src/share/vm/code/dependencies.cpp

Wed, 25 Jun 2014 08:56:57 +0200

author
stefank
date
Wed, 25 Jun 2014 08:56:57 +0200
changeset 6985
c64b6b0c40c8
parent 6911
ce8f6bb717c9
child 7030
3c048df3ef8b
permissions
-rw-r--r--

8047326: Consolidate all CompiledIC::CompiledIC implementations and move it to compiledIC.cpp
Reviewed-by: vlivanov, ehelin

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciArrayKlass.hpp"
    27 #include "ci/ciEnv.hpp"
    28 #include "ci/ciKlass.hpp"
    29 #include "ci/ciMethod.hpp"
    30 #include "code/dependencies.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/handles.hpp"
    34 #include "runtime/handles.inline.hpp"
    35 #include "runtime/thread.inline.hpp"
    36 #include "utilities/copy.hpp"
    39 #ifdef ASSERT
    40 static bool must_be_in_vm() {
    41   Thread* thread = Thread::current();
    42   if (thread->is_Java_thread())
    43     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
    44   else
    45     return true;  //something like this: thread->is_VM_thread();
    46 }
    47 #endif //ASSERT
    49 void Dependencies::initialize(ciEnv* env) {
    50   Arena* arena = env->arena();
    51   _oop_recorder = env->oop_recorder();
    52   _log = env->log();
    53   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
    54   DEBUG_ONLY(_deps[end_marker] = NULL);
    55   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
    56     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
    57   }
    58   _content_bytes = NULL;
    59   _size_in_bytes = (size_t)-1;
    61   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
    62 }
    64 void Dependencies::assert_evol_method(ciMethod* m) {
    65   assert_common_1(evol_method, m);
    66 }
    68 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
    69   if (ctxk->is_array_klass()) {
    70     // As a special case, support this assertion on an array type,
    71     // which reduces to an assertion on its element type.
    72     // Note that this cannot be done with assertions that
    73     // relate to concreteness or abstractness.
    74     ciType* elemt = ctxk->as_array_klass()->base_element_type();
    75     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
    76     ctxk = elemt->as_instance_klass();
    77     //if (ctxk->is_final())  return;            // Ex:  String[][]
    78   }
    79   check_ctxk(ctxk);
    80   assert_common_1(leaf_type, ctxk);
    81 }
    83 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
    84   check_ctxk_abstract(ctxk);
    85   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
    86 }
    88 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
    89   check_ctxk_abstract(ctxk);
    90   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
    91 }
    93 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
    94   check_ctxk_concrete(ctxk);
    95   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
    96 }
    98 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
    99   check_ctxk(ctxk);
   100   assert_common_2(unique_concrete_method, ctxk, uniqm);
   101 }
   103 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
   104   check_ctxk(ctxk);
   105   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
   106 }
   108 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
   109   check_ctxk(ctxk);
   110   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
   111 }
   113 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
   114   check_ctxk(ctxk);
   115   assert_common_1(no_finalizable_subclasses, ctxk);
   116 }
   118 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
   119   check_ctxk(call_site->klass());
   120   assert_common_2(call_site_target_value, call_site, method_handle);
   121 }
   123 // Helper function.  If we are adding a new dep. under ctxk2,
   124 // try to find an old dep. under a broader* ctxk1.  If there is
   125 //
   126 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   127                                     int ctxk_i, ciKlass* ctxk2) {
   128   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
   129   if (ctxk2->is_subtype_of(ctxk1)) {
   130     return true;  // success, and no need to change
   131   } else if (ctxk1->is_subtype_of(ctxk2)) {
   132     // new context class fully subsumes previous one
   133     deps->at_put(ctxk_i, ctxk2);
   134     return true;
   135   } else {
   136     return false;
   137   }
   138 }
   140 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
   141   assert(dep_args(dept) == 1, "sanity");
   142   log_dependency(dept, x);
   143   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   145   // see if the same (or a similar) dep is already recorded
   146   if (note_dep_seen(dept, x)) {
   147     assert(deps->find(x) >= 0, "sanity");
   148   } else {
   149     deps->append(x);
   150   }
   151 }
   153 void Dependencies::assert_common_2(DepType dept,
   154                                    ciBaseObject* x0, ciBaseObject* x1) {
   155   assert(dep_args(dept) == 2, "sanity");
   156   log_dependency(dept, x0, x1);
   157   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   159   // see if the same (or a similar) dep is already recorded
   160   bool has_ctxk = has_explicit_context_arg(dept);
   161   if (has_ctxk) {
   162     assert(dep_context_arg(dept) == 0, "sanity");
   163     if (note_dep_seen(dept, x1)) {
   164       // look in this bucket for redundant assertions
   165       const int stride = 2;
   166       for (int i = deps->length(); (i -= stride) >= 0; ) {
   167         ciBaseObject* y1 = deps->at(i+1);
   168         if (x1 == y1) {  // same subject; check the context
   169           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
   170             return;
   171           }
   172         }
   173       }
   174     }
   175   } else {
   176     assert(dep_implicit_context_arg(dept) == 0, "sanity");
   177     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
   178       // look in this bucket for redundant assertions
   179       const int stride = 2;
   180       for (int i = deps->length(); (i -= stride) >= 0; ) {
   181         ciBaseObject* y0 = deps->at(i+0);
   182         ciBaseObject* y1 = deps->at(i+1);
   183         if (x0 == y0 && x1 == y1) {
   184           return;
   185         }
   186       }
   187     }
   188   }
   190   // append the assertion in the correct bucket:
   191   deps->append(x0);
   192   deps->append(x1);
   193 }
   195 void Dependencies::assert_common_3(DepType dept,
   196                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
   197   assert(dep_context_arg(dept) == 0, "sanity");
   198   assert(dep_args(dept) == 3, "sanity");
   199   log_dependency(dept, ctxk, x, x2);
   200   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   202   // try to normalize an unordered pair:
   203   bool swap = false;
   204   switch (dept) {
   205   case abstract_with_exclusive_concrete_subtypes_2:
   206     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
   207     break;
   208   case exclusive_concrete_methods_2:
   209     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
   210     break;
   211   }
   212   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
   214   // see if the same (or a similar) dep is already recorded
   215   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
   216     // look in this bucket for redundant assertions
   217     const int stride = 3;
   218     for (int i = deps->length(); (i -= stride) >= 0; ) {
   219       ciBaseObject* y  = deps->at(i+1);
   220       ciBaseObject* y2 = deps->at(i+2);
   221       if (x == y && x2 == y2) {  // same subjects; check the context
   222         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
   223           return;
   224         }
   225       }
   226     }
   227   }
   228   // append the assertion in the correct bucket:
   229   deps->append(ctxk);
   230   deps->append(x);
   231   deps->append(x2);
   232 }
   234 /// Support for encoding dependencies into an nmethod:
   236 void Dependencies::copy_to(nmethod* nm) {
   237   address beg = nm->dependencies_begin();
   238   address end = nm->dependencies_end();
   239   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
   240   Copy::disjoint_words((HeapWord*) content_bytes(),
   241                        (HeapWord*) beg,
   242                        size_in_bytes() / sizeof(HeapWord));
   243   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
   244 }
   246 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
