src/cpu/x86/vm/methodHandles_x86.cpp

Sat, 10 Sep 2011 00:11:04 -0700

author
never
date
Sat, 10 Sep 2011 00:11:04 -0700
changeset 3136
c565834fb592
parent 3105
c26de9aef2ed
child 3196
0abefdb54d21
permissions
-rw-r--r--

7088020: SEGV in JNIHandleBlock::release_block
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "prims/methodHandles.hpp"
    31 #define __ _masm->
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) /* nothing */
    35 #else
    36 #define BLOCK_COMMENT(str) __ block_comment(str)
    37 #endif
    39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
    42 static RegisterOrConstant constant(int value) {
    43   return RegisterOrConstant(value);
    44 }
    46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    47                                                 address interpreted_entry) {
    48   // Just before the actual machine code entry point, allocate space
    49   // for a MethodHandleEntry::Data record, so that we can manage everything
    50   // from one base pointer.
    51   __ align(wordSize);
    52   address target = __ pc() + sizeof(Data);
    53   while (__ pc() < target) {
    54     __ nop();
    55     __ align(wordSize);
    56   }
    58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    59   me->set_end_address(__ pc());         // set a temporary end_address
    60   me->set_from_interpreted_entry(interpreted_entry);
    61   me->set_type_checking_entry(NULL);
    63   return (address) me;
    64 }
    66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    67                                                 address start_addr) {
    68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    69   assert(me->end_address() == start_addr, "valid ME");
    71   // Fill in the real end_address:
    72   __ align(wordSize);
    73   me->set_end_address(__ pc());
    75   return me;
    76 }
    78 // stack walking support
    80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    81   RicochetFrame* f = RicochetFrame::from_frame(fr);
    82   if (map->update_map())
    83     frame::update_map_with_saved_link(map, &f->_sender_link);
    84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
    85 }
    87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    88   RicochetFrame* f = RicochetFrame::from_frame(fr);
    90   // pick up the argument type descriptor:
    91   Thread* thread = Thread::current();
    92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    94   // process fixed part
    95   blk->do_oop((oop*)f->saved_target_addr());
    96   blk->do_oop((oop*)f->saved_args_layout_addr());
    98   // process variable arguments:
    99   if (cookie.is_null())  return;  // no arguments to describe
   101   // the cookie is actually the invokeExact method for my target
   102   // his argument signature is what I'm interested in
   103   assert(cookie->is_method(), "");
   104   methodHandle invoker(thread, methodOop(cookie()));
   105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   106   assert(!invoker->is_static(), "must have MH argument");
   107   int slot_count = invoker->size_of_parameters();
   108   assert(slot_count >= 1, "must include 'this'");
   109   intptr_t* base = f->saved_args_base();
   110   intptr_t* retval = NULL;
   111   if (f->has_return_value_slot())
   112     retval = f->return_value_slot_addr();
   113   int slot_num = slot_count;
   114   intptr_t* loc = &base[slot_num -= 1];
   115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   116   int arg_num = 0;
   117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   118     if (ss.at_return_type())  continue;
   119     BasicType ptype = ss.type();
   120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   122     loc = &base[slot_num -= type2size[ptype]];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   131   oop cookie = NULL;
   132   if (read_cache) {
   133     cookie = saved_args_layout();
   134     if (cookie != NULL)  return cookie;
   135   }
   136   oop target = saved_target();
   137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   138   oop mtform = java_lang_invoke_MethodType::form(mtype);
   139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   140   if (write_cache)  {
   141     (*saved_args_layout_addr()) = cookie;
   142   }
   143   return cookie;
   144 }
   146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   147                                                           // output params:
   148                                                           int* bounce_offset,
   149                                                           int* exception_offset,
   150                                                           int* frame_size_in_words) {
   151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   153   address start = __ pc();
   155 #ifdef ASSERT
   156   __ hlt(); __ hlt(); __ hlt();
   157   // here's a hint of something special:
   158   __ push(MAGIC_NUMBER_1);
   159   __ push(MAGIC_NUMBER_2);
   160 #endif //ASSERT
   161   __ hlt();  // not reached
   163   // A return PC has just been popped from the stack.
   164   // Return values are in registers.
   165   // The ebp points into the RicochetFrame, which contains
   166   // a cleanup continuation we must return to.
   168   (*bounce_offset) = __ pc() - start;
   169   BLOCK_COMMENT("ricochet_blob.bounce");
   171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
   174   __ jmp(frame_address(continuation_offset_in_bytes()));
   175   __ hlt();
   176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
   178   (*exception_offset) = __ pc() - start;
   179   BLOCK_COMMENT("ricochet_blob.exception");
   181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   183   // Live registers in:
   184   //   rax: exception
   185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
   186   __ verify_oop(rax);
   188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
   190   // Take down the frame.
   192   // Cf. InterpreterMacroAssembler::remove_activation.
   193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
   194                        saved_last_sp_register(),
   195                        /*sender_pc_reg=*/ rdx);
   197   // In between activations - previous activation type unknown yet
   198   // compute continuation point - the continuation point expects the
   199   // following registers set up:
   200   //
   201   // rax: exception
   202   // rdx: return address/pc that threw exception
   203   // rsp: expression stack of caller
   204   // rbp: ebp of caller
   205   __ push(rax);                                  // save exception
   206   __ push(rdx);                                  // save return address
   207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
   208   NOT_LP64(__ get_thread(thread_reg));
   209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   210                                    SharedRuntime::exception_handler_for_return_address),
   211                   thread_reg, rdx);
   212   __ mov(rbx, rax);                              // save exception handler
   213   __ pop(rdx);                                   // restore return address
   214   __ pop(rax);                                   // restore exception
   215   __ jmp(rbx);                                   // jump to exception
   216                                                  // handler of caller
   217 }
   219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   220                                                         Register rcx_recv,
   221                                                         Register rax_argv,
   222                                                         address return_handler,
   223                                                         Register rbx_temp) {
   224   const Register saved_last_sp = saved_last_sp_register();
   225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
   226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
   228   // Push the RicochetFrame a word at a time.
   229   // This creates something similar to an interpreter frame.
   230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
   231   BLOCK_COMMENT("push RicochetFrame {");
   232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
   233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
   234 #define RF_FIELD(push_value, name)                                      \
   235   { push_value;                                                         \
   236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
   237   RF_FIELD(__ push(rbp),                   sender_link);
   238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
   239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
   240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
   241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
   242   if (UseCompressedOops) {
   243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
   244     RF_FIELD(__ push(rbx_temp),            saved_target);
   245   } else {
   246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
   247   }
   248   __ lea(rbx_temp, ExternalAddress(return_handler));
   249   RF_FIELD(__ push(rbx_temp),              continuation);
   250 #undef RF_FIELD
   251   assert(rfo == 0, "fully initialized the RicochetFrame");
   252   // compute new frame pointer:
   253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
   254   // Push guard word #1 in debug mode.
   255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
   256   // For debugging, leave behind an indication of which stub built this frame.
   257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
   258   BLOCK_COMMENT("} RicochetFrame");
   259 }
   261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   262                                                         Register rcx_recv,
   263                                                         Register new_sp_reg,
   264                                                         Register sender_pc_reg) {
   265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
   266   const Register saved_last_sp = saved_last_sp_register();
   267   // Take down the frame.
   268   // Cf. InterpreterMacroAssembler::remove_activation.
   269   BLOCK_COMMENT("end_ricochet_frame {");
   270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
   271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
   272   if (rcx_recv->is_valid())
   273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
   274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
   275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
   276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
   277   __ mov(rsp, new_sp_reg);
   278   BLOCK_COMMENT("} end_ricochet_frame");
   279 }
   281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
   282 #ifdef ASSERT
   283 enum {
   284   ARG_LIMIT = 255, SLOP = 4,
   285   // use this parameter for checking for garbage stack movements:
   286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   287   // the slop defends against false alarms due to fencepost errors
   288 };
   290 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   291   // The stack should look like this:
   292   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
   293   // Check various invariants.
