src/share/vm/code/compiledIC.cpp

Wed, 25 Jun 2014 08:56:57 +0200

author
stefank
date
Wed, 25 Jun 2014 08:56:57 +0200
changeset 6985
c64b6b0c40c8
parent 6680
78bbf4d43a14
child 6991
882004b9e7e1
permissions
-rw-r--r--

8047326: Consolidate all CompiledIC::CompiledIC implementations and move it to compiledIC.cpp
Reviewed-by: vlivanov, ehelin

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/metadataFactory.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/icache.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "runtime/stubRoutines.hpp"
    42 #include "utilities/events.hpp"
    45 // Every time a compiled IC is changed or its type is being accessed,
    46 // either the CompiledIC_lock must be set or we must be at a safe point.
    48 //-----------------------------------------------------------------------------
    49 // Low-level access to an inline cache. Private, since they might not be
    50 // MT-safe to use.
    52 void* CompiledIC::cached_value() const {
    53   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    54   assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
    56   if (!is_in_transition_state()) {
    57     void* data = (void*)_value->data();
    58     // If we let the metadata value here be initialized to zero...
    59     assert(data != NULL || Universe::non_oop_word() == NULL,
    60            "no raw nulls in CompiledIC metadatas, because of patching races");
    61     return (data == (void*)Universe::non_oop_word()) ? NULL : data;
    62   } else {
    63     return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
    64   }
    65 }
    68 void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
    69   assert(entry_point != NULL, "must set legal entry point");
    70   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    71   assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
    72   assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
    74   assert(!is_icholder || is_icholder_entry(entry_point), "must be");
    76   // Don't use ic_destination for this test since that forwards
    77   // through ICBuffer instead of returning the actual current state of
    78   // the CompiledIC.
    79   if (is_icholder_entry(_ic_call->destination())) {
    80     // When patching for the ICStub case the cached value isn't
    81     // overwritten until the ICStub copied into the CompiledIC during
    82     // the next safepoint.  Make sure that the CompiledICHolder* is
    83     // marked for release at this point since it won't be identifiable
    84     // once the entry point is overwritten.
    85     InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
    86   }
    88   if (TraceCompiledIC) {
    89     tty->print("  ");
    90     print_compiled_ic();
    91     tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
    92     if (!is_optimized()) {
    93       tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
    94     }
    95     if (is_icstub) {
    96       tty->print(" (icstub)");
    97     }
    98     tty->cr();
    99   }
   101   {
   102   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   103 #ifdef ASSERT
   104   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
   105   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   106 #endif
   107   _ic_call->set_destination_mt_safe(entry_point);
   108 }
   110   if (is_optimized() || is_icstub) {
   111     // Optimized call sites don't have a cache value and ICStub call
   112     // sites only change the entry point.  Changing the value in that
   113     // case could lead to MT safety issues.
   114     assert(cache == NULL, "must be null");
   115     return;
   116   }
   118   if (cache == NULL)  cache = (void*)Universe::non_oop_word();
   120   _value->set_data((intptr_t)cache);
   121 }
   124 void CompiledIC::set_ic_destination(ICStub* stub) {
   125   internal_set_ic_destination(stub->code_begin(), true, NULL, false);
   126 }
   130 address CompiledIC::ic_destination() const {
   131  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   132  if (!is_in_transition_state()) {
   133    return _ic_call->destination();
   134  } else {
   135    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
   136  }
   137 }
   140 bool CompiledIC::is_in_transition_state() const {
   141   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   142   return InlineCacheBuffer::contains(_ic_call->destination());
   143 }
   146 bool CompiledIC::is_icholder_call() const {
   147   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   148   return !_is_optimized && is_icholder_entry(ic_destination());
   149 }
   151 // Returns native address of 'call' instruction in inline-cache. Used by
   152 // the InlineCacheBuffer when it needs to find the stub.
   153 address CompiledIC::stub_address() const {
   154   assert(is_in_transition_state(), "should only be called when we are in a transition state");
   155   return _ic_call->destination();
   156 }
   159 //-----------------------------------------------------------------------------
   160 // High-level access to an inline cache. Guaranteed to be MT-safe.