   247   for (int i = 0; i < narg; i++) {
   248     int diff = p1[i]->ident() - p2[i]->ident();
   249     if (diff != 0)  return diff;
   250   }
   251   return 0;
   252 }
   253 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
   254 { return sort_dep(p1, p2, 1); }
   255 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
   256 { return sort_dep(p1, p2, 2); }
   257 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
   258 { return sort_dep(p1, p2, 3); }
   260 void Dependencies::sort_all_deps() {
   261   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   262     DepType dept = (DepType)deptv;
   263     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   264     if (deps->length() <= 1)  continue;
   265     switch (dep_args(dept)) {
   266     case 1: deps->sort(sort_dep_arg_1, 1); break;
   267     case 2: deps->sort(sort_dep_arg_2, 2); break;
   268     case 3: deps->sort(sort_dep_arg_3, 3); break;
   269     default: ShouldNotReachHere();
   270     }
   271   }
   272 }
   274 size_t Dependencies::estimate_size_in_bytes() {
   275   size_t est_size = 100;
   276   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   277     DepType dept = (DepType)deptv;
   278     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   279     est_size += deps->length()*2;  // tags and argument(s)
   280   }
   281   return est_size;
   282 }
   284 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
   285   switch (dept) {
   286   case abstract_with_exclusive_concrete_subtypes_2:
   287     return x->as_metadata()->as_klass();
   288   case unique_concrete_method:
   289   case exclusive_concrete_methods_2:
   290     return x->as_metadata()->as_method()->holder();
   291   }
   292   return NULL;  // let NULL be NULL
   293 }
   295 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
   296   assert(must_be_in_vm(), "raw oops here");
   297   switch (dept) {
   298   case abstract_with_exclusive_concrete_subtypes_2:
   299     assert(x->is_klass(), "sanity");
   300     return (Klass*) x;
   301   case unique_concrete_method:
   302   case exclusive_concrete_methods_2:
   303     assert(x->is_method(), "sanity");
   304     return ((Method*)x)->method_holder();
   305   }
   306   return NULL;  // let NULL be NULL
   307 }
   309 void Dependencies::encode_content_bytes() {
   310   sort_all_deps();
   312   // cast is safe, no deps can overflow INT_MAX
   313   CompressedWriteStream bytes((int)estimate_size_in_bytes());
   315   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   316     DepType dept = (DepType)deptv;
   317     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   318     if (deps->length() == 0)  continue;
   319     int stride = dep_args(dept);
   320     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
   321     assert(stride > 0, "sanity");
   322     for (int i = 0; i < deps->length(); i += stride) {
   323       jbyte code_byte = (jbyte)dept;
   324       int skipj = -1;
   325       if (ctxkj >= 0 && ctxkj+1 < stride) {
   326         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
   327         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
   328         if (ctxk == ctxk_encoded_as_null(dept, x)) {
   329           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
   330           code_byte |= default_context_type_bit;
   331         }
   332       }
   333       bytes.write_byte(code_byte);
   334       for (int j = 0; j < stride; j++) {
   335         if (j == skipj)  continue;
   336         ciBaseObject* v = deps->at(i+j);
   337         int idx;
   338         if (v->is_object()) {
   339           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
   340         } else {
   341           ciMetadata* meta = v->as_metadata();
   342           idx = _oop_recorder->find_index(meta->constant_encoding());
   343         }
   344         bytes.write_int(idx);
   345       }
   346     }
   347   }
   349   // write a sentinel byte to mark the end
   350   bytes.write_byte(end_marker);
   352   // round it out to a word boundary
   353   while (bytes.position() % sizeof(HeapWord) != 0) {
   354     bytes.write_byte(end_marker);
   355   }
   357   // check whether the dept byte encoding really works
   358   assert((jbyte)default_context_type_bit != 0, "byte overflow");
   360   _content_bytes = bytes.buffer();
   361   _size_in_bytes = bytes.position();
   362 }
   365 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
   366   "end_marker",
   367   "evol_method",
   368   "leaf_type",
   369   "abstract_with_unique_concrete_subtype",
   370   "abstract_with_no_concrete_subtype",
   371   "concrete_with_no_concrete_subtype",
   372   "unique_concrete_method",
   373   "abstract_with_exclusive_concrete_subtypes_2",
   374   "exclusive_concrete_methods_2",
   375   "no_finalizable_subclasses",
   376   "call_site_target_value"
   377 };
   379 int Dependencies::_dep_args[TYPE_LIMIT] = {
   380   -1,// end_marker
   381   1, // evol_method m
   382   1, // leaf_type ctxk
   383   2, // abstract_with_unique_concrete_subtype ctxk, k
   384   1, // abstract_with_no_concrete_subtype ctxk
   385   1, // concrete_with_no_concrete_subtype ctxk
   386   2, // unique_concrete_method ctxk, m
   387   3, // unique_concrete_subtypes_2 ctxk, k1, k2
   388   3, // unique_concrete_methods_2 ctxk, m1, m2
   389   1, // no_finalizable_subclasses ctxk
   390   2  // call_site_target_value call_site, method_handle
   391 };
   393 const char* Dependencies::dep_name(Dependencies::DepType dept) {
   394   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
   395   return _dep_name[dept];
   396 }
   398 int Dependencies::dep_args(Dependencies::DepType dept) {
   399   if (!dept_in_mask(dept, all_types))  return -1;
   400   return _dep_args[dept];
   401 }
   403 void Dependencies::check_valid_dependency_type(DepType dept) {
   404   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
   405 }
   407 // for the sake of the compiler log, print out current dependencies:
   408 void Dependencies::log_all_dependencies() {
   409   if (log() == NULL)  return;
   410   ciBaseObject* args[max_arg_count];
   411   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   412     DepType dept = (DepType)deptv;
   413     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   414     if (deps->length() == 0)  continue;
   415     int stride = dep_args(dept);
   416     for (int i = 0; i < deps->length(); i += stride) {
   417       for (int j = 0; j < stride; j++) {
   418         // flush out the identities before printing
   419         args[j] = deps->at(i+j);
   420       }
   421       write_dependency_to(log(), dept, stride, args);
   422     }
   423   }
   424 }
   426 void Dependencies::write_dependency_to(CompileLog* log,
   427                                        DepType dept,
   428                                        int nargs, DepArgument args[],
   429                                        Klass* witness) {
   430   if (log == NULL) {
   431     return;
   432   }
   433   ciEnv* env = ciEnv::current();
   434   ciBaseObject* ciargs[max_arg_count];
   435   assert(nargs <= max_arg_count, "oob");
   436   for (int j = 0; j < nargs; j++) {
   437     if (args[j].is_oop()) {
   438       ciargs[j] = env->get_object(args[j].oop_value());
   439     } else {
   440       ciargs[j] = env->get_metadata(args[j].metadata_value());
   441     }
   442   }
   443   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
   444 }
   446 void Dependencies::write_dependency_to(CompileLog* log,
   447                                        DepType dept,
   448                                        int nargs, ciBaseObject* args[],
   449                                        Klass* witness) {
   450   if (log == NULL)  return;
   451   assert(nargs <= max_arg_count, "oob");
   452   int argids[max_arg_count];
   453   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   454   int j;
   455   for (j = 0; j < nargs; j++) {
   456     if (args[j]->is_object()) {
   457       argids[j] = log->identify(args[j]->as_object());
   458     } else {
   459       argids[j] = log->identify(args[j]->as_metadata());
   460     }
   461   }
   462   if (witness != NULL) {
   463     log->begin_elem("dependency_failed");
   464   } else {
   465     log->begin_elem("dependency");
   466   }
   467   log->print(" type='%s'", dep_name(dept));
   468   if (ctxkj >= 0) {
   469     log->print(" ctxk='%d'", argids[ctxkj]);
   470   }
   471   // write remaining arguments, if any.