   294   verify_offsets();
   296   Register rdi_temp = rdi;
   297   Register rcx_temp = rcx;
   298   { __ push(rdi_temp); __ push(rcx_temp); }
   299 #define UNPUSH_TEMPS \
   300   { __ pop(rcx_temp);  __ pop(rdi_temp); }
   302   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
   303   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
   304   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
   305   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
   306   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
   308   Label L_bad, L_ok;
   309   BLOCK_COMMENT("verify_clean {");
   310   // Magic numbers must check out:
   311   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
   312   __ jcc(Assembler::notEqual, L_bad);
   313   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
   314   __ jcc(Assembler::notEqual, L_bad);
   316   // Arguments pointer must look reasonable:
   317   __ movptr(rcx_temp, saved_args_base_addr);
   318   __ cmpptr(rcx_temp, rbp);
   319   __ jcc(Assembler::below, L_bad);
   320   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
   321   __ cmpptr(rcx_temp, rbp);
   322   __ jcc(Assembler::above, L_bad);
   324   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
   325   __ cmpl(rdi_temp, T_VOID);
   326   __ jcc(Assembler::equal, L_ok);
   327   __ movptr(rcx_temp, saved_args_base_addr);
   328   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
   329   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
   330             (int32_t) RETURN_VALUE_PLACEHOLDER);
   331   __ jcc(Assembler::equal, L_ok);
   332   __ BIND(L_bad);
   333   UNPUSH_TEMPS;
   334   __ stop("damaged ricochet frame");
   335   __ BIND(L_ok);
   336   UNPUSH_TEMPS;
   337   BLOCK_COMMENT("} verify_clean");
   339 #undef UNPUSH_TEMPS
   341 }
   342 #endif //ASSERT
   344 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
   345   if (VerifyMethodHandles)
   346     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
   347                  "AMH argument is a Class");
   348   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
   349 }
   351 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   352   int bits   = BitsPerByte;
   353   int offset = (CONV_VMINFO_SHIFT / bits);
   354   int shift  = (CONV_VMINFO_SHIFT % bits);
   355   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   356   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
   357   assert(shift == 0, "no shift needed");
   358 }
   360 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   361   int bits   = BitsPerByte;
   362   int offset = (CONV_DEST_TYPE_SHIFT / bits);
   363   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
   364   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   365   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
   366   __ shrl(reg, shift);
   367   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
   368   assert((shift + conv_type_bits) == bits, "left justified in byte");
   369 }
   371 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   372                                     Register rdi_stack_move,
   373                                     Register rcx_amh,
   374                                     bool might_be_negative) {
   375   BLOCK_COMMENT("load_stack_move {");
   376   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   377   __ movl(rdi_stack_move, rcx_amh_conversion);
   378   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   379 #ifdef _LP64
   380   if (might_be_negative) {
   381     // clean high bits of stack motion register (was loaded as an int)
   382     __ movslq(rdi_stack_move, rdi_stack_move);
   383   }
   384 #endif //_LP64
   385   if (VerifyMethodHandles) {
   386     Label L_ok, L_bad;
   387     int32_t stack_move_limit = 0x4000;  // extra-large
   388     __ cmpptr(rdi_stack_move, stack_move_limit);
   389     __ jcc(Assembler::greaterEqual, L_bad);
   390     __ cmpptr(rdi_stack_move, -stack_move_limit);
   391     __ jcc(Assembler::greater, L_ok);
   392     __ bind(L_bad);
   393     __ stop("load_stack_move of garbage value");
   394     __ BIND(L_ok);
   395   }
   396   BLOCK_COMMENT("} load_stack_move");
   397 }
   399 #ifdef ASSERT
   400 void MethodHandles::RicochetFrame::verify_offsets() {
   401   // Check compatibility of this struct with the more generally used offsets of class frame:
   402   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
   403   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
   404   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
   405   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
   406   // These last two have to be exact:
   407   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
   408   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
   409 }
   411 void MethodHandles::RicochetFrame::verify() const {
   412   verify_offsets();
   413   assert(magic_number_1() == MAGIC_NUMBER_1, "");
   414   assert(magic_number_2() == MAGIC_NUMBER_2, "");
   415   if (!Universe::heap()->is_gc_active()) {
   416     if (saved_args_layout() != NULL) {
   417       assert(saved_args_layout()->is_method(), "must be valid oop");
   418     }
   419     if (saved_target() != NULL) {
   420       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   421     }
   422   }
   423   int conv_op = adapter_conversion_op(conversion());
   424   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   425          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   426          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   427          "must be a sane conversion");
   428   if (has_return_value_slot()) {
   429     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   430   }
   431 }
   432 #endif //PRODUCT
   434 #ifdef ASSERT
   435 void MethodHandles::verify_argslot(MacroAssembler* _masm,
   436                                    Register argslot_reg,
   437                                    const char* error_message) {
   438   // Verify that argslot lies within (rsp, rbp].
   439   Label L_ok, L_bad;
   440   BLOCK_COMMENT("verify_argslot {");
   441   __ cmpptr(argslot_reg, rbp);
   442   __ jccb(Assembler::above, L_bad);
   443   __ cmpptr(rsp, argslot_reg);
   444   __ jccb(Assembler::below, L_ok);
   445   __ bind(L_bad);
   446   __ stop(error_message);
   447   __ BIND(L_ok);
   448   BLOCK_COMMENT("} verify_argslot");
   449 }
   451 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   452                                     RegisterOrConstant arg_slots,
   453                                     Register arg_slot_base_reg,
   454                                     bool negate_argslots,
   455                                     const char* error_message) {
   456   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   457   Label L_ok, L_bad;
   458   Register rdi_temp = rdi;
   459   BLOCK_COMMENT("verify_argslots {");
   460   __ push(rdi_temp);
   461   if (negate_argslots) {
   462     if (arg_slots.is_constant()) {
   463       arg_slots = -1 * arg_slots.as_constant();
   464     } else {
   465       __ movptr(rdi_temp, arg_slots);
   466       __ negptr(rdi_temp);
   467       arg_slots = rdi_temp;
   468     }
   469   }
   470   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
   471   __ cmpptr(rdi_temp, rbp);
   472   __ pop(rdi_temp);
   473   __ jcc(Assembler::above, L_bad);
   474   __ cmpptr(rsp, arg_slot_base_reg);
   475   __ jcc(Assembler::below, L_ok);
   476   __ bind(L_bad);
   477   __ stop(error_message);
   478   __ BIND(L_ok);
   479   BLOCK_COMMENT("} verify_argslots");
   480 }
   482 // Make sure that arg_slots has the same sign as the given direction.
   483 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   484 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   485                                       RegisterOrConstant arg_slots, int direction) {
   486   bool allow_zero = arg_slots.is_constant();
   487   if (direction == 0) { direction = +1; allow_zero = true; }
   488   assert(stack_move_unit() == -1, "else add extra checks here");
   489   if (arg_slots.is_register()) {
   490     Label L_ok, L_bad;
   491     BLOCK_COMMENT("verify_stack_move {");
   492     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
   493     // jcc(Assembler::notZero, L_bad);
   494     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   495     if (direction > 0) {
   496       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
   497       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   498       __ jcc(Assembler::less, L_ok);
   499     } else {
   500       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
   501       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   502       __ jcc(Assembler::greater, L_ok);
   503     }
   504     __ bind(L_bad);
   505     if (direction > 0)
   506       __ stop("assert arg_slots > 0");
   507     else
   508       __ stop("assert arg_slots < 0");
   509     __ BIND(L_ok);
   510     BLOCK_COMMENT("} verify_stack_move");
   511   } else {
   512     intptr_t size = arg_slots.as_constant();
   513     if (direction < 0)  size = -size;
   514     assert(size >= 0, "correct direction of constant move");
   515     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   516   }
   517 }
   519 void MethodHandles::verify_klass(MacroAssembler* _masm,
   520                                  Register obj, KlassHandle klass,
   521                                  const char* error_message) {
   522   oop* klass_addr = klass.raw_value();
   523   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   524          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   525          "must be one of the SystemDictionaryHandles");
   526   Register temp = rdi;
   527   Label L_ok, L_bad;
   528   BLOCK_COMMENT("verify_klass {");
   529   __ verify_oop(obj);
   530   __ testptr(obj, obj);
   531   __ jcc(Assembler::zero, L_bad);
   532   __ push(temp);
   533   __ load_klass(temp, obj);
   534   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   535   __ jcc(Assembler::equal, L_ok);
   536   intptr_t super_check_offset = klass->super_check_offset();
   537   __ movptr(temp, Address(temp, super_check_offset));
   538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   539   __ jcc(Assembler::equal, L_ok);
   540   __ pop(temp);
   541   __ bind(L_bad);
   542   __ stop(error_message);
   543   __ BIND(L_ok);
   544   __ pop(temp);
   545   BLOCK_COMMENT("} verify_klass");
   546 }
   547 #endif //ASSERT
   549 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
   550   if (JvmtiExport::can_post_interpreter_events()) {
   551     Label run_compiled_code;
   552     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   553     // compiled code in threads for which the event is enabled.  Check here for
   554     // interp_only_mode if these events CAN be enabled.
   555 #ifdef _LP64
   556     Register rthread = r15_thread;
   557 #else
   558     Register rthread = temp;
   559     __ get_thread(rthread);
   560 #endif
   561     // interp_only is an int, on little endian it is sufficient to test the byte only
   562     // Is a cmpl faster?
   563     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
   564     __ jccb(Assembler::zero, run_compiled_code);
   565     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   566     __ bind(run_compiled_code);
   567   }
   568   __ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   569 }
   571 // Code generation
   572 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   573   // rbx: methodOop
   574   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   575   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   576   // rdx, rdi: garbage temp, blown away
   578   Register rbx_method = rbx;
   579   Register rcx_recv   = rcx;
   580   Register rax_mtype  = rax;
   581   Register rdx_temp   = rdx;
   582   Register rdi_temp   = rdi;
   584   // emit WrongMethodType path first, to enable jccb back-branch from main path
   585   Label wrong_method_type;
   586   __ bind(wrong_method_type);
   587   Label invoke_generic_slow_path, invoke_exact_error_path;
   588   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   589   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   590   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   591   __ jmp(invoke_exact_error_path);
   593   // here's where control starts out:
   594   __ align(CodeEntryAlignment);
   595   address entry_point = __ pc();
   597   // fetch the MethodType from the method handle into rax (the 'check' register)
   598   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   599   // This would simplify several touchy bits of code.
   600   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   601   {
   602     Register tem = rbx_method;
   603     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   604       __ movptr(rax_mtype, Address(tem, *pchase));
   605       tem = rax_mtype;          // in case there is another indirection
   606     }
   607   }
   609   // given the MethodType, find out where the MH argument is buried
   610   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
   611   Register rdx_vmslots = rdx_temp;
   612   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   613   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
   614   __ movptr(rcx_recv, mh_receiver_slot_addr);
   616   trace_method_handle(_masm, "invokeExact");
   618   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   620   // Nobody uses the MH receiver slot after this.  Make sure.
   621   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
   623   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   625   // error path for invokeExact (only)
   626   __ bind(invoke_exact_error_path);
   627   // ensure that the top of stack is properly aligned.
   628   __ mov(rdi, rsp);
   629   __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI
   630   __ pushptr(Address(rdi, 0));  // Pick up the return address
   632   // Stub wants expected type in rax and the actual type in rcx
   633   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
   635   // for invokeGeneric (only), apply argument and result conversions on the fly
   636   __ bind(invoke_generic_slow_path);
   637 #ifdef ASSERT
   638   if (VerifyMethodHandles) {
   639     Label L;
   640     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   641     __ jcc(Assembler::equal, L);
   642     __ stop("bad methodOop::intrinsic_id");
   643     __ bind(L);
   644   }
   645 #endif //ASSERT
   646   Register rbx_temp = rbx_method;  // don't need it now
   648   // make room on the stack for another pointer:
   649   Register rcx_argslot = rcx_recv;
   650   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   651   insert_arg_slots(_masm, 2 * stack_move_unit(),
   652                    rcx_argslot, rbx_temp, rdx_temp);
   654   // load up an adapter from the calling type (Java weaves this)
   655   Register rdx_adapter = rdx_temp;
   656   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
   657   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   658   __ verify_oop(rdx_adapter);
   659   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   660   // As a trusted first argument, pass the type being called, so the adapter knows
   661   // the actual types of the arguments and return values.
