4566   size_t numDirtyCards, cumNumDirtyCards;
  4567   HeapWord *lastAddr, *nextAddr;
  4569   for (cumNumDirtyCards = numDirtyCards = 0,
  4570        nextAddr = lastAddr = startAddr;
  4571        nextAddr < endAddr;
  4572        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4574     ResourceMark rm;
  4575     HandleMark   hm;
  4577     MemRegion dirtyRegion;
  4579       // See comments in "Precleaning notes" above on why we
  4580       // do this locking. XXX Could the locking overheads be
  4581       // too high when dirty cards are sparse? [I don't think so.]
  4582       stopTimer();
  4583       CMSTokenSync x(true); // is cms thread
  4584       startTimer();
  4585       sample_eden();
  4586       // Get and clear dirty region from card table
  4587       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_preclean(
  4588                                     MemRegion(nextAddr, endAddr));
  4589       assert(dirtyRegion.start() >= nextAddr,
  4590              "returned region inconsistent?");
  4592     lastAddr = dirtyRegion.end();
  4593     numDirtyCards =
  4594       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4596     if (!dirtyRegion.is_empty()) {
  4597       stopTimer();
  4598       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4599       startTimer();
  4600       sample_eden();
  4601       verify_work_stacks_empty();
  4602       verify_overflow_empty();
  4603       HeapWord* stop_point =
  4604         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4605       if (stop_point != NULL) {
  4606         // The careful iteration stopped early because it found an
  4607         // uninitialized object.  Redirty the bits corresponding to the
  4608         // partially-scanned or unscanned cards, and start again at the
  4609         // next block boundary.
  4610         assert(CMSPermGenPrecleaningEnabled ||
  4611                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4612                "Unparsable objects should only be in perm gen.");
  4613         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4614         if (should_abort_preclean()) {
  4615           break; // out of preclean loop
  4616         } else {
  4617           // Compute the next address at which preclean should pick up.
  4618           lastAddr = next_card_start_after_block(stop_point);
  4621     } else {
  4622       break;
  4625   verify_work_stacks_empty();
  4626   verify_overflow_empty();
  4627   return cumNumDirtyCards;
  4630 void CMSCollector::checkpointRootsFinal(bool asynch,
  4631   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4632   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4633   check_correct_thread_executing();
  4634   // world is stopped at this checkpoint
  4635   assert(SafepointSynchronize::is_at_safepoint(),
  4636          "world should be stopped");
  4637   verify_work_stacks_empty();
  4638   verify_overflow_empty();
  4640   SpecializationStats::clear();
  4641   if (PrintGCDetails) {
  4642     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4643                         _young_gen->used() / K,
  4644                         _young_gen->capacity() / K);
  4646   if (asynch) {
  4647     if (CMSScavengeBeforeRemark) {
  4648       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4649       // Temporarily set flag to false, GCH->do_collection will
  4650       // expect it to be false and set to true
  4651       FlagSetting fl(gch->_is_gc_active, false);
  4652       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4653         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4654       int level = _cmsGen->level() - 1;
  4655       if (level >= 0) {
  4656         gch->do_collection(true,        // full (i.e. force, see below)
  4657                            false,       // !clear_all_soft_refs
  4658                            0,           // size
  4659                            false,       // is_tlab
  4660                            level        // max_level
  4661                           );
  4664     FreelistLocker x(this);
  4665     MutexLockerEx y(bitMapLock(),
  4666                     Mutex::_no_safepoint_check_flag);
  4667     assert(!init_mark_was_synchronous, "but that's impossible!");
  4668     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4669   } else {
  4670     // already have all the locks
  4671     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4672                              init_mark_was_synchronous);
  4674   verify_work_stacks_empty();
  4675   verify_overflow_empty();
  4676   SpecializationStats::print();
  4679 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4680   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4682   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4684   assert(haveFreelistLocks(), "must have free list locks");
  4685   assert_lock_strong(bitMapLock());
  4687   if (UseAdaptiveSizePolicy) {
  4688     size_policy()->checkpoint_roots_final_begin();
  4691   ResourceMark rm;
  4692   HandleMark   hm;
  4694   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4696   if (cms_should_unload_classes()) {
  4697     CodeCache::gc_prologue();
  4699   assert(haveFreelistLocks(), "must have free list locks");
  4700   assert_lock_strong(bitMapLock());
  4702   if (!init_mark_was_synchronous) {
  4703     // We might assume that we need not fill TLAB's when
  4704     // CMSScavengeBeforeRemark is set, because we may have just done
  4705     // a scavenge which would have filled all TLAB's -- and besides
  4706     // Eden would be empty. This however may not always be the case --
  4707     // for instance although we asked for a scavenge, it may not have
  4708     // happened because of a JNI critical section. We probably need
  4709     // a policy for deciding whether we can in that case wait until
  4710     // the critical section releases and then do the remark following
  4711     // the scavenge, and skip it here. In the absence of that policy,
  4712     // or of an indication of whether the scavenge did indeed occur,
  4713     // we cannot rely on TLAB's having been filled and must do
  4714     // so here just in case a scavenge did not happen.
  4715     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4716     // Update the saved marks which may affect the root scans.
  4717     gch->save_marks();
  4720       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4722       // Note on the role of the mod union table:
  4723       // Since the marker in "markFromRoots" marks concurrently with
  4724       // mutators, it is possible for some reachable objects not to have been
  4725       // scanned. For instance, an only reference to an object A was
  4726       // placed in object B after the marker scanned B. Unless B is rescanned,
  4727       // A would be collected. Such updates to references in marked objects
  4728       // are detected via the mod union table which is the set of all cards
  4729       // dirtied since the first checkpoint in this GC cycle and prior to
  4730       // the most recent young generation GC, minus those cleaned up by the
  4731       // concurrent precleaning.
  4732       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4733         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4734         do_remark_parallel();
  4735       } else {
  4736         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4737                     gclog_or_tty);
  4738         do_remark_non_parallel();
  4741   } else {
  4742     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4743     // The initial mark was stop-world, so there's no rescanning to
  4744     // do; go straight on to the next step below.
  4746   verify_work_stacks_empty();
  4747   verify_overflow_empty();
  4750     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4751     refProcessingWork(asynch, clear_all_soft_refs);
  4753   verify_work_stacks_empty();
  4754   verify_overflow_empty();
  4756   if (cms_should_unload_classes()) {
  4757     CodeCache::gc_epilogue();
  4760   // If we encountered any (marking stack / work queue) overflow
  4761   // events during the current CMS cycle, take appropriate
  4762   // remedial measures, where possible, so as to try and avoid
  4763   // recurrence of that condition.
  4764   assert(_markStack.isEmpty(), "No grey objects");
  4765   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4766                      _ser_kac_ovflw;
  4767   if (ser_ovflw > 0) {
  4768     if (PrintCMSStatistics != 0) {
  4769       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4770         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4771         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4772         _ser_kac_ovflw);
  4774     _markStack.expand();
  4775     _ser_pmc_remark_ovflw = 0;
  4776     _ser_pmc_preclean_ovflw = 0;
  4777     _ser_kac_ovflw = 0;
  4779   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4780     if (PrintCMSStatistics != 0) {
  4781       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4782         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4783         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4785     _par_pmc_remark_ovflw = 0;
  4786     _par_kac_ovflw = 0;
  4788   if (PrintCMSStatistics != 0) {
  4789      if (_markStack._hit_limit > 0) {
  4790        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4791                               _markStack._hit_limit);
  4793      if (_markStack._failed_double > 0) {
  4794        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4795                               " current capacity "SIZE_FORMAT,
  4796                               _markStack._failed_double,
  4797                               _markStack.capacity());
  4800   _markStack._hit_limit = 0;
  4801   _markStack._failed_double = 0;
  4803   if ((VerifyAfterGC || VerifyDuringGC) &&
  4804       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4805     verify_after_remark();
  4808   // Change under the freelistLocks.
  4809   _collectorState = Sweeping;
  4810   // Call isAllClear() under bitMapLock
  4811   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4812     " final marking");
  4813   if (UseAdaptiveSizePolicy) {
  4814     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4818 // Parallel remark task
  4819 class CMSParRemarkTask: public AbstractGangTask {
  4820   CMSCollector* _collector;
  4821   WorkGang*     _workers;
  4822   int           _n_workers;
  4823   CompactibleFreeListSpace* _cms_space;
  4824   CompactibleFreeListSpace* _perm_space;
  4826   // The per-thread work queues, available here for stealing.
  4827   OopTaskQueueSet*       _task_queues;
  4828   ParallelTaskTerminator _term;
  4830  public:
  4831   CMSParRemarkTask(CMSCollector* collector,
  4832                    CompactibleFreeListSpace* cms_space,
  4833                    CompactibleFreeListSpace* perm_space,
  4834                    int n_workers, WorkGang* workers,
  4835                    OopTaskQueueSet* task_queues):
  4836     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4837     _collector(collector),
  4838     _cms_space(cms_space), _perm_space(perm_space),
  4839     _n_workers(n_workers),
  4840     _workers(workers),
  4841     _task_queues(task_queues),
  4842     _term(workers->total_workers(), task_queues) { }
  4844   OopTaskQueueSet* task_queues() { return _task_queues; }
  4846   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4848   ParallelTaskTerminator* terminator() { return &_term; }
  4850   void work(int i);
  4852  private:
  4853   // Work method in support of parallel rescan ... of young gen spaces
  4854   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4855                              ContiguousSpace* space,
  4856                              HeapWord** chunk_array, size_t chunk_top);
  4858   // ... of  dirty cards in old space
  4859   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4860                                   Par_MarkRefsIntoAndScanClosure* cl);
  4862   // ... work stealing for the above
  4863   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4864 };
  4866 void CMSParRemarkTask::work(int i) {
  4867   elapsedTimer _timer;
  4868   ResourceMark rm;
  4869   HandleMark   hm;
  4871   // ---------- rescan from roots --------------
  4872   _timer.start();
  4873   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4874   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4875     _collector->_span, _collector->ref_processor(),
  4876     &(_collector->_markBitMap),
  4877     work_queue(i), &(_collector->_revisitStack));
  4879   // Rescan young gen roots first since these are likely
  4880   // coarsely partitioned and may, on that account, constitute
  4881   // the critical path; thus, it's best to start off that
  4882   // work first.
  4883   // ---------- young gen roots --------------
  4885     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4886     EdenSpace* eden_space = dng->eden();
  4887     ContiguousSpace* from_space = dng->from();
  4888     ContiguousSpace* to_space   = dng->to();
  4890     HeapWord** eca = _collector->_eden_chunk_array;
  4891     size_t     ect = _collector->_eden_chunk_index;
  4892     HeapWord** sca = _collector->_survivor_chunk_array;
  4893     size_t     sct = _collector->_survivor_chunk_index;
  4895     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4896     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  4898     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  4899     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  4900     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  4902     _timer.stop();
  4903     if (PrintCMSStatistics != 0) {
  4904       gclog_or_tty->print_cr(
  4905         "Finished young gen rescan work in %dth thread: %3.3f sec",
  4906         i, _timer.seconds());
  4910   // ---------- remaining roots --------------
  4911   _timer.reset();
  4912   _timer.start();
  4913   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  4914                                 false,     // yg was scanned above
  4915                                 true,      // collecting perm gen
  4916                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  4917                                 NULL, &par_mrias_cl);
  4918   _timer.stop();
  4919   if (PrintCMSStatistics != 0) {
  4920     gclog_or_tty->print_cr(
  4921       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  4922       i, _timer.seconds());
  4925   // ---------- rescan dirty cards ------------
  4926   _timer.reset();
  4927   _timer.start();
  4929   // Do the rescan tasks for each of the two spaces
  4930   // (cms_space and perm_space) in turn.
  4931   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  4932   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  4933   _timer.stop();
  4934   if (PrintCMSStatistics != 0) {
  4935     gclog_or_tty->print_cr(
  4936       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  4937       i, _timer.seconds());
  4940   // ---------- steal work from other threads ...
  4941   // ---------- ... and drain overflow list.
  4942   _timer.reset();
  4943   _timer.start();
  4944   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  4945   _timer.stop();
  4946   if (PrintCMSStatistics != 0) {
  4947     gclog_or_tty->print_cr(
  4948       "Finished work stealing in %dth thread: %3.3f sec",
  4949       i, _timer.seconds());
  4953 void
  4954 CMSParRemarkTask::do_young_space_rescan(int i,
  4955   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  4956   HeapWord** chunk_array, size_t chunk_top) {
  4957   // Until all tasks completed:
  4958   // . claim an unclaimed task
  4959   // . compute region boundaries corresponding to task claimed
  4960   //   using chunk_array
  4961   // . par_oop_iterate(cl) over that region
  4963   ResourceMark rm;
  4964   HandleMark   hm;
  4966   SequentialSubTasksDone* pst = space->par_seq_tasks();
  4967   assert(pst->valid(), "Uninitialized use?");
  4969   int nth_task = 0;
  4970   int n_tasks  = pst->n_tasks();
  4972   HeapWord *start, *end;
  4973   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  4974     // We claimed task # nth_task; compute its boundaries.
  4975     if (chunk_top == 0) {  // no samples were taken
  4976       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  4977       start = space->bottom();
  4978       end   = space->top();
  4979     } else if (nth_task == 0) {
  4980       start = space->bottom();
  4981       end   = chunk_array[nth_task];
  4982     } else if (nth_task < (jint)chunk_top) {
  4983       assert(nth_task >= 1, "Control point invariant");
  4984       start = chunk_array[nth_task - 1];
  4985       end   = chunk_array[nth_task];
  4986     } else {
  4987       assert(nth_task == (jint)chunk_top, "Control point invariant");
  4988       start = chunk_array[chunk_top - 1];
  4989       end   = space->top();
  4991     MemRegion mr(start, end);
  4992     // Verify that mr is in space
  4993     assert(mr.is_empty() || space->used_region().contains(mr),
  4994            "Should be in space");
  4995     // Verify that "start" is an object boundary
  4996     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  4997            "Should be an oop");
  4998     space->par_oop_iterate(mr, cl);
  5000   pst->all_tasks_completed();
  5003 void
  5004 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5005   CompactibleFreeListSpace* sp, int i,
  5006   Par_MarkRefsIntoAndScanClosure* cl) {
  5007   // Until all tasks completed:
  5008   // . claim an unclaimed task
  5009   // . compute region boundaries corresponding to task claimed
  5010   // . transfer dirty bits ct->mut for that region
  5011   // . apply rescanclosure to dirty mut bits for that region
  5013   ResourceMark rm;
  5014   HandleMark   hm;
  5016   OopTaskQueue* work_q = work_queue(i);
  5017   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5018   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5019   // CAUTION: This closure has state that persists across calls to
  5020   // the work method dirty_range_iterate_clear() in that it has
  5021   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5022   // use of that state in the imbedded UpwardsObjectClosure instance
  5023   // assumes that the cards are always iterated (even if in parallel
  5024   // by several threads) in monotonically increasing order per each
  5025   // thread. This is true of the implementation below which picks
  5026   // card ranges (chunks) in monotonically increasing order globally
  5027   // and, a-fortiori, in monotonically increasing order per thread
  5028   // (the latter order being a subsequence of the former).
  5029   // If the work code below is ever reorganized into a more chaotic
  5030   // work-partitioning form than the current "sequential tasks"
  5031   // paradigm, the use of that persistent state will have to be
  5032   // revisited and modified appropriately. See also related
  5033   // bug 4756801 work on which should examine this code to make
  5034   // sure that the changes there do not run counter to the
  5035   // assumptions made here and necessary for correctness and
  5036   // efficiency. Note also that this code might yield inefficient
  5037   // behaviour in the case of very large objects that span one or
  5038   // more work chunks. Such objects would potentially be scanned
  5039   // several times redundantly. Work on 4756801 should try and
  5040   // address that performance anomaly if at all possible. XXX
  5041   MemRegion  full_span  = _collector->_span;
  5042   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5043   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5044   MarkFromDirtyCardsClosure
  5045     greyRescanClosure(_collector, full_span, // entire span of interest
  5046                       sp, bm, work_q, rs, cl);
  5048   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5049   assert(pst->valid(), "Uninitialized use?");
  5050   int nth_task = 0;
  5051   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5052   MemRegion span = sp->used_region();
  5053   HeapWord* start_addr = span.start();
  5054   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5055                                            alignment);
  5056   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5057   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5058          start_addr, "Check alignment");
  5059   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5060          chunk_size, "Check alignment");
  5062   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5063     // Having claimed the nth_task, compute corresponding mem-region,
  5064     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5065     // The alignment restriction ensures that we do not need any
  5066     // synchronization with other gang-workers while setting or
  5067     // clearing bits in thus chunk of the MUT.
  5068     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5069                                     start_addr + (nth_task+1)*chunk_size);
  5070     // The last chunk's end might be way beyond end of the
  5071     // used region. In that case pull back appropriately.
  5072     if (this_span.end() > end_addr) {
  5073       this_span.set_end(end_addr);
  5074       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5076     // Iterate over the dirty cards covering this chunk, marking them
  5077     // precleaned, and setting the corresponding bits in the mod union
  5078     // table. Since we have been careful to partition at Card and MUT-word
  5079     // boundaries no synchronization is needed between parallel threads.
  5080     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5081                                                  &modUnionClosure);
  5083     // Having transferred these marks into the modUnionTable,
  5084     // rescan the marked objects on the dirty cards in the modUnionTable.
  5085     // Even if this is at a synchronous collection, the initial marking
  5086     // may have been done during an asynchronous collection so there
  5087     // may be dirty bits in the mod-union table.
  5088     _collector->_modUnionTable.dirty_range_iterate_clear(
  5089                   this_span, &greyRescanClosure);
  5090     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5091                                  this_span.start(),
  5092                                  this_span.end());
  5094   pst->all_tasks_completed();  // declare that i am done
  5097 // . see if we can share work_queues with ParNew? XXX
  5098 void
  5099 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5100                                 int* seed) {
  5101   OopTaskQueue* work_q = work_queue(i);
  5102   NOT_PRODUCT(int num_steals = 0;)
  5103   oop obj_to_scan;
  5104   CMSBitMap* bm = &(_collector->_markBitMap);
  5105   size_t num_from_overflow_list =
  5106            MIN2((size_t)work_q->max_elems()/4,
  5107                 (size_t)ParGCDesiredObjsFromOverflowList);
  5109   while (true) {
  5110     // Completely finish any left over work from (an) earlier round(s)
  5111     cl->trim_queue(0);
  5112     // Now check if there's any work in the overflow list
  5113     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5114                                                 work_q)) {
  5115       // found something in global overflow list;
  5116       // not yet ready to go stealing work from others.