   472   for (j = 0; j < nargs; j++) {
   473     if (j == ctxkj)  continue;  // already logged
   474     if (j == 1) {
   475       log->print(  " x='%d'",    argids[j]);
   476     } else {
   477       log->print(" x%d='%d'", j, argids[j]);
   478     }
   479   }
   480   if (witness != NULL) {
   481     log->object("witness", witness);
   482     log->stamp();
   483   }
   484   log->end_elem();
   485 }
   487 void Dependencies::write_dependency_to(xmlStream* xtty,
   488                                        DepType dept,
   489                                        int nargs, DepArgument args[],
   490                                        Klass* witness) {
   491   if (xtty == NULL)  return;
   492   ttyLocker ttyl;
   493   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   494   if (witness != NULL) {
   495     xtty->begin_elem("dependency_failed");
   496   } else {
   497     xtty->begin_elem("dependency");
   498   }
   499   xtty->print(" type='%s'", dep_name(dept));
   500   if (ctxkj >= 0) {
   501     xtty->object("ctxk", args[ctxkj].metadata_value());
   502   }
   503   // write remaining arguments, if any.
   504   for (int j = 0; j < nargs; j++) {
   505     if (j == ctxkj)  continue;  // already logged
   506     if (j == 1) {
   507       if (args[j].is_oop()) {
   508         xtty->object("x", args[j].oop_value());
   509       } else {
   510         xtty->object("x", args[j].metadata_value());
   511       }
   512     } else {
   513       char xn[10]; sprintf(xn, "x%d", j);
   514       if (args[j].is_oop()) {
   515         xtty->object(xn, args[j].oop_value());
   516       } else {
   517         xtty->object(xn, args[j].metadata_value());
   518       }
   519     }
   520   }
   521   if (witness != NULL) {
   522     xtty->object("witness", witness);
   523     xtty->stamp();
   524   }
   525   xtty->end_elem();
   526 }
   528 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
   529                                     Klass* witness) {
   530   ResourceMark rm;
   531   ttyLocker ttyl;   // keep the following output all in one block
   532   tty->print_cr("%s of type %s",
   533                 (witness == NULL)? "Dependency": "Failed dependency",
   534                 dep_name(dept));
   535   // print arguments
   536   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   537   for (int j = 0; j < nargs; j++) {
   538     DepArgument arg = args[j];
   539     bool put_star = false;
   540     if (arg.is_null())  continue;
   541     const char* what;
   542     if (j == ctxkj) {
   543       assert(arg.is_metadata(), "must be");
   544       what = "context";
   545       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
   546     } else if (arg.is_method()) {
   547       what = "method ";
   548       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
   549     } else if (arg.is_klass()) {
   550       what = "class  ";
   551     } else {
   552       what = "object ";
   553     }
   554     tty->print("  %s = %s", what, (put_star? "*": ""));
   555     if (arg.is_klass())
   556       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
   557     else if (arg.is_method())
   558       ((Method*)arg.metadata_value())->print_value();
   559     else
   560       ShouldNotReachHere(); // Provide impl for this type.
   561     tty->cr();
   562   }
   563   if (witness != NULL) {
   564     bool put_star = !Dependencies::is_concrete_klass(witness);
   565     tty->print_cr("  witness = %s%s",
   566                   (put_star? "*": ""),
   567                   witness->external_name());
   568   }
   569 }
   571 void Dependencies::DepStream::log_dependency(Klass* witness) {
   572   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
   573   ResourceMark rm;
   574   int nargs = argument_count();
   575   DepArgument args[max_arg_count];
   576   for (int j = 0; j < nargs; j++) {
   577     if (type() == call_site_target_value) {
   578       args[j] = argument_oop(j);
   579     } else {
   580       args[j] = argument(j);
   581     }
   582   }
   583   if (_deps != NULL && _deps->log() != NULL) {
   584     Dependencies::write_dependency_to(_deps->log(),
   585                                       type(), nargs, args, witness);
   586   } else {
   587     Dependencies::write_dependency_to(xtty,
   588                                       type(), nargs, args, witness);
   589   }
   590 }
   592 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
   593   int nargs = argument_count();
   594   DepArgument args[max_arg_count];
   595   for (int j = 0; j < nargs; j++) {
   596     args[j] = argument(j);
   597   }
   598   Dependencies::print_dependency(type(), nargs, args, witness);
   599   if (verbose) {
   600     if (_code != NULL) {
   601       tty->print("  code: ");
   602       _code->print_value_on(tty);
   603       tty->cr();
   604     }
   605   }
   606 }
   609 /// Dependency stream support (decodes dependencies from an nmethod):
   611 #ifdef ASSERT
   612 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
   613   assert(must_be_in_vm(), "raw oops here");
   614   _byte_limit = byte_limit;
   615   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
   616   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
   617 }
   618 #endif //ASSERT
   620 bool Dependencies::DepStream::next() {
   621   assert(_type != end_marker, "already at end");
   622   if (_bytes.position() == 0 && _code != NULL
   623       && _code->dependencies_size() == 0) {
   624     // Method has no dependencies at all.
   625     return false;
   626   }
   627   int code_byte = (_bytes.read_byte() & 0xFF);
   628   if (code_byte == end_marker) {
   629     DEBUG_ONLY(_type = end_marker);
   630     return false;
   631   } else {
   632     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
   633     code_byte -= ctxk_bit;
   634     DepType dept = (DepType)code_byte;
   635     _type = dept;
   636     Dependencies::check_valid_dependency_type(dept);
   637     int stride = _dep_args[dept];
   638     assert(stride == dep_args(dept), "sanity");
   639     int skipj = -1;
   640     if (ctxk_bit != 0) {
   641       skipj = 0;  // currently the only context argument is at zero
   642       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
   643     }
   644     for (int j = 0; j < stride; j++) {
   645       _xi[j] = (j == skipj)? 0: _bytes.read_int();
   646     }
   647     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
   648     return true;
   649   }
   650 }
   652 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
   653   Metadata* o = NULL;
   654   if (_code != NULL) {
   655     o = _code->metadata_at(i);
   656   } else {
   657     o = _deps->oop_recorder()->metadata_at(i);
   658   }
   659   return o;
   660 }
   662 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
   663   return (_code != NULL)
   664          ? _code->oop_at(i)
   665     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
   666 }
   668 Metadata* Dependencies::DepStream::argument(int i) {
   669   Metadata* result = recorded_metadata_at(argument_index(i));
   671   if (result == NULL) { // Explicit context argument can be compressed
   672     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   673     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
   674       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
   675     }
   676   }
   678   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
   679   return result;
   680 }
   682 oop Dependencies::DepStream::argument_oop(int i) {
   683   oop result = recorded_oop_at(argument_index(i));
   684   assert(result == NULL || result->is_oop(), "must be");
   685   return result;
   686 }
   688 Klass* Dependencies::DepStream::context_type() {
   689   assert(must_be_in_vm(), "raw oops here");
   691   // Most dependencies have an explicit context type argument.