   662   // (Generic invokers are shared among form-families of method-type.)
   663   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   664   // FIXME: assert that rdx_adapter is of the right method-type.
   665   __ mov(rcx, rdx_adapter);
   666   trace_method_handle(_masm, "invokeGeneric");
   667   __ jump_to_method_handle_entry(rcx, rdi_temp);
   669   return entry_point;
   670 }
   672 // Helper to insert argument slots into the stack.
   673 // arg_slots must be a multiple of stack_move_unit() and < 0
   674 // rax_argslot is decremented to point to the new (shifted) location of the argslot
   675 // But, rdx_temp ends up holding the original value of rax_argslot.
   676 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   677                                      RegisterOrConstant arg_slots,
   678                                      Register rax_argslot,
   679                                      Register rbx_temp, Register rdx_temp) {
   680   // allow constant zero
   681   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   682     return;
   683   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   684                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   685   if (VerifyMethodHandles)
   686     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   687   if (VerifyMethodHandles)
   688     verify_stack_move(_masm, arg_slots, -1);
   690   // Make space on the stack for the inserted argument(s).
   691   // Then pull down everything shallower than rax_argslot.
   692   // The stacked return address gets pulled down with everything else.
   693   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   694   //   rsp -= size;
   695   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   696   //     rdx[-size] = rdx[0]
   697   //   argslot -= size;
   698   BLOCK_COMMENT("insert_arg_slots {");
   699   __ mov(rdx_temp, rsp);                        // source pointer for copy
   700   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   701   {
   702     Label loop;
   703     __ BIND(loop);
   704     // pull one word down each time through the loop
   705     __ movptr(rbx_temp, Address(rdx_temp, 0));
   706     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   707     __ addptr(rdx_temp, wordSize);
   708     __ cmpptr(rdx_temp, rax_argslot);
   709     __ jcc(Assembler::below, loop);
   710   }
   712   // Now move the argslot down, to point to the opened-up space.
   713   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   714   BLOCK_COMMENT("} insert_arg_slots");
   715 }
   717 // Helper to remove argument slots from the stack.
   718 // arg_slots must be a multiple of stack_move_unit() and > 0
   719 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   720                                      RegisterOrConstant arg_slots,
   721                                      Register rax_argslot,
   722                                      Register rbx_temp, Register rdx_temp) {
   723   // allow constant zero
   724   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   725     return;
   726   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   727                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   728   if (VerifyMethodHandles)
   729     verify_argslots(_masm, arg_slots, rax_argslot, false,
   730                     "deleted argument(s) must fall within current frame");
   731   if (VerifyMethodHandles)
   732     verify_stack_move(_masm, arg_slots, +1);
   734   BLOCK_COMMENT("remove_arg_slots {");
   735   // Pull up everything shallower than rax_argslot.
   736   // Then remove the excess space on the stack.
   737   // The stacked return address gets pulled up with everything else.
   738   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   739   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   740   //     rdx[size] = rdx[0]
   741   //   argslot += size;
   742   //   rsp += size;
   743   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   744   {
   745     Label loop;
   746     __ BIND(loop);
   747     // pull one word up each time through the loop
   748     __ movptr(rbx_temp, Address(rdx_temp, 0));
   749     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   750     __ addptr(rdx_temp, -wordSize);
   751     __ cmpptr(rdx_temp, rsp);
   752     __ jcc(Assembler::aboveEqual, loop);
   753   }
   755   // Now move the argslot up, to point to the just-copied block.
   756   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   757   // And adjust the argslot address to point at the deletion point.
   758   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   759   BLOCK_COMMENT("} remove_arg_slots");
   760 }
   762 // Helper to copy argument slots to the top of the stack.
   763 // The sequence starts with rax_argslot and is counted by slot_count
   764 // slot_count must be a multiple of stack_move_unit() and >= 0
   765 // This function blows the temps but does not change rax_argslot.
   766 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   767                                    Register rax_argslot,
   768                                    RegisterOrConstant slot_count,
   769                                    int skip_words_count,
   770                                    Register rbx_temp, Register rdx_temp) {
   771   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   772                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
   773                              rsp);
   774   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   776   if (VerifyMethodHandles)
   777     verify_stack_move(_masm, slot_count, 0);
   779   // allow constant zero
   780   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   781     return;
   783   BLOCK_COMMENT("push_arg_slots {");
   785   Register rbx_top = rbx_temp;
   787   // There is at most 1 word to carry down with the TOS.
   788   switch (skip_words_count) {
   789   case 1: __ pop(rdx_temp); break;
   790   case 0:                   break;
   791   default: ShouldNotReachHere();
   792   }
   794   if (slot_count.is_constant()) {
   795     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   796       __ pushptr(Address(rax_argslot, i * wordSize));
   797     }
   798   } else {
   799     Label L_plural, L_loop, L_break;
   800     // Emit code to dynamically check for the common cases, zero and one slot.
   801     __ cmpl(slot_count.as_register(), (int32_t) 1);
   802     __ jccb(Assembler::greater, L_plural);
   803     __ jccb(Assembler::less, L_break);
   804     __ pushptr(Address(rax_argslot, 0));
   805     __ jmpb(L_break);
   806     __ BIND(L_plural);
   808     // Loop for 2 or more:
   809     //   rbx = &rax[slot_count]
   810     //   while (rbx > rax)  *(--rsp) = *(--rbx)
   811     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
   812     __ BIND(L_loop);
   813     __ subptr(rbx_top, wordSize);
   814     __ pushptr(Address(rbx_top, 0));
   815     __ cmpptr(rbx_top, rax_argslot);
   816     __ jcc(Assembler::above, L_loop);
   817     __ bind(L_break);
   818   }
   819   switch (skip_words_count) {
   820   case 1: __ push(rdx_temp); break;
   821   case 0:                    break;
   822   default: ShouldNotReachHere();
   823   }
   824   BLOCK_COMMENT("} push_arg_slots");
   825 }
   827 // in-place movement; no change to rsp
   828 // blows rax_temp, rdx_temp
   829 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   830                                       Register rbx_bottom,  // invariant
   831                                       Address  top_addr,     // can use rax_temp
   832                                       RegisterOrConstant positive_distance_in_slots,
   833                                       Register rax_temp, Register rdx_temp) {
   834   BLOCK_COMMENT("move_arg_slots_up {");
   835   assert_different_registers(rbx_bottom,
   836                              rax_temp, rdx_temp,
   837                              positive_distance_in_slots.register_or_noreg());
   838   Label L_loop, L_break;
   839   Register rax_top = rax_temp;
   840   if (!top_addr.is_same_address(Address(rax_top, 0)))
   841     __ lea(rax_top, top_addr);
   842   // Detect empty (or broken) loop:
   843 #ifdef ASSERT
   844   if (VerifyMethodHandles) {
   845     // Verify that &bottom < &top (non-empty interval)
   846     Label L_ok, L_bad;
   847     if (positive_distance_in_slots.is_register()) {
   848       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
   849       __ jcc(Assembler::lessEqual, L_bad);
   850     }
   851     __ cmpptr(rbx_bottom, rax_top);
   852     __ jcc(Assembler::below, L_ok);
   853     __ bind(L_bad);
   854     __ stop("valid bounds (copy up)");
   855     __ BIND(L_ok);
   856   }
   857 #endif
   858   __ cmpptr(rbx_bottom, rax_top);
   859   __ jccb(Assembler::aboveEqual, L_break);
   860   // work rax down to rbx, copying contiguous data upwards
   861   // In pseudo-code:
   862   //   [rbx, rax) = &[bottom, top)
   863   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
   864   __ BIND(L_loop);
   865   __ subptr(rax_top, wordSize);
   866   __ movptr(rdx_temp, Address(rax_top, 0));
   867   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
   868   __ cmpptr(rax_top, rbx_bottom);
   869   __ jcc(Assembler::above, L_loop);
   870   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   871   __ bind(L_break);
   872   BLOCK_COMMENT("} move_arg_slots_up");
   873 }
   875 // in-place movement; no change to rsp
   876 // blows rax_temp, rdx_temp
   877 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   878                                         Address  bottom_addr,  // can use rax_temp
   879                                         Register rbx_top,      // invariant
   880                                         RegisterOrConstant negative_distance_in_slots,
   881                                         Register rax_temp, Register rdx_temp) {
   882   BLOCK_COMMENT("move_arg_slots_down {");
   883   assert_different_registers(rbx_top,
   884                              negative_distance_in_slots.register_or_noreg(),
   885                              rax_temp, rdx_temp);
   886   Label L_loop, L_break;
   887   Register rax_bottom = rax_temp;
   888   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
   889     __ lea(rax_bottom, bottom_addr);
   890   // Detect empty (or broken) loop:
   891 #ifdef ASSERT
   892   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   893   if (VerifyMethodHandles) {
   894     // Verify that &bottom < &top (non-empty interval)
   895     Label L_ok, L_bad;
   896     if (negative_distance_in_slots.is_register()) {
   897       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
   898       __ jcc(Assembler::greaterEqual, L_bad);
   899     }
   900     __ cmpptr(rax_bottom, rbx_top);
   901     __ jcc(Assembler::below, L_ok);
   902     __ bind(L_bad);
   903     __ stop("valid bounds (copy down)");
   904     __ BIND(L_ok);
   905   }
   906 #endif
   907   __ cmpptr(rax_bottom, rbx_top);
   908   __ jccb(Assembler::aboveEqual, L_break);
   909   // work rax up to rbx, copying contiguous data downwards
   910   // In pseudo-code:
   911   //   [rax, rbx) = &[bottom, top)
   912   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
   913   __ BIND(L_loop);
   914   __ movptr(rdx_temp, Address(rax_bottom, 0));
   915   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
   916   __ addptr(rax_bottom, wordSize);
   917   __ cmpptr(rax_bottom, rbx_top);
   918   __ jcc(Assembler::below, L_loop);
   919   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   920   __ bind(L_break);
   921   BLOCK_COMMENT("} move_arg_slots_down");
   922 }
   924 // Copy from a field or array element to a stacked argument slot.
