src/cpu/ppc/vm/ppc.ad

Wed, 29 Jan 2014 12:22:13 +0100

author
goetz
date
Wed, 29 Jan 2014 12:22:13 +0100
changeset 6508
c4178a748df9
parent 6501
c668f307a4c0
child 6510
7c462558a08a
permissions
-rw-r--r--

8033117: PPC64: Adapt to 8002074: Support for AES on SPARC
Summary: Implement missing function Matcher::pass_original_key_for_aes() in ppc64 ad file.
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2013 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Returns true if Node n is followed by a MemBar node that 
   895   // will do an acquire. If so, this node must not do the acquire
   896   // operation.
   897   bool followed_by_acquire(const Node *n);
   898 %}
   900 source %{
   902 // Optimize load-acquire.
   903 //
   904 // Check if acquire is unnecessary due to following operation that does 
   905 // acquire anyways.
   906 // Walk the pattern:
   907 //
   908 //      n: Load.acq
   909 //           |
   910 //      MemBarAcquire
   911 //       |         |
   912 //  Proj(ctrl)  Proj(mem)
   913 //       |         |
   914 //   MemBarRelease/Volatile
   915 // 
   916 bool followed_by_acquire(const Node *load) {
   917   assert(load->is_Load(), "So far implemented only for loads.");
   919   // Find MemBarAcquire.
   920   const Node *mba = NULL;         
   921   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   922     const Node *out = load->fast_out(i);
   923     if (out->Opcode() == Op_MemBarAcquire) {
   924       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   925       mba = out;
   926       break;
   927     }
   928   }
   929   if (!mba) return false;
   931   // Find following MemBar node.
   932   //
   933   // The following node must be reachable by control AND memory 
   934   // edge to assure no other operations are in between the two nodes.
   935   //
   936   // So first get the Proj node, mem_proj, to use it to iterate forward.
   937   Node *mem_proj = NULL;
   938   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   939     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   940     assert(mem_proj->is_Proj(), "only projections here");
   941     ProjNode *proj = mem_proj->as_Proj();
   942     if (proj->_con == TypeFunc::Memory &&
   943         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   944       break;
   945   }
   946   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   948   // Search MemBar behind Proj. If there are other memory operations
   949   // behind the Proj we lost.
   950   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   951     Node *x = mem_proj->fast_out(j);
   952     // Proj might have an edge to a store or load node which precedes the membar.
   953     if (x->is_Mem()) return false;
   955     // On PPC64 release and volatile are implemented by an instruction
   956     // that also has acquire semantics. I.e. there is no need for an
   957     // acquire before these.
   958     int xop = x->Opcode();
   959     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   960       // Make sure we're not missing Call/Phi/MergeMem by checking
   961       // control edges. The control edge must directly lead back
   962       // to the MemBarAcquire
   963       Node *ctrl_proj = x->in(0);
   964       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   965         return true;
   966       }
   967     }
   968   }
   970   return false;
   971 }
   973 #define __ _masm.
   975 // Tertiary op of a LoadP or StoreP encoding.
   976 #define REGP_OP true
   978 // ****************************************************************************
   980 // REQUIRED FUNCTIONALITY
   982 // !!!!! Special hack to get all type of calls to specify the byte offset
   983 //       from the start of the call to the point where the return address
   984 //       will point.
   986 // PPC port: Removed use of lazy constant construct.
   988 int MachCallStaticJavaNode::ret_addr_offset() {
   989   // It's only a single branch-and-link instruction.
   990   return 4;
   991 }
   993 int MachCallDynamicJavaNode::ret_addr_offset() {
   994   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
   995   // postalloc expanded calls if we use inline caches and do not update method data.
   996   if (UseInlineCaches)
   997     return 4;
   999   int vtable_index = this->_vtable_index;
  1000   if (vtable_index < 0) {
  1001     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1002     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1003     return 12;
  1004   } else {
  1005     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1006     return 24;
  1010 int MachCallRuntimeNode::ret_addr_offset() {
  1011   return 40;
  1014 //=============================================================================
  1016 // condition code conversions
  1018 static int cc_to_boint(int cc) {
  1019   return Assembler::bcondCRbiIs0 | (cc & 8);
  1022 static int cc_to_inverse_boint(int cc) {
  1023   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1026 static int cc_to_biint(int cc, int flags_reg) {
  1027   return (flags_reg << 2) | (cc & 3);
  1030 //=============================================================================
  1032 // Compute padding required for nodes which need alignment. The padding
  1033 // is the number of bytes (not instructions) which will be inserted before
  1034 // the instruction. The padding must match the size of a NOP instruction.
  1036 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1037   return (3*4-current_offset)&31;
  1040 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1041   return (2*4-current_offset)&31;
  1044 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1045   return (3*4-current_offset)&31;
  1048 int string_indexOfNode::compute_padding(int current_offset) const {
  1049   return (1*4-current_offset)&31;
  1052 int string_compareNode::compute_padding(int current_offset) const {
  1053   return (4*4-current_offset)&31;
  1056 int string_equals_immNode::compute_padding(int current_offset) const {
  1057   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1058   return (2*4-current_offset)&31;
  1061 int string_equalsNode::compute_padding(int current_offset) const {
  1062   return (7*4-current_offset)&31;
  1065 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1066   return (2*4-current_offset)&31;
  1069 //=============================================================================
  1071 // Indicate if the safepoint node needs the polling page as an input.
  1072 bool SafePointNode::needs_polling_address_input() {
  1073   // The address is loaded from thread by a seperate node.
  1074   return true;
  1077 //=============================================================================
  1079 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1080 void emit_break(CodeBuffer &cbuf) {
  1081   MacroAssembler _masm(&cbuf);
  1082   __ illtrap();
  1085 #ifndef PRODUCT
  1086 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1087   st->print("BREAKPOINT");
  1089 #endif
  1091 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1092   emit_break(cbuf);
  1095 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1096   return MachNode::size(ra_);
  1099 //=============================================================================
  1101 void emit_nop(CodeBuffer &cbuf) {
  1102   MacroAssembler _masm(&cbuf);
  1103   __ nop();
  1106 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1107   *((int*)(cbuf.insts_end())) = value;
  1108   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1111 //=============================================================================
  1113 // Emit a trampoline stub for a call to a target which is too far away.
  1114 //
  1115 // code sequences:
  1116 //
  1117 // call-site:
  1118 //   branch-and-link to <destination> or <trampoline stub>
  1119 //
  1120 // Related trampoline stub for this call-site in the stub section:
  1121 //   load the call target from the constant pool
  1122 //   branch via CTR (LR/link still points to the call-site above)
  1124 const uint trampoline_stub_size = 6 * BytesPerInstWord;
  1126 void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1127   // Start the stub.
  1128   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1129   if (stub == NULL) {
  1130     Compile::current()->env()->record_out_of_memory_failure();
  1131     return;
  1134   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1135   // and in call trampoline stubs we use R12_scratch2. This way we
  1136   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1137   Register reg_scratch = R12_scratch2;
  1139   // Create a trampoline stub relocation which relates this trampoline stub
  1140   // with the call instruction at insts_call_instruction_offset in the
  1141   // instructions code-section.
  1142   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1143   const int stub_start_offset = __ offset();
  1145   // Now, create the trampoline stub's code:
  1146   // - load the TOC
  1147   // - load the call target from the constant pool
  1148   // - call
  1149   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1150   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1151   __ mtctr(reg_scratch);
  1152   __ bctr();
  1154   const address stub_start_addr = __ addr_at(stub_start_offset);
  1156   // FIXME: Assert that the trampoline stub can be identified and patched.
  1158   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1159   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1160          "encoded offset into the constant pool must match");
  1161   // Trampoline_stub_size should be good.
  1162   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1163   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1165   // End the stub.
  1166   __ end_a_stub();
  1169 // Size of trampoline stub, this doesn't need to be accurate but it must
  1170 // be larger or equal to the real size of the stub.
  1171 // Used for optimization in Compile::Shorten_branches.
  1172 uint size_call_trampoline() {
  1173   return trampoline_stub_size;
  1176 // Number of relocation entries needed by trampoline stub.
  1177 // Used for optimization in Compile::Shorten_branches.
  1178 uint reloc_call_trampoline() {
  1179   return 5;
  1182 //=============================================================================
  1184 // Emit an inline branch-and-link call and a related trampoline stub.
  1185 //
  1186 // code sequences:
  1187 //
  1188 // call-site:
  1189 //   branch-and-link to <destination> or <trampoline stub>
  1190 //
  1191 // Related trampoline stub for this call-site in the stub section:
  1192 //   load the call target from the constant pool
  1193 //   branch via CTR (LR/link still points to the call-site above)
  1194 //
  1196 typedef struct {
  1197   int insts_call_instruction_offset;
  1198   int ret_addr_offset;
  1199 } EmitCallOffsets;
  1201 // Emit a branch-and-link instruction that branches to a trampoline.
  1202 // - Remember the offset of the branch-and-link instruction.
  1203 // - Add a relocation at the branch-and-link instruction.
  1204 // - Emit a branch-and-link.
  1205 // - Remember the return pc offset.
  1206 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1207   EmitCallOffsets offsets = { -1, -1 };
  1208   const int start_offset = __ offset();
  1209   offsets.insts_call_instruction_offset = __ offset();
  1211   // No entry point given, use the current pc.
  1212   if (entry_point == NULL) entry_point = __ pc();
  1214   if (!Compile::current()->in_scratch_emit_size()) {
  1215     // Put the entry point as a constant into the constant pool.
  1216     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1217     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1219     // Emit the trampoline stub which will be related to the branch-and-link below.
  1220     emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1221     __ relocate(rtype);
  1224   // Note: At this point we do not have the address of the trampoline
  1225   // stub, and the entry point might be too far away for bl, so __ pc()
  1226   // serves as dummy and the bl will be patched later.
  1227   __ bl((address) __ pc());
  1229   offsets.ret_addr_offset = __ offset() - start_offset;
  1231   return offsets;
  1234 //=============================================================================
  1236 // Factory for creating loadConL* nodes for large/small constant pool.
  1238 static inline jlong replicate_immF(float con) {
  1239   // Replicate float con 2 times and pack into vector.
  1240   int val = *((int*)&con);
  1241   jlong lval = val;
  1242   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1243   return lval;
  1246 //=============================================================================
  1248 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1249 int Compile::ConstantTable::calculate_table_base_offset() const {
  1250   return 0;  // absolute addressing, no offset
  1253 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1254 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1255   Compile *C = ra_->C;
  1257   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1258   MachNode *m1 = new (C) loadToc_hiNode();
  1259   MachNode *m2 = new (C) loadToc_loNode();
  1261   m1->add_req(NULL);
  1262   m2->add_req(NULL, m1);
  1263   m1->_opnds[0] = op_dst;
  1264   m2->_opnds[0] = op_dst;
  1265   m2->_opnds[1] = op_dst;
  1266   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1267   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1268   nodes->push(m1);
  1269   nodes->push(m2);
  1272 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1273   // Is postalloc expanded.
  1274   ShouldNotReachHere();
  1277 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1278   return 0;
  1281 #ifndef PRODUCT
  1282 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1283   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1285 #endif
  1287 //=============================================================================
  1289 #ifndef PRODUCT
  1290 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1291   Compile* C = ra_->C;
  1292   const long framesize = C->frame_slots() << LogBytesPerInt;
  1294   st->print("PROLOG\n\t");
  1295   if (C->need_stack_bang(framesize)) {
  1296     st->print("stack_overflow_check\n\t");
  1299   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1300     st->print("save return pc\n\t");
  1301     st->print("push frame %d\n\t", -framesize);
  1304 #endif
  1306 // Macro used instead of the common __ to emulate the pipes of PPC.
  1307 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1308 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1309 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1310 // code and can update its internal data. The following mechanism is used to achieve this:
  1311 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1312 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1313 #if 0 // TODO: PPC port
  1314 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1315                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1316                 _masm.
  1317 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1318                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1319 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1320                   C->hb_scheduling()->_pdScheduling->advance_offset
  1321 #else
  1322 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1323                   Unimplemented();                                                    \
  1324                 _masm.
  1325 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1326                   Unimplemented()
  1327 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1328                   Unimplemented()
  1329 #endif
  1331 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1332   Compile* C = ra_->C;
  1333   MacroAssembler _masm(&cbuf);
  1335   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1336   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1338   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1340   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1341   const Register callers_sp           = R21;
  1342   const Register push_frame_temp      = R22;
  1343   const Register toc_temp             = R23;
  1344   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1346   if (method_is_frameless) {
  1347     // Add nop at beginning of all frameless methods to prevent any
  1348     // oop instructions from getting overwritten by make_not_entrant
  1349     // (patching attempt would fail).
  1350     ___(nop) nop();
  1351   } else {
  1352     // Get return pc.
  1353     ___(mflr) mflr(return_pc);
  1356   // Calls to C2R adapters often do not accept exceptional returns.
  1357   // We require that their callers must bang for them. But be
  1358   // careful, because some VM calls (such as call site linkage) can
  1359   // use several kilobytes of stack. But the stack safety zone should
  1360   // account for that. See bugs 4446381, 4468289, 4497237.
  1361   if (C->need_stack_bang(framesize) && UseStackBanging) {
  1362     // Unfortunately we cannot use the function provided in
  1363     // assembler.cpp as we have to emulate the pipes. So I had to
  1364     // insert the code of generate_stack_overflow_check(), see
  1365     // assembler.cpp for some illuminative comments.
  1366     const int page_size = os::vm_page_size();
  1367     int bang_end = StackShadowPages*page_size;
  1369     // This is how far the previous frame's stack banging extended.
  1370     const int bang_end_safe = bang_end;
  1372     if (framesize > page_size) {
  1373       bang_end += framesize;
  1376     int bang_offset = bang_end_safe;
  1378     while (bang_offset <= bang_end) {
  1379       // Need at least one stack bang at end of shadow zone.
  1381       // Again I had to copy code, this time from assembler_ppc64.cpp,
  1382       // bang_stack_with_offset - see there for comments.
  1384       // Stack grows down, caller passes positive offset.
  1385       assert(bang_offset > 0, "must bang with positive offset");
  1387       long stdoffset = -bang_offset;
  1389       if (Assembler::is_simm(stdoffset, 16)) {
  1390         // Signed 16 bit offset, a simple std is ok.
  1391         if (UseLoadInstructionsForStackBangingPPC64) {
  1392           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1393         } else {
  1394           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1396       } else if (Assembler::is_simm(stdoffset, 31)) {
  1397         // Use largeoffset calculations for addis & ld/std.
  1398         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1399         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1401         Register tmp = R11;
  1402         ___(addis) addis(tmp, R1_SP, hi);
  1403         if (UseLoadInstructionsForStackBangingPPC64) {
  1404           ___(ld) ld(R0, lo, tmp);
  1405         } else {
  1406           ___(std) std(R0, lo, tmp);
  1408       } else {
  1409         ShouldNotReachHere();
  1412       bang_offset += page_size;
  1414     // R11 trashed
  1415   } // C->need_stack_bang(framesize) && UseStackBanging
  1417   unsigned int bytes = (unsigned int)framesize;
  1418   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1419   ciMethod *currMethod = C -> method();
  1421   // Optimized version for most common case.
  1422   if (UsePower6SchedulerPPC64 &&
  1423       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1424       !(false /* ConstantsALot TODO: PPC port*/)) {
  1425     ___(or) mr(callers_sp, R1_SP);
  1426     ___(std) std(return_pc, _abi(lr), R1_SP);
  1427     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1428     return;
  1431   if (!method_is_frameless) {
  1432     // Get callers sp.
  1433     ___(or) mr(callers_sp, R1_SP);
  1435     // Push method's frame, modifies SP.
  1436     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1437     // The ABI is already accounted for in 'framesize' via the
  1438     // 'out_preserve' area.
  1439     Register tmp = push_frame_temp;
  1440     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1441     if (Assembler::is_simm(-offset, 16)) {
  1442       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1443     } else {
  1444       long x = -offset;
  1445       // Had to insert load_const(tmp, -offset).
  1446       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1447       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1448       ___(rldicr) sldi(tmp, tmp, 32);
  1449       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1450       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1452       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1455 #if 0 // TODO: PPC port
  1456   // For testing large constant pools, emit a lot of constants to constant pool.
  1457   // "Randomize" const_size.
  1458   if (ConstantsALot) {
  1459     const int num_consts = const_size();
  1460     for (int i = 0; i < num_consts; i++) {
  1461       __ long_constant(0xB0B5B00BBABE);
  1464 #endif
  1465   if (!method_is_frameless) {
  1466     // Save return pc.
  1467     ___(std) std(return_pc, _abi(lr), callers_sp);
  1470 #undef ___
  1471 #undef ___stop
  1472 #undef ___advance
  1474 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1475   // Variable size. determine dynamically.
  1476   return MachNode::size(ra_);
  1479 int MachPrologNode::reloc() const {
  1480   // Return number of relocatable values contained in this instruction.
  1481   return 1; // 1 reloc entry for load_const(toc).
  1484 //=============================================================================
  1486 #ifndef PRODUCT
  1487 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1488   Compile* C = ra_->C;
  1490   st->print("EPILOG\n\t");
  1491   st->print("restore return pc\n\t");
  1492   st->print("pop frame\n\t");
  1494   if (do_polling() && C->is_method_compilation()) {
  1495     st->print("touch polling page\n\t");
  1498 #endif
  1500 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1501   Compile* C = ra_->C;
  1502   MacroAssembler _masm(&cbuf);
  1504   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1505   assert(framesize >= 0, "negative frame-size?");
  1507   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1508   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1509   const Register return_pc        = R11;
  1510   const Register polling_page     = R12;
  1512   if (!method_is_frameless) {
  1513     // Restore return pc relative to callers' sp.
  1514     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1517   if (method_needs_polling) {
  1518     if (LoadPollAddressFromThread) {
  1519       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1520       Unimplemented();
  1521     } else {
  1522       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1526   if (!method_is_frameless) {
  1527     // Move return pc to LR.
  1528     __ mtlr(return_pc);
  1529     // Pop frame (fixed frame-size).
  1530     __ addi(R1_SP, R1_SP, (int)framesize);
  1533   if (method_needs_polling) {
  1534     // We need to mark the code position where the load from the safepoint
  1535     // polling page was emitted as relocInfo::poll_return_type here.
  1536     __ relocate(relocInfo::poll_return_type);
  1537     __ load_from_polling_page(polling_page);
  1541 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1542   // Variable size. Determine dynamically.
  1543   return MachNode::size(ra_);
  1546 int MachEpilogNode::reloc() const {
  1547   // Return number of relocatable values contained in this instruction.
  1548   return 1; // 1 for load_from_polling_page.
  1551 const Pipeline * MachEpilogNode::pipeline() const {
  1552   return MachNode::pipeline_class();
  1555 // This method seems to be obsolete. It is declared in machnode.hpp
  1556 // and defined in all *.ad files, but it is never called. Should we
  1557 // get rid of it?
  1558 int MachEpilogNode::safepoint_offset() const {
  1559   assert(do_polling(), "no return for this epilog node");
  1560   return 0;
  1563 #if 0 // TODO: PPC port
  1564 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1565   MacroAssembler _masm(&cbuf);
  1566   if (LoadPollAddressFromThread) {
  1567     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1568   } else {
  1569     _masm.nop();
  1573 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1574   if (LoadPollAddressFromThread) {
  1575     return 4;
  1576   } else {
  1577     return 4;
  1581 #ifndef PRODUCT
  1582 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1583   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1585 #endif
  1587 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1588   return RSCRATCH1_BITS64_REG_mask();
  1590 #endif // PPC port
  1592 // =============================================================================
  1594 // Figure out which register class each belongs in: rc_int, rc_float or
  1595 // rc_stack.
  1596 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1598 static enum RC rc_class(OptoReg::Name reg) {
  1599   // Return the register class for the given register. The given register
  1600   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1601   // enumeration in adGlobals_ppc64.hpp.
  1603   if (reg == OptoReg::Bad) return rc_bad;
  1605   // We have 64 integer register halves, starting at index 0.
  1606   if (reg < 64) return rc_int;
  1608   // We have 64 floating-point register halves, starting at index 64.
  1609   if (reg < 64+64) return rc_float;
  1611   // Between float regs & stack are the flags regs.
  1612   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1614   return rc_stack;
  1617 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1618                         bool do_print, Compile* C, outputStream *st) {
  1620   assert(opcode == Assembler::LD_OPCODE   ||
  1621          opcode == Assembler::STD_OPCODE  ||
  1622          opcode == Assembler::LWZ_OPCODE  ||
  1623          opcode == Assembler::STW_OPCODE  ||
  1624          opcode == Assembler::LFD_OPCODE  ||
  1625          opcode == Assembler::STFD_OPCODE ||
  1626          opcode == Assembler::LFS_OPCODE  ||
  1627          opcode == Assembler::STFS_OPCODE,
  1628          "opcode not supported");
  1630   if (cbuf) {
  1631     int d =
  1632       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1633         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1634       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1635     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1637 #ifndef PRODUCT
  1638   else if (do_print) {
  1639     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1640               op_str,
  1641               Matcher::regName[reg],
  1642               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1644 #endif
  1645   return 4; // size
  1648 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1649   Compile* C = ra_->C;
  1651   // Get registers to move.
  1652   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1653   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1654   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1655   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1657   enum RC src_hi_rc = rc_class(src_hi);
  1658   enum RC src_lo_rc = rc_class(src_lo);
  1659   enum RC dst_hi_rc = rc_class(dst_hi);
  1660   enum RC dst_lo_rc = rc_class(dst_lo);
  1662   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1663   if (src_hi != OptoReg::Bad)
  1664     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1665            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1666            "expected aligned-adjacent pairs");
  1667   // Generate spill code!
  1668   int size = 0;
  1670   if (src_lo == dst_lo && src_hi == dst_hi)
  1671     return size;            // Self copy, no move.
  1673   // --------------------------------------
  1674   // Memory->Memory Spill. Use R0 to hold the value.
  1675   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1676     int src_offset = ra_->reg2offset(src_lo);
  1677     int dst_offset = ra_->reg2offset(dst_lo);
  1678     if (src_hi != OptoReg::Bad) {
  1679       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1680              "expected same type of move for high parts");
  1681       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1682       if (!cbuf && !do_size) st->print("\n\t");
  1683       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1684     } else {
  1685       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1686       if (!cbuf && !do_size) st->print("\n\t");
  1687       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1689     return size;
  1692   // --------------------------------------
  1693   // Check for float->int copy; requires a trip through memory.
  1694   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1695     Unimplemented();
  1698   // --------------------------------------
  1699   // Check for integer reg-reg copy.
  1700   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1701       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1702       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1703       size = (Rsrc != Rdst) ? 4 : 0;
  1705       if (cbuf) {
  1706         MacroAssembler _masm(cbuf);
  1707         if (size) {
  1708           __ mr(Rdst, Rsrc);
  1711 #ifndef PRODUCT
  1712       else if (!do_size) {
  1713         if (size) {
  1714           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1715         } else {
  1716           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1719 #endif
  1720       return size;
  1723   // Check for integer store.
  1724   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1725     int dst_offset = ra_->reg2offset(dst_lo);
  1726     if (src_hi != OptoReg::Bad) {
  1727       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1728              "expected same type of move for high parts");
  1729       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1730     } else {
  1731       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1733     return size;
  1736   // Check for integer load.
  1737   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1738     int src_offset = ra_->reg2offset(src_lo);
  1739     if (src_hi != OptoReg::Bad) {
  1740       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1741              "expected same type of move for high parts");
  1742       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1743     } else {
  1744       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1746     return size;
  1749   // Check for float reg-reg copy.
  1750   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1751     if (cbuf) {
  1752       MacroAssembler _masm(cbuf);
  1753       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1754       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1755       __ fmr(Rdst, Rsrc);
  1757 #ifndef PRODUCT
  1758     else if (!do_size) {
  1759       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1761 #endif
  1762     return 4;
  1765   // Check for float store.
  1766   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1767     int dst_offset = ra_->reg2offset(dst_lo);
  1768     if (src_hi != OptoReg::Bad) {
  1769       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1770              "expected same type of move for high parts");
  1771       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1772     } else {
  1773       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1775     return size;
  1778   // Check for float load.
  1779   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1780     int src_offset = ra_->reg2offset(src_lo);
  1781     if (src_hi != OptoReg::Bad) {
  1782       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1783              "expected same type of move for high parts");
  1784       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1785     } else {
  1786       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1788     return size;
  1791   // --------------------------------------------------------------------
  1792   // Check for hi bits still needing moving. Only happens for misaligned
  1793   // arguments to native calls.
  1794   if (src_hi == dst_hi)
  1795     return size;               // Self copy; no move.
  1797   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1798   ShouldNotReachHere(); // Unimplemented
  1799   return 0;
  1802 #ifndef PRODUCT
  1803 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1804   if (!ra_)
  1805     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1806   else
  1807     implementation(NULL, ra_, false, st);
  1809 #endif
  1811 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1812   implementation(&cbuf, ra_, false, NULL);
  1815 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1816   return implementation(NULL, ra_, true, NULL);
  1819 #if 0 // TODO: PPC port
  1820 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1821 #ifndef PRODUCT
  1822   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1823 #endif
  1824   assert(ra_->node_regs_max_index() != 0, "");
  1826   // Get registers to move.
  1827   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1828   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1829   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1830   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1832   enum RC src_lo_rc = rc_class(src_lo);
  1833   enum RC dst_lo_rc = rc_class(dst_lo);
  1835   if (src_lo == dst_lo && src_hi == dst_hi)
  1836     return ppc64Opcode_none;            // Self copy, no move.
  1838   // --------------------------------------
  1839   // Memory->Memory Spill. Use R0 to hold the value.
  1840   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1841     return ppc64Opcode_compound;
  1844   // --------------------------------------
  1845   // Check for float->int copy; requires a trip through memory.
  1846   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1847     Unimplemented();
  1850   // --------------------------------------
  1851   // Check for integer reg-reg copy.
  1852   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1853     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1854     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1855     if (Rsrc == Rdst) {
  1856       return ppc64Opcode_none;
  1857     } else {
  1858       return ppc64Opcode_or;
  1862   // Check for integer store.
  1863   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1864     if (src_hi != OptoReg::Bad) {
  1865       return ppc64Opcode_std;
  1866     } else {
  1867       return ppc64Opcode_stw;
  1871   // Check for integer load.
  1872   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1873     if (src_hi != OptoReg::Bad) {
  1874       return ppc64Opcode_ld;
  1875     } else {
  1876       return ppc64Opcode_lwz;
  1880   // Check for float reg-reg copy.
  1881   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1882     return ppc64Opcode_fmr;
  1885   // Check for float store.
  1886   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1887     if (src_hi != OptoReg::Bad) {
  1888       return ppc64Opcode_stfd;
  1889     } else {
  1890       return ppc64Opcode_stfs;
  1894   // Check for float load.
  1895   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1896     if (src_hi != OptoReg::Bad) {
  1897       return ppc64Opcode_lfd;
  1898     } else {
  1899       return ppc64Opcode_lfs;
  1903   // --------------------------------------------------------------------
  1904   // Check for hi bits still needing moving. Only happens for misaligned
  1905   // arguments to native calls.
  1906   if (src_hi == dst_hi)
  1907     return ppc64Opcode_none;               // Self copy; no move.
  1909   ShouldNotReachHere();
  1910   return ppc64Opcode_undefined;
  1912 #endif // PPC port
  1914 #ifndef PRODUCT
  1915 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1916   st->print("NOP \t// %d nops to pad for loops.", _count);
  1918 #endif
  1920 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1921   MacroAssembler _masm(&cbuf);
  1922   // _count contains the number of nops needed for padding.
  1923   for (int i = 0; i < _count; i++) {
  1924     __ nop();
  1928 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1929    return _count * 4;
  1932 #ifndef PRODUCT
  1933 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1934   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1935   int reg = ra_->get_reg_first(this);
  1936   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
  1938 #endif
  1940 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1941   MacroAssembler _masm(&cbuf);
  1943   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1944   int reg    = ra_->get_encode(this);
  1946   if (Assembler::is_simm(offset, 16)) {
  1947     __ addi(as_Register(reg), R1, offset);
  1948   } else {
  1949     ShouldNotReachHere();
  1953 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1954   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1955   return 4;
  1958 #ifndef PRODUCT
  1959 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1960   st->print_cr("---- MachUEPNode ----");
  1961   st->print_cr("...");
  1963 #endif
  1965 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1966   // This is the unverified entry point.
  1967   MacroAssembler _masm(&cbuf);
  1969   // Inline_cache contains a klass.
  1970   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  1971   Register receiver_klass = R0;  // tmp
  1973   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  1974   assert(R11_scratch1 == R11, "need prologue scratch register");
  1976   // Check for NULL argument if we don't have implicit null checks.
  1977   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  1978     if (TrapBasedNullChecks) {
  1979       __ trap_null_check(R3_ARG1);
  1980     } else {
  1981       Label valid;
  1982       __ cmpdi(CCR0, R3_ARG1, 0);
  1983       __ bne_predict_taken(CCR0, valid);
  1984       // We have a null argument, branch to ic_miss_stub.
  1985       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1986                            relocInfo::runtime_call_type);
  1987       __ bind(valid);
  1990   // Assume argument is not NULL, load klass from receiver.
  1991   __ load_klass(receiver_klass, R3_ARG1);
  1993   if (TrapBasedICMissChecks) {
  1994     __ trap_ic_miss_check(receiver_klass, ic_klass);
  1995   } else {
  1996     Label valid;
  1997     __ cmpd(CCR0, receiver_klass, ic_klass);
  1998     __ beq_predict_taken(CCR0, valid);
  1999     // We have an unexpected klass, branch to ic_miss_stub.
  2000     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2001                          relocInfo::runtime_call_type);
  2002     __ bind(valid);
  2005   // Argument is valid and klass is as expected, continue.
  2008 #if 0 // TODO: PPC port
  2009 // Optimize UEP code on z (save a load_const() call in main path).
  2010 int MachUEPNode::ep_offset() {
  2011   return 0;
  2013 #endif
  2015 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2016   // Variable size. Determine dynamically.
  2017   return MachNode::size(ra_);
  2020 //=============================================================================
  2022 uint size_exception_handler() {
  2023   // The exception_handler is a b64_patchable.
  2024   return MacroAssembler::b64_patchable_size;
  2027 uint size_deopt_handler() {
  2028   // The deopt_handler is a bl64_patchable.
  2029   return MacroAssembler::bl64_patchable_size;
  2032 int emit_exception_handler(CodeBuffer &cbuf) {
  2033   MacroAssembler _masm(&cbuf);
  2035   address base = __ start_a_stub(size_exception_handler());
  2036   if (base == NULL) return 0; // CodeBuffer::expand failed
  2038   int offset = __ offset();
  2039   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2040                        relocInfo::runtime_call_type);
  2041   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2042   __ end_a_stub();
  2044   return offset;
  2047 // The deopt_handler is like the exception handler, but it calls to
  2048 // the deoptimization blob instead of jumping to the exception blob.
  2049 int emit_deopt_handler(CodeBuffer& cbuf) {
  2050   MacroAssembler _masm(&cbuf);
  2052   address base = __ start_a_stub(size_deopt_handler());
  2053   if (base == NULL) return 0; // CodeBuffer::expand failed
  2055   int offset = __ offset();
  2056   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2057                         relocInfo::runtime_call_type);
  2058   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2059   __ end_a_stub();
  2061   return offset;
  2064 //=============================================================================
  2066 // Use a frame slots bias for frameless methods if accessing the stack.
  2067 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2068   if (as_Register(reg_enc) == R1_SP) {
  2069     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2071   return 0;
  2074 const bool Matcher::match_rule_supported(int opcode) {
  2075   if (!has_match_rule(opcode))
  2076     return false;
  2078   switch (opcode) {
  2079   case Op_CountLeadingZerosI:
  2080   case Op_CountLeadingZerosL:
  2081   case Op_CountTrailingZerosI:
  2082   case Op_CountTrailingZerosL:
  2083     if (!UseCountLeadingZerosInstructionsPPC64)
  2084       return false;
  2085     break;
  2087   case Op_PopCountI:
  2088   case Op_PopCountL:
  2089     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2091   case Op_StrComp:
  2092     return SpecialStringCompareTo;
  2093   case Op_StrEquals:
  2094     return SpecialStringEquals;
  2095   case Op_StrIndexOf:
  2096     return SpecialStringIndexOf;
  2099   return true;  // Per default match rules are supported.
  2102 int Matcher::regnum_to_fpu_offset(int regnum) {
  2103   // No user for this method?
  2104   Unimplemented();
  2105   return 999;
  2108 const bool Matcher::convL2FSupported(void) {
  2109   // fcfids can do the conversion (>= Power7).
  2110   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2111   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2114 // Vector width in bytes.
  2115 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2116   assert(MaxVectorSize == 8, "");
  2117   return 8;
  2120 // Vector ideal reg.
  2121 const int Matcher::vector_ideal_reg(int size) {
  2122   assert(MaxVectorSize == 8 && size == 8, "");
  2123   return Op_RegL;
  2126 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2127   fatal("vector shift is not supported");
  2128   return Node::NotAMachineReg;
  2131 // Limits on vector size (number of elements) loaded into vector.
  2132 const int Matcher::max_vector_size(const BasicType bt) {
  2133   assert(is_java_primitive(bt), "only primitive type vectors");
  2134   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2137 const int Matcher::min_vector_size(const BasicType bt) {
  2138   return max_vector_size(bt); // Same as max.
  2141 // PPC doesn't support misaligned vectors store/load.
  2142 const bool Matcher::misaligned_vectors_ok() {
  2143   return false;
  2146 // PPC AES support not yet implemented
  2147 const bool Matcher::pass_original_key_for_aes() {
  2148   return false;
  2151 // RETURNS: whether this branch offset is short enough that a short
  2152 // branch can be used.
  2153 //
  2154 // If the platform does not provide any short branch variants, then
  2155 // this method should return `false' for offset 0.
  2156 //
  2157 // `Compile::Fill_buffer' will decide on basis of this information
  2158 // whether to do the pass `Compile::Shorten_branches' at all.
  2159 //
  2160 // And `Compile::Shorten_branches' will decide on basis of this
  2161 // information whether to replace particular branch sites by short
  2162 // ones.
  2163 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2164   // Is the offset within the range of a ppc64 pc relative branch?
  2165   bool b;
  2167   const int safety_zone = 3 * BytesPerInstWord;
  2168   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2169                          29 - 16 + 1 + 2);
  2170   return b;
  2173 const bool Matcher::isSimpleConstant64(jlong value) {
  2174   // Probably always true, even if a temp register is required.
  2175   return true;
  2177 /* TODO: PPC port
  2178 // Make a new machine dependent decode node (with its operands).
  2179 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2180   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2181          "This method is only implemented for unscaled cOops mode so far");
  2182   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2183   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2184   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2185   return decode;
  2187 */
  2188 // Threshold size for cleararray.
  2189 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2191 // false => size gets scaled to BytesPerLong, ok.
  2192 const bool Matcher::init_array_count_is_in_bytes = false;
  2194 // Use conditional move (CMOVL) on Power7.
  2195 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2197 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2198 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2199 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2201 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2202 const bool Matcher::require_postalloc_expand = true;
  2204 // Should the Matcher clone shifts on addressing modes, expecting them to
  2205 // be subsumed into complex addressing expressions or compute them into
  2206 // registers? True for Intel but false for most RISCs.
  2207 const bool Matcher::clone_shift_expressions = false;
  2209 // Do we need to mask the count passed to shift instructions or does
  2210 // the cpu only look at the lower 5/6 bits anyway?
  2211 // Off, as masks are generated in expand rules where required.
  2212 // Constant shift counts are handled in Ideal phase.
  2213 const bool Matcher::need_masked_shift_count = false;
  2215 // This affects two different things:
  2216 //  - how Decode nodes are matched
  2217 //  - how ImplicitNullCheck opportunities are recognized
  2218 // If true, the matcher will try to remove all Decodes and match them
  2219 // (as operands) into nodes. NullChecks are not prepared to deal with
  2220 // Decodes by final_graph_reshaping().
  2221 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2222 // for a NullCheck. The matcher matches the Decode node into a register.
  2223 // Implicit_null_check optimization moves the Decode along with the
  2224 // memory operation back up before the NullCheck.
  2225 bool Matcher::narrow_oop_use_complex_address() {
  2226   // TODO: PPC port if (MatchDecodeNodes) return true;
  2227   return false;
  2230 bool Matcher::narrow_klass_use_complex_address() {
  2231   NOT_LP64(ShouldNotCallThis());
  2232   assert(UseCompressedClassPointers, "only for compressed klass code");
  2233   // TODO: PPC port if (MatchDecodeNodes) return true;
  2234   return false;
  2237 // Is it better to copy float constants, or load them directly from memory?
  2238 // Intel can load a float constant from a direct address, requiring no
  2239 // extra registers. Most RISCs will have to materialize an address into a
  2240 // register first, so they would do better to copy the constant from stack.
  2241 const bool Matcher::rematerialize_float_constants = false;
  2243 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2244 // needed. Else we split the double into 2 integer pieces and move it
  2245 // piece-by-piece. Only happens when passing doubles into C code as the
  2246 // Java calling convention forces doubles to be aligned.
  2247 const bool Matcher::misaligned_doubles_ok = true;
  2249 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2250  Unimplemented();
  2253 // Advertise here if the CPU requires explicit rounding operations
  2254 // to implement the UseStrictFP mode.
  2255 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2257 // Do floats take an entire double register or just half?
  2258 //
  2259 // A float occupies a ppc64 double register. For the allocator, a
  2260 // ppc64 double register appears as a pair of float registers.
  2261 bool Matcher::float_in_double() { return true; }
  2263 // Do ints take an entire long register or just half?
  2264 // The relevant question is how the int is callee-saved:
  2265 // the whole long is written but de-opt'ing will have to extract
  2266 // the relevant 32 bits.
  2267 const bool Matcher::int_in_long = true;
  2269 // Constants for c2c and c calling conventions.
  2271 const MachRegisterNumbers iarg_reg[8] = {
  2272   R3_num, R4_num, R5_num, R6_num,
  2273   R7_num, R8_num, R9_num, R10_num
  2274 };
  2276 const MachRegisterNumbers farg_reg[13] = {
  2277   F1_num, F2_num, F3_num, F4_num,
  2278   F5_num, F6_num, F7_num, F8_num,
  2279   F9_num, F10_num, F11_num, F12_num,
  2280   F13_num
  2281 };
  2283 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2285 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2287 // Return whether or not this register is ever used as an argument. This
  2288 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2289 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2290 // arguments in those registers not be available to the callee.
  2291 bool Matcher::can_be_java_arg(int reg) {
  2292   // We return true for all registers contained in iarg_reg[] and
  2293   // farg_reg[] and their virtual halves.
  2294   // We must include the virtual halves in order to get STDs and LDs
  2295   // instead of STWs and LWs in the trampoline stubs.
