src/share/vm/utilities/taskqueue.hpp

Tue, 19 Aug 2014 08:34:25 -0400

author
zgu
date
Tue, 19 Aug 2014 08:34:25 -0400
changeset 7078
c6211b707068
parent 6911
ce8f6bb717c9
child 7535
7ae4e26cb1e0
child 8611
a753c8401458
permissions
-rw-r--r--

8055007: NMT2: emptyStack missing in minimal build
Summary: Refactored emptyStack to a static member of NativeCallStack, which is accessible in minimal build.
Reviewed-by: coleenp, dholmes

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "runtime/orderAccess.inline.hpp"
    32 #include "utilities/stack.hpp"
    34 // Simple TaskQueue stats that are collected by default in debug builds.
    36 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    37 #define TASKQUEUE_STATS 1
    38 #elif !defined(TASKQUEUE_STATS)
    39 #define TASKQUEUE_STATS 0
    40 #endif
    42 #if TASKQUEUE_STATS
    43 #define TASKQUEUE_STATS_ONLY(code) code
    44 #else
    45 #define TASKQUEUE_STATS_ONLY(code)
    46 #endif // TASKQUEUE_STATS
    48 #if TASKQUEUE_STATS
    49 class TaskQueueStats {
    50 public:
    51   enum StatId {
    52     push,             // number of taskqueue pushes
    53     pop,              // number of taskqueue pops
    54     pop_slow,         // subset of taskqueue pops that were done slow-path
    55     steal_attempt,    // number of taskqueue steal attempts
    56     steal,            // number of taskqueue steals
    57     overflow,         // number of overflow pushes
    58     overflow_max_len, // max length of overflow stack
    59     last_stat_id
    60   };
    62 public:
    63   inline TaskQueueStats()       { reset(); }
    65   inline void record_push()     { ++_stats[push]; }
    66   inline void record_pop()      { ++_stats[pop]; }
    67   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    68   inline void record_steal(bool success);
    69   inline void record_overflow(size_t new_length);
    71   TaskQueueStats & operator +=(const TaskQueueStats & addend);
    73   inline size_t get(StatId id) const { return _stats[id]; }
    74   inline const size_t* get() const   { return _stats; }
    76   inline void reset();
    78   // Print the specified line of the header (does not include a line separator).
    79   static void print_header(unsigned int line, outputStream* const stream = tty,
    80                            unsigned int width = 10);
    81   // Print the statistics (does not include a line separator).
    82   void print(outputStream* const stream = tty, unsigned int width = 10) const;
    84   DEBUG_ONLY(void verify() const;)
    86 private:
    87   size_t                    _stats[last_stat_id];
    88   static const char * const _names[last_stat_id];
    89 };
    91 void TaskQueueStats::record_steal(bool success) {
    92   ++_stats[steal_attempt];
    93   if (success) ++_stats[steal];
    94 }
    96 void TaskQueueStats::record_overflow(size_t new_len) {
    97   ++_stats[overflow];
    98   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
    99 }
   101 void TaskQueueStats::reset() {
   102   memset(_stats, 0, sizeof(_stats));
   103 }
   104 #endif // TASKQUEUE_STATS
   106 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   108 template <unsigned int N, MEMFLAGS F>
   109 class TaskQueueSuper: public CHeapObj<F> {
   110 protected:
   111   // Internal type for indexing the queue; also used for the tag.
   112   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   114   // The first free element after the last one pushed (mod N).
   115   volatile uint _bottom;
   117   enum { MOD_N_MASK = N - 1 };
   119   class Age {
   120   public:
   121     Age(size_t data = 0)         { _data = data; }
   122     Age(const Age& age)          { _data = age._data; }
   123     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   125     Age   get()        const volatile { return _data; }
   126     void  set(Age age) volatile       { _data = age._data; }
   128     idx_t top()        const volatile { return _fields._top; }
   129     idx_t tag()        const volatile { return _fields._tag; }
   131     // Increment top; if it wraps, increment tag also.