   925 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   926 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   927                                    BasicType type, bool is_element,
   928                                    Address slot_dest, Address value_src,
   929                                    Register rbx_temp, Register rdx_temp) {
   930   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   931   if (type == T_OBJECT || type == T_ARRAY) {
   932     __ load_heap_oop(rbx_temp, value_src);
   933     __ movptr(slot_dest, rbx_temp);
   934   } else if (type != T_VOID) {
   935     int  arg_size      = type2aelembytes(type);
   936     bool arg_is_signed = is_signed_subword_type(type);
   937     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
   938     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
   939     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
   940   }
   941   BLOCK_COMMENT("} move_typed_arg");
   942 }
   944 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   945                                       Address return_slot) {
   946   BLOCK_COMMENT("move_return_value {");
   947   // Old versions of the JVM must clean the FPU stack after every return.
   948 #ifndef _LP64
   949 #ifdef COMPILER2
   950   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   951   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
   952     for (int i = 1; i < 8; i++) {
   953         __ ffree(i);
   954     }
   955   } else if (UseSSE < 2) {
   956     __ empty_FPU_stack();
   957   }
   958 #endif //COMPILER2
   959 #endif //!_LP64
   961   // Look at the type and pull the value out of the corresponding register.
   962   if (type == T_VOID) {
   963     // nothing to do
   964   } else if (type == T_OBJECT) {
   965     __ movptr(return_slot, rax);
   966   } else if (type == T_INT || is_subword_type(type)) {
   967     // write the whole word, even if only 32 bits is significant
   968     __ movptr(return_slot, rax);
   969   } else if (type == T_LONG) {
   970     // store the value by parts
   971     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   972     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
   973   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
   974                       (type == T_DOUBLE && UseSSE < 2) ||)
   975              false) {
   976     // Use old x86 FPU registers:
   977     if (type == T_FLOAT)
   978       __ fstp_s(return_slot);
   979     else
   980       __ fstp_d(return_slot);
   981   } else if (type == T_FLOAT) {
   982     __ movflt(return_slot, xmm0);
   983   } else if (type == T_DOUBLE) {
   984     __ movdbl(return_slot, xmm0);
   985   } else {
   986     ShouldNotReachHere();
   987   }
   988   BLOCK_COMMENT("} move_return_value");
   989 }
   992 #ifndef PRODUCT
   993 extern "C" void print_method_handle(oop mh);
   994 void trace_method_handle_stub(const char* adaptername,
   995                               oop mh,
   996                               intptr_t* saved_regs,
   997                               intptr_t* entry_sp,
   998                               intptr_t* saved_sp,
   999                               intptr_t* saved_bp) {
  1000   // called as a leaf from native code: do not block the JVM!
  1001   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
  1002   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
  1003   intptr_t* base_sp = last_sp;
  1004   typedef MethodHandles::RicochetFrame RicochetFrame;
  1005   RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
  1006   if (!UseRicochetFrames || Universe::heap()->is_in((address) rfp->saved_args_base())) {
  1007     // Probably an interpreter frame.
  1008     base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
  1010   intptr_t    mh_reg = (intptr_t)mh;
  1011   const char* mh_reg_name = "rcx_mh";
  1012   if (!has_mh)  mh_reg_name = "rcx";
  1013   tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
  1014                 adaptername, mh_reg_name, mh_reg,
  1015                 (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
  1016   if (Verbose) {
  1017     tty->print(" reg dump: ");
  1018     int saved_regs_count = (entry_sp-1) - saved_regs;
  1019     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
  1020     int i;
  1021     for (i = 0; i <= saved_regs_count; i++) {
  1022       if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
  1023         tty->cr();
  1024         tty->print("   + dump: ");
  1026       tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
  1028     tty->cr();
  1029     if (last_sp != saved_sp && last_sp != NULL)
  1030       tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
  1031     int stack_dump_count = 16;
  1032     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
  1033       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
  1034     if (stack_dump_count > 64)  stack_dump_count = 48;
  1035     for (i = 0; i < stack_dump_count; i += 4) {
  1036       tty->print_cr(" dump at SP[%d] "PTR_FORMAT": "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT" "PTR_FORMAT,
  1037                     i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
  1039     if (has_mh)
  1040       print_method_handle(mh);
  1044 // The stub wraps the arguments in a struct on the stack to avoid
  1045 // dealing with the different calling conventions for passing 6
  1046 // arguments.
  1047 struct MethodHandleStubArguments {
  1048   const char* adaptername;
  1049   oopDesc* mh;
  1050   intptr_t* saved_regs;
  1051   intptr_t* entry_sp;
  1052   intptr_t* saved_sp;
  1053   intptr_t* saved_bp;
  1054 };
  1055 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
  1056   trace_method_handle_stub(args->adaptername,
  1057                            args->mh,
  1058                            args->saved_regs,
  1059                            args->entry_sp,
  1060                            args->saved_sp,
  1061                            args->saved_bp);
  1064 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1065   if (!TraceMethodHandles)  return;
  1066   BLOCK_COMMENT("trace_method_handle {");
  1067   __ push(rax);
  1068   __ lea(rax, Address(rsp, wordSize * NOT_LP64(6) LP64_ONLY(14))); // entry_sp  __ pusha();
  1069   __ pusha();
  1070   __ mov(rbx, rsp);
  1071   __ enter();
  1072   // incoming state:
  1073   // rcx: method handle
  1074   // r13 or rsi: saved sp
  1075   // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
  1076   __ push(rbp);               // saved_bp
  1077   __ push(rsi);               // saved_sp
  1078   __ push(rax);               // entry_sp
  1079   __ push(rbx);               // pusha saved_regs
  1080   __ push(rcx);               // mh
  1081   __ push(rcx);               // adaptername
  1082   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  1083   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
  1084   __ leave();
  1085   __ popa();
  1086   __ pop(rax);
  1087   BLOCK_COMMENT("} trace_method_handle");
  1089 #endif //PRODUCT
  1091 // which conversion op types are implemented here?
  1092 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1093   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1094          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1095          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1096          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1097          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1098           //OP_PRIM_TO_REF is below...
  1099          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1100          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1101          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1102          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1103           //OP_COLLECT_ARGS is below...
  1104          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1105          |(!UseRicochetFrames ? 0 :
  1106            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1107            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1108            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1109            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1110             ))
  1111          );
  1114 //------------------------------------------------------------------------------
  1115 // MethodHandles::generate_method_handle_stub
  1116 //
  1117 // Generate an "entry" field for a method handle.
  1118 // This determines how the method handle will respond to calls.
  1119 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1120   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1122   // Here is the register state during an interpreted call,
  1123   // as set up by generate_method_handle_interpreter_entry():
  1124   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  1125   // - rcx: receiver method handle
  1126   // - rax: method handle type (only used by the check_mtype entry point)
  1127   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  1128   // - rdx: garbage temp, can blow away
  1130   const Register rcx_recv    = rcx;
  1131   const Register rax_argslot = rax;
  1132   const Register rbx_temp    = rbx;
  1133   const Register rdx_temp    = rdx;
  1134   const Register rdi_temp    = rdi;
  1136   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  1137   // and gen_c2i_adapter (from compiled calls):
  1138   const Register saved_last_sp = saved_last_sp_register();
  1140   // Argument registers for _raise_exception.
  1141   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  1142   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  1143   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  1144   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  1145   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
  1147   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1149   // some handy addresses
  1150   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  1151   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
  1153   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  1154   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
  1156   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  1157   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  1158   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  1159   Address vmarg;                // __ argument_address(vmargslot)
  1161   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1163   if (have_entry(ek)) {
  1164     __ nop();                   // empty stubs make SG sick
  1165     return;
  1168 #ifdef ASSERT
  1169   __ push((int32_t) 0xEEEEEEEE);
  1170   __ push((int32_t) (intptr_t) entry_name(ek));
  1171   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
  1172   __ push((int32_t) 0x33333333);
  1173 #endif //ASSERT
  1175   address interp_entry = __ pc();
  1177   trace_method_handle(_masm, entry_name(ek));
  1179   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1181   switch ((int) ek) {
  1182   case _raise_exception:
  1184       // Not a real MH entry, but rather shared code for raising an
  1185       // exception.  Since we use the compiled entry, arguments are
  1186       // expected in compiler argument registers.
  1187       assert(raise_exception_method(), "must be set");
  1188       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1190       const Register rax_pc = rax;
  1191       __ pop(rax_pc);  // caller PC
  1192       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
  1194       Register rbx_method = rbx_temp;
  1195       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
  1197       const int jobject_oop_offset = 0;
  1198       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
  1200       __ movptr(saved_last_sp, rsp);
  1201       __ subptr(rsp, 3 * wordSize);
  1202       __ push(rax_pc);         // restore caller PC
  1204       __ movl  (__ argument_address(constant(2)), rarg0_code);
  1205       __ movptr(__ argument_address(constant(1)), rarg1_actual);
  1206       __ movptr(__ argument_address(constant(0)), rarg2_required);
  1207       jump_from_method_handle(_masm, rbx_method, rax);
  1209     break;
  1211   case _invokestatic_mh:
  1212   case _invokespecial_mh:
  1214       Register rbx_method = rbx_temp;
  1215       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
  1216       __ verify_oop(rbx_method);
  1217       // same as TemplateTable::invokestatic or invokespecial,
  1218       // minus the CP setup and profiling:
  1219       if (ek == _invokespecial_mh) {
  1220         // Must load & check the first argument before entering the target method.