  5117       // We'd like to assert(work_q->size() != 0, ...)
  5118       // because we just took work from the overflow list,
  5119       // but of course we can't since all of that could have
  5120       // been already stolen from us.
  5121       // "He giveth and He taketh away."
  5122       continue;
  5124     // Verify that we have no work before we resort to stealing
  5125     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5126     // Try to steal from other queues that have work
  5127     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5128       NOT_PRODUCT(num_steals++;)
  5129       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5130       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5131       // Do scanning work
  5132       obj_to_scan->oop_iterate(cl);
  5133       // Loop around, finish this work, and try to steal some more
  5134     } else if (terminator()->offer_termination()) {
  5135         break;  // nirvana from the infinite cycle
  5138   NOT_PRODUCT(
  5139     if (PrintCMSStatistics != 0) {
  5140       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5143   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5144          "Else our work is not yet done");
  5147 // Return a thread-local PLAB recording array, as appropriate.
  5148 void* CMSCollector::get_data_recorder(int thr_num) {
  5149   if (_survivor_plab_array != NULL &&
  5150       (CMSPLABRecordAlways ||
  5151        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5152     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5153     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5154     ca->reset();   // clear it so that fresh data is recorded
  5155     return (void*) ca;
  5156   } else {
  5157     return NULL;
  5161 // Reset all the thread-local PLAB recording arrays
  5162 void CMSCollector::reset_survivor_plab_arrays() {
  5163   for (uint i = 0; i < ParallelGCThreads; i++) {
  5164     _survivor_plab_array[i].reset();
  5168 // Merge the per-thread plab arrays into the global survivor chunk
  5169 // array which will provide the partitioning of the survivor space
  5170 // for CMS rescan.
  5171 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5172   assert(_survivor_plab_array  != NULL, "Error");
  5173   assert(_survivor_chunk_array != NULL, "Error");
  5174   assert(_collectorState == FinalMarking, "Error");
  5175   for (uint j = 0; j < ParallelGCThreads; j++) {
  5176     _cursor[j] = 0;
  5178   HeapWord* top = surv->top();
  5179   size_t i;
  5180   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5181     HeapWord* min_val = top;          // Higher than any PLAB address
  5182     uint      min_tid = 0;            // position of min_val this round
  5183     for (uint j = 0; j < ParallelGCThreads; j++) {
  5184       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5185       if (_cursor[j] == cur_sca->end()) {
  5186         continue;
  5188       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5189       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5190       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5191       if (cur_val < min_val) {
  5192         min_tid = j;
  5193         min_val = cur_val;
  5194       } else {
  5195         assert(cur_val < top, "All recorded addresses should be less");
  5198     // At this point min_val and min_tid are respectively
  5199     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5200     // and the thread (j) that witnesses that address.
  5201     // We record this address in the _survivor_chunk_array[i]
  5202     // and increment _cursor[min_tid] prior to the next round i.
  5203     if (min_val == top) {
  5204       break;
  5206     _survivor_chunk_array[i] = min_val;
  5207     _cursor[min_tid]++;
  5209   // We are all done; record the size of the _survivor_chunk_array
  5210   _survivor_chunk_index = i; // exclusive: [0, i)
  5211   if (PrintCMSStatistics > 0) {
  5212     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5214   // Verify that we used up all the recorded entries
  5215   #ifdef ASSERT
  5216     size_t total = 0;
  5217     for (uint j = 0; j < ParallelGCThreads; j++) {
  5218       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5219       total += _cursor[j];
  5221     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5222     // Check that the merged array is in sorted order
  5223     if (total > 0) {
  5224       for (size_t i = 0; i < total - 1; i++) {
  5225         if (PrintCMSStatistics > 0) {
  5226           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5227                               i, _survivor_chunk_array[i]);
  5229         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5230                "Not sorted");
  5233   #endif // ASSERT
  5236 // Set up the space's par_seq_tasks structure for work claiming
  5237 // for parallel rescan of young gen.
  5238 // See ParRescanTask where this is currently used.
  5239 void
  5240 CMSCollector::
  5241 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5242   assert(n_threads > 0, "Unexpected n_threads argument");
  5243   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5245   // Eden space
  5247     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5248     assert(!pst->valid(), "Clobbering existing data?");
  5249     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5250     size_t n_tasks = _eden_chunk_index + 1;
  5251     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5252     pst->set_par_threads(n_threads);
  5253     pst->set_n_tasks((int)n_tasks);
  5256   // Merge the survivor plab arrays into _survivor_chunk_array
  5257   if (_survivor_plab_array != NULL) {
  5258     merge_survivor_plab_arrays(dng->from());
  5259   } else {
  5260     assert(_survivor_chunk_index == 0, "Error");
  5263   // To space
  5265     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5266     assert(!pst->valid(), "Clobbering existing data?");
  5267     pst->set_par_threads(n_threads);
  5268     pst->set_n_tasks(1);
  5269     assert(pst->valid(), "Error");
  5272   // From space
  5274     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5275     assert(!pst->valid(), "Clobbering existing data?");
  5276     size_t n_tasks = _survivor_chunk_index + 1;
  5277     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5278     pst->set_par_threads(n_threads);
  5279     pst->set_n_tasks((int)n_tasks);
  5280     assert(pst->valid(), "Error");
  5284 // Parallel version of remark
  5285 void CMSCollector::do_remark_parallel() {
  5286   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5287   WorkGang* workers = gch->workers();
  5288   assert(workers != NULL, "Need parallel worker threads.");
  5289   int n_workers = workers->total_workers();
  5290   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5291   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5293   CMSParRemarkTask tsk(this,
  5294     cms_space, perm_space,
  5295     n_workers, workers, task_queues());
  5297   // Set up for parallel process_strong_roots work.
  5298   gch->set_par_threads(n_workers);
  5299   gch->change_strong_roots_parity();
  5300   // We won't be iterating over the cards in the card table updating
  5301   // the younger_gen cards, so we shouldn't call the following else
  5302   // the verification code as well as subsequent younger_refs_iterate
  5303   // code would get confused. XXX
  5304   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5306   // The young gen rescan work will not be done as part of
  5307   // process_strong_roots (which currently doesn't knw how to
  5308   // parallelize such a scan), but rather will be broken up into
  5309   // a set of parallel tasks (via the sampling that the [abortable]
  5310   // preclean phase did of EdenSpace, plus the [two] tasks of
  5311   // scanning the [two] survivor spaces. Further fine-grain
  5312   // parallelization of the scanning of the survivor spaces
  5313   // themselves, and of precleaning of the younger gen itself
  5314   // is deferred to the future.
  5315   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5317   // The dirty card rescan work is broken up into a "sequence"
  5318   // of parallel tasks (per constituent space) that are dynamically
  5319   // claimed by the parallel threads.
  5320   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5321   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5323   // It turns out that even when we're using 1 thread, doing the work in a
  5324   // separate thread causes wide variance in run times.  We can't help this
  5325   // in the multi-threaded case, but we special-case n=1 here to get
  5326   // repeatable measurements of the 1-thread overhead of the parallel code.
  5327   if (n_workers > 1) {
  5328     // Make refs discovery MT-safe
  5329     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5330     workers->run_task(&tsk);
  5331   } else {
  5332     tsk.work(0);
  5334   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5335   // restore, single-threaded for now, any preserved marks
  5336   // as a result of work_q overflow
  5337   restore_preserved_marks_if_any();
  5340 // Non-parallel version of remark
  5341 void CMSCollector::do_remark_non_parallel() {
  5342   ResourceMark rm;
  5343   HandleMark   hm;
  5344   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5345   MarkRefsIntoAndScanClosure
  5346     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5347              &_markStack, &_revisitStack, this,
  5348              false /* should_yield */, false /* not precleaning */);
  5349   MarkFromDirtyCardsClosure
  5350     markFromDirtyCardsClosure(this, _span,
  5351                               NULL,  // space is set further below
  5352                               &_markBitMap, &_markStack, &_revisitStack,
  5353                               &mrias_cl);
  5355     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5356     // Iterate over the dirty cards, marking them precleaned, and
  5357     // setting the corresponding bits in the mod union table.
  5359       ModUnionClosure modUnionClosure(&_modUnionTable);
  5360       _ct->ct_bs()->dirty_card_iterate(
  5361                       _cmsGen->used_region(),
  5362                       &modUnionClosure);
  5363       _ct->ct_bs()->dirty_card_iterate(
  5364                       _permGen->used_region(),
  5365                       &modUnionClosure);
  5367     // Having transferred these marks into the modUnionTable, we just need
  5368     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5369     // The initial marking may have been done during an asynchronous
  5370     // collection so there may be dirty bits in the mod-union table.
  5371     const int alignment =
  5372       CardTableModRefBS::card_size * BitsPerWord;
  5374       // ... First handle dirty cards in CMS gen
  5375       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5376       MemRegion ur = _cmsGen->used_region();
  5377       HeapWord* lb = ur.start();
  5378       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5379       MemRegion cms_span(lb, ub);
  5380       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5381                                                &markFromDirtyCardsClosure);
  5382       verify_work_stacks_empty();
  5383       if (PrintCMSStatistics != 0) {
  5384         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5385           markFromDirtyCardsClosure.num_dirty_cards());
  5389       // .. and then repeat for dirty cards in perm gen
  5390       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5391       MemRegion ur = _permGen->used_region();
  5392       HeapWord* lb = ur.start();
  5393       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5394       MemRegion perm_span(lb, ub);
  5395       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5396                                                &markFromDirtyCardsClosure);
  5397       verify_work_stacks_empty();
  5398       if (PrintCMSStatistics != 0) {
  5399         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5400           markFromDirtyCardsClosure.num_dirty_cards());
  5404   if (VerifyDuringGC &&
  5405       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5406     HandleMark hm;  // Discard invalid handles created during verification
  5407     Universe::verify(true);
  5410     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5412     verify_work_stacks_empty();
  5414     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5415     gch->gen_process_strong_roots(_cmsGen->level(),
  5416                                   true,  // younger gens as roots
  5417                                   true,  // collecting perm gen
  5418                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5419                                   NULL, &mrias_cl);
  5421   verify_work_stacks_empty();
  5422   // Restore evacuated mark words, if any, used for overflow list links
  5423   if (!CMSOverflowEarlyRestoration) {
  5424     restore_preserved_marks_if_any();
  5426   verify_overflow_empty();
  5429 ////////////////////////////////////////////////////////
  5430 // Parallel Reference Processing Task Proxy Class
  5431 ////////////////////////////////////////////////////////
  5432 class CMSRefProcTaskProxy: public AbstractGangTask {
  5433   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5434   CMSCollector*          _collector;
  5435   CMSBitMap*             _mark_bit_map;
  5436   MemRegion              _span;
  5437   OopTaskQueueSet*       _task_queues;
  5438   ParallelTaskTerminator _term;
  5439   ProcessTask&           _task;
  5441 public:
  5442   CMSRefProcTaskProxy(ProcessTask&     task,
  5443                       CMSCollector*    collector,
  5444                       const MemRegion& span,
  5445                       CMSBitMap*       mark_bit_map,
  5446                       int              total_workers,
  5447                       OopTaskQueueSet* task_queues):
  5448     AbstractGangTask("Process referents by policy in parallel"),
  5449     _task(task),
  5450     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5451     _task_queues(task_queues),
  5452     _term(total_workers, task_queues)
  5453     { }
  5455   OopTaskQueueSet* task_queues() { return _task_queues; }
  5457   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5459   ParallelTaskTerminator* terminator() { return &_term; }
  5461   void do_work_steal(int i,
  5462                      CMSParDrainMarkingStackClosure* drain,
  5463                      CMSParKeepAliveClosure* keep_alive,
  5464                      int* seed);
  5466   virtual void work(int i);
  5467 };
  5469 void CMSRefProcTaskProxy::work(int i) {
  5470   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5471                                         _mark_bit_map, work_queue(i));
  5472   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5473                                                  _mark_bit_map, work_queue(i));
  5474   CMSIsAliveClosure is_alive_closure(_mark_bit_map);
  5475   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5476   if (_task.marks_oops_alive()) {
  5477     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5478                   _collector->hash_seed(i));
  5480   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5481   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5484 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5485   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5486   EnqueueTask& _task;
  5488 public:
  5489   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5490     : AbstractGangTask("Enqueue reference objects in parallel"),
  5491       _task(task)
  5492   { }
  5494   virtual void work(int i)
  5496     _task.work(i);
  5498 };
  5500 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5501   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5502    _collector(collector),
  5503    _span(span),
  5504    _bit_map(bit_map),
  5505    _work_queue(work_queue),
  5506    _mark_and_push(collector, span, bit_map, work_queue),
  5507    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5508                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5509 { }
  5511 // . see if we can share work_queues with ParNew? XXX
  5512 void CMSRefProcTaskProxy::do_work_steal(int i,
  5513   CMSParDrainMarkingStackClosure* drain,
  5514   CMSParKeepAliveClosure* keep_alive,
  5515   int* seed) {
  5516   OopTaskQueue* work_q = work_queue(i);
  5517   NOT_PRODUCT(int num_steals = 0;)
  5518   oop obj_to_scan;
  5519   size_t num_from_overflow_list =
  5520            MIN2((size_t)work_q->max_elems()/4,
  5521                 (size_t)ParGCDesiredObjsFromOverflowList);
  5523   while (true) {
  5524     // Completely finish any left over work from (an) earlier round(s)
  5525     drain->trim_queue(0);
  5526     // Now check if there's any work in the overflow list
  5527     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5528                                                 work_q)) {
  5529       // Found something in global overflow list;
  5530       // not yet ready to go stealing work from others.
  5531       // We'd like to assert(work_q->size() != 0, ...)
  5532       // because we just took work from the overflow list,
  5533       // but of course we can't, since all of that might have
  5534       // been already stolen from us.
  5535       continue;
  5537     // Verify that we have no work before we resort to stealing
  5538     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5539     // Try to steal from other queues that have work
  5540     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5541       NOT_PRODUCT(num_steals++;)
  5542       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5543       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5544       // Do scanning work
  5545       obj_to_scan->oop_iterate(keep_alive);
  5546       // Loop around, finish this work, and try to steal some more
  5547     } else if (terminator()->offer_termination()) {
  5548       break;  // nirvana from the infinite cycle
  5551   NOT_PRODUCT(
  5552     if (PrintCMSStatistics != 0) {
  5553       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5558 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5560   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5561   WorkGang* workers = gch->workers();
  5562   assert(workers != NULL, "Need parallel worker threads.");
  5563   int n_workers = workers->total_workers();
  5564   CMSRefProcTaskProxy rp_task(task, &_collector,
  5565                               _collector.ref_processor()->span(),
  5566                               _collector.markBitMap(),
  5567                               n_workers, _collector.task_queues());
  5568   workers->run_task(&rp_task);
  5571 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5574   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5575   WorkGang* workers = gch->workers();
  5576   assert(workers != NULL, "Need parallel worker threads.");
  5577   CMSRefEnqueueTaskProxy enq_task(task);
  5578   workers->run_task(&enq_task);
  5581 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5583   ResourceMark rm;
  5584   HandleMark   hm;
  5585   ReferencePolicy* soft_ref_policy;
  5587   assert(!ref_processor()->enqueuing_is_done(), "Enqueuing should not be complete");
  5588   // Process weak references.
  5589   if (clear_all_soft_refs) {
  5590     soft_ref_policy = new AlwaysClearPolicy();
  5591   } else {
  5592 #ifdef COMPILER2
  5593     soft_ref_policy = new LRUMaxHeapPolicy();
  5594 #else
  5595     soft_ref_policy = new LRUCurrentHeapPolicy();
  5596 #endif // COMPILER2
  5598   verify_work_stacks_empty();
  5600   ReferenceProcessor* rp = ref_processor();
  5601   assert(rp->span().equals(_span), "Spans should be equal");
  5602   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5603                                           &_markStack);
  5604   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5605                                 _span, &_markBitMap, &_markStack,
  5606                                 &cmsKeepAliveClosure);
  5608     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5609     if (rp->processing_is_mt()) {
  5610       CMSRefProcTaskExecutor task_executor(*this);
  5611       rp->process_discovered_references(soft_ref_policy,
  5612                                         &_is_alive_closure,
  5613                                         &cmsKeepAliveClosure,
  5614                                         &cmsDrainMarkingStackClosure,
  5615                                         &task_executor);
  5616     } else {
  5617       rp->process_discovered_references(soft_ref_policy,
  5618                                         &_is_alive_closure,
  5619                                         &cmsKeepAliveClosure,
  5620                                         &cmsDrainMarkingStackClosure,
  5621                                         NULL);
  5623     verify_work_stacks_empty();
  5626   if (cms_should_unload_classes()) {
  5628       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5630       // Follow SystemDictionary roots and unload classes
  5631       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5633       // Follow CodeCache roots and unload any methods marked for unloading
  5634       CodeCache::do_unloading(&_is_alive_closure,
  5635                               &cmsKeepAliveClosure,
  5636                               purged_class);
  5638       cmsDrainMarkingStackClosure.do_void();
  5639       verify_work_stacks_empty();
  5641       // Update subklass/sibling/implementor links in KlassKlass descendants
  5642       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5643       oop k;
  5644       while ((k = _revisitStack.pop()) != NULL) {
  5645         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5646                        &_is_alive_closure,
  5647                        &cmsKeepAliveClosure);
  5649       assert(!ClassUnloading ||
  5650              (_markStack.isEmpty() && overflow_list_is_empty()),
  5651              "Should not have found new reachable objects");
  5652       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5653       cmsDrainMarkingStackClosure.do_void();
  5654       verify_work_stacks_empty();
  5658       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5659       // Now clean up stale oops in SymbolTable and StringTable
  5660       SymbolTable::unlink(&_is_alive_closure);
  5661       StringTable::unlink(&_is_alive_closure);
  5665   verify_work_stacks_empty();
  5666   // Restore any preserved marks as a result of mark stack or
  5667   // work queue overflow
  5668   restore_preserved_marks_if_any();  // done single-threaded for now
  5670   rp->set_enqueuing_is_done(true);
  5671   if (rp->processing_is_mt()) {
  5672     CMSRefProcTaskExecutor task_executor(*this);
  5673     rp->enqueue_discovered_references(&task_executor);
  5674   } else {
  5675     rp->enqueue_discovered_references(NULL);
  5677   rp->verify_no_references_recorded();
  5678   assert(!rp->discovery_enabled(), "should have been disabled");
  5680   // JVMTI object tagging is based on JNI weak refs. If any of these
  5681   // refs were cleared then JVMTI needs to update its maps and
  5682   // maybe post ObjectFrees to agents.