   132     void increment() {
   133       _fields._top = increment_index(_fields._top);
   134       if (_fields._top == 0) ++_fields._tag;
   135     }
   137     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   138       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   139                                           (volatile intptr_t *)&_data,
   140                                           (intptr_t)old_age._data);
   141     }
   143     bool operator ==(const Age& other) const { return _data == other._data; }
   145   private:
   146     struct fields {
   147       idx_t _top;
   148       idx_t _tag;
   149     };
   150     union {
   151       size_t _data;
   152       fields _fields;
   153     };
   154   };
   156   volatile Age _age;
   158   // These both operate mod N.
   159   static uint increment_index(uint ind) {
   160     return (ind + 1) & MOD_N_MASK;
   161   }
   162   static uint decrement_index(uint ind) {
   163     return (ind - 1) & MOD_N_MASK;
   164   }
   166   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   167   // interpreted as 0.
   168   uint dirty_size(uint bot, uint top) const {
   169     return (bot - top) & MOD_N_MASK;
   170   }
   172   // Returns the size corresponding to the given "bot" and "top".
   173   uint size(uint bot, uint top) const {
   174     uint sz = dirty_size(bot, top);
   175     // Has the queue "wrapped", so that bottom is less than top?  There's a
   176     // complicated special case here.  A pair of threads could perform pop_local
   177     // and pop_global operations concurrently, starting from a state in which
   178     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   179     // and the pop_global in incrementing _top (in which case the pop_global
   180     // will be awarded the contested queue element.)  The resulting state must
   181     // be interpreted as an empty queue.  (We only need to worry about one such
   182     // event: only the queue owner performs pop_local's, and several concurrent
   183     // threads attempting to perform the pop_global will all perform the same
   184     // CAS, and only one can succeed.)  Any stealing thread that reads after
   185     // either the increment or decrement will see an empty queue, and will not
   186     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   187     // modified by concurrent queues, so the owner thread can reset the state to
   188     // _bottom == top so subsequent pushes will be performed normally.
   189     return (sz == N - 1) ? 0 : sz;
   190   }
   192 public:
   193   TaskQueueSuper() : _bottom(0), _age() {}
   195   // Return true if the TaskQueue contains/does not contain any tasks.
   196   bool peek()     const { return _bottom != _age.top(); }
   197   bool is_empty() const { return size() == 0; }
   199   // Return an estimate of the number of elements in the queue.
   200   // The "careful" version admits the possibility of pop_local/pop_global
   201   // races.
   202   uint size() const {
   203     return size(_bottom, _age.top());
   204   }
   206   uint dirty_size() const {
   207     return dirty_size(_bottom, _age.top());
   208   }
   210   void set_empty() {
   211     _bottom = 0;
   212     _age.set(0);
   213   }
   215   // Maximum number of elements allowed in the queue.  This is two less
   216   // than the actual queue size, for somewhat complicated reasons.
   217   uint max_elems() const { return N - 2; }
   219   // Total size of queue.
   220   static const uint total_size() { return N; }
   222   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   223 };
   225 //
   226 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   227 // ended-queue (deque), intended for use in work stealing. Queue operations
   228 // are non-blocking.
   229 //
   230 // A queue owner thread performs push() and pop_local() operations on one end
   231 // of the queue, while other threads may steal work using the pop_global()
   232 // method.
   233 //
   234 // The main difference to the original algorithm is that this
   235 // implementation allows wrap-around at the end of its allocated
   236 // storage, which is an array.
   237 //
   238 // The original paper is:
   239 //
   240 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   241 // Thread scheduling for multiprogrammed multiprocessors.
   242 // Theory of Computing Systems 34, 2 (2001), 115-144.
   243 //
   244 // The following paper provides an correctness proof and an
   245 // implementation for weakly ordered memory models including (pseudo-)
   246 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   247 // similar to ABP, with the main difference that it allows resizing of the
   248 // underlying storage:
   249 //
   250 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   251 // Correct and efficient work-stealing for weak memory models
   252 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   253 // practice of parallel programming (PPoPP 2013), 69-80
   254 //
   256 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   257 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   258   ArrayAllocator<E, F> _array_allocator;
   259 protected:
   260   typedef typename TaskQueueSuper<N, F>::Age Age;
   261   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   263   using TaskQueueSuper<N, F>::_bottom;
   264   using TaskQueueSuper<N, F>::_age;
   265   using TaskQueueSuper<N, F>::increment_index;
   266   using TaskQueueSuper<N, F>::decrement_index;
   267   using TaskQueueSuper<N, F>::dirty_size;
   269 public:
   270   using TaskQueueSuper<N, F>::max_elems;
   271   using TaskQueueSuper<N, F>::size;
   273 #if  TASKQUEUE_STATS
   274   using TaskQueueSuper<N, F>::stats;
   275 #endif
   277 private:
   278   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   279   bool push_slow(E t, uint dirty_n_elems);
   280   bool pop_local_slow(uint localBot, Age oldAge);
   282 public:
   283   typedef E element_type;
   285   // Initializes the queue to empty.