  1221         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1222         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1223         __ null_check(rcx_recv);
  1224         __ verify_oop(rcx_recv);
  1226       jump_from_method_handle(_masm, rbx_method, rax);
  1228     break;
  1230   case _invokevirtual_mh:
  1232       // same as TemplateTable::invokevirtual,
  1233       // minus the CP setup and profiling:
  1235       // pick out the vtable index and receiver offset from the MH,
  1236       // and then we can discard it:
  1237       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1238       Register rbx_index = rbx_temp;
  1239       __ movl(rbx_index, rcx_dmh_vmindex);
  1240       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
  1241       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1242       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1244       // get receiver klass
  1245       Register rax_klass = rax_argslot;
  1246       __ load_klass(rax_klass, rcx_recv);
  1247       __ verify_oop(rax_klass);
  1249       // get target methodOop & entry point
  1250       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1251       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1252       Address vtable_entry_addr(rax_klass,
  1253                                 rbx_index, Address::times_ptr,
  1254                                 base + vtableEntry::method_offset_in_bytes());
  1255       Register rbx_method = rbx_temp;
  1256       __ movptr(rbx_method, vtable_entry_addr);
  1258       __ verify_oop(rbx_method);
  1259       jump_from_method_handle(_masm, rbx_method, rax);
  1261     break;
  1263   case _invokeinterface_mh:
  1265       // same as TemplateTable::invokeinterface,
  1266       // minus the CP setup and profiling:
  1268       // pick out the interface and itable index from the MH.
  1269       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1270       Register rdx_intf  = rdx_temp;
  1271       Register rbx_index = rbx_temp;
  1272       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
  1273       __ movl(rbx_index, rcx_dmh_vmindex);
  1274       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1275       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1277       // get receiver klass
  1278       Register rax_klass = rax_argslot;
  1279       __ load_klass(rax_klass, rcx_recv);
  1280       __ verify_oop(rax_klass);
  1282       Register rbx_method = rbx_index;
  1284       // get interface klass
  1285       Label no_such_interface;
  1286       __ verify_oop(rdx_intf);
  1287       __ lookup_interface_method(rax_klass, rdx_intf,
  1288                                  // note: next two args must be the same:
  1289                                  rbx_index, rbx_method,
  1290                                  rdi_temp,
  1291                                  no_such_interface);
  1293       __ verify_oop(rbx_method);
  1294       jump_from_method_handle(_masm, rbx_method, rax);
  1295       __ hlt();
  1297       __ bind(no_such_interface);
  1298       // Throw an exception.
  1299       // For historical reasons, it will be IncompatibleClassChangeError.
  1300       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
  1301       assert_different_registers(rarg2_required, rbx_temp);
  1302       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
  1303       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
  1304       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
  1305       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1307     break;
  1309   case _bound_ref_mh:
  1310   case _bound_int_mh:
  1311   case _bound_long_mh:
  1312   case _bound_ref_direct_mh:
  1313   case _bound_int_direct_mh:
  1314   case _bound_long_direct_mh:
  1316       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1317       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1318       int       arg_slots = type2size[arg_type];
  1320       // make room for the new argument:
  1321       __ movl(rax_argslot, rcx_bmh_vmargslot);
  1322       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1324       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
  1326       // store bound argument into the new stack slot:
  1327       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
  1328       if (arg_type == T_OBJECT) {
  1329         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1330       } else {
  1331         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1332         move_typed_arg(_masm, arg_type, false,
  1333                        Address(rax_argslot, 0),
  1334                        prim_value_addr,
  1335                        rbx_temp, rdx_temp);
  1338       if (direct_to_method) {
  1339         Register rbx_method = rbx_temp;
  1340         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
  1341         __ verify_oop(rbx_method);
  1342         jump_from_method_handle(_masm, rbx_method, rax);
  1343       } else {
  1344         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1345         __ verify_oop(rcx_recv);
  1346         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1349     break;
  1351   case _adapter_opt_profiling:
  1352     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
  1353       Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
  1354       __ incrementl(rcx_mh_vmcount);
  1356     // fall through
  1358   case _adapter_retype_only:
  1359   case _adapter_retype_raw:
  1360     // immediately jump to the next MH layer:
  1361     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1362     __ verify_oop(rcx_recv);
  1363     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1364     // This is OK when all parameter types widen.
  1365     // It is also OK when a return type narrows.
  1366     break;
  1368   case _adapter_check_cast:
  1370       // temps:
  1371       Register rbx_klass = rbx_temp; // interesting AMH data
  1373       // check a reference argument before jumping to the next layer of MH:
  1374       __ movl(rax_argslot, rcx_amh_vmargslot);
  1375       vmarg = __ argument_address(rax_argslot);
  1377       // What class are we casting to?
  1378       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  1379       load_klass_from_Class(_masm, rbx_klass);
  1381       Label done;
  1382       __ movptr(rdx_temp, vmarg);
  1383       __ testptr(rdx_temp, rdx_temp);
  1384       __ jcc(Assembler::zero, done);         // no cast if null
  1385       __ load_klass(rdx_temp, rdx_temp);
  1387       // live at this point:
  1388       // - rbx_klass:  klass required by the target method
  1389       // - rdx_temp:   argument klass to test
  1390       // - rcx_recv:   adapter method handle
  1391       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
  1393       // If we get here, the type check failed!
  1394       // Call the wrong_method_type stub, passing the failing argument type in rax.
  1395       Register rax_mtype = rax_argslot;
  1396       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
  1397       __ movptr(rdx_temp, vmarg);
  1399       assert_different_registers(rarg2_required, rdx_temp);
  1400       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
  1401       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
  1402       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
  1403       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1405       __ bind(done);
  1406       // get the new MH:
  1407       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1408       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1410     break;
  1412   case _adapter_prim_to_prim:
  1413   case _adapter_ref_to_prim:
  1414   case _adapter_prim_to_ref:
  1415     // handled completely by optimized cases
  1416     __ stop("init_AdapterMethodHandle should not issue this");
  1417     break;
  1419   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1420 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1421   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1422   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1424       // perform an in-place conversion to int or an int subword
  1425       __ movl(rax_argslot, rcx_amh_vmargslot);
  1426       vmarg = __ argument_address(rax_argslot);
  1428       switch (ek) {
  1429       case _adapter_opt_i2i:
  1430         __ movl(rdx_temp, vmarg);
  1431         break;
  1432       case _adapter_opt_l2i:
  1434           // just delete the extra slot; on a little-endian machine we keep the first
  1435           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1436           remove_arg_slots(_masm, -stack_move_unit(),
  1437                            rax_argslot, rbx_temp, rdx_temp);
  1438           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
  1439           __ movl(rdx_temp, vmarg);
  1441         break;
  1442       case _adapter_opt_unboxi:
  1444           // Load the value up from the heap.
  1445           __ movptr(rdx_temp, vmarg);
  1446           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1447 #ifdef ASSERT
  1448           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1449             if (is_subword_type(BasicType(bt)))
  1450               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1452 #endif
  1453           __ null_check(rdx_temp, value_offset);
  1454           __ movl(rdx_temp, Address(rdx_temp, value_offset));
  1455           // We load this as a word.  Because we are little-endian,
  1456           // the low bits will be correct, but the high bits may need cleaning.
  1457           // The vminfo will guide us to clean those bits.
  1459         break;
  1460       default:
  1461         ShouldNotReachHere();
  1464       // Do the requested conversion and store the value.
  1465       Register rbx_vminfo = rbx_temp;
  1466       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  1468       // get the new MH:
  1469       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1470       // (now we are done with the old MH)
  1472       // original 32-bit vmdata word must be of this form:
  1473       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1474       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
  1475       __ shll(rdx_temp /*, rcx*/);
  1476       Label zero_extend, done;
  1477       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
  1478       __ jccb(Assembler::zero, zero_extend);
  1480       // this path is taken for int->byte, int->short
  1481       __ sarl(rdx_temp /*, rcx*/);
  1482       __ jmpb(done);
  1484       __ bind(zero_extend);
  1485       // this is taken for int->char
  1486       __ shrl(rdx_temp /*, rcx*/);
  1488       __ bind(done);
  1489       __ movl(vmarg, rdx_temp);  // Store the value.
  1490       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
  1492       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1494     break;
  1496   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1497   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1499       // perform an in-place int-to-long or ref-to-long conversion
  1500       __ movl(rax_argslot, rcx_amh_vmargslot);
  1502       // on a little-endian machine we keep the first slot and add another after
  1503       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1504       insert_arg_slots(_masm, stack_move_unit(),
  1505                        rax_argslot, rbx_temp, rdx_temp);
  1506       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
  1507       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
  1509       switch (ek) {
  1510       case _adapter_opt_i2l:
  1512 #ifdef _LP64
  1513           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
  1514           __ movq(vmarg1, rdx_temp);    // Store into first slot
  1515 #else
  1516           __ movl(rdx_temp, vmarg1);
  1517           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
  1518           __ movl(vmarg2, rdx_temp); // store second word
  1519 #endif
  1521         break;
  1522       case _adapter_opt_unboxl:
  1524           // Load the value up from the heap.