  2297   if (   reg == R3_num  || reg == R3_H_num
  2298       || reg == R4_num  || reg == R4_H_num
  2299       || reg == R5_num  || reg == R5_H_num
  2300       || reg == R6_num  || reg == R6_H_num
  2301       || reg == R7_num  || reg == R7_H_num
  2302       || reg == R8_num  || reg == R8_H_num
  2303       || reg == R9_num  || reg == R9_H_num
  2304       || reg == R10_num || reg == R10_H_num)
  2305     return true;
  2307   if (   reg == F1_num  || reg == F1_H_num
  2308       || reg == F2_num  || reg == F2_H_num
  2309       || reg == F3_num  || reg == F3_H_num
  2310       || reg == F4_num  || reg == F4_H_num
  2311       || reg == F5_num  || reg == F5_H_num
  2312       || reg == F6_num  || reg == F6_H_num
  2313       || reg == F7_num  || reg == F7_H_num
  2314       || reg == F8_num  || reg == F8_H_num
  2315       || reg == F9_num  || reg == F9_H_num
  2316       || reg == F10_num || reg == F10_H_num
  2317       || reg == F11_num || reg == F11_H_num
  2318       || reg == F12_num || reg == F12_H_num
  2319       || reg == F13_num || reg == F13_H_num)
  2320     return true;
  2322   return false;
  2325 bool Matcher::is_spillable_arg(int reg) {
  2326   return can_be_java_arg(reg);
  2329 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2330   return false;
  2333 // Register for DIVI projection of divmodI.
  2334 RegMask Matcher::divI_proj_mask() {
  2335   ShouldNotReachHere();
  2336   return RegMask();
  2339 // Register for MODI projection of divmodI.
  2340 RegMask Matcher::modI_proj_mask() {
  2341   ShouldNotReachHere();
  2342   return RegMask();
  2345 // Register for DIVL projection of divmodL.
  2346 RegMask Matcher::divL_proj_mask() {
  2347   ShouldNotReachHere();
  2348   return RegMask();
  2351 // Register for MODL projection of divmodL.
  2352 RegMask Matcher::modL_proj_mask() {
  2353   ShouldNotReachHere();
  2354   return RegMask();
  2357 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2358   return RegMask();
  2361 const RegMask Matcher::mathExactI_result_proj_mask() {
  2362   return RARG4_BITS64_REG_mask();
  2365 const RegMask Matcher::mathExactL_result_proj_mask() {
  2366   return RARG4_BITS64_REG_mask();
  2369 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2370   return INT_FLAGS_mask();
  2373 %}
  2375 //----------ENCODING BLOCK-----------------------------------------------------
  2376 // This block specifies the encoding classes used by the compiler to output
  2377 // byte streams. Encoding classes are parameterized macros used by
  2378 // Machine Instruction Nodes in order to generate the bit encoding of the
  2379 // instruction. Operands specify their base encoding interface with the
  2380 // interface keyword. There are currently supported four interfaces,
  2381 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2382 // operand to generate a function which returns its register number when
  2383 // queried. CONST_INTER causes an operand to generate a function which
  2384 // returns the value of the constant when queried. MEMORY_INTER causes an
  2385 // operand to generate four functions which return the Base Register, the
  2386 // Index Register, the Scale Value, and the Offset Value of the operand when
  2387 // queried. COND_INTER causes an operand to generate six functions which
  2388 // return the encoding code (ie - encoding bits for the instruction)
  2389 // associated with each basic boolean condition for a conditional instruction.
  2390 //
  2391 // Instructions specify two basic values for encoding. Again, a function
  2392 // is available to check if the constant displacement is an oop. They use the
  2393 // ins_encode keyword to specify their encoding classes (which must be
  2394 // a sequence of enc_class names, and their parameters, specified in
  2395 // the encoding block), and they use the
  2396 // opcode keyword to specify, in order, their primary, secondary, and
  2397 // tertiary opcode. Only the opcode sections which a particular instruction
  2398 // needs for encoding need to be specified.
  2399 encode %{
  2400   enc_class enc_unimplemented %{
  2401     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2402     MacroAssembler _masm(&cbuf);
  2403     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2404   %}
  2406   enc_class enc_untested %{
  2407 #ifdef ASSERT
  2408     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2409     MacroAssembler _masm(&cbuf);
  2410     __ untested("Untested mach node encoding in AD file.");
  2411 #else
  2412     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2413 #endif
  2414   %}
  2416   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2417     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2418     MacroAssembler _masm(&cbuf);
  2419     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2420     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2421   %}
  2423   // Load acquire.
  2424   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2425     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2426     MacroAssembler _masm(&cbuf);
  2427     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2428     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2429     __ twi_0($dst$$Register);
  2430     __ isync();
  2431   %}
  2433   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2434     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2436     MacroAssembler _masm(&cbuf);
  2437     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2438     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2439   %}
  2441   // Load acquire.
  2442   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2443     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2445     MacroAssembler _masm(&cbuf);
  2446     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2447     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2448     __ twi_0($dst$$Register);
  2449     __ isync();
  2450   %}
  2452   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2453     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2455     MacroAssembler _masm(&cbuf);
  2456     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2457     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2458   %}
  2460   // Load acquire.
  2461   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2462     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2464     MacroAssembler _masm(&cbuf);
  2465     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2466     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2467     __ twi_0($dst$$Register);
  2468     __ isync();
  2469   %}
  2471   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2472     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2473     MacroAssembler _masm(&cbuf);
  2474     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2475     // Operand 'ds' requires 4-alignment.
  2476     assert((Idisp & 0x3) == 0, "unaligned offset");
  2477     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2478   %}
  2480   // Load acquire.
  2481   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2482     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2483     MacroAssembler _masm(&cbuf);
  2484     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2485     // Operand 'ds' requires 4-alignment.
  2486     assert((Idisp & 0x3) == 0, "unaligned offset");
  2487     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2488     __ twi_0($dst$$Register);
  2489     __ isync();
  2490   %}
  2492   enc_class enc_lfd(RegF dst, memory mem) %{
  2493     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2494     MacroAssembler _masm(&cbuf);
  2495     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2496     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2497   %}
  2499   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2500     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2502     MacroAssembler _masm(&cbuf);
  2503     int toc_offset = 0;
  2505     if (!ra_->C->in_scratch_emit_size()) {
  2506       address const_toc_addr;
  2507       // Create a non-oop constant, no relocation needed.
  2508       // If it is an IC, it has a virtual_call_Relocation.
  2509       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2511       // Get the constant's TOC offset.
  2512       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2514       // Keep the current instruction offset in mind.
  2515       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2518     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2519   %}
  2521   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2522     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2524     MacroAssembler _masm(&cbuf);
  2526     if (!ra_->C->in_scratch_emit_size()) {
  2527       address const_toc_addr;
  2528       // Create a non-oop constant, no relocation needed.
  2529       // If it is an IC, it has a virtual_call_Relocation.
  2530       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2532       // Get the constant's TOC offset.
  2533       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2534       // Store the toc offset of the constant.
  2535       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2537       // Also keep the current instruction offset in mind.
  2538       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2541     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2542   %}
  2544 %} // encode
  2546 source %{
  2548 typedef struct {
  2549   loadConL_hiNode *_large_hi;
  2550   loadConL_loNode *_large_lo;
  2551   loadConLNode    *_small;
  2552   MachNode        *_last;
  2553 } loadConLNodesTuple;
  2555 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2556                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2557   loadConLNodesTuple nodes;
  2559   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2560   if (large_constant_pool) {
  2561     // Create new nodes.
  2562     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2563     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2565     // inputs for new nodes
  2566     m1->add_req(NULL, toc);
  2567     m2->add_req(NULL, m1);
  2569     // operands for new nodes
  2570     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2571     m1->_opnds[1] = immSrc;                 // src
  2572     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2573     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2574     m2->_opnds[1] = immSrc;                 // src
  2575     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2577     // Initialize ins_attrib TOC fields.
  2578     m1->_const_toc_offset = -1;
  2579     m2->_const_toc_offset_hi_node = m1;
  2581     // Initialize ins_attrib instruction offset.
  2582     m1->_cbuf_insts_offset = -1;
  2584     // register allocation for new nodes
  2585     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2586     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2588     // Create result.
  2589     nodes._large_hi = m1;
  2590     nodes._large_lo = m2;
  2591     nodes._small = NULL;
  2592     nodes._last = nodes._large_lo;
  2593     assert(m2->bottom_type()->isa_long(), "must be long");
  2594   } else {
  2595     loadConLNode *m2 = new (C) loadConLNode();
  2597     // inputs for new nodes
  2598     m2->add_req(NULL, toc);
  2600     // operands for new nodes
  2601     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2602     m2->_opnds[1] = immSrc;                 // src
  2603     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2605     // Initialize ins_attrib instruction offset.
  2606     m2->_cbuf_insts_offset = -1;
  2608     // register allocation for new nodes
  2609     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2611     // Create result.
  2612     nodes._large_hi = NULL;
  2613     nodes._large_lo = NULL;
  2614     nodes._small = m2;
  2615     nodes._last = nodes._small;
  2616     assert(m2->bottom_type()->isa_long(), "must be long");
  2619   return nodes;
  2622 %} // source
  2624 encode %{
  2625   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2626   // Enc_class needed as consttanttablebase is not supported by postalloc
  2627   // expand.
  2628   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2629     // Create new nodes.
  2630     loadConLNodesTuple loadConLNodes =
  2631       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2632                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2634     // Push new nodes.
  2635     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2636     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2638     // some asserts
  2639     assert(nodes->length() >= 1, "must have created at least 1 node");
  2640     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2641   %}
  2643   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2644     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2646     MacroAssembler _masm(&cbuf);
  2647     int toc_offset = 0;
  2649     if (!ra_->C->in_scratch_emit_size()) {
  2650       intptr_t val = $src$$constant;
  2651       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2652       address const_toc_addr;
  2653       if (constant_reloc == relocInfo::oop_type) {
  2654         // Create an oop constant and a corresponding relocation.
  2655         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2656         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2657         __ relocate(a.rspec());
  2658       } else if (constant_reloc == relocInfo::metadata_type) {
  2659         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2660         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2661         __ relocate(a.rspec());
  2662       } else {
  2663         // Create a non-oop constant, no relocation needed.
  2664         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2667       // Get the constant's TOC offset.
  2668       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2671     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2672   %}
  2674   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2675     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2677     MacroAssembler _masm(&cbuf);
  2678     if (!ra_->C->in_scratch_emit_size()) {
  2679       intptr_t val = $src$$constant;
  2680       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2681       address const_toc_addr;
  2682       if (constant_reloc == relocInfo::oop_type) {
  2683         // Create an oop constant and a corresponding relocation.
  2684         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2685         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2686         __ relocate(a.rspec());
  2687       } else if (constant_reloc == relocInfo::metadata_type) {
  2688         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2689         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2690         __ relocate(a.rspec());
  2691       } else {  // non-oop pointers, e.g. card mark base, heap top
  2692         // Create a non-oop constant, no relocation needed.
  2693         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2696       // Get the constant's TOC offset.
  2697       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2698       // Store the toc offset of the constant.
  2699       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2702     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2703   %}
  2705   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2706   // Enc_class needed as consttanttablebase is not supported by postalloc
  2707   // expand.
  2708   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2709     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2710     if (large_constant_pool) {
  2711       // Create new nodes.
  2712       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2713       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2715       // inputs for new nodes
  2716       m1->add_req(NULL, n_toc);
  2717       m2->add_req(NULL, m1);
  2719       // operands for new nodes
  2720       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2721       m1->_opnds[1] = op_src;                 // src
  2722       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2723       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2724       m2->_opnds[1] = op_src;                 // src
  2725       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2727       // Initialize ins_attrib TOC fields.
  2728       m1->_const_toc_offset = -1;
  2729       m2->_const_toc_offset_hi_node = m1;
  2731       // Register allocation for new nodes.
  2732       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2733       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2735       nodes->push(m1);
  2736       nodes->push(m2);
  2737       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2738     } else {
  2739       loadConPNode *m2 = new (C) loadConPNode();
  2741       // inputs for new nodes
  2742       m2->add_req(NULL, n_toc);
  2744       // operands for new nodes
  2745       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2746       m2->_opnds[1] = op_src;                 // src
  2747       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2749       // Register allocation for new nodes.
  2750       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2752       nodes->push(m2);
  2753       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2755   %}
  2757   // Enc_class needed as consttanttablebase is not supported by postalloc
  2758   // expand.
  2759   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2760     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2762     MachNode *m2;
  2763     if (large_constant_pool) {
  2764       m2 = new (C) loadConFCompNode();
  2765     } else {
  2766       m2 = new (C) loadConFNode();
  2768     // inputs for new nodes
  2769     m2->add_req(NULL, n_toc);
  2771     // operands for new nodes
  2772     m2->_opnds[0] = op_dst;
  2773     m2->_opnds[1] = op_src;
  2774     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2776     // register allocation for new nodes
  2777     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2778     nodes->push(m2);
  2779   %}
  2781   // Enc_class needed as consttanttablebase is not supported by postalloc
  2782   // expand.
  2783   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2784     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2786     MachNode *m2;
  2787     if (large_constant_pool) {
  2788       m2 = new (C) loadConDCompNode();
  2789     } else {
  2790       m2 = new (C) loadConDNode();
  2792     // inputs for new nodes
  2793     m2->add_req(NULL, n_toc);
  2795     // operands for new nodes
  2796     m2->_opnds[0] = op_dst;
  2797     m2->_opnds[1] = op_src;
  2798     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2800     // register allocation for new nodes
  2801     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2802     nodes->push(m2);
  2803   %}
  2805   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2806     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2807     MacroAssembler _masm(&cbuf);
  2808     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2809     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2810   %}
  2812   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2813     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2814     MacroAssembler _masm(&cbuf);
  2815     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2816     // Operand 'ds' requires 4-alignment.
  2817     assert((Idisp & 0x3) == 0, "unaligned offset");
  2818     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2819   %}
  2821   enc_class enc_stfs(RegF src, memory mem) %{
  2822     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2823     MacroAssembler _masm(&cbuf);
  2824     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2825     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2826   %}
  2828   enc_class enc_stfd(RegF src, memory mem) %{
  2829     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2830     MacroAssembler _masm(&cbuf);
  2831     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2832     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2833   %}
  2835   // Use release_store for card-marking to ensure that previous
  2836   // oop-stores are visible before the card-mark change.
  2837   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2838     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2839     // FIXME: Implement this as a cmove and use a fixed condition code
  2840     // register which is written on every transition to compiled code,
  2841     // e.g. in call-stub and when returning from runtime stubs.
  2842     //
  2843     // Proposed code sequence for the cmove implementation:
  2844     //
  2845     // Label skip_release;
  2846     // __ beq(CCRfixed, skip_release);
  2847     // __ release();
  2848     // __ bind(skip_release);
  2849     // __ stb(card mark);
  2851     MacroAssembler _masm(&cbuf);
  2852     Label skip_storestore;
  2854 #if 0 // TODO: PPC port
  2855     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2856     // StoreStore barrier conditionally.
  2857     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2858     __ cmpwi(CCR0, R0, 0);
  2859     __ beq_predict_taken(CCR0, skip_storestore);
  2860 #endif
  2861     __ li(R0, 0);
  2862     __ membar(Assembler::StoreStore);
  2863 #if 0 // TODO: PPC port
  2864     __ bind(skip_storestore);
  2865 #endif
  2867     // Do the store.
  2868     if ($mem$$index == 0) {
  2869       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2870     } else {
  2871       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2872       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2874   %}
  2876   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2878     if (VM_Version::has_isel()) {
  2879       // use isel instruction with Power 7
  2880       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2881       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2882       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2883       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2885       n_compare->add_req(n_region, n_src);
  2886       n_compare->_opnds[0] = op_crx;
  2887       n_compare->_opnds[1] = op_src;
  2888       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2890       n_sub_base->add_req(n_region, n_src);
  2891       n_sub_base->_opnds[0] = op_dst;
  2892       n_sub_base->_opnds[1] = op_src;
  2893       n_sub_base->_bottom_type = _bottom_type;
  2895       n_shift->add_req(n_region, n_sub_base);
  2896       n_shift->_opnds[0] = op_dst;
  2897       n_shift->_opnds[1] = op_dst;
  2898       n_shift->_bottom_type = _bottom_type;
  2900       n_cond_set->add_req(n_region, n_compare, n_shift);
  2901       n_cond_set->_opnds[0] = op_dst;
  2902       n_cond_set->_opnds[1] = op_crx;
  2903       n_cond_set->_opnds[2] = op_dst;
  2904       n_cond_set->_bottom_type = _bottom_type;
  2906       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2907       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2908       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2909       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2911       nodes->push(n_compare);
  2912       nodes->push(n_sub_base);
  2913       nodes->push(n_shift);
  2914       nodes->push(n_cond_set);
  2916     } else {
  2917       // before Power 7
  2918       moveRegNode        *n_move     = new (C) moveRegNode();
  2919       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2920       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2921       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2923       n_move->add_req(n_region, n_src);
  2924       n_move->_opnds[0] = op_dst;
  2925       n_move->_opnds[1] = op_src;
  2926       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2928       n_compare->add_req(n_region, n_src);
  2929       n_compare->add_prec(n_move);
  2931       n_compare->_opnds[0] = op_crx;
  2932       n_compare->_opnds[1] = op_src;
  2933       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2935       n_sub_base->add_req(n_region, n_compare, n_src);
  2936       n_sub_base->_opnds[0] = op_dst;
  2937       n_sub_base->_opnds[1] = op_crx;
  2938       n_sub_base->_opnds[2] = op_src;
  2939       n_sub_base->_bottom_type = _bottom_type;
  2941       n_shift->add_req(n_region, n_sub_base);
  2942       n_shift->_opnds[0] = op_dst;
  2943       n_shift->_opnds[1] = op_dst;
  2944       n_shift->_bottom_type = _bottom_type;
  2946       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2947       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2948       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2949       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2951       nodes->push(n_move);
  2952       nodes->push(n_compare);
  2953       nodes->push(n_sub_base);
  2954       nodes->push(n_shift);
  2957     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  2958   %}
  2960   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  2962     encodeP_subNode *n1 = new (C) encodeP_subNode();
  2963     n1->add_req(n_region, n_src);
  2964     n1->_opnds[0] = op_dst;
  2965     n1->_opnds[1] = op_src;
  2966     n1->_bottom_type = _bottom_type;
  2968     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  2969     n2->add_req(n_region, n1);
  2970     n2->_opnds[0] = op_dst;
  2971     n2->_opnds[1] = op_dst;
  2972     n2->_bottom_type = _bottom_type;
  2973     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2974     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2976     nodes->push(n1);
  2977     nodes->push(n2);
  2978     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  2979   %}
  2981   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  2982     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  2983     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  2985     n_compare->add_req(n_region, n_src);
  2986     n_compare->_opnds[0] = op_crx;
  2987     n_compare->_opnds[1] = op_src;
  2988     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  2990     n_shift->add_req(n_region, n_src);
  2991     n_shift->_opnds[0] = op_dst;
  2992     n_shift->_opnds[1] = op_src;
  2993     n_shift->_bottom_type = _bottom_type;
  2995     if (VM_Version::has_isel()) {
  2996       // use isel instruction with Power 7
  2998       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  2999       n_add_base->add_req(n_region, n_shift);
  3000       n_add_base->_opnds[0] = op_dst;
  3001       n_add_base->_opnds[1] = op_dst;
  3002       n_add_base->_bottom_type = _bottom_type;
  3004       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3005       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3006       n_cond_set->_opnds[0] = op_dst;
  3007       n_cond_set->_opnds[1] = op_crx;
  3008       n_cond_set->_opnds[2] = op_dst;
  3009       n_cond_set->_bottom_type = _bottom_type;
  3011       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3012       ra_->set_oop(n_cond_set, true);
  3014       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3015       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3016       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3017       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3019       nodes->push(n_compare);
  3020       nodes->push(n_shift);
  3021       nodes->push(n_add_base);
  3022       nodes->push(n_cond_set);
  3024     } else {
  3025       // before Power 7
  3026       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3028       n_add_base->add_req(n_region, n_compare, n_shift);
  3029       n_add_base->_opnds[0] = op_dst;
  3030       n_add_base->_opnds[1] = op_crx;
  3031       n_add_base->_opnds[2] = op_dst;
  3032       n_add_base->_bottom_type = _bottom_type;
  3034       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3035       ra_->set_oop(n_add_base, true);
  3037       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3038       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3039       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3041       nodes->push(n_compare);
  3042       nodes->push(n_shift);
  3043       nodes->push(n_add_base);
  3045   %}
  3047   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3048     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3049     n1->add_req(n_region, n_src);
  3050     n1->_opnds[0] = op_dst;
  3051     n1->_opnds[1] = op_src;
  3052     n1->_bottom_type = _bottom_type;
  3054     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3055     n2->add_req(n_region, n1);
  3056     n2->_opnds[0] = op_dst;
  3057     n2->_opnds[1] = op_dst;
  3058     n2->_bottom_type = _bottom_type;
  3059     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3060     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3062     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3063     ra_->set_oop(n2, true);
  3065     nodes->push(n1);
  3066     nodes->push(n2);
  3067   %}
  3069   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3070     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3072     MacroAssembler _masm(&cbuf);
  3073     int cc        = $cmp$$cmpcode;
  3074     int flags_reg = $crx$$reg;
  3075     Label done;
  3076     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3077     // Branch if not (cmp crx).
  3078     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3079     __ mr($dst$$Register, $src$$Register);
  3080     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3081     __ bind(done);
  3082   %}
  3084   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3085     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3087     MacroAssembler _masm(&cbuf);
  3088     Label done;
  3089     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3090     // Branch if not (cmp crx).
  3091     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3092     __ li($dst$$Register, $src$$constant);
  3093     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3094     __ bind(done);
  3095   %}
  3097   // New atomics.
  3098   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3099     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3101     MacroAssembler _masm(&cbuf);
  3102     Register Rtmp   = R0;
  3103     Register Rres   = $res$$Register;
  3104     Register Rsrc   = $src$$Register;
  3105     Register Rptr   = $mem_ptr$$Register;
  3106     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3107     Register Rold   = RegCollision ? Rtmp : Rres;
  3109     Label Lretry;
  3110     __ bind(Lretry);
  3111     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3112     __ add(Rtmp, Rsrc, Rold);
  3113     __ stwcx_(Rtmp, Rptr);
  3114     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3115       __ bne_predict_not_taken(CCR0, Lretry);
  3116     } else {
  3117       __ bne(                  CCR0, Lretry);
  3119     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3120     __ fence();
  3121   %}
  3123   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3124     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3126     MacroAssembler _masm(&cbuf);
  3127     Register Rtmp   = R0;
  3128     Register Rres   = $res$$Register;
  3129     Register Rsrc   = $src$$Register;
  3130     Register Rptr   = $mem_ptr$$Register;
  3131     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3132     Register Rold   = RegCollision ? Rtmp : Rres;
  3134     Label Lretry;
  3135     __ bind(Lretry);
  3136     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3137     __ add(Rtmp, Rsrc, Rold);
  3138     __ stdcx_(Rtmp, Rptr);
  3139     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3140       __ bne_predict_not_taken(CCR0, Lretry);
  3141     } else {
  3142       __ bne(                  CCR0, Lretry);
  3144     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3145     __ fence();
  3146   %}
  3148   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3149     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3151     MacroAssembler _masm(&cbuf);
  3152     Register Rtmp   = R0;
  3153     Register Rres   = $res$$Register;
  3154     Register Rsrc   = $src$$Register;
  3155     Register Rptr   = $mem_ptr$$Register;
  3156     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3157     Register Rold   = RegCollision ? Rtmp : Rres;
  3159     Label Lretry;
  3160     __ bind(Lretry);
  3161     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3162     __ stwcx_(Rsrc, Rptr);
  3163     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3164       __ bne_predict_not_taken(CCR0, Lretry);
  3165     } else {
  3166       __ bne(                  CCR0, Lretry);
  3168     if (RegCollision) __ mr(Rres, Rtmp);
  3169     __ fence();
  3170   %}
  3172   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3173     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3175     MacroAssembler _masm(&cbuf);
  3176     Register Rtmp   = R0;
  3177     Register Rres   = $res$$Register;
  3178     Register Rsrc   = $src$$Register;
  3179     Register Rptr   = $mem_ptr$$Register;
  3180     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3181     Register Rold   = RegCollision ? Rtmp : Rres;
  3183     Label Lretry;
  3184     __ bind(Lretry);
  3185     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3186     __ stdcx_(Rsrc, Rptr);
  3187     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3188       __ bne_predict_not_taken(CCR0, Lretry);
  3189     } else {
  3190       __ bne(                  CCR0, Lretry);
  3192     if (RegCollision) __ mr(Rres, Rtmp);
  3193     __ fence();
  3194   %}
  3196   // This enc_class is needed so that scheduler gets proper
  3197   // input mapping for latency computation.
  3198   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3199     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3200     MacroAssembler _masm(&cbuf);
  3201     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3202   %}
  3204   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3205     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3207     MacroAssembler _masm(&cbuf);
  3209     Label done;
  3210     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3211     __ li($dst$$Register, $zero$$constant);
  3212     __ beq($crx$$CondRegister, done);
  3213     __ li($dst$$Register, $notzero$$constant);
  3214     __ bind(done);
  3215   %}
  3217   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3218     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3220     MacroAssembler _masm(&cbuf);
  3222     Label done;
  3223     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3224     __ li($dst$$Register, $zero$$constant);
  3225     __ beq($crx$$CondRegister, done);
  3226     __ li($dst$$Register, $notzero$$constant);
  3227     __ bind(done);
  3228   %}
  3230   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3231     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3233     MacroAssembler _masm(&cbuf);
  3234     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3235     Label done;
  3236     __ bso($crx$$CondRegister, done);
  3237     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3238     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3239     __ bind(done);
  3240   %}
  3242   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3243     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3245     MacroAssembler _masm(&cbuf);
  3246     Label d;   // dummy
  3247     __ bind(d);
  3248     Label* p = ($lbl$$label);
  3249     // `p' is `NULL' when this encoding class is used only to
  3250     // determine the size of the encoded instruction.
  3251     Label& l = (NULL == p)? d : *(p);
  3252     int cc = $cmp$$cmpcode;
  3253     int flags_reg = $crx$$reg;
  3254     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3255     int bhint = Assembler::bhintNoHint;
  3257     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3258       if (_prob <= PROB_NEVER) {
  3259         bhint = Assembler::bhintIsNotTaken;
  3260       } else if (_prob >= PROB_ALWAYS) {
  3261         bhint = Assembler::bhintIsTaken;
  3265     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3266           cc_to_biint(cc, flags_reg),
  3267           l);
  3268   %}
  3270   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3271     // The scheduler doesn't know about branch shortening, so we set the opcode
  3272     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3273     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3275     MacroAssembler _masm(&cbuf);
  3276     Label d;    // dummy
  3277     __ bind(d);
  3278     Label* p = ($lbl$$label);
  3279     // `p' is `NULL' when this encoding class is used only to
  3280     // determine the size of the encoded instruction.
  3281     Label& l = (NULL == p)? d : *(p);
  3282     int cc = $cmp$$cmpcode;
  3283     int flags_reg = $crx$$reg;
  3284     int bhint = Assembler::bhintNoHint;
  3286     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3287       if (_prob <= PROB_NEVER) {
  3288         bhint = Assembler::bhintIsNotTaken;
  3289       } else if (_prob >= PROB_ALWAYS) {
  3290         bhint = Assembler::bhintIsTaken;
  3294     // Tell the conditional far branch to optimize itself when being relocated.
  3295     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3296                   cc_to_biint(cc, flags_reg),
  3297                   l,
  3298                   MacroAssembler::bc_far_optimize_on_relocate);
  3299   %}
  3301   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3302   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3303     // The scheduler doesn't know about branch shortening, so we set the opcode
  3304     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3305     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3307     MacroAssembler _masm(&cbuf);
  3308     Label d;   // dummy
  3309     __ bind(d);
  3310     Label* p = ($lbl$$label);
  3311     // `p' is `NULL' when this encoding class is used only to
  3312     // determine the size of the encoded instruction.
  3313     Label& l = (NULL == p)? d : *(p);
  3314     int cc = $cmp$$cmpcode;
  3315     int flags_reg = $crx$$reg;
  3316     int bhint = Assembler::bhintNoHint;
  3318     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3319       if (_prob <= PROB_NEVER) {
  3320         bhint = Assembler::bhintIsNotTaken;
  3321       } else if (_prob >= PROB_ALWAYS) {
  3322         bhint = Assembler::bhintIsTaken;
  3326 #if 0 // TODO: PPC port
  3327     if (_size == 8) {
  3328       // Tell the conditional far branch to optimize itself when being relocated.
  3329       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3330                     cc_to_biint(cc, flags_reg),
  3331                     l,
  3332                     MacroAssembler::bc_far_optimize_on_relocate);
  3333     } else {
  3334       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3335                     cc_to_biint(cc, flags_reg),
  3336                     l);
  3338 #endif
  3339     Unimplemented();
  3340   %}
  3342   // Postalloc expand emitter for loading a replicatef float constant from
  3343   // the method's TOC.
  3344   // Enc_class needed as consttanttablebase is not supported by postalloc
  3345   // expand.
  3346   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3347     // Create new nodes.
  3349     // Make an operand with the bit pattern to load as float.
  3350     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3352     loadConLNodesTuple loadConLNodes =
  3353       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3354                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3356     // Push new nodes.
  3357     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3358     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3360     assert(nodes->length() >= 1, "must have created at least 1 node");
  3361     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3362   %}
  3364   // This enc_class is needed so that scheduler gets proper
  3365   // input mapping for latency computation.
  3366   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3367     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3368     // Fake operand dst needed for PPC scheduler.
  3369     assert($dst$$constant == 0x0, "dst must be 0x0");
  3371     MacroAssembler _masm(&cbuf);
  3372     // Mark the code position where the load from the safepoint
  3373     // polling page was emitted as relocInfo::poll_type.
  3374     __ relocate(relocInfo::poll_type);
  3375     __ load_from_polling_page($poll$$Register);
  3376   %}
  3378   // A Java static call or a runtime call.
  3379   //
  3380   // Branch-and-link relative to a trampoline.
  3381   // The trampoline loads the target address and does a long branch to there.
  3382   // In case we call java, the trampoline branches to a interpreter_stub
  3383   // which loads the inline cache and the real call target from the constant pool.
  3384   //
  3385   // This basically looks like this:
  3386   //
  3387   // >>>> consts      -+  -+
  3388   //                   |   |- offset1
  3389   // [call target1]    | <-+
  3390   // [IC cache]        |- offset2
  3391   // [call target2] <--+
  3392   //
  3393   // <<<< consts
  3394   // >>>> insts
  3395   //
  3396   // bl offset16               -+  -+             ??? // How many bits available?
  3397   //                            |   |
  3398   // <<<< insts                 |   |
  3399   // >>>> stubs                 |   |
  3400   //                            |   |- trampoline_stub_Reloc
  3401   // trampoline stub:           | <-+
  3402   //   r2 = toc                 |
  3403   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3404   //   mtctr r2                 |
  3405   //   bctr                     |- static_stub_Reloc
  3406   // comp_to_interp_stub:   <---+
  3407   //   r1 = toc
  3408   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3409   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3410   //   mtctr r1
  3411   //   bctr
  3412   //
  3413   // <<<< stubs
  3414   //
  3415   // The call instruction in the code either
  3416   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3417   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3418   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3419   //
  3420   // Further there are three relocations from the loads to the constants in
  3421   // the constant section.
  3422   //
  3423   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3424   enc_class enc_java_static_call(method meth) %{
  3425     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3427     MacroAssembler _masm(&cbuf);
  3428     address entry_point = (address)$meth$$method;
  3430     if (!_method) {
  3431       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3432       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3433     } else {
  3434       // Remember the offset not the address.
  3435       const int start_offset = __ offset();
  3436       // The trampoline stub.
  3437       if (!Compile::current()->in_scratch_emit_size()) {
  3438         // No entry point given, use the current pc.
  3439         // Make sure branch fits into
  3440         if (entry_point == 0) entry_point = __ pc();
  3442         // Put the entry point as a constant into the constant pool.
  3443         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3444         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3446         // Emit the trampoline stub which will be related to the branch-and-link below.
  3447         emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3448         __ relocate(_optimized_virtual ?
  3449                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3452       // The real call.
  3453       // Note: At this point we do not have the address of the trampoline
  3454       // stub, and the entry point might be too far away for bl, so __ pc()
  3455       // serves as dummy and the bl will be patched later.
  3456       cbuf.set_insts_mark();
  3457       __ bl(__ pc());  // Emits a relocation.
  3459       // The stub for call to interpreter.
  3460       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3462   %}
  3464   // Emit a method handle call.
  3465   //
  3466   // Method handle calls from compiled to compiled are going thru a
  3467   // c2i -> i2c adapter, extending the frame for their arguments. The
  3468   // caller however, returns directly to the compiled callee, that has
  3469   // to cope with the extended frame. We restore the original frame by
  3470   // loading the callers sp and adding the calculated framesize.
  3471   enc_class enc_java_handle_call(method meth) %{
  3472     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3474     MacroAssembler _masm(&cbuf);
  3475     address entry_point = (address)$meth$$method;
  3477     // Remember the offset not the address.
  3478     const int start_offset = __ offset();
  3479     // The trampoline stub.
  3480     if (!ra_->C->in_scratch_emit_size()) {
  3481       // No entry point given, use the current pc.
  3482       // Make sure branch fits into
  3483       if (entry_point == 0) entry_point = __ pc();
  3485       // Put the entry point as a constant into the constant pool.
  3486       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3487       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3489       // Emit the trampoline stub which will be related to the branch-and-link below.
  3490       emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3491       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3492       __ relocate(relocInfo::opt_virtual_call_type);
  3495     // The real call.
  3496     // Note: At this point we do not have the address of the trampoline
  3497     // stub, and the entry point might be too far away for bl, so __ pc()
  3498     // serves as dummy and the bl will be patched later.
  3499     cbuf.set_insts_mark();
  3500     __ bl(__ pc());  // Emits a relocation.
  3502     assert(_method, "execute next statement conditionally");
  3503     // The stub for call to interpreter.
  3504     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3506     // Restore original sp.
  3507     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3508     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3509     unsigned int bytes = (unsigned int)framesize;
  3510     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3511     if (Assembler::is_simm(-offset, 16)) {
  3512       __ addi(R1_SP, R11_scratch1, -offset);
  3513     } else {
  3514       __ load_const_optimized(R12_scratch2, -offset);
  3515       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3517 #ifdef ASSERT
  3518   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3519   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3520   __ asm_assert_eq("backlink changed", 0x8000);
  3521 #endif
  3522     // If fails should store backlink before unextending.
  3524     if (ra_->C->env()->failing()) {
  3525       return;
  3527   %}
  3529   // Second node of expanded dynamic call - the call.
  3530   enc_class enc_java_dynamic_call_sched(method meth) %{
  3531     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3533     MacroAssembler _masm(&cbuf);
  3535     if (!ra_->C->in_scratch_emit_size()) {
  3536       // Create a call trampoline stub for the given method.
  3537       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3538       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3539       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3540       emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3542       if (ra_->C->env()->failing())
  3543         return;
  3545       // Build relocation at call site with ic position as data.
  3546       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3547              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3548              "must have one, but can't have both");
  3549       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3550              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3551              "must contain instruction offset");
  3552       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3553         ? _load_ic_hi_node->_cbuf_insts_offset
  3554         : _load_ic_node->_cbuf_insts_offset;
  3555       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3556       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3557              "should be load from TOC");
  3559       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3562     // At this point I do not have the address of the trampoline stub,
  3563     // and the entry point might be too far away for bl. Pc() serves
  3564     // as dummy and bl will be patched later.
  3565     __ bl((address) __ pc());
  3566   %}
  3568   // postalloc expand emitter for virtual calls.
  3569   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3571     // Create the nodes for loading the IC from the TOC.
  3572     loadConLNodesTuple loadConLNodes_IC =
  3573       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3574                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3576     // Create the call node.
  3577     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3578     call->_method_handle_invoke = _method_handle_invoke;
  3579     call->_vtable_index      = _vtable_index;
  3580     call->_method            = _method;
  3581     call->_bci               = _bci;
  3582     call->_optimized_virtual = _optimized_virtual;
  3583     call->_tf                = _tf;
  3584     call->_entry_point       = _entry_point;
  3585     call->_cnt               = _cnt;
  3586     call->_argsize           = _argsize;
  3587     call->_oop_map           = _oop_map;
  3588     call->_jvms              = _jvms;
  3589     call->_jvmadj            = _jvmadj;
  3590     call->_in_rms            = _in_rms;
  3591     call->_nesting           = _nesting;
  3593     // New call needs all inputs of old call.
  3594     // Req...
  3595     for (uint i = 0; i < req(); ++i) {
  3596       // The expanded node does not need toc any more.
  3597       // Add the inline cache constant here instead.  This expresses the 
  3598       // register of the inline cache must be live at the call.
  3599       // Else we would have to adapt JVMState by -1.
  3600       if (i == mach_constant_base_node_input()) {
  3601         call->add_req(loadConLNodes_IC._last);        
  3602       } else {
  3603         call->add_req(in(i));
  3606     // ...as well as prec
  3607     for (uint i = req(); i < len(); ++i) {
  3608       call->add_prec(in(i));
  3611     // Remember nodes loading the inline cache into r19.
  3612     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3613     call->_load_ic_node    = loadConLNodes_IC._small;
  3615     // Operands for new nodes.
  3616     call->_opnds[0] = _opnds[0];
  3617     call->_opnds[1] = _opnds[1];
  3619     // Only the inline cache is associated with a register.
  3620     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3622     // Push new nodes.
  3623     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3624     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3625     nodes->push(call);
  3626   %}
  3628   // Compound version of call dynamic
  3629   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3630     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3631     MacroAssembler _masm(&cbuf);
  3632     int start_offset = __ offset();
  3634     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3635 #if 0
  3636     if (_vtable_index < 0) {
  3637       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3638       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3639       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3640       AddressLiteral meta = __ allocate_metadata_address((Metadata *)Universe::non_oop_word());
  3642       address virtual_call_meta_addr = __ pc();
  3643       __ load_const_from_method_toc(ic_reg, meta, Rtoc);
  3644       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3645       // to determine who we intended to call.
  3646       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3647       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3648       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3649              "Fix constant in ret_addr_offset()");
  3650     } else {
  3651       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3652       // Go thru the vtable. Get receiver klass. Receiver already
  3653       // checked for non-null. If we'll go thru a C2I adapter, the
  3654       // interpreter expects method in R19_method.
  3656       __ load_klass(R11_scratch1, R3);
  3658       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3659       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3660       __ li(R19_method, v_off);
  3661       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3662       // NOTE: for vtable dispatches, the vtable entry will never be
  3663       // null. However it may very well end up in handle_wrong_method
  3664       // if the method is abstract for the particular class.
  3665       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3666       // Call target. Either compiled code or C2I adapter.