   286   GenericTaskQueue();
   288   void initialize();
   290   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   291   inline bool push(E t);
   293   // Attempts to claim a task from the "local" end of the queue (the most
   294   // recently pushed).  If successful, returns true and sets t to the task;
   295   // otherwise, returns false (the queue is empty).
   296   inline bool pop_local(volatile E& t);
   298   // Like pop_local(), but uses the "global" end of the queue (the least
   299   // recently pushed).
   300   bool pop_global(volatile E& t);
   302   // Delete any resource associated with the queue.
   303   ~GenericTaskQueue();
   305   // apply the closure to all elements in the task queue
   306   void oops_do(OopClosure* f);
   308 private:
   309   // Element array.
   310   volatile E* _elems;
   311 };
   313 template<class E, MEMFLAGS F, unsigned int N>
   314 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   315   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   316 }
   318 template<class E, MEMFLAGS F, unsigned int N>
   319 void GenericTaskQueue<E, F, N>::initialize() {
   320   _elems = _array_allocator.allocate(N);
   321 }
   323 template<class E, MEMFLAGS F, unsigned int N>
   324 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   325   // tty->print_cr("START OopTaskQueue::oops_do");
   326   uint iters = size();
   327   uint index = _bottom;
   328   for (uint i = 0; i < iters; ++i) {
   329     index = decrement_index(index);
   330     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   331     //            index, &_elems[index], _elems[index]);
   332     E* t = (E*)&_elems[index];      // cast away volatility
   333     oop* p = (oop*)t;
   334     assert((*t)->is_oop_or_null(), "Not an oop or null");
   335     f->do_oop(p);
   336   }
   337   // tty->print_cr("END OopTaskQueue::oops_do");
   338 }
   340 template<class E, MEMFLAGS F, unsigned int N>
   341 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   342   if (dirty_n_elems == N - 1) {
   343     // Actually means 0, so do the push.
   344     uint localBot = _bottom;
   345     // g++ complains if the volatile result of the assignment is
   346     // unused, so we cast the volatile away.  We cannot cast directly
   347     // to void, because gcc treats that as not using the result of the
   348     // assignment.  However, casting to E& means that we trigger an
   349     // unused-value warning.  So, we cast the E& to void.
   350     (void)const_cast<E&>(_elems[localBot] = t);
   351     OrderAccess::release_store(&_bottom, increment_index(localBot));
   352     TASKQUEUE_STATS_ONLY(stats.record_push());
   353     return true;
   354   }
   355   return false;
   356 }
   358 // pop_local_slow() is done by the owning thread and is trying to
   359 // get the last task in the queue.  It will compete with pop_global()
   360 // that will be used by other threads.  The tag age is incremented
   361 // whenever the queue goes empty which it will do here if this thread
   362 // gets the last task or in pop_global() if the queue wraps (top == 0
   363 // and pop_global() succeeds, see pop_global()).
   364 template<class E, MEMFLAGS F, unsigned int N>
   365 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   366   // This queue was observed to contain exactly one element; either this
   367   // thread will claim it, or a competing "pop_global".  In either case,
   368   // the queue will be logically empty afterwards.  Create a new Age value
   369   // that represents the empty queue for the given value of "_bottom".  (We
   370   // must also increment "tag" because of the case where "bottom == 1",
   371   // "top == 0".  A pop_global could read the queue element in that case,
   372   // then have the owner thread do a pop followed by another push.  Without
   373   // the incrementing of "tag", the pop_global's CAS could succeed,
   374   // allowing it to believe it has claimed the stale element.)
   375   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   376   // Perhaps a competing pop_global has already incremented "top", in which
   377   // case it wins the element.
   378   if (localBot == oldAge.top()) {
   379     // No competing pop_global has yet incremented "top"; we'll try to
   380     // install new_age, thus claiming the element.