  1525           __ movptr(rdx_temp, vmarg1);
  1526           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1527           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1528           __ null_check(rdx_temp, value_offset);
  1529 #ifdef _LP64
  1530           __ movq(rbx_temp, Address(rdx_temp, value_offset));
  1531           __ movq(vmarg1, rbx_temp);
  1532 #else
  1533           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
  1534           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
  1535           __ movl(vmarg1, rbx_temp);
  1536           __ movl(vmarg2, rdx_temp);
  1537 #endif
  1539         break;
  1540       default:
  1541         ShouldNotReachHere();
  1544       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1545       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1547     break;
  1549   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1550   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1552       // perform an in-place floating primitive conversion
  1553       __ movl(rax_argslot, rcx_amh_vmargslot);
  1554       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1555       if (ek == _adapter_opt_f2d) {
  1556         insert_arg_slots(_masm, stack_move_unit(),
  1557                          rax_argslot, rbx_temp, rdx_temp);
  1559       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
  1561 #ifdef _LP64
  1562       if (ek == _adapter_opt_f2d) {
  1563         __ movflt(xmm0, vmarg);
  1564         __ cvtss2sd(xmm0, xmm0);
  1565         __ movdbl(vmarg, xmm0);
  1566       } else {
  1567         __ movdbl(xmm0, vmarg);
  1568         __ cvtsd2ss(xmm0, xmm0);
  1569         __ movflt(vmarg, xmm0);
  1571 #else //_LP64
  1572       if (ek == _adapter_opt_f2d) {
  1573         __ fld_s(vmarg);        // load float to ST0
  1574         __ fstp_d(vmarg);       // store double
  1575       } else {
  1576         __ fld_d(vmarg);        // load double to ST0
  1577         __ fstp_s(vmarg);       // store single
  1579 #endif //_LP64
  1581       if (ek == _adapter_opt_d2f) {
  1582         remove_arg_slots(_masm, -stack_move_unit(),
  1583                          rax_argslot, rbx_temp, rdx_temp);
  1586       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1587       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1589     break;
  1591   case _adapter_swap_args:
  1592   case _adapter_rot_args:
  1593     // handled completely by optimized cases
  1594     __ stop("init_AdapterMethodHandle should not issue this");
  1595     break;
  1597   case _adapter_opt_swap_1:
  1598   case _adapter_opt_swap_2:
  1599   case _adapter_opt_rot_1_up:
  1600   case _adapter_opt_rot_1_down:
  1601   case _adapter_opt_rot_2_up:
  1602   case _adapter_opt_rot_2_down:
  1604       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1605       int rotate     = ek_adapter_opt_swap_mode(ek);
  1607       // 'argslot' is the position of the first argument to swap
  1608       __ movl(rax_argslot, rcx_amh_vmargslot);
  1609       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1611       // 'vminfo' is the second
  1612       Register rbx_destslot = rbx_temp;
  1613       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
  1614       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
  1615       if (VerifyMethodHandles)
  1616         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
  1618       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1619       if (!rotate) {
  1620         // simple swap
  1621         for (int i = 0; i < swap_slots; i++) {
  1622           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
  1623           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
  1624           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
  1625           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1627       } else {
  1628         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1629         // changing place with a series of other slots.
  1630         // First, push the "odd slot", which is going to get overwritten
  1631         for (int i = swap_slots - 1; i >= 0; i--) {
  1632           // handle one with rdi_temp instead of a push:
  1633           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
  1634           else         __ pushptr(         Address(rax_argslot, i * wordSize));
  1636         if (rotate > 0) {
  1637           // Here is rotate > 0:
  1638           // (low mem)                                          (high mem)
  1639           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1640           // =>
  1641           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1642           // work argslot down to destslot, copying contiguous data upwards
  1643           // pseudo-code:
  1644           //   rax = src_addr - swap_bytes
  1645           //   rbx = dest_addr
  1646           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
  1647           move_arg_slots_up(_masm,
  1648                             rbx_destslot,
  1649                             Address(rax_argslot, 0),
  1650                             swap_slots,
  1651                             rax_argslot, rdx_temp);
  1652         } else {
  1653           // Here is the other direction, rotate < 0:
  1654           // (low mem)                                          (high mem)
  1655           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1656           // =>
  1657           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1658           // work argslot up to destslot, copying contiguous data downwards
  1659           // pseudo-code:
  1660           //   rax = src_addr + swap_bytes
  1661           //   rbx = dest_addr
  1662           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
  1663           // dest_slot denotes an exclusive upper limit
  1664           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1665           if (limit_bias != 0)
  1666             __ addptr(rbx_destslot, - limit_bias * wordSize);
  1667           move_arg_slots_down(_masm,
  1668                               Address(rax_argslot, swap_slots * wordSize),
  1669                               rbx_destslot,
  1670                               -swap_slots,
  1671                               rax_argslot, rdx_temp);
  1672           __ subptr(rbx_destslot, swap_slots * wordSize);
  1674         // pop the original first chunk into the destination slot, now free
  1675         for (int i = 0; i < swap_slots; i++) {
  1676           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1677           else         __ popptr(Address(rbx_destslot, i * wordSize));
  1681       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1682       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1684     break;
  1686   case _adapter_dup_args:
  1688       // 'argslot' is the position of the first argument to duplicate
  1689       __ movl(rax_argslot, rcx_amh_vmargslot);
  1690       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1692       // 'stack_move' is negative number of words to duplicate
  1693       Register rdi_stack_move = rdi_temp;
  1694       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  1696       if (VerifyMethodHandles) {
  1697         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
  1698                         "copied argument(s) must fall within current frame");
  1701       // insert location is always the bottom of the argument list:
  1702       Address insert_location = __ argument_address(constant(0));
  1703       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
  1704       assert(insert_location.base() == rsp, "");
  1706       __ negl(rdi_stack_move);
  1707       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
  1708                      pre_arg_words, rbx_temp, rdx_temp);
  1710       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1711       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1713     break;
  1715   case _adapter_drop_args:
  1717       // 'argslot' is the position of the first argument to nuke
  1718       __ movl(rax_argslot, rcx_amh_vmargslot);
  1719       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1721       // (must do previous push after argslot address is taken)
  1723       // 'stack_move' is number of words to drop
  1724       Register rdi_stack_move = rdi_temp;
  1725       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
  1726       remove_arg_slots(_masm, rdi_stack_move,
  1727                        rax_argslot, rbx_temp, rdx_temp);
  1729       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1730       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1732     break;
  1734   case _adapter_collect_args:
  1735   case _adapter_fold_args:
  1736   case _adapter_spread_args:
  1737     // handled completely by optimized cases
  1738     __ stop("init_AdapterMethodHandle should not issue this");
  1739     break;
  1741   case _adapter_opt_collect_ref:
  1742   case _adapter_opt_collect_int:
  1743   case _adapter_opt_collect_long:
  1744   case _adapter_opt_collect_float:
  1745   case _adapter_opt_collect_double:
  1746   case _adapter_opt_collect_void:
  1747   case _adapter_opt_collect_0_ref:
  1748   case _adapter_opt_collect_1_ref:
  1749   case _adapter_opt_collect_2_ref:
  1750   case _adapter_opt_collect_3_ref:
  1751   case _adapter_opt_collect_4_ref:
  1752   case _adapter_opt_collect_5_ref:
  1753   case _adapter_opt_filter_S0_ref:
  1754   case _adapter_opt_filter_S1_ref:
  1755   case _adapter_opt_filter_S2_ref:
  1756   case _adapter_opt_filter_S3_ref:
  1757   case _adapter_opt_filter_S4_ref:
  1758   case _adapter_opt_filter_S5_ref:
  1759   case _adapter_opt_collect_2_S0_ref:
  1760   case _adapter_opt_collect_2_S1_ref:
  1761   case _adapter_opt_collect_2_S2_ref:
  1762   case _adapter_opt_collect_2_S3_ref:
  1763   case _adapter_opt_collect_2_S4_ref:
  1764   case _adapter_opt_collect_2_S5_ref:
  1765   case _adapter_opt_fold_ref:
  1766   case _adapter_opt_fold_int:
  1767   case _adapter_opt_fold_long:
  1768   case _adapter_opt_fold_float:
  1769   case _adapter_opt_fold_double:
  1770   case _adapter_opt_fold_void:
  1771   case _adapter_opt_fold_1_ref:
  1772   case _adapter_opt_fold_2_ref:
  1773   case _adapter_opt_fold_3_ref:
  1774   case _adapter_opt_fold_4_ref:
  1775   case _adapter_opt_fold_5_ref:
  1777       // Given a fresh incoming stack frame, build a new ricochet frame.
  1778       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
  1779       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1780       // RCX contains an AdapterMethodHandle of the indicated kind.
  1782       // Relevant AMH fields:
  1783       // amh.vmargslot:
  1784       //   points to the trailing edge of the arguments
  1785       //   to filter, collect, or fold.  For a boxing operation,
  1786       //   it points just after the single primitive value.
  1787       // amh.argument:
  1788       //   recursively called MH, on |collect| arguments
  1789       // amh.vmtarget:
  1790       //   final destination MH, on return value, etc.
  1791       // amh.conversion.dest:
  1792       //   tells what is the type of the return value
  1793       //   (not needed here, since dest is also derived from ek)
  1794       // amh.conversion.vminfo:
  1795       //   points to the trailing edge of the return value
  1796       //   when the vmtarget is to be called; this is
  1797       //   equal to vmargslot + (retained ? |collect| : 0)
  1799       // Pass 0 or more argument slots to the recursive target.
  1800       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1802       // The collected arguments are copied from the saved argument list:
  1803       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1805       assert(ek_orig == _adapter_collect_args ||
  1806              ek_orig == _adapter_fold_args, "");
  1807       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1809       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1810       // Sometimes we can compute this statically.
  1811       int dest_slot_constant = -1;
  1812       if (!retain_original_args)
  1813         dest_slot_constant = collect_slot_constant;
  1814       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1815         // We are preserving all the arguments, and the return value is prepended,
  1816         // so the return slot is to the left (above) the |collect| sequence.
  1817         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1819       // Replace all those slots by the result of the recursive call.
  1820       // The result type can be one of ref, int, long, float, double, void.
  1821       // In the case of void, nothing is pushed on the stack after return.
  1822       BasicType dest = ek_adapter_opt_collect_type(ek);
  1823       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1824       int dest_count = type2size[dest];
  1825       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1827       // Choose a return continuation.
  1828       EntryKind ek_ret = _adapter_opt_return_any;
  1829       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1830         switch (dest) {
  1831         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1832         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1833         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1834         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1835         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1836         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1837         default       : ShouldNotReachHere();
  1839         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1840           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1841           if (ek_try <= _adapter_opt_return_LAST &&
  1842               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1843             ek_ret = ek_try;
  1846         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1849       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
  1850       // push(sender_pc);
  1852       // Compute argument base:
  1853       Register rax_argv = rax_argslot;
  1854       __ lea(rax_argv, __ argument_address(constant(0)));
  1856       // Push a few extra argument words, if we need them to store the return value.