  3667       __ mtctr(R11_scratch1);
  3668       __ bctrl();
  3669       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3670         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3672       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3673              "Fix constant in ret_addr_offset()");
  3675 #endif
  3676     guarantee(0, "Fix handling of toc edge: messes up derived/base pairs.");
  3677     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3678   %}
  3680   // a runtime call
  3681   enc_class enc_java_to_runtime_call (method meth) %{
  3682     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3684     MacroAssembler _masm(&cbuf);
  3685     const address start_pc = __ pc();
  3687     // The function we're going to call.
  3688     FunctionDescriptor fdtemp;
  3689     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3691     Register Rtoc = R12_scratch2;
  3692     // Calculate the method's TOC.
  3693     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3694     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3695     // pool entries; call_c_using_toc will optimize the call.
  3696     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3698     // Check the ret_addr_offset.
  3699     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3700            "Fix constant in ret_addr_offset()");
  3701   %}
  3703   // Move to ctr for leaf call.
  3704   // This enc_class is needed so that scheduler gets proper
  3705   // input mapping for latency computation.
  3706   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3707     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3708     MacroAssembler _masm(&cbuf);
  3709     __ mtctr($src$$Register);
  3710   %}
  3712   // postalloc expand emitter for runtime leaf calls.
  3713   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3714     // Get the struct that describes the function we are about to call.
  3715     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3716     assert(fd, "need fd here");
  3717     // new nodes
  3718     loadConLNodesTuple loadConLNodes_Entry;
  3719     loadConLNodesTuple loadConLNodes_Env;
  3720     loadConLNodesTuple loadConLNodes_Toc;
  3721     MachNode         *mtctr = NULL;
  3722     MachCallLeafNode *call  = NULL;
  3724     // Create nodes and operands for loading the entry point.
  3725     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->entry()),
  3726                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3729     // Create nodes and operands for loading the env pointer.
  3730     if (fd->env() != NULL) {
  3731       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3732                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3733     } else {
  3734       loadConLNodes_Env._large_hi = NULL;
  3735       loadConLNodes_Env._large_lo = NULL;
  3736       loadConLNodes_Env._small    = NULL;
  3737       loadConLNodes_Env._last = new (C) loadConL16Node();
  3738       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3739       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3740       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3743     // Create nodes and operands for loading the Toc point.
  3744     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3745                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3746     // mtctr node
  3747     mtctr = new (C) CallLeafDirect_mtctrNode();
  3749     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3750     mtctr->add_req(0, loadConLNodes_Entry._last);
  3752     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3753     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3755     // call node
  3756     call = new (C) CallLeafDirectNode();
  3758     call->_opnds[0] = _opnds[0];
  3759     call->_opnds[1] = new (C) methodOper((intptr_t) fd->entry()); // may get set later
  3761     // Make the new call node look like the old one.
  3762     call->_name        = _name;
  3763     call->_tf          = _tf;
  3764     call->_entry_point = _entry_point;
  3765     call->_cnt         = _cnt;
  3766     call->_argsize     = _argsize;
  3767     call->_oop_map     = _oop_map;
  3768     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3769     call->_jvms        = NULL;
  3770     call->_jvmadj      = _jvmadj;
  3771     call->_in_rms      = _in_rms;
  3772     call->_nesting     = _nesting;
  3775     // New call needs all inputs of old call.
  3776     // Req...
  3777     for (uint i = 0; i < req(); ++i) {
  3778       if (i != mach_constant_base_node_input()) {
  3779         call->add_req(in(i));
  3783     // These must be reqired edges, as the registers are live up to
  3784     // the call. Else the constants are handled as kills.
  3785     call->add_req(mtctr);
  3786     call->add_req(loadConLNodes_Env._last);
  3787     call->add_req(loadConLNodes_Toc._last);
  3789     // ...as well as prec
  3790     for (uint i = req(); i < len(); ++i) {
  3791       call->add_prec(in(i));
  3794     // registers
  3795     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3797     // Insert the new nodes.
  3798     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3799     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3800     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3801     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3802     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3803     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3804     nodes->push(mtctr);
  3805     nodes->push(call);
  3806   %}
  3807 %}
  3809 //----------FRAME--------------------------------------------------------------
  3810 // Definition of frame structure and management information.
  3812 frame %{
  3813   // What direction does stack grow in (assumed to be same for native & Java).
  3814   stack_direction(TOWARDS_LOW);
  3816   // These two registers define part of the calling convention between
  3817   // compiled code and the interpreter.
  3819   // Inline Cache Register or method for I2C.
  3820   inline_cache_reg(R19); // R19_method
  3822   // Method Oop Register when calling interpreter.
  3823   interpreter_method_oop_reg(R19); // R19_method
  3825   // Optional: name the operand used by cisc-spilling to access
  3826   // [stack_pointer + offset].
  3827   cisc_spilling_operand_name(indOffset);
  3829   // Number of stack slots consumed by a Monitor enter.
  3830   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3832   // Compiled code's Frame Pointer.
  3833   frame_pointer(R1); // R1_SP
  3835   // Interpreter stores its frame pointer in a register which is
  3836   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3837   // interpreted java to compiled java.
  3838   //
  3839   // R14_state holds pointer to caller's cInterpreter.
  3840   interpreter_frame_pointer(R14); // R14_state
  3842   stack_alignment(frame::alignment_in_bytes);
  3844   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3846   // Number of outgoing stack slots killed above the
  3847   // out_preserve_stack_slots for calls to C. Supports the var-args
  3848   // backing area for register parms.
  3849   //
  3850   varargs_C_out_slots_killed(((frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3852   // The after-PROLOG location of the return address. Location of
  3853   // return address specifies a type (REG or STACK) and a number
  3854   // representing the register number (i.e. - use a register name) or
  3855   // stack slot.
  3856   //
  3857   // A: Link register is stored in stack slot ...
  3858   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3859   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3860   //    at the end of the prolog.
  3861   // B: We use R20, now.
  3862   //return_addr(REG R20);
  3864   // G: After reading the comments made by all the luminaries on their
  3865   //    failure to tell the compiler where the return address really is,
  3866   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3867   //    4 what apparently works and saves us some spills.
  3868   return_addr(STACK 4);
  3870   // This is the body of the function
  3871   //
  3872   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3873   //                                  uint length,      // length of array
  3874   //                                  bool is_outgoing)
  3875   //
  3876   // The `sig' array is to be updated. sig[j] represents the location
  3877   // of the j-th argument, either a register or a stack slot.
  3879   // Comment taken from i486.ad:
  3880   // Body of function which returns an integer array locating
  3881   // arguments either in registers or in stack slots. Passed an array
  3882   // of ideal registers called "sig" and a "length" count. Stack-slot
  3883   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3884   // arguments for a CALLEE. Incoming stack arguments are
  3885   // automatically biased by the preserve_stack_slots field above.
  3886   calling_convention %{
  3887     // No difference between ingoing/outgoing. Just pass false.
  3888     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3889   %}
  3891   // Comment taken from i486.ad:
  3892   // Body of function which returns an integer array locating
  3893   // arguments either in registers or in stack slots. Passed an array
  3894   // of ideal registers called "sig" and a "length" count. Stack-slot
  3895   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3896   // arguments for a CALLEE. Incoming stack arguments are
  3897   // automatically biased by the preserve_stack_slots field above.
  3898   c_calling_convention %{
  3899     // This is obviously always outgoing.
  3900     // C argument in register AND stack slot.
  3901     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3902   %}
  3904   // Location of native (C/C++) and interpreter return values. This
  3905   // is specified to be the same as Java. In the 32-bit VM, long
  3906   // values are actually returned from native calls in O0:O1 and
  3907   // returned to the interpreter in I0:I1. The copying to and from
  3908   // the register pairs is done by the appropriate call and epilog
  3909   // opcodes. This simplifies the register allocator.
  3910   c_return_value %{
  3911     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3912             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3913             "only return normal values");
  3914     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3915     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3916     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3917     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3918   %}
  3920   // Location of compiled Java return values.  Same as C
  3921   return_value %{
  3922     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3923             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3924             "only return normal values");
  3925     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3926     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3927     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3928     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3929   %}
  3930 %}
  3933 //----------ATTRIBUTES---------------------------------------------------------
  3935 //----------Operand Attributes-------------------------------------------------
  3936 op_attrib op_cost(1);          // Required cost attribute.
  3938 //----------Instruction Attributes---------------------------------------------
  3940 // Cost attribute. required.
  3941 ins_attrib ins_cost(DEFAULT_COST);
  3943 // Is this instruction a non-matching short branch variant of some
  3944 // long branch? Not required.
  3945 ins_attrib ins_short_branch(0);
  3947 ins_attrib ins_is_TrapBasedCheckNode(true);
  3949 // Number of constants.
  3950 // This instruction uses the given number of constants
  3951 // (optional attribute).
  3952 // This is needed to determine in time whether the constant pool will
  3953 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  3954 // is determined. It's also used to compute the constant pool size
  3955 // in Output().
  3956 ins_attrib ins_num_consts(0);
  3958 // Required alignment attribute (must be a power of 2) specifies the
  3959 // alignment that some part of the instruction (not necessarily the
  3960 // start) requires. If > 1, a compute_padding() function must be
  3961 // provided for the instruction.
  3962 ins_attrib ins_alignment(1);
  3964 // Enforce/prohibit rematerializations.
  3965 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  3966 //   then rematerialization of that instruction is prohibited and the
  3967 //   instruction's value will be spilled if necessary.
  3968 //   Causes that MachNode::rematerialize() returns false.
  3969 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  3970 //   then rematerialization should be enforced and a copy of the instruction
  3971 //   should be inserted if possible; rematerialization is not guaranteed.
  3972 //   Note: this may result in rematerializations in front of every use.
  3973 //   Causes that MachNode::rematerialize() can return true.
  3974 // (optional attribute)
  3975 ins_attrib ins_cannot_rematerialize(false);
  3976 ins_attrib ins_should_rematerialize(false);
  3978 // Instruction has variable size depending on alignment.
  3979 ins_attrib ins_variable_size_depending_on_alignment(false);
  3981 // Instruction is a nop.
  3982 ins_attrib ins_is_nop(false);
  3984 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  3985 ins_attrib ins_use_mach_if_fast_lock_node(false);
  3987 // Field for the toc offset of a constant.
  3988 //
  3989 // This is needed if the toc offset is not encodable as an immediate in
  3990 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  3991 // added to the toc, and from this a load with immediate is performed.
  3992 // With postalloc expand, we get two nodes that require the same offset
  3993 // but which don't know about each other. The offset is only known
  3994 // when the constant is added to the constant pool during emitting.
  3995 // It is generated in the 'hi'-node adding the upper bits, and saved
  3996 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  3997 // the offset from there when it gets encoded.
  3998 ins_attrib ins_field_const_toc_offset(0);
  3999 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4001 // A field that can hold the instructions offset in the code buffer.
  4002 // Set in the nodes emitter.
  4003 ins_attrib ins_field_cbuf_insts_offset(-1);
  4005 // Fields for referencing a call's load-IC-node.
  4006 // If the toc offset can not be encoded as an immediate in a load, we
  4007 // use two nodes.
  4008 ins_attrib ins_field_load_ic_hi_node(0);
  4009 ins_attrib ins_field_load_ic_node(0);
  4011 //----------OPERANDS-----------------------------------------------------------
  4012 // Operand definitions must precede instruction definitions for correct
  4013 // parsing in the ADLC because operands constitute user defined types
  4014 // which are used in instruction definitions.
  4015 //
  4016 // Formats are generated automatically for constants and base registers.
  4018 //----------Simple Operands----------------------------------------------------
  4019 // Immediate Operands
  4021 // Integer Immediate: 32-bit
  4022 operand immI() %{
  4023   match(ConI);
  4024   op_cost(40);
  4025   format %{ %}
  4026   interface(CONST_INTER);
  4027 %}
  4029 operand immI8() %{
  4030   predicate(Assembler::is_simm(n->get_int(), 8));
  4031   op_cost(0);
  4032   match(ConI);
  4033   format %{ %}
  4034   interface(CONST_INTER);
  4035 %}
  4037 // Integer Immediate: 16-bit
  4038 operand immI16() %{
  4039   predicate(Assembler::is_simm(n->get_int(), 16));
  4040   op_cost(0);
  4041   match(ConI);
  4042   format %{ %}
  4043   interface(CONST_INTER);
  4044 %}
  4046 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4047 operand immIhi16() %{
  4048   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4049   match(ConI);
  4050   op_cost(0);
  4051   format %{ %}
  4052   interface(CONST_INTER);
  4053 %}
  4055 operand immInegpow2() %{
  4056   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4057   match(ConI);
  4058   op_cost(0);
  4059   format %{ %}
  4060   interface(CONST_INTER);
  4061 %}
  4063 operand immIpow2minus1() %{
  4064   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4065   match(ConI);
  4066   op_cost(0);
  4067   format %{ %}
  4068   interface(CONST_INTER);
  4069 %}
  4071 operand immIpowerOf2() %{
  4072   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4073   match(ConI);
  4074   op_cost(0);
  4075   format %{ %}
  4076   interface(CONST_INTER);
  4077 %}
  4079 // Unsigned Integer Immediate: the values 0-31
  4080 operand uimmI5() %{
  4081   predicate(Assembler::is_uimm(n->get_int(), 5));
  4082   match(ConI);
  4083   op_cost(0);
  4084   format %{ %}
  4085   interface(CONST_INTER);
  4086 %}
  4088 // Unsigned Integer Immediate: 6-bit
  4089 operand uimmI6() %{
  4090   predicate(Assembler::is_uimm(n->get_int(), 6));
  4091   match(ConI);
  4092   op_cost(0);
  4093   format %{ %}
  4094   interface(CONST_INTER);
  4095 %}
  4097 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4098 operand uimmI6_ge32() %{
  4099   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4100   match(ConI);
  4101   op_cost(0);
  4102   format %{ %}
  4103   interface(CONST_INTER);
  4104 %}
  4106 // Unsigned Integer Immediate: 15-bit
  4107 operand uimmI15() %{
  4108   predicate(Assembler::is_uimm(n->get_int(), 15));
  4109   match(ConI);
  4110   op_cost(0);
  4111   format %{ %}
  4112   interface(CONST_INTER);
  4113 %}
  4115 // Unsigned Integer Immediate: 16-bit
  4116 operand uimmI16() %{
  4117   predicate(Assembler::is_uimm(n->get_int(), 16));
  4118   match(ConI);
  4119   op_cost(0);
  4120   format %{ %}
  4121   interface(CONST_INTER);
  4122 %}
  4124 // constant 'int 0'.
  4125 operand immI_0() %{
  4126   predicate(n->get_int() == 0);
  4127   match(ConI);
  4128   op_cost(0);
  4129   format %{ %}
  4130   interface(CONST_INTER);
  4131 %}
  4133 // constant 'int 1'.
  4134 operand immI_1() %{
  4135   predicate(n->get_int() == 1);
  4136   match(ConI);
  4137   op_cost(0);
  4138   format %{ %}
  4139   interface(CONST_INTER);
  4140 %}
  4142 // constant 'int -1'.
  4143 operand immI_minus1() %{
  4144   predicate(n->get_int() == -1);
  4145   match(ConI);
  4146   op_cost(0);
  4147   format %{ %}
  4148   interface(CONST_INTER);
  4149 %}
  4151 // int value 16.
  4152 operand immI_16() %{
  4153   predicate(n->get_int() == 16);
  4154   match(ConI);
  4155   op_cost(0);
  4156   format %{ %}
  4157   interface(CONST_INTER);
  4158 %}
  4160 // int value 24.
  4161 operand immI_24() %{
  4162   predicate(n->get_int() == 24);
  4163   match(ConI);
  4164   op_cost(0);
  4165   format %{ %}
  4166   interface(CONST_INTER);
  4167 %}
  4169 // Compressed oops constants
  4170 // Pointer Immediate
  4171 operand immN() %{
  4172   match(ConN);
  4174   op_cost(10);
  4175   format %{ %}
  4176   interface(CONST_INTER);
  4177 %}
  4179 // NULL Pointer Immediate
  4180 operand immN_0() %{
  4181   predicate(n->get_narrowcon() == 0);
  4182   match(ConN);
  4184   op_cost(0);
  4185   format %{ %}
  4186   interface(CONST_INTER);
  4187 %}
  4189 // Compressed klass constants
  4190 operand immNKlass() %{
  4191   match(ConNKlass);
  4193   op_cost(0);
  4194   format %{ %}
  4195   interface(CONST_INTER);
  4196 %}
  4198 // This operand can be used to avoid matching of an instruct
  4199 // with chain rule.
  4200 operand immNKlass_NM() %{
  4201   match(ConNKlass);
  4202   predicate(false);
  4203   op_cost(0);
  4204   format %{ %}
  4205   interface(CONST_INTER);
  4206 %}
  4208 // Pointer Immediate: 64-bit
  4209 operand immP() %{
  4210   match(ConP);
  4211   op_cost(0);
  4212   format %{ %}
  4213   interface(CONST_INTER);
  4214 %}
  4216 // Operand to avoid match of loadConP.
  4217 // This operand can be used to avoid matching of an instruct
  4218 // with chain rule.
  4219 operand immP_NM() %{
  4220   match(ConP);
  4221   predicate(false);
  4222   op_cost(0);
  4223   format %{ %}
  4224   interface(CONST_INTER);
  4225 %}
  4227 // costant 'pointer 0'.
  4228 operand immP_0() %{
  4229   predicate(n->get_ptr() == 0);
  4230   match(ConP);
  4231   op_cost(0);
  4232   format %{ %}
  4233   interface(CONST_INTER);
  4234 %}
  4236 // pointer 0x0 or 0x1
  4237 operand immP_0or1() %{
  4238   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4239   match(ConP);
  4240   op_cost(0);
  4241   format %{ %}
  4242   interface(CONST_INTER);
  4243 %}
  4245 operand immL() %{
  4246   match(ConL);
  4247   op_cost(40);
  4248   format %{ %}
  4249   interface(CONST_INTER);
  4250 %}
  4252 // Long Immediate: 16-bit
  4253 operand immL16() %{
  4254   predicate(Assembler::is_simm(n->get_long(), 16));
  4255   match(ConL);
  4256   op_cost(0);
  4257   format %{ %}
  4258   interface(CONST_INTER);
  4259 %}
  4261 // Long Immediate: 16-bit, 4-aligned
  4262 operand immL16Alg4() %{
  4263   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4264   match(ConL);
  4265   op_cost(0);
  4266   format %{ %}
  4267   interface(CONST_INTER);
  4268 %}
  4270 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4271 operand immL32hi16() %{
  4272   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4273   match(ConL);
  4274   op_cost(0);
  4275   format %{ %}
  4276   interface(CONST_INTER);
  4277 %}
  4279 // Long Immediate: 32-bit
  4280 operand immL32() %{
  4281   predicate(Assembler::is_simm(n->get_long(), 32));
  4282   match(ConL);
  4283   op_cost(0);
  4284   format %{ %}
  4285   interface(CONST_INTER);
  4286 %}
  4288 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4289 operand immLhighest16() %{
  4290   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4291   match(ConL);
  4292   op_cost(0);
  4293   format %{ %}
  4294   interface(CONST_INTER);
  4295 %}
  4297 operand immLnegpow2() %{
  4298   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4299   match(ConL);
  4300   op_cost(0);
  4301   format %{ %}
  4302   interface(CONST_INTER);
  4303 %}
  4305 operand immLpow2minus1() %{
  4306   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4307             (n->get_long() != (jlong)0xffffffffffffffffL));
  4308   match(ConL);
  4309   op_cost(0);
  4310   format %{ %}
  4311   interface(CONST_INTER);
  4312 %}
  4314 // constant 'long 0'.
  4315 operand immL_0() %{
  4316   predicate(n->get_long() == 0L);
  4317   match(ConL);
  4318   op_cost(0);
  4319   format %{ %}
  4320   interface(CONST_INTER);
  4321 %}
  4323 // constat ' long -1'.
  4324 operand immL_minus1() %{
  4325   predicate(n->get_long() == -1L);
  4326   match(ConL);
  4327   op_cost(0);
  4328   format %{ %}
  4329   interface(CONST_INTER);
  4330 %}
  4332 // Long Immediate: low 32-bit mask
  4333 operand immL_32bits() %{
  4334   predicate(n->get_long() == 0xFFFFFFFFL);
  4335   match(ConL);
  4336   op_cost(0);
  4337   format %{ %}
  4338   interface(CONST_INTER);
  4339 %}
  4341 // Unsigned Long Immediate: 16-bit
  4342 operand uimmL16() %{
  4343   predicate(Assembler::is_uimm(n->get_long(), 16));
  4344   match(ConL);
  4345   op_cost(0);
  4346   format %{ %}
  4347   interface(CONST_INTER);
  4348 %}
  4350 // Float Immediate
  4351 operand immF() %{
  4352   match(ConF);
  4353   op_cost(40);
  4354   format %{ %}
  4355   interface(CONST_INTER);
  4356 %}
  4358 // constant 'float +0.0'.
  4359 operand immF_0() %{
  4360   predicate((n->getf() == 0) &&
  4361             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
  4362   match(ConF);
  4363   op_cost(0);
  4364   format %{ %}
  4365   interface(CONST_INTER);
  4366 %}
  4368 // Double Immediate
  4369 operand immD() %{
  4370   match(ConD);
  4371   op_cost(40);
  4372   format %{ %}
  4373   interface(CONST_INTER);
  4374 %}
  4376 // Integer Register Operands
  4377 // Integer Destination Register
  4378 // See definition of reg_class bits32_reg_rw.
  4379 operand iRegIdst() %{
  4380   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4381   match(RegI);
  4382   match(rscratch1RegI);
  4383   match(rscratch2RegI);
  4384   match(rarg1RegI);
  4385   match(rarg2RegI);
  4386   match(rarg3RegI);
  4387   match(rarg4RegI);
  4388   format %{ %}
  4389   interface(REG_INTER);
  4390 %}
  4392 // Integer Source Register
  4393 // See definition of reg_class bits32_reg_ro.
  4394 operand iRegIsrc() %{
  4395   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4396   match(RegI);
  4397   match(rscratch1RegI);
  4398   match(rscratch2RegI);
  4399   match(rarg1RegI);
  4400   match(rarg2RegI);
  4401   match(rarg3RegI);
  4402   match(rarg4RegI);
  4403   format %{ %}
  4404   interface(REG_INTER);
  4405 %}
  4407 operand rscratch1RegI() %{
  4408   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4409   match(iRegIdst);
  4410   format %{ %}
  4411   interface(REG_INTER);
  4412 %}
  4414 operand rscratch2RegI() %{
  4415   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4416   match(iRegIdst);
  4417   format %{ %}
  4418   interface(REG_INTER);
  4419 %}
  4421 operand rarg1RegI() %{
  4422   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4423   match(iRegIdst);
  4424   format %{ %}
  4425   interface(REG_INTER);
  4426 %}
  4428 operand rarg2RegI() %{
  4429   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4430   match(iRegIdst);
  4431   format %{ %}
  4432   interface(REG_INTER);
  4433 %}
  4435 operand rarg3RegI() %{
  4436   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4437   match(iRegIdst);
  4438   format %{ %}
  4439   interface(REG_INTER);
  4440 %}
  4442 operand rarg4RegI() %{
  4443   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4444   match(iRegIdst);
  4445   format %{ %}
  4446   interface(REG_INTER);
  4447 %}
  4449 operand rarg1RegL() %{
  4450   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4451   match(iRegLdst);
  4452   format %{ %}
  4453   interface(REG_INTER);
  4454 %}
  4456 operand rarg2RegL() %{
  4457   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4458   match(iRegLdst);
  4459   format %{ %}
  4460   interface(REG_INTER);
  4461 %}
  4463 operand rarg3RegL() %{
  4464   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4465   match(iRegLdst);
  4466   format %{ %}
  4467   interface(REG_INTER);
  4468 %}
  4470 operand rarg4RegL() %{
  4471   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4472   match(iRegLdst);
  4473   format %{ %}
  4474   interface(REG_INTER);
  4475 %}
  4477 // Pointer Destination Register
  4478 // See definition of reg_class bits64_reg_rw.
  4479 operand iRegPdst() %{
  4480   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4481   match(RegP);
  4482   match(rscratch1RegP);
  4483   match(rscratch2RegP);
  4484   match(rarg1RegP);
  4485   match(rarg2RegP);
  4486   match(rarg3RegP);
  4487   match(rarg4RegP);
  4488   format %{ %}
  4489   interface(REG_INTER);
  4490 %}
  4492 // Pointer Destination Register
  4493 // Operand not using r11 and r12 (killed in epilog).
  4494 operand iRegPdstNoScratch() %{
  4495   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4496   match(RegP);
  4497   match(rarg1RegP);
  4498   match(rarg2RegP);
  4499   match(rarg3RegP);
  4500   match(rarg4RegP);
  4501   format %{ %}
  4502   interface(REG_INTER);
  4503 %}
  4505 // Pointer Source Register
  4506 // See definition of reg_class bits64_reg_ro.
  4507 operand iRegPsrc() %{
  4508   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4509   match(RegP);
  4510   match(iRegPdst);
  4511   match(rscratch1RegP);
  4512   match(rscratch2RegP);
  4513   match(rarg1RegP);
  4514   match(rarg2RegP);
  4515   match(rarg3RegP);
  4516   match(rarg4RegP);
  4517   match(threadRegP);
  4518   format %{ %}
  4519   interface(REG_INTER);
  4520 %}
  4522 // Thread operand.
  4523 operand threadRegP() %{
  4524   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4525   match(iRegPdst);
  4526   format %{ "R16" %}
  4527   interface(REG_INTER);
  4528 %}
  4530 operand rscratch1RegP() %{
  4531   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4532   match(iRegPdst);
  4533   format %{ "R11" %}
  4534   interface(REG_INTER);
  4535 %}
  4537 operand rscratch2RegP() %{
  4538   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4539   match(iRegPdst);
  4540   format %{ %}
  4541   interface(REG_INTER);
  4542 %}
  4544 operand rarg1RegP() %{
  4545   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4546   match(iRegPdst);
  4547   format %{ %}
  4548   interface(REG_INTER);
  4549 %}
  4551 operand rarg2RegP() %{
  4552   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4553   match(iRegPdst);
  4554   format %{ %}
  4555   interface(REG_INTER);
  4556 %}
  4558 operand rarg3RegP() %{
  4559   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4560   match(iRegPdst);
  4561   format %{ %}
  4562   interface(REG_INTER);
  4563 %}
  4565 operand rarg4RegP() %{
  4566   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4567   match(iRegPdst);
  4568   format %{ %}
  4569   interface(REG_INTER);
  4570 %}
  4572 operand iRegNsrc() %{
  4573   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4574   match(RegN);
  4575   match(iRegNdst);
  4577   format %{ %}
  4578   interface(REG_INTER);
  4579 %}
  4581 operand iRegNdst() %{
  4582   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4583   match(RegN);
  4585   format %{ %}
  4586   interface(REG_INTER);
  4587 %}
  4589 // Long Destination Register
  4590 // See definition of reg_class bits64_reg_rw.
  4591 operand iRegLdst() %{
  4592   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4593   match(RegL);
  4594   match(rscratch1RegL);
  4595   match(rscratch2RegL);
  4596   format %{ %}
  4597   interface(REG_INTER);
  4598 %}
  4600 // Long Source Register
  4601 // See definition of reg_class bits64_reg_ro.
  4602 operand iRegLsrc() %{
  4603   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4604   match(RegL);
  4605   match(iRegLdst);
  4606   match(rscratch1RegL);
  4607   match(rscratch2RegL);
  4608   format %{ %}
  4609   interface(REG_INTER);
  4610 %}
  4612 // Special operand for ConvL2I.
  4613 operand iRegL2Isrc(iRegLsrc reg) %{
  4614   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4615   match(ConvL2I reg);
  4616   format %{ "ConvL2I($reg)" %}
  4617   interface(REG_INTER)
  4618 %}
  4620 operand rscratch1RegL() %{
  4621   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4622   match(RegL);
  4623   format %{ %}
  4624   interface(REG_INTER);
  4625 %}
  4627 operand rscratch2RegL() %{
  4628   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4629   match(RegL);
  4630   format %{ %}
  4631   interface(REG_INTER);
  4632 %}
  4634 // Condition Code Flag Registers
  4635 operand flagsReg() %{
  4636   constraint(ALLOC_IN_RC(int_flags));
  4637   match(RegFlags);
  4638   format %{ %}
  4639   interface(REG_INTER);
  4640 %}
  4642 // Condition Code Flag Register CR0
  4643 operand flagsRegCR0() %{
  4644   constraint(ALLOC_IN_RC(int_flags_CR0));
  4645   match(RegFlags);
  4646   format %{ "CR0" %}
  4647   interface(REG_INTER);
  4648 %}
  4650 operand flagsRegCR1() %{
  4651   constraint(ALLOC_IN_RC(int_flags_CR1));
  4652   match(RegFlags);
  4653   format %{ "CR1" %}
  4654   interface(REG_INTER);
  4655 %}
  4657 operand flagsRegCR6() %{
  4658   constraint(ALLOC_IN_RC(int_flags_CR6));
  4659   match(RegFlags);
  4660   format %{ "CR6" %}
  4661   interface(REG_INTER);
  4662 %}
  4664 operand regCTR() %{
  4665   constraint(ALLOC_IN_RC(ctr_reg));
  4666   // RegFlags should work. Introducing a RegSpecial type would cause a
  4667   // lot of changes.
  4668   match(RegFlags);
  4669   format %{"SR_CTR" %}
  4670   interface(REG_INTER);
  4671 %}
  4673 operand regD() %{
  4674   constraint(ALLOC_IN_RC(dbl_reg));
  4675   match(RegD);
  4676   format %{ %}
  4677   interface(REG_INTER);
  4678 %}
  4680 operand regF() %{
  4681   constraint(ALLOC_IN_RC(flt_reg));
  4682   match(RegF);
  4683   format %{ %}
  4684   interface(REG_INTER);
  4685 %}
  4687 // Special Registers
  4689 // Method Register
  4690 operand inline_cache_regP(iRegPdst reg) %{
  4691   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4692   match(reg);
  4693   format %{ %}
  4694   interface(REG_INTER);
  4695 %}
  4697 operand compiler_method_oop_regP(iRegPdst reg) %{
  4698   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4699   match(reg);
  4700   format %{ %}
  4701   interface(REG_INTER);
  4702 %}
  4704 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4705   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4706   match(reg);
  4707   format %{ %}
  4708   interface(REG_INTER);
  4709 %}
  4711 // Operands to remove register moves in unscaled mode.
  4712 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4713 operand iRegP2N(iRegPsrc reg) %{
  4714   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4715   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4716   match(EncodeP reg);
  4717   format %{ "$reg" %}
  4718   interface(REG_INTER)
  4719 %}
  4721 operand iRegN2P(iRegNsrc reg) %{
  4722   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4723   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4724   match(DecodeN reg);
  4725   match(DecodeNKlass reg);
  4726   format %{ "$reg" %}
  4727   interface(REG_INTER)
  4728 %}
  4730 //----------Complex Operands---------------------------------------------------
  4731 // Indirect Memory Reference
  4732 operand indirect(iRegPsrc reg) %{
  4733   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4734   match(reg);
  4735   op_cost(100);
  4736   format %{ "[$reg]" %}
  4737   interface(MEMORY_INTER) %{
  4738     base($reg);
  4739     index(0x0);
  4740     scale(0x0);
  4741     disp(0x0);
  4742   %}
  4743 %}
  4745 // Indirect with Offset
  4746 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4747   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4748   match(AddP reg offset);
  4749   op_cost(100);
  4750   format %{ "[$reg + $offset]" %}
  4751   interface(MEMORY_INTER) %{
  4752     base($reg);
  4753     index(0x0);
  4754     scale(0x0);
  4755     disp($offset);
  4756   %}
  4757 %}
  4759 // Indirect with 4-aligned Offset
  4760 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4761   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4762   match(AddP reg offset);
  4763   op_cost(100);
  4764   format %{ "[$reg + $offset]" %}
  4765   interface(MEMORY_INTER) %{
  4766     base($reg);
  4767     index(0x0);
  4768     scale(0x0);
  4769     disp($offset);
  4770   %}
  4771 %}
  4773 //----------Complex Operands for Compressed OOPs-------------------------------
  4774 // Compressed OOPs with narrow_oop_shift == 0.
  4776 // Indirect Memory Reference, compressed OOP
  4777 operand indirectNarrow(iRegNsrc reg) %{
  4778   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4779   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4780   match(DecodeN reg);
  4781   match(DecodeNKlass reg);
  4782   op_cost(100);
  4783   format %{ "[$reg]" %}
  4784   interface(MEMORY_INTER) %{
  4785     base($reg);
  4786     index(0x0);
  4787     scale(0x0);
  4788     disp(0x0);
  4789   %}
  4790 %}
  4792 // Indirect with Offset, compressed OOP
  4793 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4794   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4795   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4796   match(AddP (DecodeN reg) offset);
  4797   match(AddP (DecodeNKlass reg) offset);
  4798   op_cost(100);
  4799   format %{ "[$reg + $offset]" %}
  4800   interface(MEMORY_INTER) %{
  4801     base($reg);
  4802     index(0x0);
  4803     scale(0x0);
  4804     disp($offset);
  4805   %}
  4806 %}
  4808 // Indirect with 4-aligned Offset, compressed OOP
  4809 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4810   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4811   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4812   match(AddP (DecodeN reg) offset);
  4813   match(AddP (DecodeNKlass reg) offset);
  4814   op_cost(100);
  4815   format %{ "[$reg + $offset]" %}
  4816   interface(MEMORY_INTER) %{
  4817     base($reg);
  4818     index(0x0);
  4819     scale(0x0);
  4820     disp($offset);
  4821   %}
  4822 %}
  4824 //----------Special Memory Operands--------------------------------------------
  4825 // Stack Slot Operand
  4826 //
  4827 // This operand is used for loading and storing temporary values on
  4828 // the stack where a match requires a value to flow through memory.
  4829 operand stackSlotI(sRegI reg) %{
  4830   constraint(ALLOC_IN_RC(stack_slots));
  4831   op_cost(100);
  4832   //match(RegI);
  4833   format %{ "[sp+$reg]" %}
  4834   interface(MEMORY_INTER) %{
  4835     base(0x1);   // R1_SP
  4836     index(0x0);
  4837     scale(0x0);
  4838     disp($reg);  // Stack Offset
  4839   %}
  4840 %}
  4842 operand stackSlotL(sRegL reg) %{
  4843   constraint(ALLOC_IN_RC(stack_slots));
  4844   op_cost(100);
  4845   //match(RegL);
  4846   format %{ "[sp+$reg]" %}
  4847   interface(MEMORY_INTER) %{
  4848     base(0x1);   // R1_SP
  4849     index(0x0);
  4850     scale(0x0);
  4851     disp($reg);  // Stack Offset
  4852   %}
  4853 %}
  4855 operand stackSlotP(sRegP reg) %{
  4856   constraint(ALLOC_IN_RC(stack_slots));
  4857   op_cost(100);
  4858   //match(RegP);
  4859   format %{ "[sp+$reg]" %}
  4860   interface(MEMORY_INTER) %{
  4861     base(0x1);   // R1_SP
  4862     index(0x0);
  4863     scale(0x0);
  4864     disp($reg);  // Stack Offset
  4865   %}
  4866 %}
  4868 operand stackSlotF(sRegF reg) %{
  4869   constraint(ALLOC_IN_RC(stack_slots));
  4870   op_cost(100);
  4871   //match(RegF);
  4872   format %{ "[sp+$reg]" %}
  4873   interface(MEMORY_INTER) %{
  4874     base(0x1);   // R1_SP
  4875     index(0x0);
  4876     scale(0x0);
  4877     disp($reg);  // Stack Offset
  4878   %}
  4879 %}
  4881 operand stackSlotD(sRegD reg) %{
  4882   constraint(ALLOC_IN_RC(stack_slots));
  4883   op_cost(100);
  4884   //match(RegD);
  4885   format %{ "[sp+$reg]" %}
  4886   interface(MEMORY_INTER) %{
  4887     base(0x1);   // R1_SP
  4888     index(0x0);
  4889     scale(0x0);
  4890     disp($reg);  // Stack Offset
  4891   %}
  4892 %}
  4894 // Operands for expressing Control Flow
  4895 // NOTE: Label is a predefined operand which should not be redefined in
  4896 //       the AD file. It is generically handled within the ADLC.
  4898 //----------Conditional Branch Operands----------------------------------------
  4899 // Comparison Op
  4900 //
  4901 // This is the operation of the comparison, and is limited to the
  4902 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4903 // (!=).
  4904 //
  4905 // Other attributes of the comparison, such as unsignedness, are specified
  4906 // by the comparison instruction that sets a condition code flags register.
  4907 // That result is represented by a flags operand whose subtype is appropriate
  4908 // to the unsignedness (etc.) of the comparison.
  4909 //
  4910 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4911 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4912 // by matching a specific subtype of Bool operand below.
  4914 // When used for floating point comparisons: unordered same as less.
  4915 operand cmpOp() %{
  4916   match(Bool);
  4917   format %{ "" %}
  4918   interface(COND_INTER) %{
  4919                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4920                            //           BO          &  BI
  4921     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4922     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4923     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4924     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4925     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4926     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4927     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4928     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4929   %}
  4930 %}
  4932 //----------OPERAND CLASSES----------------------------------------------------
  4933 // Operand Classes are groups of operands that are used to simplify
  4934 // instruction definitions by not requiring the AD writer to specify
  4935 // seperate instructions for every form of operand when the
  4936 // instruction accepts multiple operand types with the same basic
  4937 // encoding and format. The classic case of this is memory operands.
  4938 // Indirect is not included since its use is limited to Compare & Swap.
  4940 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  4941 // Memory operand where offsets are 4-aligned. Required for ld, std.
  4942 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  4943 opclass indirectMemory(indirect, indirectNarrow);
  4945 // Special opclass for I and ConvL2I.
  4946 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  4948 // Operand classes to match encode and decode. iRegN_P2N is only used
  4949 // for storeN. I have never seen an encode node elsewhere.
  4950 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  4951 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  4953 //----------PIPELINE-----------------------------------------------------------
  4955 pipeline %{
  4957 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  4958 // J. Res. & Dev., No. 1, Jan. 2002.
  4960 //----------ATTRIBUTES---------------------------------------------------------
  4961 attributes %{
  4963   // Power4 instructions are of fixed length.
  4964   fixed_size_instructions;
  4966   // TODO: if `bundle' means number of instructions fetched
  4967   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  4968   // max instructions issued per cycle, this is 5.
  4969   max_instructions_per_bundle = 8;
  4971   // A Power4 instruction is 4 bytes long.
  4972   instruction_unit_size = 4;
  4974   // The Power4 processor fetches 64 bytes...
  4975   instruction_fetch_unit_size = 64;
  4977   // ...in one line
  4978   instruction_fetch_units = 1
  4980   // Unused, list one so that array generated by adlc is not empty.
  4981   // Aix compiler chokes if _nop_count = 0.