   381     Age tempAge = _age.cmpxchg(newAge, oldAge);
   382     if (tempAge == oldAge) {
   383       // We win.
   384       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   385       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   386       return true;
   387     }
   388   }
   389   // We lose; a completing pop_global gets the element.  But the queue is empty
   390   // and top is greater than bottom.  Fix this representation of the empty queue
   391   // to become the canonical one.
   392   _age.set(newAge);
   393   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   394   return false;
   395 }
   397 template<class E, MEMFLAGS F, unsigned int N>
   398 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   399   Age oldAge = _age.get();
   400   // Architectures with weak memory model require a barrier here
   401   // to guarantee that bottom is not older than age,
   402   // which is crucial for the correctness of the algorithm.
   403 #if !(defined SPARC || defined IA32 || defined AMD64)
   404   OrderAccess::fence();
   405 #endif
   406   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   407   uint n_elems = size(localBot, oldAge.top());
   408   if (n_elems == 0) {
   409     return false;
   410   }
   412   // g++ complains if the volatile result of the assignment is
   413   // unused, so we cast the volatile away.  We cannot cast directly
   414   // to void, because gcc treats that as not using the result of the
   415   // assignment.  However, casting to E& means that we trigger an
   416   // unused-value warning.  So, we cast the E& to void.
   417   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   418   Age newAge(oldAge);
   419   newAge.increment();
   420   Age resAge = _age.cmpxchg(newAge, oldAge);
   422   // Note that using "_bottom" here might fail, since a pop_local might
   423   // have decremented it.
   424   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   425   return resAge == oldAge;
   426 }
   428 template<class E, MEMFLAGS F, unsigned int N>
   429 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   430   FREE_C_HEAP_ARRAY(E, _elems, F);
   431 }
   433 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   434 // elements that do not fit in the TaskQueue.
   435 //
   436 // This class hides two methods from super classes:
   437 //
   438 // push() - push onto the task queue or, if that fails, onto the overflow stack
   439 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   440 //
   441 // Note that size() is not hidden--it returns the number of elements in the
   442 // TaskQueue, and does not include the size of the overflow stack.  This
   443 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   444 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   445 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   446 {
   447 public:
   448   typedef Stack<E, F>               overflow_t;
   449   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   451   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   453   // Push task t onto the queue or onto the overflow stack.  Return true.
   454   inline bool push(E t);
   456   // Attempt to pop from the overflow stack; return true if anything was popped.
   457   inline bool pop_overflow(E& t);
   459   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   461   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   462   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   463   inline bool is_empty()        const {
   464     return taskqueue_empty() && overflow_empty();
   465   }
   467 private:
   468   overflow_t _overflow_stack;
   469 };
   471 template <class E, MEMFLAGS F, unsigned int N>
   472 bool OverflowTaskQueue<E, F, N>::push(E t)
   473 {
   474   if (!taskqueue_t::push(t)) {
   475     overflow_stack()->push(t);
   476     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   477   }
   478   return true;
   479 }
   481 template <class E, MEMFLAGS F, unsigned int N>
   482 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   483 {
   484   if (overflow_empty()) return false;
   485   t = overflow_stack()->pop();
   486   return true;
   487 }
   489 class TaskQueueSetSuper {
   490 protected:
   491   static int randomParkAndMiller(int* seed0);
   492 public:
   493   // Returns "true" if some TaskQueue in the set contains a task.
   494   virtual bool peek() = 0;
   495 };
   497 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   498 };
   500 template<class T, MEMFLAGS F>
   501 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   502 private:
   503   uint _n;
   504   T** _queues;
   506 public:
   507   typedef typename T::element_type E;
   509   GenericTaskQueueSet(int n) : _n(n) {
   510     typedef T* GenericTaskQueuePtr;
   511     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   512     for (int i = 0; i < n; i++) {
   513       _queues[i] = NULL;
   514     }
   515   }
   517   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   519   void register_queue(uint i, T* q);
   521   T* queue(uint n);
   523   // The thread with queue number "queue_num" (and whose random number seed is
   524   // at "seed") is trying to steal a task from some other queue.  (It may try
   525   // several queues, according to some configuration parameter.)  If some steal
   526   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   527   // false.