  5683   JvmtiExport::cms_ref_processing_epilogue();
  5686 #ifndef PRODUCT
  5687 void CMSCollector::check_correct_thread_executing() {
  5688   Thread* t = Thread::current();
  5689   // Only the VM thread or the CMS thread should be here.
  5690   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5691          "Unexpected thread type");
  5692   // If this is the vm thread, the foreground process
  5693   // should not be waiting.  Note that _foregroundGCIsActive is
  5694   // true while the foreground collector is waiting.
  5695   if (_foregroundGCShouldWait) {
  5696     // We cannot be the VM thread
  5697     assert(t->is_ConcurrentGC_thread(),
  5698            "Should be CMS thread");
  5699   } else {
  5700     // We can be the CMS thread only if we are in a stop-world
  5701     // phase of CMS collection.
  5702     if (t->is_ConcurrentGC_thread()) {
  5703       assert(_collectorState == InitialMarking ||
  5704              _collectorState == FinalMarking,
  5705              "Should be a stop-world phase");
  5706       // The CMS thread should be holding the CMS_token.
  5707       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5708              "Potential interference with concurrently "
  5709              "executing VM thread");
  5713 #endif
  5715 void CMSCollector::sweep(bool asynch) {
  5716   assert(_collectorState == Sweeping, "just checking");
  5717   check_correct_thread_executing();
  5718   verify_work_stacks_empty();
  5719   verify_overflow_empty();
  5720   incrementSweepCount();
  5721   _sweep_timer.stop();
  5722   _sweep_estimate.sample(_sweep_timer.seconds());
  5723   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5725   // PermGen verification support: If perm gen sweeping is disabled in
  5726   // this cycle, we preserve the perm gen object "deadness" information
  5727   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5728   // all blocks in perm gen and mark all dead objects.
  5729   if (verifying() && !cms_should_unload_classes()) {
  5730     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5731            "Should have already been allocated");
  5732     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5733                                markBitMap(), perm_gen_verify_bit_map());
  5734     if (asynch) {
  5735       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5736                                bitMapLock());
  5737       _permGen->cmsSpace()->blk_iterate(&mdo);
  5738     } else {
  5739       // In the case of synchronous sweep, we already have
  5740       // the requisite locks/tokens.
  5741       _permGen->cmsSpace()->blk_iterate(&mdo);
  5745   if (asynch) {
  5746     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5747     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5748     // First sweep the old gen then the perm gen
  5750       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5751                                bitMapLock());
  5752       sweepWork(_cmsGen, asynch);
  5755     // Now repeat for perm gen
  5756     if (cms_should_unload_classes()) {
  5757       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5758                              bitMapLock());
  5759       sweepWork(_permGen, asynch);
  5762     // Update Universe::_heap_*_at_gc figures.
  5763     // We need all the free list locks to make the abstract state
  5764     // transition from Sweeping to Resetting. See detailed note
  5765     // further below.
  5767       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5768                                _permGen->freelistLock());
  5769       // Update heap occupancy information which is used as
  5770       // input to soft ref clearing policy at the next gc.
  5771       Universe::update_heap_info_at_gc();
  5772       _collectorState = Resizing;
  5774   } else {
  5775     // already have needed locks
  5776     sweepWork(_cmsGen,  asynch);
  5778     if (cms_should_unload_classes()) {
  5779       sweepWork(_permGen, asynch);
  5781     // Update heap occupancy information which is used as
  5782     // input to soft ref clearing policy at the next gc.
  5783     Universe::update_heap_info_at_gc();
  5784     _collectorState = Resizing;
  5786   verify_work_stacks_empty();
  5787   verify_overflow_empty();
  5789   _sweep_timer.reset();
  5790   _sweep_timer.start();
  5792   update_time_of_last_gc(os::javaTimeMillis());
  5794   // NOTE on abstract state transitions:
  5795   // Mutators allocate-live and/or mark the mod-union table dirty
  5796   // based on the state of the collection.  The former is done in
  5797   // the interval [Marking, Sweeping] and the latter in the interval
  5798   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5799   // and out of the Sweeping state must be synchronously visible
  5800   // globally to the mutators.
  5801   // The transition into the Marking state happens with the world
  5802   // stopped so the mutators will globally see it.  Sweeping is
  5803   // done asynchronously by the background collector so the transition
  5804   // from the Sweeping state to the Resizing state must be done
  5805   // under the freelistLock (as is the check for whether to
  5806   // allocate-live and whether to dirty the mod-union table).
  5807   assert(_collectorState == Resizing, "Change of collector state to"
  5808     " Resizing must be done under the freelistLocks (plural)");
  5810   // Now that sweeping has been completed, if the GCH's
  5811   // incremental_collection_will_fail flag is set, clear it,
  5812   // thus inviting a younger gen collection to promote into
  5813   // this generation. If such a promotion may still fail,
  5814   // the flag will be set again when a young collection is
  5815   // attempted.
  5816   // I think the incremental_collection_will_fail flag's use
  5817   // is specific to a 2 generation collection policy, so i'll
  5818   // assert that that's the configuration we are operating within.
  5819   // The use of the flag can and should be generalized appropriately
  5820   // in the future to deal with a general n-generation system.
  5822   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5823   assert(gch->collector_policy()->is_two_generation_policy(),
  5824          "Resetting of incremental_collection_will_fail flag"
  5825          " may be incorrect otherwise");
  5826   gch->clear_incremental_collection_will_fail();
  5827   gch->update_full_collections_completed(_collection_count_start);
  5830 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5831 // CMSGen merely delegating to it.
  5832 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5833   double nearLargestPercent = 0.999;
  5834   HeapWord*  minAddr        = _cmsSpace->bottom();
  5835   HeapWord*  largestAddr    =
  5836     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5837   if (largestAddr == 0) {
  5838     // The dictionary appears to be empty.  In this case
  5839     // try to coalesce at the end of the heap.
  5840     largestAddr = _cmsSpace->end();
  5842   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5843   size_t nearLargestOffset =
  5844     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5845   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5848 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5849   return addr >= _cmsSpace->nearLargestChunk();
  5852 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5853   return _cmsSpace->find_chunk_at_end();
  5856 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5857                                                     bool full) {
  5858   // The next lower level has been collected.  Gather any statistics
  5859   // that are of interest at this point.
  5860   if (!full && (current_level + 1) == level()) {
  5861     // Gather statistics on the young generation collection.
  5862     collector()->stats().record_gc0_end(used());
  5866 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5867   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5868   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5869     "Wrong type of heap");
  5870   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5871     gch->gen_policy()->size_policy();
  5872   assert(sp->is_gc_cms_adaptive_size_policy(),
  5873     "Wrong type of size policy");
  5874   return sp;
  5877 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5878   if (PrintGCDetails && Verbose) {
  5879     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5881   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5882   _debug_collection_type =
  5883     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5884   if (PrintGCDetails && Verbose) {
  5885     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5889 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5890   bool asynch) {
  5891   // We iterate over the space(s) underlying this generation,
  5892   // checking the mark bit map to see if the bits corresponding
  5893   // to specific blocks are marked or not. Blocks that are
  5894   // marked are live and are not swept up. All remaining blocks
  5895   // are swept up, with coalescing on-the-fly as we sweep up
  5896   // contiguous free and/or garbage blocks:
  5897   // We need to ensure that the sweeper synchronizes with allocators
  5898   // and stop-the-world collectors. In particular, the following
  5899   // locks are used:
  5900   // . CMS token: if this is held, a stop the world collection cannot occur
  5901   // . freelistLock: if this is held no allocation can occur from this
  5902   //                 generation by another thread
  5903   // . bitMapLock: if this is held, no other thread can access or update
  5904   //
  5906   // Note that we need to hold the freelistLock if we use
  5907   // block iterate below; else the iterator might go awry if
  5908   // a mutator (or promotion) causes block contents to change
  5909   // (for instance if the allocator divvies up a block).
  5910   // If we hold the free list lock, for all practical purposes
  5911   // young generation GC's can't occur (they'll usually need to
  5912   // promote), so we might as well prevent all young generation
  5913   // GC's while we do a sweeping step. For the same reason, we might
  5914   // as well take the bit map lock for the entire duration
  5916   // check that we hold the requisite locks
  5917   assert(have_cms_token(), "Should hold cms token");
  5918   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  5919          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  5920         "Should possess CMS token to sweep");
  5921   assert_lock_strong(gen->freelistLock());
  5922   assert_lock_strong(bitMapLock());
  5924   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  5925   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  5926                                       _sweep_estimate.padded_average());
  5927   gen->setNearLargestChunk();
  5930     SweepClosure sweepClosure(this, gen, &_markBitMap,
  5931                             CMSYield && asynch);
  5932     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  5933     // We need to free-up/coalesce garbage/blocks from a
  5934     // co-terminal free run. This is done in the SweepClosure
  5935     // destructor; so, do not remove this scope, else the
  5936     // end-of-sweep-census below will be off by a little bit.
  5938   gen->cmsSpace()->sweep_completed();
  5939   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  5942 // Reset CMS data structures (for now just the marking bit map)
  5943 // preparatory for the next cycle.
  5944 void CMSCollector::reset(bool asynch) {
  5945   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5946   CMSAdaptiveSizePolicy* sp = size_policy();
  5947   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  5948   if (asynch) {
  5949     CMSTokenSyncWithLocks ts(true, bitMapLock());
  5951     // If the state is not "Resetting", the foreground  thread
  5952     // has done a collection and the resetting.
  5953     if (_collectorState != Resetting) {
  5954       assert(_collectorState == Idling, "The state should only change"
  5955         " because the foreground collector has finished the collection");
  5956       return;
  5959     // Clear the mark bitmap (no grey objects to start with)
  5960     // for the next cycle.
  5961     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5962     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  5964     HeapWord* curAddr = _markBitMap.startWord();
  5965     while (curAddr < _markBitMap.endWord()) {
  5966       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  5967       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  5968       _markBitMap.clear_large_range(chunk);
  5969       if (ConcurrentMarkSweepThread::should_yield() &&
  5970           !foregroundGCIsActive() &&
  5971           CMSYield) {
  5972         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5973                "CMS thread should hold CMS token");
  5974         assert_lock_strong(bitMapLock());
  5975         bitMapLock()->unlock();
  5976         ConcurrentMarkSweepThread::desynchronize(true);
  5977         ConcurrentMarkSweepThread::acknowledge_yield_request();
  5978         stopTimer();
  5979         if (PrintCMSStatistics != 0) {
  5980           incrementYields();
  5982         icms_wait();
  5984         // See the comment in coordinator_yield()
  5985         for (unsigned i = 0; i < CMSYieldSleepCount &&
  5986                         ConcurrentMarkSweepThread::should_yield() &&
  5987                         !CMSCollector::foregroundGCIsActive(); ++i) {
  5988           os::sleep(Thread::current(), 1, false);
  5989           ConcurrentMarkSweepThread::acknowledge_yield_request();
  5992         ConcurrentMarkSweepThread::synchronize(true);
  5993         bitMapLock()->lock_without_safepoint_check();
  5994         startTimer();
  5996       curAddr = chunk.end();
  5998     _collectorState = Idling;
  5999   } else {
  6000     // already have the lock
  6001     assert(_collectorState == Resetting, "just checking");
  6002     assert_lock_strong(bitMapLock());
  6003     _markBitMap.clear_all();
  6004     _collectorState = Idling;
  6007   // Stop incremental mode after a cycle completes, so that any future cycles
  6008   // are triggered by allocation.
  6009   stop_icms();
  6011   NOT_PRODUCT(
  6012     if (RotateCMSCollectionTypes) {
  6013       _cmsGen->rotate_debug_collection_type();
  6018 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6019   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6020   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6021   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6022   TraceCollectorStats tcs(counters());
  6024   switch (op) {
  6025     case CMS_op_checkpointRootsInitial: {
  6026       checkpointRootsInitial(true);       // asynch
  6027       if (PrintGC) {
  6028         _cmsGen->printOccupancy("initial-mark");
  6030       break;
  6032     case CMS_op_checkpointRootsFinal: {
  6033       checkpointRootsFinal(true,    // asynch
  6034                            false,   // !clear_all_soft_refs
  6035                            false);  // !init_mark_was_synchronous
  6036       if (PrintGC) {
  6037         _cmsGen->printOccupancy("remark");
  6039       break;
  6041     default:
  6042       fatal("No such CMS_op");
  6046 #ifndef PRODUCT
  6047 size_t const CMSCollector::skip_header_HeapWords() {
  6048   return FreeChunk::header_size();
  6051 // Try and collect here conditions that should hold when
  6052 // CMS thread is exiting. The idea is that the foreground GC
  6053 // thread should not be blocked if it wants to terminate
  6054 // the CMS thread and yet continue to run the VM for a while
  6055 // after that.
  6056 void CMSCollector::verify_ok_to_terminate() const {
  6057   assert(Thread::current()->is_ConcurrentGC_thread(),
  6058          "should be called by CMS thread");
  6059   assert(!_foregroundGCShouldWait, "should be false");
  6060   // We could check here that all the various low-level locks
  6061   // are not held by the CMS thread, but that is overkill; see
  6062   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6063   // is checked.
  6065 #endif
  6067 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6068   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6069          "missing Printezis mark?");
  6070   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6071   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6072   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6073          "alignment problem");
  6074   assert(size >= 3, "Necessary for Printezis marks to work");
  6075   return size;
  6078 // A variant of the above (block_size_using_printezis_bits()) except
  6079 // that we return 0 if the P-bits are not yet set.
  6080 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6081   if (_markBitMap.isMarked(addr)) {
  6082     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6083     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6084     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6085     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6086            "alignment problem");
  6087     assert(size >= 3, "Necessary for Printezis marks to work");
  6088     return size;
  6089   } else {
  6090     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6091     return 0;
  6095 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6096   size_t sz = 0;
  6097   oop p = (oop)addr;
  6098   if (p->klass() != NULL && p->is_parsable()) {
  6099     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6100   } else {
  6101     sz = block_size_using_printezis_bits(addr);
  6103   assert(sz > 0, "size must be nonzero");
  6104   HeapWord* next_block = addr + sz;
  6105   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6106                                              CardTableModRefBS::card_size);
  6107   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6108          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6109          "must be different cards");
  6110   return next_card;
  6114 // CMS Bit Map Wrapper /////////////////////////////////////////
  6116 // Construct a CMS bit map infrastructure, but don't create the
  6117 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6118 // further below.
  6119 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6120   _bm(NULL,0),
  6121   _shifter(shifter),
  6122   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6124   _bmStartWord = 0;
  6125   _bmWordSize  = 0;
  6128 bool CMSBitMap::allocate(MemRegion mr) {
  6129   _bmStartWord = mr.start();
  6130   _bmWordSize  = mr.word_size();
  6131   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6132                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6133   if (!brs.is_reserved()) {
  6134     warning("CMS bit map allocation failure");
  6135     return false;
  6137   // For now we'll just commit all of the bit map up fromt.
  6138   // Later on we'll try to be more parsimonious with swap.
  6139   if (!_virtual_space.initialize(brs, brs.size())) {
  6140     warning("CMS bit map backing store failure");
  6141     return false;
  6143   assert(_virtual_space.committed_size() == brs.size(),
  6144          "didn't reserve backing store for all of CMS bit map?");
  6145   _bm.set_map((uintptr_t*)_virtual_space.low());
  6146   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6147          _bmWordSize, "inconsistency in bit map sizing");
  6148   _bm.set_size(_bmWordSize >> _shifter);
  6150   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6151   assert(isAllClear(),
  6152          "Expected zero'd memory from ReservedSpace constructor");
  6153   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6154          "consistency check");
  6155   return true;
  6158 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6159   HeapWord *next_addr, *end_addr, *last_addr;
  6160   assert_locked();
  6161   assert(covers(mr), "out-of-range error");
  6162   // XXX assert that start and end are appropriately aligned
  6163   for (next_addr = mr.start(), end_addr = mr.end();
  6164        next_addr < end_addr; next_addr = last_addr) {
  6165     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6166     last_addr = dirty_region.end();
  6167     if (!dirty_region.is_empty()) {
  6168       cl->do_MemRegion(dirty_region);
  6169     } else {
  6170       assert(last_addr == end_addr, "program logic");
  6171       return;
  6176 #ifndef PRODUCT
  6177 void CMSBitMap::assert_locked() const {
  6178   CMSLockVerifier::assert_locked(lock());
  6181 bool CMSBitMap::covers(MemRegion mr) const {
  6182   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6183   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6184          "size inconsistency");
  6185   return (mr.start() >= _bmStartWord) &&
  6186          (mr.end()   <= endWord());
  6189 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6190     return (start >= _bmStartWord && (start + size) <= endWord());
  6193 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6194   // verify that there are no 1 bits in the interval [left, right)
  6195   FalseBitMapClosure falseBitMapClosure;
  6196   iterate(&falseBitMapClosure, left, right);
  6199 void CMSBitMap::region_invariant(MemRegion mr)
  6201   assert_locked();
  6202   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6203   assert(!mr.is_empty(), "unexpected empty region");
  6204   assert(covers(mr), "mr should be covered by bit map");
  6205   // convert address range into offset range
  6206   size_t start_ofs = heapWordToOffset(mr.start());
  6207   // Make sure that end() is appropriately aligned
  6208   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6209                         (1 << (_shifter+LogHeapWordSize))),
  6210          "Misaligned mr.end()");
  6211   size_t end_ofs   = heapWordToOffset(mr.end());
  6212   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6215 #endif
  6217 bool CMSMarkStack::allocate(size_t size) {
  6218   // allocate a stack of the requisite depth
  6219   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6220                    size * sizeof(oop)));
  6221   if (!rs.is_reserved()) {
  6222     warning("CMSMarkStack allocation failure");
  6223     return false;
  6225   if (!_virtual_space.initialize(rs, rs.size())) {
  6226     warning("CMSMarkStack backing store failure");
  6227     return false;
  6229   assert(_virtual_space.committed_size() == rs.size(),
  6230          "didn't reserve backing store for all of CMS stack?");
  6231   _base = (oop*)(_virtual_space.low());
  6232   _index = 0;
  6233   _capacity = size;
  6234   NOT_PRODUCT(_max_depth = 0);
  6235   return true;
  6238 // XXX FIX ME !!! In the MT case we come in here holding a
  6239 // leaf lock. For printing we need to take a further lock
  6240 // which has lower rank. We need to recallibrate the two
  6241 // lock-ranks involved in order to be able to rpint the
  6242 // messages below. (Or defer the printing to the caller.