   692   {
   693     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   694     if (ctxkj >= 0) {
   695       Metadata* k = argument(ctxkj);
   696       assert(k != NULL && k->is_klass(), "type check");
   697       return (Klass*)k;
   698     }
   699   }
   701   // Some dependencies are using the klass of the first object
   702   // argument as implicit context type (e.g. call_site_target_value).
   703   {
   704     int ctxkj = dep_implicit_context_arg(type());
   705     if (ctxkj >= 0) {
   706       Klass* k = argument_oop(ctxkj)->klass();
   707       assert(k != NULL && k->is_klass(), "type check");
   708       return (Klass*) k;
   709     }
   710   }
   712   // And some dependencies don't have a context type at all,
   713   // e.g. evol_method.
   714   return NULL;
   715 }
   717 /// Checking dependencies:
   719 // This hierarchy walker inspects subtypes of a given type,
   720 // trying to find a "bad" class which breaks a dependency.
   721 // Such a class is called a "witness" to the broken dependency.
   722 // While searching around, we ignore "participants", which
   723 // are already known to the dependency.
   724 class ClassHierarchyWalker {
   725  public:
   726   enum { PARTICIPANT_LIMIT = 3 };
   728  private:
   729   // optional method descriptor to check for:
   730   Symbol* _name;
   731   Symbol* _signature;
   733   // special classes which are not allowed to be witnesses:
   734   Klass*    _participants[PARTICIPANT_LIMIT+1];
   735   int       _num_participants;
   737   // cache of method lookups
   738   Method* _found_methods[PARTICIPANT_LIMIT+1];
   740   // if non-zero, tells how many witnesses to convert to participants
   741   int       _record_witnesses;
   743   void initialize(Klass* participant) {
   744     _record_witnesses = 0;
   745     _participants[0]  = participant;
   746     _found_methods[0] = NULL;
   747     _num_participants = 0;
   748     if (participant != NULL) {
   749       // Terminating NULL.
   750       _participants[1] = NULL;
   751       _found_methods[1] = NULL;
   752       _num_participants = 1;
   753     }
   754   }
   756   void initialize_from_method(Method* m) {
   757     assert(m != NULL && m->is_method(), "sanity");
   758     _name      = m->name();
   759     _signature = m->signature();
   760   }
   762  public:
   763   // The walker is initialized to recognize certain methods and/or types
   764   // as friendly participants.
   765   ClassHierarchyWalker(Klass* participant, Method* m) {
   766     initialize_from_method(m);
   767     initialize(participant);
   768   }
   769   ClassHierarchyWalker(Method* m) {
   770     initialize_from_method(m);
   771     initialize(NULL);
   772   }
   773   ClassHierarchyWalker(Klass* participant = NULL) {
   774     _name      = NULL;
   775     _signature = NULL;
   776     initialize(participant);
   777   }
   779   // This is common code for two searches:  One for concrete subtypes,
   780   // the other for concrete method implementations and overrides.
   781   bool doing_subtype_search() {
   782     return _name == NULL;
   783   }
   785   int num_participants() { return _num_participants; }
   786   Klass* participant(int n) {
   787     assert((uint)n <= (uint)_num_participants, "oob");
   788     return _participants[n];
   789   }
   791   // Note:  If n==num_participants, returns NULL.
   792   Method* found_method(int n) {
   793     assert((uint)n <= (uint)_num_participants, "oob");
   794     Method* fm = _found_methods[n];
   795     assert(n == _num_participants || fm != NULL, "proper usage");
   796     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
   797     return fm;
   798   }
   800 #ifdef ASSERT
   801   // Assert that m is inherited into ctxk, without intervening overrides.
   802   // (May return true even if this is not true, in corner cases where we punt.)
   803   bool check_method_context(Klass* ctxk, Method* m) {
   804     if (m->method_holder() == ctxk)
   805       return true;  // Quick win.
   806     if (m->is_private())
   807       return false; // Quick lose.  Should not happen.
   808     if (!(m->is_public() || m->is_protected()))
   809       // The override story is complex when packages get involved.
   810       return true;  // Must punt the assertion to true.
   811     Klass* k = ctxk;
   812     Method* lm = k->lookup_method(m->name(), m->signature());
   813     if (lm == NULL && k->oop_is_instance()) {
   814       // It might be an interface method
   815         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
   816                                                                 m->signature());
   817     }
   818     if (lm == m)
   819       // Method m is inherited into ctxk.
   820       return true;
   821     if (lm != NULL) {
   822       if (!(lm->is_public() || lm->is_protected())) {
   823         // Method is [package-]private, so the override story is complex.
   824         return true;  // Must punt the assertion to true.
   825       }
   826       if (lm->is_static()) {
   827         // Static methods don't override non-static so punt
   828         return true;
   829       }
   830       if (   !Dependencies::is_concrete_method(lm)
   831           && !Dependencies::is_concrete_method(m)
   832           && lm->method_holder()->is_subtype_of(m->method_holder()))
   833         // Method m is overridden by lm, but both are non-concrete.
   834         return true;
   835     }
   836     ResourceMark rm;
   837     tty->print_cr("Dependency method not found in the associated context:");
   838     tty->print_cr("  context = %s", ctxk->external_name());
   839     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
   840     if (lm != NULL) {
   841       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
   842     }
   843     return false;
   844   }
   845 #endif
   847   void add_participant(Klass* participant) {
   848     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
   849     int np = _num_participants++;
   850     _participants[np] = participant;
   851     _participants[np+1] = NULL;
   852     _found_methods[np+1] = NULL;
   853   }
   855   void record_witnesses(int add) {
   856     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
   857     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
   858     _record_witnesses = add;
   859   }
   861   bool is_witness(Klass* k) {
   862     if (doing_subtype_search()) {
   863       return Dependencies::is_concrete_klass(k);
   864     } else {
   865       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
   866       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
   867       _found_methods[_num_participants] = m;
   868       // Note:  If add_participant(k) is called,
   869       // the method m will already be memoized for it.
   870       return true;
   871     }
   872   }
   874   bool is_participant(Klass* k) {
   875     if (k == _participants[0]) {
   876       return true;
   877     } else if (_num_participants <= 1) {
   878       return false;
   879     } else {
   880       return in_list(k, &_participants[1]);
   881     }
   882   }
   883   bool ignore_witness(Klass* witness) {
   884     if (_record_witnesses == 0) {
   885       return false;
   886     } else {
   887       --_record_witnesses;
   888       add_participant(witness);
   889       return true;
   890     }
   891   }
   892   static bool in_list(Klass* x, Klass** list) {
   893     for (int i = 0; ; i++) {
   894       Klass* y = list[i];
   895       if (y == NULL)  break;
   896       if (y == x)  return true;
   897     }
   898     return false;  // not in list
   899   }
   901  private:
   902   // the actual search method:
   903   Klass* find_witness_anywhere(Klass* context_type,
   904                                  bool participants_hide_witnesses,
   905                                  bool top_level_call = true);
   906   // the spot-checking version:
   907   Klass* find_witness_in(KlassDepChange& changes,
   908                          Klass* context_type,
   909                            bool participants_hide_witnesses);
   910  public:
   911   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
   912     assert(doing_subtype_search(), "must set up a subtype search");
   913     // When looking for unexpected concrete types,
   914     // do not look beneath expected ones.