  4982   nops(fxNop);
  4983 %}
  4985 //----------RESOURCES----------------------------------------------------------
  4986 // Resources are the functional units available to the machine
  4987 resources(
  4988    PPC_BR,         // branch unit
  4989    PPC_CR,         // condition unit
  4990    PPC_FX1,        // integer arithmetic unit 1
  4991    PPC_FX2,        // integer arithmetic unit 2
  4992    PPC_LDST1,      // load/store unit 1
  4993    PPC_LDST2,      // load/store unit 2
  4994    PPC_FP1,        // float arithmetic unit 1
  4995    PPC_FP2,        // float arithmetic unit 2
  4996    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  4997    PPC_FX = PPC_FX1 | PPC_FX2,
  4998    PPC_FP = PPC_FP1 | PPC_FP2
  4999  );
  5001 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5002 // Pipeline Description specifies the stages in the machine's pipeline
  5003 pipe_desc(
  5004    // Power4 longest pipeline path
  5005    PPC_IF,   // instruction fetch
  5006    PPC_IC,
  5007    //PPC_BP, // branch prediction
  5008    PPC_D0,   // decode
  5009    PPC_D1,   // decode
  5010    PPC_D2,   // decode
  5011    PPC_D3,   // decode
  5012    PPC_Xfer1,
  5013    PPC_GD,   // group definition
  5014    PPC_MP,   // map
  5015    PPC_ISS,  // issue
  5016    PPC_RF,   // resource fetch
  5017    PPC_EX1,  // execute (all units)
  5018    PPC_EX2,  // execute (FP, LDST)
  5019    PPC_EX3,  // execute (FP, LDST)
  5020    PPC_EX4,  // execute (FP)
  5021    PPC_EX5,  // execute (FP)
  5022    PPC_EX6,  // execute (FP)
  5023    PPC_WB,   // write back
  5024    PPC_Xfer2,
  5025    PPC_CP
  5026  );
  5028 //----------PIPELINE CLASSES---------------------------------------------------
  5029 // Pipeline Classes describe the stages in which input and output are
  5030 // referenced by the hardware pipeline.
  5032 // Simple pipeline classes.
  5034 // Default pipeline class.
  5035 pipe_class pipe_class_default() %{
  5036   single_instruction;
  5037   fixed_latency(2);
  5038 %}
  5040 // Pipeline class for empty instructions.
  5041 pipe_class pipe_class_empty() %{
  5042   single_instruction;
  5043   fixed_latency(0);
  5044 %}
  5046 // Pipeline class for compares.
  5047 pipe_class pipe_class_compare() %{
  5048   single_instruction;
  5049   fixed_latency(16);
  5050 %}
  5052 // Pipeline class for traps.
  5053 pipe_class pipe_class_trap() %{
  5054   single_instruction;
  5055   fixed_latency(100);
  5056 %}
  5058 // Pipeline class for memory operations.
  5059 pipe_class pipe_class_memory() %{
  5060   single_instruction;
  5061   fixed_latency(16);
  5062 %}
  5064 // Pipeline class for call.
  5065 pipe_class pipe_class_call() %{
  5066   single_instruction;
  5067   fixed_latency(100);
  5068 %}
  5070 // Define the class for the Nop node.
  5071 define %{
  5072    MachNop = pipe_class_default;
  5073 %}
  5075 %}
  5077 //----------INSTRUCTIONS-------------------------------------------------------
  5079 // Naming of instructions:
  5080 //   opA_operB / opA_operB_operC:
  5081 //     Operation 'op' with one or two source operands 'oper'. Result
  5082 //     type is A, source operand types are B and C.
  5083 //     Iff A == B == C, B and C are left out.
  5084 //
  5085 // The instructions are ordered according to the following scheme:
  5086 //  - loads
  5087 //  - load constants
  5088 //  - prefetch
  5089 //  - store
  5090 //  - encode/decode
  5091 //  - membar
  5092 //  - conditional moves
  5093 //  - compare & swap
  5094 //  - arithmetic and logic operations
  5095 //    * int: Add, Sub, Mul, Div, Mod
  5096 //    * int: lShift, arShift, urShift, rot
  5097 //    * float: Add, Sub, Mul, Div
  5098 //    * and, or, xor ...
  5099 //  - register moves: float <-> int, reg <-> stack, repl
  5100 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5101 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5102 //  - compares, range & zero checks.
  5103 //  - branches
  5104 //  - complex operations, intrinsics, min, max, replicate
  5105 //  - lock
  5106 //  - Calls
  5107 //
  5108 // If there are similar instructions with different types they are sorted:
  5109 // int before float
  5110 // small before big
  5111 // signed before unsigned
  5112 // e.g., loadS before loadUS before loadI before loadF.
  5115 //----------Load/Store Instructions--------------------------------------------
  5117 //----------Load Instructions--------------------------------------------------
  5119 // Converts byte to int.
  5120 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5121 // reuses the 'amount' operand, but adlc expects that operand specification
  5122 // and operands in match rule are equivalent.
  5123 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5124   effect(DEF dst, USE src);
  5125   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5126   size(4);
  5127   ins_encode %{
  5128     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5129     __ extsb($dst$$Register, $src$$Register);
  5130   %}
  5131   ins_pipe(pipe_class_default);
  5132 %}
  5134 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5135   // match-rule, false predicate
  5136   match(Set dst (LoadB mem));
  5137   predicate(false);
  5139   format %{ "LBZ     $dst, $mem" %}
  5140   size(4);
  5141   ins_encode( enc_lbz(dst, mem) );
  5142   ins_pipe(pipe_class_memory);
  5143 %}
  5145 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5146   // match-rule, false predicate
  5147   match(Set dst (LoadB mem));
  5148   predicate(false);
  5150   format %{ "LBZ     $dst, $mem\n\t"
  5151             "TWI     $dst\n\t"
  5152             "ISYNC" %}
  5153   size(12);
  5154   ins_encode( enc_lbz_ac(dst, mem) );
  5155   ins_pipe(pipe_class_memory);
  5156 %}
  5158 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5159 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5160   match(Set dst (LoadB mem));
  5161   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5162   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5163   expand %{
  5164     iRegIdst tmp;
  5165     loadUB_indirect(tmp, mem);
  5166     convB2I_reg_2(dst, tmp);
  5167   %}
  5168 %}
  5170 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5171   match(Set dst (LoadB mem));
  5172   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5173   expand %{
  5174     iRegIdst tmp;
  5175     loadUB_indirect_ac(tmp, mem);
  5176     convB2I_reg_2(dst, tmp);
  5177   %}
  5178 %}
  5180 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5181   // match-rule, false predicate
  5182   match(Set dst (LoadB mem));
  5183   predicate(false);
  5185   format %{ "LBZ     $dst, $mem" %}
  5186   size(4);
  5187   ins_encode( enc_lbz(dst, mem) );
  5188   ins_pipe(pipe_class_memory);
  5189 %}
  5191 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5192   // match-rule, false predicate
  5193   match(Set dst (LoadB mem));
  5194   predicate(false);
  5196   format %{ "LBZ     $dst, $mem\n\t"
  5197             "TWI     $dst\n\t"
  5198             "ISYNC" %}
  5199   size(12);
  5200   ins_encode( enc_lbz_ac(dst, mem) );
  5201   ins_pipe(pipe_class_memory);
  5202 %}
  5204 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5205 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5206   match(Set dst (LoadB mem));
  5207   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5208   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5210   expand %{
  5211     iRegIdst tmp;
  5212     loadUB_indOffset16(tmp, mem);
  5213     convB2I_reg_2(dst, tmp);
  5214   %}
  5215 %}
  5217 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5218   match(Set dst (LoadB mem));
  5219   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5221   expand %{
  5222     iRegIdst tmp;
  5223     loadUB_indOffset16_ac(tmp, mem);
  5224     convB2I_reg_2(dst, tmp);
  5225   %}
  5226 %}
  5228 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5229 instruct loadUB(iRegIdst dst, memory mem) %{
  5230   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5231   match(Set dst (LoadUB mem));
  5232   ins_cost(MEMORY_REF_COST);
  5234   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5235   size(4);
  5236   ins_encode( enc_lbz(dst, mem) );
  5237   ins_pipe(pipe_class_memory);
  5238 %}
  5240 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5241 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5242   match(Set dst (LoadUB mem));
  5243   ins_cost(3*MEMORY_REF_COST);
  5245   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5246             "TWI     $dst\n\t"
  5247             "ISYNC" %}
  5248   size(12);
  5249   ins_encode( enc_lbz_ac(dst, mem) );
  5250   ins_pipe(pipe_class_memory);
  5251 %}
  5253 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5254 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5255   match(Set dst (ConvI2L (LoadUB mem)));
  5256   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5257   ins_cost(MEMORY_REF_COST);
  5259   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5260   size(4);
  5261   ins_encode( enc_lbz(dst, mem) );
  5262   ins_pipe(pipe_class_memory);
  5263 %}
  5265 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5266   match(Set dst (ConvI2L (LoadUB mem)));
  5267   ins_cost(3*MEMORY_REF_COST);
  5269   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5270             "TWI     $dst\n\t"
  5271             "ISYNC" %}
  5272   size(12);
  5273   ins_encode( enc_lbz_ac(dst, mem) );
  5274   ins_pipe(pipe_class_memory);
  5275 %}
  5277 // Load Short (16bit signed)
  5278 instruct loadS(iRegIdst dst, memory mem) %{
  5279   match(Set dst (LoadS mem));
  5280   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5281   ins_cost(MEMORY_REF_COST);
  5283   format %{ "LHA     $dst, $mem" %}
  5284   size(4);
  5285   ins_encode %{
  5286     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5287     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5288     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5289   %}
  5290   ins_pipe(pipe_class_memory);
  5291 %}
  5293 // Load Short (16bit signed) acquire.
  5294 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5295   match(Set dst (LoadS mem));
  5296   ins_cost(3*MEMORY_REF_COST);
  5298   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5299             "TWI     $dst\n\t"
  5300             "ISYNC" %}
  5301   size(12);
  5302   ins_encode %{
  5303     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5304     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5305     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5306     __ twi_0($dst$$Register);
  5307     __ isync();
  5308   %}
  5309   ins_pipe(pipe_class_memory);
  5310 %}
  5312 // Load Char (16bit unsigned)
  5313 instruct loadUS(iRegIdst dst, memory mem) %{
  5314   match(Set dst (LoadUS mem));
  5315   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5316   ins_cost(MEMORY_REF_COST);
  5318   format %{ "LHZ     $dst, $mem" %}
  5319   size(4);
  5320   ins_encode( enc_lhz(dst, mem) );
  5321   ins_pipe(pipe_class_memory);
  5322 %}
  5324 // Load Char (16bit unsigned) acquire.
  5325 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5326   match(Set dst (LoadUS mem));
  5327   ins_cost(3*MEMORY_REF_COST);
  5329   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5330             "TWI     $dst\n\t"
  5331             "ISYNC" %}
  5332   size(12);
  5333   ins_encode( enc_lhz_ac(dst, mem) );
  5334   ins_pipe(pipe_class_memory);
  5335 %}
  5337 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5338 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5339   match(Set dst (ConvI2L (LoadUS mem)));
  5340   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5341   ins_cost(MEMORY_REF_COST);
  5343   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5344   size(4);
  5345   ins_encode( enc_lhz(dst, mem) );
  5346   ins_pipe(pipe_class_memory);
  5347 %}
  5349 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5350 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5351   match(Set dst (ConvI2L (LoadUS mem)));
  5352   ins_cost(3*MEMORY_REF_COST);
  5354   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5355             "TWI     $dst\n\t"
  5356             "ISYNC" %}
  5357   size(12);
  5358   ins_encode( enc_lhz_ac(dst, mem) );
  5359   ins_pipe(pipe_class_memory);
  5360 %}
  5362 // Load Integer.
  5363 instruct loadI(iRegIdst dst, memory mem) %{
  5364   match(Set dst (LoadI mem));
  5365   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5366   ins_cost(MEMORY_REF_COST);
  5368   format %{ "LWZ     $dst, $mem" %}
  5369   size(4);
  5370   ins_encode( enc_lwz(dst, mem) );
  5371   ins_pipe(pipe_class_memory);
  5372 %}
  5374 // Load Integer acquire.
  5375 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5376   match(Set dst (LoadI mem));
  5377   ins_cost(3*MEMORY_REF_COST);
  5379   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5380             "TWI     $dst\n\t"
  5381             "ISYNC" %}
  5382   size(12);
  5383   ins_encode( enc_lwz_ac(dst, mem) );
  5384   ins_pipe(pipe_class_memory);
  5385 %}
  5387 // Match loading integer and casting it to unsigned int in 
  5388 // long register.
  5389 // LoadI + ConvI2L + AndL 0xffffffff.
  5390 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5391   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5392   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5393   ins_cost(MEMORY_REF_COST);
  5395   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5396   size(4);
  5397   ins_encode( enc_lwz(dst, mem) );
  5398   ins_pipe(pipe_class_memory);
  5399 %}
  5401 // Match loading integer and casting it to long.
  5402 instruct loadI2L(iRegLdst dst, memory mem) %{
  5403   match(Set dst (ConvI2L (LoadI mem)));
  5404   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5405   ins_cost(MEMORY_REF_COST);
  5407   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5408   size(4);
  5409   ins_encode %{
  5410     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5411     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5412     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5413   %}
  5414   ins_pipe(pipe_class_memory);
  5415 %}
  5417 // Match loading integer and casting it to long - acquire.
  5418 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5419   match(Set dst (ConvI2L (LoadI mem)));
  5420   ins_cost(3*MEMORY_REF_COST);
  5422   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5423             "TWI     $dst\n\t"
  5424             "ISYNC" %}
  5425   size(12);
  5426   ins_encode %{
  5427     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5428     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5429     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5430     __ twi_0($dst$$Register);
  5431     __ isync();
  5432   %}
  5433   ins_pipe(pipe_class_memory);
  5434 %}
  5436 // Load Long - aligned
  5437 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5438   match(Set dst (LoadL mem));
  5439   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5440   ins_cost(MEMORY_REF_COST);
  5442   format %{ "LD      $dst, $mem \t// long" %}
  5443   size(4);
  5444   ins_encode( enc_ld(dst, mem) );
  5445   ins_pipe(pipe_class_memory);
  5446 %}
  5448 // Load Long - aligned acquire.
  5449 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5450   match(Set dst (LoadL mem));
  5451   ins_cost(3*MEMORY_REF_COST);
  5453   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5454             "TWI     $dst\n\t"
  5455             "ISYNC" %}
  5456   size(12);
  5457   ins_encode( enc_ld_ac(dst, mem) );
  5458   ins_pipe(pipe_class_memory);
  5459 %}
  5461 // Load Long - UNaligned
  5462 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5463   match(Set dst (LoadL_unaligned mem));
  5464   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5465   ins_cost(MEMORY_REF_COST);
  5467   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5468   size(4);
  5469   ins_encode( enc_ld(dst, mem) );
  5470   ins_pipe(pipe_class_memory);
  5471 %}
  5473 // Load nodes for superwords
  5475 // Load Aligned Packed Byte
  5476 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5477   predicate(n->as_LoadVector()->memory_size() == 8);
  5478   match(Set dst (LoadVector mem));
  5479   ins_cost(MEMORY_REF_COST);
  5481   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5482   size(4);
  5483   ins_encode( enc_ld(dst, mem) );
  5484   ins_pipe(pipe_class_memory);
  5485 %}
  5487 // Load Range, range = array length (=jint)
  5488 instruct loadRange(iRegIdst dst, memory mem) %{
  5489   match(Set dst (LoadRange mem));
  5490   ins_cost(MEMORY_REF_COST);
  5492   format %{ "LWZ     $dst, $mem \t// range" %}
  5493   size(4);
  5494   ins_encode( enc_lwz(dst, mem) );
  5495   ins_pipe(pipe_class_memory);
  5496 %}
  5498 // Load Compressed Pointer
  5499 instruct loadN(iRegNdst dst, memory mem) %{
  5500   match(Set dst (LoadN mem));
  5501   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5502   ins_cost(MEMORY_REF_COST);
  5504   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5505   size(4);
  5506   ins_encode( enc_lwz(dst, mem) );
  5507   ins_pipe(pipe_class_memory);
  5508 %}
  5510 // Load Compressed Pointer acquire.
  5511 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5512   match(Set dst (LoadN mem));
  5513   ins_cost(3*MEMORY_REF_COST);
  5515   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5516             "TWI     $dst\n\t"
  5517             "ISYNC" %}
  5518   size(12);
  5519   ins_encode( enc_lwz_ac(dst, mem) );
  5520   ins_pipe(pipe_class_memory);
  5521 %}
  5523 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5524 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5525   match(Set dst (DecodeN (LoadN mem)));
  5526   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5527   ins_cost(MEMORY_REF_COST);
  5529   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5530   size(4);
  5531   ins_encode( enc_lwz(dst, mem) );
  5532   ins_pipe(pipe_class_memory);
  5533 %}
  5535 // Load Pointer
  5536 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5537   match(Set dst (LoadP mem));
  5538   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5539   ins_cost(MEMORY_REF_COST);
  5541   format %{ "LD      $dst, $mem \t// ptr" %}
  5542   size(4);
  5543   ins_encode( enc_ld(dst, mem) );
  5544   ins_pipe(pipe_class_memory);
  5545 %}
  5547 // Load Pointer acquire.
  5548 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5549   match(Set dst (LoadP mem));
  5550   ins_cost(3*MEMORY_REF_COST);
  5552   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5553             "TWI     $dst\n\t"
  5554             "ISYNC" %}
  5555   size(12);
  5556   ins_encode( enc_ld_ac(dst, mem) );
  5557   ins_pipe(pipe_class_memory);
  5558 %}
  5560 // LoadP + CastP2L
  5561 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5562   match(Set dst (CastP2X (LoadP mem)));
  5563   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5564   ins_cost(MEMORY_REF_COST);
  5566   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5567   size(4);
  5568   ins_encode( enc_ld(dst, mem) );
  5569   ins_pipe(pipe_class_memory);
  5570 %}
  5572 // Load compressed klass pointer.
  5573 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5574   match(Set dst (LoadNKlass mem));
  5575   ins_cost(MEMORY_REF_COST);
  5577   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5578   size(4);
  5579   ins_encode( enc_lwz(dst, mem) );
  5580   ins_pipe(pipe_class_memory);
  5581 %}
  5583 //// Load compressed klass and decode it if narrow_klass_shift == 0.
  5584 //// TODO: will narrow_klass_shift ever be 0?
  5585 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
  5586 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
  5587 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
  5588 //  ins_cost(MEMORY_REF_COST);
  5589 //
  5590 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
  5591 //  size(4);
  5592 //  ins_encode( enc_lwz(dst, mem) );
  5593 //  ins_pipe(pipe_class_memory);
  5594 //%}
  5596 // Load Klass Pointer
  5597 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5598   match(Set dst (LoadKlass mem));
  5599   ins_cost(MEMORY_REF_COST);
  5601   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5602   size(4);
  5603   ins_encode( enc_ld(dst, mem) );
  5604   ins_pipe(pipe_class_memory);
  5605 %}
  5607 // Load Float
  5608 instruct loadF(regF dst, memory mem) %{
  5609   match(Set dst (LoadF mem));
  5610   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5611   ins_cost(MEMORY_REF_COST);
  5613   format %{ "LFS     $dst, $mem" %}
  5614   size(4);
  5615   ins_encode %{
  5616     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5617     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5618     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5619   %}
  5620   ins_pipe(pipe_class_memory);
  5621 %}
  5623 // Load Float acquire.
  5624 instruct loadF_ac(regF dst, memory mem) %{
  5625   match(Set dst (LoadF mem));
  5626   ins_cost(3*MEMORY_REF_COST);
  5628   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5629             "FCMPU   cr0, $dst, $dst\n\t"
  5630             "BNE     cr0, next\n"
  5631             "next:\n\t"
  5632             "ISYNC" %}
  5633   size(16);
  5634   ins_encode %{
  5635     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5636     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5637     Label next;
  5638     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5639     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5640     __ bne(CCR0, next);
  5641     __ bind(next);
  5642     __ isync();
  5643   %}
  5644   ins_pipe(pipe_class_memory);
  5645 %}
  5647 // Load Double - aligned
  5648 instruct loadD(regD dst, memory mem) %{
  5649   match(Set dst (LoadD mem));
  5650   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5651   ins_cost(MEMORY_REF_COST);
  5653   format %{ "LFD     $dst, $mem" %}
  5654   size(4);
  5655   ins_encode( enc_lfd(dst, mem) );
  5656   ins_pipe(pipe_class_memory);
  5657 %}
  5659 // Load Double - aligned acquire.
  5660 instruct loadD_ac(regD dst, memory mem) %{
  5661   match(Set dst (LoadD mem));
  5662   ins_cost(3*MEMORY_REF_COST);
  5664   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5665             "FCMPU   cr0, $dst, $dst\n\t"
  5666             "BNE     cr0, next\n"
  5667             "next:\n\t"
  5668             "ISYNC" %}
  5669   size(16);
  5670   ins_encode %{
  5671     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5672     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5673     Label next;
  5674     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5675     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5676     __ bne(CCR0, next);
  5677     __ bind(next);
  5678     __ isync();
  5679   %}
  5680   ins_pipe(pipe_class_memory);
  5681 %}
  5683 // Load Double - UNaligned
  5684 instruct loadD_unaligned(regD dst, memory mem) %{
  5685   match(Set dst (LoadD_unaligned mem));
  5686   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5687   ins_cost(MEMORY_REF_COST);
  5689   format %{ "LFD     $dst, $mem" %}
  5690   size(4);
  5691   ins_encode( enc_lfd(dst, mem) );
  5692   ins_pipe(pipe_class_memory);
  5693 %}
  5695 //----------Constants--------------------------------------------------------
  5697 // Load MachConstantTableBase: add hi offset to global toc.
  5698 // TODO: Handle hidden register r29 in bundler!
  5699 instruct loadToc_hi(iRegLdst dst) %{
  5700   effect(DEF dst);
  5701   ins_cost(DEFAULT_COST);
  5703   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5704   size(4);
  5705   ins_encode %{
  5706     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5707     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5708   %}
  5709   ins_pipe(pipe_class_default);
  5710 %}
  5712 // Load MachConstantTableBase: add lo offset to global toc.
  5713 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5714   effect(DEF dst, USE src);
  5715   ins_cost(DEFAULT_COST);
  5717   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5718   size(4);
  5719   ins_encode %{
  5720     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5721     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5722   %}
  5723   ins_pipe(pipe_class_default);
  5724 %}
  5726 // Load 16-bit integer constant 0xssss????
  5727 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5728   match(Set dst src);
  5730   format %{ "LI      $dst, $src" %}
  5731   size(4);
  5732   ins_encode %{
  5733     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5734     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5735   %}
  5736   ins_pipe(pipe_class_default);
  5737 %}
  5739 // Load integer constant 0x????0000
  5740 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5741   match(Set dst src);
  5742   ins_cost(DEFAULT_COST);
  5744   format %{ "LIS     $dst, $src.hi" %}
  5745   size(4);
  5746   ins_encode %{
  5747     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5748     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5749     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5750   %}
  5751   ins_pipe(pipe_class_default);
  5752 %}
  5754 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5755 // and sign extended), this adds the low 16 bits.
  5756 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5757   // no match-rule, false predicate
  5758   effect(DEF dst, USE src1, USE src2);
  5759   predicate(false);
  5761   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5762   size(4);
  5763   ins_encode %{
  5764     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5765     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5766   %}
  5767   ins_pipe(pipe_class_default);
  5768 %}
  5770 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5771   match(Set dst src);
  5772   ins_cost(DEFAULT_COST*2);
  5774   expand %{
  5775     // Would like to use $src$$constant.
  5776     immI16 srcLo %{ _opnds[1]->constant() %}
  5777     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5778     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5779     iRegIdst tmpI;
  5780     loadConIhi16(tmpI, srcHi);
  5781     loadConI32_lo16(dst, tmpI, srcLo);
  5782   %}
  5783 %}
  5785 // No constant pool entries required.
  5786 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5787   match(Set dst src);
  5789   format %{ "LI      $dst, $src \t// long" %}
  5790   size(4);
  5791   ins_encode %{
  5792     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5793     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5794   %}
  5795   ins_pipe(pipe_class_default);
  5796 %}
  5798 // Load long constant 0xssssssss????0000
  5799 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5800   match(Set dst src);
  5801   ins_cost(DEFAULT_COST);
  5803   format %{ "LIS     $dst, $src.hi \t// long" %}
  5804   size(4);
  5805   ins_encode %{
  5806     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5807     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5808   %}
  5809   ins_pipe(pipe_class_default);
  5810 %}
  5812 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5813 // high 16 bits.
  5814 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5815   // no match-rule, false predicate
  5816   effect(DEF dst, USE src1, USE src2);
  5817   predicate(false);
  5819   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5820   size(4);
  5821   ins_encode %{
  5822     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5823     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5824   %}
  5825   ins_pipe(pipe_class_default);
  5826 %}
  5828 // Load 32-bit long constant
  5829 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5830   match(Set dst src);
  5831   ins_cost(DEFAULT_COST*2);
  5833   expand %{
  5834     // Would like to use $src$$constant.
  5835     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5836     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5837     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5838     iRegLdst tmpL;
  5839     loadConL32hi16(tmpL, srcHi);
  5840     loadConL32_lo16(dst, tmpL, srcLo);
  5841   %}
  5842 %}
  5844 // Load long constant 0x????000000000000.
  5845 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5846   match(Set dst src);
  5847   ins_cost(DEFAULT_COST);
  5849   expand %{
  5850     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5851     immI shift32 %{ 32 %}
  5852     iRegLdst tmpL;
  5853     loadConL32hi16(tmpL, srcHi);
  5854     lshiftL_regL_immI(dst, tmpL, shift32);
  5855   %}
  5856 %}
  5858 // Expand node for constant pool load: small offset.
  5859 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5860   effect(DEF dst, USE src, USE toc);
  5861   ins_cost(MEMORY_REF_COST);
  5863   ins_num_consts(1);
  5864   // Needed so that CallDynamicJavaDirect can compute the address of this
  5865   // instruction for relocation.
  5866   ins_field_cbuf_insts_offset(int);
  5868   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5869   size(4);
  5870   ins_encode( enc_load_long_constL(dst, src, toc) );
  5871   ins_pipe(pipe_class_memory);
  5872 %}
  5874 // Expand node for constant pool load: large offset.
  5875 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5876   effect(DEF dst, USE src, USE toc);
  5877   predicate(false);
  5879   ins_num_consts(1);
  5880   ins_field_const_toc_offset(int);
  5881   // Needed so that CallDynamicJavaDirect can compute the address of this
  5882   // instruction for relocation.
  5883   ins_field_cbuf_insts_offset(int);
  5885   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5886   size(4);
  5887   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5888   ins_pipe(pipe_class_default);
  5889 %}
  5891 // Expand node for constant pool load: large offset.
  5892 // No constant pool entries required.
  5893 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5894   effect(DEF dst, USE src, USE base);
  5895   predicate(false);
  5897   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5899   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5900   size(4);
  5901   ins_encode %{
  5902     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5903     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5904     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5905   %}
  5906   ins_pipe(pipe_class_memory);
  5907 %}
  5909 // Load long constant from constant table. Expand in case of
  5910 // offset > 16 bit is needed.
  5911 // Adlc adds toc node MachConstantTableBase.
  5912 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5913   match(Set dst src);
  5914   ins_cost(MEMORY_REF_COST);
  5916   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5917   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5918   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5919 %}
  5921 // Load NULL as compressed oop.
  5922 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5923   match(Set dst src);
  5924   ins_cost(DEFAULT_COST);
  5926   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5927   size(4);
  5928   ins_encode %{
  5929     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5930     __ li($dst$$Register, 0);
  5931   %}
  5932   ins_pipe(pipe_class_default);
  5933 %}
  5935 // Load hi part of compressed oop constant.
  5936 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5937   effect(DEF dst, USE src);
  5938   ins_cost(DEFAULT_COST);
  5940   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  5941   size(4);
  5942   ins_encode %{
  5943     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5944     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  5945   %}
  5946   ins_pipe(pipe_class_default);
  5947 %}
  5949 // Add lo part of compressed oop constant to already loaded hi part.
  5950 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  5951   effect(DEF dst, USE src1, USE src2);
  5952   ins_cost(DEFAULT_COST);
  5954   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  5955   size(4);
  5956   ins_encode %{
  5957     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5958     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5959     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  5960     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5961     __ relocate(rspec, 1);
  5962     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  5963   %}
  5964   ins_pipe(pipe_class_default);
  5965 %}
  5967 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  5968 // leaving the upper 32 bits with sign-extension bits.
  5969 // This clears these bits: dst = src & 0xFFFFFFFF.
  5970 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  5971 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  5972   effect(DEF dst, USE src);
  5973   predicate(false);
  5975   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  5976   size(4);
  5977   ins_encode %{
  5978     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  5979     __ clrldi($dst$$Register, $src$$Register, 0x20);
  5980   %}
  5981   ins_pipe(pipe_class_default);
  5982 %}
  5984 // Loading ConN must be postalloc expanded so that edges between
  5985 // the nodes are safe. They may not interfere with a safepoint.
  5986 // GL TODO: This needs three instructions: better put this into the constant pool.
  5987 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  5988   match(Set dst src);
  5989   ins_cost(DEFAULT_COST*2);
  5991   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  5992   postalloc_expand %{
  5993     MachNode *m1 = new (C) loadConN_hiNode();
  5994     MachNode *m2 = new (C) loadConN_loNode();
  5995     MachNode *m3 = new (C) clearMs32bNode();
  5996     m1->add_req(NULL);
  5997     m2->add_req(NULL, m1);
  5998     m3->add_req(NULL, m2);
  5999     m1->_opnds[0] = op_dst;
  6000     m1->_opnds[1] = op_src;
  6001     m2->_opnds[0] = op_dst;
  6002     m2->_opnds[1] = op_dst;
  6003     m2->_opnds[2] = op_src;
  6004     m3->_opnds[0] = op_dst;
  6005     m3->_opnds[1] = op_dst;
  6006     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6007     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6008     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6009     nodes->push(m1);
  6010     nodes->push(m2);
  6011     nodes->push(m3);
  6012   %}
  6013 %}
  6015 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
  6016   effect(DEF dst, USE src);
  6017   ins_cost(DEFAULT_COST);
  6019   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  6020   size(4);
  6021   ins_encode %{
  6022     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6023     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6024     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6025   %}
  6026   ins_pipe(pipe_class_default);
  6027 %}
  6029 // This needs a match rule so that build_oop_map knows this is 
  6030 // not a narrow oop.
  6031 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6032   match(Set dst src1);
  6033   effect(TEMP src2);
  6034   ins_cost(DEFAULT_COST);
  6036   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
  6037   size(4);
  6038   ins_encode %{
  6039     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6040     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6041     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6042     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6043     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6045     __ relocate(rspec, 1);
  6046     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6047   %}
  6048   ins_pipe(pipe_class_default);
  6049 %}
  6051 // Loading ConNKlass must be postalloc expanded so that edges between
  6052 // the nodes are safe. They may not interfere with a safepoint.
  6053 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6054   match(Set dst src);
  6055   ins_cost(DEFAULT_COST*2);
  6057   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6058   postalloc_expand %{
  6059     // Load high bits into register. Sign extended.
  6060     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6061     m1->add_req(NULL);
  6062     m1->_opnds[0] = op_dst;
  6063     m1->_opnds[1] = op_src;
  6064     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6065     nodes->push(m1);
  6067     MachNode *m2 = m1;
  6068     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6069       // Value might be 1-extended. Mask out these bits.
  6070       m2 = new (C) clearMs32bNode();
  6071       m2->add_req(NULL, m1);
  6072       m2->_opnds[0] = op_dst;
  6073       m2->_opnds[1] = op_dst;
  6074       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6075       nodes->push(m2);
  6078     MachNode *m3 = new (C) loadConNKlass_loNode();
  6079     m3->add_req(NULL, m2);
  6080     m3->_opnds[0] = op_dst;
  6081     m3->_opnds[1] = op_src;
  6082     m3->_opnds[2] = op_dst;
  6083     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6084     nodes->push(m3);
  6085   %}
  6086 %}
  6088 // 0x1 is used in object initialization (initial object header).
  6089 // No constant pool entries required.
  6090 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6091   match(Set dst src);
  6093   format %{ "LI      $dst, $src \t// ptr" %}
  6094   size(4);
  6095   ins_encode %{
  6096     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6097     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6098   %}
  6099   ins_pipe(pipe_class_default);
  6100 %}
  6102 // Expand node for constant pool load: small offset.
  6103 // The match rule is needed to generate the correct bottom_type(),
  6104 // however this node should never match. The use of predicate is not
  6105 // possible since ADLC forbids predicates for chain rules. The higher
  6106 // costs do not prevent matching in this case. For that reason the
  6107 // operand immP_NM with predicate(false) is used.
  6108 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6109   match(Set dst src);
  6110   effect(TEMP toc);
  6112   ins_num_consts(1);
  6114   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6115   size(4);
  6116   ins_encode( enc_load_long_constP(dst, src, toc) );
  6117   ins_pipe(pipe_class_memory);
  6118 %}
  6120 // Expand node for constant pool load: large offset.
  6121 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6122   effect(DEF dst, USE src, USE toc);
  6123   predicate(false);
  6125   ins_num_consts(1);
  6126   ins_field_const_toc_offset(int);
  6128   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6129   size(4);
  6130   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6131   ins_pipe(pipe_class_default);
  6132 %}
  6134 // Expand node for constant pool load: large offset.
  6135 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6136   match(Set dst src);
  6137   effect(TEMP base);
  6139   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6141   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6142   size(4);
  6143   ins_encode %{
  6144     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6145     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6146     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6147   %}
  6148   ins_pipe(pipe_class_memory);
  6149 %}
  6151 // Load pointer constant from constant table. Expand in case an
  6152 // offset > 16 bit is needed.
  6153 // Adlc adds toc node MachConstantTableBase.
  6154 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6155   match(Set dst src);
  6156   ins_cost(MEMORY_REF_COST);
  6158   // This rule does not use "expand" because then
  6159   // the result type is not known to be an Oop.  An ADLC
  6160   // enhancement will be needed to make that work - not worth it!
  6162   // If this instruction rematerializes, it prolongs the live range
  6163   // of the toc node, causing illegal graphs.
  6164   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6165   ins_cannot_rematerialize(true);
  6167   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6168   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6169 %}
  6171 // Expand node for constant pool load: small offset.
  6172 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6173   effect(DEF dst, USE src, USE toc);
  6174   ins_cost(MEMORY_REF_COST);
  6176   ins_num_consts(1);
  6178   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6179   size(4);
  6180   ins_encode %{
  6181     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6182     address float_address = __ float_constant($src$$constant);
  6183     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6184   %}
  6185   ins_pipe(pipe_class_memory);
  6186 %}
  6188 // Expand node for constant pool load: large offset.
  6189 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6190   effect(DEF dst, USE src, USE toc);
  6191   ins_cost(MEMORY_REF_COST);
  6193   ins_num_consts(1);
  6195   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6196             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6197             "ADDIS   $toc, $toc, -offset_hi"%}
  6198   size(12);
  6199   ins_encode %{
  6200     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6201     FloatRegister Rdst    = $dst$$FloatRegister;
  6202     Register Rtoc         = $toc$$Register;
  6203     address float_address = __ float_constant($src$$constant);
  6204     int offset            = __ offset_to_method_toc(float_address);
  6205     int hi = (offset + (1<<15))>>16;
  6206     int lo = offset - hi * (1<<16);
  6208     __ addis(Rtoc, Rtoc, hi);
  6209     __ lfs(Rdst, lo, Rtoc);
  6210     __ addis(Rtoc, Rtoc, -hi);
  6211   %}
  6212   ins_pipe(pipe_class_memory);
  6213 %}
  6215 // Adlc adds toc node MachConstantTableBase.
  6216 instruct loadConF_Ex(regF dst, immF src) %{
  6217   match(Set dst src);
  6218   ins_cost(MEMORY_REF_COST);
  6220   // See loadConP.
  6221   ins_cannot_rematerialize(true);
  6223   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6224   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6225 %}
  6227 // Expand node for constant pool load: small offset.
  6228 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6229   effect(DEF dst, USE src, USE toc);
  6230   ins_cost(MEMORY_REF_COST);
  6232   ins_num_consts(1);
  6234   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6235   size(4);
  6236   ins_encode %{
  6237     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6238     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6239     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6240   %}
  6241   ins_pipe(pipe_class_memory);
  6242 %}
  6244 // Expand node for constant pool load: large offset.
  6245 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6246   effect(DEF dst, USE src, USE toc);
  6247   ins_cost(MEMORY_REF_COST);
  6249   ins_num_consts(1);
  6251   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6252             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6253             "ADDIS   $toc, $toc, -offset_hi" %}
  6254   size(12);
  6255   ins_encode %{
  6256     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6257     FloatRegister Rdst    = $dst$$FloatRegister;
  6258     Register      Rtoc    = $toc$$Register;
  6259     address float_address = __ double_constant($src$$constant);
  6260     int offset            = __ offset_to_method_toc(float_address);
  6261     int hi = (offset + (1<<15))>>16;
  6262     int lo = offset - hi * (1<<16);
  6264     __ addis(Rtoc, Rtoc, hi);
  6265     __ lfd(Rdst, lo, Rtoc);
  6266     __ addis(Rtoc, Rtoc, -hi);
  6267   %}
  6268   ins_pipe(pipe_class_memory);
  6269 %}
  6271 // Adlc adds toc node MachConstantTableBase.
  6272 instruct loadConD_Ex(regD dst, immD src) %{
  6273   match(Set dst src);
  6274   ins_cost(MEMORY_REF_COST);
  6276   // See loadConP.
  6277   ins_cannot_rematerialize(true);
  6279   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6280   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6281 %}
  6283 // Prefetch instructions.
  6284 // Must be safe to execute with invalid address (cannot fault).
  6286 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6287   match(PrefetchRead (AddP mem src));
  6288   ins_cost(MEMORY_REF_COST);
  6290   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6291   size(4);
  6292   ins_encode %{
  6293     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6294     __ dcbt($src$$Register, $mem$$base$$Register);
  6295   %}
  6296   ins_pipe(pipe_class_memory);
  6297 %}
  6299 instruct prefetchr_no_offset(indirectMemory mem) %{
  6300   match(PrefetchRead mem);
  6301   ins_cost(MEMORY_REF_COST);
  6303   format %{ "PREFETCH $mem" %}
  6304   size(4);
  6305   ins_encode %{
  6306     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6307     __ dcbt($mem$$base$$Register);
  6308   %}
  6309   ins_pipe(pipe_class_memory);
  6310 %}
  6312 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6313   match(PrefetchWrite (AddP mem src));
  6314   ins_cost(MEMORY_REF_COST);
  6316   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6317   size(4);
  6318   ins_encode %{
  6319     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6320     __ dcbtst($src$$Register, $mem$$base$$Register);
  6321   %}
  6322   ins_pipe(pipe_class_memory);
  6323 %}
  6325 instruct prefetchw_no_offset(indirectMemory mem) %{
  6326   match(PrefetchWrite mem);
  6327   ins_cost(MEMORY_REF_COST);
  6329   format %{ "PREFETCH $mem" %}
  6330   size(4);
  6331   ins_encode %{
  6332     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6333     __ dcbtst($mem$$base$$Register);
  6334   %}
  6335   ins_pipe(pipe_class_memory);
  6336 %}
  6338 // Special prefetch versions which use the dcbz instruction.
