src/cpu/x86/vm/stubGenerator_x86_64.cpp

Sat, 10 Sep 2011 00:11:04 -0700

author
never
date
Sat, 10 Sep 2011 00:11:04 -0700
changeset 3136
c565834fb592
parent 2978
d83ac25d0304
child 3156
f08d439fab8c
permissions
-rw-r--r--

7088020: SEGV in JNIHandleBlock::release_block
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    60 #define a__ ((Assembler*)_masm)->
    62 #ifdef PRODUCT
    63 #define BLOCK_COMMENT(str) /* nothing */
    64 #else
    65 #define BLOCK_COMMENT(str) __ block_comment(str)
    66 #endif
    68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    71 // Stub Code definitions
    73 static address handle_unsafe_access() {
    74   JavaThread* thread = JavaThread::current();
    75   address pc = thread->saved_exception_pc();
    76   // pc is the instruction which we must emulate
    77   // doing a no-op is fine:  return garbage from the load
    78   // therefore, compute npc
    79   address npc = Assembler::locate_next_instruction(pc);
    81   // request an async exception
    82   thread->set_pending_unsafe_access_error();
    84   // return address of next instruction to execute
    85   return npc;
    86 }
    88 class StubGenerator: public StubCodeGenerator {
    89  private:
    91 #ifdef PRODUCT
    92 #define inc_counter_np(counter) (0)
    93 #else
    94   void inc_counter_np_(int& counter) {
    95     __ incrementl(ExternalAddress((address)&counter));
    96   }
    97 #define inc_counter_np(counter) \
    98   BLOCK_COMMENT("inc_counter " #counter); \
    99   inc_counter_np_(counter);
   100 #endif
   102   // Call stubs are used to call Java from C
   103   //
   104   // Linux Arguments:
   105   //    c_rarg0:   call wrapper address                   address
   106   //    c_rarg1:   result                                 address
   107   //    c_rarg2:   result type                            BasicType
   108   //    c_rarg3:   method                                 methodOop
   109   //    c_rarg4:   (interpreter) entry point              address
   110   //    c_rarg5:   parameters                             intptr_t*
   111   //    16(rbp): parameter size (in words)              int
   112   //    24(rbp): thread                                 Thread*
   113   //
   114   //     [ return_from_Java     ] <--- rsp
   115   //     [ argument word n      ]
   116   //      ...
   117   // -12 [ argument word 1      ]
   118   // -11 [ saved r15            ] <--- rsp_after_call
   119   // -10 [ saved r14            ]
   120   //  -9 [ saved r13            ]
   121   //  -8 [ saved r12            ]
   122   //  -7 [ saved rbx            ]
   123   //  -6 [ call wrapper         ]
   124   //  -5 [ result               ]
   125   //  -4 [ result type          ]
   126   //  -3 [ method               ]
   127   //  -2 [ entry point          ]
   128   //  -1 [ parameters           ]
   129   //   0 [ saved rbp            ] <--- rbp
   130   //   1 [ return address       ]
   131   //   2 [ parameter size       ]
   132   //   3 [ thread               ]
   133   //
   134   // Windows Arguments:
   135   //    c_rarg0:   call wrapper address                   address
   136   //    c_rarg1:   result                                 address
   137   //    c_rarg2:   result type                            BasicType
   138   //    c_rarg3:   method                                 methodOop
   139   //    48(rbp): (interpreter) entry point              address
   140   //    56(rbp): parameters                             intptr_t*
   141   //    64(rbp): parameter size (in words)              int
   142   //    72(rbp): thread                                 Thread*
   143   //
   144   //     [ return_from_Java     ] <--- rsp
   145   //     [ argument word n      ]
   146   //      ...
   147   // -28 [ argument word 1      ]
   148   // -27 [ saved xmm15          ] <--- rsp_after_call
   149   //     [ saved xmm7-xmm14     ]
   150   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
   151   //  -7 [ saved r15            ]
   152   //  -6 [ saved r14            ]
   153   //  -5 [ saved r13            ]
   154   //  -4 [ saved r12            ]
   155   //  -3 [ saved rdi            ]
   156   //  -2 [ saved rsi            ]
   157   //  -1 [ saved rbx            ]
   158   //   0 [ saved rbp            ] <--- rbp
   159   //   1 [ return address       ]
   160   //   2 [ call wrapper         ]
   161   //   3 [ result               ]
   162   //   4 [ result type          ]
   163   //   5 [ method               ]
   164   //   6 [ entry point          ]
   165   //   7 [ parameters           ]
   166   //   8 [ parameter size       ]
   167   //   9 [ thread               ]
   168   //
   169   //    Windows reserves the callers stack space for arguments 1-4.
   170   //    We spill c_rarg0-c_rarg3 to this space.
   172   // Call stub stack layout word offsets from rbp
   173   enum call_stub_layout {
   174 #ifdef _WIN64
   175     xmm_save_first     = 6,  // save from xmm6
   176     xmm_save_last      = 15, // to xmm15
   177     xmm_save_base      = -9,
   178     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
   179     r15_off            = -7,
   180     r14_off            = -6,
   181     r13_off            = -5,
   182     r12_off            = -4,
   183     rdi_off            = -3,
   184     rsi_off            = -2,
   185     rbx_off            = -1,
   186     rbp_off            =  0,
   187     retaddr_off        =  1,
   188     call_wrapper_off   =  2,
   189     result_off         =  3,
   190     result_type_off    =  4,
   191     method_off         =  5,
   192     entry_point_off    =  6,
   193     parameters_off     =  7,
   194     parameter_size_off =  8,
   195     thread_off         =  9
   196 #else
   197     rsp_after_call_off = -12,
   198     mxcsr_off          = rsp_after_call_off,
   199     r15_off            = -11,
   200     r14_off            = -10,
   201     r13_off            = -9,
   202     r12_off            = -8,
   203     rbx_off            = -7,
   204     call_wrapper_off   = -6,
   205     result_off         = -5,
   206     result_type_off    = -4,
   207     method_off         = -3,
   208     entry_point_off    = -2,
   209     parameters_off     = -1,
   210     rbp_off            =  0,
   211     retaddr_off        =  1,
   212     parameter_size_off =  2,
   213     thread_off         =  3
   214 #endif
   215   };
   217 #ifdef _WIN64
   218   Address xmm_save(int reg) {
   219     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
   220     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
   221   }
   222 #endif
   224   address generate_call_stub(address& return_address) {
   225     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   226            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   227            "adjust this code");
   228     StubCodeMark mark(this, "StubRoutines", "call_stub");
   229     address start = __ pc();
   231     // same as in generate_catch_exception()!
   232     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   234     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   235     const Address result        (rbp, result_off         * wordSize);
   236     const Address result_type   (rbp, result_type_off    * wordSize);
   237     const Address method        (rbp, method_off         * wordSize);
   238     const Address entry_point   (rbp, entry_point_off    * wordSize);
   239     const Address parameters    (rbp, parameters_off     * wordSize);
   240     const Address parameter_size(rbp, parameter_size_off * wordSize);
   242     // same as in generate_catch_exception()!
   243     const Address thread        (rbp, thread_off         * wordSize);
   245     const Address r15_save(rbp, r15_off * wordSize);
   246     const Address r14_save(rbp, r14_off * wordSize);
   247     const Address r13_save(rbp, r13_off * wordSize);
   248     const Address r12_save(rbp, r12_off * wordSize);
   249     const Address rbx_save(rbp, rbx_off * wordSize);
   251     // stub code
   252     __ enter();
   253     __ subptr(rsp, -rsp_after_call_off * wordSize);
   255     // save register parameters
   256 #ifndef _WIN64
   257     __ movptr(parameters,   c_rarg5); // parameters
   258     __ movptr(entry_point,  c_rarg4); // entry_point
   259 #endif
   261     __ movptr(method,       c_rarg3); // method
   262     __ movl(result_type,  c_rarg2);   // result type
   263     __ movptr(result,       c_rarg1); // result
   264     __ movptr(call_wrapper, c_rarg0); // call wrapper
   266     // save regs belonging to calling function
   267     __ movptr(rbx_save, rbx);
   268     __ movptr(r12_save, r12);
   269     __ movptr(r13_save, r13);
   270     __ movptr(r14_save, r14);
   271     __ movptr(r15_save, r15);
   272 #ifdef _WIN64
   273     for (int i = 6; i <= 15; i++) {
   274       __ movdqu(xmm_save(i), as_XMMRegister(i));
   275     }
   277     const Address rdi_save(rbp, rdi_off * wordSize);
   278     const Address rsi_save(rbp, rsi_off * wordSize);
   280     __ movptr(rsi_save, rsi);
   281     __ movptr(rdi_save, rdi);
   282 #else
   283     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   284     {
   285       Label skip_ldmx;
   286       __ stmxcsr(mxcsr_save);
   287       __ movl(rax, mxcsr_save);
   288       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   289       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   290       __ cmp32(rax, mxcsr_std);
   291       __ jcc(Assembler::equal, skip_ldmx);
   292       __ ldmxcsr(mxcsr_std);
   293       __ bind(skip_ldmx);
   294     }
   295 #endif
   297     // Load up thread register
   298     __ movptr(r15_thread, thread);
   299     __ reinit_heapbase();
   301 #ifdef ASSERT
   302     // make sure we have no pending exceptions
   303     {
   304       Label L;
   305       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   306       __ jcc(Assembler::equal, L);
   307       __ stop("StubRoutines::call_stub: entered with pending exception");
   308       __ bind(L);
   309     }
   310 #endif
   312     // pass parameters if any
   313     BLOCK_COMMENT("pass parameters if any");
   314     Label parameters_done;
   315     __ movl(c_rarg3, parameter_size);
   316     __ testl(c_rarg3, c_rarg3);
   317     __ jcc(Assembler::zero, parameters_done);
   319     Label loop;
   320     __ movptr(c_rarg2, parameters);       // parameter pointer
   321     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   322     __ BIND(loop);
   323     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   324     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   325     __ decrementl(c_rarg1);             // decrement counter
   326     __ push(rax);                       // pass parameter
   327     __ jcc(Assembler::notZero, loop);
   329     // call Java function
   330     __ BIND(parameters_done);
   331     __ movptr(rbx, method);             // get methodOop
   332     __ movptr(c_rarg1, entry_point);    // get entry_point
   333     __ mov(r13, rsp);                   // set sender sp
   334     BLOCK_COMMENT("call Java function");
   335     __ call(c_rarg1);
   337     BLOCK_COMMENT("call_stub_return_address:");
   338     return_address = __ pc();
   340     // store result depending on type (everything that is not
   341     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   342     __ movptr(c_rarg0, result);
   343     Label is_long, is_float, is_double, exit;
   344     __ movl(c_rarg1, result_type);
   345     __ cmpl(c_rarg1, T_OBJECT);
   346     __ jcc(Assembler::equal, is_long);
   347     __ cmpl(c_rarg1, T_LONG);
   348     __ jcc(Assembler::equal, is_long);
   349     __ cmpl(c_rarg1, T_FLOAT);
   350     __ jcc(Assembler::equal, is_float);
   351     __ cmpl(c_rarg1, T_DOUBLE);
   352     __ jcc(Assembler::equal, is_double);
   354     // handle T_INT case
   355     __ movl(Address(c_rarg0, 0), rax);
   357     __ BIND(exit);
   359     // pop parameters
   360     __ lea(rsp, rsp_after_call);
   362 #ifdef ASSERT
   363     // verify that threads correspond
   364     {
   365       Label L, S;
   366       __ cmpptr(r15_thread, thread);
   367       __ jcc(Assembler::notEqual, S);
   368       __ get_thread(rbx);
   369       __ cmpptr(r15_thread, rbx);
   370       __ jcc(Assembler::equal, L);
   371       __ bind(S);
   372       __ jcc(Assembler::equal, L);
   373       __ stop("StubRoutines::call_stub: threads must correspond");
   374       __ bind(L);
   375     }
   376 #endif
   378     // restore regs belonging to calling function
   379 #ifdef _WIN64
   380     for (int i = 15; i >= 6; i--) {
   381       __ movdqu(as_XMMRegister(i), xmm_save(i));
   382     }
   383 #endif
   384     __ movptr(r15, r15_save);
   385     __ movptr(r14, r14_save);
   386     __ movptr(r13, r13_save);
   387     __ movptr(r12, r12_save);
   388     __ movptr(rbx, rbx_save);
   390 #ifdef _WIN64
   391     __ movptr(rdi, rdi_save);
   392     __ movptr(rsi, rsi_save);
   393 #else
   394     __ ldmxcsr(mxcsr_save);
   395 #endif
   397     // restore rsp
   398     __ addptr(rsp, -rsp_after_call_off * wordSize);
   400     // return
   401     __ pop(rbp);
   402     __ ret(0);
   404     // handle return types different from T_INT
   405     __ BIND(is_long);
   406     __ movq(Address(c_rarg0, 0), rax);
   407     __ jmp(exit);
   409     __ BIND(is_float);
   410     __ movflt(Address(c_rarg0, 0), xmm0);
   411     __ jmp(exit);
   413     __ BIND(is_double);
   414     __ movdbl(Address(c_rarg0, 0), xmm0);
   415     __ jmp(exit);
   417     return start;
   418   }
   420   // Return point for a Java call if there's an exception thrown in
   421   // Java code.  The exception is caught and transformed into a
   422   // pending exception stored in JavaThread that can be tested from
   423   // within the VM.