   528   bool steal(uint queue_num, int* seed, E& t);
   530   bool peek();
   531 };
   533 template<class T, MEMFLAGS F> void
   534 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   535   assert(i < _n, "index out of range.");
   536   _queues[i] = q;
   537 }
   539 template<class T, MEMFLAGS F> T*
   540 GenericTaskQueueSet<T, F>::queue(uint i) {
   541   return _queues[i];
   542 }
   544 template<class T, MEMFLAGS F> bool
   545 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   546   for (uint i = 0; i < 2 * _n; i++) {
   547     if (steal_best_of_2(queue_num, seed, t)) {
   548       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   549       return true;
   550     }
   551   }
   552   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   553   return false;
   554 }
   556 template<class T, MEMFLAGS F> bool
   557 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   558   if (_n > 2) {
   559     uint k1 = queue_num;
   560     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   561     uint k2 = queue_num;
   562     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   563     // Sample both and try the larger.
   564     uint sz1 = _queues[k1]->size();
   565     uint sz2 = _queues[k2]->size();
   566     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   567     else return _queues[k1]->pop_global(t);
   568   } else if (_n == 2) {
   569     // Just try the other one.
   570     uint k = (queue_num + 1) % 2;
   571     return _queues[k]->pop_global(t);
   572   } else {
   573     assert(_n == 1, "can't be zero.");
   574     return false;
   575   }
   576 }
   578 template<class T, MEMFLAGS F>
   579 bool GenericTaskQueueSet<T, F>::peek() {
   580   // Try all the queues.
   581   for (uint j = 0; j < _n; j++) {
   582     if (_queues[j]->peek())
   583       return true;
   584   }
   585   return false;
   586 }
   588 // When to terminate from the termination protocol.
   589 class TerminatorTerminator: public CHeapObj<mtInternal> {
   590 public:
   591   virtual bool should_exit_termination() = 0;
   592 };
   594 // A class to aid in the termination of a set of parallel tasks using
   595 // TaskQueueSet's for work stealing.
   597 #undef TRACESPINNING
   599 class ParallelTaskTerminator: public StackObj {
   600 private:
   601   int _n_threads;
   602   TaskQueueSetSuper* _queue_set;
   603   int _offered_termination;
   605 #ifdef TRACESPINNING
   606   static uint _total_yields;
   607   static uint _total_spins;
   608   static uint _total_peeks;
   609 #endif
   611   bool peek_in_queue_set();
   612 protected:
   613   virtual void yield();
   614   void sleep(uint millis);
   616 public:
   618   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   619   // queue sets of work queues of other threads.
   620   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   622   // The current thread has no work, and is ready to terminate if everyone
   623   // else is.  If returns "true", all threads are terminated.  If returns
   624   // "false", available work has been observed in one of the task queues,
   625   // so the global task is not complete.
   626   bool offer_termination() {
   627     return offer_termination(NULL);
   628   }
   630   // As above, but it also terminates if the should_exit_termination()
   631   // method of the terminator parameter returns true. If terminator is
   632   // NULL, then it is ignored.
   633   bool offer_termination(TerminatorTerminator* terminator);
   635   // Reset the terminator, so that it may be reused again.
   636   // The caller is responsible for ensuring that this is done
   637   // in an MT-safe manner, once the previous round of use of
   638   // the terminator is finished.
   639   void reset_for_reuse();
   640   // Same as above but the number of parallel threads is set to the
   641   // given number.
   642   void reset_for_reuse(int n_threads);
   644 #ifdef TRACESPINNING
   645   static uint total_yields() { return _total_yields; }
   646   static uint total_spins() { return _total_spins; }
   647   static uint total_peeks() { return _total_peeks; }
   648   static void print_termination_counts();
   649 #endif
   650 };
   652 template<class E, MEMFLAGS F, unsigned int N> inline bool
   653 GenericTaskQueue<E, F, N>::push(E t) {
   654   uint localBot = _bottom;
   655   assert(localBot < N, "_bottom out of range.");
   656   idx_t top = _age.top();
   657   uint dirty_n_elems = dirty_size(localBot, top);
   658   assert(dirty_n_elems < N, "n_elems out of range.");
   659   if (dirty_n_elems < max_elems()) {
   660     // g++ complains if the volatile result of the assignment is
   661     // unused, so we cast the volatile away.  We cannot cast directly
   662     // to void, because gcc treats that as not using the result of the
   663     // assignment.  However, casting to E& means that we trigger an
   664     // unused-value warning.  So, we cast the E& to void.