  6339 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6340   match(PrefetchAllocation (AddP mem src));
  6341   predicate(AllocatePrefetchStyle == 3);
  6342   ins_cost(MEMORY_REF_COST);
  6344   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6345   size(4);
  6346   ins_encode %{
  6347     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6348     __ dcbz($src$$Register, $mem$$base$$Register);
  6349   %}
  6350   ins_pipe(pipe_class_memory);
  6351 %}
  6353 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6354   match(PrefetchAllocation mem);
  6355   predicate(AllocatePrefetchStyle == 3);
  6356   ins_cost(MEMORY_REF_COST);
  6358   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6359   size(4);
  6360   ins_encode %{
  6361     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6362     __ dcbz($mem$$base$$Register);
  6363   %}
  6364   ins_pipe(pipe_class_memory);
  6365 %}
  6367 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6368   match(PrefetchAllocation (AddP mem src));
  6369   predicate(AllocatePrefetchStyle != 3);
  6370   ins_cost(MEMORY_REF_COST);
  6372   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6373   size(4);
  6374   ins_encode %{
  6375     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6376     __ dcbtst($src$$Register, $mem$$base$$Register);
  6377   %}
  6378   ins_pipe(pipe_class_memory);
  6379 %}
  6381 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6382   match(PrefetchAllocation mem);
  6383   predicate(AllocatePrefetchStyle != 3);
  6384   ins_cost(MEMORY_REF_COST);
  6386   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6387   size(4);
  6388   ins_encode %{
  6389     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6390     __ dcbtst($mem$$base$$Register);
  6391   %}
  6392   ins_pipe(pipe_class_memory);
  6393 %}
  6395 //----------Store Instructions-------------------------------------------------
  6397 // Store Byte
  6398 instruct storeB(memory mem, iRegIsrc src) %{
  6399   match(Set mem (StoreB mem src));
  6400   ins_cost(MEMORY_REF_COST);
  6402   format %{ "STB     $src, $mem \t// byte" %}
  6403   size(4);
  6404   ins_encode %{
  6405     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6406     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6407     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6408   %}
  6409   ins_pipe(pipe_class_memory);
  6410 %}
  6412 // Store Char/Short
  6413 instruct storeC(memory mem, iRegIsrc src) %{
  6414   match(Set mem (StoreC mem src));
  6415   ins_cost(MEMORY_REF_COST);
  6417   format %{ "STH     $src, $mem \t// short" %}
  6418   size(4);
  6419   ins_encode %{
  6420     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6421     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6422     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6423   %}
  6424   ins_pipe(pipe_class_memory);
  6425 %}
  6427 // Store Integer
  6428 instruct storeI(memory mem, iRegIsrc src) %{
  6429   match(Set mem (StoreI mem src));
  6430   ins_cost(MEMORY_REF_COST);
  6432   format %{ "STW     $src, $mem" %}
  6433   size(4);
  6434   ins_encode( enc_stw(src, mem) );
  6435   ins_pipe(pipe_class_memory);
  6436 %}
  6438 // ConvL2I + StoreI.
  6439 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6440   match(Set mem (StoreI mem (ConvL2I src)));
  6441   ins_cost(MEMORY_REF_COST);
  6443   format %{ "STW     l2i($src), $mem" %}
  6444   size(4);
  6445   ins_encode( enc_stw(src, mem) );
  6446   ins_pipe(pipe_class_memory);
  6447 %}
  6449 // Store Long
  6450 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6451   match(Set mem (StoreL mem src));
  6452   ins_cost(MEMORY_REF_COST);
  6454   format %{ "STD     $src, $mem \t// long" %}
  6455   size(4);
  6456   ins_encode( enc_std(src, mem) );
  6457   ins_pipe(pipe_class_memory);
  6458 %}
  6460 // Store super word nodes.
  6462 // Store Aligned Packed Byte long register to memory
  6463 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6464   predicate(n->as_StoreVector()->memory_size() == 8);
  6465   match(Set mem (StoreVector mem src));
  6466   ins_cost(MEMORY_REF_COST);
  6468   format %{ "STD     $mem, $src \t// packed8B" %}
  6469   size(4);
  6470   ins_encode( enc_std(src, mem) );
  6471   ins_pipe(pipe_class_memory);
  6472 %}
  6474 // Store Compressed Oop
  6475 instruct storeN(memory dst, iRegN_P2N src) %{
  6476   match(Set dst (StoreN dst src));
  6477   ins_cost(MEMORY_REF_COST);
  6479   format %{ "STW     $src, $dst \t// compressed oop" %}
  6480   size(4);
  6481   ins_encode( enc_stw(src, dst) );
  6482   ins_pipe(pipe_class_memory);
  6483 %}
  6485 // Store Compressed KLass
  6486 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6487   match(Set dst (StoreNKlass dst src));
  6488   ins_cost(MEMORY_REF_COST);
  6490   format %{ "STW     $src, $dst \t// compressed klass" %}
  6491   size(4);
  6492   ins_encode( enc_stw(src, dst) );
  6493   ins_pipe(pipe_class_memory);
  6494 %}
  6496 // Store Pointer
  6497 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6498   match(Set dst (StoreP dst src));
  6499   ins_cost(MEMORY_REF_COST);
  6501   format %{ "STD     $src, $dst \t// ptr" %}
  6502   size(4);
  6503   ins_encode( enc_std(src, dst) );
  6504   ins_pipe(pipe_class_memory);
  6505 %}
  6507 // Store Float
  6508 instruct storeF(memory mem, regF src) %{
  6509   match(Set mem (StoreF mem src));
  6510   ins_cost(MEMORY_REF_COST);
  6512   format %{ "STFS    $src, $mem" %}
  6513   size(4);
  6514   ins_encode( enc_stfs(src, mem) );
  6515   ins_pipe(pipe_class_memory);
  6516 %}
  6518 // Store Double
  6519 instruct storeD(memory mem, regD src) %{
  6520   match(Set mem (StoreD mem src));
  6521   ins_cost(MEMORY_REF_COST);
  6523   format %{ "STFD    $src, $mem" %}
  6524   size(4);
  6525   ins_encode( enc_stfd(src, mem) );
  6526   ins_pipe(pipe_class_memory);
  6527 %}
  6529 //----------Store Instructions With Zeros--------------------------------------
  6531 // Card-mark for CMS garbage collection.
  6532 // This cardmark does an optimization so that it must not always
  6533 // do a releasing store. For this, it gets the address of
  6534 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6535 // (Using releaseFieldAddr in the match rule is a hack.)
  6536 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6537   match(Set mem (StoreCM mem releaseFieldAddr));
  6538   predicate(false);
  6539   ins_cost(MEMORY_REF_COST);
  6541   // See loadConP.
  6542   ins_cannot_rematerialize(true);
  6544   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6545   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6546   ins_pipe(pipe_class_memory);
  6547 %}
  6549 // Card-mark for CMS garbage collection.
  6550 // This cardmark does an optimization so that it must not always
  6551 // do a releasing store. For this, it needs the constant address of
  6552 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6553 // This constant address is split off here by expand so we can use
  6554 // adlc / matcher functionality to load it from the constant section.
  6555 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6556   match(Set mem (StoreCM mem zero));
  6557   predicate(UseConcMarkSweepGC);
  6559   expand %{
  6560     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6561     iRegLdst releaseFieldAddress;
  6562     loadConL_Ex(releaseFieldAddress, baseImm);
  6563     storeCM_CMS(mem, releaseFieldAddress);
  6564   %}
  6565 %}
  6567 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6568   match(Set mem (StoreCM mem zero));
  6569   predicate(UseG1GC);
  6570   ins_cost(MEMORY_REF_COST);
  6572   ins_cannot_rematerialize(true);
  6574   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6575   size(8);
  6576   ins_encode %{
  6577     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6578     __ li(R0, 0);
  6579     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6580     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6581     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6582   %}
  6583   ins_pipe(pipe_class_memory);
  6584 %}
  6586 // Convert oop pointer into compressed form.
  6588 // Nodes for postalloc expand.
  6590 // Shift node for expand.
  6591 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6592   // The match rule is needed to make it a 'MachTypeNode'!
  6593   match(Set dst (EncodeP src));
  6594   predicate(false);
  6596   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6597   size(4);
  6598   ins_encode %{
  6599     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6600     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6601   %}
  6602   ins_pipe(pipe_class_default);
  6603 %}
  6605 // Add node for expand.
  6606 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6607   // The match rule is needed to make it a 'MachTypeNode'!
  6608   match(Set dst (EncodeP src));
  6609   predicate(false);
  6611   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6612   size(4);
  6613   ins_encode %{
  6614     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6615     __ subf($dst$$Register, R30, $src$$Register);
  6616   %}
  6617   ins_pipe(pipe_class_default);
  6618 %}
  6620 // Conditional sub base.
  6621 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6622   // The match rule is needed to make it a 'MachTypeNode'!
  6623   match(Set dst (EncodeP (Binary crx src1)));
  6624   predicate(false);
  6626   ins_variable_size_depending_on_alignment(true);
  6628   format %{ "BEQ     $crx, done\n\t"
  6629             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6630             "done:" %}
  6631   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6632   ins_encode %{
  6633     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6634     Label done;
  6635     __ beq($crx$$CondRegister, done);
  6636     __ subf($dst$$Register, R30, $src1$$Register);
  6637     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6638     __ bind(done);
  6639   %}
  6640   ins_pipe(pipe_class_default);
  6641 %}
  6643 // Power 7 can use isel instruction
  6644 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6645   // The match rule is needed to make it a 'MachTypeNode'!
  6646   match(Set dst (EncodeP (Binary crx src1)));
  6647   predicate(false);
  6649   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6650   size(4);
  6651   ins_encode %{
  6652     // This is a Power7 instruction for which no machine description exists.
  6653     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
  6654     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6655   %}
  6656   ins_pipe(pipe_class_default);
  6657 %}
  6659 // base != 0
  6660 // 32G aligned narrow oop base.
  6661 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6662   match(Set dst (EncodeP src));
  6663   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6665   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6666   size(4);
  6667   ins_encode %{
  6668     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6669     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6670   %}
  6671   ins_pipe(pipe_class_default);
  6672 %}
  6674 // shift != 0, base != 0
  6675 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6676   match(Set dst (EncodeP src));
  6677   effect(TEMP crx);
  6678   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6679             Universe::narrow_oop_shift() != 0 &&
  6680             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6682   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6683   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6684 %}
  6686 // shift != 0, base != 0
  6687 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6688   match(Set dst (EncodeP src));
  6689   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6690             Universe::narrow_oop_shift() != 0 &&
  6691             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6693   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6694   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6695 %}
  6697 // shift != 0, base == 0
  6698 // TODO: This is the same as encodeP_shift. Merge!
  6699 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6700   match(Set dst (EncodeP src));
  6701   predicate(Universe::narrow_oop_shift() != 0 &&
  6702             Universe::narrow_oop_base() ==0);
  6704   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6705   size(4);
  6706   ins_encode %{
  6707     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6708     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6709   %}
  6710   ins_pipe(pipe_class_default);
  6711 %}
  6713 // Compressed OOPs with narrow_oop_shift == 0.
  6714 // shift == 0, base == 0
  6715 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6716   match(Set dst (EncodeP src));
  6717   predicate(Universe::narrow_oop_shift() == 0);
  6719   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6720   // variable size, 0 or 4.
  6721   ins_encode %{
  6722     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6723     __ mr_if_needed($dst$$Register, $src$$Register);
  6724   %}
  6725   ins_pipe(pipe_class_default);
  6726 %}
  6728 // Decode nodes.
  6730 // Shift node for expand.
  6731 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6732   // The match rule is needed to make it a 'MachTypeNode'!
  6733   match(Set dst (DecodeN src));
  6734   predicate(false);
  6736   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6737   size(4);
  6738   ins_encode %{
  6739     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6740     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6741   %}
  6742   ins_pipe(pipe_class_default);
  6743 %}
  6745 // Add node for expand.
  6746 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6747   // The match rule is needed to make it a 'MachTypeNode'!
  6748   match(Set dst (DecodeN src));
  6749   predicate(false);
  6751   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6752   size(4);
  6753   ins_encode %{
  6754     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6755     __ add($dst$$Register, $src$$Register, R30);
  6756   %}
  6757   ins_pipe(pipe_class_default);
  6758 %}
  6760 // conditianal add base for expand
  6761 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6762   // The match rule is needed to make it a 'MachTypeNode'!
  6763   // NOTICE that the rule is nonsense - we just have to make sure that:
  6764   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6765   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6766   match(Set dst (DecodeN (Binary crx src1)));
  6767   predicate(false);
  6769   ins_variable_size_depending_on_alignment(true);
  6771   format %{ "BEQ     $crx, done\n\t"
  6772             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6773             "done:" %}
  6774   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6775   ins_encode %{
  6776     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6777     Label done;
  6778     __ beq($crx$$CondRegister, done);
  6779     __ add($dst$$Register, $src1$$Register, R30);
  6780     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6781     __ bind(done);
  6782   %}
  6783   ins_pipe(pipe_class_default);
  6784 %}
  6786 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6787   // The match rule is needed to make it a 'MachTypeNode'!
  6788   // NOTICE that the rule is nonsense - we just have to make sure that:
  6789   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6790   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6791   match(Set dst (DecodeN (Binary crx src1)));
  6792   predicate(false);
  6794   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6795   size(4);
  6796   ins_encode %{
  6797     // This is a Power7 instruction for which no machine description exists.
  6798     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
  6799     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6800   %}
  6801   ins_pipe(pipe_class_default);
  6802 %}
  6804 //  shift != 0, base != 0
  6805 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6806   match(Set dst (DecodeN src));
  6807   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6808              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6809             Universe::narrow_oop_shift() != 0 &&
  6810             Universe::narrow_oop_base() != 0);
  6811   effect(TEMP crx);
  6813   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6814   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6815 %}
  6817 // shift != 0, base == 0
  6818 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6819   match(Set dst (DecodeN src));
  6820   predicate(Universe::narrow_oop_shift() != 0 &&
  6821             Universe::narrow_oop_base() == 0);
  6823   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6824   size(4);
  6825   ins_encode %{
  6826     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6827     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6828   %}
  6829   ins_pipe(pipe_class_default);
  6830 %}
  6832 // src != 0, shift != 0, base != 0
  6833 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6834   match(Set dst (DecodeN src));
  6835   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6836              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6837             Universe::narrow_oop_shift() != 0 &&
  6838             Universe::narrow_oop_base() != 0);
  6840   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6841   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6842 %}
  6844 // Compressed OOPs with narrow_oop_shift == 0.
  6845 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6846   match(Set dst (DecodeN src));
  6847   predicate(Universe::narrow_oop_shift() == 0);
  6848   ins_cost(DEFAULT_COST);
  6850   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6851   // variable size, 0 or 4.
  6852   ins_encode %{
  6853     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6854     __ mr_if_needed($dst$$Register, $src$$Register);
  6855   %}
  6856   ins_pipe(pipe_class_default);
  6857 %}
  6859 // Convert compressed oop into int for vectors alignment masking.
  6860 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6861   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6862   predicate(Universe::narrow_oop_shift() == 0);
  6863   ins_cost(DEFAULT_COST);
  6865   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6866   // variable size, 0 or 4.
  6867   ins_encode %{
  6868     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6869     __ mr_if_needed($dst$$Register, $src$$Register);
  6870   %}
  6871   ins_pipe(pipe_class_default);
  6872 %}
  6874 // Convert klass pointer into compressed form.
  6876 // Nodes for postalloc expand.
  6878 // Shift node for expand.
  6879 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6880   // The match rule is needed to make it a 'MachTypeNode'!
  6881   match(Set dst (EncodePKlass src));
  6882   predicate(false);
  6884   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6885   size(4);
  6886   ins_encode %{
  6887     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6888     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6889   %}
  6890   ins_pipe(pipe_class_default);
  6891 %}
  6893 // Add node for expand.
  6894 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6895   // The match rule is needed to make it a 'MachTypeNode'!
  6896   match(Set dst (EncodePKlass (Binary base src)));
  6897   predicate(false);
  6899   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6900   size(4);
  6901   ins_encode %{
  6902     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6903     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6904   %}
  6905   ins_pipe(pipe_class_default);
  6906 %}
  6908 // base != 0
  6909 // 32G aligned narrow oop base.
  6910 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6911   match(Set dst (EncodePKlass src));
  6912   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6914   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6915   size(4);
  6916   ins_encode %{
  6917     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6918     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6919   %}
  6920   ins_pipe(pipe_class_default);
  6921 %}
  6923 // shift != 0, base != 0
  6924 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6925   match(Set dst (EncodePKlass (Binary base src)));
  6926   predicate(false);
  6928   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6929   postalloc_expand %{
  6930     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  6931     n1->add_req(n_region, n_base, n_src);
  6932     n1->_opnds[0] = op_dst;
  6933     n1->_opnds[1] = op_base;
  6934     n1->_opnds[2] = op_src;
  6935     n1->_bottom_type = _bottom_type;
  6937     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  6938     n2->add_req(n_region, n1);
  6939     n2->_opnds[0] = op_dst;
  6940     n2->_opnds[1] = op_dst;
  6941     n2->_bottom_type = _bottom_type;
  6942     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6943     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6945     nodes->push(n1);
  6946     nodes->push(n2);
  6947   %}
  6948 %}
  6950 // shift != 0, base != 0
  6951 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  6952   match(Set dst (EncodePKlass src));
  6953   //predicate(Universe::narrow_klass_shift() != 0 &&
  6954   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  6956   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6957   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  6958   expand %{
  6959     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  6960     iRegLdst base;
  6961     loadConL_Ex(base, baseImm);
  6962     encodePKlass_not_null_Ex(dst, base, src);
  6963   %}
  6964 %}
  6966 // Decode nodes.
  6968 // Shift node for expand.
  6969 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  6970   // The match rule is needed to make it a 'MachTypeNode'!
  6971   match(Set dst (DecodeNKlass src));
  6972   predicate(false);
  6974   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  6975   size(4);
  6976   ins_encode %{
  6977     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6978     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6979   %}
  6980   ins_pipe(pipe_class_default);
  6981 %}
  6983 // Add node for expand.
  6985 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6986   // The match rule is needed to make it a 'MachTypeNode'!
  6987   match(Set dst (DecodeNKlass (Binary base src)));
  6988   predicate(false);
  6990   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  6991   size(4);
  6992   ins_encode %{
  6993     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6994     __ add($dst$$Register, $base$$Register, $src$$Register);
  6995   %}
  6996   ins_pipe(pipe_class_default);
  6997 %}
  6999 // src != 0, shift != 0, base != 0
  7000 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7001   match(Set dst (DecodeNKlass (Binary base src)));
  7002   //effect(kill src); // We need a register for the immediate result after shifting.
  7003   predicate(false);
  7005   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7006   postalloc_expand %{
  7007     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7008     n1->add_req(n_region, n_base, n_src);
  7009     n1->_opnds[0] = op_dst;
  7010     n1->_opnds[1] = op_base;
  7011     n1->_opnds[2] = op_src;
  7012     n1->_bottom_type = _bottom_type;
  7014     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7015     n2->add_req(n_region, n2);
  7016     n2->_opnds[0] = op_dst;
  7017     n2->_opnds[1] = op_dst;
  7018     n2->_bottom_type = _bottom_type;
  7020     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7021     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7023     nodes->push(n1);
  7024     nodes->push(n2);
  7025   %}
  7026 %}
  7028 // src != 0, shift != 0, base != 0
  7029 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7030   match(Set dst (DecodeNKlass src));
  7031   // predicate(Universe::narrow_klass_shift() != 0 &&
  7032   //           Universe::narrow_klass_base() != 0);
  7034   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7036   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7037   expand %{
  7038     // We add first, then we shift. Like this, we can get along with one register less.
  7039     // But we have to load the base pre-shifted.
  7040     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7041     iRegLdst base;
  7042     loadConL_Ex(base, baseImm);
  7043     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7044   %}
  7045 %}
  7047 //----------MemBar Instructions-----------------------------------------------
  7048 // Memory barrier flavors
  7050 instruct membar_acquire() %{
  7051   match(LoadFence);
  7052   ins_cost(4*MEMORY_REF_COST);
  7054   format %{ "MEMBAR-acquire" %}
  7055   size(4);
  7056   ins_encode %{
  7057     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7058     __ acquire();
  7059   %}
  7060   ins_pipe(pipe_class_default);
  7061 %}
  7063 instruct unnecessary_membar_acquire() %{
  7064   match(MemBarAcquire);
  7065   ins_cost(0);
  7067   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7068   size(0);
  7069   ins_encode( /*empty*/ );
  7070   ins_pipe(pipe_class_default);
  7071 %}
  7073 instruct membar_acquire_lock() %{
  7074   match(MemBarAcquireLock);
  7075   ins_cost(0);
  7077   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7078   size(0);
  7079   ins_encode( /*empty*/ );
  7080   ins_pipe(pipe_class_default);
  7081 %}
  7083 instruct membar_release() %{
  7084   match(MemBarRelease);
  7085   match(StoreFence);
  7086   ins_cost(4*MEMORY_REF_COST);
  7088   format %{ "MEMBAR-release" %}
  7089   size(4);
  7090   ins_encode %{
  7091     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7092     __ release();
  7093   %}
  7094   ins_pipe(pipe_class_default);
  7095 %}
  7097 instruct membar_storestore() %{
  7098   match(MemBarStoreStore);
  7099   ins_cost(4*MEMORY_REF_COST);
  7101   format %{ "MEMBAR-store-store" %}
  7102   size(4);
  7103   ins_encode %{
  7104     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7105     __ membar(Assembler::StoreStore);
  7106   %}
  7107   ins_pipe(pipe_class_default);
  7108 %}
  7110 instruct membar_release_lock() %{
  7111   match(MemBarReleaseLock);
  7112   ins_cost(0);
  7114   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7115   size(0);
  7116   ins_encode( /*empty*/ );
  7117   ins_pipe(pipe_class_default);
  7118 %}
  7120 instruct membar_volatile() %{
  7121   match(MemBarVolatile);
  7122   ins_cost(4*MEMORY_REF_COST);
  7124   format %{ "MEMBAR-volatile" %}
  7125   size(4);
  7126   ins_encode %{
  7127     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7128     __ fence();
  7129   %}
  7130   ins_pipe(pipe_class_default);
  7131 %}
  7133 // This optimization is wrong on PPC. The following pattern is not supported:
  7134 //  MemBarVolatile
  7135 //   ^        ^
  7136 //   |        |
  7137 //  CtrlProj MemProj
  7138 //   ^        ^
  7139 //   |        |
  7140 //   |       Load
  7141 //   |
  7142 //  MemBarVolatile
  7143 //
  7144 //  The first MemBarVolatile could get optimized out! According to
  7145 //  Vladimir, this pattern can not occur on Oracle platforms.
  7146 //  However, it does occur on PPC64 (because of membars in
  7147 //  inline_unsafe_load_store).
  7148 //
  7149 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7150 // Don't forget to look at the implementation of post_store_load_barrier again, 
  7151 // we did other fixes in that method.
  7152 //instruct unnecessary_membar_volatile() %{
  7153 //  match(MemBarVolatile);
  7154 //  predicate(Matcher::post_store_load_barrier(n));
  7155 //  ins_cost(0);
  7156 //
  7157 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7158 //  size(0);
  7159 //  ins_encode( /*empty*/ );
  7160 //  ins_pipe(pipe_class_default);
  7161 //%}
  7163 instruct membar_CPUOrder() %{
  7164   match(MemBarCPUOrder);
  7165   ins_cost(0);
  7167   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7168   size(0);
  7169   ins_encode( /*empty*/ );
  7170   ins_pipe(pipe_class_default);
  7171 %}
  7173 //----------Conditional Move---------------------------------------------------
  7175 // Cmove using isel.
  7176 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7177   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7178   predicate(VM_Version::has_isel());
  7179   ins_cost(DEFAULT_COST);
  7181   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7182   size(4);
  7183   ins_encode %{
  7184     // This is a Power7 instruction for which no machine description
  7185     // exists. Anyways, the scheduler should be off on Power7.
  7186     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7187     int cc        = $cmp$$cmpcode;
  7188     __ isel($dst$$Register, $crx$$CondRegister, 
  7189             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7190   %}
  7191   ins_pipe(pipe_class_default);
  7192 %}
  7194 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7195   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7196   predicate(!VM_Version::has_isel());
  7197   ins_cost(DEFAULT_COST+BRANCH_COST);
  7199   ins_variable_size_depending_on_alignment(true);
  7201   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7202   // Worst case is branch + move + stop, no stop without scheduler
  7203   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7204   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7205   ins_pipe(pipe_class_default);
  7206 %}
  7208 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7209   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7210   ins_cost(DEFAULT_COST+BRANCH_COST);
  7212   ins_variable_size_depending_on_alignment(true);
  7214   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7215   // Worst case is branch + move + stop, no stop without scheduler
  7216   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7217   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7218   ins_pipe(pipe_class_default);
  7219 %}
  7221 // Cmove using isel.
  7222 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7223   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7224   predicate(VM_Version::has_isel());
  7225   ins_cost(DEFAULT_COST);
  7227   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7228   size(4);
  7229   ins_encode %{
  7230     // This is a Power7 instruction for which no machine description
  7231     // exists. Anyways, the scheduler should be off on Power7.
  7232     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7233     int cc        = $cmp$$cmpcode;
  7234     __ isel($dst$$Register, $crx$$CondRegister, 
  7235             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7236   %}
  7237   ins_pipe(pipe_class_default);
  7238 %}
  7240 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7241   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7242   predicate(!VM_Version::has_isel());
  7243   ins_cost(DEFAULT_COST+BRANCH_COST);
  7245   ins_variable_size_depending_on_alignment(true);
  7247   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7248   // Worst case is branch + move + stop, no stop without scheduler.
  7249   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7250   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7251   ins_pipe(pipe_class_default);
  7252 %}
  7254 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7255   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7256   ins_cost(DEFAULT_COST+BRANCH_COST);
  7258   ins_variable_size_depending_on_alignment(true);
  7260   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7261   // Worst case is branch + move + stop, no stop without scheduler.
  7262   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7263   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7264   ins_pipe(pipe_class_default);
  7265 %}
  7267 // Cmove using isel.
  7268 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7269   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7270   predicate(VM_Version::has_isel());
  7271   ins_cost(DEFAULT_COST);
  7273   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7274   size(4);
  7275   ins_encode %{
  7276     // This is a Power7 instruction for which no machine description
  7277     // exists. Anyways, the scheduler should be off on Power7.
  7278     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7279     int cc        = $cmp$$cmpcode;
  7280     __ isel($dst$$Register, $crx$$CondRegister, 
  7281             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7282   %}
  7283   ins_pipe(pipe_class_default);
  7284 %}
  7286 // Conditional move for RegN. Only cmov(reg, reg).
  7287 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7288   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7289   predicate(!VM_Version::has_isel());
  7290   ins_cost(DEFAULT_COST+BRANCH_COST);
  7292   ins_variable_size_depending_on_alignment(true);
  7294   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7295   // Worst case is branch + move + stop, no stop without scheduler.
  7296   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7297   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7298   ins_pipe(pipe_class_default);
  7299 %}
  7301 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7302   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7303   ins_cost(DEFAULT_COST+BRANCH_COST);
  7305   ins_variable_size_depending_on_alignment(true);
  7307   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7308   // Worst case is branch + move + stop, no stop without scheduler.
  7309   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7310   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7311   ins_pipe(pipe_class_default);
  7312 %}
  7314 // Cmove using isel.
  7315 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7316   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7317   predicate(VM_Version::has_isel());
  7318   ins_cost(DEFAULT_COST);
  7320   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7321   size(4);
  7322   ins_encode %{
  7323     // This is a Power7 instruction for which no machine description
  7324     // exists. Anyways, the scheduler should be off on Power7.
  7325     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7326     int cc        = $cmp$$cmpcode;
  7327     __ isel($dst$$Register, $crx$$CondRegister, 
  7328             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7329   %}
  7330   ins_pipe(pipe_class_default);
  7331 %}
  7333 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7334   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7335   predicate(!VM_Version::has_isel());
  7336   ins_cost(DEFAULT_COST+BRANCH_COST);
  7338   ins_variable_size_depending_on_alignment(true);
  7340   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7341   // Worst case is branch + move + stop, no stop without scheduler.
  7342   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7343   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7344   ins_pipe(pipe_class_default);
  7345 %}
  7347 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7348   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7349   ins_cost(DEFAULT_COST+BRANCH_COST);
  7351   ins_variable_size_depending_on_alignment(true);
  7353   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7354   // Worst case is branch + move + stop, no stop without scheduler.
  7355   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7356   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7357   ins_pipe(pipe_class_default);
  7358 %}
  7360 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7361   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7362   ins_cost(DEFAULT_COST+BRANCH_COST);
  7364   ins_variable_size_depending_on_alignment(true);
  7366   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7367   // Worst case is branch + move + stop, no stop without scheduler.
  7368   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7369   ins_encode %{
  7370     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7371     Label done;
  7372     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7373     // Branch if not (cmp crx).
  7374     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7375     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7376     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7377     __ bind(done);
  7378   %}
  7379   ins_pipe(pipe_class_default);
  7380 %}
  7382 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7383   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7384   ins_cost(DEFAULT_COST+BRANCH_COST);
  7386   ins_variable_size_depending_on_alignment(true);
  7388   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7389   // Worst case is branch + move + stop, no stop without scheduler.
  7390   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7391   ins_encode %{
  7392     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7393     Label done;
  7394     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7395     // Branch if not (cmp crx).
  7396     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7397     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7398     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7399     __ bind(done);
  7400   %}
  7401   ins_pipe(pipe_class_default);
  7402 %}
  7404 //----------Conditional_store--------------------------------------------------
  7405 // Conditional-store of the updated heap-top.
  7406 // Used during allocation of the shared heap.
  7407 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7409 // As compareAndSwapL, but return flag register instead of boolean value in
  7410 // int register.
  7411 // Used by sun/misc/AtomicLongCSImpl.java.
  7412 // Mem_ptr must be a memory operand, else this node does not get
  7413 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7414 // can be rematerialized which leads to errors.
  7415 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7416   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7417   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7418   ins_encode %{
  7419     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7420     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7421                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7422                 noreg, NULL, true);
  7423   %}
  7424   ins_pipe(pipe_class_default);
  7425 %}
  7427 // As compareAndSwapP, but return flag register instead of boolean value in
  7428 // int register.
  7429 // This instruction is matched if UseTLAB is off.
  7430 // Mem_ptr must be a memory operand, else this node does not get
  7431 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7432 // can be rematerialized which leads to errors.
  7433 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7434   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7435   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7436   ins_encode %{
  7437     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7438     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7439                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7440                 noreg, NULL, true);
  7441   %}
  7442   ins_pipe(pipe_class_default);
  7443 %}
  7445 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7446 // by storePConditional.
  7447 // Don't know whether this is ever used.
  7448 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7449   match(Set dst (LoadPLocked mem));
  7450   ins_cost(MEMORY_REF_COST);
  7452   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7453             "TWI     $dst\n\t"
  7454             "ISYNC" %}
  7455   size(12);
  7456   ins_encode( enc_ld_ac(dst, mem) );
  7457   ins_pipe(pipe_class_memory);
  7458 %}
  7460 //----------Compare-And-Swap---------------------------------------------------
  7462 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7463 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7464 // matched.
  7466 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7467   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7468   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7469   // Variable size: instruction count smaller if regs are disjoint.
  7470   ins_encode %{
  7471     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7472     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7473     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register, 
  7474                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(), 
  7475                 $res$$Register, true);
  7476   %}
  7477   ins_pipe(pipe_class_default);
  7478 %}
  7480 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7481   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7482   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7483   // Variable size: instruction count smaller if regs are disjoint.
  7484   ins_encode %{
  7485     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7486     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7487     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7488                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7489                 $res$$Register, true);
  7490   %}
  7491   ins_pipe(pipe_class_default);
  7492 %}
  7494 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7495   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7496   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7497   // Variable size: instruction count smaller if regs are disjoint.
  7498   ins_encode %{
  7499     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7500     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7501     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7502                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7503                 $res$$Register, NULL, true);
  7504   %}
  7505   ins_pipe(pipe_class_default);
  7506 %}
  7508 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7509   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7510   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7511   // Variable size: instruction count smaller if regs are disjoint.
  7512   ins_encode %{
  7513     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7514     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7515     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7516                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7517                 $res$$Register, NULL, true);
  7518   %}
  7519   ins_pipe(pipe_class_default);
  7520 %}
  7522 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7523   match(Set res (GetAndAddI mem_ptr src));
  7524   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7525   // Variable size: instruction count smaller if regs are disjoint.
  7526   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7527   ins_pipe(pipe_class_default);
  7528 %}
  7530 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7531   match(Set res (GetAndAddL mem_ptr src));
  7532   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7533   // Variable size: instruction count smaller if regs are disjoint.
  7534   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7535   ins_pipe(pipe_class_default);
  7536 %}
  7538 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7539   match(Set res (GetAndSetI mem_ptr src));
  7540   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7541   // Variable size: instruction count smaller if regs are disjoint.
  7542   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7543   ins_pipe(pipe_class_default);
  7544 %}
  7546 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7547   match(Set res (GetAndSetL mem_ptr src));
  7548   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7549   // Variable size: instruction count smaller if regs are disjoint.
  7550   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7551   ins_pipe(pipe_class_default);
  7552 %}
  7554 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7555   match(Set res (GetAndSetP mem_ptr src));
  7556   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7557   // Variable size: instruction count smaller if regs are disjoint.
  7558   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7559   ins_pipe(pipe_class_default);
  7560 %}
  7562 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7563   match(Set res (GetAndSetN mem_ptr src));
  7564   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7565   // Variable size: instruction count smaller if regs are disjoint.
  7566   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7567   ins_pipe(pipe_class_default);
  7568 %}
  7570 //----------Arithmetic Instructions--------------------------------------------
  7571 // Addition Instructions
  7573 // PPC has no instruction setting overflow of 32-bit integer.
  7574 //instruct addExactI_rReg(rarg4RegI dst, rRegI src, flagsReg cr) %{
  7575 //  match(AddExactI dst src);
  7576 //  effect(DEF cr);
  7577 //
  7578 //  format %{ "ADD     $dst, $dst, $src \t// addExact int, sets $cr" %}
  7579 //  ins_encode( enc_add(dst, dst, src) );
  7580 //  ins_pipe(pipe_class_default);
  7581 //%}
  7583 // Register Addition
  7584 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7585   match(Set dst (AddI src1 src2));
  7586   format %{ "ADD     $dst, $src1, $src2" %}
  7587   size(4);
  7588   ins_encode %{
  7589     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7590     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7591   %}
  7592   ins_pipe(pipe_class_default);
  7593 %}
  7595 // Expand does not work with above instruct. (??)
  7596 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7597   // no match-rule
  7598   effect(DEF dst, USE src1, USE src2);
  7599   format %{ "ADD     $dst, $src1, $src2" %}
  7600   size(4);
  7601   ins_encode %{
  7602     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7603     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7604   %}
  7605   ins_pipe(pipe_class_default);
  7606 %}
  7608 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7609   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7610   ins_cost(DEFAULT_COST*3);
  7612   expand %{
  7613     // FIXME: we should do this in the ideal world.
  7614     iRegIdst tmp1;
  7615     iRegIdst tmp2;
  7616     addI_reg_reg(tmp1, src1, src2);
  7617     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7618     addI_reg_reg(dst, tmp1, tmp2);
  7619   %}
  7620 %}
  7622 // Immediate Addition
  7623 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7624   match(Set dst (AddI src1 src2));
  7625   format %{ "ADDI    $dst, $src1, $src2" %}
  7626   size(4);
  7627   ins_encode %{
  7628     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7629     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7630   %}
  7631   ins_pipe(pipe_class_default);
  7632 %}
  7634 // Immediate Addition with 16-bit shifted operand
  7635 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7636   match(Set dst (AddI src1 src2));
  7637   format %{ "ADDIS   $dst, $src1, $src2" %}
  7638   size(4);
  7639   ins_encode %{
  7640     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7641     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7642   %}
  7643   ins_pipe(pipe_class_default);
  7644 %}
  7646 // Long Addition
  7647 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7648   match(Set dst (AddL src1 src2));
  7649   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7650   size(4);
  7651   ins_encode %{
  7652     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7653     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7654   %}
  7655   ins_pipe(pipe_class_default);
  7656 %}
  7658 // Expand does not work with above instruct. (??)
  7659 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7660   // no match-rule
  7661   effect(DEF dst, USE src1, USE src2);
  7662   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7663   size(4);
  7664   ins_encode %{
  7665     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7666     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7667   %}
  7668   ins_pipe(pipe_class_default);
  7669 %}
  7671 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7672   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7673   ins_cost(DEFAULT_COST*3);
  7675   expand %{
  7676     // FIXME: we should do this in the ideal world.
  7677     iRegLdst tmp1;
  7678     iRegLdst tmp2;
  7679     addL_reg_reg(tmp1, src1, src2);
  7680     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7681     addL_reg_reg(dst, tmp1, tmp2);
  7682   %}
  7683 %}
  7685 // AddL + ConvL2I.
  7686 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7687   match(Set dst (ConvL2I (AddL src1 src2)));
  7689   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7690   size(4);
  7691   ins_encode %{
  7692     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7693     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7694   %}
  7695   ins_pipe(pipe_class_default);
  7696 %}
  7698 // No constant pool entries required.
  7699 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7700   match(Set dst (AddL src1 src2));
  7702   format %{ "ADDI    $dst, $src1, $src2" %}
  7703   size(4);
  7704   ins_encode %{
  7705     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7706     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7707   %}
  7708   ins_pipe(pipe_class_default);
  7709 %}
  7711 // Long Immediate Addition with 16-bit shifted operand.
  7712 // No constant pool entries required.
  7713 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7714   match(Set dst (AddL src1 src2));
  7716   format %{ "ADDIS   $dst, $src1, $src2" %}
  7717   size(4);
  7718   ins_encode %{
  7719     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7720     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7721   %}
  7722   ins_pipe(pipe_class_default);
  7723 %}
  7725 // Pointer Register Addition
  7726 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7727   match(Set dst (AddP src1 src2));
  7728   format %{ "ADD     $dst, $src1, $src2" %}
  7729   size(4);
  7730   ins_encode %{
  7731     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7732     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7733   %}
  7734   ins_pipe(pipe_class_default);
  7735 %}
  7737 // Pointer Immediate Addition
  7738 // No constant pool entries required.
  7739 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7740   match(Set dst (AddP src1 src2));
  7742   format %{ "ADDI    $dst, $src1, $src2" %}
  7743   size(4);
  7744   ins_encode %{
  7745     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7746     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7747   %}
  7748   ins_pipe(pipe_class_default);
  7749 %}
  7751 // Pointer Immediate Addition with 16-bit shifted operand.
  7752 // No constant pool entries required.
  7753 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7754   match(Set dst (AddP src1 src2));
  7756   format %{ "ADDIS   $dst, $src1, $src2" %}
  7757   size(4);
  7758   ins_encode %{
  7759     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7760     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7761   %}
  7762   ins_pipe(pipe_class_default);
  7763 %}
  7765 //---------------------
  7766 // Subtraction Instructions
  7768 // Register Subtraction
  7769 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7770   match(Set dst (SubI src1 src2));
  7771   format %{ "SUBF    $dst, $src2, $src1" %}
  7772   size(4);
  7773   ins_encode %{
  7774     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7775     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7776   %}
  7777   ins_pipe(pipe_class_default);
  7778 %}
  7780 // Immediate Subtraction
  7781 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7782 // so this rule seems to be unused.
  7783 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7784   match(Set dst (SubI src1 src2));
  7785   format %{ "SUBI    $dst, $src1, $src2" %}
  7786   size(4);
  7787   ins_encode %{
  7788     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7789     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7790   %}
  7791   ins_pipe(pipe_class_default);
  7792 %}
  7794 // SubI from constant (using subfic).
  7795 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7796   match(Set dst (SubI src1 src2));
  7797   format %{ "SUBI    $dst, $src1, $src2" %}
  7799   size(4);
  7800   ins_encode %{
  7801     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7802     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7803   %}
  7804   ins_pipe(pipe_class_default);
  7805 %}
  7807 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7808 // positive integers and 0xF...F for negative ones.
  7809 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7810   // no match-rule, false predicate
  7811   effect(DEF dst, USE src);
  7812   predicate(false);
  7814   format %{ "SRAWI   $dst, $src, #31" %}
  7815   size(4);
  7816   ins_encode %{
  7817     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7818     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7819   %}
  7820   ins_pipe(pipe_class_default);
  7821 %}
  7823 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7824   match(Set dst (AbsI src));
  7825   ins_cost(DEFAULT_COST*3);
  7827   expand %{
  7828     iRegIdst tmp1;
  7829     iRegIdst tmp2;
  7830     signmask32I_regI(tmp1, src);
  7831     xorI_reg_reg(tmp2, tmp1, src);
  7832     subI_reg_reg(dst, tmp2, tmp1);
  7833   %}
  7834 %}
  7836 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7837   match(Set dst (SubI zero src2));
  7838   format %{ "NEG     $dst, $src2" %}
  7839   size(4);
  7840   ins_encode %{
  7841     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7842     __ neg($dst$$Register, $src2$$Register);
  7843   %}
  7844   ins_pipe(pipe_class_default);
  7845 %}
  7847 // Long subtraction
  7848 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7849   match(Set dst (SubL src1 src2));
  7850   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7851   size(4);
  7852   ins_encode %{
  7853     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7854     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7855   %}
  7856   ins_pipe(pipe_class_default);
  7857 %}
  7859 // SubL + convL2I.
  7860 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7861   match(Set dst (ConvL2I (SubL src1 src2)));
  7863   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7864   size(4);
  7865   ins_encode %{
  7866     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7867     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7868   %}
  7869   ins_pipe(pipe_class_default);
  7870 %}
  7872 // Immediate Subtraction
  7873 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7874 // so this rule seems to be unused.
  7875 // No constant pool entries required.
  7876 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7877   match(Set dst (SubL src1 src2));
  7879   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7880   size(4);
  7881   ins_encode %{
  7882     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7883     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7884   %}
  7885   ins_pipe(pipe_class_default);
  7886 %}
  7888 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7889 // positive longs and 0xF...F for negative ones.
  7890 instruct signmask64I_regI(iRegIdst dst, iRegIsrc src) %{
  7891   // no match-rule, false predicate
  7892   effect(DEF dst, USE src);
  7893   predicate(false);
  7895   format %{ "SRADI   $dst, $src, #63" %}
  7896   size(4);
  7897   ins_encode %{
  7898     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7899     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7900   %}
  7901   ins_pipe(pipe_class_default);
  7902 %}
  7904 // Long negation
  7905 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7906   match(Set dst (SubL zero src2));
  7907   format %{ "NEG     $dst, $src2 \t// long" %}
  7908   size(4);
  7909   ins_encode %{
  7910     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7911     __ neg($dst$$Register, $src2$$Register);
  7912   %}
  7913   ins_pipe(pipe_class_default);
  7914 %}
  7916 // NegL + ConvL2I.
  7917 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7918   match(Set dst (ConvL2I (SubL zero src2)));
  7920   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7921   size(4);
  7922   ins_encode %{
  7923     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7924     __ neg($dst$$Register, $src2$$Register);
  7925   %}
  7926   ins_pipe(pipe_class_default);
  7927 %}
  7929 // Multiplication Instructions
  7930 // Integer Multiplication
  7932 // Register Multiplication
  7933 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7934   match(Set dst (MulI src1 src2));
  7935   ins_cost(DEFAULT_COST);
  7937   format %{ "MULLW   $dst, $src1, $src2" %}
  7938   size(4);
  7939   ins_encode %{
  7940     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  7941     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  7942   %}
  7943   ins_pipe(pipe_class_default);
  7944 %}
  7946 // Immediate Multiplication
  7947 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7948   match(Set dst (MulI src1 src2));
  7949   ins_cost(DEFAULT_COST);
  7951   format %{ "MULLI   $dst, $src1, $src2" %}
  7952   size(4);
  7953   ins_encode %{
  7954     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  7955     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  7956   %}
  7957   ins_pipe(pipe_class_default);
  7958 %}
  7960 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7961   match(Set dst (MulL src1 src2));
  7962   ins_cost(DEFAULT_COST);
  7964   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  7965   size(4);
  7966   ins_encode %{
  7967     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  7968     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  7969   %}
  7970   ins_pipe(pipe_class_default);
  7971 %}
  7973 // Multiply high for optimized long division by constant.
  7974 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7975   match(Set dst (MulHiL src1 src2));
  7976   ins_cost(DEFAULT_COST);
  7978   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  7979   size(4);
  7980   ins_encode %{
  7981     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  7982     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  7983   %}
  7984   ins_pipe(pipe_class_default);
  7985 %}
  7987 // Immediate Multiplication
  7988 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7989   match(Set dst (MulL src1 src2));
  7990   ins_cost(DEFAULT_COST);
  7992   format %{ "MULLI   $dst, $src1, $src2" %}
  7993   size(4);
  7994   ins_encode %{
  7995     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  7996     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  7997   %}
  7998   ins_pipe(pipe_class_default);
  7999 %}
  8001 // Integer Division with Immediate -1: Negate.
  8002 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8003   match(Set dst (DivI src1 src2));
  8004   ins_cost(DEFAULT_COST);
  8006   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8007   size(4);
  8008   ins_encode %{
  8009     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8010     __ neg($dst$$Register, $src1$$Register);
  8011   %}
  8012   ins_pipe(pipe_class_default);
  8013 %}
  8015 // Integer Division with constant, but not -1.
  8016 // We should be able to improve this by checking the type of src2.
  8017 // It might well be that src2 is known to be positive.
  8018 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8019   match(Set dst (DivI src1 src2));
  8020   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8021   ins_cost(2*DEFAULT_COST);
  8023   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8024   size(4);
  8025   ins_encode %{
  8026     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8027     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8028   %}
  8029   ins_pipe(pipe_class_default);
  8030 %}
  8032 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8033   effect(USE_DEF dst, USE src1, USE crx);
  8034   predicate(false);
  8036   ins_variable_size_depending_on_alignment(true);
  8038   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8039   // Worst case is branch + move + stop, no stop without scheduler.
  8040   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8041   ins_encode %{
  8042     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8043     Label done;
  8044     __ bne($crx$$CondRegister, done);
  8045     __ neg($dst$$Register, $src1$$Register);
  8046     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8047     __ bind(done);
  8048   %}
  8049   ins_pipe(pipe_class_default);
  8050 %}
  8052 // Integer Division with Registers not containing constants.
  8053 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8054   match(Set dst (DivI src1 src2));
  8055   ins_cost(10*DEFAULT_COST);
  8057   expand %{
  8058     immI16 imm %{ (int)-1 %}
  8059     flagsReg tmp1;
  8060     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8061     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8062     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8063   %}
  8064 %}
  8066 // Long Division with Immediate -1: Negate.
  8067 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8068   match(Set dst (DivL src1 src2));
  8069   ins_cost(DEFAULT_COST);
  8071   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8072   size(4);
  8073   ins_encode %{
  8074     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8075     __ neg($dst$$Register, $src1$$Register);
  8076   %}
  8077   ins_pipe(pipe_class_default);
  8078 %}
  8080 // Long Division with constant, but not -1.
  8081 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8082   match(Set dst (DivL src1 src2));
  8083   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8084   ins_cost(2*DEFAULT_COST);
  8086   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8087   size(4);
  8088   ins_encode %{
  8089     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8090     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8091   %}
  8092   ins_pipe(pipe_class_default);
  8093 %}
  8095 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8096   effect(USE_DEF dst, USE src1, USE crx);
  8097   predicate(false);
  8099   ins_variable_size_depending_on_alignment(true);
  8101   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8102   // Worst case is branch + move + stop, no stop without scheduler.
  8103   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8104   ins_encode %{
  8105     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8106     Label done;
  8107     __ bne($crx$$CondRegister, done);
  8108     __ neg($dst$$Register, $src1$$Register);
  8109     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8110     __ bind(done);
  8111   %}
  8112   ins_pipe(pipe_class_default);
  8113 %}
  8115 // Long Division with Registers not containing constants.
  8116 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8117   match(Set dst (DivL src1 src2));
  8118   ins_cost(10*DEFAULT_COST);
  8120   expand %{
  8121     immL16 imm %{ (int)-1 %}
  8122     flagsReg tmp1;
  8123     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8124     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8125     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8126   %}
  8127 %}
  8129 // Integer Remainder with registers.
  8130 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8131   match(Set dst (ModI src1 src2));
  8132   ins_cost(10*DEFAULT_COST);
  8134   expand %{
  8135     immI16 imm %{ (int)-1 %}
  8136     flagsReg tmp1;
  8137     iRegIdst tmp2;
  8138     iRegIdst tmp3;
  8139     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8140     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8141     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8142     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8143     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8144   %}
  8145 %}
  8147 // Long Remainder with registers
  8148 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8149   match(Set dst (ModL src1 src2));
  8150   ins_cost(10*DEFAULT_COST);
  8152   expand %{
  8153     immL16 imm %{ (int)-1 %}
  8154     flagsReg tmp1;
  8155     iRegLdst tmp2;
  8156     iRegLdst tmp3;
  8157     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8158     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8159     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8160     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8161     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8162   %}
  8163 %}
  8165 // Integer Shift Instructions
  8167 // Register Shift Left
  8169 // Clear all but the lowest #mask bits.
  8170 // Used to normalize shift amounts in registers.
  8171 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8172   // no match-rule, false predicate
  8173   effect(DEF dst, USE src, USE mask);
  8174   predicate(false);
  8176   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8177   size(4);
  8178   ins_encode %{
  8179     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8180     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8181   %}
  8182   ins_pipe(pipe_class_default);
  8183 %}
  8185 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8186   // no match-rule, false predicate
  8187   effect(DEF dst, USE src1, USE src2);
  8188   predicate(false);
  8190   format %{ "SLW     $dst, $src1, $src2" %}
  8191   size(4);
  8192   ins_encode %{
  8193     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8194     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8195   %}
  8196   ins_pipe(pipe_class_default);
  8197 %}
  8199 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8200   match(Set dst (LShiftI src1 src2));
  8201   ins_cost(DEFAULT_COST*2);
  8202   expand %{
  8203     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8204     iRegIdst tmpI;
  8205     maskI_reg_imm(tmpI, src2, mask);
  8206     lShiftI_reg_reg(dst, src1, tmpI);
  8207   %}
  8208 %}
  8210 // Register Shift Left Immediate
  8211 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8212   match(Set dst (LShiftI src1 src2));
  8214   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8215   size(4);
  8216   ins_encode %{
  8217     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8218     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8219   %}
  8220   ins_pipe(pipe_class_default);
  8221 %}
  8223 // AndI with negpow2-constant + LShiftI
  8224 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8225   match(Set dst (LShiftI (AndI src1 src2) src3));
  8226   predicate(UseRotateAndMaskInstructionsPPC64);
  8228   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8229   size(4);
  8230   ins_encode %{
  8231     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8232     long src2      = $src2$$constant;
  8233     long src3      = $src3$$constant;
  8234     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8235     if (maskbits >= 32) {
  8236       __ li($dst$$Register, 0); // addi
  8237     } else {
  8238       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8240   %}
  8241   ins_pipe(pipe_class_default);
  8242 %}
  8244 // RShiftI + AndI with negpow2-constant + LShiftI
  8245 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8246   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8247   predicate(UseRotateAndMaskInstructionsPPC64);
  8249   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8250   size(4);
  8251   ins_encode %{
  8252     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8253     long src2      = $src2$$constant;
  8254     long src3      = $src3$$constant;
  8255     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8256     if (maskbits >= 32) {
  8257       __ li($dst$$Register, 0); // addi
  8258     } else {
  8259       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8261   %}
  8262   ins_pipe(pipe_class_default);
  8263 %}
  8265 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8266   // no match-rule, false predicate
  8267   effect(DEF dst, USE src1, USE src2);
  8268   predicate(false);
  8270   format %{ "SLD     $dst, $src1, $src2" %}
  8271   size(4);
  8272   ins_encode %{
  8273     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8274     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8275   %}
  8276   ins_pipe(pipe_class_default);
  8277 %}
  8279 // Register Shift Left
  8280 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8281   match(Set dst (LShiftL src1 src2));
  8282   ins_cost(DEFAULT_COST*2);
  8283   expand %{
  8284     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8285     iRegIdst tmpI;
  8286     maskI_reg_imm(tmpI, src2, mask);
  8287     lShiftL_regL_regI(dst, src1, tmpI);
  8288   %}
  8289 %}
  8291 // Register Shift Left Immediate
  8292 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8293   match(Set dst (LShiftL src1 src2));
  8294   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8295   size(4);
  8296   ins_encode %{
  8297     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8298     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8299   %}
  8300   ins_pipe(pipe_class_default);
  8301 %}
  8303 // If we shift more than 32 bits, we need not convert I2L.
  8304 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8305   match(Set dst (LShiftL (ConvI2L src1) src2));
  8306   ins_cost(DEFAULT_COST);
  8308   size(4);
  8309   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8310   ins_encode %{
  8311     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8312     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8313   %}
  8314   ins_pipe(pipe_class_default);
  8315 %}
  8317 // Shift a postivie int to the left.
  8318 // Clrlsldi clears the upper 32 bits and shifts.
  8319 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8320   match(Set dst (LShiftL (ConvI2L src1) src2));
  8321   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8323   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8324   size(4);
  8325   ins_encode %{
  8326     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8327     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8328   %}
  8329   ins_pipe(pipe_class_default);
  8330 %}
  8332 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8333   // no match-rule, false predicate
  8334   effect(DEF dst, USE src1, USE src2);
  8335   predicate(false);
  8337   format %{ "SRAW    $dst, $src1, $src2" %}
  8338   size(4);
  8339   ins_encode %{
  8340     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8341     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8342   %}
  8343   ins_pipe(pipe_class_default);
  8344 %}
  8346 // Register Arithmetic Shift Right
  8347 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8348   match(Set dst (RShiftI src1 src2));
  8349   ins_cost(DEFAULT_COST*2);
  8350   expand %{
  8351     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8352     iRegIdst tmpI;
  8353     maskI_reg_imm(tmpI, src2, mask);
  8354     arShiftI_reg_reg(dst, src1, tmpI);
  8355   %}
  8356 %}
  8358 // Register Arithmetic Shift Right Immediate
  8359 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8360   match(Set dst (RShiftI src1 src2));
  8362   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8363   size(4);
  8364   ins_encode %{
  8365     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8366     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8367   %}
  8368   ins_pipe(pipe_class_default);
  8369 %}
  8371 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8372   // no match-rule, false predicate
  8373   effect(DEF dst, USE src1, USE src2);
  8374   predicate(false);
  8376   format %{ "SRAD    $dst, $src1, $src2" %}
  8377   size(4);
  8378   ins_encode %{
  8379     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8380     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8381   %}
  8382   ins_pipe(pipe_class_default);
  8383 %}
  8385 // Register Shift Right Arithmetic Long
  8386 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8387   match(Set dst (RShiftL src1 src2));
  8388   ins_cost(DEFAULT_COST*2);
  8390   expand %{
  8391     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8392     iRegIdst tmpI;
  8393     maskI_reg_imm(tmpI, src2, mask);
  8394     arShiftL_regL_regI(dst, src1, tmpI);
  8395   %}
  8396 %}
  8398 // Register Shift Right Immediate
  8399 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8400   match(Set dst (RShiftL src1 src2));
  8402   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8403   size(4);
  8404   ins_encode %{
  8405     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8406     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8407   %}
  8408   ins_pipe(pipe_class_default);
  8409 %}
  8411 // RShiftL + ConvL2I
  8412 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8413   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8415   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8416   size(4);
  8417   ins_encode %{
  8418     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8419     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8420   %}
  8421   ins_pipe(pipe_class_default);
  8422 %}
  8424 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8425   // no match-rule, false predicate
  8426   effect(DEF dst, USE src1, USE src2);
  8427   predicate(false);
  8429   format %{ "SRW     $dst, $src1, $src2" %}
  8430   size(4);
  8431   ins_encode %{
  8432     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8433     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8434   %}
  8435   ins_pipe(pipe_class_default);
  8436 %}
  8438 // Register Shift Right
  8439 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8440   match(Set dst (URShiftI src1 src2));
  8441   ins_cost(DEFAULT_COST*2);
  8443   expand %{
  8444     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8445     iRegIdst tmpI;
  8446     maskI_reg_imm(tmpI, src2, mask);
  8447     urShiftI_reg_reg(dst, src1, tmpI);
  8448   %}
  8449 %}
  8451 // Register Shift Right Immediate
  8452 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8453   match(Set dst (URShiftI src1 src2));
  8455   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8456   size(4);
  8457   ins_encode %{
  8458     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8459     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8460   %}
  8461   ins_pipe(pipe_class_default);
  8462 %}
  8464 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8465   // no match-rule, false predicate
  8466   effect(DEF dst, USE src1, USE src2);
  8467   predicate(false);
  8469   format %{ "SRD     $dst, $src1, $src2" %}
  8470   size(4);
  8471   ins_encode %{
  8472     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8473     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8474   %}
  8475   ins_pipe(pipe_class_default);
  8476 %}
  8478 // Register Shift Right
  8479 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8480   match(Set dst (URShiftL src1 src2));
  8481   ins_cost(DEFAULT_COST*2);
  8483   expand %{
  8484     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8485     iRegIdst tmpI;
  8486     maskI_reg_imm(tmpI, src2, mask);
  8487     urShiftL_regL_regI(dst, src1, tmpI);
  8488   %}
  8489 %}
  8491 // Register Shift Right Immediate
  8492 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8493   match(Set dst (URShiftL src1 src2));
  8495   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8496   size(4);
  8497   ins_encode %{
  8498     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8499     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8500   %}
  8501   ins_pipe(pipe_class_default);
  8502 %}
  8504 // URShiftL + ConvL2I.
  8505 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8506   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8508   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8509   size(4);
  8510   ins_encode %{
  8511     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8512     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8513   %}
  8514   ins_pipe(pipe_class_default);
  8515 %}
  8517 // Register Shift Right Immediate with a CastP2X
  8518 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8519   match(Set dst (URShiftL (CastP2X src1) src2));
  8521   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8522   size(4);
  8523   ins_encode %{
  8524     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8525     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8526   %}
  8527   ins_pipe(pipe_class_default);
  8528 %}
  8530 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8531   match(Set dst (ConvL2I (ConvI2L src)));
  8533   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8534   size(4);
  8535   ins_encode %{
  8536     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8537     __ extsw($dst$$Register, $src$$Register);
  8538   %}
  8539   ins_pipe(pipe_class_default);
  8540 %}
  8542 //----------Rotate Instructions------------------------------------------------
  8544 // Rotate Left by 8-bit immediate
  8545 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8546   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8547   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8549   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8550   size(4);
  8551   ins_encode %{
  8552     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8553     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8554   %}
  8555   ins_pipe(pipe_class_default);
  8556 %}
  8558 // Rotate Right by 8-bit immediate
  8559 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8560   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8561   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8563   format %{ "ROTRWI  $dst, $rshift" %}
  8564   size(4);
  8565   ins_encode %{
  8566     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8567     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8568   %}
  8569   ins_pipe(pipe_class_default);
  8570 %}
  8572 //----------Floating Point Arithmetic Instructions-----------------------------
  8574 // Add float single precision
  8575 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8576   match(Set dst (AddF src1 src2));
  8578   format %{ "FADDS   $dst, $src1, $src2" %}
  8579   size(4);
  8580   ins_encode %{
  8581     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8582     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8583   %}
  8584   ins_pipe(pipe_class_default);
  8585 %}
  8587 // Add float double precision
  8588 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8589   match(Set dst (AddD src1 src2));
  8591   format %{ "FADD    $dst, $src1, $src2" %}
  8592   size(4);
  8593   ins_encode %{
  8594     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8595     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8596   %}
  8597   ins_pipe(pipe_class_default);
  8598 %}
  8600 // Sub float single precision
  8601 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8602   match(Set dst (SubF src1 src2));
  8604   format %{ "FSUBS   $dst, $src1, $src2" %}
  8605   size(4);
  8606   ins_encode %{
  8607     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8608     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8609   %}
  8610   ins_pipe(pipe_class_default);
  8611 %}
  8613 // Sub float double precision
  8614 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8615   match(Set dst (SubD src1 src2));
  8616   format %{ "FSUB    $dst, $src1, $src2" %}
  8617   size(4);
  8618   ins_encode %{
  8619     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8620     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8621   %}
  8622   ins_pipe(pipe_class_default);
  8623 %}
  8625 // Mul float single precision
  8626 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8627   match(Set dst (MulF src1 src2));
  8628   format %{ "FMULS   $dst, $src1, $src2" %}
  8629   size(4);
  8630   ins_encode %{
  8631     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8632     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8633   %}
  8634   ins_pipe(pipe_class_default);
  8635 %}
  8637 // Mul float double precision
  8638 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8639   match(Set dst (MulD src1 src2));
  8640   format %{ "FMUL    $dst, $src1, $src2" %}
  8641   size(4);
  8642   ins_encode %{
  8643     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8644     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8645   %}
  8646   ins_pipe(pipe_class_default);
  8647 %}
  8649 // Div float single precision
  8650 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8651   match(Set dst (DivF src1 src2));
  8652   format %{ "FDIVS   $dst, $src1, $src2" %}
  8653   size(4);
  8654   ins_encode %{
  8655     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8656     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8657   %}
  8658   ins_pipe(pipe_class_default);
  8659 %}
  8661 // Div float double precision
  8662 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8663   match(Set dst (DivD src1 src2));
  8664   format %{ "FDIV    $dst, $src1, $src2" %}
  8665   size(4);
  8666   ins_encode %{
  8667     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8668     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8669   %}
  8670   ins_pipe(pipe_class_default);
  8671 %}
  8673 // Absolute float single precision
  8674 instruct absF_reg(regF dst, regF src) %{
  8675   match(Set dst (AbsF src));
  8676   format %{ "FABS    $dst, $src \t// float" %}
  8677   size(4);
  8678   ins_encode %{
  8679     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8680     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8681   %}
  8682   ins_pipe(pipe_class_default);
  8683 %}
  8685 // Absolute float double precision
  8686 instruct absD_reg(regD dst, regD src) %{
  8687   match(Set dst (AbsD src));
  8688   format %{ "FABS    $dst, $src \t// double" %}
  8689   size(4);
  8690   ins_encode %{
  8691     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8692     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8693   %}
  8694   ins_pipe(pipe_class_default);
  8695 %}
  8697 instruct negF_reg(regF dst, regF src) %{
  8698   match(Set dst (NegF src));
  8699   format %{ "FNEG    $dst, $src \t// float" %}
  8700   size(4);
  8701   ins_encode %{
  8702     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8703     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8704   %}
  8705   ins_pipe(pipe_class_default);
  8706 %}
  8708 instruct negD_reg(regD dst, regD src) %{
  8709   match(Set dst (NegD src));
  8710   format %{ "FNEG    $dst, $src \t// double" %}
  8711   size(4);
  8712   ins_encode %{
  8713     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8714     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8715   %}
  8716   ins_pipe(pipe_class_default);
  8717 %}
  8719 // AbsF + NegF.
  8720 instruct negF_absF_reg(regF dst, regF src) %{
  8721   match(Set dst (NegF (AbsF src)));
  8722   format %{ "FNABS   $dst, $src \t// float" %}
  8723   size(4);
  8724   ins_encode %{
  8725     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8726     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8727   %}
  8728   ins_pipe(pipe_class_default);
  8729 %}
  8731 // AbsD + NegD.
  8732 instruct negD_absD_reg(regD dst, regD src) %{
  8733   match(Set dst (NegD (AbsD src)));
  8734   format %{ "FNABS   $dst, $src \t// double" %}
  8735   size(4);
  8736   ins_encode %{
  8737     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8738     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8739   %}
  8740   ins_pipe(pipe_class_default);
  8741 %}
  8743 // VM_Version::has_sqrt() decides if this node will be used.
  8744 // Sqrt float double precision
  8745 instruct sqrtD_reg(regD dst, regD src) %{
  8746   match(Set dst (SqrtD src));
  8747   format %{ "FSQRT   $dst, $src" %}
  8748   size(4);
  8749   ins_encode %{
  8750     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8751     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8752   %}
  8753   ins_pipe(pipe_class_default);
  8754 %}
  8756 // Single-precision sqrt.
  8757 instruct sqrtF_reg(regF dst, regF src) %{
  8758   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8759   ins_cost(DEFAULT_COST);
  8761   format %{ "FSQRTS  $dst, $src" %}
  8762   size(4);
  8763   ins_encode %{
  8764     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8765     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8766   %}
  8767   ins_pipe(pipe_class_default);
  8768 %}
  8770 instruct roundDouble_nop(regD dst) %{
  8771   match(Set dst (RoundDouble dst));
  8772   ins_cost(0);
  8774   format %{ " -- \t// RoundDouble not needed - empty" %}
  8775   size(0);
  8776   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8777   ins_encode( /*empty*/ );
  8778   ins_pipe(pipe_class_default);
  8779 %}
  8781 instruct roundFloat_nop(regF dst) %{
  8782   match(Set dst (RoundFloat dst));
  8783   ins_cost(0);
  8785   format %{ " -- \t// RoundFloat not needed - empty" %}
  8786   size(0);
  8787   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8788   ins_encode( /*empty*/ );
  8789   ins_pipe(pipe_class_default);
  8790 %}
  8792 //----------Logical Instructions-----------------------------------------------
  8794 // And Instructions
  8796 // Register And
  8797 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8798   match(Set dst (AndI src1 src2));
  8799   format %{ "AND     $dst, $src1, $src2" %}
  8800   size(4);
  8801   ins_encode %{
  8802     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8803     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8804   %}
  8805   ins_pipe(pipe_class_default);
  8806 %}
  8808 // Immediate And
  8809 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8810   match(Set dst (AndI src1 src2));
  8811   effect(KILL cr0);
  8813   format %{ "ANDI    $dst, $src1, $src2" %}
  8814   size(4);
  8815   ins_encode %{
  8816     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8817     // FIXME: avoid andi_ ?
  8818     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8819   %}
  8820   ins_pipe(pipe_class_default);
  8821 %}
  8823 // Immediate And where the immediate is a negative power of 2.
  8824 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8825   match(Set dst (AndI src1 src2));
  8826   format %{ "ANDWI   $dst, $src1, $src2" %}
  8827   size(4);
  8828   ins_encode %{
  8829     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8830     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8831   %}
  8832   ins_pipe(pipe_class_default);
  8833 %}
  8835 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8836   match(Set dst (AndI src1 src2));
  8837   format %{ "ANDWI   $dst, $src1, $src2" %}
  8838   size(4);
  8839   ins_encode %{
  8840     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8841     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8842   %}
  8843   ins_pipe(pipe_class_default);
  8844 %}
  8846 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8847   match(Set dst (AndI src1 src2));
  8848   predicate(UseRotateAndMaskInstructionsPPC64);
  8849   format %{ "ANDWI   $dst, $src1, $src2" %}
  8850   size(4);
  8851   ins_encode %{
  8852     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8853     __ rlwinm($dst$$Register, $src1$$Register, 0, 
  8854               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8855   %}
  8856   ins_pipe(pipe_class_default);
  8857 %}
  8859 // Register And Long
  8860 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8861   match(Set dst (AndL src1 src2));
  8862   ins_cost(DEFAULT_COST);
  8864   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8865   size(4);
  8866   ins_encode %{
  8867     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8868     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8869   %}
  8870   ins_pipe(pipe_class_default);
  8871 %}
  8873 // Immediate And long
  8874 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8875   match(Set dst (AndL src1 src2));
  8876   effect(KILL cr0);
  8877   ins_cost(DEFAULT_COST);
  8879   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8880   size(4);
  8881   ins_encode %{
  8882     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8883     // FIXME: avoid andi_ ?
  8884     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8885   %}
  8886   ins_pipe(pipe_class_default);
  8887 %}
  8889 // Immediate And Long where the immediate is a negative power of 2.
  8890 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8891   match(Set dst (AndL src1 src2));
  8892   format %{ "ANDDI   $dst, $src1, $src2" %}
  8893   size(4);
  8894   ins_encode %{
  8895     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8896     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8897   %}
  8898   ins_pipe(pipe_class_default);
  8899 %}
  8901 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8902   match(Set dst (AndL src1 src2));
  8903   format %{ "ANDDI   $dst, $src1, $src2" %}
  8904   size(4);
  8905   ins_encode %{
  8906     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8907     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8908   %}
  8909   ins_pipe(pipe_class_default);
  8910 %}
  8912 // AndL + ConvL2I.
  8913 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8914   match(Set dst (ConvL2I (AndL src1 src2)));
  8915   ins_cost(DEFAULT_COST);
  8917   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8918   size(4);
  8919   ins_encode %{
  8920     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8921     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8922   %}
  8923   ins_pipe(pipe_class_default);
  8924 %}
  8926 // Or Instructions
  8928 // Register Or
  8929 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8930   match(Set dst (OrI src1 src2));
  8931   format %{ "OR      $dst, $src1, $src2" %}
  8932   size(4);
  8933   ins_encode %{
  8934     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  8935     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  8936   %}
  8937   ins_pipe(pipe_class_default);
  8938 %}
  8940 // Expand does not work with above instruct. (??)
  8941 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8942   // no match-rule
  8943   effect(DEF dst, USE src1, USE src2);
  8944   format %{ "OR      $dst, $src1, $src2" %}
  8945   size(4);
  8946   ins_encode %{
  8947     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  8948     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  8949   %}
  8950   ins_pipe(pipe_class_default);
  8951 %}
  8953 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  8954   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  8955   ins_cost(DEFAULT_COST*3);
  8957   expand %{
  8958     // FIXME: we should do this in the ideal world.
  8959     iRegIdst tmp1;
  8960     iRegIdst tmp2;
  8961     orI_reg_reg(tmp1, src1, src2);
  8962     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  8963     orI_reg_reg(dst, tmp1, tmp2);
  8964   %}
  8965 %}
  8967 // Immediate Or
  8968 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  8969   match(Set dst (OrI src1 src2));
  8970   format %{ "ORI     $dst, $src1, $src2" %}
  8971   size(4);
  8972   ins_encode %{
  8973     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  8974     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  8975   %}
  8976   ins_pipe(pipe_class_default);
  8977 %}
  8979 // Register Or Long
  8980 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8981   match(Set dst (OrL src1 src2));
  8982   ins_cost(DEFAULT_COST);
  8984   size(4);
  8985   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  8986   ins_encode %{
  8987     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  8988     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  8989   %}
  8990   ins_pipe(pipe_class_default);
  8991 %}
  8993 // OrL + ConvL2I.
  8994 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8995   match(Set dst (ConvL2I (OrL src1 src2)));
  8996   ins_cost(DEFAULT_COST);
  8998   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  8999   size(4);
  9000   ins_encode %{
  9001     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9002     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9003   %}
  9004   ins_pipe(pipe_class_default);
  9005 %}
  9007 // Immediate Or long
  9008 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9009   match(Set dst (OrL src1 con));
  9010   ins_cost(DEFAULT_COST);
  9012   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9013   size(4);
  9014   ins_encode %{
  9015     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9016     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9017   %}
  9018   ins_pipe(pipe_class_default);
  9019 %}
  9021 // Xor Instructions
  9023 // Register Xor
  9024 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9025   match(Set dst (XorI src1 src2));
  9026   format %{ "XOR     $dst, $src1, $src2" %}
  9027   size(4);
  9028   ins_encode %{
  9029     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9030     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9031   %}
  9032   ins_pipe(pipe_class_default);
  9033 %}
  9035 // Expand does not work with above instruct. (??)
  9036 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9037   // no match-rule
  9038   effect(DEF dst, USE src1, USE src2);
  9039   format %{ "XOR     $dst, $src1, $src2" %}
  9040   size(4);
  9041   ins_encode %{
  9042     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9043     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9044   %}
  9045   ins_pipe(pipe_class_default);
  9046 %}
  9048 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9049   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9050   ins_cost(DEFAULT_COST*3);
  9052   expand %{
  9053     // FIXME: we should do this in the ideal world.
  9054     iRegIdst tmp1;
  9055     iRegIdst tmp2;
  9056     xorI_reg_reg(tmp1, src1, src2);
  9057     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9058     xorI_reg_reg(dst, tmp1, tmp2);
  9059   %}
  9060 %}
  9062 // Immediate Xor
  9063 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9064   match(Set dst (XorI src1 src2));
  9065   format %{ "XORI    $dst, $src1, $src2" %}
  9066   size(4);
  9067   ins_encode %{
  9068     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9069     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9070   %}
  9071   ins_pipe(pipe_class_default);
  9072 %}
  9074 // Register Xor Long
  9075 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9076   match(Set dst (XorL src1 src2));
  9077   ins_cost(DEFAULT_COST);
  9079   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9080   size(4);
  9081   ins_encode %{
  9082     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9083     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9084   %}
  9085   ins_pipe(pipe_class_default);
  9086 %}
  9088 // XorL + ConvL2I.
  9089 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9090   match(Set dst (ConvL2I (XorL src1 src2)));
  9091   ins_cost(DEFAULT_COST);
  9093   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9094   size(4);
  9095   ins_encode %{
  9096     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9097     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9098   %}
  9099   ins_pipe(pipe_class_default);
  9100 %}
  9102 // Immediate Xor Long
  9103 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9104   match(Set dst (XorL src1 src2));
  9105   ins_cost(DEFAULT_COST);
  9107   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9108   size(4);
  9109   ins_encode %{
  9110     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9111     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9112   %}
  9113   ins_pipe(pipe_class_default);
  9114 %}
  9116 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9117   match(Set dst (XorI src1 src2));
  9118   ins_cost(DEFAULT_COST);
  9120   format %{ "NOT     $dst, $src1 ($src2)" %}
  9121   size(4);
  9122   ins_encode %{
  9123     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9124     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9125   %}
  9126   ins_pipe(pipe_class_default);
  9127 %}
  9129 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9130   match(Set dst (XorL src1 src2));
  9131   ins_cost(DEFAULT_COST);
  9133   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9134   size(4);
  9135   ins_encode %{
  9136     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9137     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9138   %}
  9139   ins_pipe(pipe_class_default);
  9140 %}
  9142 // And-complement
  9143 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9144   match(Set dst (AndI (XorI src1 src2) src3));
  9145   ins_cost(DEFAULT_COST);
  9147   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9148   size(4);
  9149   ins_encode( enc_andc(dst, src3, src1) );
  9150   ins_pipe(pipe_class_default);
  9151 %}
  9153 // And-complement
  9154 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9155   // no match-rule, false predicate
  9156   effect(DEF dst, USE src1, USE src2);
  9157   predicate(false);
  9159   format %{ "ANDC    $dst, $src1, $src2" %}
  9160   size(4);
  9161   ins_encode %{
  9162     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9163     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9164   %}
  9165   ins_pipe(pipe_class_default);
  9166 %}
  9168 //----------Moves between int/long and float/double----------------------------
  9169 //
  9170 // The following rules move values from int/long registers/stack-locations
  9171 // to float/double registers/stack-locations and vice versa, without doing any
  9172 // conversions. These rules are used to implement the bit-conversion methods
  9173 // of java.lang.Float etc., e.g.
  9174 //   int   floatToIntBits(float value)
  9175 //   float intBitsToFloat(int bits)
  9176 //
  9177 // Notes on the implementation on ppc64:
  9178 // We only provide rules which move between a register and a stack-location,
  9179 // because we always have to go through memory when moving between a float
  9180 // register and an integer register.
  9182 //---------- Chain stack slots between similar types --------
  9184 // These are needed so that the rules below can match.
  9186 // Load integer from stack slot
  9187 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9188   match(Set dst src);
  9189   ins_cost(MEMORY_REF_COST);
  9191   format %{ "LWZ     $dst, $src" %}
  9192   size(4);
  9193   ins_encode( enc_lwz(dst, src) );
  9194   ins_pipe(pipe_class_memory);
  9195 %}
  9197 // Store integer to stack slot
  9198 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9199   match(Set dst src);
  9200   ins_cost(MEMORY_REF_COST);
  9202   format %{ "STW     $src, $dst \t// stk" %}
  9203   size(4);
  9204   ins_encode( enc_stw(src, dst) ); // rs=rt
  9205   ins_pipe(pipe_class_memory);
  9206 %}
  9208 // Load long from stack slot
  9209 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9210   match(Set dst src);
  9211   ins_cost(MEMORY_REF_COST);
  9213   format %{ "LD      $dst, $src \t// long" %}
  9214   size(4);
  9215   ins_encode( enc_ld(dst, src) );
  9216   ins_pipe(pipe_class_memory);
  9217 %}
  9219 // Store long to stack slot
  9220 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9221   match(Set dst src);
  9222   ins_cost(MEMORY_REF_COST);
  9224   format %{ "STD     $src, $dst \t// long" %}
  9225   size(4);
  9226   ins_encode( enc_std(src, dst) ); // rs=rt
  9227   ins_pipe(pipe_class_memory);
  9228 %}
  9230 //----------Moves between int and float
  9232 // Move float value from float stack-location to integer register.