   424   //
   425   // Note: Usually the parameters are removed by the callee. In case
   426   // of an exception crossing an activation frame boundary, that is
   427   // not the case if the callee is compiled code => need to setup the
   428   // rsp.
   429   //
   430   // rax: exception oop
   432   address generate_catch_exception() {
   433     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   434     address start = __ pc();
   436     // same as in generate_call_stub():
   437     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   438     const Address thread        (rbp, thread_off         * wordSize);
   440 #ifdef ASSERT
   441     // verify that threads correspond
   442     {
   443       Label L, S;
   444       __ cmpptr(r15_thread, thread);
   445       __ jcc(Assembler::notEqual, S);
   446       __ get_thread(rbx);
   447       __ cmpptr(r15_thread, rbx);
   448       __ jcc(Assembler::equal, L);
   449       __ bind(S);
   450       __ stop("StubRoutines::catch_exception: threads must correspond");
   451       __ bind(L);
   452     }
   453 #endif
   455     // set pending exception
   456     __ verify_oop(rax);
   458     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   459     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   460     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   461     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   463     // complete return to VM
   464     assert(StubRoutines::_call_stub_return_address != NULL,
   465            "_call_stub_return_address must have been generated before");
   466     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   468     return start;
   469   }
   471   // Continuation point for runtime calls returning with a pending
   472   // exception.  The pending exception check happened in the runtime
   473   // or native call stub.  The pending exception in Thread is
   474   // converted into a Java-level exception.
   475   //
   476   // Contract with Java-level exception handlers:
   477   // rax: exception
   478   // rdx: throwing pc
   479   //
   480   // NOTE: At entry of this stub, exception-pc must be on stack !!
   482   address generate_forward_exception() {
   483     StubCodeMark mark(this, "StubRoutines", "forward exception");
   484     address start = __ pc();
   486     // Upon entry, the sp points to the return address returning into
   487     // Java (interpreted or compiled) code; i.e., the return address
   488     // becomes the throwing pc.
   489     //
   490     // Arguments pushed before the runtime call are still on the stack
   491     // but the exception handler will reset the stack pointer ->
   492     // ignore them.  A potential result in registers can be ignored as
   493     // well.
   495 #ifdef ASSERT
   496     // make sure this code is only executed if there is a pending exception
   497     {
   498       Label L;
   499       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   500       __ jcc(Assembler::notEqual, L);
   501       __ stop("StubRoutines::forward exception: no pending exception (1)");
   502       __ bind(L);
   503     }
   504 #endif
   506     // compute exception handler into rbx
   507     __ movptr(c_rarg0, Address(rsp, 0));
   508     BLOCK_COMMENT("call exception_handler_for_return_address");
   509     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   510                          SharedRuntime::exception_handler_for_return_address),
   511                     r15_thread, c_rarg0);
   512     __ mov(rbx, rax);
   514     // setup rax & rdx, remove return address & clear pending exception
   515     __ pop(rdx);
   516     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   517     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   519 #ifdef ASSERT
   520     // make sure exception is set
   521     {
   522       Label L;
   523       __ testptr(rax, rax);
   524       __ jcc(Assembler::notEqual, L);
   525       __ stop("StubRoutines::forward exception: no pending exception (2)");
   526       __ bind(L);
   527     }
   528 #endif
   530     // continue at exception handler (return address removed)
   531     // rax: exception
   532     // rbx: exception handler
   533     // rdx: throwing pc
   534     __ verify_oop(rax);
   535     __ jmp(rbx);
   537     return start;
   538   }
   540   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   541   //
   542   // Arguments :
   543   //    c_rarg0: exchange_value
   544   //    c_rarg0: dest
   545   //
   546   // Result:
   547   //    *dest <- ex, return (orig *dest)
   548   address generate_atomic_xchg() {
   549     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   550     address start = __ pc();
   552     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   553     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   554     __ ret(0);
   556     return start;
   557   }
   559   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   560   //
   561   // Arguments :
   562   //    c_rarg0: exchange_value
   563   //    c_rarg1: dest
   564   //
   565   // Result:
   566   //    *dest <- ex, return (orig *dest)
   567   address generate_atomic_xchg_ptr() {
   568     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   569     address start = __ pc();
   571     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   572     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   573     __ ret(0);
   575     return start;
   576   }
   578   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   579   //                                         jint compare_value)
   580   //
   581   // Arguments :
   582   //    c_rarg0: exchange_value
   583   //    c_rarg1: dest
   584   //    c_rarg2: compare_value
   585   //
   586   // Result:
   587   //    if ( compare_value == *dest ) {
   588   //       *dest = exchange_value
   589   //       return compare_value;
   590   //    else
   591   //       return *dest;
   592   address generate_atomic_cmpxchg() {
   593     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   594     address start = __ pc();
   596     __ movl(rax, c_rarg2);
   597    if ( os::is_MP() ) __ lock();
   598     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   599     __ ret(0);
   601     return start;
   602   }
   604   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   605   //                                             volatile jlong* dest,
   606   //                                             jlong compare_value)
   607   // Arguments :
   608   //    c_rarg0: exchange_value
   609   //    c_rarg1: dest
   610   //    c_rarg2: compare_value
   611   //
   612   // Result:
   613   //    if ( compare_value == *dest ) {
   614   //       *dest = exchange_value
   615   //       return compare_value;
   616   //    else
   617   //       return *dest;
   618   address generate_atomic_cmpxchg_long() {
   619     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   620     address start = __ pc();
   622     __ movq(rax, c_rarg2);
   623    if ( os::is_MP() ) __ lock();
   624     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   625     __ ret(0);
   627     return start;
   628   }
   630   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   631   //
   632   // Arguments :
   633   //    c_rarg0: add_value
   634   //    c_rarg1: dest
   635   //
   636   // Result:
   637   //    *dest += add_value
   638   //    return *dest;
   639   address generate_atomic_add() {
   640     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   641     address start = __ pc();
   643     __ movl(rax, c_rarg0);
   644    if ( os::is_MP() ) __ lock();
   645     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   646     __ addl(rax, c_rarg0);
   647     __ ret(0);
   649     return start;
   650   }
   652   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   653   //
   654   // Arguments :
   655   //    c_rarg0: add_value
   656   //    c_rarg1: dest
   657   //
   658   // Result:
   659   //    *dest += add_value
   660   //    return *dest;
   661   address generate_atomic_add_ptr() {
   662     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   663     address start = __ pc();
   665     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   666    if ( os::is_MP() ) __ lock();
   667     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   668     __ addptr(rax, c_rarg0);
   669     __ ret(0);
   671     return start;
   672   }
   674   // Support for intptr_t OrderAccess::fence()
   675   //
   676   // Arguments :
   677   //
   678   // Result:
   679   address generate_orderaccess_fence() {
   680     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   681     address start = __ pc();
   682     __ membar(Assembler::StoreLoad);
   683     __ ret(0);
   685     return start;
   686   }
   688   // Support for intptr_t get_previous_fp()
   689   //
   690   // This routine is used to find the previous frame pointer for the
   691   // caller (current_frame_guess). This is used as part of debugging
   692   // ps() is seemingly lost trying to find frames.
   693   // This code assumes that caller current_frame_guess) has a frame.
   694   address generate_get_previous_fp() {
   695     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   696     const Address old_fp(rbp, 0);
   697     const Address older_fp(rax, 0);
   698     address start = __ pc();
   700     __ enter();
   701     __ movptr(rax, old_fp); // callers fp
   702     __ movptr(rax, older_fp); // the frame for ps()
   703     __ pop(rbp);
   704     __ ret(0);
   706     return start;
   707   }
   709   //----------------------------------------------------------------------------------------------------
   710   // Support for void verify_mxcsr()
   711   //
   712   // This routine is used with -Xcheck:jni to verify that native
   713   // JNI code does not return to Java code without restoring the
   714   // MXCSR register to our expected state.