  6243 // For now we take the expedient path of just disabling the
  6244 // messages for the problematic case.)
  6245 void CMSMarkStack::expand() {
  6246   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6247   if (_capacity == CMSMarkStackSizeMax) {
  6248     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6249       // We print a warning message only once per CMS cycle.
  6250       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6252     return;
  6254   // Double capacity if possible
  6255   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6256   // Do not give up existing stack until we have managed to
  6257   // get the double capacity that we desired.
  6258   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6259                    new_capacity * sizeof(oop)));
  6260   if (rs.is_reserved()) {
  6261     // Release the backing store associated with old stack
  6262     _virtual_space.release();
  6263     // Reinitialize virtual space for new stack
  6264     if (!_virtual_space.initialize(rs, rs.size())) {
  6265       fatal("Not enough swap for expanded marking stack");
  6267     _base = (oop*)(_virtual_space.low());
  6268     _index = 0;
  6269     _capacity = new_capacity;
  6270   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6271     // Failed to double capacity, continue;
  6272     // we print a detail message only once per CMS cycle.
  6273     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6274             SIZE_FORMAT"K",
  6275             _capacity / K, new_capacity / K);
  6280 // Closures
  6281 // XXX: there seems to be a lot of code  duplication here;
  6282 // should refactor and consolidate common code.
  6284 // This closure is used to mark refs into the CMS generation in
  6285 // the CMS bit map. Called at the first checkpoint. This closure
  6286 // assumes that we do not need to re-mark dirty cards; if the CMS
  6287 // generation on which this is used is not an oldest (modulo perm gen)
  6288 // generation then this will lose younger_gen cards!
  6290 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6291   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6292     _span(span),
  6293     _bitMap(bitMap),
  6294     _should_do_nmethods(should_do_nmethods)
  6296     assert(_ref_processor == NULL, "deliberately left NULL");
  6297     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6300 void MarkRefsIntoClosure::do_oop(oop* p) {
  6301   // if p points into _span, then mark corresponding bit in _markBitMap
  6302   oop thisOop = *p;
  6303   if (thisOop != NULL) {
  6304     assert(thisOop->is_oop(), "expected an oop");
  6305     HeapWord* addr = (HeapWord*)thisOop;
  6306     if (_span.contains(addr)) {
  6307       // this should be made more efficient
  6308       _bitMap->mark(addr);
  6313 // A variant of the above, used for CMS marking verification.
  6314 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6315   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6316   bool should_do_nmethods):
  6317     _span(span),
  6318     _verification_bm(verification_bm),
  6319     _cms_bm(cms_bm),
  6320     _should_do_nmethods(should_do_nmethods) {
  6321     assert(_ref_processor == NULL, "deliberately left NULL");
  6322     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6325 void MarkRefsIntoVerifyClosure::do_oop(oop* p) {
  6326   // if p points into _span, then mark corresponding bit in _markBitMap
  6327   oop this_oop = *p;
  6328   if (this_oop != NULL) {
  6329     assert(this_oop->is_oop(), "expected an oop");
  6330     HeapWord* addr = (HeapWord*)this_oop;
  6331     if (_span.contains(addr)) {
  6332       _verification_bm->mark(addr);
  6333       if (!_cms_bm->isMarked(addr)) {
  6334         oop(addr)->print();
  6335         gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  6336         fatal("... aborting");
  6342 //////////////////////////////////////////////////
  6343 // MarkRefsIntoAndScanClosure
  6344 //////////////////////////////////////////////////
  6346 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6347                                                        ReferenceProcessor* rp,
  6348                                                        CMSBitMap* bit_map,
  6349                                                        CMSBitMap* mod_union_table,
  6350                                                        CMSMarkStack*  mark_stack,
  6351                                                        CMSMarkStack*  revisit_stack,
  6352                                                        CMSCollector* collector,
  6353                                                        bool should_yield,
  6354                                                        bool concurrent_precleaning):
  6355   _collector(collector),
  6356   _span(span),
  6357   _bit_map(bit_map),
  6358   _mark_stack(mark_stack),
  6359   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6360                       mark_stack, revisit_stack, concurrent_precleaning),
  6361   _yield(should_yield),
  6362   _concurrent_precleaning(concurrent_precleaning),
  6363   _freelistLock(NULL)
  6365   _ref_processor = rp;
  6366   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6369 // This closure is used to mark refs into the CMS generation at the
  6370 // second (final) checkpoint, and to scan and transitively follow
  6371 // the unmarked oops. It is also used during the concurrent precleaning
  6372 // phase while scanning objects on dirty cards in the CMS generation.
  6373 // The marks are made in the marking bit map and the marking stack is
  6374 // used for keeping the (newly) grey objects during the scan.
  6375 // The parallel version (Par_...) appears further below.
  6376 void MarkRefsIntoAndScanClosure::do_oop(oop* p) {
  6377   oop this_oop = *p;
  6378   if (this_oop != NULL) {
  6379     assert(this_oop->is_oop(), "expected an oop");
  6380     HeapWord* addr = (HeapWord*)this_oop;
  6381     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6382     assert(_collector->overflow_list_is_empty(), "should be empty");
  6383     if (_span.contains(addr) &&
  6384         !_bit_map->isMarked(addr)) {
  6385       // mark bit map (object is now grey)
  6386       _bit_map->mark(addr);
  6387       // push on marking stack (stack should be empty), and drain the
  6388       // stack by applying this closure to the oops in the oops popped
  6389       // from the stack (i.e. blacken the grey objects)
  6390       bool res = _mark_stack->push(this_oop);
  6391       assert(res, "Should have space to push on empty stack");
  6392       do {
  6393         oop new_oop = _mark_stack->pop();
  6394         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6395         assert(new_oop->is_parsable(), "Found unparsable oop");
  6396         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6397                "only grey objects on this stack");
  6398         // iterate over the oops in this oop, marking and pushing
  6399         // the ones in CMS heap (i.e. in _span).
  6400         new_oop->oop_iterate(&_pushAndMarkClosure);
  6401         // check if it's time to yield
  6402         do_yield_check();
  6403       } while (!_mark_stack->isEmpty() ||
  6404                (!_concurrent_precleaning && take_from_overflow_list()));
  6405         // if marking stack is empty, and we are not doing this
  6406         // during precleaning, then check the overflow list
  6408     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6409     assert(_collector->overflow_list_is_empty(),
  6410            "overflow list was drained above");
  6411     // We could restore evacuated mark words, if any, used for
  6412     // overflow list links here because the overflow list is
  6413     // provably empty here. That would reduce the maximum
  6414     // size requirements for preserved_{oop,mark}_stack.
  6415     // But we'll just postpone it until we are all done
  6416     // so we can just stream through.
  6417     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6418       _collector->restore_preserved_marks_if_any();
  6419       assert(_collector->no_preserved_marks(), "No preserved marks");
  6421     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6422            "All preserved marks should have been restored above");
  6426 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6427   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6428          "CMS thread should hold CMS token");
  6429   assert_lock_strong(_freelistLock);
  6430   assert_lock_strong(_bit_map->lock());
  6431   // relinquish the free_list_lock and bitMaplock()
  6432   _bit_map->lock()->unlock();
  6433   _freelistLock->unlock();
  6434   ConcurrentMarkSweepThread::desynchronize(true);
  6435   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6436   _collector->stopTimer();
  6437   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6438   if (PrintCMSStatistics != 0) {
  6439     _collector->incrementYields();
  6441   _collector->icms_wait();
  6443   // See the comment in coordinator_yield()
  6444   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6445                        ConcurrentMarkSweepThread::should_yield() &&
  6446                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6447     os::sleep(Thread::current(), 1, false);
  6448     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6451   ConcurrentMarkSweepThread::synchronize(true);
  6452   _freelistLock->lock_without_safepoint_check();
  6453   _bit_map->lock()->lock_without_safepoint_check();
  6454   _collector->startTimer();
  6457 ///////////////////////////////////////////////////////////
  6458 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6459 //                                 MarkRefsIntoAndScanClosure
  6460 ///////////////////////////////////////////////////////////
  6461 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6462   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6463   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6464   _span(span),
  6465   _bit_map(bit_map),
  6466   _work_queue(work_queue),
  6467   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6468                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6469   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6470                           revisit_stack)
  6472   _ref_processor = rp;
  6473   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6476 // This closure is used to mark refs into the CMS generation at the
  6477 // second (final) checkpoint, and to scan and transitively follow
  6478 // the unmarked oops. The marks are made in the marking bit map and
  6479 // the work_queue is used for keeping the (newly) grey objects during
  6480 // the scan phase whence they are also available for stealing by parallel
  6481 // threads. Since the marking bit map is shared, updates are
  6482 // synchronized (via CAS).
  6483 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) {
  6484   oop this_oop = *p;
  6485   if (this_oop != NULL) {
  6486     // Ignore mark word because this could be an already marked oop
  6487     // that may be chained at the end of the overflow list.
  6488     assert(this_oop->is_oop(true /* ignore mark word */), "expected an oop");
  6489     HeapWord* addr = (HeapWord*)this_oop;
  6490     if (_span.contains(addr) &&
  6491         !_bit_map->isMarked(addr)) {
  6492       // mark bit map (object will become grey):
  6493       // It is possible for several threads to be
  6494       // trying to "claim" this object concurrently;
  6495       // the unique thread that succeeds in marking the
  6496       // object first will do the subsequent push on
  6497       // to the work queue (or overflow list).
  6498       if (_bit_map->par_mark(addr)) {
  6499         // push on work_queue (which may not be empty), and trim the
  6500         // queue to an appropriate length by applying this closure to
  6501         // the oops in the oops popped from the stack (i.e. blacken the
  6502         // grey objects)
  6503         bool res = _work_queue->push(this_oop);
  6504         assert(res, "Low water mark should be less than capacity?");
  6505         trim_queue(_low_water_mark);
  6506       } // Else, another thread claimed the object
  6511 // This closure is used to rescan the marked objects on the dirty cards
  6512 // in the mod union table and the card table proper.
  6513 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6514   oop p, MemRegion mr) {
  6516   size_t size = 0;
  6517   HeapWord* addr = (HeapWord*)p;
  6518   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6519   assert(_span.contains(addr), "we are scanning the CMS generation");
  6520   // check if it's time to yield
  6521   if (do_yield_check()) {
  6522     // We yielded for some foreground stop-world work,
  6523     // and we have been asked to abort this ongoing preclean cycle.
  6524     return 0;
  6526   if (_bitMap->isMarked(addr)) {
  6527     // it's marked; is it potentially uninitialized?
  6528     if (p->klass() != NULL) {
  6529       if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  6530         // Signal precleaning to redirty the card since
  6531         // the klass pointer is already installed.
  6532         assert(size == 0, "Initial value");
  6533       } else {
  6534         assert(p->is_parsable(), "must be parsable.");
  6535         // an initialized object; ignore mark word in verification below
  6536         // since we are running concurrent with mutators
  6537         assert(p->is_oop(true), "should be an oop");
  6538         if (p->is_objArray()) {
  6539           // objArrays are precisely marked; restrict scanning
  6540           // to dirty cards only.
  6541           size = p->oop_iterate(_scanningClosure, mr);
  6542           assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6543                  "adjustObjectSize should be the identity for array sizes, "
  6544                  "which are necessarily larger than minimum object size of "
  6545                  "two heap words");
  6546         } else {
  6547           // A non-array may have been imprecisely marked; we need
  6548           // to scan object in its entirety.
  6549           size = CompactibleFreeListSpace::adjustObjectSize(
  6550                    p->oop_iterate(_scanningClosure));
  6552         #ifdef DEBUG
  6553           size_t direct_size =
  6554             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6555           assert(size == direct_size, "Inconsistency in size");
  6556           assert(size >= 3, "Necessary for Printezis marks to work");
  6557           if (!_bitMap->isMarked(addr+1)) {
  6558             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6559           } else {
  6560             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6561             assert(_bitMap->isMarked(addr+size-1),
  6562                    "inconsistent Printezis mark");
  6564         #endif // DEBUG
  6566     } else {
  6567       // an unitialized object
  6568       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6569       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6570       size = pointer_delta(nextOneAddr + 1, addr);
  6571       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6572              "alignment problem");
  6573       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6574       // will dirty the card when the klass pointer is installed in the
  6575       // object (signalling the completion of initialization).
  6577   } else {
  6578     // Either a not yet marked object or an uninitialized object
  6579     if (p->klass() == NULL || !p->is_parsable()) {
  6580       // An uninitialized object, skip to the next card, since
  6581       // we may not be able to read its P-bits yet.
  6582       assert(size == 0, "Initial value");
  6583     } else {
  6584       // An object not (yet) reached by marking: we merely need to
  6585       // compute its size so as to go look at the next block.
  6586       assert(p->is_oop(true), "should be an oop");
  6587       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6590   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6591   return size;
  6594 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6595   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6596          "CMS thread should hold CMS token");
  6597   assert_lock_strong(_freelistLock);
  6598   assert_lock_strong(_bitMap->lock());
  6599   // relinquish the free_list_lock and bitMaplock()
  6600   _bitMap->lock()->unlock();
  6601   _freelistLock->unlock();
  6602   ConcurrentMarkSweepThread::desynchronize(true);
  6603   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6604   _collector->stopTimer();
  6605   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6606   if (PrintCMSStatistics != 0) {
  6607     _collector->incrementYields();
  6609   _collector->icms_wait();
  6611   // See the comment in coordinator_yield()
  6612   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6613                        ConcurrentMarkSweepThread::should_yield() &&
  6614                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6615     os::sleep(Thread::current(), 1, false);
  6616     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6619   ConcurrentMarkSweepThread::synchronize(true);
  6620   _freelistLock->lock_without_safepoint_check();
  6621   _bitMap->lock()->lock_without_safepoint_check();
  6622   _collector->startTimer();
  6626 //////////////////////////////////////////////////////////////////
  6627 // SurvivorSpacePrecleanClosure
  6628 //////////////////////////////////////////////////////////////////
  6629 // This (single-threaded) closure is used to preclean the oops in
  6630 // the survivor spaces.
  6631 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6633   HeapWord* addr = (HeapWord*)p;
  6634   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6635   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6636   assert(p->klass() != NULL, "object should be initializd");
  6637   assert(p->is_parsable(), "must be parsable.");
  6638   // an initialized object; ignore mark word in verification below
  6639   // since we are running concurrent with mutators
  6640   assert(p->is_oop(true), "should be an oop");
  6641   // Note that we do not yield while we iterate over
  6642   // the interior oops of p, pushing the relevant ones
  6643   // on our marking stack.
  6644   size_t size = p->oop_iterate(_scanning_closure);
  6645   do_yield_check();
  6646   // Observe that below, we do not abandon the preclean
  6647   // phase as soon as we should; rather we empty the
  6648   // marking stack before returning. This is to satisfy
  6649   // some existing assertions. In general, it may be a
  6650   // good idea to abort immediately and complete the marking
  6651   // from the grey objects at a later time.
  6652   while (!_mark_stack->isEmpty()) {
  6653     oop new_oop = _mark_stack->pop();
  6654     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6655     assert(new_oop->is_parsable(), "Found unparsable oop");
  6656     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6657            "only grey objects on this stack");
  6658     // iterate over the oops in this oop, marking and pushing
  6659     // the ones in CMS heap (i.e. in _span).
  6660     new_oop->oop_iterate(_scanning_closure);
  6661     // check if it's time to yield
  6662     do_yield_check();
  6664   unsigned int after_count =
  6665     GenCollectedHeap::heap()->total_collections();
  6666   bool abort = (_before_count != after_count) ||
  6667                _collector->should_abort_preclean();
  6668   return abort ? 0 : size;
  6671 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6672   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6673          "CMS thread should hold CMS token");
  6674   assert_lock_strong(_bit_map->lock());
  6675   // Relinquish the bit map lock
  6676   _bit_map->lock()->unlock();
  6677   ConcurrentMarkSweepThread::desynchronize(true);
  6678   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6679   _collector->stopTimer();
  6680   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6681   if (PrintCMSStatistics != 0) {
  6682     _collector->incrementYields();
  6684   _collector->icms_wait();
  6686   // See the comment in coordinator_yield()
  6687   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6688                        ConcurrentMarkSweepThread::should_yield() &&
  6689                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6690     os::sleep(Thread::current(), 1, false);
  6691     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6694   ConcurrentMarkSweepThread::synchronize(true);
  6695   _bit_map->lock()->lock_without_safepoint_check();
  6696   _collector->startTimer();
  6699 // This closure is used to rescan the marked objects on the dirty cards
  6700 // in the mod union table and the card table proper. In the parallel
  6701 // case, although the bitMap is shared, we do a single read so the
  6702 // isMarked() query is "safe".
  6703 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6704   // Ignore mark word because we are running concurrent with mutators
  6705   assert(p->is_oop_or_null(true), "expected an oop or null");
  6706   HeapWord* addr = (HeapWord*)p;
  6707   assert(_span.contains(addr), "we are scanning the CMS generation");
  6708   bool is_obj_array = false;
  6709   #ifdef DEBUG
  6710     if (!_parallel) {
  6711       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6712       assert(_collector->overflow_list_is_empty(),
  6713              "overflow list should be empty");
  6716   #endif // DEBUG
  6717   if (_bit_map->isMarked(addr)) {
  6718     // Obj arrays are precisely marked, non-arrays are not;
  6719     // so we scan objArrays precisely and non-arrays in their
  6720     // entirety.