  9233 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9234   match(Set dst (MoveF2I src));
  9235   ins_cost(MEMORY_REF_COST);
  9237   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9238   size(4);
  9239   ins_encode( enc_lwz(dst, src) );
  9240   ins_pipe(pipe_class_memory);
  9241 %}
  9243 // Move float value from float register to integer stack-location.
  9244 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9245   match(Set dst (MoveF2I src));
  9246   ins_cost(MEMORY_REF_COST);
  9248   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9249   size(4);
  9250   ins_encode( enc_stfs(src, dst) );
  9251   ins_pipe(pipe_class_memory);
  9252 %}
  9254 // Move integer value from integer stack-location to float register.
  9255 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9256   match(Set dst (MoveI2F src));
  9257   ins_cost(MEMORY_REF_COST);
  9259   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9260   size(4);
  9261   ins_encode %{
  9262     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9263     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9264     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9265   %}
  9266   ins_pipe(pipe_class_memory);
  9267 %}
  9269 // Move integer value from integer register to float stack-location.
  9270 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9271   match(Set dst (MoveI2F src));
  9272   ins_cost(MEMORY_REF_COST);
  9274   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9275   size(4);
  9276   ins_encode( enc_stw(src, dst) );
  9277   ins_pipe(pipe_class_memory);
  9278 %}
  9280 //----------Moves between long and float
  9282 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9283   // no match-rule, false predicate
  9284   effect(DEF dst, USE src);
  9285   predicate(false);
  9287   format %{ "storeD  $src, $dst \t// STACK" %}
  9288   size(4);
  9289   ins_encode( enc_stfd(src, dst) );
  9290   ins_pipe(pipe_class_default);
  9291 %}
  9293 //----------Moves between long and double
  9295 // Move double value from double stack-location to long register.
  9296 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9297   match(Set dst (MoveD2L src));
  9298   ins_cost(MEMORY_REF_COST);
  9299   size(4);
  9300   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9301   ins_encode( enc_ld(dst, src) );
  9302   ins_pipe(pipe_class_memory);
  9303 %}
  9305 // Move double value from double register to long stack-location.
  9306 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9307   match(Set dst (MoveD2L src));
  9308   effect(DEF dst, USE src);
  9309   ins_cost(MEMORY_REF_COST);
  9311   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9312   size(4);
  9313   ins_encode( enc_stfd(src, dst) );
  9314   ins_pipe(pipe_class_memory);
  9315 %}
  9317 // Move long value from long stack-location to double register.
  9318 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9319   match(Set dst (MoveL2D src));
  9320   ins_cost(MEMORY_REF_COST);
  9322   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9323   size(4);
  9324   ins_encode( enc_lfd(dst, src) );
  9325   ins_pipe(pipe_class_memory);
  9326 %}
  9328 // Move long value from long register to double stack-location.
  9329 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9330   match(Set dst (MoveL2D src));
  9331   ins_cost(MEMORY_REF_COST);
  9333   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9334   size(4);
  9335   ins_encode( enc_std(src, dst) );
  9336   ins_pipe(pipe_class_memory);
  9337 %}
  9339 //----------Register Move Instructions-----------------------------------------
  9341 // Replicate for Superword
  9343 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9344   predicate(false);
  9345   effect(DEF dst, USE src);
  9347   format %{ "MR      $dst, $src \t// replicate " %}
  9348   // variable size, 0 or 4.
  9349   ins_encode %{
  9350     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9351     __ mr_if_needed($dst$$Register, $src$$Register);
  9352   %}
  9353   ins_pipe(pipe_class_default);
  9354 %}
  9356 //----------Cast instructions (Java-level type cast)---------------------------
  9358 // Cast Long to Pointer for unsafe natives.
  9359 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9360   match(Set dst (CastX2P src));
  9362   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9363   // variable size, 0 or 4.
  9364   ins_encode %{
  9365     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9366     __ mr_if_needed($dst$$Register, $src$$Register);
  9367   %}
  9368  ins_pipe(pipe_class_default);
  9369 %}
  9371 // Cast Pointer to Long for unsafe natives.
  9372 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9373   match(Set dst (CastP2X src));
  9375   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9376   // variable size, 0 or 4.
  9377   ins_encode %{
  9378     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9379     __ mr_if_needed($dst$$Register, $src$$Register);
  9380   %}
  9381   ins_pipe(pipe_class_default);
  9382 %}
  9384 instruct castPP(iRegPdst dst) %{
  9385   match(Set dst (CastPP dst));
  9386   format %{ " -- \t// castPP of $dst" %}
  9387   size(0);
  9388   ins_encode( /*empty*/ );
  9389   ins_pipe(pipe_class_default);
  9390 %}
  9392 instruct castII(iRegIdst dst) %{
  9393   match(Set dst (CastII dst));
  9394   format %{ " -- \t// castII of $dst" %}
  9395   size(0);
  9396   ins_encode( /*empty*/ );
  9397   ins_pipe(pipe_class_default);
  9398 %}
  9400 instruct checkCastPP(iRegPdst dst) %{
  9401   match(Set dst (CheckCastPP dst));
  9402   format %{ " -- \t// checkcastPP of $dst" %}
  9403   size(0);
  9404   ins_encode( /*empty*/ );
  9405   ins_pipe(pipe_class_default);
  9406 %}
  9408 //----------Convert instructions-----------------------------------------------
  9410 // Convert to boolean.
  9412 // int_to_bool(src) : { 1   if src != 0
  9413 //                    { 0   else
  9414 //
  9415 // strategy:
  9416 // 1) Count leading zeros of 32 bit-value src,
  9417 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9418 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9419 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9421 // convI2Bool
  9422 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9423   match(Set dst (Conv2B src));
  9424   predicate(UseCountLeadingZerosInstructionsPPC64);
  9425   ins_cost(DEFAULT_COST);
  9427   expand %{
  9428     immI shiftAmount %{ 0x5 %}
  9429     uimmI16 mask %{ 0x1 %}
  9430     iRegIdst tmp1;
  9431     iRegIdst tmp2;
  9432     countLeadingZerosI(tmp1, src);
  9433     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9434     xorI_reg_uimm16(dst, tmp2, mask);
  9435   %}
  9436 %}
  9438 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9439   match(Set dst (Conv2B src));
  9440   effect(TEMP crx);
  9441   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9442   ins_cost(DEFAULT_COST);
  9444   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9445             "LI      $dst, #0\n\t"
  9446             "BEQ     $crx, done\n\t"
  9447             "LI      $dst, #1\n"
  9448             "done:" %}
  9449   size(16);
  9450   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9451   ins_pipe(pipe_class_compare);
  9452 %}
  9454 // ConvI2B + XorI
  9455 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9456   match(Set dst (XorI (Conv2B src) mask));
  9457   predicate(UseCountLeadingZerosInstructionsPPC64);
  9458   ins_cost(DEFAULT_COST);
  9460   expand %{
  9461     immI shiftAmount %{ 0x5 %}
  9462     iRegIdst tmp1;
  9463     countLeadingZerosI(tmp1, src);
  9464     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9465   %}
  9466 %}
  9468 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9469   match(Set dst (XorI (Conv2B src) mask));
  9470   effect(TEMP crx);
  9471   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9472   ins_cost(DEFAULT_COST);
  9474   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9475             "LI      $dst, #1\n\t"
  9476             "BEQ     $crx, done\n\t"
  9477             "LI      $dst, #0\n"
  9478             "done:" %}
  9479   size(16);
  9480   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9481   ins_pipe(pipe_class_compare);
  9482 %}
  9484 // AndI 0b0..010..0 + ConvI2B
  9485 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9486   match(Set dst (Conv2B (AndI src mask)));
  9487   predicate(UseRotateAndMaskInstructionsPPC64);
  9488   ins_cost(DEFAULT_COST);
  9490   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9491   size(4);
  9492   ins_encode %{
  9493     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9494     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9495   %}
  9496   ins_pipe(pipe_class_default);
  9497 %}
  9499 // Convert pointer to boolean.
  9500 //
  9501 // ptr_to_bool(src) : { 1   if src != 0
  9502 //                    { 0   else
  9503 //
  9504 // strategy:
  9505 // 1) Count leading zeros of 64 bit-value src,
  9506 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9507 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9508 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9510 // ConvP2B
  9511 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9512   match(Set dst (Conv2B src));
  9513   predicate(UseCountLeadingZerosInstructionsPPC64);
  9514   ins_cost(DEFAULT_COST);
  9516   expand %{
  9517     immI shiftAmount %{ 0x6 %}
  9518     uimmI16 mask %{ 0x1 %}
  9519     iRegIdst tmp1;
  9520     iRegIdst tmp2;
  9521     countLeadingZerosP(tmp1, src);
  9522     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9523     xorI_reg_uimm16(dst, tmp2, mask);
  9524   %}
  9525 %}
  9527 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9528   match(Set dst (Conv2B src));
  9529   effect(TEMP crx);
  9530   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9531   ins_cost(DEFAULT_COST);
  9533   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9534             "LI      $dst, #0\n\t"
  9535             "BEQ     $crx, done\n\t"
  9536             "LI      $dst, #1\n"
  9537             "done:" %}
  9538   size(16);
  9539   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9540   ins_pipe(pipe_class_compare);
  9541 %}
  9543 // ConvP2B + XorI
  9544 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9545   match(Set dst (XorI (Conv2B src) mask));
  9546   predicate(UseCountLeadingZerosInstructionsPPC64);
  9547   ins_cost(DEFAULT_COST);
  9549   expand %{
  9550     immI shiftAmount %{ 0x6 %}
  9551     iRegIdst tmp1;
  9552     countLeadingZerosP(tmp1, src);
  9553     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9554   %}
  9555 %}
  9557 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9558   match(Set dst (XorI (Conv2B src) mask));
  9559   effect(TEMP crx);
  9560   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9561   ins_cost(DEFAULT_COST);
  9563   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9564             "LI      $dst, #1\n\t"
  9565             "BEQ     $crx, done\n\t"
  9566             "LI      $dst, #0\n"
  9567             "done:" %}
  9568   size(16);
  9569   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9570   ins_pipe(pipe_class_compare);
  9571 %}
  9573 // if src1 < src2, return -1 else return 0
  9574 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9575   match(Set dst (CmpLTMask src1 src2));
  9576   ins_cost(DEFAULT_COST*4);
  9578   expand %{
  9579     iRegIdst src1s;
  9580     iRegIdst src2s;
  9581     iRegIdst diff;
  9582     sxtI_reg(src1s, src1); // ensure proper sign extention
  9583     sxtI_reg(src2s, src2); // ensure proper sign extention
  9584     subI_reg_reg(diff, src1s, src2s);
  9585     // Need to consider >=33 bit result, therefore we need signmaskL.
  9586     signmask64I_regI(dst, diff);
  9587   %}
  9588 %}
  9590 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9591   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9592   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9593   size(4);
  9594   ins_encode %{
  9595     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9596     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9597   %}
  9598   ins_pipe(pipe_class_default);
  9599 %}
  9601 //----------Arithmetic Conversion Instructions---------------------------------
  9603 // Convert to Byte  -- nop
  9604 // Convert to Short -- nop
  9606 // Convert to Int
  9608 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9609   match(Set dst (RShiftI (LShiftI src amount) amount));
  9610   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9611   size(4);
  9612   ins_encode %{
  9613     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9614     __ extsb($dst$$Register, $src$$Register);
  9615   %}
  9616   ins_pipe(pipe_class_default);
  9617 %}
  9619 // LShiftI 16 + RShiftI 16 converts short to int.
  9620 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9621   match(Set dst (RShiftI (LShiftI src amount) amount));
  9622   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9623   size(4);
  9624   ins_encode %{
  9625     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9626     __ extsh($dst$$Register, $src$$Register);
  9627   %}
  9628   ins_pipe(pipe_class_default);
  9629 %}
  9631 // ConvL2I + ConvI2L: Sign extend int in long register.
  9632 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9633   match(Set dst (ConvI2L (ConvL2I src)));
  9635   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9636   size(4);
  9637   ins_encode %{
  9638     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9639     __ extsw($dst$$Register, $src$$Register);
  9640   %}
  9641   ins_pipe(pipe_class_default);
  9642 %}
  9644 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9645   match(Set dst (ConvL2I src));
  9646   format %{ "MR      $dst, $src \t// long->int" %}
  9647   // variable size, 0 or 4
  9648   ins_encode %{
  9649     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9650     __ mr_if_needed($dst$$Register, $src$$Register);
  9651   %}
  9652   ins_pipe(pipe_class_default);
  9653 %}
  9655 instruct convD2IRaw_regD(regD dst, regD src) %{
  9656   // no match-rule, false predicate
  9657   effect(DEF dst, USE src);
  9658   predicate(false);
  9660   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9661   size(4);
  9662   ins_encode %{
  9663     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9664     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9665   %}
  9666   ins_pipe(pipe_class_default);
  9667 %}
  9669 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9670   // no match-rule, false predicate
  9671   effect(DEF dst, USE crx, USE src);
  9672   predicate(false);
  9674   ins_variable_size_depending_on_alignment(true);
  9676   format %{ "cmovI   $crx, $dst, $src" %}
  9677   // Worst case is branch + move + stop, no stop without scheduler.
  9678   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9679   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9680   ins_pipe(pipe_class_default);
  9681 %}
  9683 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9684   // no match-rule, false predicate
  9685   effect(DEF dst, USE crx, USE mem);
  9686   predicate(false);
  9688   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9689   postalloc_expand %{
  9690     //
  9691     // replaces
  9692     //
  9693     //   region  dst  crx  mem
  9694     //    \       |    |   /
  9695     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9696     //
  9697     // with
  9698     //
  9699     //   region  dst
  9700     //    \       /
  9701     //     dst=loadConI16(0)
  9702     //      |
  9703     //      ^  region  dst  crx  mem
  9704     //      |   \       |    |    /
  9705     //      dst=cmovI_bso_stackSlotL
  9706     //
  9708     // Create new nodes.
  9709     MachNode *m1 = new (C) loadConI16Node();
  9710     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9712     // inputs for new nodes
  9713     m1->add_req(n_region);
  9714     m2->add_req(n_region, n_crx, n_mem);
  9716     // precedences for new nodes
  9717     m2->add_prec(m1);
  9719     // operands for new nodes
  9720     m1->_opnds[0] = op_dst;
  9721     m1->_opnds[1] = new (C) immI16Oper(0);
  9723     m2->_opnds[0] = op_dst;
  9724     m2->_opnds[1] = op_crx;
  9725     m2->_opnds[2] = op_mem;
  9727     // registers for new nodes
  9728     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9729     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9731     // Insert new nodes.
  9732     nodes->push(m1);
  9733     nodes->push(m2);
  9734   %}
  9735 %}
  9737 // Double to Int conversion, NaN is mapped to 0.
  9738 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9739   match(Set dst (ConvD2I src));
  9740   ins_cost(DEFAULT_COST);
  9742   expand %{
  9743     regD tmpD;
  9744     stackSlotL tmpS;
  9745     flagsReg crx;
  9746     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9747     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9748     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9749     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9750   %}
  9751 %}
  9753 instruct convF2IRaw_regF(regF dst, regF src) %{
  9754   // no match-rule, false predicate
  9755   effect(DEF dst, USE src);
  9756   predicate(false);
  9758   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9759   size(4);
  9760   ins_encode %{
  9761     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9762     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9763   %}
  9764   ins_pipe(pipe_class_default);
  9765 %}
  9767 // Float to Int conversion, NaN is mapped to 0.
  9768 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9769   match(Set dst (ConvF2I src));
  9770   ins_cost(DEFAULT_COST);
  9772   expand %{
  9773     regF tmpF;
  9774     stackSlotL tmpS;
  9775     flagsReg crx;
  9776     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9777     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9778     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9779     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9780   %}
  9781 %}
  9783 // Convert to Long
  9785 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9786   match(Set dst (ConvI2L src));
  9787   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9788   size(4);
  9789   ins_encode %{
  9790     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9791     __ extsw($dst$$Register, $src$$Register);
  9792   %}
  9793   ins_pipe(pipe_class_default);
  9794 %}
  9796 // Zero-extend: convert unsigned int to long (convUI2L).
  9797 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9798   match(Set dst (AndL (ConvI2L src) mask));
  9799   ins_cost(DEFAULT_COST);
  9801   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9802   size(4);
  9803   ins_encode %{
  9804     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9805     __ clrldi($dst$$Register, $src$$Register, 32);
  9806   %}
  9807   ins_pipe(pipe_class_default);
  9808 %}
  9810 // Zero-extend: convert unsigned int to long in long register.
  9811 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9812   match(Set dst (AndL src mask));
  9813   ins_cost(DEFAULT_COST);
  9815   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9816   size(4);
  9817   ins_encode %{
  9818     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9819     __ clrldi($dst$$Register, $src$$Register, 32);
  9820   %}
  9821   ins_pipe(pipe_class_default);
  9822 %}
  9824 instruct convF2LRaw_regF(regF dst, regF src) %{
  9825   // no match-rule, false predicate
  9826   effect(DEF dst, USE src);
  9827   predicate(false);
  9829   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9830   size(4);
  9831   ins_encode %{
  9832     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9833     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9834   %}
  9835   ins_pipe(pipe_class_default);
  9836 %}
  9838 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9839   // no match-rule, false predicate
  9840   effect(DEF dst, USE crx, USE src);
  9841   predicate(false);
  9843   ins_variable_size_depending_on_alignment(true);
  9845   format %{ "cmovL   $crx, $dst, $src" %}
  9846   // Worst case is branch + move + stop, no stop without scheduler.
  9847   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9848   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9849   ins_pipe(pipe_class_default);
  9850 %}
  9852 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9853   // no match-rule, false predicate
  9854   effect(DEF dst, USE crx, USE mem);
  9855   predicate(false);
  9857   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9858   postalloc_expand %{
  9859     //
  9860     // replaces
  9861     //
  9862     //   region  dst  crx  mem
  9863     //    \       |    |   /
  9864     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9865     //
  9866     // with
  9867     //
  9868     //   region  dst
  9869     //    \       /
  9870     //     dst=loadConL16(0)
  9871     //      |
  9872     //      ^  region  dst  crx  mem
  9873     //      |   \       |    |    /
  9874     //      dst=cmovL_bso_stackSlotL
  9875     //
  9877     // Create new nodes.
  9878     MachNode *m1 = new (C) loadConL16Node();
  9879     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9881     // inputs for new nodes
  9882     m1->add_req(n_region);
  9883     m2->add_req(n_region, n_crx, n_mem);
  9884     m2->add_prec(m1);
  9886     // operands for new nodes
  9887     m1->_opnds[0] = op_dst;
  9888     m1->_opnds[1] = new (C) immL16Oper(0);
  9889     m2->_opnds[0] = op_dst;
  9890     m2->_opnds[1] = op_crx;
  9891     m2->_opnds[2] = op_mem;
  9893     // registers for new nodes
  9894     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9895     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9897     // Insert new nodes.
  9898     nodes->push(m1);
  9899     nodes->push(m2);
  9900   %}
  9901 %}
  9903 // Float to Long conversion, NaN is mapped to 0.
  9904 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9905   match(Set dst (ConvF2L src));
  9906   ins_cost(DEFAULT_COST);
  9908   expand %{
  9909     regF tmpF;
  9910     stackSlotL tmpS;
  9911     flagsReg crx;
  9912     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9913     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9914     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9915     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9916   %}
  9917 %}
  9919 instruct convD2LRaw_regD(regD dst, regD src) %{
  9920   // no match-rule, false predicate
  9921   effect(DEF dst, USE src);
  9922   predicate(false);
  9924   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
  9925   size(4);
  9926   ins_encode %{
  9927     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9928     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9929   %}
  9930   ins_pipe(pipe_class_default);
  9931 %}
  9933 // Double to Long conversion, NaN is mapped to 0.
  9934 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
  9935   match(Set dst (ConvD2L src));
  9936   ins_cost(DEFAULT_COST);
  9938   expand %{
  9939     regD tmpD;
  9940     stackSlotL tmpS;
  9941     flagsReg crx;
  9942     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9943     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
  9944     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9945     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9946   %}
  9947 %}
  9949 // Convert to Float
  9951 // Placed here as needed in expand.
  9952 instruct convL2DRaw_regD(regD dst, regD src) %{
  9953   // no match-rule, false predicate
  9954   effect(DEF dst, USE src);
  9955   predicate(false);
  9957   format %{ "FCFID $dst, $src \t// convL2D" %}
  9958   size(4);
  9959   ins_encode %{
  9960     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
  9961     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
  9962   %}
  9963   ins_pipe(pipe_class_default);
  9964 %}
  9966 // Placed here as needed in expand.
  9967 instruct convD2F_reg(regF dst, regD src) %{
  9968   match(Set dst (ConvD2F src));
  9969   format %{ "FRSP    $dst, $src \t// convD2F" %}
  9970   size(4);
  9971   ins_encode %{
  9972     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
  9973     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
  9974   %}
  9975   ins_pipe(pipe_class_default);
  9976 %}
  9978 // Integer to Float conversion.
  9979 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
  9980   match(Set dst (ConvI2F src));
  9981   predicate(!VM_Version::has_fcfids());
  9982   ins_cost(DEFAULT_COST);
  9984   expand %{
  9985     iRegLdst tmpL;
  9986     stackSlotL tmpS;
  9987     regD tmpD;
  9988     regD tmpD2;
  9989     convI2L_reg(tmpL, src);              // Sign-extension int to long.
  9990     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
  9991     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
  9992     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
  9993     convD2F_reg(dst, tmpD2);             // Convert double to float.
  9994   %}
  9995 %}
  9997 instruct convL2FRaw_regF(regF dst, regD src) %{
  9998   // no match-rule, false predicate
  9999   effect(DEF dst, USE src);
 10000   predicate(false);
 10002   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10003   size(4);
 10004   ins_encode %{
 10005     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10006     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10007   %}
 10008   ins_pipe(pipe_class_default);
 10009 %}
 10011 // Integer to Float conversion. Special version for Power7.
 10012 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10013   match(Set dst (ConvI2F src));
 10014   predicate(VM_Version::has_fcfids());
 10015   ins_cost(DEFAULT_COST);
 10017   expand %{
 10018     iRegLdst tmpL;
 10019     stackSlotL tmpS;
 10020     regD tmpD;
 10021     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10022     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10023     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10024     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10025   %}
 10026 %}
 10028 // L2F to avoid runtime call.
 10029 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10030   match(Set dst (ConvL2F src));
 10031   predicate(VM_Version::has_fcfids());
 10032   ins_cost(DEFAULT_COST);
 10034   expand %{
 10035     stackSlotL tmpS;
 10036     regD tmpD;
 10037     regL_to_stkL(tmpS, src);             // Store long to stack.
 10038     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10039     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10040   %}
 10041 %}
 10043 // Moved up as used in expand.
 10044 //instruct convD2F_reg(regF dst, regD src) %{%}
 10046 // Convert to Double
 10048 // Integer to Double conversion.
 10049 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10050   match(Set dst (ConvI2D src));
 10051   ins_cost(DEFAULT_COST);
 10053   expand %{
 10054     iRegLdst tmpL;
 10055     stackSlotL tmpS;
 10056     regD tmpD;
 10057     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10058     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10059     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10060     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10061   %}
 10062 %}
 10064 // Long to Double conversion
 10065 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10066   match(Set dst (ConvL2D src));
 10067   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10069   expand %{
 10070     regD tmpD;
 10071     moveL2D_stack_reg(tmpD, src);
 10072     convL2DRaw_regD(dst, tmpD);
 10073   %}
 10074 %}
 10076 instruct convF2D_reg(regD dst, regF src) %{
 10077   match(Set dst (ConvF2D src));
 10078   format %{ "FMR     $dst, $src \t// float->double" %}
 10079   // variable size, 0 or 4
 10080   ins_encode %{
 10081     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10082     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10083   %}
 10084   ins_pipe(pipe_class_default);
 10085 %}
 10087 //----------Control Flow Instructions------------------------------------------
 10088 // Compare Instructions
 10090 // Compare Integers
 10091 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10092   match(Set crx (CmpI src1 src2));
 10093   size(4);
 10094   format %{ "CMPW    $crx, $src1, $src2" %}
 10095   ins_encode %{
 10096     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10097     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10098   %}
 10099   ins_pipe(pipe_class_compare);
 10100 %}
 10102 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10103   match(Set crx (CmpI src1 src2));
 10104   format %{ "CMPWI   $crx, $src1, $src2" %}
 10105   size(4);
 10106   ins_encode %{
 10107     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10108     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10109   %}
 10110   ins_pipe(pipe_class_compare);
 10111 %}
 10113 // (src1 & src2) == 0?
 10114 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10115   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10116   // r0 is killed
 10117   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10118   size(4);
 10119   ins_encode %{
 10120     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10121     // FIXME: avoid andi_ ?
 10122     __ andi_(R0, $src1$$Register, $src2$$constant);
 10123   %}
 10124   ins_pipe(pipe_class_compare);
 10125 %}
 10127 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10128   match(Set crx (CmpL src1 src2));
 10129   format %{ "CMPD    $crx, $src1, $src2" %}
 10130   size(4);
 10131   ins_encode %{
 10132     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10133     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10134   %}
 10135   ins_pipe(pipe_class_compare);
 10136 %}
 10138 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10139   match(Set crx (CmpL src1 src2));
 10140   format %{ "CMPDI   $crx, $src1, $src2" %}
 10141   size(4);
 10142   ins_encode %{
 10143     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10144     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10145   %}
 10146   ins_pipe(pipe_class_compare);
 10147 %}
 10149 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10150   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10151   // r0 is killed
 10152   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10153   size(4);
 10154   ins_encode %{
 10155     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10156     __ and_(R0, $src1$$Register, $src2$$Register);
 10157   %}
 10158   ins_pipe(pipe_class_compare);
 10159 %}
 10161 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10162   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10163   // r0 is killed
 10164   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10165   size(4);
 10166   ins_encode %{
 10167     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10168     // FIXME: avoid andi_ ?
 10169     __ andi_(R0, $src1$$Register, $src2$$constant);
 10170   %}
 10171   ins_pipe(pipe_class_compare);
 10172 %}
 10174 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10175   // no match-rule, false predicate
 10176   effect(DEF dst, USE crx);
 10177   predicate(false);
 10179   ins_variable_size_depending_on_alignment(true);
 10181   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10182   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10183   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10184   ins_encode %{
 10185     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10186     Label done;
 10187     // li(Rdst, 0);              // equal -> 0
 10188     __ beq($crx$$CondRegister, done);
 10189     __ li($dst$$Register, 1);    // greater -> +1
 10190     __ bgt($crx$$CondRegister, done);
 10191     __ li($dst$$Register, -1);   // unordered or less -> -1
 10192     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10193     __ bind(done);
 10194   %}
 10195   ins_pipe(pipe_class_compare);
 10196 %}
 10198 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10199   // no match-rule, false predicate
 10200   effect(DEF dst, USE crx);
 10201   predicate(false);
 10203   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10204   postalloc_expand %{
 10205     //
 10206     // replaces
 10207     //
 10208     //   region  crx
 10209     //    \       |
 10210     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10211     //
 10212     // with
 10213     //
 10214     //   region
 10215     //    \
 10216     //     dst=loadConI16(0)
 10217     //      |
 10218     //      ^  region  crx
 10219     //      |   \       |
 10220     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10221     //
 10223     // Create new nodes.
 10224     MachNode *m1 = new (C) loadConI16Node();
 10225     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10227     // inputs for new nodes
 10228     m1->add_req(n_region);
 10229     m2->add_req(n_region, n_crx);
 10230     m2->add_prec(m1);
 10232     // operands for new nodes
 10233     m1->_opnds[0] = op_dst;
 10234     m1->_opnds[1] = new (C) immI16Oper(0);
 10235     m2->_opnds[0] = op_dst;
 10236     m2->_opnds[1] = op_crx;
 10238     // registers for new nodes
 10239     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10240     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10242     // Insert new nodes.
 10243     nodes->push(m1);
 10244     nodes->push(m2);
 10245   %}
 10246 %}
 10248 // Manifest a CmpL3 result in an integer register. Very painful.
 10249 // This is the test to avoid.
 10250 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10251 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10252   match(Set dst (CmpL3 src1 src2));
 10253   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10255   expand %{
 10256     flagsReg tmp1;
 10257     cmpL_reg_reg(tmp1, src1, src2);
 10258     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10259   %}
 10260 %}
 10262 // Implicit range checks.
 10263 // A range check in the ideal world has one of the following shapes:
 10264 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10265 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10266 //
 10267 // Match range check 'If le (CmpU length index)'.
 10268 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10269   match(If cmp (CmpU src_length index));
 10270   effect(USE labl);
 10271   predicate(TrapBasedRangeChecks &&
 10272             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10273             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10274             (Matcher::branches_to_uncommon_trap(_leaf)));
 10276   ins_is_TrapBasedCheckNode(true);
 10278   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10279   size(4);
 10280   ins_encode %{
 10281     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10282     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10283       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10284     } else {
 10285       // Both successors are uncommon traps, probability is 0.
 10286       // Node got flipped during fixup flow.
 10287       assert($cmp$$cmpcode == 0x9, "must be greater");
 10288       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10290   %}
 10291   ins_pipe(pipe_class_trap);
 10292 %}
 10294 // Match range check 'If lt (CmpU index length)'.
 10295 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10296   match(If cmp (CmpU src_index src_length));
 10297   effect(USE labl);
 10298   predicate(TrapBasedRangeChecks &&
 10299             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10300             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10301             (Matcher::branches_to_uncommon_trap(_leaf)));
 10303   ins_is_TrapBasedCheckNode(true);
 10305   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10306   size(4);
 10307   ins_encode %{
 10308     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10309     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10310       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10311     } else {
 10312       // Both successors are uncommon traps, probability is 0.
 10313       // Node got flipped during fixup flow.
 10314       assert($cmp$$cmpcode == 0x8, "must be less");
 10315       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10317   %}
 10318   ins_pipe(pipe_class_trap);
 10319 %}
 10321 // Match range check 'If lt (CmpU index length)'.
 10322 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10323   match(If cmp (CmpU src_index length));
 10324   effect(USE labl);
 10325   predicate(TrapBasedRangeChecks &&
 10326             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10327             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10328             (Matcher::branches_to_uncommon_trap(_leaf)));
 10330   ins_is_TrapBasedCheckNode(true);
 10332   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10333   size(4);
 10334   ins_encode %{
 10335     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10336     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10337       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10338     } else {
 10339       // Both successors are uncommon traps, probability is 0.
 10340       // Node got flipped during fixup flow.
 10341       assert($cmp$$cmpcode == 0x8, "must be less");
 10342       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10344   %}
 10345   ins_pipe(pipe_class_trap);
 10346 %}
 10348 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10349   match(Set crx (CmpU src1 src2));
 10350   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10351   size(4);
 10352   ins_encode %{
 10353     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10354     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10355   %}
 10356   ins_pipe(pipe_class_compare);
 10357 %}
 10359 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10360   match(Set crx (CmpU src1 src2));
 10361   size(4);
 10362   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10363   ins_encode %{
 10364     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10365     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10366   %}
 10367   ins_pipe(pipe_class_compare);
 10368 %}
 10370 // Implicit zero checks (more implicit null checks).
 10371 // No constant pool entries required.
 10372 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10373   match(If cmp (CmpN value zero));
 10374   effect(USE labl);
 10375   predicate(TrapBasedNullChecks &&
 10376             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10377             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10378             Matcher::branches_to_uncommon_trap(_leaf));
 10379   ins_cost(1);
 10381   ins_is_TrapBasedCheckNode(true);
 10383   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10384   size(4);
 10385   ins_encode %{
 10386     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10387     if ($cmp$$cmpcode == 0xA) {
 10388       __ trap_null_check($value$$Register);
 10389     } else {
 10390       // Both successors are uncommon traps, probability is 0.
 10391       // Node got flipped during fixup flow.
 10392       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10393       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10395   %}
 10396   ins_pipe(pipe_class_trap);
 10397 %}
 10399 // Compare narrow oops.
 10400 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10401   match(Set crx (CmpN src1 src2));
 10403   size(4);
 10404   ins_cost(DEFAULT_COST);
 10405   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10406   ins_encode %{
 10407     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10408     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10409   %}
 10410   ins_pipe(pipe_class_compare);
 10411 %}
 10413 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10414   match(Set crx (CmpN src1 src2));
 10415   // Make this more expensive than zeroCheckN_iReg_imm0.
 10416   ins_cost(DEFAULT_COST);
 10418   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10419   size(4);
 10420   ins_encode %{
 10421     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10422     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10423   %}
 10424   ins_pipe(pipe_class_compare);
 10425 %}
 10427 // Implicit zero checks (more implicit null checks).
 10428 // No constant pool entries required.
 10429 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10430   match(If cmp (CmpP value zero));
 10431   effect(USE labl);
 10432   predicate(TrapBasedNullChecks &&
 10433             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10434             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10435             Matcher::branches_to_uncommon_trap(_leaf));
 10437   ins_is_TrapBasedCheckNode(true);
 10439   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10440   size(4);
 10441   ins_encode %{
 10442     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10443     if ($cmp$$cmpcode == 0xA) {
 10444       __ trap_null_check($value$$Register);
 10445     } else {
 10446       // Both successors are uncommon traps, probability is 0.
 10447       // Node got flipped during fixup flow.
 10448       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10449       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10451   %}
 10452   ins_pipe(pipe_class_trap);
 10453 %}
 10455 // Compare Pointers
 10456 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10457   match(Set crx (CmpP src1 src2));
 10458   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10459   size(4);
 10460   ins_encode %{
 10461     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10462     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10463   %}
 10464   ins_pipe(pipe_class_compare);
 10465 %}
 10467 // Used in postalloc expand.
 10468 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10469   // This match rule prevents reordering of node before a safepoint.
 10470   // This only makes sense if this instructions is used exclusively
 10471   // for the expansion of EncodeP!
 10472   match(Set crx (CmpP src1 src2));
 10473   predicate(false);
 10475   format %{ "CMPDI   $crx, $src1, $src2" %}
 10476   size(4);
 10477   ins_encode %{
 10478     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10479     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10480   %}
 10481   ins_pipe(pipe_class_compare);
 10482 %}
 10484 //----------Float Compares----------------------------------------------------
 10486 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10487   // no match-rule, false predicate
 10488   effect(DEF crx, USE src1, USE src2);
 10489   predicate(false);
 10491   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10492   size(4);
 10493   ins_encode %{
 10494     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10495     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10496   %}
 10497   ins_pipe(pipe_class_default);
 10498 %}
 10500 instruct cmov_bns_less(flagsReg crx) %{
 10501   // no match-rule, false predicate
 10502   effect(DEF crx);
 10503   predicate(false);
 10505   ins_variable_size_depending_on_alignment(true);
 10507   format %{ "cmov    $crx" %}
 10508   // Worst case is branch + move + stop, no stop without scheduler.
 10509   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10510   ins_encode %{
 10511     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10512     Label done;
 10513     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10514     __ li(R0, 0);
 10515     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10516     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10517     __ bind(done);
 10518   %}
 10519   ins_pipe(pipe_class_default);
 10520 %}
 10522 // Compare floating, generate condition code.
 10523 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10524   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10525   //
 10526   // The following code sequence occurs a lot in mpegaudio:
 10527   //
 10528   // block BXX:
 10529   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10530   //    cmpFUrd CCR6, F11, F9
 10531   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10532   //    cmov CCR6
 10533   // 8: instruct branchConSched:
 10534   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10535   match(Set crx (CmpF src1 src2));
 10536   ins_cost(DEFAULT_COST+BRANCH_COST);
 10538   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10539   postalloc_expand %{
 10540     //
 10541     // replaces
 10542     //
 10543     //   region  src1  src2
 10544     //    \       |     |
 10545     //     crx=cmpF_reg_reg
 10546     //
 10547     // with
 10548     //
 10549     //   region  src1  src2
 10550     //    \       |     |
 10551     //     crx=cmpFUnordered_reg_reg
 10552     //      |
 10553     //      ^  region
 10554     //      |   \
 10555     //      crx=cmov_bns_less
 10556     //
 10558     // Create new nodes.
 10559     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10560     MachNode *m2 = new (C) cmov_bns_lessNode();
 10562     // inputs for new nodes
 10563     m1->add_req(n_region, n_src1, n_src2);
 10564     m2->add_req(n_region);
 10565     m2->add_prec(m1);
 10567     // operands for new nodes
 10568     m1->_opnds[0] = op_crx;
 10569     m1->_opnds[1] = op_src1;
 10570     m1->_opnds[2] = op_src2;
 10571     m2->_opnds[0] = op_crx;
 10573     // registers for new nodes
 10574     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10575     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10577     // Insert new nodes.
 10578     nodes->push(m1);
 10579     nodes->push(m2);
 10580   %}
 10581 %}
 10583 // Compare float, generate -1,0,1
 10584 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10585   match(Set dst (CmpF3 src1 src2));
 10586   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10588   expand %{
 10589     flagsReg tmp1;
 10590     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10591     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10592   %}
 10593 %}
 10595 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10596   // no match-rule, false predicate
 10597   effect(DEF crx, USE src1, USE src2);
 10598   predicate(false);
 10600   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10601   size(4);
 10602   ins_encode %{
 10603     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10604     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10605   %}
 10606   ins_pipe(pipe_class_default);
 10607 %}
 10609 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10610   match(Set crx (CmpD src1 src2));
 10611   ins_cost(DEFAULT_COST+BRANCH_COST);
 10613   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10614   postalloc_expand %{
 10615     //
 10616     // replaces
 10617     //
 10618     //   region  src1  src2
 10619     //    \       |     |
 10620     //     crx=cmpD_reg_reg
 10621     //
 10622     // with
 10623     //
 10624     //   region  src1  src2
 10625     //    \       |     |
 10626     //     crx=cmpDUnordered_reg_reg
 10627     //      |
 10628     //      ^  region
 10629     //      |   \
 10630     //      crx=cmov_bns_less
 10631     //
 10633     // create new nodes
 10634     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10635     MachNode *m2 = new (C) cmov_bns_lessNode();
 10637     // inputs for new nodes
 10638     m1->add_req(n_region, n_src1, n_src2);
 10639     m2->add_req(n_region);
 10640     m2->add_prec(m1);
 10642     // operands for new nodes
 10643     m1->_opnds[0] = op_crx;
 10644     m1->_opnds[1] = op_src1;
 10645     m1->_opnds[2] = op_src2;
 10646     m2->_opnds[0] = op_crx;
 10648     // registers for new nodes
 10649     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10650     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10652     // Insert new nodes.
 10653     nodes->push(m1);
 10654     nodes->push(m2);
 10655   %}
 10656 %}
 10658 // Compare double, generate -1,0,1
 10659 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10660   match(Set dst (CmpD3 src1 src2));
 10661   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10663   expand %{
 10664     flagsReg tmp1;
 10665     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10666     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10667   %}
 10668 %}
 10670 //----------Branches---------------------------------------------------------
 10671 // Jump
 10673 // Direct Branch.