   716   address generate_verify_mxcsr() {
   717     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   718     address start = __ pc();
   720     const Address mxcsr_save(rsp, 0);
   722     if (CheckJNICalls) {
   723       Label ok_ret;
   724       __ push(rax);
   725       __ subptr(rsp, wordSize);      // allocate a temp location
   726       __ stmxcsr(mxcsr_save);
   727       __ movl(rax, mxcsr_save);
   728       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   729       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   730       __ jcc(Assembler::equal, ok_ret);
   732       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   734       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   736       __ bind(ok_ret);
   737       __ addptr(rsp, wordSize);
   738       __ pop(rax);
   739     }
   741     __ ret(0);
   743     return start;
   744   }
   746   address generate_f2i_fixup() {
   747     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   748     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   750     address start = __ pc();
   752     Label L;
   754     __ push(rax);
   755     __ push(c_rarg3);
   756     __ push(c_rarg2);
   757     __ push(c_rarg1);
   759     __ movl(rax, 0x7f800000);
   760     __ xorl(c_rarg3, c_rarg3);
   761     __ movl(c_rarg2, inout);
   762     __ movl(c_rarg1, c_rarg2);
   763     __ andl(c_rarg1, 0x7fffffff);
   764     __ cmpl(rax, c_rarg1); // NaN? -> 0
   765     __ jcc(Assembler::negative, L);
   766     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   767     __ movl(c_rarg3, 0x80000000);
   768     __ movl(rax, 0x7fffffff);
   769     __ cmovl(Assembler::positive, c_rarg3, rax);
   771     __ bind(L);
   772     __ movptr(inout, c_rarg3);
   774     __ pop(c_rarg1);
   775     __ pop(c_rarg2);
   776     __ pop(c_rarg3);
   777     __ pop(rax);
   779     __ ret(0);
   781     return start;
   782   }
   784   address generate_f2l_fixup() {
   785     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   786     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   787     address start = __ pc();
   789     Label L;
   791     __ push(rax);
   792     __ push(c_rarg3);
   793     __ push(c_rarg2);
   794     __ push(c_rarg1);
   796     __ movl(rax, 0x7f800000);
   797     __ xorl(c_rarg3, c_rarg3);
   798     __ movl(c_rarg2, inout);
   799     __ movl(c_rarg1, c_rarg2);
   800     __ andl(c_rarg1, 0x7fffffff);
   801     __ cmpl(rax, c_rarg1); // NaN? -> 0
   802     __ jcc(Assembler::negative, L);
   803     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   804     __ mov64(c_rarg3, 0x8000000000000000);
   805     __ mov64(rax, 0x7fffffffffffffff);
   806     __ cmov(Assembler::positive, c_rarg3, rax);
   808     __ bind(L);
   809     __ movptr(inout, c_rarg3);
   811     __ pop(c_rarg1);
   812     __ pop(c_rarg2);
   813     __ pop(c_rarg3);
   814     __ pop(rax);
   816     __ ret(0);
   818     return start;
   819   }
   821   address generate_d2i_fixup() {
   822     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   825     address start = __ pc();
   827     Label L;
   829     __ push(rax);
   830     __ push(c_rarg3);
   831     __ push(c_rarg2);
   832     __ push(c_rarg1);
   833     __ push(c_rarg0);
   835     __ movl(rax, 0x7ff00000);
   836     __ movq(c_rarg2, inout);
   837     __ movl(c_rarg3, c_rarg2);
   838     __ mov(c_rarg1, c_rarg2);
   839     __ mov(c_rarg0, c_rarg2);
   840     __ negl(c_rarg3);
   841     __ shrptr(c_rarg1, 0x20);
   842     __ orl(c_rarg3, c_rarg2);
   843     __ andl(c_rarg1, 0x7fffffff);
   844     __ xorl(c_rarg2, c_rarg2);
   845     __ shrl(c_rarg3, 0x1f);
   846     __ orl(c_rarg1, c_rarg3);
   847     __ cmpl(rax, c_rarg1);
   848     __ jcc(Assembler::negative, L); // NaN -> 0
   849     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   850     __ movl(c_rarg2, 0x80000000);
   851     __ movl(rax, 0x7fffffff);
   852     __ cmov(Assembler::positive, c_rarg2, rax);
   854     __ bind(L);
   855     __ movptr(inout, c_rarg2);
   857     __ pop(c_rarg0);
   858     __ pop(c_rarg1);
   859     __ pop(c_rarg2);
   860     __ pop(c_rarg3);
   861     __ pop(rax);
   863     __ ret(0);
   865     return start;
   866   }
   868   address generate_d2l_fixup() {
   869     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   870     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   872     address start = __ pc();
   874     Label L;
   876     __ push(rax);
   877     __ push(c_rarg3);
   878     __ push(c_rarg2);
   879     __ push(c_rarg1);
   880     __ push(c_rarg0);
   882     __ movl(rax, 0x7ff00000);
   883     __ movq(c_rarg2, inout);
   884     __ movl(c_rarg3, c_rarg2);
   885     __ mov(c_rarg1, c_rarg2);
   886     __ mov(c_rarg0, c_rarg2);
   887     __ negl(c_rarg3);
   888     __ shrptr(c_rarg1, 0x20);
   889     __ orl(c_rarg3, c_rarg2);
   890     __ andl(c_rarg1, 0x7fffffff);
   891     __ xorl(c_rarg2, c_rarg2);
   892     __ shrl(c_rarg3, 0x1f);
   893     __ orl(c_rarg1, c_rarg3);
   894     __ cmpl(rax, c_rarg1);
   895     __ jcc(Assembler::negative, L); // NaN -> 0
   896     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   897     __ mov64(c_rarg2, 0x8000000000000000);
   898     __ mov64(rax, 0x7fffffffffffffff);
   899     __ cmovq(Assembler::positive, c_rarg2, rax);
   901     __ bind(L);
   902     __ movq(inout, c_rarg2);
   904     __ pop(c_rarg0);
   905     __ pop(c_rarg1);
   906     __ pop(c_rarg2);
   907     __ pop(c_rarg3);
   908     __ pop(rax);
   910     __ ret(0);
   912     return start;
   913   }
   915   address generate_fp_mask(const char *stub_name, int64_t mask) {
   916     __ align(CodeEntryAlignment);
   917     StubCodeMark mark(this, "StubRoutines", stub_name);
   918     address start = __ pc();
   920     __ emit_data64( mask, relocInfo::none );
   921     __ emit_data64( mask, relocInfo::none );
   923     return start;
   924   }
   926   // The following routine generates a subroutine to throw an
   927   // asynchronous UnknownError when an unsafe access gets a fault that
   928   // could not be reasonably prevented by the programmer.  (Example:
   929   // SIGBUS/OBJERR.)
   930   address generate_handler_for_unsafe_access() {
   931     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   932     address start = __ pc();
   934     __ push(0);                       // hole for return address-to-be
   935     __ pusha();                       // push registers
   936     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   938     // FIXME: this probably needs alignment logic
   940     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   941     BLOCK_COMMENT("call handle_unsafe_access");
   942     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   943     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   945     __ movptr(next_pc, rax);          // stuff next address
   946     __ popa();
   947     __ ret(0);                        // jump to next address
   949     return start;
   950   }
   952   // Non-destructive plausibility checks for oops
   953   //
   954   // Arguments:
   955   //    all args on stack!
   956   //
   957   // Stack after saving c_rarg3:
   958   //    [tos + 0]: saved c_rarg3
   959   //    [tos + 1]: saved c_rarg2
   960   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   961   //    [tos + 3]: saved flags
   962   //    [tos + 4]: return address
   963   //  * [tos + 5]: error message (char*)
   964   //  * [tos + 6]: object to verify (oop)
   965   //  * [tos + 7]: saved rax - saved by caller and bashed
   966   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
   967   //  * = popped on exit
   968   address generate_verify_oop() {
   969     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   970     address start = __ pc();
   972     Label exit, error;
   974     __ pushf();
   975     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   977     __ push(r12);
   979     // save c_rarg2 and c_rarg3
   980     __ push(c_rarg2);
   981     __ push(c_rarg3);
   983     enum {
   984            // After previous pushes.
   985            oop_to_verify = 6 * wordSize,
   986            saved_rax     = 7 * wordSize,
   987            saved_r10     = 8 * wordSize,
   989            // Before the call to MacroAssembler::debug(), see below.
   990            return_addr   = 16 * wordSize,
   991            error_msg     = 17 * wordSize
   992     };
   994     // get object
   995     __ movptr(rax, Address(rsp, oop_to_verify));
   997     // make sure object is 'reasonable'
   998     __ testptr(rax, rax);
   999     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
  1000     // Check if the oop is in the right area of memory
  1001     __ movptr(c_rarg2, rax);
  1002     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
  1003     __ andptr(c_rarg2, c_rarg3);
  1004     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
  1005     __ cmpptr(c_rarg2, c_rarg3);
  1006     __ jcc(Assembler::notZero, error);
  1008     // set r12 to heapbase for load_klass()
  1009     __ reinit_heapbase();
  1011     // make sure klass is 'reasonable'
  1012     __ load_klass(rax, rax);  // get klass
  1013     __ testptr(rax, rax);
  1014     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
  1015     // Check if the klass is in the right area of memory
  1016     __ mov(c_rarg2, rax);
  1017     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1018     __ andptr(c_rarg2, c_rarg3);
  1019     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1020     __ cmpptr(c_rarg2, c_rarg3);
  1021     __ jcc(Assembler::notZero, error);
  1023     // make sure klass' klass is 'reasonable'
  1024     __ load_klass(rax, rax);
  1025     __ testptr(rax, rax);
  1026     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
  1027     // Check if the klass' klass is in the right area of memory
  1028     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1029     __ andptr(rax, c_rarg3);
  1030     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1031     __ cmpptr(rax, c_rarg3);
  1032     __ jcc(Assembler::notZero, error);
  1034     // return if everything seems ok
  1035     __ bind(exit);
  1036     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1037     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1038     __ pop(c_rarg3);                             // restore c_rarg3
  1039     __ pop(c_rarg2);                             // restore c_rarg2
  1040     __ pop(r12);                                 // restore r12
  1041     __ popf();                                   // restore flags
  1042     __ ret(4 * wordSize);                        // pop caller saved stuff
  1044     // handle errors
  1045     __ bind(error);
  1046     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1047     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1048     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1049     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1050     __ pop(r12);                                 // get saved r12 back
  1051     __ popf();                                   // get saved flags off stack --
  1052                                                  // will be ignored
  1054     __ pusha();                                  // push registers
  1055                                                  // (rip is already
  1056                                                  // already pushed)
  1057     // debug(char* msg, int64_t pc, int64_t regs[])
  1058     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1059     // pushed all the registers, so now the stack looks like:
  1060     //     [tos +  0] 16 saved registers
  1061     //     [tos + 16] return address
  1062     //   * [tos + 17] error message (char*)
  1063     //   * [tos + 18] object to verify (oop)
  1064     //   * [tos + 19] saved rax - saved by caller and bashed
  1065     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
  1066     //   * = popped on exit
  1068     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1069     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1070     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1071     __ mov(r12, rsp);                               // remember rsp
  1072     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1073     __ andptr(rsp, -16);                            // align stack as required by ABI
  1074     BLOCK_COMMENT("call MacroAssembler::debug");
  1075     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1076     __ mov(rsp, r12);                               // restore rsp
  1077     __ popa();                                      // pop registers (includes r12)
  1078     __ ret(4 * wordSize);                           // pop caller saved stuff
  1080     return start;
  1083   //
  1084   // Verify that a register contains clean 32-bits positive value
  1085   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1086   //
  1087   //  Input:
  1088   //    Rint  -  32-bits value
  1089   //    Rtmp  -  scratch
  1090   //
  1091   void assert_clean_int(Register Rint, Register Rtmp) {
  1092 #ifdef ASSERT
  1093     Label L;
  1094     assert_different_registers(Rtmp, Rint);
  1095     __ movslq(Rtmp, Rint);
  1096     __ cmpq(Rtmp, Rint);
  1097     __ jcc(Assembler::equal, L);
  1098     __ stop("high 32-bits of int value are not 0");
  1099     __ bind(L);
  1100 #endif
  1103   //  Generate overlap test for array copy stubs
  1104   //
  1105   //  Input:
  1106   //     c_rarg0 - from
  1107   //     c_rarg1 - to
  1108   //     c_rarg2 - element count
  1109   //
  1110   //  Output:
  1111   //     rax   - &from[element count - 1]
  1112   //
  1113   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1114     assert(no_overlap_target != NULL, "must be generated");
  1115     array_overlap_test(no_overlap_target, NULL, sf);
  1117   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1118     array_overlap_test(NULL, &L_no_overlap, sf);
  1120   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1121     const Register from     = c_rarg0;
  1122     const Register to       = c_rarg1;
  1123     const Register count    = c_rarg2;
  1124     const Register end_from = rax;
  1126     __ cmpptr(to, from);
  1127     __ lea(end_from, Address(from, count, sf, 0));
  1128     if (NOLp == NULL) {
  1129       ExternalAddress no_overlap(no_overlap_target);
  1130       __ jump_cc(Assembler::belowEqual, no_overlap);
  1131       __ cmpptr(to, end_from);
  1132       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1133     } else {
  1134       __ jcc(Assembler::belowEqual, (*NOLp));
  1135       __ cmpptr(to, end_from);
  1136       __ jcc(Assembler::aboveEqual, (*NOLp));
  1140   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1141   //
  1142   // Outputs:
  1143   //    rdi - rcx
  1144   //    rsi - rdx
  1145   //    rdx - r8
  1146   //    rcx - r9
  1147   //
  1148   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1149   // are non-volatile.  r9 and r10 should not be used by the caller.
  1150   //
  1151   void setup_arg_regs(int nargs = 3) {
  1152     const Register saved_rdi = r9;
  1153     const Register saved_rsi = r10;
  1154     assert(nargs == 3 || nargs == 4, "else fix");
  1155 #ifdef _WIN64
  1156     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1157            "unexpected argument registers");
  1158     if (nargs >= 4)
  1159       __ mov(rax, r9);  // r9 is also saved_rdi
  1160     __ movptr(saved_rdi, rdi);
  1161     __ movptr(saved_rsi, rsi);
  1162     __ mov(rdi, rcx); // c_rarg0
  1163     __ mov(rsi, rdx); // c_rarg1
  1164     __ mov(rdx, r8);  // c_rarg2
  1165     if (nargs >= 4)
  1166       __ mov(rcx, rax); // c_rarg3 (via rax)
  1167 #else
  1168     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1169            "unexpected argument registers");
  1170 #endif
  1173   void restore_arg_regs() {
  1174     const Register saved_rdi = r9;
  1175     const Register saved_rsi = r10;
  1176 #ifdef _WIN64
  1177     __ movptr(rdi, saved_rdi);
  1178     __ movptr(rsi, saved_rsi);
  1179 #endif
  1182   // Generate code for an array write pre barrier
  1183   //
  1184   //     addr    -  starting address
  1185   //     count   -  element count
  1186   //     tmp     - scratch register
  1187   //
  1188   //     Destroy no registers!