   915     const bool participants_hide_witnesses = true;
   916     // CX > CC > C' is OK, even if C' is new.
   917     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
   918     if (changes != NULL) {
   919       return find_witness_in(*changes, context_type, participants_hide_witnesses);
   920     } else {
   921       return find_witness_anywhere(context_type, participants_hide_witnesses);
   922     }
   923   }
   924   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
   925     assert(!doing_subtype_search(), "must set up a method definer search");
   926     // When looking for unexpected concrete methods,
   927     // look beneath expected ones, to see if there are overrides.
   928     const bool participants_hide_witnesses = true;
   929     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
   930     if (changes != NULL) {
   931       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
   932     } else {
   933       return find_witness_anywhere(context_type, !participants_hide_witnesses);
   934     }
   935   }
   936 };
   938 #ifndef PRODUCT
   939 static int deps_find_witness_calls = 0;
   940 static int deps_find_witness_steps = 0;
   941 static int deps_find_witness_recursions = 0;
   942 static int deps_find_witness_singles = 0;
   943 static int deps_find_witness_print = 0; // set to -1 to force a final print
   944 static bool count_find_witness_calls() {
   945   if (TraceDependencies || LogCompilation) {
   946     int pcount = deps_find_witness_print + 1;
   947     bool final_stats      = (pcount == 0);
   948     bool initial_call     = (pcount == 1);
   949     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
   950     if (pcount < 0)  pcount = 1; // crude overflow protection
   951     deps_find_witness_print = pcount;
   952     if (VerifyDependencies && initial_call) {
   953       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
   954     }
   955     if (occasional_print || final_stats) {
   956       // Every now and then dump a little info about dependency searching.
   957       if (xtty != NULL) {
   958        ttyLocker ttyl;
   959        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
   960                    deps_find_witness_calls,
   961                    deps_find_witness_steps,
   962                    deps_find_witness_recursions,
   963                    deps_find_witness_singles);
   964       }
   965       if (final_stats || (TraceDependencies && WizardMode)) {
   966         ttyLocker ttyl;
   967         tty->print_cr("Dependency check (find_witness) "
   968                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
   969                       deps_find_witness_calls,
   970                       deps_find_witness_steps,
   971                       (double)deps_find_witness_steps / deps_find_witness_calls,
   972                       deps_find_witness_recursions,
   973                       deps_find_witness_singles);
   974       }
   975     }
   976     return true;
   977   }
   978   return false;
   979 }
   980 #else
   981 #define count_find_witness_calls() (0)
   982 #endif //PRODUCT
   985 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
   986                                                Klass* context_type,
   987                                                bool participants_hide_witnesses) {
   988   assert(changes.involves_context(context_type), "irrelevant dependency");
   989   Klass* new_type = changes.new_type();
   991   (void)count_find_witness_calls();
   992   NOT_PRODUCT(deps_find_witness_singles++);
   994   // Current thread must be in VM (not native mode, as in CI):
   995   assert(must_be_in_vm(), "raw oops here");
   996   // Must not move the class hierarchy during this check:
   997   assert_locked_or_safepoint(Compile_lock);
   999   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1000   if (nof_impls > 1) {
  1001     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1002     // %%% Until this is fixed more systematically, bail out.
  1003     // See corresponding comment in find_witness_anywhere.
  1004     return context_type;
  1007   assert(!is_participant(new_type), "only old classes are participants");
  1008   if (participants_hide_witnesses) {
  1009     // If the new type is a subtype of a participant, we are done.
  1010     for (int i = 0; i < num_participants(); i++) {
  1011       Klass* part = participant(i);
  1012       if (part == NULL)  continue;
  1013       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
  1014              "correct marking of participants, b/c new_type is unique");
  1015       if (changes.involves_context(part)) {
  1016         // new guy is protected from this check by previous participant
  1017         return NULL;
  1022   if (is_witness(new_type) &&
  1023       !ignore_witness(new_type)) {
  1024     return new_type;
  1027   return NULL;
  1031 // Walk hierarchy under a context type, looking for unexpected types.
  1032 // Do not report participant types, and recursively walk beneath
  1033 // them only if participants_hide_witnesses is false.
  1034 // If top_level_call is false, skip testing the context type,
  1035 // because the caller has already considered it.
  1036 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
  1037                                                      bool participants_hide_witnesses,
  1038                                                      bool top_level_call) {
  1039   // Current thread must be in VM (not native mode, as in CI):
  1040   assert(must_be_in_vm(), "raw oops here");
  1041   // Must not move the class hierarchy during this check:
  1042   assert_locked_or_safepoint(Compile_lock);
  1044   bool do_counts = count_find_witness_calls();
  1046   // Check the root of the sub-hierarchy first.
  1047   if (top_level_call) {
  1048     if (do_counts) {
  1049       NOT_PRODUCT(deps_find_witness_calls++);
  1050       NOT_PRODUCT(deps_find_witness_steps++);
  1052     if (is_participant(context_type)) {
  1053       if (participants_hide_witnesses)  return NULL;
  1054       // else fall through to search loop...
  1055     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
  1056       // The context is an abstract class or interface, to start with.
  1057       return context_type;
  1061   // Now we must check each implementor and each subclass.
  1062   // Use a short worklist to avoid blowing the stack.
  1063   // Each worklist entry is a *chain* of subklass siblings to process.
  1064   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
  1065   Klass* chains[CHAINMAX];
  1066   int    chaini = 0;  // index into worklist
  1067   Klass* chain;       // scratch variable
  1068 #define ADD_SUBCLASS_CHAIN(k)                     {  \
  1069     assert(chaini < CHAINMAX, "oob");                \
  1070     chain = InstanceKlass::cast(k)->subklass();      \
  1071     if (chain != NULL)  chains[chaini++] = chain;    }
  1073   // Look for non-abstract subclasses.
  1074   // (Note:  Interfaces do not have subclasses.)
  1075   ADD_SUBCLASS_CHAIN(context_type);
  1077   // If it is an interface, search its direct implementors.
  1078   // (Their subclasses are additional indirect implementors.
  1079   // See InstanceKlass::add_implementor.)
  1080   // (Note:  nof_implementors is always zero for non-interfaces.)
  1081   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1082   if (nof_impls > 1) {
  1083     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1084     // Here, I.m has 2 concrete implementations, but m appears unique
  1085     // as A.m, because the search misses B.m when checking C.
  1086     // The inherited method B.m was getting missed by the walker
  1087     // when interface 'I' was the starting point.
  1088     // %%% Until this is fixed more systematically, bail out.