 10674 instruct branch(label labl) %{
 10675   match(Goto);
 10676   effect(USE labl);
 10677   ins_cost(BRANCH_COST);
 10679   format %{ "B       $labl" %}
 10680   size(4);
 10681   ins_encode %{
 10682     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10683      Label d;    // dummy
 10684      __ bind(d);
 10685      Label* p = $labl$$label;
 10686      // `p' is `NULL' when this encoding class is used only to
 10687      // determine the size of the encoded instruction.
 10688      Label& l = (NULL == p)? d : *(p);
 10689      __ b(l);
 10690   %}
 10691   ins_pipe(pipe_class_default);
 10692 %}
 10694 // Conditional Near Branch
 10695 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10696   // Same match rule as `branchConFar'.
 10697   match(If cmp crx);
 10698   effect(USE lbl);
 10699   ins_cost(BRANCH_COST);
 10701   // If set to 1 this indicates that the current instruction is a
 10702   // short variant of a long branch. This avoids using this
 10703   // instruction in first-pass matching. It will then only be used in
 10704   // the `Shorten_branches' pass.
 10705   ins_short_branch(1);
 10707   format %{ "B$cmp     $crx, $lbl" %}
 10708   size(4);
 10709   ins_encode( enc_bc(crx, cmp, lbl) );
 10710   ins_pipe(pipe_class_default);
 10711 %}
 10713 // This is for cases when the ppc64 `bc' instruction does not
 10714 // reach far enough. So we emit a far branch here, which is more
 10715 // expensive.
 10716 //
 10717 // Conditional Far Branch
 10718 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10719   // Same match rule as `branchCon'.
 10720   match(If cmp crx);
 10721   effect(USE crx, USE lbl);
 10722   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10723   // Higher cost than `branchCon'.
 10724   ins_cost(5*BRANCH_COST);
 10726   // This is not a short variant of a branch, but the long variant.
 10727   ins_short_branch(0);
 10729   format %{ "B_FAR$cmp $crx, $lbl" %}
 10730   size(8);
 10731   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10732   ins_pipe(pipe_class_default);
 10733 %}
 10735 // Conditional Branch used with Power6 scheduler (can be far or short).
 10736 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10737   // Same match rule as `branchCon'.
 10738   match(If cmp crx);
 10739   effect(USE crx, USE lbl);
 10740   predicate(false /* TODO: PPC port HB_Schedule*/);
 10741   // Higher cost than `branchCon'.
 10742   ins_cost(5*BRANCH_COST);
 10744   // Actually size doesn't depend on alignment but on shortening.
 10745   ins_variable_size_depending_on_alignment(true);
 10746   // long variant.
 10747   ins_short_branch(0);
 10749   format %{ "B_FAR$cmp $crx, $lbl" %}
 10750   size(8); // worst case
 10751   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10752   ins_pipe(pipe_class_default);
 10753 %}
 10755 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10756   match(CountedLoopEnd cmp crx);
 10757   effect(USE labl);
 10758   ins_cost(BRANCH_COST);
 10760   // short variant.
 10761   ins_short_branch(1);
 10763   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10764   size(4);
 10765   ins_encode( enc_bc(crx, cmp, labl) );
 10766   ins_pipe(pipe_class_default);
 10767 %}
 10769 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10770   match(CountedLoopEnd cmp crx);
 10771   effect(USE labl);
 10772   predicate(!false /* TODO: PPC port HB_Schedule */);
 10773   ins_cost(BRANCH_COST);
 10775   // Long variant.
 10776   ins_short_branch(0);
 10778   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10779   size(8);
 10780   ins_encode( enc_bc_far(crx, cmp, labl) );
 10781   ins_pipe(pipe_class_default);
 10782 %}
 10784 // Conditional Branch used with Power6 scheduler (can be far or short).
 10785 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10786   match(CountedLoopEnd cmp crx);
 10787   effect(USE labl);
 10788   predicate(false /* TODO: PPC port HB_Schedule */);
 10789   // Higher cost than `branchCon'.
 10790   ins_cost(5*BRANCH_COST);
 10792   // Actually size doesn't depend on alignment but on shortening.
 10793   ins_variable_size_depending_on_alignment(true);
 10794   // Long variant.
 10795   ins_short_branch(0);
 10797   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10798   size(8); // worst case
 10799   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10800   ins_pipe(pipe_class_default);
 10801 %}
 10803 // ============================================================================
 10804 // Java runtime operations, intrinsics and other complex operations.
 10806 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10807 // array for an instance of the superklass. Set a hidden internal cache on a
 10808 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10809 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10810 //
 10811 // GL TODO: Improve this.
 10812 // - result should not be a TEMP
 10813 // - Add match rule as on sparc avoiding additional Cmp.
 10814 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10815                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10816   match(Set result (PartialSubtypeCheck subklass superklass));
 10817   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10818   ins_cost(DEFAULT_COST*10);
 10820   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10821   ins_encode %{
 10822     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10823     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register, 
 10824                                      $tmp_klass$$Register, NULL, $result$$Register);
 10825   %}
 10826   ins_pipe(pipe_class_default);
 10827 %}
 10829 // inlined locking and unlocking
 10831 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10832   match(Set crx (FastLock oop box));
 10833   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10834   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10836   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10837   ins_encode %{
 10838     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10839     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10840                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10841     // If locking was successfull, crx should indicate 'EQ'.
 10842     // The compiler generates a branch to the runtime call to
 10843     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10844   %}
 10845   ins_pipe(pipe_class_compare);
 10846 %}
 10848 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10849   match(Set crx (FastUnlock oop box));
 10850   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10852   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10853   ins_encode %{
 10854     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10855     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10856                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10857     // If unlocking was successfull, crx should indicate 'EQ'.
 10858     // The compiler generates a branch to the runtime call to
 10859     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10860   %}
 10861   ins_pipe(pipe_class_compare);
 10862 %}
 10864 // Align address.
 10865 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10866   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10868   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10869   size(4);
 10870   ins_encode %{
 10871     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10872     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10873   %}
 10874   ins_pipe(pipe_class_default);
 10875 %}
 10877 // Array size computation.
 10878 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10879   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10881   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10882   size(4);
 10883   ins_encode %{
 10884     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10885     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10886   %}
 10887   ins_pipe(pipe_class_default);
 10888 %}
 10890 // Clear-array with dynamic array-size.
 10891 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10892   match(Set dummy (ClearArray cnt base));
 10893   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10894   ins_cost(MEMORY_REF_COST);
 10896   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10898   format %{ "ClearArray $cnt, $base" %}
 10899   ins_encode %{
 10900     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10901     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10902   %}
 10903   ins_pipe(pipe_class_default);
 10904 %}
 10906 // String_IndexOf for needle of length 1.
 10907 //
 10908 // Match needle into immediate operands: no loadConP node needed. Saves one
 10909 // register and two instructions over string_indexOf_imm1Node.
 10910 //
 10911 // Assumes register result differs from all input registers.
 10912 //
 10913 // Preserves registers haystack, haycnt
 10914 // Kills     registers tmp1, tmp2
 10915 // Defines   registers result
 10916 //
 10917 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10918 //
 10919 // Unfortunately this does not match too often. In many situations the AddP is used
 10920 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10921 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10922                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 10923                                   iRegIdst tmp1, iRegIdst tmp2,
 10924                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 10925   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 10926   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 10928   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 10930   ins_cost(150);
 10931   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 10932             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 10934   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 10935   ins_encode %{
 10936     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10937     immPOper *needleOper = (immPOper *)$needleImm;
 10938     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 10939     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 10941     __ string_indexof_1($result$$Register,
 10942                         $haystack$$Register, $haycnt$$Register,
 10943                         R0, needle_values->char_at(0),
 10944                         $tmp1$$Register, $tmp2$$Register);
 10945   %}
 10946   ins_pipe(pipe_class_compare);
 10947 %}
 10949 // String_IndexOf for needle of length 1.
 10950 //
 10951 // Special case requires less registers and emits less instructions.
 10952 //
 10953 // Assumes register result differs from all input registers.
 10954 //
 10955 // Preserves registers haystack, haycnt
 10956 // Kills     registers tmp1, tmp2, needle
 10957 // Defines   registers result
 10958 //
 10959 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10960 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10961                              rscratch2RegP needle, immI_1 needlecntImm,
 10962                              iRegIdst tmp1, iRegIdst tmp2,
 10963                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 10964   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 10965   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 10966          TEMP tmp1, TEMP tmp2);
 10967   // Required for EA: check if it is still a type_array.
 10968   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 10969             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 10970   ins_cost(180);
 10972   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10974   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 10975             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 10976   ins_encode %{
 10977     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10978     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 10979     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 10980     guarantee(needle_values, "sanity");
 10981     if (needle_values != NULL) {
 10982       __ string_indexof_1($result$$Register,
 10983                           $haystack$$Register, $haycnt$$Register,
 10984                           R0, needle_values->char_at(0),
 10985                           $tmp1$$Register, $tmp2$$Register);
 10986     } else {
 10987       __ string_indexof_1($result$$Register,
 10988                           $haystack$$Register, $haycnt$$Register,
 10989                           $needle$$Register, 0,
 10990                           $tmp1$$Register, $tmp2$$Register);
 10992   %}
 10993   ins_pipe(pipe_class_compare);
 10994 %}
 10996 // String_IndexOf.
 10997 //
 10998 // Length of needle as immediate. This saves instruction loading constant needle
 10999 // length.
 11000 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11001 // completely or do it in vector instruction. This should save registers for
 11002 // needlecnt and needle.
 11003 //
 11004 // Assumes register result differs from all input registers.
 11005 // Overwrites haycnt, needlecnt.
 11006 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11007 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11008                             iRegPsrc needle, uimmI15 needlecntImm,
 11009                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11010                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11011   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11012   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11013          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11014   // Required for EA: check if it is still a type_array.
 11015   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11016             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11017   ins_cost(250);
 11019   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11021   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11022             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11023   ins_encode %{
 11024     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11025     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11026     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11028     __ string_indexof($result$$Register,
 11029                       $haystack$$Register, $haycnt$$Register,
 11030                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11031                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11032   %}
 11033   ins_pipe(pipe_class_compare);
 11034 %}
 11036 // StrIndexOf node.
 11037 //
 11038 // Assumes register result differs from all input registers.
 11039 // Overwrites haycnt, needlecnt.
 11040 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11041 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11042                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11043                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11044   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11045   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11046          TEMP result,
 11047          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11048   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11049   ins_cost(300);
 11051   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11053   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11054              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11055   ins_encode %{
 11056     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11057     __ string_indexof($result$$Register,
 11058                       $haystack$$Register, $haycnt$$Register,
 11059                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11060                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11061   %}
 11062   ins_pipe(pipe_class_compare);
 11063 %}
 11065 // String equals with immediate.
 11066 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11067                            iRegPdst tmp1, iRegPdst tmp2,
 11068                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11069   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11070   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11071          KILL cr0, KILL cr6, KILL ctr);
 11072   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11073   ins_cost(250);
 11075   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11077   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11078             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11079   ins_encode %{
 11080     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11081     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11082                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11083   %}
 11084   ins_pipe(pipe_class_compare);
 11085 %}
 11087 // String equals.
 11088 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11089 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11090                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11091                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11092   match(Set result (StrEquals (Binary str1 str2) cnt));
 11093   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11094          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11095   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11096   ins_cost(300);
 11098   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11100   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11101             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11102   ins_encode %{
 11103     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11104     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11105                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11106   %}
 11107   ins_pipe(pipe_class_compare);
 11108 %}
 11110 // String compare.
 11111 // Char[] pointers are passed in.
 11112 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11113 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11114                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11115   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11116   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11117   ins_cost(300);
 11119   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11121   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11122             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11123   ins_encode %{
 11124     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11125     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11126                       $result$$Register, $tmp$$Register);
 11127   %}
 11128   ins_pipe(pipe_class_compare);
 11129 %}
 11131 //---------- Min/Max Instructions ---------------------------------------------
 11133 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11134   match(Set dst (MinI src1 src2));
 11135   ins_cost(DEFAULT_COST*6);
 11137   expand %{
 11138     iRegIdst src1s;
 11139     iRegIdst src2s;
 11140     iRegIdst diff;
 11141     iRegIdst sm;
 11142     iRegIdst doz; // difference or zero
 11143     sxtI_reg(src1s, src1); // Ensure proper sign extention.
 11144     sxtI_reg(src2s, src2); // Ensure proper sign extention.
 11145     subI_reg_reg(diff, src2s, src1s);
 11146     // Need to consider >=33 bit result, therefore we need signmaskL.
 11147     signmask64I_regI(sm, diff);
 11148     andI_reg_reg(doz, diff, sm); // <=0
 11149     addI_reg_reg(dst, doz, src1s);
 11150   %}
 11151 %}
 11153 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11154   match(Set dst (MaxI src1 src2));
 11155   ins_cost(DEFAULT_COST*6);
 11157   expand %{
 11158     immI_minus1 m1 %{ -1 %}
 11159     iRegIdst src1s;
 11160     iRegIdst src2s;
 11161     iRegIdst diff;
 11162     iRegIdst sm;
 11163     iRegIdst doz; // difference or zero
 11164     sxtI_reg(src1s, src1); // Ensure proper sign extention.
 11165     sxtI_reg(src2s, src2); // Ensure proper sign extention.
 11166     subI_reg_reg(diff, src2s, src1s);
 11167     // Need to consider >=33 bit result, therefore we need signmaskL.
 11168     signmask64I_regI(sm, diff);
 11169     andcI_reg_reg(doz, sm, m1, diff); // >=0
 11170     addI_reg_reg(dst, doz, src1s);
 11171   %}
 11172 %}
 11174 //---------- Population Count Instructions ------------------------------------
 11176 // Popcnt for Power7.
 11177 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11178   match(Set dst (PopCountI src));
 11179   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11180   ins_cost(DEFAULT_COST);
 11182   format %{ "POPCNTW $dst, $src" %}
 11183   size(4);
 11184   ins_encode %{
 11185     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11186     __ popcntw($dst$$Register, $src$$Register);
 11187   %}
 11188   ins_pipe(pipe_class_default);
 11189 %}
 11191 // Popcnt for Power7.
 11192 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11193   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11194   match(Set dst (PopCountL src));
 11195   ins_cost(DEFAULT_COST);
 11197   format %{ "POPCNTD $dst, $src" %}
 11198   size(4);
 11199   ins_encode %{
 11200     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11201     __ popcntd($dst$$Register, $src$$Register);
 11202   %}
 11203   ins_pipe(pipe_class_default);
 11204 %}
 11206 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11207   match(Set dst (CountLeadingZerosI src));
 11208   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11209   ins_cost(DEFAULT_COST);
 11211   format %{ "CNTLZW  $dst, $src" %}
 11212   size(4);
 11213   ins_encode %{
 11214     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11215     __ cntlzw($dst$$Register, $src$$Register);
 11216   %}
 11217   ins_pipe(pipe_class_default);
 11218 %}
 11220 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11221   match(Set dst (CountLeadingZerosL src));
 11222   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11223   ins_cost(DEFAULT_COST);
 11225   format %{ "CNTLZD  $dst, $src" %}
 11226   size(4);
 11227   ins_encode %{
 11228     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11229     __ cntlzd($dst$$Register, $src$$Register);
 11230   %}
 11231   ins_pipe(pipe_class_default);
 11232 %}
 11234 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11235   // no match-rule, false predicate
 11236   effect(DEF dst, USE src);
 11237   predicate(false);
 11239   format %{ "CNTLZD  $dst, $src" %}
 11240   size(4);
 11241   ins_encode %{
 11242     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11243     __ cntlzd($dst$$Register, $src$$Register);
 11244   %}
 11245   ins_pipe(pipe_class_default);
 11246 %}
 11248 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11249   match(Set dst (CountTrailingZerosI src));
 11250   predicate(UseCountLeadingZerosInstructionsPPC64);
 11251   ins_cost(DEFAULT_COST);
 11253   expand %{
 11254     immI16 imm1 %{ (int)-1 %}
 11255     immI16 imm2 %{ (int)32 %}
 11256     immI_minus1 m1 %{ -1 %}
 11257     iRegIdst tmpI1;
 11258     iRegIdst tmpI2;
 11259     iRegIdst tmpI3;
 11260     addI_reg_imm16(tmpI1, src, imm1);
 11261     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11262     countLeadingZerosI(tmpI3, tmpI2);
 11263     subI_imm16_reg(dst, imm2, tmpI3);
 11264   %}
 11265 %}
 11267 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11268   match(Set dst (CountTrailingZerosL src));
 11269   predicate(UseCountLeadingZerosInstructionsPPC64);
 11270   ins_cost(DEFAULT_COST);
 11272   expand %{
 11273     immL16 imm1 %{ (long)-1 %}
 11274     immI16 imm2 %{ (int)64 %}
 11275     iRegLdst tmpL1;
 11276     iRegLdst tmpL2;
 11277     iRegIdst tmpL3;
 11278     addL_reg_imm16(tmpL1, src, imm1);
 11279     andcL_reg_reg(tmpL2, tmpL1, src);
 11280     countLeadingZerosL(tmpL3, tmpL2);
 11281     subI_imm16_reg(dst, imm2, tmpL3);
 11282  %}
 11283 %}
 11285 // Expand nodes for byte_reverse_int.
 11286 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11287   effect(DEF dst, USE src, USE pos, USE shift);
 11288   predicate(false);
 11290   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11291   size(4);
 11292   ins_encode %{
 11293     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11294     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11295   %}
 11296   ins_pipe(pipe_class_default);
 11297 %}
 11299 // As insrwi_a, but with USE_DEF.
 11300 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11301   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11302   predicate(false);
 11304   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11305   size(4);
 11306   ins_encode %{
 11307     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11308     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11309   %}
 11310   ins_pipe(pipe_class_default);
 11311 %}
 11313 // Just slightly faster than java implementation.
 11314 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11315   match(Set dst (ReverseBytesI src));
 11316   predicate(UseCountLeadingZerosInstructionsPPC64);
 11317   ins_cost(DEFAULT_COST);
 11319   expand %{
 11320     immI16 imm24 %{ (int) 24 %}
 11321     immI16 imm16 %{ (int) 16 %}
 11322     immI16  imm8 %{ (int)  8 %}
 11323     immI16  imm4 %{ (int)  4 %}
 11324     immI16  imm0 %{ (int)  0 %}
 11325     iRegLdst tmpI1;
 11326     iRegLdst tmpI2;
 11327     iRegLdst tmpI3;
 11329     urShiftI_reg_imm(tmpI1, src, imm24);
 11330     insrwi_a(dst, tmpI1, imm24, imm8);
 11331     urShiftI_reg_imm(tmpI2, src, imm16);
 11332     insrwi(dst, tmpI2, imm8, imm16);
 11333     urShiftI_reg_imm(tmpI3, src, imm8);
 11334     insrwi(dst, tmpI3, imm8, imm8);
 11335     insrwi(dst, src, imm0, imm8);
 11336   %}
 11337 %}
 11339 //---------- Replicate Vector Instructions ------------------------------------
 11341 // Insrdi does replicate if src == dst.
 11342 instruct repl32(iRegLdst dst) %{
 11343   predicate(false);
 11344   effect(USE_DEF dst);
 11346   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11347   size(4);
 11348   ins_encode %{
 11349     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11350     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11351   %}
 11352   ins_pipe(pipe_class_default);
 11353 %}
 11355 // Insrdi does replicate if src == dst.
 11356 instruct repl48(iRegLdst dst) %{
 11357   predicate(false);
 11358   effect(USE_DEF dst);
 11360   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11361   size(4);
 11362   ins_encode %{
 11363     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11364     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11365   %}
 11366   ins_pipe(pipe_class_default);
 11367 %}
 11369 // Insrdi does replicate if src == dst.
 11370 instruct repl56(iRegLdst dst) %{
 11371   predicate(false);
 11372   effect(USE_DEF dst);
 11374   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11375   size(4);
 11376   ins_encode %{
 11377     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11378     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11379   %}
 11380   ins_pipe(pipe_class_default);
 11381 %}
 11383 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11384   match(Set dst (ReplicateB src));
 11385   predicate(n->as_Vector()->length() == 8);
 11386   expand %{
 11387     moveReg(dst, src);
 11388     repl56(dst);
 11389     repl48(dst);
 11390     repl32(dst);
 11391   %}
 11392 %}
 11394 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11395   match(Set dst (ReplicateB zero));
 11396   predicate(n->as_Vector()->length() == 8);
 11397   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11398   size(4);
 11399   ins_encode %{
 11400     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11401     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11402   %}
 11403   ins_pipe(pipe_class_default);
 11404 %}
 11406 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11407   match(Set dst (ReplicateB src));
 11408   predicate(n->as_Vector()->length() == 8);
 11409   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11410   size(4);
 11411   ins_encode %{
 11412     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11413     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11414   %}
 11415   ins_pipe(pipe_class_default);
 11416 %}
 11418 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11419   match(Set dst (ReplicateS src));
 11420   predicate(n->as_Vector()->length() == 4);
 11421   expand %{
 11422     moveReg(dst, src);
 11423     repl48(dst);
 11424     repl32(dst);
 11425   %}
 11426 %}
 11428 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11429   match(Set dst (ReplicateS zero));
 11430   predicate(n->as_Vector()->length() == 4);
 11431   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11432   size(4);
 11433   ins_encode %{
 11434     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11435     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11436   %}
 11437   ins_pipe(pipe_class_default);
 11438 %}
 11440 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11441   match(Set dst (ReplicateS src));
 11442   predicate(n->as_Vector()->length() == 4);
 11443   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11444   size(4);
 11445   ins_encode %{
 11446     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11447     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11448   %}
 11449   ins_pipe(pipe_class_default);
 11450 %}
 11452 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11453   match(Set dst (ReplicateI src));
 11454   predicate(n->as_Vector()->length() == 2);
 11455   ins_cost(2 * DEFAULT_COST);
 11456   expand %{
 11457     moveReg(dst, src);
 11458     repl32(dst);
 11459   %}
 11460 %}
 11462 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11463   match(Set dst (ReplicateI zero));
 11464   predicate(n->as_Vector()->length() == 2);
 11465   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11466   size(4);
 11467   ins_encode %{
 11468     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11469     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11470   %}
 11471   ins_pipe(pipe_class_default);
 11472 %}
 11474 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11475   match(Set dst (ReplicateI src));
 11476   predicate(n->as_Vector()->length() == 2);
 11477   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11478   size(4);
 11479   ins_encode %{
 11480     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11481     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11482   %}
 11483   ins_pipe(pipe_class_default);
 11484 %}
 11486 // Move float to int register via stack, replicate.
 11487 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11488   match(Set dst (ReplicateF src));
 11489   predicate(n->as_Vector()->length() == 2);
 11490   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11491   expand %{
 11492     stackSlotL tmpS;
 11493     iRegIdst tmpI;
 11494     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11495     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11496     moveReg(dst, tmpI);             // Move int to long reg.
 11497     repl32(dst);                    // Replicate bitpattern.
 11498   %}
 11499 %}
 11501 // Replicate scalar constant to packed float values in Double register
 11502 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11503   match(Set dst (ReplicateF src));
 11504   predicate(n->as_Vector()->length() == 2);
 11505   ins_cost(5 * DEFAULT_COST);
 11507   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11508   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11509 %}
 11511 // Replicate scalar zero constant to packed float values in Double register
 11512 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11513   match(Set dst (ReplicateF zero));
 11514   predicate(n->as_Vector()->length() == 2);
 11516   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11517   ins_encode %{
 11518     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11519     __ li($dst$$Register, 0x0);
 11520   %}
 11521   ins_pipe(pipe_class_default);
 11522 %}
 11524 // ============================================================================
 11525 // Safepoint Instruction
 11527 instruct safePoint_poll(iRegPdst poll) %{
 11528   match(SafePoint poll);
 11529   predicate(LoadPollAddressFromThread);
 11531   // It caused problems to add the effect that r0 is killed, but this
 11532   // effect no longer needs to be mentioned, since r0 is not contained
 11533   // in a reg_class.
 11535   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11536   size(4);
 11537   ins_encode( enc_poll(0x0, poll) );
 11538   ins_pipe(pipe_class_default);
 11539 %}
 11541 // Safepoint without per-thread support. Load address of page to poll
 11542 // as constant.
 11543 // Rscratch2RegP is R12.
 11544 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11545 // a seperate node so that the oop map is at the right location.
 11546 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11547   match(SafePoint poll);
 11548   predicate(!LoadPollAddressFromThread);
 11550   // It caused problems to add the effect that r0 is killed, but this
 11551   // effect no longer needs to be mentioned, since r0 is not contained
 11552   // in a reg_class.
 11554   format %{ "LD      R12, addr of polling page\n\t"
 11555             "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11556   ins_encode( enc_poll(0x0, poll) );
 11557   ins_pipe(pipe_class_default);
 11558 %}
 11560 // ============================================================================
 11561 // Call Instructions
 11563 // Call Java Static Instruction
 11565 // Schedulable version of call static node.
 11566 instruct CallStaticJavaDirect(method meth) %{
 11567   match(CallStaticJava);
 11568   effect(USE meth);
 11569   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11570   ins_cost(CALL_COST);
 11572   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11574   format %{ "CALL,static $meth \t// ==> " %}
 11575   size(4);
 11576   ins_encode( enc_java_static_call(meth) );
 11577   ins_pipe(pipe_class_call);
 11578 %}
 11580 // Schedulable version of call static node.
 11581 instruct CallStaticJavaDirectHandle(method meth) %{
 11582   match(CallStaticJava);
 11583   effect(USE meth);
 11584   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11585   ins_cost(CALL_COST);
 11587   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11589   format %{ "CALL,static $meth \t// ==> " %}
 11590   ins_encode( enc_java_handle_call(meth) );
 11591   ins_pipe(pipe_class_call);
 11592 %}
 11594 // Call Java Dynamic Instruction
 11596 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11597 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11598 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11599 // The call destination must still be placed in the constant pool.
 11600 instruct CallDynamicJavaDirectSched(method meth) %{
 11601   match(CallDynamicJava); // To get all the data fields we need ...
 11602   effect(USE meth);
 11603   predicate(false);       // ... but never match.
 11605   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11606   ins_field_load_ic_node(loadConLNode*);
 11607   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11609   format %{ "BL        \t// dynamic $meth ==> " %}
 11610   size(4);
 11611   ins_encode( enc_java_dynamic_call_sched(meth) );
 11612   ins_pipe(pipe_class_call);
 11613 %}
 11615 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11616 // We use postalloc expanded calls if we use inline caches
 11617 // and do not update method data.
 11618 //
 11619 // This instruction has two constants: inline cache (IC) and call destination.
 11620 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11621 // one constant.
 11622 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11623   match(CallDynamicJava);
 11624   effect(USE meth);
 11625   predicate(UseInlineCaches);
 11626   ins_cost(CALL_COST);
 11628   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11630   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11631   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11632 %}
 11634 // Compound version of call dynamic java
 11635 // We use postalloc expanded calls if we use inline caches
 11636 // and do not update method data.
 11637 instruct CallDynamicJavaDirect(method meth) %{
 11638   match(CallDynamicJava);
 11639   effect(USE meth);
 11640   predicate(!UseInlineCaches);
 11641   ins_cost(CALL_COST);
 11643   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11644   ins_num_consts(4);
 11646   format %{ "CALL,dynamic $meth \t// ==> " %}
 11647   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11648   ins_pipe(pipe_class_call);
 11649 %}
 11651 // Call Runtime Instruction
 11653 instruct CallRuntimeDirect(method meth) %{
 11654   match(CallRuntime);
 11655   effect(USE meth);
 11656   ins_cost(CALL_COST);
 11658   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11659   // env for callee, C-toc.
 11660   ins_num_consts(3);
 11662   format %{ "CALL,runtime" %}
 11663   ins_encode( enc_java_to_runtime_call(meth) );
 11664   ins_pipe(pipe_class_call);
 11665 %}
 11667 // Call Leaf
 11669 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11670 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11671   effect(DEF dst, USE src);
 11673   ins_num_consts(1);
 11675   format %{ "MTCTR   $src" %}
 11676   size(4);
 11677   ins_encode( enc_leaf_call_mtctr(src) );
 11678   ins_pipe(pipe_class_default);
 11679 %}
 11681 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11682 instruct CallLeafDirect(method meth) %{
 11683   match(CallLeaf);   // To get the data all the data fields we need ...
 11684   effect(USE meth);
 11685   predicate(false);  // but never match.
 11687   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11688   size(4);
 11689   ins_encode %{
 11690     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11691     __ bctrl();
 11692   %}
 11693   ins_pipe(pipe_class_call);
 11694 %}
 11696 // postalloc expand of CallLeafDirect.
 11697 // Load adress to call from TOC, then bl to it.
 11698 instruct CallLeafDirect_Ex(method meth) %{
 11699   match(CallLeaf);
 11700   effect(USE meth);
 11701   ins_cost(CALL_COST);
 11703   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11704   // env for callee, C-toc.
 11705   ins_num_consts(3);
 11707   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11708   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11709 %}
 11711 // Call runtime without safepoint - same as CallLeaf.
 11712 // postalloc expand of CallLeafNoFPDirect.
 11713 // Load adress to call from TOC, then bl to it.
 11714 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11715   match(CallLeafNoFP);
 11716   effect(USE meth);
 11717   ins_cost(CALL_COST);
 11719   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11720   // env for callee, C-toc.
 11721   ins_num_consts(3);
 11723   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11724   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11725 %}
 11727 // Tail Call; Jump from runtime stub to Java code.
 11728 // Also known as an 'interprocedural jump'.
 11729 // Target of jump will eventually return to caller.
 11730 // TailJump below removes the return address.
 11731 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11732   match(TailCall jump_target method_oop);
 11733   ins_cost(CALL_COST);
 11735   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11736             "BCTR         \t// tail call" %}
 11737   size(8);
 11738   ins_encode %{
 11739     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11740     __ mtctr($jump_target$$Register);
 11741     __ bctr();
 11742   %}
 11743   ins_pipe(pipe_class_call);
 11744 %}
 11746 // Return Instruction
 11747 instruct Ret() %{
 11748   match(Return);
 11749   format %{ "BLR      \t// branch to link register" %}
 11750   size(4);
 11751   ins_encode %{
 11752     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11753     // LR is restored in MachEpilogNode. Just do the RET here.
 11754     __ blr();
 11755   %}
 11756   ins_pipe(pipe_class_default);
 11757 %}
 11759 // Tail Jump; remove the return address; jump to target.
 11760 // TailCall above leaves the return address around.
 11761 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11762 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11763 // "restore" before this instruction (in Epilogue), we need to materialize it
 11764 // in %i0.
 11765 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11766   match(TailJump jump_target ex_oop);
 11767   ins_cost(CALL_COST);
 11769   format %{ "LD      R4_ARG2 = LR\n\t"
 11770             "MTCTR   $jump_target\n\t"
 11771             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11772   size(12);
 11773   ins_encode %{
 11774     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11775     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11776     __ mtctr($jump_target$$Register);
 11777     __ bctr();
 11778   %}
 11779   ins_pipe(pipe_class_call);
 11780 %}
 11782 // Create exception oop: created by stack-crawling runtime code.
 11783 // Created exception is now available to this handler, and is setup
 11784 // just prior to jumping to this handler. No code emitted.
 11785 instruct CreateException(rarg1RegP ex_oop) %{
 11786   match(Set ex_oop (CreateEx));
 11787   ins_cost(0);
 11789   format %{ " -- \t// exception oop; no code emitted" %}
 11790   size(0);
 11791   ins_encode( /*empty*/ );
 11792   ins_pipe(pipe_class_default);
 11793 %}
 11795 // Rethrow exception: The exception oop will come in the first
 11796 // argument position. Then JUMP (not call) to the rethrow stub code.
 11797 instruct RethrowException() %{
 11798   match(Rethrow);
 11799   ins_cost(CALL_COST);
 11801   format %{ "Jmp     rethrow_stub" %}
 11802   ins_encode %{
 11803     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11804     cbuf.set_insts_mark();
 11805     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11806   %}
 11807   ins_pipe(pipe_class_call);
 11808 %}
 11810 // Die now.
 11811 instruct ShouldNotReachHere() %{
 11812   match(Halt);
 11813   ins_cost(CALL_COST);
 11815   format %{ "ShouldNotReachHere" %}
 11816   size(4);
 11817   ins_encode %{
 11818     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11819     __ trap_should_not_reach_here();
 11820   %}
 11821   ins_pipe(pipe_class_default);
 11822 %}
 11824 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11825 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11826 // Get a DEF on threadRegP, no costs, no encoding, use
 11827 // 'ins_should_rematerialize(true)' to avoid spilling.
 11828 instruct tlsLoadP(threadRegP dst) %{
 11829   match(Set dst (ThreadLocal));
 11830   ins_cost(0);
 11832   ins_should_rematerialize(true);
 11834   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11835   size(0);
 11836   ins_encode( /*empty*/ );
 11837   ins_pipe(pipe_class_empty);
 11838 %}
 11840 //---Some PPC specific nodes---------------------------------------------------
 11842 // Stop a group.
 11843 instruct endGroup() %{
 11844   ins_cost(0);
 11846   ins_is_nop(true);
 11848   format %{ "End Bundle (ori r1, r1, 0)" %}
 11849   size(4);
 11850   ins_encode %{
 11851     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11852     __ endgroup();
 11853   %}
 11854   ins_pipe(pipe_class_default);
 11855 %}
 11857 // Nop instructions
 11859 instruct fxNop() %{
 11860   ins_cost(0);
 11862   ins_is_nop(true);
 11864   format %{ "fxNop" %}
 11865   size(4);
 11866   ins_encode %{
 11867     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11868     __ nop();
 11869   %}
 11870   ins_pipe(pipe_class_default);
 11871 %}
 11873 instruct fpNop0() %{
 11874   ins_cost(0);
 11876   ins_is_nop(true);
 11878   format %{ "fpNop0" %}
 11879   size(4);
 11880   ins_encode %{
 11881     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11882     __ fpnop0();
 11883   %}
 11884   ins_pipe(pipe_class_default);
 11885 %}
 11887 instruct fpNop1() %{
 11888   ins_cost(0);
 11890   ins_is_nop(true);
 11892   format %{ "fpNop1" %}
 11893   size(4);
 11894   ins_encode %{
 11895     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11896     __ fpnop1();
 11897   %}
 11898   ins_pipe(pipe_class_default);
 11899 %}
 11901 instruct brNop0() %{
 11902   ins_cost(0);
 11903   size(4);
 11904   format %{ "brNop0" %}
 11905   ins_encode %{
 11906     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11907     __ brnop0();
 11908   %}
 11909   ins_is_nop(true);
 11910   ins_pipe(pipe_class_default);
 11911 %}
 11913 instruct brNop1() %{
 11914   ins_cost(0);
 11916   ins_is_nop(true);
 11918   format %{ "brNop1" %}
 11919   size(4);
 11920   ins_encode %{
 11921     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11922     __ brnop1();
 11923   %}
 11924   ins_pipe(pipe_class_default);
 11925 %}
 11927 instruct brNop2() %{
 11928   ins_cost(0);
 11930   ins_is_nop(true);
 11932   format %{ "brNop2" %}
 11933   size(4);
 11934   ins_encode %{
 11935     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11936     __ brnop2();
 11937   %}
 11938   ins_pipe(pipe_class_default);
 11939 %}
 11941 //----------PEEPHOLE RULES-----------------------------------------------------
 11942 // These must follow all instruction definitions as they use the names
 11943 // defined in the instructions definitions.
 11944 //
 11945 // peepmatch ( root_instr_name [preceeding_instruction]* );
 11946 //
 11947 // peepconstraint %{
 11948 // (instruction_number.operand_name relational_op instruction_number.operand_name
 11949 //  [, ...] );
 11950 // // instruction numbers are zero-based using left to right order in peepmatch
 11951 //
 11952 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 11953 // // provide an instruction_number.operand_name for each operand that appears
 11954 // // in the replacement instruction's match rule
 11955 //
 11956 // ---------VM FLAGS---------------------------------------------------------
 11957 //
 11958 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 11959 //
 11960 // Each peephole rule is given an identifying number starting with zero and
 11961 // increasing by one in the order seen by the parser. An individual peephole
 11962 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 11963 // on the command-line.
 11964 //
 11965 // ---------CURRENT LIMITATIONS----------------------------------------------
 11966 //
 11967 // Only match adjacent instructions in same basic block
 11968 // Only equality constraints
 11969 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 11970 // Only one replacement instruction
 11971 //
 11972 // ---------EXAMPLE----------------------------------------------------------
 11973 //
 11974 // // pertinent parts of existing instructions in architecture description
 11975 // instruct movI(eRegI dst, eRegI src) %{
 11976 //   match(Set dst (CopyI src));
 11977 // %}
 11978 //
 11979 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 11980 //   match(Set dst (AddI dst src));
 11981 //   effect(KILL cr);
 11982 // %}
 11983 //
 11984 // // Change (inc mov) to lea
 11985 // peephole %{
 11986 //   // increment preceeded by register-register move
 11987 //   peepmatch ( incI_eReg movI );
 11988 //   // require that the destination register of the increment
 11989 //   // match the destination register of the move
 11990 //   peepconstraint ( 0.dst == 1.dst );
 11991 //   // construct a replacement instruction that sets
 11992 //   // the destination to ( move's source register + one )
 11993 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 11994 // %}
 11995 //
 11996 // Implementation no longer uses movX instructions since
 11997 // machine-independent system no longer uses CopyX nodes.
 11998 //
 11999 // peephole %{
 12000 //   peepmatch ( incI_eReg movI );
 12001 //   peepconstraint ( 0.dst == 1.dst );
 12002 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12003 // %}
 12004 //
 12005 // peephole %{
 12006 //   peepmatch ( decI_eReg movI );
 12007 //   peepconstraint ( 0.dst == 1.dst );
 12008 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12009 // %}
 12010 //
 12011 // peephole %{
 12012 //   peepmatch ( addI_eReg_imm movI );
 12013 //   peepconstraint ( 0.dst == 1.dst );
 12014 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12015 // %}
 12016 //
 12017 // peephole %{
 12018 //   peepmatch ( addP_eReg_imm movP );
 12019 //   peepconstraint ( 0.dst == 1.dst );
 12020 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12021 // %}
 12023 // // Change load of spilled value to only a spill
 12024 // instruct storeI(memory mem, eRegI src) %{
 12025 //   match(Set mem (StoreI mem src));
 12026 // %}
 12027 //
 12028 // instruct loadI(eRegI dst, memory mem) %{
 12029 //   match(Set dst (LoadI mem));
 12030 // %}
 12031 //
 12032 peephole %{
 12033   peepmatch ( loadI storeI );
 12034   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12035   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12036 %}
 12038 peephole %{
 12039   peepmatch ( loadL storeL );
 12040   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12041   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12042 %}
 12044 peephole %{
 12045   peepmatch ( loadP storeP );
 12046   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12047   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12048 %}
 12050 //----------SMARTSPILL RULES---------------------------------------------------
 12051 // These must follow all instruction definitions as they use the names
 12052 // defined in the instructions definitions.

mercurial