  6721     if (p->is_objArray()) {
  6722       is_obj_array = true;
  6723       if (_parallel) {
  6724         p->oop_iterate(_par_scan_closure, mr);
  6725       } else {
  6726         p->oop_iterate(_scan_closure, mr);
  6728     } else {
  6729       if (_parallel) {
  6730         p->oop_iterate(_par_scan_closure);
  6731       } else {
  6732         p->oop_iterate(_scan_closure);
  6736   #ifdef DEBUG
  6737     if (!_parallel) {
  6738       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6739       assert(_collector->overflow_list_is_empty(),
  6740              "overflow list should be empty");
  6743   #endif // DEBUG
  6744   return is_obj_array;
  6747 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6748                         MemRegion span,
  6749                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6750                         CMSMarkStack*  revisitStack,
  6751                         bool should_yield, bool verifying):
  6752   _collector(collector),
  6753   _span(span),
  6754   _bitMap(bitMap),
  6755   _mut(&collector->_modUnionTable),
  6756   _markStack(markStack),
  6757   _revisitStack(revisitStack),
  6758   _yield(should_yield),
  6759   _skipBits(0)
  6761   assert(_markStack->isEmpty(), "stack should be empty");
  6762   _finger = _bitMap->startWord();
  6763   _threshold = _finger;
  6764   assert(_collector->_restart_addr == NULL, "Sanity check");
  6765   assert(_span.contains(_finger), "Out of bounds _finger?");
  6766   DEBUG_ONLY(_verifying = verifying;)
  6769 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6770   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6771   assert(_span.contains(addr), "Out of bounds _finger?");
  6772   _finger = addr;
  6773   _threshold = (HeapWord*)round_to(
  6774                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6777 // Should revisit to see if this should be restructured for
  6778 // greater efficiency.
  6779 void MarkFromRootsClosure::do_bit(size_t offset) {
  6780   if (_skipBits > 0) {
  6781     _skipBits--;
  6782     return;
  6784   // convert offset into a HeapWord*
  6785   HeapWord* addr = _bitMap->startWord() + offset;
  6786   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6787          "address out of range");
  6788   assert(_bitMap->isMarked(addr), "tautology");
  6789   if (_bitMap->isMarked(addr+1)) {
  6790     // this is an allocated but not yet initialized object
  6791     assert(_skipBits == 0, "tautology");
  6792     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6793     oop p = oop(addr);
  6794     if (p->klass() == NULL || !p->is_parsable()) {
  6795       DEBUG_ONLY(if (!_verifying) {)
  6796         // We re-dirty the cards on which this object lies and increase
  6797         // the _threshold so that we'll come back to scan this object
  6798         // during the preclean or remark phase. (CMSCleanOnEnter)
  6799         if (CMSCleanOnEnter) {
  6800           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6801           HeapWord* start_card_addr = (HeapWord*)round_down(
  6802                                          (intptr_t)addr, CardTableModRefBS::card_size);
  6803           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6804                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6805           MemRegion redirty_range = MemRegion(start_card_addr, end_card_addr);
  6806           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6807           // Bump _threshold to end_card_addr; note that
  6808           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6809           // This prevents future clearing of the card as the scan proceeds
  6810           // to the right.
  6811           assert(_threshold <= end_card_addr,
  6812                  "Because we are just scanning into this object");
  6813           if (_threshold < end_card_addr) {
  6814             _threshold = end_card_addr;
  6816           if (p->klass() != NULL) {
  6817             // Redirty the range of cards...
  6818             _mut->mark_range(redirty_range);
  6819           } // ...else the setting of klass will dirty the card anyway.
  6821       DEBUG_ONLY(})
  6822       return;
  6825   scanOopsInOop(addr);
  6828 // We take a break if we've been at this for a while,
  6829 // so as to avoid monopolizing the locks involved.
  6830 void MarkFromRootsClosure::do_yield_work() {
  6831   // First give up the locks, then yield, then re-lock
  6832   // We should probably use a constructor/destructor idiom to
  6833   // do this unlock/lock or modify the MutexUnlocker class to
  6834   // serve our purpose. XXX
  6835   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6836          "CMS thread should hold CMS token");
  6837   assert_lock_strong(_bitMap->lock());
  6838   _bitMap->lock()->unlock();
  6839   ConcurrentMarkSweepThread::desynchronize(true);
  6840   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6841   _collector->stopTimer();
  6842   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6843   if (PrintCMSStatistics != 0) {
  6844     _collector->incrementYields();
  6846   _collector->icms_wait();
  6848   // See the comment in coordinator_yield()
  6849   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6850                        ConcurrentMarkSweepThread::should_yield() &&
  6851                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6852     os::sleep(Thread::current(), 1, false);
  6853     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6856   ConcurrentMarkSweepThread::synchronize(true);
  6857   _bitMap->lock()->lock_without_safepoint_check();
  6858   _collector->startTimer();
  6861 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6862   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6863   assert(_markStack->isEmpty(),
  6864          "should drain stack to limit stack usage");
  6865   // convert ptr to an oop preparatory to scanning
  6866   oop this_oop = oop(ptr);
  6867   // Ignore mark word in verification below, since we
  6868   // may be running concurrent with mutators.
  6869   assert(this_oop->is_oop(true), "should be an oop");
  6870   assert(_finger <= ptr, "_finger runneth ahead");
  6871   // advance the finger to right end of this object
  6872   _finger = ptr + this_oop->size();
  6873   assert(_finger > ptr, "we just incremented it above");
  6874   // On large heaps, it may take us some time to get through
  6875   // the marking phase (especially if running iCMS). During
  6876   // this time it's possible that a lot of mutations have
  6877   // accumulated in the card table and the mod union table --
  6878   // these mutation records are redundant until we have
  6879   // actually traced into the corresponding card.
  6880   // Here, we check whether advancing the finger would make
  6881   // us cross into a new card, and if so clear corresponding
  6882   // cards in the MUT (preclean them in the card-table in the
  6883   // future).
  6885   DEBUG_ONLY(if (!_verifying) {)
  6886     // The clean-on-enter optimization is disabled by default,
  6887     // until we fix 6178663.
  6888     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6889       // [_threshold, _finger) represents the interval
  6890       // of cards to be cleared  in MUT (or precleaned in card table).
  6891       // The set of cards to be cleared is all those that overlap
  6892       // with the interval [_threshold, _finger); note that
  6893       // _threshold is always kept card-aligned but _finger isn't
  6894       // always card-aligned.
  6895       HeapWord* old_threshold = _threshold;
  6896       assert(old_threshold == (HeapWord*)round_to(
  6897               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  6898              "_threshold should always be card-aligned");
  6899       _threshold = (HeapWord*)round_to(
  6900                      (intptr_t)_finger, CardTableModRefBS::card_size);
  6901       MemRegion mr(old_threshold, _threshold);
  6902       assert(!mr.is_empty(), "Control point invariant");
  6903       assert(_span.contains(mr), "Should clear within span");
  6904       // XXX When _finger crosses from old gen into perm gen
  6905       // we may be doing unnecessary cleaning; do better in the
  6906       // future by detecting that condition and clearing fewer
  6907       // MUT/CT entries.
  6908       _mut->clear_range(mr);
  6910   DEBUG_ONLY(})
  6912   // Note: the finger doesn't advance while we drain
  6913   // the stack below.
  6914   PushOrMarkClosure pushOrMarkClosure(_collector,
  6915                                       _span, _bitMap, _markStack,
  6916                                       _revisitStack,
  6917                                       _finger, this);
  6918   bool res = _markStack->push(this_oop);
  6919   assert(res, "Empty non-zero size stack should have space for single push");
  6920   while (!_markStack->isEmpty()) {
  6921     oop new_oop = _markStack->pop();
  6922     // Skip verifying header mark word below because we are
  6923     // running concurrent with mutators.
  6924     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  6925     // now scan this oop's oops
  6926     new_oop->oop_iterate(&pushOrMarkClosure);
  6927     do_yield_check();
  6929   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  6932 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  6933                        CMSCollector* collector, MemRegion span,
  6934                        CMSBitMap* bit_map,
  6935                        OopTaskQueue* work_queue,
  6936                        CMSMarkStack*  overflow_stack,
  6937                        CMSMarkStack*  revisit_stack,
  6938                        bool should_yield):
  6939   _collector(collector),
  6940   _whole_span(collector->_span),
  6941   _span(span),
  6942   _bit_map(bit_map),
  6943   _mut(&collector->_modUnionTable),
  6944   _work_queue(work_queue),
  6945   _overflow_stack(overflow_stack),
  6946   _revisit_stack(revisit_stack),
  6947   _yield(should_yield),
  6948   _skip_bits(0),
  6949   _task(task)
  6951   assert(_work_queue->size() == 0, "work_queue should be empty");
  6952   _finger = span.start();
  6953   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  6954   assert(_span.contains(_finger), "Out of bounds _finger?");
  6957 // Should revisit to see if this should be restructured for
  6958 // greater efficiency.
  6959 void Par_MarkFromRootsClosure::do_bit(size_t offset) {
  6960   if (_skip_bits > 0) {
  6961     _skip_bits--;
  6962     return;
  6964   // convert offset into a HeapWord*
  6965   HeapWord* addr = _bit_map->startWord() + offset;
  6966   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  6967          "address out of range");
  6968   assert(_bit_map->isMarked(addr), "tautology");
  6969   if (_bit_map->isMarked(addr+1)) {
  6970     // this is an allocated object that might not yet be initialized
  6971     assert(_skip_bits == 0, "tautology");
  6972     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  6973     oop p = oop(addr);
  6974     if (p->klass() == NULL || !p->is_parsable()) {
  6975       // in the case of Clean-on-Enter optimization, redirty card
  6976       // and avoid clearing card by increasing  the threshold.
  6977       return;
  6980   scan_oops_in_oop(addr);
  6983 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  6984   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  6985   // Should we assert that our work queue is empty or
  6986   // below some drain limit?
  6987   assert(_work_queue->size() == 0,
  6988          "should drain stack to limit stack usage");
  6989   // convert ptr to an oop preparatory to scanning
  6990   oop this_oop = oop(ptr);
  6991   // Ignore mark word in verification below, since we
  6992   // may be running concurrent with mutators.
  6993   assert(this_oop->is_oop(true), "should be an oop");
  6994   assert(_finger <= ptr, "_finger runneth ahead");
  6995   // advance the finger to right end of this object
  6996   _finger = ptr + this_oop->size();
  6997   assert(_finger > ptr, "we just incremented it above");
  6998   // On large heaps, it may take us some time to get through
  6999   // the marking phase (especially if running iCMS). During
  7000   // this time it's possible that a lot of mutations have
  7001   // accumulated in the card table and the mod union table --
  7002   // these mutation records are redundant until we have
  7003   // actually traced into the corresponding card.
  7004   // Here, we check whether advancing the finger would make
  7005   // us cross into a new card, and if so clear corresponding
  7006   // cards in the MUT (preclean them in the card-table in the
  7007   // future).
  7009   // The clean-on-enter optimization is disabled by default,
  7010   // until we fix 6178663.
  7011   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7012     // [_threshold, _finger) represents the interval
  7013     // of cards to be cleared  in MUT (or precleaned in card table).
  7014     // The set of cards to be cleared is all those that overlap
  7015     // with the interval [_threshold, _finger); note that
  7016     // _threshold is always kept card-aligned but _finger isn't
  7017     // always card-aligned.
  7018     HeapWord* old_threshold = _threshold;
  7019     assert(old_threshold == (HeapWord*)round_to(
  7020             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7021            "_threshold should always be card-aligned");
  7022     _threshold = (HeapWord*)round_to(
  7023                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7024     MemRegion mr(old_threshold, _threshold);
  7025     assert(!mr.is_empty(), "Control point invariant");
  7026     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7027     // XXX When _finger crosses from old gen into perm gen
  7028     // we may be doing unnecessary cleaning; do better in the
  7029     // future by detecting that condition and clearing fewer
  7030     // MUT/CT entries.
  7031     _mut->clear_range(mr);
  7034   // Note: the local finger doesn't advance while we drain
  7035   // the stack below, but the global finger sure can and will.
  7036   HeapWord** gfa = _task->global_finger_addr();
  7037   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7038                                       _span, _bit_map,
  7039                                       _work_queue,
  7040                                       _overflow_stack,
  7041                                       _revisit_stack,
  7042                                       _finger,
  7043                                       gfa, this);
  7044   bool res = _work_queue->push(this_oop);   // overflow could occur here
  7045   assert(res, "Will hold once we use workqueues");
  7046   while (true) {
  7047     oop new_oop;
  7048     if (!_work_queue->pop_local(new_oop)) {
  7049       // We emptied our work_queue; check if there's stuff that can
  7050       // be gotten from the overflow stack.
  7051       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7052             _overflow_stack, _work_queue)) {
  7053         do_yield_check();
  7054         continue;
  7055       } else {  // done
  7056         break;
  7059     // Skip verifying header mark word below because we are
  7060     // running concurrent with mutators.
  7061     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7062     // now scan this oop's oops
  7063     new_oop->oop_iterate(&pushOrMarkClosure);
  7064     do_yield_check();
  7066   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7069 // Yield in response to a request from VM Thread or
  7070 // from mutators.
  7071 void Par_MarkFromRootsClosure::do_yield_work() {
  7072   assert(_task != NULL, "sanity");
  7073   _task->yield();
  7076 // A variant of the above used for verifying CMS marking work.
  7077 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7078                         MemRegion span,
  7079                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7080                         CMSMarkStack*  mark_stack):
  7081   _collector(collector),
  7082   _span(span),
  7083   _verification_bm(verification_bm),
  7084   _cms_bm(cms_bm),
  7085   _mark_stack(mark_stack),
  7086   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7087                       mark_stack)
  7089   assert(_mark_stack->isEmpty(), "stack should be empty");
  7090   _finger = _verification_bm->startWord();
  7091   assert(_collector->_restart_addr == NULL, "Sanity check");
  7092   assert(_span.contains(_finger), "Out of bounds _finger?");
  7095 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7096   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7097   assert(_span.contains(addr), "Out of bounds _finger?");
  7098   _finger = addr;
  7101 // Should revisit to see if this should be restructured for
  7102 // greater efficiency.
  7103 void MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7104   // convert offset into a HeapWord*
  7105   HeapWord* addr = _verification_bm->startWord() + offset;
  7106   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7107          "address out of range");
  7108   assert(_verification_bm->isMarked(addr), "tautology");
  7109   assert(_cms_bm->isMarked(addr), "tautology");
  7111   assert(_mark_stack->isEmpty(),
  7112          "should drain stack to limit stack usage");
  7113   // convert addr to an oop preparatory to scanning
  7114   oop this_oop = oop(addr);
  7115   assert(this_oop->is_oop(), "should be an oop");
  7116   assert(_finger <= addr, "_finger runneth ahead");
  7117   // advance the finger to right end of this object
  7118   _finger = addr + this_oop->size();
  7119   assert(_finger > addr, "we just incremented it above");
  7120   // Note: the finger doesn't advance while we drain
  7121   // the stack below.
  7122   bool res = _mark_stack->push(this_oop);
  7123   assert(res, "Empty non-zero size stack should have space for single push");
  7124   while (!_mark_stack->isEmpty()) {
  7125     oop new_oop = _mark_stack->pop();
  7126     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7127     // now scan this oop's oops
  7128     new_oop->oop_iterate(&_pam_verify_closure);
  7130   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7133 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7134   CMSCollector* collector, MemRegion span,
  7135   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7136   CMSMarkStack*  mark_stack):
  7137   OopClosure(collector->ref_processor()),
  7138   _collector(collector),
  7139   _span(span),
  7140   _verification_bm(verification_bm),
  7141   _cms_bm(cms_bm),
  7142   _mark_stack(mark_stack)
  7143 { }
  7146 // Upon stack overflow, we discard (part of) the stack,
  7147 // remembering the least address amongst those discarded
  7148 // in CMSCollector's _restart_address.
  7149 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7150   // Remember the least grey address discarded
  7151   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7152   _collector->lower_restart_addr(ra);
  7153   _mark_stack->reset();  // discard stack contents
  7154   _mark_stack->expand(); // expand the stack if possible
  7157 void PushAndMarkVerifyClosure::do_oop(oop* p) {
  7158   oop    this_oop = *p;
  7159   assert(this_oop->is_oop_or_null(), "expected an oop or NULL");
  7160   HeapWord* addr = (HeapWord*)this_oop;
  7161   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7162     // Oop lies in _span and isn't yet grey or black
  7163     _verification_bm->mark(addr);            // now grey
  7164     if (!_cms_bm->isMarked(addr)) {
  7165       oop(addr)->print();
  7166       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  7167       fatal("... aborting");
  7170     if (!_mark_stack->push(this_oop)) { // stack overflow
  7171       if (PrintCMSStatistics != 0) {
  7172         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7173                                SIZE_FORMAT, _mark_stack->capacity());
  7175       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7176       handle_stack_overflow(addr);
  7178     // anything including and to the right of _finger
  7179     // will be scanned as we iterate over the remainder of the
  7180     // bit map
  7184 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7185                      MemRegion span,
  7186                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7187                      CMSMarkStack*  revisitStack,
  7188                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7189   OopClosure(collector->ref_processor()),
  7190   _collector(collector),
  7191   _span(span),
  7192   _bitMap(bitMap),
  7193   _markStack(markStack),
  7194   _revisitStack(revisitStack),
  7195   _finger(finger),
  7196   _parent(parent),
  7197   _should_remember_klasses(collector->cms_should_unload_classes())
  7198 { }
  7200 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7201                      MemRegion span,
  7202                      CMSBitMap* bit_map,
  7203                      OopTaskQueue* work_queue,
  7204                      CMSMarkStack*  overflow_stack,
  7205                      CMSMarkStack*  revisit_stack,
  7206                      HeapWord* finger,
  7207                      HeapWord** global_finger_addr,
  7208                      Par_MarkFromRootsClosure* parent) :
  7209   OopClosure(collector->ref_processor()),
  7210   _collector(collector),
  7211   _whole_span(collector->_span),
  7212   _span(span),
  7213   _bit_map(bit_map),
  7214   _work_queue(work_queue),
  7215   _overflow_stack(overflow_stack),
  7216   _revisit_stack(revisit_stack),
  7217   _finger(finger),
  7218   _global_finger_addr(global_finger_addr),
  7219   _parent(parent),
  7220   _should_remember_klasses(collector->cms_should_unload_classes())
  7221 { }
  7224 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7225   assert(_span.contains(low), "Out of bounds addr");
  7226   if (_restart_addr == NULL) {
  7227     _restart_addr = low;
  7228   } else {
  7229     _restart_addr = MIN2(_restart_addr, low);
  7233 // Upon stack overflow, we discard (part of) the stack,
  7234 // remembering the least address amongst those discarded
  7235 // in CMSCollector's _restart_address.