  1189   //
  1190   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
  1191     BarrierSet* bs = Universe::heap()->barrier_set();
  1192     switch (bs->kind()) {
  1193       case BarrierSet::G1SATBCT:
  1194       case BarrierSet::G1SATBCTLogging:
  1195         // With G1, don't generate the call if we statically know that the target in uninitialized
  1196         if (!dest_uninitialized) {
  1197            __ pusha();                      // push registers
  1198            if (count == c_rarg0) {
  1199              if (addr == c_rarg1) {
  1200                // exactly backwards!!
  1201                __ xchgptr(c_rarg1, c_rarg0);
  1202              } else {
  1203                __ movptr(c_rarg1, count);
  1204                __ movptr(c_rarg0, addr);
  1206            } else {
  1207              __ movptr(c_rarg0, addr);
  1208              __ movptr(c_rarg1, count);
  1210            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1211            __ popa();
  1213          break;
  1214       case BarrierSet::CardTableModRef:
  1215       case BarrierSet::CardTableExtension:
  1216       case BarrierSet::ModRef:
  1217         break;
  1218       default:
  1219         ShouldNotReachHere();
  1224   //
  1225   // Generate code for an array write post barrier
  1226   //
  1227   //  Input:
  1228   //     start    - register containing starting address of destination array
  1229   //     end      - register containing ending address of destination array
  1230   //     scratch  - scratch register
  1231   //
  1232   //  The input registers are overwritten.
  1233   //  The ending address is inclusive.
  1234   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1235     assert_different_registers(start, end, scratch);
  1236     BarrierSet* bs = Universe::heap()->barrier_set();
  1237     switch (bs->kind()) {
  1238       case BarrierSet::G1SATBCT:
  1239       case BarrierSet::G1SATBCTLogging:
  1242           __ pusha();                      // push registers (overkill)
  1243           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1244           assert_different_registers(start, end, scratch);
  1245           __ lea(scratch, Address(end, BytesPerHeapOop));
  1246           __ subptr(scratch, start);               // subtract start to get #bytes
  1247           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1248           __ mov(c_rarg0, start);
  1249           __ mov(c_rarg1, scratch);
  1250           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1251           __ popa();
  1253         break;
  1254       case BarrierSet::CardTableModRef:
  1255       case BarrierSet::CardTableExtension:
  1257           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1258           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1260           Label L_loop;
  1262            __ shrptr(start, CardTableModRefBS::card_shift);
  1263            __ addptr(end, BytesPerHeapOop);
  1264            __ shrptr(end, CardTableModRefBS::card_shift);
  1265            __ subptr(end, start); // number of bytes to copy
  1267           intptr_t disp = (intptr_t) ct->byte_map_base;
  1268           if (__ is_simm32(disp)) {
  1269             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1270             __ lea(scratch, cardtable);
  1271           } else {
  1272             ExternalAddress cardtable((address)disp);
  1273             __ lea(scratch, cardtable);
  1276           const Register count = end; // 'end' register contains bytes count now
  1277           __ addptr(start, scratch);
  1278         __ BIND(L_loop);
  1279           __ movb(Address(start, count, Address::times_1), 0);
  1280           __ decrement(count);
  1281           __ jcc(Assembler::greaterEqual, L_loop);
  1283         break;
  1284       default:
  1285         ShouldNotReachHere();
  1291   // Copy big chunks forward
  1292   //
  1293   // Inputs:
  1294   //   end_from     - source arrays end address
  1295   //   end_to       - destination array end address
  1296   //   qword_count  - 64-bits element count, negative
  1297   //   to           - scratch
  1298   //   L_copy_32_bytes - entry label
  1299   //   L_copy_8_bytes  - exit  label
  1300   //
  1301   void copy_32_bytes_forward(Register end_from, Register end_to,
  1302                              Register qword_count, Register to,
  1303                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1304     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1305     Label L_loop;
  1306     __ align(OptoLoopAlignment);
  1307   __ BIND(L_loop);
  1308     if(UseUnalignedLoadStores) {
  1309       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1310       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1311       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1312       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1314     } else {
  1315       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1316       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1317       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1318       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1319       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1320       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1321       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1322       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1324   __ BIND(L_copy_32_bytes);
  1325     __ addptr(qword_count, 4);
  1326     __ jcc(Assembler::lessEqual, L_loop);
  1327     __ subptr(qword_count, 4);
  1328     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1332   // Copy big chunks backward
  1333   //
  1334   // Inputs:
  1335   //   from         - source arrays address
  1336   //   dest         - destination array address
  1337   //   qword_count  - 64-bits element count
  1338   //   to           - scratch
  1339   //   L_copy_32_bytes - entry label
  1340   //   L_copy_8_bytes  - exit  label
  1341   //
  1342   void copy_32_bytes_backward(Register from, Register dest,
  1343                               Register qword_count, Register to,
  1344                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1345     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1346     Label L_loop;
  1347     __ align(OptoLoopAlignment);
  1348   __ BIND(L_loop);
  1349     if(UseUnalignedLoadStores) {
  1350       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1351       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1352       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1353       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1355     } else {
  1356       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1357       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1358       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1359       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1360       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1361       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1362       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1363       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1365   __ BIND(L_copy_32_bytes);
  1366     __ subptr(qword_count, 4);
  1367     __ jcc(Assembler::greaterEqual, L_loop);
  1368     __ addptr(qword_count, 4);
  1369     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1373   // Arguments:
  1374   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1375   //             ignored
  1376   //   name    - stub name string
  1377   //
  1378   // Inputs:
  1379   //   c_rarg0   - source array address
  1380   //   c_rarg1   - destination array address
  1381   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1382   //
  1383   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1384   // we let the hardware handle it.  The one to eight bytes within words,
  1385   // dwords or qwords that span cache line boundaries will still be loaded
  1386   // and stored atomically.
  1387   //
  1388   // Side Effects:
  1389   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1390   //   used by generate_conjoint_byte_copy().
  1391   //
  1392   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
  1393     __ align(CodeEntryAlignment);
  1394     StubCodeMark mark(this, "StubRoutines", name);
  1395     address start = __ pc();
  1397     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1398     Label L_copy_byte, L_exit;
  1399     const Register from        = rdi;  // source array address
  1400     const Register to          = rsi;  // destination array address
  1401     const Register count       = rdx;  // elements count
  1402     const Register byte_count  = rcx;
  1403     const Register qword_count = count;
  1404     const Register end_from    = from; // source array end address
  1405     const Register end_to      = to;   // destination array end address
  1406     // End pointers are inclusive, and if count is not zero they point
  1407     // to the last unit copied:  end_to[0] := end_from[0]
  1409     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1410     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1412     if (entry != NULL) {
  1413       *entry = __ pc();
  1414        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1415       BLOCK_COMMENT("Entry:");
  1418     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1419                       // r9 and r10 may be used to save non-volatile registers
  1421     // 'from', 'to' and 'count' are now valid
  1422     __ movptr(byte_count, count);
  1423     __ shrptr(count, 3); // count => qword_count
  1425     // Copy from low to high addresses.  Use 'to' as scratch.
  1426     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1427     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1428     __ negptr(qword_count); // make the count negative
  1429     __ jmp(L_copy_32_bytes);
  1431     // Copy trailing qwords
  1432   __ BIND(L_copy_8_bytes);
  1433     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1434     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1435     __ increment(qword_count);
  1436     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1438     // Check for and copy trailing dword
  1439   __ BIND(L_copy_4_bytes);
  1440     __ testl(byte_count, 4);
  1441     __ jccb(Assembler::zero, L_copy_2_bytes);
  1442     __ movl(rax, Address(end_from, 8));
  1443     __ movl(Address(end_to, 8), rax);
  1445     __ addptr(end_from, 4);
  1446     __ addptr(end_to, 4);
  1448     // Check for and copy trailing word
  1449   __ BIND(L_copy_2_bytes);
  1450     __ testl(byte_count, 2);
  1451     __ jccb(Assembler::zero, L_copy_byte);
  1452     __ movw(rax, Address(end_from, 8));
  1453     __ movw(Address(end_to, 8), rax);
  1455     __ addptr(end_from, 2);
  1456     __ addptr(end_to, 2);
  1458     // Check for and copy trailing byte
  1459   __ BIND(L_copy_byte);
  1460     __ testl(byte_count, 1);
  1461     __ jccb(Assembler::zero, L_exit);
  1462     __ movb(rax, Address(end_from, 8));
  1463     __ movb(Address(end_to, 8), rax);
  1465   __ BIND(L_exit);
  1466     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1467     restore_arg_regs();
  1468     __ xorptr(rax, rax); // return 0
  1469     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1470     __ ret(0);
  1472     // Copy in 32-bytes chunks
  1473     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1474     __ jmp(L_copy_4_bytes);
  1476     return start;
  1479   // Arguments:
  1480   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1481   //             ignored
  1482   //   name    - stub name string
  1483   //
  1484   // Inputs:
  1485   //   c_rarg0   - source array address
  1486   //   c_rarg1   - destination array address
  1487   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1488   //
  1489   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1490   // we let the hardware handle it.  The one to eight bytes within words,
  1491   // dwords or qwords that span cache line boundaries will still be loaded
  1492   // and stored atomically.
  1493   //
  1494   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
  1495                                       address* entry, const char *name) {
  1496     __ align(CodeEntryAlignment);
  1497     StubCodeMark mark(this, "StubRoutines", name);
  1498     address start = __ pc();
  1500     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1501     const Register from        = rdi;  // source array address
  1502     const Register to          = rsi;  // destination array address
  1503     const Register count       = rdx;  // elements count
  1504     const Register byte_count  = rcx;
  1505     const Register qword_count = count;
  1507     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1508     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1510     if (entry != NULL) {
  1511       *entry = __ pc();
  1512       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1513       BLOCK_COMMENT("Entry:");
  1516     array_overlap_test(nooverlap_target, Address::times_1);
  1517     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1518                       // r9 and r10 may be used to save non-volatile registers
  1520     // 'from', 'to' and 'count' are now valid
  1521     __ movptr(byte_count, count);
  1522     __ shrptr(count, 3);   // count => qword_count
  1524     // Copy from high to low addresses.
  1526     // Check for and copy trailing byte
  1527     __ testl(byte_count, 1);
  1528     __ jcc(Assembler::zero, L_copy_2_bytes);
  1529     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1530     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1531     __ decrement(byte_count); // Adjust for possible trailing word
  1533     // Check for and copy trailing word
  1534   __ BIND(L_copy_2_bytes);
  1535     __ testl(byte_count, 2);
  1536     __ jcc(Assembler::zero, L_copy_4_bytes);
  1537     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1538     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1540     // Check for and copy trailing dword
  1541   __ BIND(L_copy_4_bytes);
  1542     __ testl(byte_count, 4);
  1543     __ jcc(Assembler::zero, L_copy_32_bytes);
  1544     __ movl(rax, Address(from, qword_count, Address::times_8));
  1545     __ movl(Address(to, qword_count, Address::times_8), rax);
  1546     __ jmp(L_copy_32_bytes);
  1548     // Copy trailing qwords
  1549   __ BIND(L_copy_8_bytes);
  1550     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1551     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1552     __ decrement(qword_count);
  1553     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1555     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1556     restore_arg_regs();
  1557     __ xorptr(rax, rax); // return 0
  1558     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1559     __ ret(0);
  1561     // Copy in 32-bytes chunks
  1562     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1564     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1565     restore_arg_regs();
  1566     __ xorptr(rax, rax); // return 0
  1567     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1568     __ ret(0);
  1570     return start;
  1573   // Arguments:
  1574   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1575   //             ignored
  1576   //   name    - stub name string
  1577   //
  1578   // Inputs:
  1579   //   c_rarg0   - source array address
  1580   //   c_rarg1   - destination array address
  1581   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1582   //
  1583   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1584   // let the hardware handle it.  The two or four words within dwords
  1585   // or qwords that span cache line boundaries will still be loaded
  1586   // and stored atomically.
  1587   //
  1588   // Side Effects:
  1589   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1590   //   used by generate_conjoint_short_copy().
  1591   //
  1592   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
  1593     __ align(CodeEntryAlignment);
  1594     StubCodeMark mark(this, "StubRoutines", name);
  1595     address start = __ pc();
  1597     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1598     const Register from        = rdi;  // source array address
  1599     const Register to          = rsi;  // destination array address
  1600     const Register count       = rdx;  // elements count
  1601     const Register word_count  = rcx;
  1602     const Register qword_count = count;
  1603     const Register end_from    = from; // source array end address
  1604     const Register end_to      = to;   // destination array end address
  1605     // End pointers are inclusive, and if count is not zero they point
  1606     // to the last unit copied:  end_to[0] := end_from[0]
  1608     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1609     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1611     if (entry != NULL) {
  1612       *entry = __ pc();
  1613       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1614       BLOCK_COMMENT("Entry:");
  1617     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1618                       // r9 and r10 may be used to save non-volatile registers
  1620     // 'from', 'to' and 'count' are now valid
  1621     __ movptr(word_count, count);
  1622     __ shrptr(count, 2); // count => qword_count
  1624     // Copy from low to high addresses.  Use 'to' as scratch.
  1625     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1626     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1627     __ negptr(qword_count);
  1628     __ jmp(L_copy_32_bytes);
  1630     // Copy trailing qwords
  1631   __ BIND(L_copy_8_bytes);
  1632     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1633     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1634     __ increment(qword_count);
  1635     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1637     // Original 'dest' is trashed, so we can't use it as a
  1638     // base register for a possible trailing word copy
  1640     // Check for and copy trailing dword
  1641   __ BIND(L_copy_4_bytes);
  1642     __ testl(word_count, 2);
  1643     __ jccb(Assembler::zero, L_copy_2_bytes);
  1644     __ movl(rax, Address(end_from, 8));
  1645     __ movl(Address(end_to, 8), rax);
  1647     __ addptr(end_from, 4);
  1648     __ addptr(end_to, 4);
  1650     // Check for and copy trailing word
  1651   __ BIND(L_copy_2_bytes);
  1652     __ testl(word_count, 1);
  1653     __ jccb(Assembler::zero, L_exit);
  1654     __ movw(rax, Address(end_from, 8));
  1655     __ movw(Address(end_to, 8), rax);
  1657   __ BIND(L_exit);
  1658     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1659     restore_arg_regs();
  1660     __ xorptr(rax, rax); // return 0
  1661     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1662     __ ret(0);
  1664     // Copy in 32-bytes chunks
  1665     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1666     __ jmp(L_copy_4_bytes);
  1668     return start;
  1671   address generate_fill(BasicType t, bool aligned, const char *name) {
  1672     __ align(CodeEntryAlignment);
  1673     StubCodeMark mark(this, "StubRoutines", name);
  1674     address start = __ pc();
  1676     BLOCK_COMMENT("Entry:");
  1678     const Register to       = c_rarg0;  // source array address
  1679     const Register value    = c_rarg1;  // value
  1680     const Register count    = c_rarg2;  // elements count
  1682     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1684     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1686     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1687     __ ret(0);
  1688     return start;
  1691   // Arguments:
  1692   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1693   //             ignored
  1694   //   name    - stub name string
  1695   //
  1696   // Inputs:
  1697   //   c_rarg0   - source array address
  1698   //   c_rarg1   - destination array address
  1699   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1700   //
  1701   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1702   // let the hardware handle it.  The two or four words within dwords
  1703   // or qwords that span cache line boundaries will still be loaded
  1704   // and stored atomically.
  1705   //
  1706   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
  1707                                        address *entry, const char *name) {
  1708     __ align(CodeEntryAlignment);
  1709     StubCodeMark mark(this, "StubRoutines", name);
  1710     address start = __ pc();
  1712     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1713     const Register from        = rdi;  // source array address
  1714     const Register to          = rsi;  // destination array address
  1715     const Register count       = rdx;  // elements count
  1716     const Register word_count  = rcx;
  1717     const Register qword_count = count;
  1719     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1720     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1722     if (entry != NULL) {
  1723       *entry = __ pc();
  1724       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1725       BLOCK_COMMENT("Entry:");
  1728     array_overlap_test(nooverlap_target, Address::times_2);
  1729     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1730                       // r9 and r10 may be used to save non-volatile registers
  1732     // 'from', 'to' and 'count' are now valid
  1733     __ movptr(word_count, count);
  1734     __ shrptr(count, 2); // count => qword_count
  1736     // Copy from high to low addresses.  Use 'to' as scratch.
  1738     // Check for and copy trailing word
  1739     __ testl(word_count, 1);
  1740     __ jccb(Assembler::zero, L_copy_4_bytes);
  1741     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1742     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1744     // Check for and copy trailing dword
  1745   __ BIND(L_copy_4_bytes);
  1746     __ testl(word_count, 2);
  1747     __ jcc(Assembler::zero, L_copy_32_bytes);
  1748     __ movl(rax, Address(from, qword_count, Address::times_8));
  1749     __ movl(Address(to, qword_count, Address::times_8), rax);
  1750     __ jmp(L_copy_32_bytes);
  1752     // Copy trailing qwords
  1753   __ BIND(L_copy_8_bytes);
  1754     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1755     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1756     __ decrement(qword_count);
  1757     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1759     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1760     restore_arg_regs();
  1761     __ xorptr(rax, rax); // return 0
  1762     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1763     __ ret(0);
  1765     // Copy in 32-bytes chunks
  1766     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1768     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1769     restore_arg_regs();
  1770     __ xorptr(rax, rax); // return 0
  1771     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1772     __ ret(0);
  1774     return start;
  1777   // Arguments:
  1778   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1779   //             ignored
  1780   //   is_oop  - true => oop array, so generate store check code
  1781   //   name    - stub name string
  1782   //
  1783   // Inputs:
  1784   //   c_rarg0   - source array address
  1785   //   c_rarg1   - destination array address
  1786   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1787   //
  1788   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1789   // the hardware handle it.  The two dwords within qwords that span
  1790   // cache line boundaries will still be loaded and stored atomicly.
  1791   //
  1792   // Side Effects:
  1793   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1794   //   used by generate_conjoint_int_oop_copy().
  1795   //
  1796   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
  1797                                          const char *name, bool dest_uninitialized = false) {
  1798     __ align(CodeEntryAlignment);
  1799     StubCodeMark mark(this, "StubRoutines", name);
  1800     address start = __ pc();
  1802     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1803     const Register from        = rdi;  // source array address
  1804     const Register to          = rsi;  // destination array address
  1805     const Register count       = rdx;  // elements count
  1806     const Register dword_count = rcx;
  1807     const Register qword_count = count;
  1808     const Register end_from    = from; // source array end address
  1809     const Register end_to      = to;   // destination array end address
  1810     const Register saved_to    = r11;  // saved destination array address
  1811     // End pointers are inclusive, and if count is not zero they point
  1812     // to the last unit copied:  end_to[0] := end_from[0]
  1814     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1815     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1817     if (entry != NULL) {
  1818       *entry = __ pc();
  1819       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1820       BLOCK_COMMENT("Entry:");
  1823     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1824                       // r9 and r10 may be used to save non-volatile registers
  1825     if (is_oop) {
  1826       __ movq(saved_to, to);
  1827       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1830     // 'from', 'to' and 'count' are now valid
  1831     __ movptr(dword_count, count);
  1832     __ shrptr(count, 1); // count => qword_count
  1834     // Copy from low to high addresses.  Use 'to' as scratch.
  1835     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1836     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1837     __ negptr(qword_count);
  1838     __ jmp(L_copy_32_bytes);
  1840     // Copy trailing qwords
  1841   __ BIND(L_copy_8_bytes);
  1842     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1843     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1844     __ increment(qword_count);
  1845     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1847     // Check for and copy trailing dword
  1848   __ BIND(L_copy_4_bytes);
  1849     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1850     __ jccb(Assembler::zero, L_exit);
  1851     __ movl(rax, Address(end_from, 8));
  1852     __ movl(Address(end_to, 8), rax);
  1854   __ BIND(L_exit);
  1855     if (is_oop) {
  1856       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1857       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1859     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1860     restore_arg_regs();
  1861     __ xorptr(rax, rax); // return 0
  1862     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1863     __ ret(0);
  1865     // Copy 32-bytes chunks
  1866     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1867     __ jmp(L_copy_4_bytes);
  1869     return start;
  1872   // Arguments:
  1873   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1874   //             ignored
  1875   //   is_oop  - true => oop array, so generate store check code
  1876   //   name    - stub name string
  1877   //
  1878   // Inputs:
  1879   //   c_rarg0   - source array address
  1880   //   c_rarg1   - destination array address
  1881   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1882   //
  1883   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1884   // the hardware handle it.  The two dwords within qwords that span
  1885   // cache line boundaries will still be loaded and stored atomicly.
  1886   //
  1887   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
  1888                                          address *entry, const char *name,
  1889                                          bool dest_uninitialized = false) {
  1890     __ align(CodeEntryAlignment);
  1891     StubCodeMark mark(this, "StubRoutines", name);
  1892     address start = __ pc();
  1894     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1895     const Register from        = rdi;  // source array address
  1896     const Register to          = rsi;  // destination array address
  1897     const Register count       = rdx;  // elements count
  1898     const Register dword_count = rcx;
  1899     const Register qword_count = count;
  1901     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1902     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1904     if (entry != NULL) {
  1905       *entry = __ pc();
  1906        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1907       BLOCK_COMMENT("Entry:");
  1910     array_overlap_test(nooverlap_target, Address::times_4);
  1911     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1912                       // r9 and r10 may be used to save non-volatile registers
  1914     if (is_oop) {
  1915       // no registers are destroyed by this call
  1916       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1919     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1920     // 'from', 'to' and 'count' are now valid
  1921     __ movptr(dword_count, count);
  1922     __ shrptr(count, 1); // count => qword_count
  1924     // Copy from high to low addresses.  Use 'to' as scratch.
  1926     // Check for and copy trailing dword
  1927     __ testl(dword_count, 1);
  1928     __ jcc(Assembler::zero, L_copy_32_bytes);
  1929     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1930     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1931     __ jmp(L_copy_32_bytes);
  1933     // Copy trailing qwords
  1934   __ BIND(L_copy_8_bytes);
  1935     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1936     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1937     __ decrement(qword_count);
  1938     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1940     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1941     if (is_oop) {
  1942       __ jmp(L_exit);
  1944     restore_arg_regs();
  1945     __ xorptr(rax, rax); // return 0
  1946     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1947     __ ret(0);
  1949     // Copy in 32-bytes chunks
  1950     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1952    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1953    __ bind(L_exit);
  1954      if (is_oop) {
  1955        Register end_to = rdx;
  1956        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1957        gen_write_ref_array_post_barrier(to, end_to, rax);
  1959     restore_arg_regs();
  1960     __ xorptr(rax, rax); // return 0
  1961     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1962     __ ret(0);
  1964     return start;
  1967   // Arguments:
  1968   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1969   //             ignored
  1970   //   is_oop  - true => oop array, so generate store check code
  1971   //   name    - stub name string
  1972   //
  1973   // Inputs:
  1974   //   c_rarg0   - source array address
  1975   //   c_rarg1   - destination array address
  1976   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1977   //
  1978  // Side Effects:
  1979   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1980   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1981   //
  1982   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
  1983                                           const char *name, bool dest_uninitialized = false) {
  1984     __ align(CodeEntryAlignment);
  1985     StubCodeMark mark(this, "StubRoutines", name);
  1986     address start = __ pc();
  1988     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1989     const Register from        = rdi;  // source array address
  1990     const Register to          = rsi;  // destination array address
  1991     const Register qword_count = rdx;  // elements count
  1992     const Register end_from    = from; // source array end address
  1993     const Register end_to      = rcx;  // destination array end address
  1994     const Register saved_to    = to;
  1995     // End pointers are inclusive, and if count is not zero they point
  1996     // to the last unit copied:  end_to[0] := end_from[0]
  1998     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1999     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  2000     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2002     if (entry != NULL) {
  2003       *entry = __ pc();
  2004       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2005       BLOCK_COMMENT("Entry:");
  2008     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2009                       // r9 and r10 may be used to save non-volatile registers
  2010     // 'from', 'to' and 'qword_count' are now valid
  2011     if (is_oop) {
  2012       // no registers are destroyed by this call
  2013       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
  2016     // Copy from low to high addresses.  Use 'to' as scratch.