   665     (void) const_cast<E&>(_elems[localBot] = t);
   666     OrderAccess::release_store(&_bottom, increment_index(localBot));
   667     TASKQUEUE_STATS_ONLY(stats.record_push());
   668     return true;
   669   } else {
   670     return push_slow(t, dirty_n_elems);
   671   }
   672 }
   674 template<class E, MEMFLAGS F, unsigned int N> inline bool
   675 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   676   uint localBot = _bottom;
   677   // This value cannot be N-1.  That can only occur as a result of
   678   // the assignment to bottom in this method.  If it does, this method
   679   // resets the size to 0 before the next call (which is sequential,
   680   // since this is pop_local.)
   681   uint dirty_n_elems = dirty_size(localBot, _age.top());
   682   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   683   if (dirty_n_elems == 0) return false;
   684   localBot = decrement_index(localBot);
   685   _bottom = localBot;
   686   // This is necessary to prevent any read below from being reordered
   687   // before the store just above.
   688   OrderAccess::fence();
   689   // g++ complains if the volatile result of the assignment is
   690   // unused, so we cast the volatile away.  We cannot cast directly
   691   // to void, because gcc treats that as not using the result of the
   692   // assignment.  However, casting to E& means that we trigger an
   693   // unused-value warning.  So, we cast the E& to void.
   694   (void) const_cast<E&>(t = _elems[localBot]);
   695   // This is a second read of "age"; the "size()" above is the first.
   696   // If there's still at least one element in the queue, based on the
   697   // "_bottom" and "age" we've read, then there can be no interference with
   698   // a "pop_global" operation, and we're done.
   699   idx_t tp = _age.top();    // XXX
   700   if (size(localBot, tp) > 0) {
   701     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   702     TASKQUEUE_STATS_ONLY(stats.record_pop());
   703     return true;
   704   } else {
   705     // Otherwise, the queue contained exactly one element; we take the slow
   706     // path.
   707     return pop_local_slow(localBot, _age.get());
   708   }
   709 }
   711 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   712 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   714 #ifdef _MSC_VER
   715 #pragma warning(push)
   716 // warning C4522: multiple assignment operators specified
   717 #pragma warning(disable:4522)
   718 #endif
   720 // This is a container class for either an oop* or a narrowOop*.
   721 // Both are pushed onto a task queue and the consumer will test is_narrow()
   722 // to determine which should be processed.
   723 class StarTask {
   724   void*  _holder;        // either union oop* or narrowOop*
   726   enum { COMPRESSED_OOP_MASK = 1 };
   728  public:
   729   StarTask(narrowOop* p) {
   730     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   731     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   732   }
   733   StarTask(oop* p)       {
   734     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   735     _holder = (void*)p;
   736   }
   737   StarTask()             { _holder = NULL; }
   738   operator oop*()        { return (oop*)_holder; }
   739   operator narrowOop*()  {
   740     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   741   }
   743   StarTask& operator=(const StarTask& t) {
   744     _holder = t._holder;
   745     return *this;
   746   }
   747   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   748     _holder = t._holder;
   749     return *this;
   750   }
   752   bool is_narrow() const {
   753     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   754   }
   755 };
   757 class ObjArrayTask
   758 {
   759 public:
   760   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   761   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   762     assert(idx <= size_t(max_jint), "too big");
   763   }
   764   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   766   ObjArrayTask& operator =(const ObjArrayTask& t) {
   767     _obj = t._obj;
   768     _index = t._index;
   769     return *this;
   770   }
   771   volatile ObjArrayTask&
   772   operator =(const volatile ObjArrayTask& t) volatile {
   773     (void)const_cast<oop&>(_obj = t._obj);
   774     _index = t._index;
   775     return *this;
   776   }
   778   inline oop obj()   const { return _obj; }
   779   inline int index() const { return _index; }
   781   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   783 private:
   784   oop _obj;
   785   int _index;
   786 };
   788 #ifdef _MSC_VER
   789 #pragma warning(pop)
   790 #endif
   792 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   793 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   795 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   796 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   799 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial