src/cpu/sparc/vm/assembler_sparc.cpp

Wed, 21 May 2008 13:46:23 -0700

author
kvn
date
Wed, 21 May 2008 13:46:23 -0700
changeset 599
c436414a719e
parent 559
b130b98db9cf
child 602
feeb96a45707
permissions
-rw-r--r--

6703890: Compressed Oops: add LoadNKlass node to generate narrow oops (32-bits) compare instructions
Summary: Add LoadNKlass and CMoveN nodes, use CmpN and ConN nodes to generate narrow oops compare instructions.
Reviewed-by: never, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_sparc.cpp.incl"
    28 // Implementation of Address
    30 Address::Address( addr_type t, int which ) {
    31   switch (t) {
    32    case extra_in_argument:
    33    case extra_out_argument:
    34      _base = t == extra_in_argument ? FP : SP;
    35      _hi   = 0;
    36 // Warning:  In LP64 mode, _disp will occupy more than 10 bits.
    37 //           This is inconsistent with the other constructors but op
    38 //           codes such as ld or ldx, only access disp() to get their
    39 //           simm13 argument.
    40      _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    41     break;
    42    default:
    43     ShouldNotReachHere();
    44     break;
    45   }
    46 }
    48 static const char* argumentNames[][2] = {
    49   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    50   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    51   {"A(n>9)","P(n>9)"}
    52 };
    54 const char* Argument::name() const {
    55   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    56   int num = number();
    57   if (num >= nofArgs)  num = nofArgs - 1;
    58   return argumentNames[num][is_in() ? 1 : 0];
    59 }
    61 void Assembler::print_instruction(int inst) {
    62   const char* s;
    63   switch (inv_op(inst)) {
    64   default:         s = "????"; break;
    65   case call_op:    s = "call"; break;
    66   case branch_op:
    67     switch (inv_op2(inst)) {
    68       case bpr_op2:    s = "bpr";  break;
    69       case fb_op2:     s = "fb";   break;
    70       case fbp_op2:    s = "fbp";  break;
    71       case br_op2:     s = "br";   break;
    72       case bp_op2:     s = "bp";   break;
    73       case cb_op2:     s = "cb";   break;
    74       default:         s = "????"; break;
    75     }
    76   }
    77   ::tty->print("%s", s);
    78 }
    81 // Patch instruction inst at offset inst_pos to refer to dest_pos
    82 // and return the resulting instruction.
    83 // We should have pcs, not offsets, but since all is relative, it will work out
    84 // OK.
    85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    87   int m; // mask for displacement field
    88   int v; // new value for displacement field
    89   const int word_aligned_ones = -4;
    90   switch (inv_op(inst)) {
    91   default: ShouldNotReachHere();
    92   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
    93   case branch_op:
    94     switch (inv_op2(inst)) {
    95       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
    96       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    97       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    98       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
    99       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   100       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   101       default: ShouldNotReachHere();
   102     }
   103   }
   104   return  inst & ~m  |  v;
   105 }
   107 // Return the offset of the branch destionation of instruction inst
   108 // at offset pos.
   109 // Should have pcs, but since all is relative, it works out.
   110 int Assembler::branch_destination(int inst, int pos) {
   111   int r;
   112   switch (inv_op(inst)) {
   113   default: ShouldNotReachHere();
   114   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   115   case branch_op:
   116     switch (inv_op2(inst)) {
   117       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   118       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   119       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   120       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   121       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   122       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   123       default: ShouldNotReachHere();
   124     }
   125   }
   126   return r;
   127 }
   129 int AbstractAssembler::code_fill_byte() {
   130   return 0x00;                  // illegal instruction 0x00000000
   131 }
   133 // Generate a bunch 'o stuff (including v9's
   134 #ifndef PRODUCT
   135 void Assembler::test_v9() {
   136   add(    G0, G1, G2 );
   137   add(    G3,  0, G4 );
   139   addcc(  G5, G6, G7 );
   140   addcc(  I0,  1, I1 );
   141   addc(   I2, I3, I4 );
   142   addc(   I5, -1, I6 );
   143   addccc( I7, L0, L1 );
   144   addccc( L2, (1 << 12) - 2, L3 );
   146   Label lbl1, lbl2, lbl3;
   148   bind(lbl1);
   150   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   151   delayed()->nop();
   152   bpr( rc_lez, false, pt, L5, lbl1);
   153   delayed()->nop();
   155   fb( f_never,     true, pc() + 4,  relocInfo::none);
   156   delayed()->nop();
   157   fb( f_notEqual, false, lbl2 );
   158   delayed()->nop();
   160   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   161   delayed()->nop();
   162   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   163   delayed()->nop();
   165   br( equal,  true, pc() + 1024, relocInfo::none);
   166   delayed()->nop();
   167   br( lessEqual, false, lbl1 );
   168   delayed()->nop();
   169   br( never, false, lbl1 );
   170   delayed()->nop();
   172   bp( less,               true, icc, pn, pc(), relocInfo::none);
   173   delayed()->nop();
   174   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   175   delayed()->nop();
   177   call( pc(), relocInfo::none);
   178   delayed()->nop();
   179   call( lbl3 );
   180   delayed()->nop();
   183   casa(  L6, L7, O0 );
   184   casxa( O1, O2, O3, 0 );
   186   udiv(   O4, O5, O7 );
   187   udiv(   G0, (1 << 12) - 1, G1 );
   188   sdiv(   G1, G2, G3 );
   189   sdiv(   G4, -((1 << 12) - 1), G5 );
   190   udivcc( G6, G7, I0 );
   191   udivcc( I1, -((1 << 12) - 2), I2 );
   192   sdivcc( I3, I4, I5 );
   193   sdivcc( I6, -((1 << 12) - 0), I7 );
   195   done();
   196   retry();
   198   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   199   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   201   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   202   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   204   ftox( FloatRegisterImpl::D, F2, F4 );
   205   ftoi( FloatRegisterImpl::Q, F4, F8 );
   207   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   209   fxtof( FloatRegisterImpl::S, F4, F5 );
   210   fitof( FloatRegisterImpl::D, F6, F8 );
   212   fmov( FloatRegisterImpl::Q, F16, F20 );
   213   fneg( FloatRegisterImpl::S, F6, F7 );
   214   fabs( FloatRegisterImpl::D, F10, F12 );
   216   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   217   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   218   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   220   fsqrt( FloatRegisterImpl::S, F13, F14 );
   222   flush( L0, L1 );
   223   flush( L2, -1 );
   225   flushw();
   227   illtrap( (1 << 22) - 2);
   229   impdep1( 17, (1 << 19) - 1 );
   230   impdep2( 3,  0 );
   232   jmpl( L3, L4, L5 );
   233   delayed()->nop();
   234   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   235   delayed()->nop();
   238   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   239   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   242   ldfsr(  O3, O4 );
   243   ldfsr(  O5, -1 );
   244   ldxfsr( O6, O7 );
   245   ldxfsr( I0, -1 );
   247   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   248   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   250   ldsb(  I4, I5, I6 );
   251   ldsb(  I7, -1, G0 );
   252   ldsh(  G1, G3, G4 );
   253   ldsh(  G5, -1, G6 );
   254   ldsw(  G7, L0, L1 );
   255   ldsw(  L2, -1, L3 );
   256   ldub(  L4, L5, L6 );
   257   ldub(  L7, -1, O0 );
   258   lduh(  O1, O2, O3 );
   259   lduh(  O4, -1, O5 );
   260   lduw(  O6, O7, G0 );
   261   lduw(  G1, -1, G2 );
   262   ldx(   G3, G4, G5 );
   263   ldx(   G6, -1, G7 );
   264   ldd(   I0, I1, I2 );
   265   ldd(   I3, -1, I4 );
   267   ldsba(  I5, I6, 2, I7 );
   268   ldsba(  L0, -1, L1 );
   269   ldsha(  L2, L3, 3, L4 );
   270   ldsha(  L5, -1, L6 );
   271   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   272   ldswa(  O2, -1, O3 );
   273   lduba(  O4, O5, 0, O6 );
   274   lduba(  O7, -1, I0 );
   275   lduha(  I1, I2, 1, I3 );
   276   lduha(  I4, -1, I5 );
   277   lduwa(  I6, I7, 2, L0 );
   278   lduwa(  L1, -1, L2 );
   279   ldxa(   L3, L4, 3, L5 );
   280   ldxa(   L6, -1, L7 );
   281   ldda(   G0, G1, 4, G2 );
   282   ldda(   G3, -1, G4 );
   284   ldstub(  G5, G6, G7 );
   285   ldstub(  O0, -1, O1 );
   287   ldstuba( O2, O3, 5, O4 );
   288   ldstuba( O5, -1, O6 );
   290   and3(    I0, L0, O0 );
   291   and3(    G7, -1, O7 );
   292   andcc(   L2, I2, G2 );
   293   andcc(   L4, -1, G4 );
   294   andn(    I5, I6, I7 );
   295   andn(    I6, -1, I7 );
   296   andncc(  I5, I6, I7 );
   297   andncc(  I7, -1, I6 );
   298   or3(     I5, I6, I7 );
   299   or3(     I7, -1, I6 );
   300   orcc(    I5, I6, I7 );
   301   orcc(    I7, -1, I6 );
   302   orn(     I5, I6, I7 );
   303   orn(     I7, -1, I6 );
   304   orncc(   I5, I6, I7 );
   305   orncc(   I7, -1, I6 );
   306   xor3(    I5, I6, I7 );
   307   xor3(    I7, -1, I6 );
   308   xorcc(   I5, I6, I7 );
   309   xorcc(   I7, -1, I6 );
   310   xnor(    I5, I6, I7 );
   311   xnor(    I7, -1, I6 );
   312   xnorcc(  I5, I6, I7 );
   313   xnorcc(  I7, -1, I6 );
   315   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   316   membar( StoreStore );
   317   membar( LoadStore );
   318   membar( StoreLoad );
   319   membar( LoadLoad );
   320   membar( Sync );
   321   membar( MemIssue );
   322   membar( Lookaside );
   324   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   325   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   327   movcc( overflowClear,  false, icc, I6, L4 );
   328   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   330   movr( rc_nz, I5, I6, I7 );
   331   movr( rc_gz, L1, -1,  L2 );
   333   mulx(  I5, I6, I7 );
   334   mulx(  I7, -1, I6 );
   335   sdivx( I5, I6, I7 );
   336   sdivx( I7, -1, I6 );
   337   udivx( I5, I6, I7 );
   338   udivx( I7, -1, I6 );
   340   umul(   I5, I6, I7 );
   341   umul(   I7, -1, I6 );
   342   smul(   I5, I6, I7 );
   343   smul(   I7, -1, I6 );
   344   umulcc( I5, I6, I7 );
   345   umulcc( I7, -1, I6 );
   346   smulcc( I5, I6, I7 );
   347   smulcc( I7, -1, I6 );
   349   mulscc(   I5, I6, I7 );
   350   mulscc(   I7, -1, I6 );
   352   nop();
   355   popc( G0,  G1);
   356   popc( -1, G2);
   358   prefetch(   L1, L2,    severalReads );
   359   prefetch(   L3, -1,    oneRead );
   360   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   361   prefetcha(  G2, -1,    oneWrite );
   363   rett( I7, I7);
   364   delayed()->nop();
   365   rett( G0, -1, relocInfo::none);
   366   delayed()->nop();
   368   save(    I5, I6, I7 );
   369   save(    I7, -1, I6 );
   370   restore( I5, I6, I7 );
   371   restore( I7, -1, I6 );
   373   saved();
   374   restored();
   376   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   378   sll(  I5, I6, I7 );
   379   sll(  I7, 31, I6 );
   380   srl(  I5, I6, I7 );
   381   srl(  I7,  0, I6 );
   382   sra(  I5, I6, I7 );
   383   sra(  I7, 30, I6 );
   384   sllx( I5, I6, I7 );
   385   sllx( I7, 63, I6 );
   386   srlx( I5, I6, I7 );
   387   srlx( I7,  0, I6 );
   388   srax( I5, I6, I7 );
   389   srax( I7, 62, I6 );
   391   sir( -1 );
   393   stbar();
   395   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   396   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   398   stfsr(  L1, L2 );
   399   stfsr(  I7, -1 );
   400   stxfsr( I6, I5 );
   401   stxfsr( L4, -1 );
   403   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   404   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   406   stb(  L5, O2, I7 );
   407   stb(  I7, I6, -1 );
   408   sth(  L5, O2, I7 );
   409   sth(  I7, I6, -1 );
   410   stw(  L5, O2, I7 );
   411   stw(  I7, I6, -1 );
   412   stx(  L5, O2, I7 );
   413   stx(  I7, I6, -1 );
   414   std(  L5, O2, I7 );
   415   std(  I7, I6, -1 );
   417   stba(  L5, O2, I7, 8 );
   418   stba(  I7, I6, -1    );
   419   stha(  L5, O2, I7, 9 );
   420   stha(  I7, I6, -1    );
   421   stwa(  L5, O2, I7, 0 );
   422   stwa(  I7, I6, -1    );
   423   stxa(  L5, O2, I7, 11 );
   424   stxa(  I7, I6, -1     );
   425   stda(  L5, O2, I7, 12 );
   426   stda(  I7, I6, -1     );
   428   sub(    I5, I6, I7 );
   429   sub(    I7, -1, I6 );
   430   subcc(  I5, I6, I7 );
   431   subcc(  I7, -1, I6 );
   432   subc(   I5, I6, I7 );
   433   subc(   I7, -1, I6 );
   434   subccc( I5, I6, I7 );
   435   subccc( I7, -1, I6 );
   437   swap( I5, I6, I7 );
   438   swap( I7, -1, I6 );
   440   swapa(   G0, G1, 13, G2 );
   441   swapa(   I7, -1,     I6 );
   443   taddcc(    I5, I6, I7 );
   444   taddcc(    I7, -1, I6 );
   445   taddcctv(  I5, I6, I7 );