  2017     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  2018     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  2019     __ negptr(qword_count);
  2020     __ jmp(L_copy_32_bytes);
  2022     // Copy trailing qwords
  2023   __ BIND(L_copy_8_bytes);
  2024     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  2025     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  2026     __ increment(qword_count);
  2027     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2029     if (is_oop) {
  2030       __ jmp(L_exit);
  2031     } else {
  2032       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2033       restore_arg_regs();
  2034       __ xorptr(rax, rax); // return 0
  2035       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2036       __ ret(0);
  2039     // Copy 64-byte chunks
  2040     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2042     if (is_oop) {
  2043     __ BIND(L_exit);
  2044       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  2045       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2046     } else {
  2047       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2049     restore_arg_regs();
  2050     __ xorptr(rax, rax); // return 0
  2051     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2052     __ ret(0);
  2054     return start;
  2057   // Arguments:
  2058   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  2059   //             ignored
  2060   //   is_oop  - true => oop array, so generate store check code
  2061   //   name    - stub name string
  2062   //
  2063   // Inputs:
  2064   //   c_rarg0   - source array address
  2065   //   c_rarg1   - destination array address
  2066   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2067   //
  2068   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
  2069                                           address nooverlap_target, address *entry,
  2070                                           const char *name, bool dest_uninitialized = false) {
  2071     __ align(CodeEntryAlignment);
  2072     StubCodeMark mark(this, "StubRoutines", name);
  2073     address start = __ pc();
  2075     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2076     const Register from        = rdi;  // source array address
  2077     const Register to          = rsi;  // destination array address
  2078     const Register qword_count = rdx;  // elements count
  2079     const Register saved_count = rcx;
  2081     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2082     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2084     if (entry != NULL) {
  2085       *entry = __ pc();
  2086       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2087       BLOCK_COMMENT("Entry:");
  2090     array_overlap_test(nooverlap_target, Address::times_8);
  2091     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2092                       // r9 and r10 may be used to save non-volatile registers
  2093     // 'from', 'to' and 'qword_count' are now valid
  2094     if (is_oop) {
  2095       // Save to and count for store barrier
  2096       __ movptr(saved_count, qword_count);
  2097       // No registers are destroyed by this call
  2098       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
  2101     __ jmp(L_copy_32_bytes);
  2103     // Copy trailing qwords
  2104   __ BIND(L_copy_8_bytes);
  2105     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2106     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2107     __ decrement(qword_count);
  2108     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2110     if (is_oop) {
  2111       __ jmp(L_exit);
  2112     } else {
  2113       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2114       restore_arg_regs();
  2115       __ xorptr(rax, rax); // return 0
  2116       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2117       __ ret(0);
  2120     // Copy in 32-bytes chunks
  2121     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2123     if (is_oop) {
  2124     __ BIND(L_exit);
  2125       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2126       gen_write_ref_array_post_barrier(to, rcx, rax);
  2127       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2128     } else {
  2129       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2131     restore_arg_regs();
  2132     __ xorptr(rax, rax); // return 0
  2133     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2134     __ ret(0);
  2136     return start;
  2140   // Helper for generating a dynamic type check.
  2141   // Smashes no registers.
  2142   void generate_type_check(Register sub_klass,
  2143                            Register super_check_offset,
  2144                            Register super_klass,
  2145                            Label& L_success) {
  2146     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2148     BLOCK_COMMENT("type_check:");
  2150     Label L_miss;
  2152     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2153                                      super_check_offset);
  2154     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2156     // Fall through on failure!
  2157     __ BIND(L_miss);
  2160   //
  2161   //  Generate checkcasting array copy stub
  2162   //
  2163   //  Input:
  2164   //    c_rarg0   - source array address
  2165   //    c_rarg1   - destination array address
  2166   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2167   //    c_rarg3   - size_t ckoff (super_check_offset)
  2168   // not Win64
  2169   //    c_rarg4   - oop ckval (super_klass)
  2170   // Win64
  2171   //    rsp+40    - oop ckval (super_klass)
  2172   //
  2173   //  Output:
  2174   //    rax ==  0  -  success
  2175   //    rax == -1^K - failure, where K is partial transfer count
  2176   //
  2177   address generate_checkcast_copy(const char *name, address *entry,
  2178                                   bool dest_uninitialized = false) {
  2180     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2182     // Input registers (after setup_arg_regs)
  2183     const Register from        = rdi;   // source array address
  2184     const Register to          = rsi;   // destination array address
  2185     const Register length      = rdx;   // elements count
  2186     const Register ckoff       = rcx;   // super_check_offset
  2187     const Register ckval       = r8;    // super_klass
  2189     // Registers used as temps (r13, r14 are save-on-entry)
  2190     const Register end_from    = from;  // source array end address
  2191     const Register end_to      = r13;   // destination array end address
  2192     const Register count       = rdx;   // -(count_remaining)
  2193     const Register r14_length  = r14;   // saved copy of length
  2194     // End pointers are inclusive, and if length is not zero they point
  2195     // to the last unit copied:  end_to[0] := end_from[0]
  2197     const Register rax_oop    = rax;    // actual oop copied
  2198     const Register r11_klass  = r11;    // oop._klass
  2200     //---------------------------------------------------------------
  2201     // Assembler stub will be used for this call to arraycopy
  2202     // if the two arrays are subtypes of Object[] but the
  2203     // destination array type is not equal to or a supertype
  2204     // of the source type.  Each element must be separately
  2205     // checked.
  2207     __ align(CodeEntryAlignment);
  2208     StubCodeMark mark(this, "StubRoutines", name);
  2209     address start = __ pc();
  2211     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2213 #ifdef ASSERT
  2214     // caller guarantees that the arrays really are different
  2215     // otherwise, we would have to make conjoint checks
  2216     { Label L;
  2217       array_overlap_test(L, TIMES_OOP);
  2218       __ stop("checkcast_copy within a single array");
  2219       __ bind(L);
  2221 #endif //ASSERT
  2223     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2224                        // ckoff => rcx, ckval => r8
  2225                        // r9 and r10 may be used to save non-volatile registers
  2226 #ifdef _WIN64
  2227     // last argument (#4) is on stack on Win64
  2228     __ movptr(ckval, Address(rsp, 6 * wordSize));
  2229 #endif
  2231     // Caller of this entry point must set up the argument registers.
  2232     if (entry != NULL) {
  2233       *entry = __ pc();
  2234       BLOCK_COMMENT("Entry:");
  2237     // allocate spill slots for r13, r14
  2238     enum {
  2239       saved_r13_offset,
  2240       saved_r14_offset,
  2241       saved_rbp_offset
  2242     };
  2243     __ subptr(rsp, saved_rbp_offset * wordSize);
  2244     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2245     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2247     // check that int operands are properly extended to size_t
  2248     assert_clean_int(length, rax);
  2249     assert_clean_int(ckoff, rax);
  2251 #ifdef ASSERT
  2252     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2253     // The ckoff and ckval must be mutually consistent,
  2254     // even though caller generates both.
  2255     { Label L;
  2256       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2257                         Klass::super_check_offset_offset_in_bytes());
  2258       __ cmpl(ckoff, Address(ckval, sco_offset));
  2259       __ jcc(Assembler::equal, L);
  2260       __ stop("super_check_offset inconsistent");
  2261       __ bind(L);
  2263 #endif //ASSERT
  2265     // Loop-invariant addresses.  They are exclusive end pointers.
  2266     Address end_from_addr(from, length, TIMES_OOP, 0);
  2267     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2268     // Loop-variant addresses.  They assume post-incremented count < 0.
  2269     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2270     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2272     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  2274     // Copy from low to high addresses, indexed from the end of each array.
  2275     __ lea(end_from, end_from_addr);
  2276     __ lea(end_to,   end_to_addr);
  2277     __ movptr(r14_length, length);        // save a copy of the length
  2278     assert(length == count, "");          // else fix next line:
  2279     __ negptr(count);                     // negate and test the length
  2280     __ jcc(Assembler::notZero, L_load_element);
  2282     // Empty array:  Nothing to do.
  2283     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2284     __ jmp(L_done);
  2286     // ======== begin loop ========
  2287     // (Loop is rotated; its entry is L_load_element.)
  2288     // Loop control:
  2289     //   for (count = -count; count != 0; count++)
  2290     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2291     __ align(OptoLoopAlignment);
  2293     __ BIND(L_store_element);
  2294     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2295     __ increment(count);               // increment the count toward zero
  2296     __ jcc(Assembler::zero, L_do_card_marks);
  2298     // ======== loop entry is here ========
  2299     __ BIND(L_load_element);
  2300     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2301     __ testptr(rax_oop, rax_oop);
  2302     __ jcc(Assembler::zero, L_store_element);
  2304     __ load_klass(r11_klass, rax_oop);// query the object klass
  2305     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2306     // ======== end loop ========
  2308     // It was a real error; we must depend on the caller to finish the job.
  2309     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2310     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2311     // and report their number to the caller.
  2312     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2313     __ lea(end_to, to_element_addr);
  2314     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2315     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2316     __ movptr(rax, r14_length);           // original oops
  2317     __ addptr(rax, count);                // K = (original - remaining) oops
  2318     __ notptr(rax);                       // report (-1^K) to caller
  2319     __ jmp(L_done);
  2321     // Come here on success only.
  2322     __ BIND(L_do_card_marks);
  2323     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2324     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2325     __ xorptr(rax, rax);                  // return 0 on success
  2327     // Common exit point (success or failure).
  2328     __ BIND(L_done);
  2329     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2330     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2331     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2332     restore_arg_regs();
  2333     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2334     __ ret(0);
  2336     return start;
  2339   //
  2340   //  Generate 'unsafe' array copy stub
  2341   //  Though just as safe as the other stubs, it takes an unscaled
  2342   //  size_t argument instead of an element count.
  2343   //
  2344   //  Input:
  2345   //    c_rarg0   - source array address
  2346   //    c_rarg1   - destination array address
  2347   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2348   //
  2349   // Examines the alignment of the operands and dispatches
  2350   // to a long, int, short, or byte copy loop.
  2351   //
  2352   address generate_unsafe_copy(const char *name,
  2353                                address byte_copy_entry, address short_copy_entry,
  2354                                address int_copy_entry, address long_copy_entry) {
  2356     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2358     // Input registers (before setup_arg_regs)
  2359     const Register from        = c_rarg0;  // source array address
  2360     const Register to          = c_rarg1;  // destination array address
  2361     const Register size        = c_rarg2;  // byte count (size_t)
  2363     // Register used as a temp
  2364     const Register bits        = rax;      // test copy of low bits
  2366     __ align(CodeEntryAlignment);
  2367     StubCodeMark mark(this, "StubRoutines", name);
  2368     address start = __ pc();
  2370     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2372     // bump this on entry, not on exit:
  2373     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2375     __ mov(bits, from);
  2376     __ orptr(bits, to);
  2377     __ orptr(bits, size);
  2379     __ testb(bits, BytesPerLong-1);
  2380     __ jccb(Assembler::zero, L_long_aligned);
  2382     __ testb(bits, BytesPerInt-1);
  2383     __ jccb(Assembler::zero, L_int_aligned);
  2385     __ testb(bits, BytesPerShort-1);
  2386     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2388     __ BIND(L_short_aligned);
  2389     __ shrptr(size, LogBytesPerShort); // size => short_count
  2390     __ jump(RuntimeAddress(short_copy_entry));
  2392     __ BIND(L_int_aligned);
  2393     __ shrptr(size, LogBytesPerInt); // size => int_count
  2394     __ jump(RuntimeAddress(int_copy_entry));
  2396     __ BIND(L_long_aligned);
  2397     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2398     __ jump(RuntimeAddress(long_copy_entry));
  2400     return start;
  2403   // Perform range checks on the proposed arraycopy.
  2404   // Kills temp, but nothing else.
  2405   // Also, clean the sign bits of src_pos and dst_pos.
  2406   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2407                               Register src_pos, // source position (c_rarg1)
  2408                               Register dst,     // destination array oo (c_rarg2)
  2409                               Register dst_pos, // destination position (c_rarg3)
  2410                               Register length,
  2411                               Register temp,
  2412                               Label& L_failed) {
  2413     BLOCK_COMMENT("arraycopy_range_checks:");
  2415     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2416     __ movl(temp, length);
  2417     __ addl(temp, src_pos);             // src_pos + length
  2418     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2419     __ jcc(Assembler::above, L_failed);
  2421     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2422     __ movl(temp, length);
  2423     __ addl(temp, dst_pos);             // dst_pos + length
  2424     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2425     __ jcc(Assembler::above, L_failed);
  2427     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2428     // Move with sign extension can be used since they are positive.
  2429     __ movslq(src_pos, src_pos);
  2430     __ movslq(dst_pos, dst_pos);
  2432     BLOCK_COMMENT("arraycopy_range_checks done");
  2435   //
  2436   //  Generate generic array copy stubs
  2437   //
  2438   //  Input:
  2439   //    c_rarg0    -  src oop
  2440   //    c_rarg1    -  src_pos (32-bits)
  2441   //    c_rarg2    -  dst oop
  2442   //    c_rarg3    -  dst_pos (32-bits)
  2443   // not Win64
  2444   //    c_rarg4    -  element count (32-bits)
  2445   // Win64
  2446   //    rsp+40     -  element count (32-bits)
  2447   //
  2448   //  Output:
  2449   //    rax ==  0  -  success
  2450   //    rax == -1^K - failure, where K is partial transfer count
  2451   //
  2452   address generate_generic_copy(const char *name,
  2453                                 address byte_copy_entry, address short_copy_entry,
  2454                                 address int_copy_entry, address oop_copy_entry,
  2455                                 address long_copy_entry, address checkcast_copy_entry) {
  2457     Label L_failed, L_failed_0, L_objArray;
  2458     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2460     // Input registers
  2461     const Register src        = c_rarg0;  // source array oop
  2462     const Register src_pos    = c_rarg1;  // source position
  2463     const Register dst        = c_rarg2;  // destination array oop
  2464     const Register dst_pos    = c_rarg3;  // destination position
  2465 #ifndef _WIN64
  2466     const Register length     = c_rarg4;
  2467 #else
  2468     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
  2469 #endif
  2471     { int modulus = CodeEntryAlignment;
  2472       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2473       int advance = target - (__ offset() % modulus);
  2474       if (advance < 0)  advance += modulus;
  2475       if (advance > 0)  __ nop(advance);
  2477     StubCodeMark mark(this, "StubRoutines", name);
  2479     // Short-hop target to L_failed.  Makes for denser prologue code.
  2480     __ BIND(L_failed_0);
  2481     __ jmp(L_failed);
  2482     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2484     __ align(CodeEntryAlignment);
  2485     address start = __ pc();
  2487     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2489     // bump this on entry, not on exit:
  2490     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2492     //-----------------------------------------------------------------------
  2493     // Assembler stub will be used for this call to arraycopy
  2494     // if the following conditions are met:
  2495     //
  2496     // (1) src and dst must not be null.
  2497     // (2) src_pos must not be negative.
  2498     // (3) dst_pos must not be negative.
  2499     // (4) length  must not be negative.
  2500     // (5) src klass and dst klass should be the same and not NULL.
  2501     // (6) src and dst should be arrays.
  2502     // (7) src_pos + length must not exceed length of src.
  2503     // (8) dst_pos + length must not exceed length of dst.
  2504     //
  2506     //  if (src == NULL) return -1;
  2507     __ testptr(src, src);         // src oop
  2508     size_t j1off = __ offset();
  2509     __ jccb(Assembler::zero, L_failed_0);
  2511     //  if (src_pos < 0) return -1;
  2512     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2513     __ jccb(Assembler::negative, L_failed_0);
  2515     //  if (dst == NULL) return -1;
  2516     __ testptr(dst, dst);         // dst oop
  2517     __ jccb(Assembler::zero, L_failed_0);
  2519     //  if (dst_pos < 0) return -1;
  2520     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2521     size_t j4off = __ offset();
  2522     __ jccb(Assembler::negative, L_failed_0);
  2524     // The first four tests are very dense code,
  2525     // but not quite dense enough to put four
  2526     // jumps in a 16-byte instruction fetch buffer.
  2527     // That's good, because some branch predicters
  2528     // do not like jumps so close together.
  2529     // Make sure of this.
  2530     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2532     // registers used as temp
  2533     const Register r11_length    = r11; // elements count to copy
  2534     const Register r10_src_klass = r10; // array klass
  2536     //  if (length < 0) return -1;
  2537     __ movl(r11_length, length);        // length (elements count, 32-bits value)
  2538     __ testl(r11_length, r11_length);
  2539     __ jccb(Assembler::negative, L_failed_0);
  2541     __ load_klass(r10_src_klass, src);
  2542 #ifdef ASSERT
  2543     //  assert(src->klass() != NULL);
  2545       BLOCK_COMMENT("assert klasses not null {");
  2546       Label L1, L2;
  2547       __ testptr(r10_src_klass, r10_src_klass);
  2548       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2549       __ bind(L1);
  2550       __ stop("broken null klass");
  2551       __ bind(L2);
  2552       __ load_klass(rax, dst);
  2553       __ cmpq(rax, 0);
  2554       __ jcc(Assembler::equal, L1);     // this would be broken also
  2555       BLOCK_COMMENT("} assert klasses not null done");
  2557 #endif
  2559     // Load layout helper (32-bits)
  2560     //
  2561     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2562     // 32        30    24            16              8     2                 0
  2563     //
  2564     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2565     //
  2567     const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2568                           Klass::layout_helper_offset_in_bytes();
  2570     // Handle objArrays completely differently...
  2571     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2572     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
  2573     __ jcc(Assembler::equal, L_objArray);
  2575     //  if (src->klass() != dst->klass()) return -1;
  2576     __ load_klass(rax, dst);
  2577     __ cmpq(r10_src_klass, rax);
  2578     __ jcc(Assembler::notEqual, L_failed);
  2580     const Register rax_lh = rax;  // layout helper
  2581     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2583     //  if (!src->is_Array()) return -1;
  2584     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2585     __ jcc(Assembler::greaterEqual, L_failed);
  2587     // At this point, it is known to be a typeArray (array_tag 0x3).
  2588 #ifdef ASSERT
  2590       BLOCK_COMMENT("assert primitive array {");
  2591       Label L;
  2592       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2593       __ jcc(Assembler::greaterEqual, L);
  2594       __ stop("must be a primitive array");
  2595       __ bind(L);
  2596       BLOCK_COMMENT("} assert primitive array done");
  2598 #endif
  2600     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2601                            r10, L_failed);
  2603     // typeArrayKlass
  2604     //
  2605     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2606     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2607     //
  2609     const Register r10_offset = r10;    // array offset
  2610     const Register rax_elsize = rax_lh; // element size
  2612     __ movl(r10_offset, rax_lh);
  2613     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2614     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2615     __ addptr(src, r10_offset);           // src array offset
  2616     __ addptr(dst, r10_offset);           // dst array offset
  2617     BLOCK_COMMENT("choose copy loop based on element size");
  2618     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2620     // next registers should be set before the jump to corresponding stub
  2621     const Register from     = c_rarg0;  // source array address
  2622     const Register to       = c_rarg1;  // destination array address
  2623     const Register count    = c_rarg2;  // elements count
  2625     // 'from', 'to', 'count' registers should be set in such order
  2626     // since they are the same as 'src', 'src_pos', 'dst'.
  2628   __ BIND(L_copy_bytes);
  2629     __ cmpl(rax_elsize, 0);
  2630     __ jccb(Assembler::notEqual, L_copy_shorts);
  2631     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2632     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2633     __ movl2ptr(count, r11_length); // length
  2634     __ jump(RuntimeAddress(byte_copy_entry));
  2636   __ BIND(L_copy_shorts);
  2637     __ cmpl(rax_elsize, LogBytesPerShort);
  2638     __ jccb(Assembler::notEqual, L_copy_ints);
  2639     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2640     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2641     __ movl2ptr(count, r11_length); // length
  2642     __ jump(RuntimeAddress(short_copy_entry));
  2644   __ BIND(L_copy_ints);
  2645     __ cmpl(rax_elsize, LogBytesPerInt);
  2646     __ jccb(Assembler::notEqual, L_copy_longs);
  2647     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2648     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2649     __ movl2ptr(count, r11_length); // length
  2650     __ jump(RuntimeAddress(int_copy_entry));
  2652   __ BIND(L_copy_longs);
  2653 #ifdef ASSERT
  2655       BLOCK_COMMENT("assert long copy {");
  2656       Label L;
  2657       __ cmpl(rax_elsize, LogBytesPerLong);
  2658       __ jcc(Assembler::equal, L);
  2659       __ stop("must be long copy, but elsize is wrong");
  2660       __ bind(L);
  2661       BLOCK_COMMENT("} assert long copy done");
  2663 #endif
  2664     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2665     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2666     __ movl2ptr(count, r11_length); // length
  2667     __ jump(RuntimeAddress(long_copy_entry));
  2669     // objArrayKlass
  2670   __ BIND(L_objArray);
  2671     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
  2673     Label L_plain_copy, L_checkcast_copy;
  2674     //  test array classes for subtyping
  2675     __ load_klass(rax, dst);
  2676     __ cmpq(r10_src_klass, rax); // usual case is exact equality
  2677     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2679     // Identically typed arrays can be copied without element-wise checks.
  2680     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2681                            r10, L_failed);
  2683     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2684                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2685     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2686                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2687     __ movl2ptr(count, r11_length); // length
  2688   __ BIND(L_plain_copy);
  2689     __ jump(RuntimeAddress(oop_copy_entry));
  2691   __ BIND(L_checkcast_copy);
  2692     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
  2694       // Before looking at dst.length, make sure dst is also an objArray.
  2695       __ cmpl(Address(rax, lh_offset), objArray_lh);
  2696       __ jcc(Assembler::notEqual, L_failed);
  2698       // It is safe to examine both src.length and dst.length.
  2699       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2700                              rax, L_failed);
  2702       const Register r11_dst_klass = r11;
  2703       __ load_klass(r11_dst_klass, dst); // reload
  2705       // Marshal the base address arguments now, freeing registers.
  2706       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2707                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2708       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2709                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2710       __ movl(count, length);           // length (reloaded)
  2711       Register sco_temp = c_rarg3;      // this register is free now
  2712       assert_different_registers(from, to, count, sco_temp,
  2713                                  r11_dst_klass, r10_src_klass);
  2714       assert_clean_int(count, sco_temp);
  2716       // Generate the type check.
  2717       const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2718                               Klass::super_check_offset_offset_in_bytes());
  2719       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2720       assert_clean_int(sco_temp, rax);
  2721       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2723       // Fetch destination element klass from the objArrayKlass header.
  2724       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2725                        objArrayKlass::element_klass_offset_in_bytes());
  2726       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2727       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
  2728       assert_clean_int(sco_temp, rax);
  2730       // the checkcast_copy loop needs two extra arguments:
  2731       assert(c_rarg3 == sco_temp, "#3 already in place");
  2732       // Set up arguments for checkcast_copy_entry.