  7236 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7237   // Remember the least grey address discarded
  7238   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7239   _collector->lower_restart_addr(ra);
  7240   _markStack->reset();  // discard stack contents
  7241   _markStack->expand(); // expand the stack if possible
  7244 // Upon stack overflow, we discard (part of) the stack,
  7245 // remembering the least address amongst those discarded
  7246 // in CMSCollector's _restart_address.
  7247 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7248   // We need to do this under a mutex to prevent other
  7249   // workers from interfering with the expansion below.
  7250   MutexLockerEx ml(_overflow_stack->par_lock(),
  7251                    Mutex::_no_safepoint_check_flag);
  7252   // Remember the least grey address discarded
  7253   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7254   _collector->lower_restart_addr(ra);
  7255   _overflow_stack->reset();  // discard stack contents
  7256   _overflow_stack->expand(); // expand the stack if possible
  7260 void PushOrMarkClosure::do_oop(oop* p) {
  7261   oop    thisOop = *p;
  7262   // Ignore mark word because we are running concurrent with mutators.
  7263   assert(thisOop->is_oop_or_null(true), "expected an oop or NULL");
  7264   HeapWord* addr = (HeapWord*)thisOop;
  7265   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7266     // Oop lies in _span and isn't yet grey or black
  7267     _bitMap->mark(addr);            // now grey
  7268     if (addr < _finger) {
  7269       // the bit map iteration has already either passed, or
  7270       // sampled, this bit in the bit map; we'll need to
  7271       // use the marking stack to scan this oop's oops.
  7272       bool simulate_overflow = false;
  7273       NOT_PRODUCT(
  7274         if (CMSMarkStackOverflowALot &&
  7275             _collector->simulate_overflow()) {
  7276           // simulate a stack overflow
  7277           simulate_overflow = true;
  7280       if (simulate_overflow || !_markStack->push(thisOop)) { // stack overflow
  7281         if (PrintCMSStatistics != 0) {
  7282           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7283                                  SIZE_FORMAT, _markStack->capacity());
  7285         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7286         handle_stack_overflow(addr);
  7289     // anything including and to the right of _finger
  7290     // will be scanned as we iterate over the remainder of the
  7291     // bit map
  7292     do_yield_check();
  7296 void Par_PushOrMarkClosure::do_oop(oop* p) {
  7297   oop    this_oop = *p;
  7298   // Ignore mark word because we are running concurrent with mutators.
  7299   assert(this_oop->is_oop_or_null(true), "expected an oop or NULL");
  7300   HeapWord* addr = (HeapWord*)this_oop;
  7301   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7302     // Oop lies in _span and isn't yet grey or black
  7303     // We read the global_finger (volatile read) strictly after marking oop
  7304     bool res = _bit_map->par_mark(addr);    // now grey
  7305     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7306     // Should we push this marked oop on our stack?
  7307     // -- if someone else marked it, nothing to do
  7308     // -- if target oop is above global finger nothing to do
  7309     // -- if target oop is in chunk and above local finger
  7310     //      then nothing to do
  7311     // -- else push on work queue
  7312     if (   !res       // someone else marked it, they will deal with it
  7313         || (addr >= *gfa)  // will be scanned in a later task
  7314         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7315       return;
  7317     // the bit map iteration has already either passed, or
  7318     // sampled, this bit in the bit map; we'll need to
  7319     // use the marking stack to scan this oop's oops.
  7320     bool simulate_overflow = false;
  7321     NOT_PRODUCT(
  7322       if (CMSMarkStackOverflowALot &&
  7323           _collector->simulate_overflow()) {
  7324         // simulate a stack overflow
  7325         simulate_overflow = true;
  7328     if (simulate_overflow ||
  7329         !(_work_queue->push(this_oop) || _overflow_stack->par_push(this_oop))) {
  7330       // stack overflow
  7331       if (PrintCMSStatistics != 0) {
  7332         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7333                                SIZE_FORMAT, _overflow_stack->capacity());
  7335       // We cannot assert that the overflow stack is full because
  7336       // it may have been emptied since.
  7337       assert(simulate_overflow ||
  7338              _work_queue->size() == _work_queue->max_elems(),
  7339             "Else push should have succeeded");
  7340       handle_stack_overflow(addr);
  7342     do_yield_check();
  7347 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7348                                        MemRegion span,
  7349                                        ReferenceProcessor* rp,
  7350                                        CMSBitMap* bit_map,
  7351                                        CMSBitMap* mod_union_table,
  7352                                        CMSMarkStack*  mark_stack,
  7353                                        CMSMarkStack*  revisit_stack,
  7354                                        bool           concurrent_precleaning):
  7355   OopClosure(rp),
  7356   _collector(collector),
  7357   _span(span),
  7358   _bit_map(bit_map),
  7359   _mod_union_table(mod_union_table),
  7360   _mark_stack(mark_stack),
  7361   _revisit_stack(revisit_stack),
  7362   _concurrent_precleaning(concurrent_precleaning),
  7363   _should_remember_klasses(collector->cms_should_unload_classes())
  7365   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7368 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7369 // the non-parallel version (the parallel version appears further below.)
  7370 void PushAndMarkClosure::do_oop(oop* p) {
  7371   oop    this_oop = *p;
  7372   // Ignore mark word verification. If during concurrent precleaning
  7373   // the object monitor may be locked. If during the checkpoint
  7374   // phases, the object may already have been reached by a  different
  7375   // path and may be at the end of the global overflow list (so
  7376   // the mark word may be NULL).
  7377   assert(this_oop->is_oop_or_null(true/* ignore mark word */),
  7378          "expected an oop or NULL");
  7379   HeapWord* addr = (HeapWord*)this_oop;
  7380   // Check if oop points into the CMS generation
  7381   // and is not marked
  7382   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7383     // a white object ...
  7384     _bit_map->mark(addr);         // ... now grey
  7385     // push on the marking stack (grey set)
  7386     bool simulate_overflow = false;
  7387     NOT_PRODUCT(
  7388       if (CMSMarkStackOverflowALot &&
  7389           _collector->simulate_overflow()) {
  7390         // simulate a stack overflow
  7391         simulate_overflow = true;
  7394     if (simulate_overflow || !_mark_stack->push(this_oop)) {
  7395       if (_concurrent_precleaning) {
  7396          // During precleaning we can just dirty the appropriate card
  7397          // in the mod union table, thus ensuring that the object remains
  7398          // in the grey set  and continue. Note that no one can be intefering
  7399          // with us in this action of dirtying the mod union table, so
  7400          // no locking is required.
  7401          _mod_union_table->mark(addr);
  7402          _collector->_ser_pmc_preclean_ovflw++;
  7403       } else {
  7404          // During the remark phase, we need to remember this oop
  7405          // in the overflow list.
  7406          _collector->push_on_overflow_list(this_oop);
  7407          _collector->_ser_pmc_remark_ovflw++;
  7413 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7414                                                MemRegion span,
  7415                                                ReferenceProcessor* rp,
  7416                                                CMSBitMap* bit_map,
  7417                                                OopTaskQueue* work_queue,
  7418                                                CMSMarkStack* revisit_stack):
  7419   OopClosure(rp),
  7420   _collector(collector),
  7421   _span(span),
  7422   _bit_map(bit_map),
  7423   _work_queue(work_queue),
  7424   _revisit_stack(revisit_stack),
  7425   _should_remember_klasses(collector->cms_should_unload_classes())
  7427   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7430 // Grey object rescan during second checkpoint phase --
  7431 // the parallel version.
  7432 void Par_PushAndMarkClosure::do_oop(oop* p) {
  7433   oop    this_oop = *p;
  7434   // In the assert below, we ignore the mark word because
  7435   // this oop may point to an already visited object that is
  7436   // on the overflow stack (in which case the mark word has
  7437   // been hijacked for chaining into the overflow stack --
  7438   // if this is the last object in the overflow stack then
  7439   // its mark word will be NULL). Because this object may
  7440   // have been subsequently popped off the global overflow
  7441   // stack, and the mark word possibly restored to the prototypical
  7442   // value, by the time we get to examined this failing assert in
  7443   // the debugger, is_oop_or_null(false) may subsequently start
  7444   // to hold.
  7445   assert(this_oop->is_oop_or_null(true),
  7446          "expected an oop or NULL");
  7447   HeapWord* addr = (HeapWord*)this_oop;
  7448   // Check if oop points into the CMS generation
  7449   // and is not marked
  7450   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7451     // a white object ...
  7452     // If we manage to "claim" the object, by being the
  7453     // first thread to mark it, then we push it on our
  7454     // marking stack
  7455     if (_bit_map->par_mark(addr)) {     // ... now grey
  7456       // push on work queue (grey set)
  7457       bool simulate_overflow = false;
  7458       NOT_PRODUCT(
  7459         if (CMSMarkStackOverflowALot &&
  7460             _collector->par_simulate_overflow()) {
  7461           // simulate a stack overflow
  7462           simulate_overflow = true;
  7465       if (simulate_overflow || !_work_queue->push(this_oop)) {
  7466         _collector->par_push_on_overflow_list(this_oop);
  7467         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7469     } // Else, some other thread got there first
  7473 void PushAndMarkClosure::remember_klass(Klass* k) {
  7474   if (!_revisit_stack->push(oop(k))) {
  7475     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7479 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7480   if (!_revisit_stack->par_push(oop(k))) {
  7481     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7485 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7486   Mutex* bml = _collector->bitMapLock();
  7487   assert_lock_strong(bml);
  7488   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7489          "CMS thread should hold CMS token");
  7491   bml->unlock();
  7492   ConcurrentMarkSweepThread::desynchronize(true);
  7494   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7496   _collector->stopTimer();
  7497   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7498   if (PrintCMSStatistics != 0) {
  7499     _collector->incrementYields();
  7501   _collector->icms_wait();
  7503   // See the comment in coordinator_yield()
  7504   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7505                        ConcurrentMarkSweepThread::should_yield() &&
  7506                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7507     os::sleep(Thread::current(), 1, false);
  7508     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7511   ConcurrentMarkSweepThread::synchronize(true);
  7512   bml->lock();
  7514   _collector->startTimer();
  7517 bool CMSPrecleanRefsYieldClosure::should_return() {
  7518   if (ConcurrentMarkSweepThread::should_yield()) {
  7519     do_yield_work();
  7521   return _collector->foregroundGCIsActive();
  7524 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7525   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7526          "mr should be aligned to start at a card boundary");
  7527   // We'd like to assert:
  7528   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7529   //        "mr should be a range of cards");
  7530   // However, that would be too strong in one case -- the last
  7531   // partition ends at _unallocated_block which, in general, can be
  7532   // an arbitrary boundary, not necessarily card aligned.
  7533   if (PrintCMSStatistics != 0) {
  7534     _num_dirty_cards +=
  7535          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7537   _space->object_iterate_mem(mr, &_scan_cl);
  7540 SweepClosure::SweepClosure(CMSCollector* collector,
  7541                            ConcurrentMarkSweepGeneration* g,
  7542                            CMSBitMap* bitMap, bool should_yield) :
  7543   _collector(collector),
  7544   _g(g),
  7545   _sp(g->cmsSpace()),
  7546   _limit(_sp->sweep_limit()),
  7547   _freelistLock(_sp->freelistLock()),
  7548   _bitMap(bitMap),
  7549   _yield(should_yield),
  7550   _inFreeRange(false),           // No free range at beginning of sweep
  7551   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7552   _lastFreeRangeCoalesced(false),
  7553   _freeFinger(g->used_region().start())
  7555   NOT_PRODUCT(
  7556     _numObjectsFreed = 0;
  7557     _numWordsFreed   = 0;
  7558     _numObjectsLive = 0;
  7559     _numWordsLive = 0;
  7560     _numObjectsAlreadyFree = 0;
  7561     _numWordsAlreadyFree = 0;
  7562     _last_fc = NULL;
  7564     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7565     _sp->dictionary()->initializeDictReturnedBytes();
  7567   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7568          "sweep _limit out of bounds");
  7569   if (CMSTraceSweeper) {
  7570     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7574 // We need this destructor to reclaim any space at the end
  7575 // of the space, which do_blk below may not have added back to
  7576 // the free lists. [basically dealing with the "fringe effect"]
  7577 SweepClosure::~SweepClosure() {
  7578   assert_lock_strong(_freelistLock);
  7579   // this should be treated as the end of a free run if any
  7580   // The current free range should be returned to the free lists
  7581   // as one coalesced chunk.
  7582   if (inFreeRange()) {
  7583     flushCurFreeChunk(freeFinger(),
  7584       pointer_delta(_limit, freeFinger()));
  7585     assert(freeFinger() < _limit, "the finger pointeth off base");
  7586     if (CMSTraceSweeper) {
  7587       gclog_or_tty->print("destructor:");
  7588       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7589                  "[coalesced:"SIZE_FORMAT"]\n",
  7590                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7591                  lastFreeRangeCoalesced());
  7594   NOT_PRODUCT(
  7595     if (Verbose && PrintGC) {
  7596       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7597                           SIZE_FORMAT " bytes",
  7598                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7599       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7600                              SIZE_FORMAT" bytes  "
  7601         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7602         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7603         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7604       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7605         sizeof(HeapWord);
  7606       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7608       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7609         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7610         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7611         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7612         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7613         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7614           indexListReturnedBytes);
  7615         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7616           dictReturnedBytes);
  7620   // Now, in debug mode, just null out the sweep_limit
  7621   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7622   if (CMSTraceSweeper) {
  7623     gclog_or_tty->print("end of sweep\n================\n");
  7627 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7628     bool freeRangeInFreeLists) {
  7629   if (CMSTraceSweeper) {
  7630     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7631                freeFinger, _sp->block_size(freeFinger),
  7632                freeRangeInFreeLists);
  7634   assert(!inFreeRange(), "Trampling existing free range");
  7635   set_inFreeRange(true);
  7636   set_lastFreeRangeCoalesced(false);
  7638   set_freeFinger(freeFinger);
  7639   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7640   if (CMSTestInFreeList) {
  7641     if (freeRangeInFreeLists) {
  7642       FreeChunk* fc = (FreeChunk*) freeFinger;
  7643       assert(fc->isFree(), "A chunk on the free list should be free.");
  7644       assert(fc->size() > 0, "Free range should have a size");
  7645       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7650 // Note that the sweeper runs concurrently with mutators. Thus,
  7651 // it is possible for direct allocation in this generation to happen
  7652 // in the middle of the sweep. Note that the sweeper also coalesces
  7653 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7654 // synchronize appropriately freshly allocated blocks may get swept up.
  7655 // This is accomplished by the sweeper locking the free lists while
  7656 // it is sweeping. Thus blocks that are determined to be free are
  7657 // indeed free. There is however one additional complication:
  7658 // blocks that have been allocated since the final checkpoint and
  7659 // mark, will not have been marked and so would be treated as
  7660 // unreachable and swept up. To prevent this, the allocator marks
  7661 // the bit map when allocating during the sweep phase. This leads,
  7662 // however, to a further complication -- objects may have been allocated
  7663 // but not yet initialized -- in the sense that the header isn't yet
  7664 // installed. The sweeper can not then determine the size of the block
  7665 // in order to skip over it. To deal with this case, we use a technique
  7666 // (due to Printezis) to encode such uninitialized block sizes in the
  7667 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7668 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7669 // that "normal marks" won't be adjacent in the bit map (there will
  7670 // always be at least two 0 bits between successive 1 bits). We make use
  7671 // of these "unused" bits to represent uninitialized blocks -- the bit
  7672 // corresponding to the start of the uninitialized object and the next
  7673 // bit are both set. Finally, a 1 bit marks the end of the object that
  7674 // started with the two consecutive 1 bits to indicate its potentially
  7675 // uninitialized state.
  7677 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7678   FreeChunk* fc = (FreeChunk*)addr;
  7679   size_t res;
  7681   // check if we are done sweepinrg
  7682   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7683     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7684            "sweep _limit out of bounds");
  7685     // help the closure application finish
  7686     return pointer_delta(_sp->end(), _limit);
  7688   assert(addr <= _limit, "sweep invariant");
  7690   // check if we should yield
  7691   do_yield_check(addr);
  7692   if (fc->isFree()) {
  7693     // Chunk that is already free
  7694     res = fc->size();
  7695     doAlreadyFreeChunk(fc);
  7696     debug_only(_sp->verifyFreeLists());
  7697     assert(res == fc->size(), "Don't expect the size to change");
  7698     NOT_PRODUCT(
  7699       _numObjectsAlreadyFree++;
  7700       _numWordsAlreadyFree += res;
  7702     NOT_PRODUCT(_last_fc = fc;)
  7703   } else if (!_bitMap->isMarked(addr)) {
  7704     // Chunk is fresh garbage
  7705     res = doGarbageChunk(fc);
  7706     debug_only(_sp->verifyFreeLists());
  7707     NOT_PRODUCT(
  7708       _numObjectsFreed++;
  7709       _numWordsFreed += res;
  7711   } else {
  7712     // Chunk that is alive.
  7713     res = doLiveChunk(fc);
  7714     debug_only(_sp->verifyFreeLists());
  7715     NOT_PRODUCT(
  7716         _numObjectsLive++;
  7717         _numWordsLive += res;
  7720   return res;
  7723 // For the smart allocation, record following
  7724 //  split deaths - a free chunk is removed from its free list because
  7725 //      it is being split into two or more chunks.
  7726 //  split birth - a free chunk is being added to its free list because
  7727 //      a larger free chunk has been split and resulted in this free chunk.