   446   taddcctv(  I7, -1, I6 );
   448   tsubcc(    I5, I6, I7 );
   449   tsubcc(    I7, -1, I6 );
   450   tsubcctv(  I5, I6, I7 );
   451   tsubcctv(  I7, -1, I6 );
   453   trap( overflowClear, xcc, G0, G1 );
   454   trap( lessEqual,     icc, I7, 17 );
   456   bind(lbl2);
   457   bind(lbl3);
   459   code()->decode();
   460 }
   462 // Generate a bunch 'o stuff unique to V8
   463 void Assembler::test_v8_onlys() {
   464   Label lbl1;
   466   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   467   delayed()->nop();
   468   cb( cp_never,    true, lbl1);
   469   delayed()->nop();
   471   cpop1(1, 2, 3, 4);
   472   cpop2(5, 6, 7, 8);
   474   ldc( I0, I1, 31);
   475   ldc( I2, -1,  0);
   477   lddc( I4, I4, 30);
   478   lddc( I6,  0, 1 );
   480   ldcsr( L0, L1, 0);
   481   ldcsr( L1, (1 << 12) - 1, 17 );
   483   stc( 31, L4, L5);
   484   stc( 30, L6, -(1 << 12) );
   486   stdc( 0, L7, G0);
   487   stdc( 1, G1, 0 );
   489   stcsr( 16, G2, G3);
   490   stcsr( 17, G4, 1 );
   492   stdcq( 4, G5, G6);
   493   stdcq( 5, G7, -1 );
   495   bind(lbl1);
   497   code()->decode();
   498 }
   499 #endif
   501 // Implementation of MacroAssembler
   503 void MacroAssembler::null_check(Register reg, int offset) {
   504   if (needs_explicit_null_check((intptr_t)offset)) {
   505     // provoke OS NULL exception if reg = NULL by
   506     // accessing M[reg] w/o changing any registers
   507     ld_ptr(reg, 0, G0);
   508   }
   509   else {
   510     // nothing to do, (later) access of M[reg + offset]
   511     // will provoke OS NULL exception if reg = NULL
   512   }
   513 }
   515 // Ring buffer jumps
   517 #ifndef PRODUCT
   518 void MacroAssembler::ret(  bool trace )   { if (trace) {
   519                                                     mov(I7, O7); // traceable register
   520                                                     JMP(O7, 2 * BytesPerInstWord);
   521                                                   } else {
   522                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   523                                                   }
   524                                                 }
   526 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   527                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   528 #endif /* PRODUCT */
   531 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   532   assert_not_delayed();
   533   // This can only be traceable if r1 & r2 are visible after a window save
   534   if (TraceJumps) {
   535 #ifndef PRODUCT
   536     save_frame(0);
   537     verify_thread();
   538     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   539     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   540     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   541     add(O2, O1, O1);
   543     add(r1->after_save(), r2->after_save(), O2);
   544     set((intptr_t)file, O3);
   545     set(line, O4);
   546     Label L;
   547     // get nearby pc, store jmp target
   548     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   549     delayed()->st(O2, O1, 0);
   550     bind(L);
   552     // store nearby pc
   553     st(O7, O1, sizeof(intptr_t));
   554     // store file
   555     st(O3, O1, 2*sizeof(intptr_t));
   556     // store line
   557     st(O4, O1, 3*sizeof(intptr_t));
   558     add(O0, 1, O0);
   559     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   560     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   561     restore();
   562 #endif /* PRODUCT */
   563   }
   564   jmpl(r1, r2, G0);
   565 }
   566 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   567   assert_not_delayed();
   568   // This can only be traceable if r1 is visible after a window save
   569   if (TraceJumps) {
   570 #ifndef PRODUCT
   571     save_frame(0);
   572     verify_thread();
   573     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   574     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   575     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   576     add(O2, O1, O1);
   578     add(r1->after_save(), offset, O2);
   579     set((intptr_t)file, O3);
   580     set(line, O4);
   581     Label L;
   582     // get nearby pc, store jmp target
   583     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   584     delayed()->st(O2, O1, 0);
   585     bind(L);
   587     // store nearby pc
   588     st(O7, O1, sizeof(intptr_t));
   589     // store file
   590     st(O3, O1, 2*sizeof(intptr_t));
   591     // store line
   592     st(O4, O1, 3*sizeof(intptr_t));
   593     add(O0, 1, O0);
   594     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   595     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   596     restore();
   597 #endif /* PRODUCT */
   598   }
   599   jmp(r1, offset);
   600 }
   602 // This code sequence is relocatable to any address, even on LP64.
   603 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
   604   assert_not_delayed();
   605   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   606   // variable length instruction streams.
   607   sethi(a, /*ForceRelocatable=*/ true);
   608   if (TraceJumps) {
   609 #ifndef PRODUCT
   610     // Must do the add here so relocation can find the remainder of the
   611     // value to be relocated.
   612     add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
   613     save_frame(0);
   614     verify_thread();
   615     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   616     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   617     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   618     add(O2, O1, O1);
   620     set((intptr_t)file, O3);
   621     set(line, O4);
   622     Label L;
   624     // get nearby pc, store jmp target
   625     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   626     delayed()->st(a.base()->after_save(), O1, 0);
   627     bind(L);
   629     // store nearby pc
   630     st(O7, O1, sizeof(intptr_t));
   631     // store file
   632     st(O3, O1, 2*sizeof(intptr_t));
   633     // store line
   634     st(O4, O1, 3*sizeof(intptr_t));
   635     add(O0, 1, O0);
   636     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   637     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   638     restore();
   639     jmpl(a.base(), G0, d);
   640 #else
   641     jmpl(a, d, offset);
   642 #endif /* PRODUCT */
   643   } else {
   644     jmpl(a, d, offset);
   645   }
   646 }
   648 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
   649   jumpl( a, G0, offset, file, line );
   650 }
   653 // Convert to C varargs format
   654 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   655   // spill register-resident args to their memory slots
   656   // (SPARC calling convention requires callers to have already preallocated these)
   657   // Note that the inArg might in fact be an outgoing argument,
   658   // if a leaf routine or stub does some tricky argument shuffling.
   659   // This routine must work even though one of the saved arguments
   660   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   661   for (Argument savePtr = inArg;
   662        savePtr.is_register();
   663        savePtr = savePtr.successor()) {
   664     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   665   }
   666   // return the address of the first memory slot
   667   add(inArg.address_in_frame(), d);
   668 }
   670 // Conditional breakpoint (for assertion checks in assembly code)
   671 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   672   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   673 }
   675 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   676 void MacroAssembler::breakpoint_trap() {
   677   trap(ST_RESERVED_FOR_USER_0);
   678 }
   680 // flush windows (except current) using flushw instruction if avail.
   681 void MacroAssembler::flush_windows() {
   682   if (VM_Version::v9_instructions_work())  flushw();
   683   else                                     flush_windows_trap();
   684 }
   686 // Write serialization page so VM thread can do a pseudo remote membar
   687 // We use the current thread pointer to calculate a thread specific
   688 // offset to write to within the page. This minimizes bus traffic
   689 // due to cache line collision.
   690 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   691   Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
   692   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   693   if (Assembler::is_simm13(os::vm_page_size())) {
   694     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   695   }
   696   else {
   697     set((os::vm_page_size() - sizeof(int)), tmp1);
   698     and3(tmp2, tmp1, tmp2);
   699   }
   700   load_address(mem_serialize_page);
   701   st(G0, tmp1, tmp2);
   702 }
   706 void MacroAssembler::enter() {
   707   Unimplemented();
   708 }
   710 void MacroAssembler::leave() {
   711   Unimplemented();
   712 }
   714 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   715   if(VM_Version::v9_instructions_work()) {
   716     mulx (s1, s2, d);
   717   } else {
   718     smul (s1, s2, d);
   719   }
   720 }
   722 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   723   if(VM_Version::v9_instructions_work()) {
   724     mulx (s1, simm13a, d);
   725   } else {
   726     smul (s1, simm13a, d);
   727   }
   728 }
   731 #ifdef ASSERT
   732 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   733   const Register s1 = G3_scratch;
   734   const Register s2 = G4_scratch;
   735   Label get_psr_test;
   736   // Get the condition codes the V8 way.
   737   read_ccr_trap(s1);
   738   mov(ccr_save, s2);
   739   // This is a test of V8 which has icc but not xcc
   740   // so mask off the xcc bits
   741   and3(s2, 0xf, s2);
   742   // Compare condition codes from the V8 and V9 ways.
   743   subcc(s2, s1, G0);
   744   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   745   delayed()->breakpoint_trap();
   746   bind(get_psr_test);
   747 }
   749 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   750   const Register s1 = G3_scratch;
   751   const Register s2 = G4_scratch;
   752   Label set_psr_test;
   753   // Write out the saved condition codes the V8 way
   754   write_ccr_trap(ccr_save, s1, s2);
   755   // Read back the condition codes using the V9 instruction
   756   rdccr(s1);
   757   mov(ccr_save, s2);
   758   // This is a test of V8 which has icc but not xcc
   759   // so mask off the xcc bits
   760   and3(s2, 0xf, s2);
   761   and3(s1, 0xf, s1);
   762   // Compare the V8 way with the V9 way.
   763   subcc(s2, s1, G0);
   764   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   765   delayed()->breakpoint_trap();
   766   bind(set_psr_test);
   767 }
   768 #else
   769 #define read_ccr_v8_assert(x)
   770 #define write_ccr_v8_assert(x)
   771 #endif // ASSERT
   773 void MacroAssembler::read_ccr(Register ccr_save) {
   774   if (VM_Version::v9_instructions_work()) {
   775     rdccr(ccr_save);
   776     // Test code sequence used on V8.  Do not move above rdccr.
   777     read_ccr_v8_assert(ccr_save);
   778   } else {
   779     read_ccr_trap(ccr_save);
   780   }
   781 }
   783 void MacroAssembler::write_ccr(Register ccr_save) {
   784   if (VM_Version::v9_instructions_work()) {
   785     // Test code sequence used on V8.  Do not move below wrccr.
   786     write_ccr_v8_assert(ccr_save);
   787     wrccr(ccr_save);
   788   } else {
   789     const Register temp_reg1 = G3_scratch;
   790     const Register temp_reg2 = G4_scratch;
   791     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   792   }
   793 }
   796 // Calls to C land
   798 #ifdef ASSERT
   799 // a hook for debugging
   800 static Thread* reinitialize_thread() {
   801   return ThreadLocalStorage::thread();
   802 }
   803 #else
   804 #define reinitialize_thread ThreadLocalStorage::thread
   805 #endif
   807 #ifdef ASSERT
   808 address last_get_thread = NULL;
   809 #endif
   811 // call this when G2_thread is not known to be valid
   812 void MacroAssembler::get_thread() {
   813   save_frame(0);                // to avoid clobbering O0
   814   mov(G1, L0);                  // avoid clobbering G1
   815   mov(G5_method, L1);           // avoid clobbering G5
   816   mov(G3, L2);                  // avoid clobbering G3 also
   817   mov(G4, L5);                  // avoid clobbering G4
   818 #ifdef ASSERT
   819   Address last_get_thread_addr(L3, (address)&last_get_thread);
   820   sethi(last_get_thread_addr);
   821   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   822   st_ptr(L4, last_get_thread_addr);
   823 #endif
   824   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   825   delayed()->nop();
   826   mov(L0, G1);
   827   mov(L1, G5_method);
   828   mov(L2, G3);
   829   mov(L5, G4);
   830   restore(O0, 0, G2_thread);
   831 }
   833 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   834   Thread* correct_value = ThreadLocalStorage::thread();
   835   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   836   return correct_value;
   837 }
   839 void MacroAssembler::verify_thread() {
   840   if (VerifyThread) {
   841     // NOTE: this chops off the heads of the 64-bit O registers.
   842 #ifdef CC_INTERP
   843     save_frame(0);
   844 #else
   845     // make sure G2_thread contains the right value
   846     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   847     mov(G1, L1);                // avoid clobbering G1
   848     // G2 saved below
   849     mov(G3, L3);                // avoid clobbering G3
   850     mov(G4, L4);                // avoid clobbering G4
   851     mov(G5_method, L5);         // avoid clobbering G5_method
   852 #endif /* CC_INTERP */
   853 #if defined(COMPILER2) && !defined(_LP64)
   854     // Save & restore possible 64-bit Long arguments in G-regs
   855     srlx(G1,32,L0);
   856     srlx(G4,32,L6);
   857 #endif
   858     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   859     delayed()->mov(G2_thread, O0);
   861     mov(L1, G1);                // Restore G1
   862     // G2 restored below
   863     mov(L3, G3);                // restore G3
   864     mov(L4, G4);                // restore G4
   865     mov(L5, G5_method);         // restore G5_method
   866 #if defined(COMPILER2) && !defined(_LP64)
   867     // Save & restore possible 64-bit Long arguments in G-regs
   868     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   869     sllx(G1, 0,G1);             // Clear current high G1 bits
   870     or3 (G1,G2,G1);             // Recover 64-bit G1
   871     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   872     sllx(G4, 0,G4);             // Clear current high G4 bits
   873     or3 (G4,G2,G4);             // Recover 64-bit G4
   874 #endif
   875     restore(O0, 0, G2_thread);
   876   }
   877 }
   880 void MacroAssembler::save_thread(const Register thread_cache) {
   881   verify_thread();
   882   if (thread_cache->is_valid()) {
   883     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   884     mov(G2_thread, thread_cache);
   885   }
   886   if (VerifyThread) {
   887     // smash G2_thread, as if the VM were about to anyway
   888     set(0x67676767, G2_thread);
   889   }
   890 }
   893 void MacroAssembler::restore_thread(const Register thread_cache) {
   894   if (thread_cache->is_valid()) {
   895     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   896     mov(thread_cache, G2_thread);
   897     verify_thread();
   898   } else {
   899     // do it the slow way
   900     get_thread();
   901   }
   902 }
   905 // %%% maybe get rid of [re]set_last_Java_frame
   906 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   907   assert_not_delayed();
   908   Address flags(G2_thread,
   909                 0,
   910                 in_bytes(JavaThread::frame_anchor_offset()) +
   911                          in_bytes(JavaFrameAnchor::flags_offset()));
   912   Address pc_addr(G2_thread,
   913                   0,
   914                   in_bytes(JavaThread::last_Java_pc_offset()));
   916   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   917   // has_last_Java_frame is true and users will look at the rest of the fields.
   918   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   920 #ifdef ASSERT
   921   // Verify that flags was zeroed on return to Java
   922   Label PcOk;
   923   save_frame(0);                // to avoid clobbering O0
   924   ld_ptr(pc_addr, L0);
   925   tst(L0);
   926 #ifdef _LP64
   927   brx(Assembler::zero, false, Assembler::pt, PcOk);
   928 #else
   929   br(Assembler::zero, false, Assembler::pt, PcOk);
   930 #endif // _LP64
   931   delayed() -> nop();
   932   stop("last_Java_pc not zeroed before leaving Java");
   933   bind(PcOk);
   935   // Verify that flags was zeroed on return to Java
   936   Label FlagsOk;
   937   ld(flags, L0);
   938   tst(L0);
   939   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   940   delayed() -> restore();
   941   stop("flags not zeroed before leaving Java");
   942   bind(FlagsOk);
   943 #endif /* ASSERT */
   944   //
   945   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   946   // will always be set to NULL. It is set here so that if we are doing a call to
   947   // native (not VM) that we capture the known pc and don't have to rely on the
   948   // native call having a standard frame linkage where we can find the pc.
   950   if (last_Java_pc->is_valid()) {
   951     st_ptr(last_Java_pc, pc_addr);
   952   }
   954 #ifdef _LP64
   955 #ifdef ASSERT
   956   // Make sure that we have an odd stack
   957   Label StackOk;
   958   andcc(last_java_sp, 0x01, G0);
   959   br(Assembler::notZero, false, Assembler::pt, StackOk);
   960   delayed() -> nop();
   961   stop("Stack Not Biased in set_last_Java_frame");
   962   bind(StackOk);
   963 #endif // ASSERT
   964   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   965   add( last_java_sp, STACK_BIAS, G4_scratch );
   966   st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   967 #else
   968   st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   969 #endif // _LP64
   970 }
   972 void MacroAssembler::reset_last_Java_frame(void) {
   973   assert_not_delayed();
   975   Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
   976   Address pc_addr(G2_thread,
   977                   0,
   978                   in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
   979   Address flags(G2_thread,
   980                 0,
   981                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   983 #ifdef ASSERT
   984   // check that it WAS previously set
   985 #ifdef CC_INTERP
   986     save_frame(0);
   987 #else
   988     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
   989 #endif /* CC_INTERP */
   990     ld_ptr(sp_addr, L0);
   991     tst(L0);
   992     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   993     restore();
   994 #endif // ASSERT
   996   st_ptr(G0, sp_addr);
   997   // Always return last_Java_pc to zero
   998   st_ptr(G0, pc_addr);
   999   // Always null flags after return to Java
  1000   st(G0, flags);
  1004 void MacroAssembler::call_VM_base(
  1005   Register        oop_result,
  1006   Register        thread_cache,
  1007   Register        last_java_sp,
  1008   address         entry_point,
  1009   int             number_of_arguments,
  1010   bool            check_exceptions)
  1012   assert_not_delayed();
  1014   // determine last_java_sp register
  1015   if (!last_java_sp->is_valid()) {
  1016     last_java_sp = SP;
  1018   // debugging support
  1019   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1021   // 64-bit last_java_sp is biased!
  1022   set_last_Java_frame(last_java_sp, noreg);
  1023   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1024   save_thread(thread_cache);
  1025   // do the call
  1026   call(entry_point, relocInfo::runtime_call_type);
  1027   if (!VerifyThread)
  1028     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1029   else
  1030     delayed()->nop();             // (thread already passed)
  1031   restore_thread(thread_cache);
  1032   reset_last_Java_frame();
  1034   // check for pending exceptions. use Gtemp as scratch register.
  1035   if (check_exceptions) {
  1036     check_and_forward_exception(Gtemp);
  1039   // get oop result if there is one and reset the value in the thread
  1040   if (oop_result->is_valid()) {
  1041     get_vm_result(oop_result);
  1045 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1047   Label L;
  1049   check_and_handle_popframe(scratch_reg);
  1050   check_and_handle_earlyret(scratch_reg);
  1052   Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1053   ld_ptr(exception_addr, scratch_reg);
  1054   br_null(scratch_reg,false,pt,L);
  1055   delayed()->nop();
  1056   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1057   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1058   delayed()->nop();
  1059   bind(L);
  1063 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1067 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1071 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1072   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1076 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1077   // O0 is reserved for the thread
  1078   mov(arg_1, O1);
  1079   call_VM(oop_result, entry_point, 1, check_exceptions);
  1083 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1084   // O0 is reserved for the thread
  1085   mov(arg_1, O1);
  1086   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1087   call_VM(oop_result, entry_point, 2, check_exceptions);
  1091 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1092   // O0 is reserved for the thread
  1093   mov(arg_1, O1);
  1094   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1095   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1096   call_VM(oop_result, entry_point, 3, check_exceptions);
  1101 // Note: The following call_VM overloadings are useful when a "save"
  1102 // has already been performed by a stub, and the last Java frame is
  1103 // the previous one.  In that case, last_java_sp must be passed as FP
  1104 // instead of SP.
  1107 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1108   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1112 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1113   // O0 is reserved for the thread
  1114   mov(arg_1, O1);
  1115   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1119 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1120   // O0 is reserved for the thread
  1121   mov(arg_1, O1);
  1122   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1123   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1127 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1128   // O0 is reserved for the thread
  1129   mov(arg_1, O1);
  1130   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1131   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1132   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1137 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1138   assert_not_delayed();
  1139   save_thread(thread_cache);
  1140   // do the call
  1141   call(entry_point, relocInfo::runtime_call_type);
  1142   delayed()->nop();
  1143   restore_thread(thread_cache);
  1147 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1148   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1152 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1153   mov(arg_1, O0);
  1154   call_VM_leaf(thread_cache, entry_point, 1);
  1158 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1159   mov(arg_1, O0);
  1160   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1161   call_VM_leaf(thread_cache, entry_point, 2);
  1165 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1166   mov(arg_1, O0);
  1167   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1168   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1169   call_VM_leaf(thread_cache, entry_point, 3);
  1173 void MacroAssembler::get_vm_result(Register oop_result) {
  1174   verify_thread();
  1175   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1176   ld_ptr(    vm_result_addr, oop_result);
  1177   st_ptr(G0, vm_result_addr);
  1178   verify_oop(oop_result);
  1182 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1183   verify_thread();
  1184   Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
  1185   ld_ptr(vm_result_addr_2, oop_result);
  1186   st_ptr(G0, vm_result_addr_2);
  1187   verify_oop(oop_result);
  1191 // We require that C code which does not return a value in vm_result will
  1192 // leave it undisturbed.
  1193 void MacroAssembler::set_vm_result(Register oop_result) {
  1194   verify_thread();
  1195   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1196   verify_oop(oop_result);
  1198 # ifdef ASSERT
  1199     // Check that we are not overwriting any other oop.
  1200 #ifdef CC_INTERP
  1201     save_frame(0);
  1202 #else
  1203     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1204 #endif /* CC_INTERP */
  1205     ld_ptr(vm_result_addr, L0);
  1206     tst(L0);
  1207     restore();
  1208     breakpoint_trap(notZero, Assembler::ptr_cc);
  1209     // }
  1210 # endif
  1212   st_ptr(oop_result, vm_result_addr);
  1216 void MacroAssembler::store_check(Register tmp, Register obj) {
  1217   // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1219   /* $$$ This stuff needs to go into one of the BarrierSet generator
  1220      functions.  (The particular barrier sets will have to be friends of
  1221      MacroAssembler, I guess.) */
  1222   BarrierSet* bs = Universe::heap()->barrier_set();
  1223   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1224   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1225   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1226 #ifdef _LP64
  1227   srlx(obj, CardTableModRefBS::card_shift, obj);
  1228 #else
  1229   srl(obj, CardTableModRefBS::card_shift, obj);
  1230 #endif
  1231   assert( tmp != obj, "need separate temp reg");
  1232   Address rs(tmp, (address)ct->byte_map_base);
  1233   load_address(rs);
  1234   stb(G0, rs.base(), obj);
  1237 void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
  1238   store_check(tmp, obj);
  1241 // %%% Note:  The following six instructions have been moved,
  1242 //            unchanged, from assembler_sparc.inline.hpp.
  1243 //            They will be refactored at a later date.
  1245 void MacroAssembler::sethi(intptr_t imm22a,
  1246                             Register d,
  1247                             bool ForceRelocatable,
  1248                             RelocationHolder const& rspec) {
  1249   Address adr( d, (address)imm22a, rspec );
  1250   MacroAssembler::sethi( adr, ForceRelocatable );
  1254 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
  1255   address save_pc;
  1256   int shiftcnt;
  1257   // if addr of local, do not need to load it
  1258   assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
  1259 #ifdef _LP64
  1260 # ifdef CHECK_DELAY
  1261   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1262 # endif
  1263   v9_dep();
  1264 //  ForceRelocatable = 1;
  1265   save_pc = pc();
  1266   if (a.hi32() == 0 && a.low32() >= 0) {
  1267     Assembler::sethi(a.low32(), a.base(), a.rspec());
  1269   else if (a.hi32() == -1) {
  1270     Assembler::sethi(~a.low32(), a.base(), a.rspec());
  1271     xor3(a.base(), ~low10(~0), a.base());
  1273   else {
  1274     Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
  1275     if ( a.hi32() & 0x3ff )                     // Any bits?
  1276       or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
  1277     if ( a.low32() & 0xFFFFFC00 ) {             // done?
  1278       if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
  1279         sllx(a.base(), 12, a.base());           // Make room for next 12 bits
  1280         or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
  1281         shiftcnt = 0;                           // We already shifted
  1283       else
  1284         shiftcnt = 12;
  1285       if( (a.low32() >> 10) & 0x3ff ) {
  1286         sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
  1287         or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
  1288         shiftcnt = 0;
  1290       else
  1291         shiftcnt = 10;
  1292       sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
  1294     else
  1295       sllx( a.base(), 32, a.base() );
  1297   // Pad out the instruction sequence so it can be
  1298   // patched later.
  1299   if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
  1300                             a.rtype() != relocInfo::runtime_call_type) ) {
  1301     while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
  1302       nop();
  1304 #else
  1305   Assembler::sethi(a.hi(), a.base(), a.rspec());
  1306 #endif
  1310 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1311 #ifdef _LP64
  1312   if (worst_case) return 7;
  1313   intptr_t iaddr = (intptr_t)a;
  1314   int hi32 = (int)(iaddr >> 32);
  1315   int lo32 = (int)(iaddr);
  1316   int inst_count;
  1317   if (hi32 == 0 && lo32 >= 0)
  1318     inst_count = 1;
  1319   else if (hi32 == -1)
  1320     inst_count = 2;
  1321   else {
  1322     inst_count = 2;
  1323     if ( hi32 & 0x3ff )
  1324       inst_count++;
  1325     if ( lo32 & 0xFFFFFC00 ) {
  1326       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1327       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1330   return BytesPerInstWord * inst_count;
  1331 #else
  1332   return BytesPerInstWord;
  1333 #endif
  1336 int MacroAssembler::worst_case_size_of_set() {
  1337   return size_of_sethi(NULL, true) + 1;
  1340 void MacroAssembler::set(intptr_t value, Register d,
  1341                          RelocationHolder const& rspec) {
  1342   Address val( d, (address)value, rspec);
  1344   if ( rspec.type() == relocInfo::none ) {
  1345     // can optimize
  1346     if (-4096 <= value  &&  value <= 4095) {
  1347       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1348       return;
  1350     if (inv_hi22(hi22(value)) == value) {
  1351       sethi(val);
  1352       return;
  1355   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1356   sethi( val );
  1357   if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
  1358     add( d, value &  0x3ff, d, rspec);
  1362 void MacroAssembler::setsw(int value, Register d,
  1363                            RelocationHolder const& rspec) {
  1364   Address val( d, (address)value, rspec);
  1365   if ( rspec.type() == relocInfo::none ) {
  1366     // can optimize
  1367     if (-4096 <= value  &&  value <= 4095) {
  1368       or3(G0, value, d);
  1369       return;
  1371     if (inv_hi22(hi22(value)) == value) {
  1372       sethi( val );
  1373 #ifndef _LP64
  1374       if ( value < 0 ) {
  1375         assert_not_delayed();
  1376         sra (d, G0, d);
  1378 #endif
  1379       return;
  1382   assert_not_delayed();
  1383   sethi( val );
  1384   add( d, value &  0x3ff, d, rspec);
  1386   // (A negative value could be loaded in 2 insns with sethi/xor,
  1387   // but it would take a more complex relocation.)