  1089     // (Old CHA had the same limitation.)
  1090     return context_type;
  1092   if (nof_impls > 0) {
  1093     Klass* impl = InstanceKlass::cast(context_type)->implementor();
  1094     assert(impl != NULL, "just checking");
  1095     // If impl is the same as the context_type, then more than one
  1096     // implementor has seen. No exact info in this case.
  1097     if (impl == context_type) {
  1098       return context_type;  // report an inexact witness to this sad affair
  1100     if (do_counts)
  1101       { NOT_PRODUCT(deps_find_witness_steps++); }
  1102     if (is_participant(impl)) {
  1103       if (!participants_hide_witnesses) {
  1104         ADD_SUBCLASS_CHAIN(impl);
  1106     } else if (is_witness(impl) && !ignore_witness(impl)) {
  1107       return impl;
  1108     } else {
  1109       ADD_SUBCLASS_CHAIN(impl);
  1113   // Recursively process each non-trivial sibling chain.
  1114   while (chaini > 0) {
  1115     Klass* chain = chains[--chaini];
  1116     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
  1117       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
  1118       if (is_participant(sub)) {
  1119         if (participants_hide_witnesses)  continue;
  1120         // else fall through to process this guy's subclasses
  1121       } else if (is_witness(sub) && !ignore_witness(sub)) {
  1122         return sub;
  1124       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
  1125         // Fast path.  (Partially disabled if VerifyDependencies.)
  1126         ADD_SUBCLASS_CHAIN(sub);
  1127       } else {
  1128         // Worklist overflow.  Do a recursive call.  Should be rare.
  1129         // The recursive call will have its own worklist, of course.
  1130         // (Note that sub has already been tested, so that there is
  1131         // no need for the recursive call to re-test.  That's handy,
  1132         // since the recursive call sees sub as the context_type.)
  1133         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
  1134         Klass* witness = find_witness_anywhere(sub,
  1135                                                  participants_hide_witnesses,
  1136                                                  /*top_level_call=*/ false);
  1137         if (witness != NULL)  return witness;
  1142   // No witness found.  The dependency remains unbroken.
  1143   return NULL;
  1144 #undef ADD_SUBCLASS_CHAIN
  1148 bool Dependencies::is_concrete_klass(Klass* k) {
  1149   if (k->is_abstract())  return false;
  1150   // %%% We could treat classes which are concrete but
  1151   // have not yet been instantiated as virtually abstract.
  1152   // This would require a deoptimization barrier on first instantiation.
  1153   //if (k->is_not_instantiated())  return false;
  1154   return true;
  1157 bool Dependencies::is_concrete_method(Method* m) {
  1158   // Statics are irrelevant to virtual call sites.
  1159   if (m->is_static())  return false;
  1161   // We could also return false if m does not yet appear to be
  1162   // executed, if the VM version supports this distinction also.
  1163   // Default methods are considered "concrete" as well.
  1164   return !m->is_abstract() &&
  1165          !m->is_overpass(); // error functions aren't concrete
  1169 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
  1170   if (k->is_interface())  return NULL;
  1171   if (k->has_finalizer()) return k;
  1172   k = k->subklass();
  1173   while (k != NULL) {
  1174     Klass* result = find_finalizable_subclass(k);
  1175     if (result != NULL) return result;
  1176     k = k->next_sibling();
  1178   return NULL;
  1182 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
  1183   if (k->is_abstract())  return false;
  1184   // We could also return false if k does not yet appear to be
  1185   // instantiated, if the VM version supports this distinction also.
  1186   //if (k->is_not_instantiated())  return false;
  1187   return true;
  1190 bool Dependencies::is_concrete_method(ciMethod* m) {
  1191   // Statics are irrelevant to virtual call sites.
  1192   if (m->is_static())  return false;
  1194   // We could also return false if m does not yet appear to be
  1195   // executed, if the VM version supports this distinction also.
  1196   return !m->is_abstract();
  1200 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
  1201   return k->has_finalizable_subclass();
  1205 // Any use of the contents (bytecodes) of a method must be
  1206 // marked by an "evol_method" dependency, if those contents
  1207 // can change.  (Note: A method is always dependent on itself.)
  1208 Klass* Dependencies::check_evol_method(Method* m) {
  1209   assert(must_be_in_vm(), "raw oops here");
  1210   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
  1211   // Or is there a now a breakpoint?
  1212   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
  1213   if (m->is_old()
  1214       || m->number_of_breakpoints() > 0) {
  1215     return m->method_holder();
  1216   } else {
  1217     return NULL;
  1221 // This is a strong assertion:  It is that the given type
  1222 // has no subtypes whatever.  It is most useful for
  1223 // optimizing checks on reflected types or on array types.
  1224 // (Checks on types which are derived from real instances
  1225 // can be optimized more strongly than this, because we
  1226 // know that the checked type comes from a concrete type,
  1227 // and therefore we can disregard abstract types.)
  1228 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
  1229   assert(must_be_in_vm(), "raw oops here");
  1230   assert_locked_or_safepoint(Compile_lock);
  1231   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
  1232   Klass* sub = ctx->subklass();
  1233   if (sub != NULL) {
  1234     return sub;
  1235   } else if (ctx->nof_implementors() != 0) {
  1236     // if it is an interface, it must be unimplemented
  1237     // (if it is not an interface, nof_implementors is always zero)
  1238     Klass* impl = ctx->implementor();
  1239     assert(impl != NULL, "must be set");
  1240     return impl;
  1241   } else {
  1242     return NULL;
  1246 // Test the assertion that conck is the only concrete subtype* of ctxk.
  1247 // The type conck itself is allowed to have have further concrete subtypes.
  1248 // This allows the compiler to narrow occurrences of ctxk by conck,
  1249 // when dealing with the types of actual instances.
  1250 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
  1251                                                                    Klass* conck,
  1252                                                                    KlassDepChange* changes) {
  1253   ClassHierarchyWalker wf(conck);
  1254   return wf.find_witness_subtype(ctxk, changes);
  1257 // If a non-concrete class has no concrete subtypes, it is not (yet)
  1258 // instantiatable.  This can allow the compiler to make some paths go
  1259 // dead, if they are gated by a test of the type.
  1260 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
  1261                                                                KlassDepChange* changes) {
  1262   // Find any concrete subtype, with no participants:
  1263   ClassHierarchyWalker wf;
  1264   return wf.find_witness_subtype(ctxk, changes);
  1268 // If a concrete class has no concrete subtypes, it can always be
  1269 // exactly typed.  This allows the use of a cheaper type test.
  1270 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
  1271                                                                KlassDepChange* changes) {
  1272   // Find any concrete subtype, with only the ctxk as participant:
  1273   ClassHierarchyWalker wf(ctxk);
  1274   return wf.find_witness_subtype(ctxk, changes);
  1278 // Find the unique concrete proper subtype of ctxk, or NULL if there
  1279 // is more than one concrete proper subtype.  If there are no concrete
  1280 // proper subtypes, return ctxk itself, whether it is concrete or not.
  1281 // The returned subtype is allowed to have have further concrete subtypes.
  1282 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
  1283 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
  1284   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
  1285   wf.record_witnesses(1);          // Record one other witness when walking.