  1858         int extra_slots = 0;
  1859         if (retain_original_args) {
  1860           extra_slots = dest_count;
  1861         } else if (collect_count_constant == -1) {
  1862           extra_slots = dest_count;  // collect_count might be zero; be generous
  1863         } else if (dest_count > collect_count_constant) {
  1864           extra_slots = (dest_count - collect_count_constant);
  1865         } else {
  1866           // else we know we have enough dead space in |collect| to repurpose for return values
  1868         DEBUG_ONLY(extra_slots += 1);
  1869         if (extra_slots > 0) {
  1870           __ pop(rbx_temp);   // return value
  1871           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
  1872           // Push guard word #2 in debug mode.
  1873           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
  1874           __ push(rbx_temp);
  1878       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
  1879                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
  1881       // Now pushed:  ... keep1 | collect | keep2 | RF |
  1882       // some handy frame slots:
  1883       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
  1884       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  1885       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  1887 #ifdef ASSERT
  1888       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1889         BLOCK_COMMENT("verify AMH.conv.dest");
  1890         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
  1891         Label L_dest_ok;
  1892         __ cmpl(rbx_temp, (int) dest);
  1893         __ jcc(Assembler::equal, L_dest_ok);
  1894         if (dest == T_INT) {
  1895           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1896             if (is_subword_type(BasicType(bt))) {
  1897               __ cmpl(rbx_temp, (int) bt);
  1898               __ jcc(Assembler::equal, L_dest_ok);
  1902         __ stop("bad dest in AMH.conv");
  1903         __ BIND(L_dest_ok);
  1905 #endif //ASSERT
  1907       // Find out where the original copy of the recursive argument sequence begins.
  1908       Register rax_coll = rax_argv;
  1910         RegisterOrConstant collect_slot = collect_slot_constant;
  1911         if (collect_slot_constant == -1) {
  1912           __ movl(rdi_temp, rcx_amh_vmargslot);
  1913           collect_slot = rdi_temp;
  1915         if (collect_slot_constant != 0)
  1916           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
  1917         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1920       // Replace the old AMH with the recursive MH.  (No going back now.)
  1921       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1922       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1923       // or collect call, it will take one or more arguments, transform them,
  1924       // and return some result, to store back into argument_base[vminfo].
  1925       __ load_heap_oop(rcx_recv, rcx_amh_argument);
  1926       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  1928       // Push a space for the recursively called MH first:
  1929       __ push((int32_t)NULL_WORD);
  1931       // Calculate |collect|, the number of arguments we are collecting.
  1932       Register rdi_collect_count = rdi_temp;
  1933       RegisterOrConstant collect_count;
  1934       if (collect_count_constant >= 0) {
  1935         collect_count = collect_count_constant;
  1936       } else {
  1937         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
  1938         collect_count = rdi_collect_count;
  1940 #ifdef ASSERT
  1941       if (VerifyMethodHandles && collect_count_constant >= 0) {
  1942         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
  1943         Label L_count_ok;
  1944         __ cmpl(rbx_temp, collect_count_constant);
  1945         __ jcc(Assembler::equal, L_count_ok);
  1946         __ stop("bad vminfo in AMH.conv");
  1947         __ BIND(L_count_ok);
  1949 #endif //ASSERT
  1951       // copy |collect| slots directly to TOS:
  1952       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
  1953       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  1954       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  1956       // If necessary, adjust the saved arguments to make room for the eventual return value.
  1957       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  1958       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  1959       // In the non-retaining case, this might move keep2 either up or down.
  1960       // We don't have to copy the whole | RF... collect | complex,
  1961       // but we must adjust RF.saved_args_base.
  1962       // Also, from now on, we will forget about the original copy of |collect|.
  1963       // If we are retaining it, we will treat it as part of |keep2|.
  1964       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  1966       BLOCK_COMMENT("adjust trailing arguments {");
  1967       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  1968       int                open_count  = dest_count;
  1969       RegisterOrConstant close_count = collect_count_constant;
  1970       Register rdi_close_count = rdi_collect_count;
  1971       if (retain_original_args) {
  1972         close_count = constant(0);
  1973       } else if (collect_count_constant == -1) {
  1974         close_count = rdi_collect_count;
  1977       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  1978       RegisterOrConstant keep3_count;
  1979       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
  1980       if (dest_slot_constant >= 0) {
  1981         keep3_count = dest_slot_constant;
  1982       } else  {
  1983         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
  1984         keep3_count = rsi_keep3_count;
  1986 #ifdef ASSERT
  1987       if (VerifyMethodHandles && dest_slot_constant >= 0) {
  1988         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
  1989         Label L_vminfo_ok;
  1990         __ cmpl(rbx_temp, dest_slot_constant);
  1991         __ jcc(Assembler::equal, L_vminfo_ok);
  1992         __ stop("bad vminfo in AMH.conv");
  1993         __ BIND(L_vminfo_ok);
  1995 #endif //ASSERT
  1997       // tasks remaining:
  1998       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  1999       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  2000       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  2002       if (stomp_dest | fix_arg_base) {
  2003         // we will probably need an updated rax_argv value
  2004         if (collect_slot_constant >= 0) {
  2005           // rax_coll already holds the leading edge of |keep2|, so tweak it
  2006           assert(rax_coll == rax_argv, "elided a move");
  2007           if (collect_slot_constant != 0)
  2008             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
  2009         } else {
  2010           // Just reload from RF.saved_args_base.
  2011           __ movptr(rax_argv, saved_args_base_addr);
  2015       // Old and new argument locations (based at slot 0).
  2016       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  2017       bool zero_open_count = (open_count == 0);  // remember this bit of info
  2018       if (move_keep3 && fix_arg_base) {
  2019         // It will be easier to have everything in one register:
  2020         if (close_count.is_register()) {
  2021           // Deduct open_count from close_count register to get a clean +/- value.
  2022           __ subptr(close_count.as_register(), open_count);
  2023         } else {
  2024           close_count = close_count.as_constant() - open_count;
  2026         open_count = 0;
  2028       Address old_argv(rax_argv, 0);
  2029       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
  2030                                 - open_count * Interpreter::stackElementSize);
  2032       // First decide if any actual data are to be moved.
  2033       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  2034       // (As it happens, all movements involve an argument list size change.)
  2036       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  2037       Label L_done;
  2038       if (!keep3_count.is_constant()) {
  2039         __ testl(keep3_count.as_register(), keep3_count.as_register());
  2040         __ jcc(Assembler::zero, L_done);
  2042       if (!close_count.is_constant()) {
  2043         __ cmpl(close_count.as_register(), open_count);
  2044         __ jcc(Assembler::equal, L_done);
  2047       if (move_keep3 && fix_arg_base) {
  2048         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  2049         if (!close_count.is_constant()) {
  2050           emit_move_down = emit_guard = !zero_open_count;
  2051           emit_move_up   = true;
  2052         } else if (open_count != close_count.as_constant()) {
  2053           emit_move_down = (open_count > close_count.as_constant());
  2054           emit_move_up   = !emit_move_down;
  2056         Label L_move_up;
  2057         if (emit_guard) {
  2058           __ cmpl(close_count.as_register(), open_count);
  2059           __ jcc(Assembler::greater, L_move_up);
  2062         if (emit_move_down) {
  2063           // Move arguments down if |+dest+| > |-collect-|
  2064           // (This is rare, except when arguments are retained.)
  2065           // This opens space for the return value.
  2066           if (keep3_count.is_constant()) {
  2067             for (int i = 0; i < keep3_count.as_constant(); i++) {
  2068               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2069               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2071           } else {
  2072             Register rbx_argv_top = rbx_temp;
  2073             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
  2074             move_arg_slots_down(_masm,
  2075                                 old_argv,     // beginning of old argv
  2076                                 rbx_argv_top, // end of old argv
  2077                                 close_count,  // distance to move down (must be negative)
  2078                                 rax_argv, rdx_temp);
  2079             // Used argv as an iteration variable; reload from RF.saved_args_base.
  2080             __ movptr(rax_argv, saved_args_base_addr);
  2084         if (emit_guard) {
  2085           __ jmp(L_done);  // assumes emit_move_up is true also
  2086           __ BIND(L_move_up);
  2089         if (emit_move_up) {
  2091           // Move arguments up if |+dest+| < |-collect-|
  2092           // (This is usual, except when |keep3| is empty.)
  2093           // This closes up the space occupied by the now-deleted collect values.
  2094           if (keep3_count.is_constant()) {
  2095             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2096               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2097               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2099           } else {
  2100             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
  2101             move_arg_slots_up(_masm,
  2102                               rax_argv,     // beginning of old argv
  2103                               argv_top,     // end of old argv
  2104                               close_count,  // distance to move up (must be positive)
  2105                               rbx_temp, rdx_temp);
  2109       __ BIND(L_done);
  2111       if (fix_arg_base) {
  2112         // adjust RF.saved_args_base by adding (close_count - open_count)
  2113         if (!new_argv.is_same_address(Address(rax_argv, 0)))
  2114           __ lea(rax_argv, new_argv);
  2115         __ movptr(saved_args_base_addr, rax_argv);
  2118       if (stomp_dest) {
  2119         // Stomp the return slot, so it doesn't hold garbage.
  2120         // This isn't strictly necessary, but it may help detect bugs.
  2121         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
  2122         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
  2123                   (int32_t) forty_two);
  2124         // uses rsi_keep3_count
  2126       BLOCK_COMMENT("} adjust trailing arguments");
  2128       BLOCK_COMMENT("do_recursive_call");
  2129       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
  2130       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
  2131       // The globally unique bounce address has two purposes:
  2132       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2133       // 2. When returned to, it cuts back the stack and redirects control flow
  2134       //    to the return handler.
  2135       // The return handler will further cut back the stack when it takes
  2136       // down the RF.  Perhaps there is a way to streamline this further.