  7728 //  coal death - a free chunk is being removed from its free list because
  7729 //      it is being coalesced into a large free chunk.
  7730 //  coal birth - a free chunk is being added to its free list because
  7731 //      it was created when two or more free chunks where coalesced into
  7732 //      this free chunk.
  7733 //
  7734 // These statistics are used to determine the desired number of free
  7735 // chunks of a given size.  The desired number is chosen to be relative
  7736 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7737 // is the
  7738 //      count-at-end-of-previous-sweep (an amount that was enough)
  7739 //              - count-at-beginning-of-current-sweep  (the excess)
  7740 //              + split-births  (gains in this size during interval)
  7741 //              - split-deaths  (demands on this size during interval)
  7742 // where the interval is from the end of one sweep to the end of the
  7743 // next.
  7744 //
  7745 // When sweeping the sweeper maintains an accumulated chunk which is
  7746 // the chunk that is made up of chunks that have been coalesced.  That
  7747 // will be termed the left-hand chunk.  A new chunk of garbage that
  7748 // is being considered for coalescing will be referred to as the
  7749 // right-hand chunk.
  7750 //
  7751 // When making a decision on whether to coalesce a right-hand chunk with
  7752 // the current left-hand chunk, the current count vs. the desired count
  7753 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7754 // is near the large chunk at the end of the heap (see
  7755 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7756 // left-hand chunk is coalesced.
  7757 //
  7758 // When making a decision about whether to split a chunk, the desired count
  7759 // vs. the current count of the candidate to be split is also considered.
  7760 // If the candidate is underpopulated (currently fewer chunks than desired)
  7761 // a chunk of an overpopulated (currently more chunks than desired) size may
  7762 // be chosen.  The "hint" associated with a free list, if non-null, points
  7763 // to a free list which may be overpopulated.
  7764 //
  7766 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7767   size_t size = fc->size();
  7768   // Chunks that cannot be coalesced are not in the
  7769   // free lists.
  7770   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7771     assert(_sp->verifyChunkInFreeLists(fc),
  7772       "free chunk should be in free lists");
  7774   // a chunk that is already free, should not have been
  7775   // marked in the bit map
  7776   HeapWord* addr = (HeapWord*) fc;
  7777   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7778   // Verify that the bit map has no bits marked between
  7779   // addr and purported end of this block.
  7780   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7782   // Some chunks cannot be coalesced in under any circumstances.
  7783   // See the definition of cantCoalesce().
  7784   if (!fc->cantCoalesce()) {
  7785     // This chunk can potentially be coalesced.
  7786     if (_sp->adaptive_freelists()) {
  7787       // All the work is done in
  7788       doPostIsFreeOrGarbageChunk(fc, size);
  7789     } else {  // Not adaptive free lists
  7790       // this is a free chunk that can potentially be coalesced by the sweeper;
  7791       if (!inFreeRange()) {
  7792         // if the next chunk is a free block that can't be coalesced
  7793         // it doesn't make sense to remove this chunk from the free lists
  7794         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7795         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7796         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7797             nextChunk->isFree()    &&            // which is free...
  7798             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7799           // nothing to do
  7800         } else {
  7801           // Potentially the start of a new free range:
  7802           // Don't eagerly remove it from the free lists.
  7803           // No need to remove it if it will just be put
  7804           // back again.  (Also from a pragmatic point of view
  7805           // if it is a free block in a region that is beyond
  7806           // any allocated blocks, an assertion will fail)
  7807           // Remember the start of a free run.
  7808           initialize_free_range(addr, true);
  7809           // end - can coalesce with next chunk
  7811       } else {
  7812         // the midst of a free range, we are coalescing
  7813         debug_only(record_free_block_coalesced(fc);)
  7814         if (CMSTraceSweeper) {
  7815           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7817         // remove it from the free lists
  7818         _sp->removeFreeChunkFromFreeLists(fc);
  7819         set_lastFreeRangeCoalesced(true);
  7820         // If the chunk is being coalesced and the current free range is
  7821         // in the free lists, remove the current free range so that it
  7822         // will be returned to the free lists in its entirety - all
  7823         // the coalesced pieces included.
  7824         if (freeRangeInFreeLists()) {
  7825           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7826           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7827             "Size of free range is inconsistent with chunk size.");
  7828           if (CMSTestInFreeList) {
  7829             assert(_sp->verifyChunkInFreeLists(ffc),
  7830               "free range is not in free lists");
  7832           _sp->removeFreeChunkFromFreeLists(ffc);
  7833           set_freeRangeInFreeLists(false);
  7837   } else {
  7838     // Code path common to both original and adaptive free lists.
  7840     // cant coalesce with previous block; this should be treated
  7841     // as the end of a free run if any
  7842     if (inFreeRange()) {
  7843       // we kicked some butt; time to pick up the garbage
  7844       assert(freeFinger() < addr, "the finger pointeth off base");
  7845       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7847     // else, nothing to do, just continue
  7851 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7852   // This is a chunk of garbage.  It is not in any free list.
  7853   // Add it to a free list or let it possibly be coalesced into
  7854   // a larger chunk.
  7855   HeapWord* addr = (HeapWord*) fc;
  7856   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7858   if (_sp->adaptive_freelists()) {
  7859     // Verify that the bit map has no bits marked between
  7860     // addr and purported end of just dead object.
  7861     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7863     doPostIsFreeOrGarbageChunk(fc, size);
  7864   } else {
  7865     if (!inFreeRange()) {
  7866       // start of a new free range
  7867       assert(size > 0, "A free range should have a size");
  7868       initialize_free_range(addr, false);
  7870     } else {
  7871       // this will be swept up when we hit the end of the
  7872       // free range
  7873       if (CMSTraceSweeper) {
  7874         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  7876       // If the chunk is being coalesced and the current free range is
  7877       // in the free lists, remove the current free range so that it
  7878       // will be returned to the free lists in its entirety - all
  7879       // the coalesced pieces included.
  7880       if (freeRangeInFreeLists()) {
  7881         FreeChunk* ffc = (FreeChunk*)freeFinger();
  7882         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7883           "Size of free range is inconsistent with chunk size.");
  7884         if (CMSTestInFreeList) {
  7885           assert(_sp->verifyChunkInFreeLists(ffc),
  7886             "free range is not in free lists");
  7888         _sp->removeFreeChunkFromFreeLists(ffc);
  7889         set_freeRangeInFreeLists(false);
  7891       set_lastFreeRangeCoalesced(true);
  7893     // this will be swept up when we hit the end of the free range
  7895     // Verify that the bit map has no bits marked between
  7896     // addr and purported end of just dead object.
  7897     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7899   return size;
  7902 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  7903   HeapWord* addr = (HeapWord*) fc;
  7904   // The sweeper has just found a live object. Return any accumulated
  7905   // left hand chunk to the free lists.
  7906   if (inFreeRange()) {
  7907     if (_sp->adaptive_freelists()) {
  7908       flushCurFreeChunk(freeFinger(),
  7909                         pointer_delta(addr, freeFinger()));
  7910     } else { // not adaptive freelists
  7911       set_inFreeRange(false);
  7912       // Add the free range back to the free list if it is not already
  7913       // there.
  7914       if (!freeRangeInFreeLists()) {
  7915         assert(freeFinger() < addr, "the finger pointeth off base");
  7916         if (CMSTraceSweeper) {
  7917           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  7918             "[coalesced:%d]\n",
  7919             freeFinger(), pointer_delta(addr, freeFinger()),
  7920             lastFreeRangeCoalesced());
  7922         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  7923           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  7928   // Common code path for original and adaptive free lists.
  7930   // this object is live: we'd normally expect this to be
  7931   // an oop, and like to assert the following:
  7932   // assert(oop(addr)->is_oop(), "live block should be an oop");
  7933   // However, as we commented above, this may be an object whose
  7934   // header hasn't yet been initialized.
  7935   size_t size;
  7936   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  7937   if (_bitMap->isMarked(addr + 1)) {
  7938     // Determine the size from the bit map, rather than trying to
  7939     // compute it from the object header.
  7940     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  7941     size = pointer_delta(nextOneAddr + 1, addr);
  7942     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  7943            "alignment problem");
  7945     #ifdef DEBUG
  7946       if (oop(addr)->klass() != NULL &&
  7947           (   !_collector->cms_should_unload_classes()
  7948            || oop(addr)->is_parsable())) {
  7949         // Ignore mark word because we are running concurrent with mutators
  7950         assert(oop(addr)->is_oop(true), "live block should be an oop");
  7951         assert(size ==
  7952                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  7953                "P-mark and computed size do not agree");
  7955     #endif
  7957   } else {
  7958     // This should be an initialized object that's alive.
  7959     assert(oop(addr)->klass() != NULL &&
  7960            (!_collector->cms_should_unload_classes()
  7961             || oop(addr)->is_parsable()),
  7962            "Should be an initialized object");
  7963     // Ignore mark word because we are running concurrent with mutators
  7964     assert(oop(addr)->is_oop(true), "live block should be an oop");
  7965     // Verify that the bit map has no bits marked between
  7966     // addr and purported end of this block.
  7967     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7968     assert(size >= 3, "Necessary for Printezis marks to work");
  7969     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  7970     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  7972   return size;
  7975 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  7976                                             size_t chunkSize) {
  7977   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  7978   // scheme.
  7979   bool fcInFreeLists = fc->isFree();
  7980   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  7981   assert((HeapWord*)fc <= _limit, "sweep invariant");
  7982   if (CMSTestInFreeList && fcInFreeLists) {
  7983     assert(_sp->verifyChunkInFreeLists(fc),
  7984       "free chunk is not in free lists");
  7988   if (CMSTraceSweeper) {
  7989     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  7992   HeapWord* addr = (HeapWord*) fc;
  7994   bool coalesce;
  7995   size_t left  = pointer_delta(addr, freeFinger());
  7996   size_t right = chunkSize;
  7997   switch (FLSCoalescePolicy) {
  7998     // numeric value forms a coalition aggressiveness metric
  7999     case 0:  { // never coalesce
  8000       coalesce = false;
  8001       break;
  8003     case 1: { // coalesce if left & right chunks on overpopulated lists
  8004       coalesce = _sp->coalOverPopulated(left) &&
  8005                  _sp->coalOverPopulated(right);
  8006       break;
  8008     case 2: { // coalesce if left chunk on overpopulated list (default)
  8009       coalesce = _sp->coalOverPopulated(left);
  8010       break;
  8012     case 3: { // coalesce if left OR right chunk on overpopulated list
  8013       coalesce = _sp->coalOverPopulated(left) ||
  8014                  _sp->coalOverPopulated(right);
  8015       break;
  8017     case 4: { // always coalesce
  8018       coalesce = true;
  8019       break;
  8021     default:
  8022      ShouldNotReachHere();
  8025   // Should the current free range be coalesced?
  8026   // If the chunk is in a free range and either we decided to coalesce above
  8027   // or the chunk is near the large block at the end of the heap
  8028   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8029   bool doCoalesce = inFreeRange() &&
  8030     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8031   if (doCoalesce) {
  8032     // Coalesce the current free range on the left with the new
  8033     // chunk on the right.  If either is on a free list,
  8034     // it must be removed from the list and stashed in the closure.
  8035     if (freeRangeInFreeLists()) {
  8036       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8037       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8038         "Size of free range is inconsistent with chunk size.");
  8039       if (CMSTestInFreeList) {
  8040         assert(_sp->verifyChunkInFreeLists(ffc),
  8041           "Chunk is not in free lists");
  8043       _sp->coalDeath(ffc->size());
  8044       _sp->removeFreeChunkFromFreeLists(ffc);
  8045       set_freeRangeInFreeLists(false);
  8047     if (fcInFreeLists) {
  8048       _sp->coalDeath(chunkSize);
  8049       assert(fc->size() == chunkSize,
  8050         "The chunk has the wrong size or is not in the free lists");
  8051       _sp->removeFreeChunkFromFreeLists(fc);
  8053     set_lastFreeRangeCoalesced(true);
  8054   } else {  // not in a free range and/or should not coalesce
  8055     // Return the current free range and start a new one.
  8056     if (inFreeRange()) {
  8057       // In a free range but cannot coalesce with the right hand chunk.
  8058       // Put the current free range into the free lists.
  8059       flushCurFreeChunk(freeFinger(),
  8060         pointer_delta(addr, freeFinger()));
  8062     // Set up for new free range.  Pass along whether the right hand
  8063     // chunk is in the free lists.
  8064     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8067 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8068   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8069   assert(size > 0,
  8070     "A zero sized chunk cannot be added to the free lists.");
  8071   if (!freeRangeInFreeLists()) {
  8072     if(CMSTestInFreeList) {
  8073       FreeChunk* fc = (FreeChunk*) chunk;
  8074       fc->setSize(size);
  8075       assert(!_sp->verifyChunkInFreeLists(fc),
  8076         "chunk should not be in free lists yet");
  8078     if (CMSTraceSweeper) {
  8079       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8080                     chunk, size);
  8082     // A new free range is going to be starting.  The current
  8083     // free range has not been added to the free lists yet or
  8084     // was removed so add it back.
  8085     // If the current free range was coalesced, then the death
  8086     // of the free range was recorded.  Record a birth now.
  8087     if (lastFreeRangeCoalesced()) {
  8088       _sp->coalBirth(size);
  8090     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8091             lastFreeRangeCoalesced());
  8093   set_inFreeRange(false);
  8094   set_freeRangeInFreeLists(false);
  8097 // We take a break if we've been at this for a while,
  8098 // so as to avoid monopolizing the locks involved.
  8099 void SweepClosure::do_yield_work(HeapWord* addr) {
  8100   // Return current free chunk being used for coalescing (if any)
  8101   // to the appropriate freelist.  After yielding, the next
  8102   // free block encountered will start a coalescing range of
  8103   // free blocks.  If the next free block is adjacent to the
  8104   // chunk just flushed, they will need to wait for the next
  8105   // sweep to be coalesced.
  8106   if (inFreeRange()) {
  8107     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8110   // First give up the locks, then yield, then re-lock.
  8111   // We should probably use a constructor/destructor idiom to
  8112   // do this unlock/lock or modify the MutexUnlocker class to
  8113   // serve our purpose. XXX
  8114   assert_lock_strong(_bitMap->lock());
  8115   assert_lock_strong(_freelistLock);
  8116   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8117          "CMS thread should hold CMS token");
  8118   _bitMap->lock()->unlock();
  8119   _freelistLock->unlock();
  8120   ConcurrentMarkSweepThread::desynchronize(true);
  8121   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8122   _collector->stopTimer();
  8123   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8124   if (PrintCMSStatistics != 0) {
  8125     _collector->incrementYields();
  8127   _collector->icms_wait();
  8129   // See the comment in coordinator_yield()
  8130   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8131                        ConcurrentMarkSweepThread::should_yield() &&
  8132                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8133     os::sleep(Thread::current(), 1, false);
  8134     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8137   ConcurrentMarkSweepThread::synchronize(true);
  8138   _freelistLock->lock();
  8139   _bitMap->lock()->lock_without_safepoint_check();
  8140   _collector->startTimer();
  8143 #ifndef PRODUCT
  8144 // This is actually very useful in a product build if it can
  8145 // be called from the debugger.  Compile it into the product
  8146 // as needed.
  8147 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8148   return debug_cms_space->verifyChunkInFreeLists(fc);
  8151 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8152   if (CMSTraceSweeper) {
  8153     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8156 #endif
  8158 // CMSIsAliveClosure
  8159 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8160   HeapWord* addr = (HeapWord*)obj;
  8161   return addr != NULL &&
  8162          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8165 // CMSKeepAliveClosure: the serial version
  8166 void CMSKeepAliveClosure::do_oop(oop* p) {
  8167   oop this_oop = *p;
  8168   HeapWord* addr = (HeapWord*)this_oop;
  8169   if (_span.contains(addr) &&
  8170       !_bit_map->isMarked(addr)) {
  8171     _bit_map->mark(addr);
  8172     bool simulate_overflow = false;
  8173     NOT_PRODUCT(
  8174       if (CMSMarkStackOverflowALot &&
  8175           _collector->simulate_overflow()) {
  8176         // simulate a stack overflow
  8177         simulate_overflow = true;
  8180     if (simulate_overflow || !_mark_stack->push(this_oop)) {
  8181       _collector->push_on_overflow_list(this_oop);
  8182       _collector->_ser_kac_ovflw++;
  8187 // CMSParKeepAliveClosure: a parallel version of the above.
  8188 // The work queues are private to each closure (thread),
  8189 // but (may be) available for stealing by other threads.
  8190 void CMSParKeepAliveClosure::do_oop(oop* p) {
  8191   oop this_oop = *p;
  8192   HeapWord* addr = (HeapWord*)this_oop;
  8193   if (_span.contains(addr) &&
  8194       !_bit_map->isMarked(addr)) {
  8195     // In general, during recursive tracing, several threads
  8196     // may be concurrently getting here; the first one to
  8197     // "tag" it, claims it.
  8198     if (_bit_map->par_mark(addr)) {
  8199       bool res = _work_queue->push(this_oop);
  8200       assert(res, "Low water mark should be much less than capacity");
  8201       // Do a recursive trim in the hope that this will keep
  8202       // stack usage lower, but leave some oops for potential stealers
  8203       trim_queue(_low_water_mark);
  8204     } // Else, another thread got there first
  8208 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8209   while (_work_queue->size() > max) {
  8210     oop new_oop;
  8211     if (_work_queue->pop_local(new_oop)) {
  8212       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8213       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8214              "no white objects on this stack!");
  8215       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8216       // iterate over the oops in this oop, marking and pushing
  8217       // the ones in CMS heap (i.e. in _span).