  1388 #ifndef _LP64
  1389   if ( value < 0)
  1390     sra(d, G0, d);
  1391 #endif
  1394 // %%% End of moved six set instructions.
  1397 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1398   assert_not_delayed();
  1399   v9_dep();
  1401   int hi = (int)(value >> 32);
  1402   int lo = (int)(value & ~0);
  1403   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1404   if (Assembler::is_simm13(lo) && value == lo) {
  1405     or3(G0, lo, d);
  1406   } else if (hi == 0) {
  1407     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1408     if (low10(lo) != 0)
  1409       or3(d, low10(lo), d);
  1411   else if (hi == -1) {
  1412     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1413     xor3(d, low10(lo) ^ ~low10(~0), d);
  1415   else if (lo == 0) {
  1416     if (Assembler::is_simm13(hi)) {
  1417       or3(G0, hi, d);
  1418     } else {
  1419       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1420       if (low10(hi) != 0)
  1421         or3(d, low10(hi), d);
  1423     sllx(d, 32, d);
  1425   else {
  1426     Assembler::sethi(hi, tmp);
  1427     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1428     if (low10(hi) != 0)
  1429       or3 (tmp, low10(hi), tmp);
  1430     if (low10(lo) != 0)
  1431       or3 (  d, low10(lo),   d);
  1432     sllx(tmp, 32, tmp);
  1433     or3 (d, tmp, d);
  1437 // compute size in bytes of sparc frame, given
  1438 // number of extraWords
  1439 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1441   int nWords = frame::memory_parameter_word_sp_offset;
  1443   nWords += extraWords;
  1445   if (nWords & 1) ++nWords; // round up to double-word
  1447   return nWords * BytesPerWord;
  1451 // save_frame: given number of "extra" words in frame,
  1452 // issue approp. save instruction (p 200, v8 manual)
  1454 void MacroAssembler::save_frame(int extraWords = 0) {
  1455   int delta = -total_frame_size_in_bytes(extraWords);
  1456   if (is_simm13(delta)) {
  1457     save(SP, delta, SP);
  1458   } else {
  1459     set(delta, G3_scratch);
  1460     save(SP, G3_scratch, SP);
  1465 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1466   if (is_simm13(-size_in_bytes)) {
  1467     save(SP, -size_in_bytes, SP);
  1468   } else {
  1469     set(-size_in_bytes, G3_scratch);
  1470     save(SP, G3_scratch, SP);
  1475 void MacroAssembler::save_frame_and_mov(int extraWords,
  1476                                         Register s1, Register d1,
  1477                                         Register s2, Register d2) {
  1478   assert_not_delayed();
  1480   // The trick here is to use precisely the same memory word
  1481   // that trap handlers also use to save the register.
  1482   // This word cannot be used for any other purpose, but
  1483   // it works fine to save the register's value, whether or not
  1484   // an interrupt flushes register windows at any given moment!
  1485   Address s1_addr;
  1486   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1487     s1_addr = s1->address_in_saved_window();
  1488     st_ptr(s1, s1_addr);
  1491   Address s2_addr;
  1492   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1493     s2_addr = s2->address_in_saved_window();
  1494     st_ptr(s2, s2_addr);
  1497   save_frame(extraWords);
  1499   if (s1_addr.base() == SP) {
  1500     ld_ptr(s1_addr.after_save(), d1);
  1501   } else if (s1->is_valid()) {
  1502     mov(s1->after_save(), d1);
  1505   if (s2_addr.base() == SP) {
  1506     ld_ptr(s2_addr.after_save(), d2);
  1507   } else if (s2->is_valid()) {
  1508     mov(s2->after_save(), d2);
  1513 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
  1514   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1515   int oop_index = oop_recorder()->allocate_index(obj);
  1516   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1520 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
  1521   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1522   int oop_index = oop_recorder()->find_index(obj);
  1523   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1526 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1527   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1528   int oop_index = oop_recorder()->find_index(obj);
  1529   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1531   assert_not_delayed();
  1532   // Relocation with special format (see relocInfo_sparc.hpp).
  1533   relocate(rspec, 1);
  1534   // Assembler::sethi(0x3fffff, d);
  1535   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1536   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1537   add(d, 0x3ff, d);
  1542 void MacroAssembler::align(int modulus) {
  1543   while (offset() % modulus != 0) nop();
  1547 void MacroAssembler::safepoint() {
  1548   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1552 void RegistersForDebugging::print(outputStream* s) {
  1553   int j;
  1554   for ( j = 0;  j < 8;  ++j )
  1555     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1556     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1557   s->cr();
  1559   for ( j = 0;  j < 8;  ++j )
  1560     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1561   s->cr();
  1563   for ( j = 0;  j < 8;  ++j )
  1564     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1565     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1566   s->cr();
  1568   for ( j = 0;  j < 8;  ++j )
  1569     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1570   s->cr();
  1572   // print out floats with compression
  1573   for (j = 0; j < 32; ) {
  1574     jfloat val = f[j];
  1575     int last = j;
  1576     for ( ;  last+1 < 32;  ++last ) {
  1577       char b1[1024], b2[1024];
  1578       sprintf(b1, "%f", val);
  1579       sprintf(b2, "%f", f[last+1]);
  1580       if (strcmp(b1, b2))
  1581         break;
  1583     s->print("f%d", j);
  1584     if ( j != last )  s->print(" - f%d", last);
  1585     s->print(" = %f", val);
  1586     s->fill_to(25);
  1587     s->print_cr(" (0x%x)", val);
  1588     j = last + 1;
  1590   s->cr();
  1592   // and doubles (evens only)
  1593   for (j = 0; j < 32; ) {
  1594     jdouble val = d[j];
  1595     int last = j;
  1596     for ( ;  last+1 < 32;  ++last ) {
  1597       char b1[1024], b2[1024];
  1598       sprintf(b1, "%f", val);
  1599       sprintf(b2, "%f", d[last+1]);
  1600       if (strcmp(b1, b2))
  1601         break;
  1603     s->print("d%d", 2 * j);
  1604     if ( j != last )  s->print(" - d%d", last);
  1605     s->print(" = %f", val);
  1606     s->fill_to(30);
  1607     s->print("(0x%x)", *(int*)&val);
  1608     s->fill_to(42);
  1609     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1610     j = last + 1;
  1612   s->cr();
  1615 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1616   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1617   a->flush_windows();
  1618   int i;
  1619   for (i = 0; i < 8; ++i) {
  1620     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1621     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1622     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1623     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1625   for (i = 0;  i < 32; ++i) {
  1626     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1628   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1629     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1633 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1634   for (int i = 1; i < 8;  ++i) {
  1635     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1637   for (int j = 0; j < 32; ++j) {
  1638     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1640   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1641     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1646 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1647 void MacroAssembler::push_fTOS() {
  1648   // %%%%%% need to implement this
  1651 // pops double TOS element from CPU stack and pushes on FPU stack
  1652 void MacroAssembler::pop_fTOS() {
  1653   // %%%%%% need to implement this
  1656 void MacroAssembler::empty_FPU_stack() {
  1657   // %%%%%% need to implement this
  1660 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1661   // plausibility check for oops
  1662   if (!VerifyOops) return;
  1664   if (reg == G0)  return;       // always NULL, which is always an oop
  1666   char buffer[16];
  1667   sprintf(buffer, "%d", line);
  1668   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1669   char * real_msg = new char[len];
  1670   sprintf(real_msg, "%s (%s:%d)", msg, file, line);
  1672   // Call indirectly to solve generation ordering problem
  1673   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1675   // Make some space on stack above the current register window.
  1676   // Enough to hold 8 64-bit registers.
  1677   add(SP,-8*8,SP);
  1679   // Save some 64-bit registers; a normal 'save' chops the heads off
  1680   // of 64-bit longs in the 32-bit build.
  1681   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1682   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1683   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1684   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1686   set((intptr_t)real_msg, O1);
  1687   // Load address to call to into O7
  1688   load_ptr_contents(a, O7);
  1689   // Register call to verify_oop_subroutine
  1690   callr(O7, G0);
  1691   delayed()->nop();
  1692   // recover frame size
  1693   add(SP, 8*8,SP);
  1696 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1697   // plausibility check for oops
  1698   if (!VerifyOops) return;
  1700   char buffer[64];
  1701   sprintf(buffer, "%d", line);
  1702   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1703   sprintf(buffer, " at SP+%d ", addr.disp());
  1704   len += strlen(buffer);
  1705   char * real_msg = new char[len];
  1706   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1708   // Call indirectly to solve generation ordering problem
  1709   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1711   // Make some space on stack above the current register window.
  1712   // Enough to hold 8 64-bit registers.
  1713   add(SP,-8*8,SP);
  1715   // Save some 64-bit registers; a normal 'save' chops the heads off
  1716   // of 64-bit longs in the 32-bit build.
  1717   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1718   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1719   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1720   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1722   set((intptr_t)real_msg, O1);
  1723   // Load address to call to into O7
  1724   load_ptr_contents(a, O7);
  1725   // Register call to verify_oop_subroutine
  1726   callr(O7, G0);
  1727   delayed()->nop();
  1728   // recover frame size
  1729   add(SP, 8*8,SP);
  1732 // side-door communication with signalHandler in os_solaris.cpp
  1733 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1735 // This macro is expanded just once; it creates shared code.  Contract:
  1736 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1737 // registers, including flags.  May not use a register 'save', as this blows
  1738 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1739 // call.
  1740 void MacroAssembler::verify_oop_subroutine() {
  1741   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1743   // Leaf call; no frame.
  1744   Label succeed, fail, null_or_fail;
  1746   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1747   // O0 is now the oop to be checked.  O7 is the return address.
  1748   Register O0_obj = O0;
  1750   // Save some more registers for temps.
  1751   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1752   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1753   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1754   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1756   // Save flags
  1757   Register O5_save_flags = O5;
  1758   rdccr( O5_save_flags );
  1760   { // count number of verifies
  1761     Register O2_adr   = O2;
  1762     Register O3_accum = O3;
  1763     Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
  1764     sethi(count_addr);
  1765     ld(count_addr, O3_accum);
  1766     inc(O3_accum);
  1767     st(O3_accum, count_addr);
  1770   Register O2_mask = O2;
  1771   Register O3_bits = O3;
  1772   Register O4_temp = O4;
  1774   // mark lower end of faulting range
  1775   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1776   _verify_oop_implicit_branch[0] = pc();
  1778   // We can't check the mark oop because it could be in the process of
  1779   // locking or unlocking while this is running.
  1780   set(Universe::verify_oop_mask (), O2_mask);
  1781   set(Universe::verify_oop_bits (), O3_bits);
  1783   // assert((obj & oop_mask) == oop_bits);
  1784   and3(O0_obj, O2_mask, O4_temp);
  1785   cmp(O4_temp, O3_bits);
  1786   brx(notEqual, false, pn, null_or_fail);
  1787   delayed()->nop();
  1789   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1790     // the null_or_fail case is useless; must test for null separately
  1791     br_null(O0_obj, false, pn, succeed);
  1792     delayed()->nop();
  1795   // Check the klassOop of this object for being in the right area of memory.
  1796   // Cannot do the load in the delay above slot in case O0 is null
  1797   load_klass(O0_obj, O0_obj);
  1798   // assert((klass & klass_mask) == klass_bits);
  1799   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1800     set(Universe::verify_klass_mask(), O2_mask);
  1801   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1802     set(Universe::verify_klass_bits(), O3_bits);
  1803   and3(O0_obj, O2_mask, O4_temp);
  1804   cmp(O4_temp, O3_bits);
  1805   brx(notEqual, false, pn, fail);
  1806   delayed()->nop();
  1807   // Check the klass's klass
  1808   load_klass(O0_obj, O0_obj);
  1809   and3(O0_obj, O2_mask, O4_temp);
  1810   cmp(O4_temp, O3_bits);
  1811   brx(notEqual, false, pn, fail);
  1812   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1814   // mark upper end of faulting range
  1815   _verify_oop_implicit_branch[1] = pc();
  1817   //-----------------------
  1818   // all tests pass
  1819   bind(succeed);
  1821   // Restore prior 64-bit registers
  1822   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1823   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1824   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1825   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1826   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1827   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1829   retl();                       // Leaf return; restore prior O7 in delay slot
  1830   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1832   //-----------------------
  1833   bind(null_or_fail);           // nulls are less common but OK
  1834   br_null(O0_obj, false, pt, succeed);
  1835   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1837   //-----------------------
  1838   // report failure:
  1839   bind(fail);
  1840   _verify_oop_implicit_branch[2] = pc();
  1842   wrccr( O5_save_flags ); // Restore CCR's
  1844   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1846   // stop_subroutine expects message pointer in I1.
  1847   mov(I1, O1);
  1849   // Restore prior 64-bit registers
  1850   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1851   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1852   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1853   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1854   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1855   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1857   // factor long stop-sequence into subroutine to save space
  1858   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1860   // call indirectly to solve generation ordering problem
  1861   Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1862   load_ptr_contents(a, O5);
  1863   jmpl(O5, 0, O7);
  1864   delayed()->nop();
  1868 void MacroAssembler::stop(const char* msg) {
  1869   // save frame first to get O7 for return address
  1870   // add one word to size in case struct is odd number of words long
  1871   // It must be doubleword-aligned for storing doubles into it.
  1873     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1875     // stop_subroutine expects message pointer in I1.
  1876     set((intptr_t)msg, O1);
  1878     // factor long stop-sequence into subroutine to save space
  1879     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1881     // call indirectly to solve generation ordering problem
  1882     Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1883     load_ptr_contents(a, O5);
  1884     jmpl(O5, 0, O7);
  1885     delayed()->nop();
  1887     breakpoint_trap();   // make stop actually stop rather than writing
  1888                          // unnoticeable results in the output files.
  1890     // restore(); done in callee to save space!
  1894 void MacroAssembler::warn(const char* msg) {
  1895   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1896   RegistersForDebugging::save_registers(this);
  1897   mov(O0, L0);
  1898   set((intptr_t)msg, O0);
  1899   call( CAST_FROM_FN_PTR(address, warning) );
  1900   delayed()->nop();
  1901 //  ret();
  1902 //  delayed()->restore();
  1903   RegistersForDebugging::restore_registers(this, L0);
  1904   restore();
  1908 void MacroAssembler::untested(const char* what) {
  1909   // We must be able to turn interactive prompting off
  1910   // in order to run automated test scripts on the VM
  1911   // Use the flag ShowMessageBoxOnError
  1913   char* b = new char[1024];
  1914   sprintf(b, "untested: %s", what);
  1916   if ( ShowMessageBoxOnError )   stop(b);
  1917   else                           warn(b);
  1921 void MacroAssembler::stop_subroutine() {
  1922   RegistersForDebugging::save_registers(this);
  1924   // for the sake of the debugger, stick a PC on the current frame
  1925   // (this assumes that the caller has performed an extra "save")
  1926   mov(I7, L7);
  1927   add(O7, -7 * BytesPerInt, I7);
  1929   save_frame(); // one more save to free up another O7 register
  1930   mov(I0, O1); // addr of reg save area
  1932   // We expect pointer to message in I1. Caller must set it up in O1
  1933   mov(I1, O0); // get msg
  1934   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1935   delayed()->nop();
  1937   restore();
  1939   RegistersForDebugging::restore_registers(this, O0);
  1941   save_frame(0);
  1942   call(CAST_FROM_FN_PTR(address,breakpoint));
  1943   delayed()->nop();
  1944   restore();
  1946   mov(L7, I7);
  1947   retl();
  1948   delayed()->restore(); // see stop above
  1952 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1953   if ( ShowMessageBoxOnError ) {
  1954       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1955       JavaThread::current()->set_thread_state(_thread_in_vm);
  1957         // In order to get locks work, we need to fake a in_VM state
  1958         ttyLocker ttyl;
  1959         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1960         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1961           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1963         if (os::message_box(msg, "Execution stopped, print registers?"))
  1964           regs->print(::tty);
  1966       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1968   else
  1969      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1970   assert(false, "error");
  1974 #ifndef PRODUCT
  1975 void MacroAssembler::test() {
  1976   ResourceMark rm;
  1978   CodeBuffer cb("test", 10000, 10000);
  1979   MacroAssembler* a = new MacroAssembler(&cb);
  1980   VM_Version::allow_all();
  1981   a->test_v9();
  1982   a->test_v8_onlys();
  1983   VM_Version::revert();
  1985   StubRoutines::Sparc::test_stop_entry()();
  1987 #endif
  1990 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1991   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1992   Label no_extras;
  1993   br( negative, true, pt, no_extras ); // if neg, clear reg
  1994   delayed()->set( 0, Rresult);         // annuled, so only if taken
  1995   bind( no_extras );
  1999 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2000 #ifdef _LP64
  2001   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2002 #else
  2003   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2004 #endif
  2005   bclr(1, Rresult);
  2006   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2010 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2011   calc_frame_size(Rextra_words, Rresult);
  2012   neg(Rresult);
  2013   save(SP, Rresult, SP);
  2017 // ---------------------------------------------------------
  2018 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2019   switch (c) {
  2020     /*case zero: */
  2021     case Assembler::equal:        return Assembler::rc_z;
  2022     case Assembler::lessEqual:    return Assembler::rc_lez;
  2023     case Assembler::less:         return Assembler::rc_lz;
  2024     /*case notZero:*/
  2025     case Assembler::notEqual:     return Assembler::rc_nz;
  2026     case Assembler::greater:      return Assembler::rc_gz;
  2027     case Assembler::greaterEqual: return Assembler::rc_gez;
  2029   ShouldNotReachHere();
  2030   return Assembler::rc_z;
  2033 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2034 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2035   tst(s1);
  2036   br (c, a, p, L);
  2040 // Compares a pointer register with zero and branches on null.
  2041 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2042 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2043   assert_not_delayed();
  2044 #ifdef _LP64
  2045   bpr( rc_z, a, p, s1, L );
  2046 #else
  2047   tst(s1);
  2048   br ( zero, a, p, L );
  2049 #endif
  2052 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2053   assert_not_delayed();
  2054 #ifdef _LP64
  2055   bpr( rc_nz, a, p, s1, L );
  2056 #else
  2057   tst(s1);
  2058   br ( notZero, a, p, L );
  2059 #endif
  2063 // instruction sequences factored across compiler & interpreter
  2066 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2067                            Register Rb_hi, Register Rb_low,
  2068                            Register Rresult) {
  2070   Label check_low_parts, done;
  2072   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2073   br(equal, true, pt, check_low_parts);
  2074   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2076   // And, with an unsigned comparison, it does not matter if the numbers
  2077   // are negative or not.
  2078   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2079   // The second one is bigger (unsignedly).
  2081   // Other notes:  The first move in each triplet can be unconditional
  2082   // (and therefore probably prefetchable).
  2083   // And the equals case for the high part does not need testing,
  2084   // since that triplet is reached only after finding the high halves differ.
  2086   if (VM_Version::v9_instructions_work()) {
  2088                                     mov  (                     -1, Rresult);
  2089     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2091   else {
  2092     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2093     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2096   bind( check_low_parts );
  2098   if (VM_Version::v9_instructions_work()) {
  2099     mov(                               -1, Rresult);
  2100     movcc(equal,           false, icc,  0, Rresult);
  2101     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2103   else {
  2104                                                     set(-1, Rresult);
  2105     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2106     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2108   bind( done );
  2111 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2112   subcc(  G0, Rlow, Rlow );
  2113   subc(   G0, Rhi,  Rhi  );
  2116 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2117                            Register Rcount,
  2118                            Register Rout_high, Register Rout_low,
  2119                            Register Rtemp ) {
  2122   Register Ralt_count = Rtemp;
  2123   Register Rxfer_bits = Rtemp;
  2125   assert( Ralt_count != Rin_high
  2126       &&  Ralt_count != Rin_low
  2127       &&  Ralt_count != Rcount
  2128       &&  Rxfer_bits != Rin_low
  2129       &&  Rxfer_bits != Rin_high
  2130       &&  Rxfer_bits != Rcount
  2131       &&  Rxfer_bits != Rout_low
  2132       &&  Rout_low   != Rin_high,
  2133         "register alias checks");
  2135   Label big_shift, done;
  2137   // This code can be optimized to use the 64 bit shifts in V9.
  2138   // Here we use the 32 bit shifts.
  2140   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2141   subcc(Rcount,         31,             Ralt_count);
  2142   br(greater, true, pn, big_shift);
  2143   delayed()->
  2144   dec(Ralt_count);
  2146   // shift < 32 bits, Ralt_count = Rcount-31
  2148   // We get the transfer bits by shifting right by 32-count the low
  2149   // register. This is done by shifting right by 31-count and then by one
  2150   // more to take care of the special (rare) case where count is zero
  2151   // (shifting by 32 would not work).
  2153   neg(  Ralt_count                                 );
  2155   // The order of the next two instructions is critical in the case where
  2156   // Rin and Rout are the same and should not be reversed.
  2158   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2159   if (Rcount != Rout_low) {
  2160     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2162   sll(  Rin_high,       Rcount,         Rout_high  );
  2163   if (Rcount == Rout_low) {
  2164     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2166   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2167   ba (false, done);
  2168   delayed()->
  2169   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2171   // shift >= 32 bits, Ralt_count = Rcount-32
  2172   bind(big_shift);
  2173   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2174   clr(  Rout_low                                   );
  2176   bind(done);
  2180 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2181                            Register Rcount,
  2182                            Register Rout_high, Register Rout_low,
  2183                            Register Rtemp ) {
  2185   Register Ralt_count = Rtemp;
  2186   Register Rxfer_bits = Rtemp;
  2188   assert( Ralt_count != Rin_high
  2189       &&  Ralt_count != Rin_low
  2190       &&  Ralt_count != Rcount
  2191       &&  Rxfer_bits != Rin_low
  2192       &&  Rxfer_bits != Rin_high
  2193       &&  Rxfer_bits != Rcount
  2194       &&  Rxfer_bits != Rout_high
  2195       &&  Rout_high  != Rin_low,
  2196         "register alias checks");
  2198   Label big_shift, done;
  2200   // This code can be optimized to use the 64 bit shifts in V9.
  2201   // Here we use the 32 bit shifts.
  2203   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2204   subcc(Rcount,         31,             Ralt_count);
  2205   br(greater, true, pn, big_shift);
  2206   delayed()->dec(Ralt_count);
  2208   // shift < 32 bits, Ralt_count = Rcount-31
  2210   // We get the transfer bits by shifting left by 32-count the high
  2211   // register. This is done by shifting left by 31-count and then by one
  2212   // more to take care of the special (rare) case where count is zero
  2213   // (shifting by 32 would not work).
  2215   neg(  Ralt_count                                  );
  2216   if (Rcount != Rout_low) {
  2217     srl(        Rin_low,        Rcount,         Rout_low    );
  2220   // The order of the next two instructions is critical in the case where
  2221   // Rin and Rout are the same and should not be reversed.
  2223   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2224   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2225   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2226   if (Rcount == Rout_low) {
  2227     srl(        Rin_low,        Rcount,         Rout_low    );
  2229   ba (false, done);
  2230   delayed()->
  2231   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2233   // shift >= 32 bits, Ralt_count = Rcount-32
  2234   bind(big_shift);
  2236   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2237   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2239   bind( done );
  2244 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2245                             Register Rcount,
  2246                             Register Rout_high, Register Rout_low,
  2247                             Register Rtemp ) {
  2249   Register Ralt_count = Rtemp;
  2250   Register Rxfer_bits = Rtemp;
  2252   assert( Ralt_count != Rin_high
  2253       &&  Ralt_count != Rin_low
  2254       &&  Ralt_count != Rcount
  2255       &&  Rxfer_bits != Rin_low
  2256       &&  Rxfer_bits != Rin_high
  2257       &&  Rxfer_bits != Rcount
  2258       &&  Rxfer_bits != Rout_high
  2259       &&  Rout_high  != Rin_low,
  2260         "register alias checks");
  2262   Label big_shift, done;
  2264   // This code can be optimized to use the 64 bit shifts in V9.
  2265   // Here we use the 32 bit shifts.
  2267   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2268   subcc(Rcount,         31,             Ralt_count);
  2269   br(greater, true, pn, big_shift);
  2270   delayed()->dec(Ralt_count);
  2272   // shift < 32 bits, Ralt_count = Rcount-31
  2274   // We get the transfer bits by shifting left by 32-count the high
  2275   // register. This is done by shifting left by 31-count and then by one
  2276   // more to take care of the special (rare) case where count is zero
  2277   // (shifting by 32 would not work).
  2279   neg(  Ralt_count                                  );
  2280   if (Rcount != Rout_low) {
  2281     srl(        Rin_low,        Rcount,         Rout_low    );
  2284   // The order of the next two instructions is critical in the case where
  2285   // Rin and Rout are the same and should not be reversed.
  2287   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2288   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2289   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2290   if (Rcount == Rout_low) {
  2291     srl(        Rin_low,        Rcount,         Rout_low    );
  2293   ba (false, done);
  2294   delayed()->
  2295   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2297   // shift >= 32 bits, Ralt_count = Rcount-32
  2298   bind(big_shift);
  2300   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2301   clr(  Rout_high                                   );
  2303   bind( done );
  2306 #ifdef _LP64
  2307 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2308   cmp(Ra, Rb);
  2309   mov(                       -1, Rresult);
  2310   movcc(equal,   false, xcc,  0, Rresult);
  2311   movcc(greater, false, xcc,  1, Rresult);
  2313 #endif
  2316 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2317                                 FloatRegister Fa, FloatRegister Fb,
  2318                                 Register Rresult) {
  2320   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2322   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2323   Condition eq =                          f_equal;
  2324   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2326   if (VM_Version::v9_instructions_work()) {
  2328     mov(                   -1, Rresult );
  2329     movcc( eq, true, fcc0,  0, Rresult );
  2330     movcc( gt, true, fcc0,  1, Rresult );
  2332   } else {
  2333     Label done;
  2335                                          set( -1, Rresult );
  2336     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2337     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2338     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2340     bind (done);
  2345 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2347   if (VM_Version::v9_instructions_work()) {
  2348     Assembler::fneg(w, s, d);
  2349   } else {
  2350     if (w == FloatRegisterImpl::S) {
  2351       Assembler::fneg(w, s, d);
  2352     } else if (w == FloatRegisterImpl::D) {
  2353       // number() does a sanity check on the alignment.
  2354       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2355         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2357       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2358       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2359     } else {
  2360       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2362       // number() does a sanity check on the alignment.
  2363       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2364         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2366       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2367       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2368       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2369       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2374 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2376   if (VM_Version::v9_instructions_work()) {
  2377     Assembler::fmov(w, s, d);
  2378   } else {
  2379     if (w == FloatRegisterImpl::S) {
  2380       Assembler::fmov(w, s, d);
  2381     } else if (w == FloatRegisterImpl::D) {
  2382       // number() does a sanity check on the alignment.
  2383       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2384         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2386       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2387       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2388     } else {
  2389       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2391       // number() does a sanity check on the alignment.
  2392       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2393         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2395       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2396       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2397       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2398       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2403 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2405   if (VM_Version::v9_instructions_work()) {
  2406     Assembler::fabs(w, s, d);
  2407   } else {
  2408     if (w == FloatRegisterImpl::S) {
  2409       Assembler::fabs(w, s, d);
  2410     } else if (w == FloatRegisterImpl::D) {
  2411       // number() does a sanity check on the alignment.
  2412       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2413         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2415       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2416       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2417     } else {
  2418       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2420       // number() does a sanity check on the alignment.
  2421       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2422        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2424       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2425       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2426       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2427       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2432 void MacroAssembler::save_all_globals_into_locals() {
  2433   mov(G1,L1);
  2434   mov(G2,L2);
  2435   mov(G3,L3);
  2436   mov(G4,L4);
  2437   mov(G5,L5);
  2438   mov(G6,L6);
  2439   mov(G7,L7);
  2442 void MacroAssembler::restore_globals_from_locals() {
  2443   mov(L1,G1);
  2444   mov(L2,G2);
  2445   mov(L3,G3);
  2446   mov(L4,G4);
  2447   mov(L5,G5);
  2448   mov(L6,G6);
  2449   mov(L7,G7);
  2452 // Use for 64 bit operation.
  2453 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2455   // store ptr_reg as the new top value
  2456 #ifdef _LP64
  2457   casx(top_ptr_reg, top_reg, ptr_reg);
  2458 #else
  2459   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2460 #endif // _LP64
  2463 // [RGV] This routine does not handle 64 bit operations.
  2464 //       use casx_under_lock() or casx directly!!!
  2465 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2467   // store ptr_reg as the new top value
  2468   if (VM_Version::v9_instructions_work()) {
  2469     cas(top_ptr_reg, top_reg, ptr_reg);
  2470   } else {
  2472     // If the register is not an out nor global, it is not visible
  2473     // after the save.  Allocate a register for it, save its
  2474     // value in the register save area (the save may not flush
  2475     // registers to the save area).
  2477     Register top_ptr_reg_after_save;
  2478     Register top_reg_after_save;
  2479     Register ptr_reg_after_save;
  2481     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2482       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2483     } else {
  2484       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2485       top_ptr_reg_after_save = L0;
  2486       st(top_ptr_reg, reg_save_addr);
  2489     if (top_reg->is_out() || top_reg->is_global()) {
  2490       top_reg_after_save = top_reg->after_save();
  2491     } else {
  2492       Address reg_save_addr = top_reg->address_in_saved_window();
  2493       top_reg_after_save = L1;
  2494       st(top_reg, reg_save_addr);
  2497     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2498       ptr_reg_after_save = ptr_reg->after_save();
  2499     } else {
  2500       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2501       ptr_reg_after_save = L2;
  2502       st(ptr_reg, reg_save_addr);
  2505     const Register& lock_reg = L3;
  2506     const Register& lock_ptr_reg = L4;
  2507     const Register& value_reg = L5;
  2508     const Register& yield_reg = L6;
  2509     const Register& yieldall_reg = L7;
  2511     save_frame();
  2513     if (top_ptr_reg_after_save == L0) {
  2514       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2517     if (top_reg_after_save == L1) {
  2518       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2521     if (ptr_reg_after_save == L2) {
  2522       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2525     Label(retry_get_lock);
  2526     Label(not_same);
  2527     Label(dont_yield);
  2529     assert(lock_addr, "lock_address should be non null for v8");
  2530     set((intptr_t)lock_addr, lock_ptr_reg);
  2531     // Initialize yield counter
  2532     mov(G0,yield_reg);
  2533     mov(G0, yieldall_reg);
  2534     set(StubRoutines::Sparc::locked, lock_reg);
  2536     bind(retry_get_lock);
  2537     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2538     br(Assembler::less, false, Assembler::pt, dont_yield);
  2539     delayed()->nop();
  2541     if(use_call_vm) {
  2542       Untested("Need to verify global reg consistancy");
  2543       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2544     } else {
  2545       // Save the regs and make space for a C call
  2546       save(SP, -96, SP);
  2547       save_all_globals_into_locals();
  2548       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2549       delayed()->mov(yieldall_reg, O0);
  2550       restore_globals_from_locals();
  2551       restore();
  2554     // reset the counter
  2555     mov(G0,yield_reg);
  2556     add(yieldall_reg, 1, yieldall_reg);
  2558     bind(dont_yield);
  2559     // try to get lock
  2560     swap(lock_ptr_reg, 0, lock_reg);
  2562     // did we get the lock?
  2563     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2564     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2565     delayed()->add(yield_reg,1,yield_reg);
  2567     // yes, got lock.  do we have the same top?
  2568     ld(top_ptr_reg_after_save, 0, value_reg);
  2569     cmp(value_reg, top_reg_after_save);
  2570     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2571     delayed()->nop();
  2573     // yes, same top.
  2574     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2575     membar(Assembler::StoreStore);
  2577     bind(not_same);
  2578     mov(value_reg, ptr_reg_after_save);
  2579     st(lock_reg, lock_ptr_reg, 0); // unlock
  2581     restore();
  2585 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2586                                           Label& done, Label* slow_case,
  2587                                           BiasedLockingCounters* counters) {
  2588   assert(UseBiasedLocking, "why call this otherwise?");
  2590   if (PrintBiasedLockingStatistics) {
  2591     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2592     if (counters == NULL)
  2593       counters = BiasedLocking::counters();
  2596   Label cas_label;
  2598   // Biased locking
  2599   // See whether the lock is currently biased toward our thread and
  2600   // whether the epoch is still valid
  2601   // Note that the runtime guarantees sufficient alignment of JavaThread
  2602   // pointers to allow age to be placed into low bits
  2603   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2604   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2605   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2606   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  2607   delayed()->nop();
  2609   load_klass(obj_reg, temp_reg);
  2610   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2611   or3(G2_thread, temp_reg, temp_reg);
  2612   xor3(mark_reg, temp_reg, temp_reg);
  2613   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2614   if (counters != NULL) {
  2615     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2616     // Reload mark_reg as we may need it later
  2617     ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
  2619   brx(Assembler::equal, true, Assembler::pt, done);
  2620   delayed()->nop();
  2622   Label try_revoke_bias;
  2623   Label try_rebias;
  2624   Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  2625   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2627   // At this point we know that the header has the bias pattern and
  2628   // that we are not the bias owner in the current epoch. We need to
  2629   // figure out more details about the state of the header in order to
  2630   // know what operations can be legally performed on the object's
  2631   // header.
  2633   // If the low three bits in the xor result aren't clear, that means
  2634   // the prototype header is no longer biased and we have to revoke
  2635   // the bias on this object.
  2636   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2637   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2639   // Biasing is still enabled for this data type. See whether the
  2640   // epoch of the current bias is still valid, meaning that the epoch
  2641   // bits of the mark word are equal to the epoch bits of the
  2642   // prototype header. (Note that the prototype header's epoch bits
  2643   // only change at a safepoint.) If not, attempt to rebias the object
  2644   // toward the current thread. Note that we must be absolutely sure
  2645   // that the current epoch is invalid in order to do this because
  2646   // otherwise the manipulations it performs on the mark word are
  2647   // illegal.
  2648   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2649   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2651   // The epoch of the current bias is still valid but we know nothing
  2652   // about the owner; it might be set or it might be clear. Try to
  2653   // acquire the bias of the object using an atomic operation. If this
  2654   // fails we will go in to the runtime to revoke the object's bias.
  2655   // Note that we first construct the presumed unbiased header so we
  2656   // don't accidentally blow away another thread's valid bias.
  2657   delayed()->and3(mark_reg,
  2658                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2659                   mark_reg);
  2660   or3(G2_thread, mark_reg, temp_reg);
  2661   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2662                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2663   // If the biasing toward our thread failed, this means that
  2664   // another thread succeeded in biasing it toward itself and we
  2665   // need to revoke that bias. The revocation will occur in the
  2666   // interpreter runtime in the slow case.
  2667   cmp(mark_reg, temp_reg);
  2668   if (counters != NULL) {
  2669     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2671   if (slow_case != NULL) {
  2672     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2673     delayed()->nop();
  2675   br(Assembler::always, false, Assembler::pt, done);
  2676   delayed()->nop();
  2678   bind(try_rebias);
  2679   // At this point we know the epoch has expired, meaning that the
  2680   // current "bias owner", if any, is actually invalid. Under these
  2681   // circumstances _only_, we are allowed to use the current header's
  2682   // value as the comparison value when doing the cas to acquire the
  2683   // bias in the current epoch. In other words, we allow transfer of
  2684   // the bias from one thread to another directly in this situation.
  2685   //
  2686   // FIXME: due to a lack of registers we currently blow away the age
  2687   // bits in this situation. Should attempt to preserve them.
  2688   load_klass(obj_reg, temp_reg);
  2689   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2690   or3(G2_thread, temp_reg, temp_reg);
  2691   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2692                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2693   // If the biasing toward our thread failed, this means that
  2694   // another thread succeeded in biasing it toward itself and we
  2695   // need to revoke that bias. The revocation will occur in the
  2696   // interpreter runtime in the slow case.
  2697   cmp(mark_reg, temp_reg);
  2698   if (counters != NULL) {
  2699     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  2701   if (slow_case != NULL) {
  2702     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2703     delayed()->nop();
  2705   br(Assembler::always, false, Assembler::pt, done);
  2706   delayed()->nop();
  2708   bind(try_revoke_bias);
  2709   // The prototype mark in the klass doesn't have the bias bit set any
  2710   // more, indicating that objects of this data type are not supposed
  2711   // to be biased any more. We are going to try to reset the mark of
  2712   // this object to the prototype value and fall through to the
  2713   // CAS-based locking scheme. Note that if our CAS fails, it means
  2714   // that another thread raced us for the privilege of revoking the
  2715   // bias of this particular object, so it's okay to continue in the
  2716   // normal locking code.
  2717   //
  2718   // FIXME: due to a lack of registers we currently blow away the age
  2719   // bits in this situation. Should attempt to preserve them.
  2720   load_klass(obj_reg, temp_reg);
  2721   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2722   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2723                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2724   // Fall through to the normal CAS-based lock, because no matter what
  2725   // the result of the above CAS, some thread must have succeeded in
  2726   // removing the bias bit from the object's header.
  2727   if (counters != NULL) {
  2728     cmp(mark_reg, temp_reg);
  2729     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  2732   bind(cas_label);
  2735 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  2736                                           bool allow_delay_slot_filling) {
  2737   // Check for biased locking unlock case, which is a no-op
  2738   // Note: we do not have to check the thread ID for two reasons.
  2739   // First, the interpreter checks for IllegalMonitorStateException at
  2740   // a higher level. Second, if the bias was revoked while we held the
  2741   // lock, the object could not be rebiased toward another thread, so
  2742   // the bias bit would be clear.
  2743   ld_ptr(mark_addr, temp_reg);
  2744   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2745   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2746   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  2747   delayed();
  2748   if (!allow_delay_slot_filling) {
  2749     nop();
  2754 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  2755 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  2757 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  2758   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  2763 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  2764 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  2765 // The code could be tightened up considerably.
  2766 //
  2767 // box->dhw disposition - post-conditions at DONE_LABEL.
  2768 // -   Successful inflated lock:  box->dhw != 0.
  2769 //     Any non-zero value suffices.
  2770 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  2771 // -   Successful Stack-lock: box->dhw == mark.
  2772 //     box->dhw must contain the displaced mark word value
  2773 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  2774 //     The slow-path fast_enter() and slow_enter() operators
  2775 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  2776 // -   Biased: box->dhw is undefined
  2777 //
  2778 // SPARC refworkload performance - specifically jetstream and scimark - are
  2779 // extremely sensitive to the size of the code emitted by compiler_lock_object
  2780 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  2781 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  2782 // effect).
  2785 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  2786                                           BiasedLockingCounters* counters) {
  2787    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  2789    verify_oop(Roop);
  2790    Label done ;
  2792    if (counters != NULL) {
  2793      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  2796    if (EmitSync & 1) {
  2797      mov    (3, Rscratch) ;
  2798      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2799      cmp    (SP, G0) ;
  2800      return ;
  2803    if (EmitSync & 2) {
  2805      // Fetch object's markword
  2806      ld_ptr(mark_addr, Rmark);
  2808      if (UseBiasedLocking) {
  2809         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2812      // Save Rbox in Rscratch to be used for the cas operation
  2813      mov(Rbox, Rscratch);
  2815      // set Rmark to markOop | markOopDesc::unlocked_value
  2816      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2818      // Initialize the box.  (Must happen before we update the object mark!)