  1286   Klass* wit = wf.find_witness_subtype(ctxk);
  1287   if (wit != NULL)  return NULL;   // Too many witnesses.
  1288   Klass* conck = wf.participant(0);
  1289   if (conck == NULL) {
  1290 #ifndef PRODUCT
  1291     // Make sure the dependency mechanism will pass this discovery:
  1292     if (VerifyDependencies) {
  1293       // Turn off dependency tracing while actually testing deps.
  1294       FlagSetting fs(TraceDependencies, false);
  1295       if (!Dependencies::is_concrete_klass(ctxk)) {
  1296         guarantee(NULL ==
  1297                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1298                   "verify dep.");
  1299       } else {
  1300         guarantee(NULL ==
  1301                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
  1302                   "verify dep.");
  1305 #endif //PRODUCT
  1306     return ctxk;                   // Return ctxk as a flag for "no subtypes".
  1307   } else {
  1308 #ifndef PRODUCT
  1309     // Make sure the dependency mechanism will pass this discovery:
  1310     if (VerifyDependencies) {
  1311       // Turn off dependency tracing while actually testing deps.
  1312       FlagSetting fs(TraceDependencies, false);
  1313       if (!Dependencies::is_concrete_klass(ctxk)) {
  1314         guarantee(NULL == (void *)
  1315                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
  1316                   "verify dep.");
  1319 #endif //PRODUCT
  1320     return conck;
  1324 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
  1325 // except possibly for further subtypes of k[12] themselves.
  1326 // The context type must be abstract.  The types k1 and k2 are themselves
  1327 // allowed to have further concrete subtypes.
  1328 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
  1329                                                 Klass* ctxk,
  1330                                                 Klass* k1,
  1331                                                 Klass* k2,
  1332                                                 KlassDepChange* changes) {
  1333   ClassHierarchyWalker wf;
  1334   wf.add_participant(k1);
  1335   wf.add_participant(k2);
  1336   return wf.find_witness_subtype(ctxk, changes);
  1339 // Search ctxk for concrete implementations.  If there are klen or fewer,
  1340 // pack them into the given array and return the number.
  1341 // Otherwise, return -1, meaning the given array would overflow.
  1342 // (Note that a return of 0 means there are exactly no concrete subtypes.)
  1343 // In this search, if ctxk is concrete, it will be reported alone.
  1344 // For any type CC reported, no proper subtypes of CC will be reported.
  1345 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
  1346                                                    int klen,
  1347                                                    Klass* karray[]) {
  1348   ClassHierarchyWalker wf;
  1349   wf.record_witnesses(klen);
  1350   Klass* wit = wf.find_witness_subtype(ctxk);
  1351   if (wit != NULL)  return -1;  // Too many witnesses.
  1352   int num = wf.num_participants();
  1353   assert(num <= klen, "oob");
  1354   // Pack the result array with the good news.
  1355   for (int i = 0; i < num; i++)
  1356     karray[i] = wf.participant(i);
  1357 #ifndef PRODUCT
  1358   // Make sure the dependency mechanism will pass this discovery:
  1359   if (VerifyDependencies) {
  1360     // Turn off dependency tracing while actually testing deps.
  1361     FlagSetting fs(TraceDependencies, false);
  1362     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
  1363     case -1: // ctxk was itself concrete
  1364       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
  1365       break;
  1366     case 0:
  1367       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1368                 "verify dep.");
  1369       break;
  1370     case 1:
  1371       guarantee(NULL == (void *)
  1372                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
  1373                 "verify dep.");
  1374       break;
  1375     case 2:
  1376       guarantee(NULL == (void *)
  1377                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
  1378                                                                 karray[0],
  1379                                                                 karray[1]),
  1380                 "verify dep.");
  1381       break;
  1382     default:
  1383       ShouldNotReachHere();  // klen > 2 yet supported
  1386 #endif //PRODUCT
  1387   return num;
  1390 // If a class (or interface) has a unique concrete method uniqm, return NULL.
  1391 // Otherwise, return a class that contains an interfering method.
  1392 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
  1393                                                     KlassDepChange* changes) {
  1394   // Here is a missing optimization:  If uniqm->is_final(),
  1395   // we don't really need to search beneath it for overrides.
  1396   // This is probably not important, since we don't use dependencies
  1397   // to track final methods.  (They can't be "definalized".)
  1398   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
  1399   return wf.find_witness_definer(ctxk, changes);
  1402 // Find the set of all non-abstract methods under ctxk that match m.
  1403 // (The method m must be defined or inherited in ctxk.)
  1404 // Include m itself in the set, unless it is abstract.
  1405 // If this set has exactly one element, return that element.
  1406 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
  1407   ClassHierarchyWalker wf(m);
  1408   assert(wf.check_method_context(ctxk, m), "proper context");
  1409   wf.record_witnesses(1);
  1410   Klass* wit = wf.find_witness_definer(ctxk);
  1411   if (wit != NULL)  return NULL;  // Too many witnesses.
  1412   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
  1413   if (Dependencies::is_concrete_method(m)) {
  1414     if (fm == NULL) {
  1415       // It turns out that m was always the only implementation.
  1416       fm = m;
  1417     } else if (fm != m) {
  1418       // Two conflicting implementations after all.
  1419       // (This can happen if m is inherited into ctxk and fm overrides it.)
  1420       return NULL;
  1423 #ifndef PRODUCT
  1424   // Make sure the dependency mechanism will pass this discovery:
  1425   if (VerifyDependencies && fm != NULL) {
  1426     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
  1427               "verify dep.");
  1429 #endif //PRODUCT
  1430   return fm;
  1433 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
  1434                                                         Method* m1,
  1435                                                         Method* m2,
  1436                                                         KlassDepChange* changes) {
  1437   ClassHierarchyWalker wf(m1);
  1438   wf.add_participant(m1->method_holder());
  1439   wf.add_participant(m2->method_holder());
  1440   return wf.find_witness_definer(ctxk, changes);
  1443 // Find the set of all non-abstract methods under ctxk that match m[0].
  1444 // (The method m[0] must be defined or inherited in ctxk.)
  1445 // Include m itself in the set, unless it is abstract.
  1446 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
  1447 // (The length may be zero if no concrete methods are found anywhere.)
  1448 // If there are too many concrete methods to fit in marray, return -1.
  1449 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
  1450                                                   int mlen,
  1451                                                   Method* marray[]) {
  1452   Method* m0 = marray[0];
  1453   ClassHierarchyWalker wf(m0);
  1454   assert(wf.check_method_context(ctxk, m0), "proper context");
  1455   wf.record_witnesses(mlen);
  1456   bool participants_hide_witnesses = true;
  1457   Klass* wit = wf.find_witness_definer(ctxk);
  1458   if (wit != NULL)  return -1;  // Too many witnesses.
  1459   int num = wf.num_participants();
  1460   assert(num <= mlen, "oob");
  1461   // Keep track of whether m is also part of the result set.
  1462   int mfill = 0;
  1463   assert(marray[mfill] == m0, "sanity");
  1464   if (Dependencies::is_concrete_method(m0))
  1465     mfill++;  // keep m0 as marray[0], the first result
  1466   for (int i = 0; i < num; i++) {
  1467     Method* fm = wf.found_method(i);
  1468     if (fm == m0)  continue;  // Already put this guy in the list.