  2733       setup_arg_regs(4);
  2734       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
  2735       __ jump(RuntimeAddress(checkcast_copy_entry));
  2738   __ BIND(L_failed);
  2739     __ xorptr(rax, rax);
  2740     __ notptr(rax); // return -1
  2741     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2742     __ ret(0);
  2744     return start;
  2747   void generate_arraycopy_stubs() {
  2748     address entry;
  2749     address entry_jbyte_arraycopy;
  2750     address entry_jshort_arraycopy;
  2751     address entry_jint_arraycopy;
  2752     address entry_oop_arraycopy;
  2753     address entry_jlong_arraycopy;
  2754     address entry_checkcast_arraycopy;
  2756     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
  2757                                                                            "jbyte_disjoint_arraycopy");
  2758     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
  2759                                                                            "jbyte_arraycopy");
  2761     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
  2762                                                                             "jshort_disjoint_arraycopy");
  2763     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
  2764                                                                             "jshort_arraycopy");
  2766     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
  2767                                                                               "jint_disjoint_arraycopy");
  2768     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
  2769                                                                               &entry_jint_arraycopy, "jint_arraycopy");
  2771     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
  2772                                                                                "jlong_disjoint_arraycopy");
  2773     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
  2774                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
  2777     if (UseCompressedOops) {
  2778       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
  2779                                                                               "oop_disjoint_arraycopy");
  2780       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
  2781                                                                               &entry_oop_arraycopy, "oop_arraycopy");
  2782       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
  2783                                                                                      "oop_disjoint_arraycopy_uninit",
  2784                                                                                      /*dest_uninitialized*/true);
  2785       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
  2786                                                                                      NULL, "oop_arraycopy_uninit",
  2787                                                                                      /*dest_uninitialized*/true);
  2788     } else {
  2789       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
  2790                                                                                "oop_disjoint_arraycopy");
  2791       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
  2792                                                                                &entry_oop_arraycopy, "oop_arraycopy");
  2793       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
  2794                                                                                       "oop_disjoint_arraycopy_uninit",
  2795                                                                                       /*dest_uninitialized*/true);
  2796       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
  2797                                                                                       NULL, "oop_arraycopy_uninit",
  2798                                                                                       /*dest_uninitialized*/true);
  2801     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2802     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
  2803                                                                         /*dest_uninitialized*/true);
  2805     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
  2806                                                               entry_jbyte_arraycopy,
  2807                                                               entry_jshort_arraycopy,
  2808                                                               entry_jint_arraycopy,
  2809                                                               entry_jlong_arraycopy);
  2810     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
  2811                                                                entry_jbyte_arraycopy,
  2812                                                                entry_jshort_arraycopy,
  2813                                                                entry_jint_arraycopy,
  2814                                                                entry_oop_arraycopy,
  2815                                                                entry_jlong_arraycopy,
  2816                                                                entry_checkcast_arraycopy);
  2818     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2819     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2820     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2821     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2822     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2823     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2825     // We don't generate specialized code for HeapWord-aligned source
  2826     // arrays, so just use the code we've already generated
  2827     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2828     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2830     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2831     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2833     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2834     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2836     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2837     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2839     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2840     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2842     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2843     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
  2846   void generate_math_stubs() {
  2848       StubCodeMark mark(this, "StubRoutines", "log");
  2849       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2851       __ subq(rsp, 8);
  2852       __ movdbl(Address(rsp, 0), xmm0);
  2853       __ fld_d(Address(rsp, 0));
  2854       __ flog();
  2855       __ fstp_d(Address(rsp, 0));
  2856       __ movdbl(xmm0, Address(rsp, 0));
  2857       __ addq(rsp, 8);
  2858       __ ret(0);
  2861       StubCodeMark mark(this, "StubRoutines", "log10");
  2862       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2864       __ subq(rsp, 8);
  2865       __ movdbl(Address(rsp, 0), xmm0);
  2866       __ fld_d(Address(rsp, 0));
  2867       __ flog10();
  2868       __ fstp_d(Address(rsp, 0));
  2869       __ movdbl(xmm0, Address(rsp, 0));
  2870       __ addq(rsp, 8);
  2871       __ ret(0);
  2874       StubCodeMark mark(this, "StubRoutines", "sin");
  2875       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2877       __ subq(rsp, 8);
  2878       __ movdbl(Address(rsp, 0), xmm0);
  2879       __ fld_d(Address(rsp, 0));
  2880       __ trigfunc('s');
  2881       __ fstp_d(Address(rsp, 0));
  2882       __ movdbl(xmm0, Address(rsp, 0));
  2883       __ addq(rsp, 8);
  2884       __ ret(0);
  2887       StubCodeMark mark(this, "StubRoutines", "cos");
  2888       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2890       __ subq(rsp, 8);
  2891       __ movdbl(Address(rsp, 0), xmm0);
  2892       __ fld_d(Address(rsp, 0));
  2893       __ trigfunc('c');
  2894       __ fstp_d(Address(rsp, 0));
  2895       __ movdbl(xmm0, Address(rsp, 0));
  2896       __ addq(rsp, 8);
  2897       __ ret(0);
  2900       StubCodeMark mark(this, "StubRoutines", "tan");
  2901       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2903       __ subq(rsp, 8);
  2904       __ movdbl(Address(rsp, 0), xmm0);
  2905       __ fld_d(Address(rsp, 0));
  2906       __ trigfunc('t');
  2907       __ fstp_d(Address(rsp, 0));
  2908       __ movdbl(xmm0, Address(rsp, 0));
  2909       __ addq(rsp, 8);
  2910       __ ret(0);
  2913     // The intrinsic version of these seem to return the same value as
  2914     // the strict version.
  2915     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2916     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2919 #undef __
  2920 #define __ masm->
  2922   // Continuation point for throwing of implicit exceptions that are
  2923   // not handled in the current activation. Fabricates an exception
  2924   // oop and initiates normal exception dispatching in this
  2925   // frame. Since we need to preserve callee-saved values (currently
  2926   // only for C2, but done for C1 as well) we need a callee-saved oop
  2927   // map and therefore have to make these stubs into RuntimeStubs
  2928   // rather than BufferBlobs.  If the compiler needs all registers to
  2929   // be preserved between the fault point and the exception handler
  2930   // then it must assume responsibility for that in
  2931   // AbstractCompiler::continuation_for_implicit_null_exception or
  2932   // continuation_for_implicit_division_by_zero_exception. All other
  2933   // implicit exceptions (e.g., NullPointerException or
  2934   // AbstractMethodError on entry) are either at call sites or
  2935   // otherwise assume that stack unwinding will be initiated, so
  2936   // caller saved registers were assumed volatile in the compiler.
  2937   address generate_throw_exception(const char* name,
  2938                                    address runtime_entry,
  2939                                    Register arg1 = noreg,
  2940                                    Register arg2 = noreg) {
  2941     // Information about frame layout at time of blocking runtime call.
  2942     // Note that we only have to preserve callee-saved registers since
  2943     // the compilers are responsible for supplying a continuation point
  2944     // if they expect all registers to be preserved.
  2945     enum layout {
  2946       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2947       rbp_off2,
  2948       return_off,
  2949       return_off2,
  2950       framesize // inclusive of return address
  2951     };
  2953     int insts_size = 512;
  2954     int locs_size  = 64;
  2956     CodeBuffer code(name, insts_size, locs_size);
  2957     OopMapSet* oop_maps  = new OopMapSet();
  2958     MacroAssembler* masm = new MacroAssembler(&code);
  2960     address start = __ pc();
  2962     // This is an inlined and slightly modified version of call_VM
  2963     // which has the ability to fetch the return PC out of
  2964     // thread-local storage and also sets up last_Java_sp slightly
  2965     // differently than the real call_VM
  2967     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2969     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2971     // return address and rbp are already in place
  2972     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2974     int frame_complete = __ pc() - start;
  2976     // Set up last_Java_sp and last_Java_fp
  2977     __ set_last_Java_frame(rsp, rbp, NULL);
  2979     // Call runtime
  2980     if (arg1 != noreg) {
  2981       assert(arg2 != c_rarg1, "clobbered");
  2982       __ movptr(c_rarg1, arg1);
  2984     if (arg2 != noreg) {
  2985       __ movptr(c_rarg2, arg2);
  2987     __ movptr(c_rarg0, r15_thread);
  2988     BLOCK_COMMENT("call runtime_entry");
  2989     __ call(RuntimeAddress(runtime_entry));
  2991     // Generate oop map
  2992     OopMap* map = new OopMap(framesize, 0);
  2994     oop_maps->add_gc_map(__ pc() - start, map);
  2996     __ reset_last_Java_frame(true, false);
  2998     __ leave(); // required for proper stackwalking of RuntimeStub frame
  3000     // check for pending exceptions
  3001 #ifdef ASSERT
  3002     Label L;
  3003     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  3004             (int32_t) NULL_WORD);
  3005     __ jcc(Assembler::notEqual, L);
  3006     __ should_not_reach_here();
  3007     __ bind(L);
  3008 #endif // ASSERT
  3009     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3012     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  3013     RuntimeStub* stub =
  3014       RuntimeStub::new_runtime_stub(name,
  3015                                     &code,
  3016                                     frame_complete,
  3017                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  3018                                     oop_maps, false);
  3019     return stub->entry_point();
  3022   // Initialization
  3023   void generate_initial() {
  3024     // Generates all stubs and initializes the entry points
  3026     // This platform-specific stub is needed by generate_call_stub()
  3027     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  3029     // entry points that exist in all platforms Note: This is code
  3030     // that could be shared among different platforms - however the
  3031     // benefit seems to be smaller than the disadvantage of having a
  3032     // much more complicated generator structure. See also comment in
  3033     // stubRoutines.hpp.
  3035     StubRoutines::_forward_exception_entry = generate_forward_exception();
  3037     StubRoutines::_call_stub_entry =
  3038       generate_call_stub(StubRoutines::_call_stub_return_address);
  3040     // is referenced by megamorphic call
  3041     StubRoutines::_catch_exception_entry = generate_catch_exception();
  3043     // atomic calls
  3044     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3045     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  3046     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3047     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3048     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3049     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  3050     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  3052     StubRoutines::_handler_for_unsafe_access_entry =
  3053       generate_handler_for_unsafe_access();
  3055     // platform dependent
  3056     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  3058     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  3060     // Build this early so it's available for the interpreter.  Stub
  3061     // expects the required and actual types as register arguments in
  3062     // j_rarg0 and j_rarg1 respectively.
  3063     StubRoutines::_throw_WrongMethodTypeException_entry =
  3064       generate_throw_exception("WrongMethodTypeException throw_exception",
  3065                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
  3066                                rax, rcx);
  3069   void generate_all() {
  3070     // Generates all stubs and initializes the entry points
  3072     // These entry points require SharedInfo::stack0 to be set up in
  3073     // non-core builds and need to be relocatable, so they each
  3074     // fabricate a RuntimeStub internally.
  3075     StubRoutines::_throw_AbstractMethodError_entry =
  3076       generate_throw_exception("AbstractMethodError throw_exception",
  3077                                CAST_FROM_FN_PTR(address,
  3078                                                 SharedRuntime::
  3079                                                 throw_AbstractMethodError));
  3081     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  3082       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  3083                                CAST_FROM_FN_PTR(address,
  3084                                                 SharedRuntime::
  3085                                                 throw_IncompatibleClassChangeError));
  3087     StubRoutines::_throw_NullPointerException_at_call_entry =
  3088       generate_throw_exception("NullPointerException at call throw_exception",
  3089                                CAST_FROM_FN_PTR(address,
  3090                                                 SharedRuntime::
  3091                                                 throw_NullPointerException_at_call));
  3093     StubRoutines::_throw_StackOverflowError_entry =
  3094       generate_throw_exception("StackOverflowError throw_exception",
  3095                                CAST_FROM_FN_PTR(address,
  3096                                                 SharedRuntime::
  3097                                                 throw_StackOverflowError));
  3099     // entry points that are platform specific
  3100     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  3101     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  3102     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  3103     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  3105     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  3106     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  3107     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  3108     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3110     // support for verify_oop (must happen after universe_init)
  3111     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3113     // arraycopy stubs used by compilers
  3114     generate_arraycopy_stubs();
  3116     generate_math_stubs();
  3119  public:
  3120   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3121     if (all) {
  3122       generate_all();
  3123     } else {
  3124       generate_initial();
  3127 }; // end class declaration
  3129 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3130   StubGenerator g(code, all);

mercurial