  2819      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2821      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  2822      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2823      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  2824         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2826      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  2827      // hence we are done
  2828      cmp(Rmark, Rscratch);
  2829 #ifdef _LP64
  2830      sub(Rscratch, STACK_BIAS, Rscratch);
  2831 #endif
  2832      brx(Assembler::equal, false, Assembler::pt, done);
  2833      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  2835      // we did not find an unlocked object so see if this is a recursive case
  2836      // sub(Rscratch, SP, Rscratch);
  2837      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2838      andcc(Rscratch, 0xfffff003, Rscratch);
  2839      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2840      bind (done) ;
  2841      return ;
  2844    Label Egress ;
  2846    if (EmitSync & 256) {
  2847       Label IsInflated ;
  2849       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2850       // Triage: biased, stack-locked, neutral, inflated
  2851       if (UseBiasedLocking) {
  2852         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2853         // Invariant: if control reaches this point in the emitted stream
  2854         // then Rmark has not been modified.
  2857       // Store mark into displaced mark field in the on-stack basic-lock "box"
  2858       // Critically, this must happen before the CAS
  2859       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  2860       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2861       andcc  (Rmark, 2, G0) ;
  2862       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2863       delayed() ->
  2865       // Try stack-lock acquisition.
  2866       // Beware: the 1st instruction is in a delay slot
  2867       mov    (Rbox,  Rscratch);
  2868       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2869       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2870       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2871       cmp    (Rmark, Rscratch);
  2872       brx    (Assembler::equal, false, Assembler::pt, done);
  2873       delayed()->sub(Rscratch, SP, Rscratch);
  2875       // Stack-lock attempt failed - check for recursive stack-lock.
  2876       // See the comments below about how we might remove this case.
  2877 #ifdef _LP64
  2878       sub    (Rscratch, STACK_BIAS, Rscratch);
  2879 #endif
  2880       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2881       andcc  (Rscratch, 0xfffff003, Rscratch);
  2882       br     (Assembler::always, false, Assembler::pt, done) ;
  2883       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2885       bind   (IsInflated) ;
  2886       if (EmitSync & 64) {
  2887          // If m->owner != null goto IsLocked
  2888          // Pessimistic form: Test-and-CAS vs CAS
  2889          // The optimistic form avoids RTS->RTO cache line upgrades.
  2890          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2891          andcc  (Rscratch, Rscratch, G0) ;
  2892          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2893          delayed()->nop() ;
  2894          // m->owner == null : it's unlocked.
  2897       // Try to CAS m->owner from null to Self
  2898       // Invariant: if we acquire the lock then _recursions should be 0.
  2899       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2900       mov    (G2_thread, Rscratch) ;
  2901       casn   (Rmark, G0, Rscratch) ;
  2902       cmp    (Rscratch, G0) ;
  2903       // Intentional fall-through into done
  2904    } else {
  2905       // Aggressively avoid the Store-before-CAS penalty
  2906       // Defer the store into box->dhw until after the CAS
  2907       Label IsInflated, Recursive ;
  2909 // Anticipate CAS -- Avoid RTS->RTO upgrade
  2910 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2912       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2913       // Triage: biased, stack-locked, neutral, inflated
  2915       if (UseBiasedLocking) {
  2916         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2917         // Invariant: if control reaches this point in the emitted stream
  2918         // then Rmark has not been modified.
  2920       andcc  (Rmark, 2, G0) ;
  2921       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2922       delayed()->                         // Beware - dangling delay-slot
  2924       // Try stack-lock acquisition.
  2925       // Transiently install BUSY (0) encoding in the mark word.
  2926       // if the CAS of 0 into the mark was successful then we execute:
  2927       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  2928       //   ST obj->mark = box    -- overwrite transient 0 value
  2929       // This presumes TSO, of course.
  2931       mov    (0, Rscratch) ;
  2932       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2933       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2934       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2935 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2936       cmp    (Rscratch, Rmark) ;
  2937       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  2938       delayed() ->
  2939         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2940       if (counters != NULL) {
  2941         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2943       br     (Assembler::always, false, Assembler::pt, done);
  2944       delayed() ->
  2945         st_ptr (Rbox, mark_addr) ;
  2947       bind   (Recursive) ;
  2948       // Stack-lock attempt failed - check for recursive stack-lock.
  2949       // Tests show that we can remove the recursive case with no impact
  2950       // on refworkload 0.83.  If we need to reduce the size of the code
  2951       // emitted by compiler_lock_object() the recursive case is perfect
  2952       // candidate.
  2953       //
  2954       // A more extreme idea is to always inflate on stack-lock recursion.
  2955       // This lets us eliminate the recursive checks in compiler_lock_object
  2956       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  2957       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  2958       // and showed a performance *increase*.  In the same experiment I eliminated
  2959       // the fast-path stack-lock code from the interpreter and always passed
  2960       // control to the "slow" operators in synchronizer.cpp.
  2962       // RScratch contains the fetched obj->mark value from the failed CASN.
  2963 #ifdef _LP64
  2964       sub    (Rscratch, STACK_BIAS, Rscratch);
  2965 #endif
  2966       sub(Rscratch, SP, Rscratch);
  2967       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2968       andcc  (Rscratch, 0xfffff003, Rscratch);
  2969       if (counters != NULL) {
  2970         // Accounting needs the Rscratch register
  2971         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2972         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2973         br     (Assembler::always, false, Assembler::pt, done) ;
  2974         delayed()->nop() ;
  2975       } else {
  2976         br     (Assembler::always, false, Assembler::pt, done) ;
  2977         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2980       bind   (IsInflated) ;
  2981       if (EmitSync & 64) {
  2982          // If m->owner != null goto IsLocked
  2983          // Test-and-CAS vs CAS
  2984          // Pessimistic form avoids futile (doomed) CAS attempts
  2985          // The optimistic form avoids RTS->RTO cache line upgrades.
  2986          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2987          andcc  (Rscratch, Rscratch, G0) ;
  2988          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2989          delayed()->nop() ;
  2990          // m->owner == null : it's unlocked.
  2993       // Try to CAS m->owner from null to Self
  2994       // Invariant: if we acquire the lock then _recursions should be 0.
  2995       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2996       mov    (G2_thread, Rscratch) ;
  2997       casn   (Rmark, G0, Rscratch) ;
  2998       cmp    (Rscratch, G0) ;
  2999       // ST box->displaced_header = NonZero.
  3000       // Any non-zero value suffices:
  3001       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3002       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3003       // Intentional fall-through into done
  3006    bind   (done) ;
  3009 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
  3010    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  3012    Label done ;
  3014    if (EmitSync & 4) {
  3015      cmp  (SP, G0) ;
  3016      return ;
  3019    if (EmitSync & 8) {
  3020      if (UseBiasedLocking) {
  3021         biased_locking_exit(mark_addr, Rscratch, done);
  3024      // Test first if it is a fast recursive unlock
  3025      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3026      cmp(Rmark, G0);
  3027      brx(Assembler::equal, false, Assembler::pt, done);
  3028      delayed()->nop();
  3030      // Check if it is still a light weight lock, this is is true if we see
  3031      // the stack address of the basicLock in the markOop of the object
  3032      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3033      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3034        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3035      br (Assembler::always, false, Assembler::pt, done);
  3036      delayed()->cmp(Rbox, Rmark);
  3037      bind (done) ;
  3038      return ;
  3041    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3042    // is too large performance rolls abruptly off a cliff.
  3043    // This could be related to inlining policies, code cache management, or
  3044    // I$ effects.
  3045    Label LStacked ;
  3047    if (UseBiasedLocking) {
  3048       // TODO: eliminate redundant LDs of obj->mark
  3049       biased_locking_exit(mark_addr, Rscratch, done);
  3052    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3053    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3054    andcc  (Rscratch, Rscratch, G0);
  3055    brx    (Assembler::zero, false, Assembler::pn, done);
  3056    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3057    andcc  (Rmark, 2, G0) ;
  3058    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3059    delayed()-> nop() ;
  3061    // It's inflated
  3062    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3063    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3064    // and stores within the critical section from reordering (floating)
  3065    // past the store that releases the lock.  But TSO is a strong memory model
  3066    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3067    // Note that we use 1-0 locking by default for the inflated case.  We
  3068    // close the resultant (and rare) race by having contented threads in
  3069    // monitorenter periodically poll _owner.
  3070    ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3071    ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
  3072    xor3   (Rscratch, G2_thread, Rscratch) ;
  3073    orcc   (Rbox, Rscratch, Rbox) ;
  3074    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3075    delayed()->
  3076    ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
  3077    ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
  3078    orcc   (Rbox, Rscratch, G0) ;
  3079    if (EmitSync & 65536) {
  3080       Label LSucc ;
  3081       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3082       delayed()->nop() ;
  3083       br     (Assembler::always, false, Assembler::pt, done) ;
  3084       delayed()->
  3085       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3087       bind   (LSucc) ;
  3088       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3089       if (os::is_MP()) { membar (StoreLoad) ; }
  3090       ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
  3091       andcc  (Rscratch, Rscratch, G0) ;
  3092       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3093       delayed()-> andcc (G0, G0, G0) ;
  3094       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3095       mov    (G2_thread, Rscratch) ;
  3096       casn   (Rmark, G0, Rscratch) ;
  3097       cmp    (Rscratch, G0) ;
  3098       // invert icc.zf and goto done
  3099       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3100       delayed() -> cmp (G0, G0) ;
  3101       br     (Assembler::always, false, Assembler::pt, done);
  3102       delayed() -> cmp (G0, 1) ;
  3103    } else {
  3104       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3105       delayed()->nop() ;
  3106       br     (Assembler::always, false, Assembler::pt, done) ;
  3107       delayed()->
  3108       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3111    bind   (LStacked) ;
  3112    // Consider: we could replace the expensive CAS in the exit
  3113    // path with a simple ST of the displaced mark value fetched from
  3114    // the on-stack basiclock box.  That admits a race where a thread T2
  3115    // in the slow lock path -- inflating with monitor M -- could race a
  3116    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3117    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3118    // inflated mark value M installed by T2, resulting in an orphan
  3119    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3120    // by having T2 periodically poll the object's mark word using timed wait
  3121    // operations.  If T2 discovers that a stomp has occurred it vacates
  3122    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3123    // In addition the monitor scavenger, which performs deflation,
  3124    // would also need to check for orpan monitors and stranded threads.
  3125    //
  3126    // Finally, inflation is also used when T2 needs to assign a hashCode
  3127    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3128    // an assigned hashCode value to be lost.  We can avoid that condition
  3129    // and provide the necessary hashCode stability invariants by ensuring
  3130    // that hashCode generation is idempotent between copying GCs.
  3131    // For example we could compute the hashCode of an object O as
  3132    // O's heap address XOR some high quality RNG value that is refreshed
  3133    // at GC-time.  The monitor scavenger would install the hashCode
  3134    // found in any orphan monitors.  Again, the mechanism admits a
  3135    // lost-update "stomp" WAW race but detects and recovers as needed.
  3136    //
  3137    // A prototype implementation showed excellent results, although
  3138    // the scavenger and timeout code was rather involved.
  3140    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3141    cmp    (Rbox, Rscratch);
  3142    // Intentional fall through into done ...
  3144    bind   (done) ;
  3149 void MacroAssembler::print_CPU_state() {
  3150   // %%%%% need to implement this
  3153 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3154   // %%%%% need to implement this
  3157 void MacroAssembler::push_IU_state() {
  3158   // %%%%% need to implement this
  3162 void MacroAssembler::pop_IU_state() {
  3163   // %%%%% need to implement this
  3167 void MacroAssembler::push_FPU_state() {
  3168   // %%%%% need to implement this
  3172 void MacroAssembler::pop_FPU_state() {
  3173   // %%%%% need to implement this
  3177 void MacroAssembler::push_CPU_state() {
  3178   // %%%%% need to implement this
  3182 void MacroAssembler::pop_CPU_state() {
  3183   // %%%%% need to implement this
  3188 void MacroAssembler::verify_tlab() {
  3189 #ifdef ASSERT
  3190   if (UseTLAB && VerifyOops) {
  3191     Label next, next2, ok;
  3192     Register t1 = L0;
  3193     Register t2 = L1;
  3194     Register t3 = L2;
  3196     save_frame(0);
  3197     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3198     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3199     or3(t1, t2, t3);
  3200     cmp(t1, t2);
  3201     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3202     delayed()->nop();
  3203     stop("assert(top >= start)");
  3204     should_not_reach_here();
  3206     bind(next);
  3207     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3208     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3209     or3(t3, t2, t3);
  3210     cmp(t1, t2);
  3211     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3212     delayed()->nop();
  3213     stop("assert(top <= end)");
  3214     should_not_reach_here();
  3216     bind(next2);
  3217     and3(t3, MinObjAlignmentInBytesMask, t3);
  3218     cmp(t3, 0);
  3219     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3220     delayed()->nop();
  3221     stop("assert(aligned)");
  3222     should_not_reach_here();
  3224     bind(ok);
  3225     restore();
  3227 #endif
  3231 void MacroAssembler::eden_allocate(
  3232   Register obj,                        // result: pointer to object after successful allocation
  3233   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3234   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3235   Register t1,                         // temp register
  3236   Register t2,                         // temp register
  3237   Label&   slow_case                   // continuation point if fast allocation fails
  3238 ){
  3239   // make sure arguments make sense
  3240   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3241   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3242   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3244   // get eden boundaries
  3245   // note: we need both top & top_addr!