   162 CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
   163   : _ic_call(call)
   164 {
   165   address ic_call = call->instruction_address();
   167   assert(ic_call != NULL, "ic_call address must be set");
   168   assert(nm != NULL, "must pass nmethod");
   169   assert(nm->contains(ic_call), "must be in nmethod");
   171   // Search for the ic_call at the given address.
   172   RelocIterator iter(nm, ic_call, ic_call+1);
   173   bool ret = iter.next();
   174   assert(ret == true, "relocInfo must exist at this address");
   175   assert(iter.addr() == ic_call, "must find ic_call");
   176   if (iter.type() == relocInfo::virtual_call_type) {
   177     virtual_call_Relocation* r = iter.virtual_call_reloc();
   178     _is_optimized = false;
   179     _value = nativeMovConstReg_at(r->cached_value());
   180   } else {
   181     assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   182     _is_optimized = true;
   183     _value = NULL;
   184   }
   185 }
   187 bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
   188   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   189   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
   190   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
   192   address entry;
   193   if (call_info->call_kind() == CallInfo::itable_call) {
   194     assert(bytecode == Bytecodes::_invokeinterface, "");
   195     int itable_index = call_info->itable_index();
   196     entry = VtableStubs::find_itable_stub(itable_index);
   197     if (entry == false) {
   198       return false;
   199     }
   200 #ifdef ASSERT
   201     int index = call_info->resolved_method()->itable_index();
   202     assert(index == itable_index, "CallInfo pre-computes this");
   203 #endif //ASSERT
   204     InstanceKlass* k = call_info->resolved_method()->method_holder();
   205     assert(k->verify_itable_index(itable_index), "sanity check");
   206     InlineCacheBuffer::create_transition_stub(this, k, entry);
   207   } else {
   208     assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
   209     // Can be different than selected_method->vtable_index(), due to package-private etc.
   210     int vtable_index = call_info->vtable_index();
   211     assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
   212     entry = VtableStubs::find_vtable_stub(vtable_index);
   213     if (entry == NULL) {
   214       return false;
   215     }
   216     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   217   }
   219   if (TraceICs) {
   220     ResourceMark rm;
   221     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
   222                    p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
   223   }
   225   // We can't check this anymore. With lazy deopt we could have already
   226   // cleaned this IC entry before we even return. This is possible if
   227   // we ran out of space in the inline cache buffer trying to do the
   228   // set_next and we safepointed to free up space. This is a benign
   229   // race because the IC entry was complete when we safepointed so
   230   // cleaning it immediately is harmless.
   231   // assert(is_megamorphic(), "sanity check");
   232   return true;
   233 }
   236 // true if destination is megamorphic stub
   237 bool CompiledIC::is_megamorphic() const {
   238   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   239   assert(!is_optimized(), "an optimized call cannot be megamorphic");
   241   // Cannot rely on cached_value. It is either an interface or a method.
   242   return VtableStubs::is_entry_point(ic_destination());
   243 }
   245 bool CompiledIC::is_call_to_compiled() const {
   246   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   248   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
   249   // method is guaranteed to still exist, since we only remove methods after all inline caches
   250   // has been cleaned up
   251   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   252   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
   253   // Check that the cached_value is a klass for non-optimized monomorphic calls
   254   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
   255   // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
   256 #ifdef ASSERT
   257   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
   258   bool is_c1_method = caller->is_compiled_by_c1();
   259   assert( is_c1_method ||
   260          !is_monomorphic ||
   261          is_optimized() ||
   262          (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
   263 #endif // ASSERT
   264   return is_monomorphic;
   265 }
   268 bool CompiledIC::is_call_to_interpreted() const {
   269   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   270   // Call to interpreter if destination is either calling to a stub (if it
   271   // is optimized), or calling to an I2C blob
   272   bool is_call_to_interpreted = false;
   273   if (!is_optimized()) {
   274     // must use unsafe because the destination can be a zombie (and we're cleaning)
   275     // and the print_compiled_ic code wants to know if site (in the non-zombie)
   276     // is to the interpreter.