  1469     if (mfill == mlen) {
  1470       return -1;              // Oops.  Too many methods after all!
  1472     marray[mfill++] = fm;
  1474 #ifndef PRODUCT
  1475   // Make sure the dependency mechanism will pass this discovery:
  1476   if (VerifyDependencies) {
  1477     // Turn off dependency tracing while actually testing deps.
  1478     FlagSetting fs(TraceDependencies, false);
  1479     switch (mfill) {
  1480     case 1:
  1481       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
  1482                 "verify dep.");
  1483       break;
  1484     case 2:
  1485       guarantee(NULL == (void *)
  1486                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
  1487                 "verify dep.");
  1488       break;
  1489     default:
  1490       ShouldNotReachHere();  // mlen > 2 yet supported
  1493 #endif //PRODUCT
  1494   return mfill;
  1498 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
  1499   Klass* search_at = ctxk;
  1500   if (changes != NULL)
  1501     search_at = changes->new_type(); // just look at the new bit
  1502   return find_finalizable_subclass(search_at);
  1506 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
  1507   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
  1508   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
  1509   if (changes == NULL) {
  1510     // Validate all CallSites
  1511     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
  1512       return call_site->klass();  // assertion failed
  1513   } else {
  1514     // Validate the given CallSite
  1515     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
  1516       assert(method_handle != changes->method_handle(), "must be");
  1517       return call_site->klass();  // assertion failed
  1520   return NULL;  // assertion still valid
  1524 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
  1525   if (witness != NULL) {
  1526     if (TraceDependencies) {
  1527       print_dependency(witness, /*verbose=*/ true);
  1529     // The following is a no-op unless logging is enabled:
  1530     log_dependency(witness);
  1535 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
  1536   assert_locked_or_safepoint(Compile_lock);
  1537   Dependencies::check_valid_dependency_type(type());
  1539   Klass* witness = NULL;
  1540   switch (type()) {
  1541   case evol_method:
  1542     witness = check_evol_method(method_argument(0));
  1543     break;
  1544   case leaf_type:
  1545     witness = check_leaf_type(context_type());
  1546     break;
  1547   case abstract_with_unique_concrete_subtype:
  1548     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
  1549     break;
  1550   case abstract_with_no_concrete_subtype:
  1551     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
  1552     break;
  1553   case concrete_with_no_concrete_subtype:
  1554     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
  1555     break;
  1556   case unique_concrete_method:
  1557     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
  1558     break;
  1559   case abstract_with_exclusive_concrete_subtypes_2:
  1560     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
  1561     break;
  1562   case exclusive_concrete_methods_2:
  1563     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
  1564     break;
  1565   case no_finalizable_subclasses:
  1566     witness = check_has_no_finalizable_subclasses(context_type(), changes);
  1567     break;
  1568   default:
  1569     witness = NULL;
  1570     break;
  1572   trace_and_log_witness(witness);
  1573   return witness;
  1577 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
  1578   assert_locked_or_safepoint(Compile_lock);
  1579   Dependencies::check_valid_dependency_type(type());
  1581   Klass* witness = NULL;
  1582   switch (type()) {
  1583   case call_site_target_value:
  1584     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
  1585     break;
  1586   default:
  1587     witness = NULL;
  1588     break;
  1590   trace_and_log_witness(witness);
  1591   return witness;
  1595 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
  1596   // Handle klass dependency
  1597   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
  1598     return check_klass_dependency(changes.as_klass_change());
  1600   // Handle CallSite dependency
  1601   if (changes.is_call_site_change())
  1602     return check_call_site_dependency(changes.as_call_site_change());
  1604   // irrelevant dependency; skip it
  1605   return NULL;
  1609 void DepChange::print() {
  1610   int nsup = 0, nint = 0;
  1611   for (ContextStream str(*this); str.next(); ) {
  1612     Klass* k = str.klass();
  1613     switch (str.change_type()) {
  1614     case Change_new_type:
  1615       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
  1616       break;
  1617     case Change_new_sub:
  1618       if (!WizardMode) {
  1619         ++nsup;
  1620       } else {
  1621         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
  1623       break;
  1624     case Change_new_impl:
  1625       if (!WizardMode) {
  1626         ++nint;
  1627       } else {
  1628         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
  1630       break;
  1633   if (nsup + nint != 0) {
  1634     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
  1638 void DepChange::ContextStream::start() {
  1639   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
  1640   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
  1641   _klass = new_type;
  1642   _ti_base = NULL;
  1643   _ti_index = 0;
  1644   _ti_limit = 0;
  1647 bool DepChange::ContextStream::next() {
  1648   switch (_change_type) {
  1649   case Start_Klass:             // initial state; _klass is the new type
  1650     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
  1651     _ti_index = 0;
  1652     _change_type = Change_new_type;
  1653     return true;
  1654   case Change_new_type:
  1655     // fall through:
  1656     _change_type = Change_new_sub;
  1657   case Change_new_sub:
  1658     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
  1660       _klass = InstanceKlass::cast(_klass)->super();
  1661       if (_klass != NULL) {
  1662         return true;
  1665     // else set up _ti_limit and fall through:
  1666     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
  1667     _change_type = Change_new_impl;
  1668   case Change_new_impl:
  1669     if (_ti_index < _ti_limit) {
  1670       _klass = _ti_base->at(_ti_index++);
  1671       return true;
  1673     // fall through:
  1674     _change_type = NO_CHANGE;  // iterator is exhausted
  1675   case NO_CHANGE:
  1676     break;
  1677   default:
  1678     ShouldNotReachHere();
  1680   return false;
  1683 void KlassDepChange::initialize() {
  1684   // entire transaction must be under this lock:
  1685   assert_lock_strong(Compile_lock);
  1687   // Mark all dependee and all its superclasses
  1688   // Mark transitive interfaces
  1689   for (ContextStream str(*this); str.next(); ) {
  1690     Klass* d = str.klass();
  1691     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
  1692     InstanceKlass::cast(d)->set_is_marked_dependent(true);
  1696 KlassDepChange::~KlassDepChange() {
  1697   // Unmark all dependee and all its superclasses
  1698   // Unmark transitive interfaces
  1699   for (ContextStream str(*this); str.next(); ) {
  1700     Klass* d = str.klass();
  1701     InstanceKlass::cast(d)->set_is_marked_dependent(false);
  1705 bool KlassDepChange::involves_context(Klass* k) {
  1706   if (k == NULL || !k->oop_is_instance()) {
  1707     return false;
  1709   InstanceKlass* ik = InstanceKlass::cast(k);
  1710   bool is_contained = ik->is_marked_dependent();
  1711   assert(is_contained == new_type()->is_subtype_of(k),
  1712          "correct marking of potential context types");
  1713   return is_contained;
  1716 #ifndef PRODUCT
  1717 void Dependencies::print_statistics() {
  1718   if (deps_find_witness_print != 0) {
  1719     // Call one final time, to flush out the data.
  1720     deps_find_witness_print = -1;
  1721     count_find_witness_calls();
  1724 #endif

mercurial