  3246   const Register top_addr = t1;
  3247   const Register end      = t2;
  3249   CollectedHeap* ch = Universe::heap();
  3250   set((intx)ch->top_addr(), top_addr);
  3251   intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3252   ld_ptr(top_addr, delta, end);
  3253   ld_ptr(top_addr, 0, obj);
  3255   // try to allocate
  3256   Label retry;
  3257   bind(retry);
  3258 #ifdef ASSERT
  3259   // make sure eden top is properly aligned
  3261     Label L;
  3262     btst(MinObjAlignmentInBytesMask, obj);
  3263     br(Assembler::zero, false, Assembler::pt, L);
  3264     delayed()->nop();
  3265     stop("eden top is not properly aligned");
  3266     bind(L);
  3268 #endif // ASSERT
  3269   const Register free = end;
  3270   sub(end, obj, free);                                   // compute amount of free space
  3271   if (var_size_in_bytes->is_valid()) {
  3272     // size is unknown at compile time
  3273     cmp(free, var_size_in_bytes);
  3274     br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3275     delayed()->add(obj, var_size_in_bytes, end);
  3276   } else {
  3277     // size is known at compile time
  3278     cmp(free, con_size_in_bytes);
  3279     br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3280     delayed()->add(obj, con_size_in_bytes, end);
  3282   // Compare obj with the value at top_addr; if still equal, swap the value of
  3283   // end with the value at top_addr. If not equal, read the value at top_addr
  3284   // into end.
  3285   casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3286   // if someone beat us on the allocation, try again, otherwise continue
  3287   cmp(obj, end);
  3288   brx(Assembler::notEqual, false, Assembler::pn, retry);
  3289   delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3291 #ifdef ASSERT
  3292   // make sure eden top is properly aligned
  3294     Label L;
  3295     const Register top_addr = t1;
  3297     set((intx)ch->top_addr(), top_addr);
  3298     ld_ptr(top_addr, 0, top_addr);
  3299     btst(MinObjAlignmentInBytesMask, top_addr);
  3300     br(Assembler::zero, false, Assembler::pt, L);
  3301     delayed()->nop();
  3302     stop("eden top is not properly aligned");
  3303     bind(L);
  3305 #endif // ASSERT
  3309 void MacroAssembler::tlab_allocate(
  3310   Register obj,                        // result: pointer to object after successful allocation
  3311   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3312   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3313   Register t1,                         // temp register
  3314   Label&   slow_case                   // continuation point if fast allocation fails
  3315 ){
  3316   // make sure arguments make sense
  3317   assert_different_registers(obj, var_size_in_bytes, t1);
  3318   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3319   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3321   const Register free  = t1;
  3323   verify_tlab();
  3325   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3327   // calculate amount of free space
  3328   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3329   sub(free, obj, free);
  3331   Label done;
  3332   if (var_size_in_bytes == noreg) {
  3333     cmp(free, con_size_in_bytes);
  3334   } else {
  3335     cmp(free, var_size_in_bytes);
  3337   br(Assembler::less, false, Assembler::pn, slow_case);
  3338   // calculate the new top pointer
  3339   if (var_size_in_bytes == noreg) {
  3340     delayed()->add(obj, con_size_in_bytes, free);
  3341   } else {
  3342     delayed()->add(obj, var_size_in_bytes, free);
  3345   bind(done);
  3347 #ifdef ASSERT
  3348   // make sure new free pointer is properly aligned
  3350     Label L;
  3351     btst(MinObjAlignmentInBytesMask, free);
  3352     br(Assembler::zero, false, Assembler::pt, L);
  3353     delayed()->nop();
  3354     stop("updated TLAB free is not properly aligned");
  3355     bind(L);
  3357 #endif // ASSERT
  3359   // update the tlab top pointer
  3360   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3361   verify_tlab();
  3365 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3366   Register top = O0;
  3367   Register t1 = G1;
  3368   Register t2 = G3;
  3369   Register t3 = O1;
  3370   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3371   Label do_refill, discard_tlab;
  3373   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3374     // No allocation in the shared eden.
  3375     br(Assembler::always, false, Assembler::pt, slow_case);
  3376     delayed()->nop();
  3379   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3380   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3381   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3383   // calculate amount of free space
  3384   sub(t1, top, t1);
  3385   srl_ptr(t1, LogHeapWordSize, t1);
  3387   // Retain tlab and allocate object in shared space if
  3388   // the amount free in the tlab is too large to discard.
  3389   cmp(t1, t2);
  3390   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3392   // increment waste limit to prevent getting stuck on this slow path
  3393   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3394   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3395   if (TLABStats) {
  3396     // increment number of slow_allocations
  3397     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3398     add(t2, 1, t2);
  3399     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3401   br(Assembler::always, false, Assembler::pt, try_eden);
  3402   delayed()->nop();
  3404   bind(discard_tlab);
  3405   if (TLABStats) {
  3406     // increment number of refills
  3407     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3408     add(t2, 1, t2);
  3409     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3410     // accumulate wastage
  3411     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3412     add(t2, t1, t2);
  3413     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3416   // if tlab is currently allocated (top or end != null) then
  3417   // fill [top, end + alignment_reserve) with array object
  3418   br_null(top, false, Assembler::pn, do_refill);
  3419   delayed()->nop();
  3421   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3422   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3423   // set klass to intArrayKlass
  3424   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3425   ld_ptr(t2, 0, t2);
  3426   store_klass(t2, top);
  3427   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3428   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3429   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3430   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3431   verify_oop(top);
  3433   // refill the tlab with an eden allocation
  3434   bind(do_refill);
  3435   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3436   sll_ptr(t1, LogHeapWordSize, t1);
  3437   // add object_size ??
  3438   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3440   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3441   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3442 #ifdef ASSERT
  3443   // check that tlab_size (t1) is still valid
  3445     Label ok;
  3446     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3447     sll_ptr(t2, LogHeapWordSize, t2);
  3448     cmp(t1, t2);
  3449     br(Assembler::equal, false, Assembler::pt, ok);
  3450     delayed()->nop();
  3451     stop("assert(t1 == tlab_size)");
  3452     should_not_reach_here();
  3454     bind(ok);
  3456 #endif // ASSERT
  3457   add(top, t1, top); // t1 is tlab_size
  3458   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3459   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3460   verify_tlab();
  3461   br(Assembler::always, false, Assembler::pt, retry);
  3462   delayed()->nop();
  3465 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3466   switch (cond) {
  3467     // Note some conditions are synonyms for others
  3468     case Assembler::never:                return Assembler::always;
  3469     case Assembler::zero:                 return Assembler::notZero;
  3470     case Assembler::lessEqual:            return Assembler::greater;
  3471     case Assembler::less:                 return Assembler::greaterEqual;
  3472     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3473     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3474     case Assembler::negative:             return Assembler::positive;
  3475     case Assembler::overflowSet:          return Assembler::overflowClear;
  3476     case Assembler::always:               return Assembler::never;
  3477     case Assembler::notZero:              return Assembler::zero;
  3478     case Assembler::greater:              return Assembler::lessEqual;
  3479     case Assembler::greaterEqual:         return Assembler::less;
  3480     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3481     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3482     case Assembler::positive:             return Assembler::negative;
  3483     case Assembler::overflowClear:        return Assembler::overflowSet;
  3486   ShouldNotReachHere(); return Assembler::overflowClear;
  3489 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3490                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3491   Condition negated_cond = negate_condition(cond);
  3492   Label L;
  3493   brx(negated_cond, false, Assembler::pt, L);
  3494   delayed()->nop();
  3495   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3496   bind(L);
  3499 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
  3500   Address counter_addr(Rtmp1, counter_ptr);
  3501   load_contents(counter_addr, Rtmp2);
  3502   inc(Rtmp2);
  3503   store_contents(Rtmp2, counter_addr);
  3506 SkipIfEqual::SkipIfEqual(
  3507     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3508     Assembler::Condition condition) {
  3509   _masm = masm;
  3510   Address flag(temp, (address)flag_addr, relocInfo::none);
  3511   _masm->sethi(flag);
  3512   _masm->ldub(flag, temp);
  3513   _masm->tst(temp);
  3514   _masm->br(condition, false, Assembler::pt, _label);
  3515   _masm->delayed()->nop();
  3518 SkipIfEqual::~SkipIfEqual() {
  3519   _masm->bind(_label);
  3523 // Writes to stack successive pages until offset reached to check for
  3524 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3525 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3526                                      Register Rscratch) {
  3527   // Use stack pointer in temp stack pointer
  3528   mov(SP, Rtsp);
  3530   // Bang stack for total size given plus stack shadow page size.
  3531   // Bang one page at a time because a large size can overflow yellow and
  3532   // red zones (the bang will fail but stack overflow handling can't tell that
  3533   // it was a stack overflow bang vs a regular segv).
  3534   int offset = os::vm_page_size();
  3535   Register Roffset = Rscratch;
  3537   Label loop;
  3538   bind(loop);
  3539   set((-offset)+STACK_BIAS, Rscratch);
  3540   st(G0, Rtsp, Rscratch);
  3541   set(offset, Roffset);
  3542   sub(Rsize, Roffset, Rsize);
  3543   cmp(Rsize, G0);
  3544   br(Assembler::greater, false, Assembler::pn, loop);
  3545   delayed()->sub(Rtsp, Roffset, Rtsp);
  3547   // Bang down shadow pages too.
  3548   // The -1 because we already subtracted 1 page.
  3549   for (int i = 0; i< StackShadowPages-1; i++) {
  3550     set((-i*offset)+STACK_BIAS, Rscratch);
  3551     st(G0, Rtsp, Rscratch);
  3555 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  3556   // The number of bytes in this code is used by
  3557   // MachCallDynamicJavaNode::ret_addr_offset()
  3558   // if this changes, change that.
  3559   if (UseCompressedOops) {
  3560     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  3561     decode_heap_oop_not_null(klass);
  3562   } else {
  3563     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  3567 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  3568   if (UseCompressedOops) {
  3569     assert(dst_oop != klass, "not enough registers");
  3570     encode_heap_oop_not_null(klass);
  3571     sllx(klass, BitsPerInt, klass);
  3572     stx(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  3573   } else {
  3574     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  3578 void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
  3579   if (UseCompressedOops) {
  3580     lduw(s, d, offset);
  3581     decode_heap_oop(d);
  3582   } else {
  3583     ld_ptr(s, d, offset);
  3587 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  3588    if (UseCompressedOops) {
  3589     lduw(s1, s2, d);
  3590     decode_heap_oop(d, d);
  3591   } else {
  3592     ld_ptr(s1, s2, d);
  3596 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  3597    if (UseCompressedOops) {
  3598     lduw(s1, simm13a, d);
  3599     decode_heap_oop(d, d);
  3600   } else {
  3601     ld_ptr(s1, simm13a, d);
  3605 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  3606   if (UseCompressedOops) {
  3607     assert(s1 != d && s2 != d, "not enough registers");
  3608     encode_heap_oop(d);
  3609     st(d, s1, s2);
  3610   } else {
  3611     st_ptr(d, s1, s2);
  3615 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  3616   if (UseCompressedOops) {
  3617     assert(s1 != d, "not enough registers");
  3618     encode_heap_oop(d);
  3619     st(d, s1, simm13a);
  3620   } else {
  3621     st_ptr(d, s1, simm13a);
  3625 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  3626   if (UseCompressedOops) {
  3627     assert(a.base() != d, "not enough registers");
  3628     encode_heap_oop(d);
  3629     st(d, a, offset);
  3630   } else {
  3631     st_ptr(d, a, offset);
  3636 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  3637   assert (UseCompressedOops, "must be compressed");
  3638   Label done;
  3639   if (src == dst) {
  3640     // optimize for frequent case src == dst
  3641     bpr(rc_nz, true, Assembler::pt, src, done);
  3642     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  3643     bind(done);
  3644     srlx(src, LogMinObjAlignmentInBytes, dst);
  3645   } else {
  3646     bpr(rc_z, false, Assembler::pn, src, done);
  3647     delayed() -> mov(G0, dst);
  3648     // could be moved before branch, and annulate delay,
  3649     // but may add some unneeded work decoding null
  3650     sub(src, G6_heapbase, dst);
  3651     srlx(dst, LogMinObjAlignmentInBytes, dst);
  3652     bind(done);
  3657 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3658   assert (UseCompressedOops, "must be compressed");
  3659   sub(r, G6_heapbase, r);
  3660   srlx(r, LogMinObjAlignmentInBytes, r);
  3663 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  3664   assert (UseCompressedOops, "must be compressed");
  3665   sub(src, G6_heapbase, dst);
  3666   srlx(dst, LogMinObjAlignmentInBytes, dst);
  3669 // Same algorithm as oops.inline.hpp decode_heap_oop.
  3670 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  3671   assert (UseCompressedOops, "must be compressed");
  3672   Label done;
  3673   sllx(src, LogMinObjAlignmentInBytes, dst);
  3674   bpr(rc_nz, true, Assembler::pt, dst, done);
  3675   delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  3676   bind(done);
  3679 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3680   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  3681   // pd_code_size_limit.
  3682   assert (UseCompressedOops, "must be compressed");
  3683   sllx(r, LogMinObjAlignmentInBytes, r);
  3684   add(r, G6_heapbase, r);
  3687 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  3688   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  3689   // pd_code_size_limit.
  3690   assert (UseCompressedOops, "must be compressed");
  3691   sllx(src, LogMinObjAlignmentInBytes, dst);
  3692   add(dst, G6_heapbase, dst);
  3695 void MacroAssembler::reinit_heapbase() {
  3696   if (UseCompressedOops) {
  3697     // call indirectly to solve generation ordering problem
  3698     Address base(G6_heapbase, (address)Universe::heap_base_addr());
  3699     load_ptr_contents(base, G6_heapbase);

mercurial