   277     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   278     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
   279     assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
   280   } else {
   281     // Check if we are calling into our own codeblob (i.e., to a stub)
   282     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
   283     address dest = ic_destination();
   284 #ifdef ASSERT
   285     {
   286       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
   287       assert(!db->is_adapter_blob(), "must use stub!");
   288     }
   289 #endif /* ASSERT */
   290     is_call_to_interpreted = cb->contains(dest);
   291   }
   292   return is_call_to_interpreted;
   293 }
   296 void CompiledIC::set_to_clean() {
   297   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
   298   if (TraceInlineCacheClearing || TraceICs) {
   299     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
   300     print();
   301   }
   303   address entry;
   304   if (is_optimized()) {
   305     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
   306   } else {
   307     entry = SharedRuntime::get_resolve_virtual_call_stub();
   308   }
   310   // A zombie transition will always be safe, since the metadata has already been set to NULL, so
   311   // we only need to patch the destination
   312   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
   314   if (safe_transition) {
   315     // Kill any leftover stub we might have too
   316     if (is_in_transition_state()) {
   317       ICStub* old_stub = ICStub_from_destination_address(stub_address());
   318       old_stub->clear();
   319     }
   320     if (is_optimized()) {
   321     set_ic_destination(entry);
   322   } else {
   323       set_ic_destination_and_value(entry, (void*)NULL);
   324     }
   325   } else {
   326     // Unsafe transition - create stub.
   327     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   328   }
   329   // We can't check this anymore. With lazy deopt we could have already
   330   // cleaned this IC entry before we even return. This is possible if
   331   // we ran out of space in the inline cache buffer trying to do the
   332   // set_next and we safepointed to free up space. This is a benign
   333   // race because the IC entry was complete when we safepointed so
   334   // cleaning it immediately is harmless.
   335   // assert(is_clean(), "sanity check");
   336 }
   339 bool CompiledIC::is_clean() const {
   340   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   341   bool is_clean = false;
   342   address dest = ic_destination();
   343   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
   344              dest == SharedRuntime::get_resolve_virtual_call_stub();
   345   assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
   346   return is_clean;
   347 }
   350 void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
   351   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   352   // Updating a cache to the wrong entry can cause bugs that are very hard
   353   // to track down - if cache entry gets invalid - we just clean it. In
   354   // this way it is always the same code path that is responsible for
   355   // updating and resolving an inline cache
   356   //
   357   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
   358   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
   359   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
   360   //
   361   // In both of these cases the only thing being modifed is the jump/call target and these
   362   // transitions are mt_safe
   364   Thread *thread = Thread::current();
   365   if (info.to_interpreter()) {
   366     // Call to interpreter
   367     if (info.is_optimized() && is_optimized()) {
   368        assert(is_clean(), "unsafe IC path");
   369        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   370       // the call analysis (callee structure) specifies that the call is optimized
   371       // (either because of CHA or the static target is final)
   372       // At code generation time, this call has been emitted as static call
   373       // Call via stub
   374       assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
   375       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
   376       methodHandle method (thread, (Method*)info.cached_metadata());
   377       csc->set_to_interpreted(method, info.entry());
   378       if (TraceICs) {
   379          ResourceMark rm(thread);
   380          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
   381            p2i(instruction_address()),
   382            method->print_value_string());
   383       }
   384     } else {
   385       // Call via method-klass-holder
   386       InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
   387       if (TraceICs) {
   388          ResourceMark rm(thread);
   389          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
   390       }
   391     }
   392   } else {
   393     // Call to compiled code
   394     bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
   395 #ifdef ASSERT
   396     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
   397     assert (cb->is_nmethod(), "must be compiled!");
   398 #endif /* ASSERT */
   400     // This is MT safe if we come from a clean-cache and go through a
   401     // non-verified entry point
   402     bool safe = SafepointSynchronize::is_at_safepoint() ||
   403                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
   405     if (!safe) {
   406       InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
   407     } else {
   408       if (is_optimized()) {
   409       set_ic_destination(info.entry());
   410       } else {
   411         set_ic_destination_and_value(info.entry(), info.cached_metadata());
   412       }
   413     }
   415     if (TraceICs) {
   416       ResourceMark rm(thread);
   417       assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
   418       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
   419         p2i(instruction_address()),
   420         ((Klass*)info.cached_metadata())->print_value_string(),
   421         (safe) ? "" : "via stub");
   422     }
   423   }
   424   // We can't check this anymore. With lazy deopt we could have already
   425   // cleaned this IC entry before we even return. This is possible if
   426   // we ran out of space in the inline cache buffer trying to do the
   427   // set_next and we safepointed to free up space. This is a benign
   428   // race because the IC entry was complete when we safepointed so
   429   // cleaning it immediately is harmless.
   430   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   431 }
   434 // is_optimized: Compiler has generated an optimized call (i.e., no inline
   435 // cache) static_bound: The call can be static bound (i.e, no need to use
   436 // inline cache)
   437 void CompiledIC::compute_monomorphic_entry(methodHandle method,
   438                                            KlassHandle receiver_klass,
   439                                            bool is_optimized,
   440                                            bool static_bound,
   441                                            CompiledICInfo& info,
   442                                            TRAPS) {
   443   nmethod* method_code = method->code();
   444   address entry = NULL;
   445   if (method_code != NULL && method_code->is_in_use()) {
   446     // Call to compiled code
   447     if (static_bound || is_optimized) {
   448       entry      = method_code->verified_entry_point();
   449     } else {
   450       entry      = method_code->entry_point();
   451     }
   452   }
   453   if (entry != NULL) {
   454     // Call to compiled code
   455     info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
   456   } else {
   457     // Note: the following problem exists with Compiler1:
   458     //   - at compile time we may or may not know if the destination is final
   459     //   - if we know that the destination is final, we will emit an optimized
   460     //     virtual call (no inline cache), and need a Method* to make a call
   461     //     to the interpreter
   462     //   - if we do not know if the destination is final, we emit a standard
   463     //     virtual call, and use CompiledICHolder to call interpreted code
   464     //     (no static call stub has been generated)
   465     //     However in that case we will now notice it is static_bound
   466     //     and convert the call into what looks to be an optimized
   467     //     virtual call. This causes problems in verifying the IC because
   468     //     it look vanilla but is optimized. Code in is_call_to_interpreted
   469     //     is aware of this and weakens its asserts.
   471     // static_bound should imply is_optimized -- otherwise we have a
   472     // performance bug (statically-bindable method is called via
   473     // dynamically-dispatched call note: the reverse implication isn't
   474     // necessarily true -- the call may have been optimized based on compiler
   475     // analysis (static_bound is only based on "final" etc.)
   476 #ifdef COMPILER2
   477 #ifdef TIERED
   478 #if defined(ASSERT)
   479     // can't check the assert because we don't have the CompiledIC with which to
   480     // find the address if the call instruction.
   481     //
   482     // CodeBlob* cb = find_blob_unsafe(instruction_address());
   483     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
   484 #endif // ASSERT
   485 #else
   486     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
   487 #endif // TIERED
   488 #endif // COMPILER2
   489     if (is_optimized) {
   490       // Use stub entry
   491       info.set_interpreter_entry(method()->get_c2i_entry(), method());
   492     } else {
   493       // Use icholder entry
   494       CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
   495       info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
   496     }
   497   }
   498   assert(info.is_optimized() == is_optimized, "must agree");
   499 }
   502 bool CompiledIC::is_icholder_entry(address entry) {
   503   CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
   504   return (cb != NULL && cb->is_adapter_blob());
   505 }
   507 // ----------------------------------------------------------------------------
   509 void CompiledStaticCall::set_to_clean() {
   510   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   511   // Reset call site
   512   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   513 #ifdef ASSERT
   514   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
   515   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   516 #endif
   517   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
   519   // Do not reset stub here:  It is too expensive to call find_stub.
   520   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
   521   // both the call and its stub.
   522 }
   525 bool CompiledStaticCall::is_clean() const {
   526   return destination() == SharedRuntime::get_resolve_static_call_stub();
   527 }
   529 bool CompiledStaticCall::is_call_to_compiled() const {
   530   return CodeCache::contains(destination());
   531 }
   534 bool CompiledStaticCall::is_call_to_interpreted() const {
   535   // It is a call to interpreted, if it calls to a stub. Hence, the destination
   536   // must be in the stub part of the nmethod that contains the call
   537   nmethod* nm = CodeCache::find_nmethod(instruction_address());
   538   return nm->stub_contains(destination());
   539 }
   541 void CompiledStaticCall::set(const StaticCallInfo& info) {
   542   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   543   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   544   // Updating a cache to the wrong entry can cause bugs that are very hard
   545   // to track down - if cache entry gets invalid - we just clean it. In
   546   // this way it is always the same code path that is responsible for
   547   // updating and resolving an inline cache
   548   assert(is_clean(), "do not update a call entry - use clean");
   550   if (info._to_interpreter) {
   551     // Call to interpreted code
   552     set_to_interpreted(info.callee(), info.entry());
   553   } else {
   554     if (TraceICs) {
   555       ResourceMark rm;
   556       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
   557                     p2i(instruction_address()),
   558                     p2i(info.entry()));
   559     }
   560     // Call to compiled code
   561     assert (CodeCache::contains(info.entry()), "wrong entry point");
   562     set_destination_mt_safe(info.entry());
   563   }
   564 }
   567 // Compute settings for a CompiledStaticCall. Since we might have to set
   568 // the stub when calling to the interpreter, we need to return arguments.
   569 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
   570   nmethod* m_code = m->code();
   571   info._callee = m;
   572   if (m_code != NULL && m_code->is_in_use()) {
   573     info._to_interpreter = false;
   574     info._entry  = m_code->verified_entry_point();
   575   } else {
   576     // Callee is interpreted code.  In any case entering the interpreter
   577     // puts a converter-frame on the stack to save arguments.
   578     info._to_interpreter = true;
   579     info._entry      = m()->get_c2i_entry();
   580   }
   581 }
   583 address CompiledStaticCall::find_stub() {
   584   // Find reloc. information containing this call-site
   585   RelocIterator iter((nmethod*)NULL, instruction_address());
   586   while (iter.next()) {
   587     if (iter.addr() == instruction_address()) {
   588       switch(iter.type()) {
   589         case relocInfo::static_call_type:
   590           return iter.static_call_reloc()->static_stub();
   591         // We check here for opt_virtual_call_type, since we reuse the code
   592         // from the CompiledIC implementation
   593         case relocInfo::opt_virtual_call_type:
   594           return iter.opt_virtual_call_reloc()->static_stub();
   595         case relocInfo::poll_type:
   596         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
   597         default:
   598           ShouldNotReachHere();
   599       }
   600     }
   601   }
   602   return NULL;
   603 }
   606 //-----------------------------------------------------------------------------
   607 // Non-product mode code
   608 #ifndef PRODUCT
   610 void CompiledIC::verify() {
   611   // make sure code pattern is actually a call imm32 instruction
   612   _ic_call->verify();
   613   if (os::is_MP()) {
   614     _ic_call->verify_alignment();
   615   }
   616   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
   617           || is_optimized() || is_megamorphic(), "sanity check");
   618 }
   620 void CompiledIC::print() {
   621   print_compiled_ic();
   622   tty->cr();
   623 }
   625 void CompiledIC::print_compiled_ic() {
   626   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
   627              p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
   628 }
   630 void CompiledStaticCall::print() {
   631   tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
   632   if (is_clean()) {
   633     tty->print("clean");
   634   } else if (is_call_to_compiled()) {
   635     tty->print("compiled");
   636   } else if (is_call_to_interpreted()) {
   637     tty->print("interpreted");
   638   }
   639   tty->cr();
   640 }
   642 #endif // !PRODUCT

mercurial