  8218       new_oop->oop_iterate(&_mark_and_push);
  8223 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) {
  8224   oop this_oop = *p;
  8225   HeapWord* addr = (HeapWord*)this_oop;
  8226   if (_span.contains(addr) &&
  8227       !_bit_map->isMarked(addr)) {
  8228     if (_bit_map->par_mark(addr)) {
  8229       bool simulate_overflow = false;
  8230       NOT_PRODUCT(
  8231         if (CMSMarkStackOverflowALot &&
  8232             _collector->par_simulate_overflow()) {
  8233           // simulate a stack overflow
  8234           simulate_overflow = true;
  8237       if (simulate_overflow || !_work_queue->push(this_oop)) {
  8238         _collector->par_push_on_overflow_list(this_oop);
  8239         _collector->_par_kac_ovflw++;
  8241     } // Else another thread got there already
  8245 //////////////////////////////////////////////////////////////////
  8246 //  CMSExpansionCause                /////////////////////////////
  8247 //////////////////////////////////////////////////////////////////
  8248 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8249   switch (cause) {
  8250     case _no_expansion:
  8251       return "No expansion";
  8252     case _satisfy_free_ratio:
  8253       return "Free ratio";
  8254     case _satisfy_promotion:
  8255       return "Satisfy promotion";
  8256     case _satisfy_allocation:
  8257       return "allocation";
  8258     case _allocate_par_lab:
  8259       return "Par LAB";
  8260     case _allocate_par_spooling_space:
  8261       return "Par Spooling Space";
  8262     case _adaptive_size_policy:
  8263       return "Ergonomics";
  8264     default:
  8265       return "unknown";
  8269 void CMSDrainMarkingStackClosure::do_void() {
  8270   // the max number to take from overflow list at a time
  8271   const size_t num = _mark_stack->capacity()/4;
  8272   while (!_mark_stack->isEmpty() ||
  8273          // if stack is empty, check the overflow list
  8274          _collector->take_from_overflow_list(num, _mark_stack)) {
  8275     oop this_oop = _mark_stack->pop();
  8276     HeapWord* addr = (HeapWord*)this_oop;
  8277     assert(_span.contains(addr), "Should be within span");
  8278     assert(_bit_map->isMarked(addr), "Should be marked");
  8279     assert(this_oop->is_oop(), "Should be an oop");
  8280     this_oop->oop_iterate(_keep_alive);
  8284 void CMSParDrainMarkingStackClosure::do_void() {
  8285   // drain queue
  8286   trim_queue(0);
  8289 // Trim our work_queue so its length is below max at return
  8290 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8291   while (_work_queue->size() > max) {
  8292     oop new_oop;
  8293     if (_work_queue->pop_local(new_oop)) {
  8294       assert(new_oop->is_oop(), "Expected an oop");
  8295       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8296              "no white objects on this stack!");
  8297       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8298       // iterate over the oops in this oop, marking and pushing
  8299       // the ones in CMS heap (i.e. in _span).
  8300       new_oop->oop_iterate(&_mark_and_push);
  8305 ////////////////////////////////////////////////////////////////////
  8306 // Support for Marking Stack Overflow list handling and related code
  8307 ////////////////////////////////////////////////////////////////////
  8308 // Much of the following code is similar in shape and spirit to the
  8309 // code used in ParNewGC. We should try and share that code
  8310 // as much as possible in the future.
  8312 #ifndef PRODUCT
  8313 // Debugging support for CMSStackOverflowALot
  8315 // It's OK to call this multi-threaded;  the worst thing
  8316 // that can happen is that we'll get a bunch of closely
  8317 // spaced simulated oveflows, but that's OK, in fact
  8318 // probably good as it would exercise the overflow code
  8319 // under contention.
  8320 bool CMSCollector::simulate_overflow() {
  8321   if (_overflow_counter-- <= 0) { // just being defensive
  8322     _overflow_counter = CMSMarkStackOverflowInterval;
  8323     return true;
  8324   } else {
  8325     return false;
  8329 bool CMSCollector::par_simulate_overflow() {
  8330   return simulate_overflow();
  8332 #endif
  8334 // Single-threaded
  8335 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8336   assert(stack->isEmpty(), "Expected precondition");
  8337   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8338   size_t i = num;
  8339   oop  cur = _overflow_list;
  8340   const markOop proto = markOopDesc::prototype();
  8341   NOT_PRODUCT(size_t n = 0;)
  8342   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8343     next = oop(cur->mark());
  8344     cur->set_mark(proto);   // until proven otherwise
  8345     assert(cur->is_oop(), "Should be an oop");
  8346     bool res = stack->push(cur);
  8347     assert(res, "Bit off more than can chew?");
  8348     NOT_PRODUCT(n++;)
  8350   _overflow_list = cur;
  8351 #ifndef PRODUCT
  8352   assert(_num_par_pushes >= n, "Too many pops?");
  8353   _num_par_pushes -=n;
  8354 #endif
  8355   return !stack->isEmpty();
  8358 // Multi-threaded; use CAS to break off a prefix
  8359 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8360                                                OopTaskQueue* work_q) {
  8361   assert(work_q->size() == 0, "That's the current policy");
  8362   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8363   if (_overflow_list == NULL) {
  8364     return false;
  8366   // Grab the entire list; we'll put back a suffix
  8367   oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  8368   if (prefix == NULL) {  // someone grabbed it before we did ...
  8369     // ... we could spin for a short while, but for now we don't
  8370     return false;
  8372   size_t i = num;
  8373   oop cur = prefix;
  8374   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8375   if (cur->mark() != NULL) {
  8376     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8377     cur->set_mark(NULL);           // break off suffix
  8378     // Find tail of suffix so we can prepend suffix to global list
  8379     for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8380     oop suffix_tail = cur;
  8381     assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8382            "Tautology");
  8383     oop observed_overflow_list = _overflow_list;
  8384     do {
  8385       cur = observed_overflow_list;
  8386       suffix_tail->set_mark(markOop(cur));
  8387       observed_overflow_list =
  8388         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  8389     } while (cur != observed_overflow_list);
  8392   // Push the prefix elements on work_q
  8393   assert(prefix != NULL, "control point invariant");
  8394   const markOop proto = markOopDesc::prototype();
  8395   oop next;
  8396   NOT_PRODUCT(size_t n = 0;)
  8397   for (cur = prefix; cur != NULL; cur = next) {
  8398     next = oop(cur->mark());
  8399     cur->set_mark(proto);   // until proven otherwise
  8400     assert(cur->is_oop(), "Should be an oop");
  8401     bool res = work_q->push(cur);
  8402     assert(res, "Bit off more than we can chew?");
  8403     NOT_PRODUCT(n++;)
  8405 #ifndef PRODUCT
  8406   assert(_num_par_pushes >= n, "Too many pops?");
  8407   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8408 #endif
  8409   return true;
  8412 // Single-threaded
  8413 void CMSCollector::push_on_overflow_list(oop p) {
  8414   NOT_PRODUCT(_num_par_pushes++;)
  8415   assert(p->is_oop(), "Not an oop");
  8416   preserve_mark_if_necessary(p);
  8417   p->set_mark((markOop)_overflow_list);
  8418   _overflow_list = p;
  8421 // Multi-threaded; use CAS to prepend to overflow list
  8422 void CMSCollector::par_push_on_overflow_list(oop p) {
  8423   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8424   assert(p->is_oop(), "Not an oop");
  8425   par_preserve_mark_if_necessary(p);
  8426   oop observed_overflow_list = _overflow_list;
  8427   oop cur_overflow_list;
  8428   do {
  8429     cur_overflow_list = observed_overflow_list;
  8430     p->set_mark(markOop(cur_overflow_list));
  8431     observed_overflow_list =
  8432       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8433   } while (cur_overflow_list != observed_overflow_list);
  8436 // Single threaded
  8437 // General Note on GrowableArray: pushes may silently fail
  8438 // because we are (temporarily) out of C-heap for expanding
  8439 // the stack. The problem is quite ubiquitous and affects
  8440 // a lot of code in the JVM. The prudent thing for GrowableArray
  8441 // to do (for now) is to exit with an error. However, that may
  8442 // be too draconian in some cases because the caller may be
  8443 // able to recover without much harm. For suych cases, we
  8444 // should probably introduce a "soft_push" method which returns
  8445 // an indication of success or failure with the assumption that
  8446 // the caller may be able to recover from a failure; code in
  8447 // the VM can then be changed, incrementally, to deal with such
  8448 // failures where possible, thus, incrementally hardening the VM
  8449 // in such low resource situations.
  8450 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8451   int PreserveMarkStackSize = 128;
  8453   if (_preserved_oop_stack == NULL) {
  8454     assert(_preserved_mark_stack == NULL,
  8455            "bijection with preserved_oop_stack");
  8456     // Allocate the stacks
  8457     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8458       GrowableArray<oop>(PreserveMarkStackSize, true);
  8459     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8460       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8461     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8462       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8463                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8466   _preserved_oop_stack->push(p);
  8467   _preserved_mark_stack->push(m);
  8468   assert(m == p->mark(), "Mark word changed");
  8469   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8470          "bijection");
  8473 // Single threaded
  8474 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8475   markOop m = p->mark();
  8476   if (m->must_be_preserved(p)) {
  8477     preserve_mark_work(p, m);
  8481 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8482   markOop m = p->mark();
  8483   if (m->must_be_preserved(p)) {
  8484     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8485     // Even though we read the mark word without holding
  8486     // the lock, we are assured that it will not change
  8487     // because we "own" this oop, so no other thread can
  8488     // be trying to push it on the overflow list; see
  8489     // the assertion in preserve_mark_work() that checks
  8490     // that m == p->mark().
  8491     preserve_mark_work(p, m);
  8495 // We should be able to do this multi-threaded,
  8496 // a chunk of stack being a task (this is
  8497 // correct because each oop only ever appears
  8498 // once in the overflow list. However, it's
  8499 // not very easy to completely overlap this with
  8500 // other operations, so will generally not be done
  8501 // until all work's been completed. Because we
  8502 // expect the preserved oop stack (set) to be small,
  8503 // it's probably fine to do this single-threaded.
  8504 // We can explore cleverer concurrent/overlapped/parallel
  8505 // processing of preserved marks if we feel the
  8506 // need for this in the future. Stack overflow should
  8507 // be so rare in practice and, when it happens, its
  8508 // effect on performance so great that this will
  8509 // likely just be in the noise anyway.
  8510 void CMSCollector::restore_preserved_marks_if_any() {
  8511   if (_preserved_oop_stack == NULL) {
  8512     assert(_preserved_mark_stack == NULL,
  8513            "bijection with preserved_oop_stack");
  8514     return;
  8517   assert(SafepointSynchronize::is_at_safepoint(),
  8518          "world should be stopped");
  8519   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8520          Thread::current()->is_VM_thread(),
  8521          "should be single-threaded");
  8523   int length = _preserved_oop_stack->length();
  8524   assert(_preserved_mark_stack->length() == length, "bijection");
  8525   for (int i = 0; i < length; i++) {
  8526     oop p = _preserved_oop_stack->at(i);
  8527     assert(p->is_oop(), "Should be an oop");
  8528     assert(_span.contains(p), "oop should be in _span");
  8529     assert(p->mark() == markOopDesc::prototype(),
  8530            "Set when taken from overflow list");
  8531     markOop m = _preserved_mark_stack->at(i);
  8532     p->set_mark(m);
  8534   _preserved_mark_stack->clear();
  8535   _preserved_oop_stack->clear();
  8536   assert(_preserved_mark_stack->is_empty() &&
  8537          _preserved_oop_stack->is_empty(),
  8538          "stacks were cleared above");
  8541 #ifndef PRODUCT
  8542 bool CMSCollector::no_preserved_marks() const {
  8543   return (   (   _preserved_mark_stack == NULL
  8544               && _preserved_oop_stack == NULL)
  8545           || (   _preserved_mark_stack->is_empty()
  8546               && _preserved_oop_stack->is_empty()));
  8548 #endif
  8550 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8552   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8553   CMSAdaptiveSizePolicy* size_policy =
  8554     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8555   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8556     "Wrong type for size policy");
  8557   return size_policy;
  8560 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8561                                            size_t desired_promo_size) {
  8562   if (cur_promo_size < desired_promo_size) {
  8563     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8564     if (PrintAdaptiveSizePolicy && Verbose) {
  8565       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8566         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8567         expand_bytes);
  8569     expand(expand_bytes,
  8570            MinHeapDeltaBytes,
  8571            CMSExpansionCause::_adaptive_size_policy);
  8572   } else if (desired_promo_size < cur_promo_size) {
  8573     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8574     if (PrintAdaptiveSizePolicy && Verbose) {
  8575       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8576         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8577         shrink_bytes);
  8579     shrink(shrink_bytes);
  8583 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8584   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8585   CMSGCAdaptivePolicyCounters* counters =
  8586     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8587   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8588     "Wrong kind of counters");
  8589   return counters;
  8593 void ASConcurrentMarkSweepGeneration::update_counters() {
  8594   if (UsePerfData) {
  8595     _space_counters->update_all();
  8596     _gen_counters->update_all();
  8597     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8598     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8599     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8600     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8601       "Wrong gc statistics type");
  8602     counters->update_counters(gc_stats_l);
  8606 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8607   if (UsePerfData) {
  8608     _space_counters->update_used(used);
  8609     _space_counters->update_capacity();
  8610     _gen_counters->update_all();
  8612     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8613     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8614     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8615     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8616       "Wrong gc statistics type");
  8617     counters->update_counters(gc_stats_l);
  8621 // The desired expansion delta is computed so that:
  8622 // . desired free percentage or greater is used
  8623 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8624   assert_locked_or_safepoint(Heap_lock);
  8626   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8628   // If incremental collection failed, we just want to expand
  8629   // to the limit.
  8630   if (incremental_collection_failed()) {
  8631     clear_incremental_collection_failed();
  8632     grow_to_reserved();
  8633     return;
  8636   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8638   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8639     "Wrong type of heap");
  8640   int prev_level = level() - 1;
  8641   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8642   Generation* prev_gen = gch->get_gen(prev_level);
  8643   assert(prev_gen->kind() == Generation::ASParNew,
  8644     "Wrong type of young generation");
  8645   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8646   size_t cur_eden = younger_gen->eden()->capacity();
  8647   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8648   size_t cur_promo = free();
  8649   size_policy->compute_tenured_generation_free_space(cur_promo,
  8650                                                        max_available(),
  8651                                                        cur_eden);
  8652   resize(cur_promo, size_policy->promo_size());
  8654   // Record the new size of the space in the cms generation
  8655   // that is available for promotions.  This is temporary.
  8656   // It should be the desired promo size.
  8657   size_policy->avg_cms_promo()->sample(free());
  8658   size_policy->avg_old_live()->sample(used());
  8660   if (UsePerfData) {
  8661     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8662     counters->update_cms_capacity_counter(capacity());
  8666 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8667   assert_locked_or_safepoint(Heap_lock);
  8668   assert_lock_strong(freelistLock());
  8669   HeapWord* old_end = _cmsSpace->end();
  8670   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8671   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8672   FreeChunk* chunk_at_end = find_chunk_at_end();
  8673   if (chunk_at_end == NULL) {
  8674     // No room to shrink
  8675     if (PrintGCDetails && Verbose) {
  8676       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8677         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8678         " chunk_at_end  " PTR_FORMAT,
  8679         old_end, unallocated_start, chunk_at_end);
  8681     return;
  8682   } else {
  8684     // Find the chunk at the end of the space and determine
  8685     // how much it can be shrunk.
  8686     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8687     size_t aligned_shrinkable_size_in_bytes =
  8688       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8689     assert(unallocated_start <= chunk_at_end->end(),
  8690       "Inconsistent chunk at end of space");
  8691     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8692     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8694     // Shrink the underlying space
  8695     _virtual_space.shrink_by(bytes);
  8696     if (PrintGCDetails && Verbose) {
  8697       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8698         " desired_bytes " SIZE_FORMAT
  8699         " shrinkable_size_in_bytes " SIZE_FORMAT
  8700         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8701         "  bytes  " SIZE_FORMAT,
  8702         desired_bytes, shrinkable_size_in_bytes,
  8703         aligned_shrinkable_size_in_bytes, bytes);
  8704       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8705         "  unallocated_start  " SIZE_FORMAT,
  8706         old_end, unallocated_start);
  8709     // If the space did shrink (shrinking is not guaranteed),
  8710     // shrink the chunk at the end by the appropriate amount.
  8711     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8712       size_t new_word_size =
  8713         heap_word_size(_virtual_space.committed_size());
  8715       // Have to remove the chunk from the dictionary because it is changing
  8716       // size and might be someplace elsewhere in the dictionary.
  8718       // Get the chunk at end, shrink it, and put it
  8719       // back.
  8720       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8721       size_t word_size_change = word_size_before - new_word_size;
  8722       size_t chunk_at_end_old_size = chunk_at_end->size();
  8723       assert(chunk_at_end_old_size >= word_size_change,
  8724         "Shrink is too large");
  8725       chunk_at_end->setSize(chunk_at_end_old_size -
  8726                           word_size_change);
  8727       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8728         word_size_change);
  8730       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8732       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8733       _bts->resize(new_word_size);  // resize the block offset shared array
  8734       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8735       _cmsSpace->assert_locked();
  8736       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8738       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8740       // update the space and generation capacity counters
  8741       if (UsePerfData) {
  8742         _space_counters->update_capacity();
  8743         _gen_counters->update_all();
  8746       if (Verbose && PrintGCDetails) {
  8747         size_t new_mem_size = _virtual_space.committed_size();
  8748         size_t old_mem_size = new_mem_size + bytes;
  8749         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  8750                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  8754     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  8755       "Inconsistency at end of space");
  8756     assert(chunk_at_end->end() == _cmsSpace->end(),
  8757       "Shrinking is inconsistent");
  8758     return;
  8762 // Transfer some number of overflown objects to usual marking
  8763 // stack. Return true if some objects were transferred.
  8764 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  8765   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  8766                     (size_t)ParGCDesiredObjsFromOverflowList);
  8768   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  8769   assert(_collector->overflow_list_is_empty() || res,
  8770          "If list is not empty, we should have taken something");
  8771   assert(!res || !_mark_stack->isEmpty(),
  8772          "If we took something, it should now be on our stack");
  8773   return res;
  8776 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  8777   size_t res = _sp->block_size_no_stall(addr, _collector);
  8778   assert(res != 0, "Should always be able to compute a size");
  8779   if (_sp->block_is_obj(addr)) {
  8780     if (_live_bit_map->isMarked(addr)) {
  8781       // It can't have been dead in a previous cycle
  8782       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  8783     } else {
  8784       _dead_bit_map->mark(addr);      // mark the dead object
  8787   return res;

mercurial