  2138       // State during recursive call:
  2139       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2140       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2142       break;
  2145   case _adapter_opt_return_ref:
  2146   case _adapter_opt_return_int:
  2147   case _adapter_opt_return_long:
  2148   case _adapter_opt_return_float:
  2149   case _adapter_opt_return_double:
  2150   case _adapter_opt_return_void:
  2151   case _adapter_opt_return_S0_ref:
  2152   case _adapter_opt_return_S1_ref:
  2153   case _adapter_opt_return_S2_ref:
  2154   case _adapter_opt_return_S3_ref:
  2155   case _adapter_opt_return_S4_ref:
  2156   case _adapter_opt_return_S5_ref:
  2158       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2159       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2161       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2163       if (dest_slot_constant == -1) {
  2164         // The current stub is a general handler for this dest_type.
  2165         // It can be called from _adapter_opt_return_any below.
  2166         // Stash the address in a little table.
  2167         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2168         address return_handler = __ pc();
  2169         _adapter_return_handlers[dest_type_constant] = return_handler;
  2170         if (dest_type_constant == T_INT) {
  2171           // do the subword types too
  2172           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2173             if (is_subword_type(BasicType(bt)) &&
  2174                 _adapter_return_handlers[bt] == NULL) {
  2175               _adapter_return_handlers[bt] = return_handler;
  2181       Register rbx_arg_base = rbx_temp;
  2182       assert_different_registers(rax, rdx,  // possibly live return value registers
  2183                                  rdi_temp, rbx_arg_base);
  2185       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2186       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  2188       __ movptr(rbx_arg_base, saved_args_base_addr);
  2189       RegisterOrConstant dest_slot = dest_slot_constant;
  2190       if (dest_slot_constant == -1) {
  2191         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
  2192         dest_slot = rdi_temp;
  2194       // Store the result back into the argslot.
  2195       // This code uses the interpreter calling sequence, in which the return value
  2196       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2197       // There are certain irregularities with floating point values, which can be seen
  2198       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2199       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
  2201       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
  2202       __ push(rdx_temp);  // repush the return PC
  2204       // Load the final target and go.
  2205       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  2206       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2207       __ hlt(); // --------------------
  2208       break;
  2211   case _adapter_opt_return_any:
  2213       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2214       Register rdi_conv = rdi_temp;
  2215       assert_different_registers(rax, rdx,  // possibly live return value registers
  2216                                  rdi_conv, rbx_temp);
  2218       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2219       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
  2220       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
  2221       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
  2223 #ifdef ASSERT
  2224       { Label L_badconv;
  2225         __ testptr(rbx_temp, rbx_temp);
  2226         __ jccb(Assembler::zero, L_badconv);
  2227         __ jmp(rbx_temp);
  2228         __ bind(L_badconv);
  2229         __ stop("bad method handle return");
  2231 #else //ASSERT
  2232       __ jmp(rbx_temp);
  2233 #endif //ASSERT
  2234       break;
  2237   case _adapter_opt_spread_0:
  2238   case _adapter_opt_spread_1_ref:
  2239   case _adapter_opt_spread_2_ref:
  2240   case _adapter_opt_spread_3_ref:
  2241   case _adapter_opt_spread_4_ref:
  2242   case _adapter_opt_spread_5_ref:
  2243   case _adapter_opt_spread_ref:
  2244   case _adapter_opt_spread_byte:
  2245   case _adapter_opt_spread_char:
  2246   case _adapter_opt_spread_short:
  2247   case _adapter_opt_spread_int:
  2248   case _adapter_opt_spread_long:
  2249   case _adapter_opt_spread_float:
  2250   case _adapter_opt_spread_double:
  2252       // spread an array out into a group of arguments
  2253       int length_constant = ek_adapter_opt_spread_count(ek);
  2254       bool length_can_be_zero = (length_constant == 0);
  2255       if (length_constant < 0) {
  2256         // some adapters with variable length must handle the zero case
  2257         if (!OptimizeMethodHandles ||
  2258             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2259           length_can_be_zero = true;
  2262       // find the address of the array argument
  2263       __ movl(rax_argslot, rcx_amh_vmargslot);
  2264       __ lea(rax_argslot, __ argument_address(rax_argslot));
  2266       // grab another temp
  2267       Register rsi_temp = rsi;
  2268       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2269       // (preceding push must be done after argslot address is taken!)
  2270 #define UNPUSH_RSI \
  2271       { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
  2273       // arx_argslot points both to the array and to the first output arg
  2274       vmarg = Address(rax_argslot, 0);
  2276       // Get the array value.
  2277       Register  rsi_array       = rsi_temp;
  2278       Register  rdx_array_klass = rdx_temp;
  2279       BasicType elem_type = ek_adapter_opt_spread_type(ek);
  2280       int       elem_slots = type2size[elem_type];  // 1 or 2
  2281       int       array_slots = 1;  // array is always a T_OBJECT
  2282       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  2283       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  2284       __ movptr(rsi_array, vmarg);
  2286       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2287       if (length_can_be_zero) {
  2288         // handle the null pointer case, if zero is allowed
  2289         Label L_skip;
  2290         if (length_constant < 0) {
  2291           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
  2292           __ testl(rbx_temp, rbx_temp);
  2293           __ jcc(Assembler::notZero, L_skip);
  2295         __ testptr(rsi_array, rsi_array);
  2296         __ jcc(Assembler::zero, L_array_is_empty);
  2297         __ bind(L_skip);
  2299       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  2300       __ load_klass(rdx_array_klass, rsi_array);
  2302       // Check the array type.
  2303       Register rbx_klass = rbx_temp;
  2304       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  2305       load_klass_from_Class(_masm, rbx_klass);
  2307       Label ok_array_klass, bad_array_klass, bad_array_length;
  2308       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi_temp, ok_array_klass);
  2309       // If we get here, the type check failed!
  2310       __ jmp(bad_array_klass);
  2311       __ BIND(ok_array_klass);
  2313       // Check length.
  2314       if (length_constant >= 0) {
  2315         __ cmpl(Address(rsi_array, length_offset), length_constant);
  2316       } else {
  2317         Register rbx_vminfo = rbx_temp;
  2318         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  2319         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  2321       __ jcc(Assembler::notEqual, bad_array_length);
  2323       Register rdx_argslot_limit = rdx_temp;
  2325       // Array length checks out.  Now insert any required stack slots.
  2326       if (length_constant == -1) {
  2327         // Form a pointer to the end of the affected region.
  2328         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  2329         // 'stack_move' is negative number of words to insert
  2330         // This number already accounts for elem_slots.
  2331         Register rdi_stack_move = rdi_temp;
  2332         load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  2333         __ cmpptr(rdi_stack_move, 0);
  2334         assert(stack_move_unit() < 0, "else change this comparison");
  2335         __ jcc(Assembler::less, L_insert_arg_space);
  2336         __ jcc(Assembler::equal, L_copy_args);
  2337         // single argument case, with no array movement
  2338         __ BIND(L_array_is_empty);
  2339         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2340                          rax_argslot, rbx_temp, rdx_temp);
  2341         __ jmp(L_args_done);  // no spreading to do
  2342         __ BIND(L_insert_arg_space);
  2343         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2344         Register rsi_temp = rsi_array;  // spill this
  2345         insert_arg_slots(_masm, rdi_stack_move,
  2346                          rax_argslot, rbx_temp, rsi_temp);
  2347         // reload the array since rsi was killed
  2348         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2349         __ movptr(rsi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
  2350       } else if (length_constant >= 1) {
  2351         int new_slots = (length_constant * elem_slots) - array_slots;
  2352         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2353                          rax_argslot, rbx_temp, rdx_temp);
  2354       } else if (length_constant == 0) {
  2355         __ BIND(L_array_is_empty);
  2356         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2357                          rax_argslot, rbx_temp, rdx_temp);
  2358       } else {
  2359         ShouldNotReachHere();
  2362       // Copy from the array to the new slots.
  2363       // Note: Stack change code preserves integrity of rax_argslot pointer.
  2364       // So even after slot insertions, rax_argslot still points to first argument.
  2365       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2366       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2367       // elementwise in reverse order from the source array.
  2368       __ BIND(L_copy_args);
  2369       if (length_constant == -1) {
  2370         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  2371         // Array element [0] goes at rdx_argslot_limit[-wordSize].
  2372         Register rsi_source = rsi_array;
  2373         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  2374         Register rdx_fill_ptr = rdx_argslot_limit;
  2375         Label loop;
  2376         __ BIND(loop);
  2377         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
  2378         move_typed_arg(_masm, elem_type, true,
  2379                        Address(rdx_fill_ptr, 0), Address(rsi_source, 0),
  2380                        rbx_temp, rdi_temp);
  2381         __ addptr(rsi_source, type2aelembytes(elem_type));
  2382         __ cmpptr(rdx_fill_ptr, rax_argslot);
  2383         __ jcc(Assembler::above, loop);
  2384       } else if (length_constant == 0) {
  2385         // nothing to copy
  2386       } else {
  2387         int elem_offset = elem0_offset;
  2388         int slot_offset = length_constant * Interpreter::stackElementSize;
  2389         for (int index = 0; index < length_constant; index++) {
  2390           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2391           move_typed_arg(_masm, elem_type, true,
  2392                          Address(rax_argslot, slot_offset), Address(rsi_array, elem_offset),
  2393                          rbx_temp, rdi_temp);
  2394           elem_offset += type2aelembytes(elem_type);
  2397       __ BIND(L_args_done);
  2399       // Arguments are spread.  Move to next method handle.
  2400       UNPUSH_RSI;
  2401       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  2402       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2404       __ bind(bad_array_klass);
  2405       UNPUSH_RSI;
  2406       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2407       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
  2408       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
  2409       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
  2410       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2412       __ bind(bad_array_length);
  2413       UNPUSH_RSI;
  2414       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2415       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
  2416       __ movptr( rarg1_actual,   vmarg);                          // bad array
  2417       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
  2418       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2419 #undef UNPUSH_RSI
  2421       break;
  2424   default:
  2425     // do not require all platforms to recognize all adapter types
  2426     __ nop();
  2427     return;
  2429   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2430   __ hlt();
  2432   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2433   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2435   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial