src/share/vm/opto/memnode.cpp

Fri, 01 Aug 2008 10:06:45 -0700

author
kvn
date
Fri, 01 Aug 2008 10:06:45 -0700
changeset 728
c3e045194476
parent 688
b0fe4deeb9fb
child 740
ab075d07f1ba
permissions
-rw-r--r--

6731641: assert(m->adr_type() == mach->adr_type(),"matcher should not change adr type")
Summary: fixed few addP node type and narrow oop type problems.
Reviewed-by: rasbold, never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinals
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinals
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_MergeMem()) {
   127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   128     }
   129   }
   130   return result;
   131 }
   133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   136   PhaseIterGVN *igvn = phase->is_IterGVN();
   137   Node *result = mchain;
   138   result = optimize_simple_memory_chain(result, t_adr, phase);
   139   if (is_instance && igvn != NULL  && result->is_Phi()) {
   140     PhiNode *mphi = result->as_Phi();
   141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   142     const TypePtr *t = mphi->adr_type();
   143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   145         t->is_oopptr()->cast_to_exactness(true)
   146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   148       // clone the Phi with our address type
   149       result = mphi->split_out_instance(t_adr, igvn);
   150     } else {
   151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   152     }
   153   }
   154   return result;
   155 }
   157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   158   uint alias_idx = phase->C->get_alias_index(tp);
   159   Node *mem = mmem;
   160 #ifdef ASSERT
   161   {
   162     // Check that current type is consistent with the alias index used during graph construction
   163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   164     bool consistent =  adr_check == NULL || adr_check->empty() ||
   165                        phase->C->must_alias(adr_check, alias_idx );
   166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   173       // don't assert if it is dead code.
   174       consistent = true;
   175     }
   176     if( !consistent ) {
   177       st->print("alias_idx==%d, adr_check==", alias_idx);
   178       if( adr_check == NULL ) {
   179         st->print("NULL");
   180       } else {
   181         adr_check->dump();
   182       }
   183       st->cr();
   184       print_alias_types();
   185       assert(consistent, "adr_check must match alias idx");
   186     }
   187   }
   188 #endif
   189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   190   // means an array I have not precisely typed yet.  Do not do any
   191   // alias stuff with it any time soon.
   192   const TypeOopPtr *tinst = tp->isa_oopptr();
   193   if( tp->base() != Type::AnyPtr &&
   194       !(tinst &&
   195         tinst->klass()->is_java_lang_Object() &&
   196         tinst->offset() == Type::OffsetBot) ) {
   197     // compress paths and change unreachable cycles to TOP
   198     // If not, we can update the input infinitely along a MergeMem cycle
   199     // Equivalent code in PhiNode::Ideal
   200     Node* m  = phase->transform(mmem);
   201     // If tranformed to a MergeMem, get the desired slice
   202     // Otherwise the returned node represents memory for every slice
   203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   204     // Update input if it is progress over what we have now
   205   }
   206   return mem;
   207 }
   209 //--------------------------Ideal_common---------------------------------------
   210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   211 // Unhook non-raw memories from complete (macro-expanded) initializations.
   212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   213   // If our control input is a dead region, kill all below the region
   214   Node *ctl = in(MemNode::Control);
   215   if (ctl && remove_dead_region(phase, can_reshape))
   216     return this;
   218   // Ignore if memory is dead, or self-loop
   219   Node *mem = in(MemNode::Memory);
   220   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   221   assert( mem != this, "dead loop in MemNode::Ideal" );
   223   Node *address = in(MemNode::Address);
   224   const Type *t_adr = phase->type( address );
   225   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   227   // Avoid independent memory operations
   228   Node* old_mem = mem;
   230   // The code which unhooks non-raw memories from complete (macro-expanded)
   231   // initializations was removed. After macro-expansion all stores catched
   232   // by Initialize node became raw stores and there is no information
   233   // which memory slices they modify. So it is unsafe to move any memory
   234   // operation above these stores. Also in most cases hooked non-raw memories
   235   // were already unhooked by using information from detect_ptr_independence()
   236   // and find_previous_store().
   238   if (mem->is_MergeMem()) {
   239     MergeMemNode* mmem = mem->as_MergeMem();
   240     const TypePtr *tp = t_adr->is_ptr();
   242     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   243   }
   245   if (mem != old_mem) {
   246     set_req(MemNode::Memory, mem);
   247     return this;
   248   }
   250   // let the subclass continue analyzing...
   251   return NULL;
   252 }
   254 // Helper function for proving some simple control dominations.
   255 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   256 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   257 // is not a constant (dominated by the method's StartNode).
   258 // Used by MemNode::find_previous_store to prove that the
   259 // control input of a memory operation predates (dominates)
   260 // an allocation it wants to look past.
   261 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   262   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   263     return false; // Conservative answer for dead code
   265   // Check 'dom'. Skip Proj and CatchProj nodes.
   266   dom = dom->find_exact_control(dom);
   267   if (dom == NULL || dom->is_top())
   268     return false; // Conservative answer for dead code
   270   if (dom == sub) {
   271     // For the case when, for example, 'sub' is Initialize and the original
   272     // 'dom' is Proj node of the 'sub'.
   273     return false;
   274   }
   276   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   277     return true;
   279   // 'dom' dominates 'sub' if its control edge and control edges
   280   // of all its inputs dominate or equal to sub's control edge.
   282   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   283   // Or Region for the check in LoadNode::Ideal();
   284   // 'sub' should have sub->in(0) != NULL.
   285   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   286          sub->is_Region(), "expecting only these nodes");
   288   // Get control edge of 'sub'.
   289   Node* orig_sub = sub;
   290   sub = sub->find_exact_control(sub->in(0));
   291   if (sub == NULL || sub->is_top())
   292     return false; // Conservative answer for dead code
   294   assert(sub->is_CFG(), "expecting control");
   296   if (sub == dom)
   297     return true;
   299   if (sub->is_Start() || sub->is_Root())
   300     return false;
   302   {
   303     // Check all control edges of 'dom'.
   305     ResourceMark rm;
   306     Arena* arena = Thread::current()->resource_area();
   307     Node_List nlist(arena);
   308     Unique_Node_List dom_list(arena);
   310     dom_list.push(dom);
   311     bool only_dominating_controls = false;
   313     for (uint next = 0; next < dom_list.size(); next++) {
   314       Node* n = dom_list.at(next);
   315       if (n == orig_sub)
   316         return false; // One of dom's inputs dominated by sub.
   317       if (!n->is_CFG() && n->pinned()) {
   318         // Check only own control edge for pinned non-control nodes.
   319         n = n->find_exact_control(n->in(0));
   320         if (n == NULL || n->is_top())
   321           return false; // Conservative answer for dead code
   322         assert(n->is_CFG(), "expecting control");
   323         dom_list.push(n);
   324       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   325         only_dominating_controls = true;
   326       } else if (n->is_CFG()) {
   327         if (n->dominates(sub, nlist))
   328           only_dominating_controls = true;
   329         else
   330           return false;
   331       } else {
   332         // First, own control edge.
   333         Node* m = n->find_exact_control(n->in(0));
   334         if (m != NULL) {
   335           if (m->is_top())
   336             return false; // Conservative answer for dead code
   337           dom_list.push(m);
   338         }
   339         // Now, the rest of edges.
   340         uint cnt = n->req();
   341         for (uint i = 1; i < cnt; i++) {
   342           m = n->find_exact_control(n->in(i));
   343           if (m == NULL || m->is_top())
   344             continue;
   345           dom_list.push(m);
   346         }
   347       }
   348     }
   349     return only_dominating_controls;
   350   }
   351 }
   353 //---------------------detect_ptr_independence---------------------------------
   354 // Used by MemNode::find_previous_store to prove that two base
   355 // pointers are never equal.
   356 // The pointers are accompanied by their associated allocations,
   357 // if any, which have been previously discovered by the caller.
   358 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   359                                       Node* p2, AllocateNode* a2,
   360                                       PhaseTransform* phase) {
   361   // Attempt to prove that these two pointers cannot be aliased.
   362   // They may both manifestly be allocations, and they should differ.
   363   // Or, if they are not both allocations, they can be distinct constants.
   364   // Otherwise, one is an allocation and the other a pre-existing value.
   365   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   366     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   367   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   368     return (a1 != a2);
   369   } else if (a1 != NULL) {                  // one allocation a1
   370     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   371     return all_controls_dominate(p2, a1);
   372   } else { //(a2 != NULL)                   // one allocation a2
   373     return all_controls_dominate(p1, a2);
   374   }
   375   return false;
   376 }
   379 // The logic for reordering loads and stores uses four steps:
   380 // (a) Walk carefully past stores and initializations which we
   381 //     can prove are independent of this load.
   382 // (b) Observe that the next memory state makes an exact match
   383 //     with self (load or store), and locate the relevant store.
   384 // (c) Ensure that, if we were to wire self directly to the store,
   385 //     the optimizer would fold it up somehow.
   386 // (d) Do the rewiring, and return, depending on some other part of
   387 //     the optimizer to fold up the load.
   388 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   389 // specific to loads and stores, so they are handled by the callers.
   390 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   391 //
   392 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   393   Node*         ctrl   = in(MemNode::Control);
   394   Node*         adr    = in(MemNode::Address);
   395   intptr_t      offset = 0;
   396   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   397   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   399   if (offset == Type::OffsetBot)
   400     return NULL;            // cannot unalias unless there are precise offsets
   402   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   404   intptr_t size_in_bytes = memory_size();
   406   Node* mem = in(MemNode::Memory);   // start searching here...
   408   int cnt = 50;             // Cycle limiter
   409   for (;;) {                // While we can dance past unrelated stores...
   410     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   412     if (mem->is_Store()) {
   413       Node* st_adr = mem->in(MemNode::Address);
   414       intptr_t st_offset = 0;
   415       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   416       if (st_base == NULL)
   417         break;              // inscrutable pointer
   418       if (st_offset != offset && st_offset != Type::OffsetBot) {
   419         const int MAX_STORE = BytesPerLong;
   420         if (st_offset >= offset + size_in_bytes ||
   421             st_offset <= offset - MAX_STORE ||
   422             st_offset <= offset - mem->as_Store()->memory_size()) {
   423           // Success:  The offsets are provably independent.
   424           // (You may ask, why not just test st_offset != offset and be done?
   425           // The answer is that stores of different sizes can co-exist
   426           // in the same sequence of RawMem effects.  We sometimes initialize
   427           // a whole 'tile' of array elements with a single jint or jlong.)
   428           mem = mem->in(MemNode::Memory);
   429           continue;           // (a) advance through independent store memory
   430         }
   431       }
   432       if (st_base != base &&
   433           detect_ptr_independence(base, alloc,
   434                                   st_base,
   435                                   AllocateNode::Ideal_allocation(st_base, phase),
   436                                   phase)) {
   437         // Success:  The bases are provably independent.
   438         mem = mem->in(MemNode::Memory);
   439         continue;           // (a) advance through independent store memory
   440       }
   442       // (b) At this point, if the bases or offsets do not agree, we lose,
   443       // since we have not managed to prove 'this' and 'mem' independent.
   444       if (st_base == base && st_offset == offset) {
   445         return mem;         // let caller handle steps (c), (d)
   446       }
   448     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   449       InitializeNode* st_init = mem->in(0)->as_Initialize();
   450       AllocateNode*  st_alloc = st_init->allocation();
   451       if (st_alloc == NULL)
   452         break;              // something degenerated
   453       bool known_identical = false;
   454       bool known_independent = false;
   455       if (alloc == st_alloc)
   456         known_identical = true;
   457       else if (alloc != NULL)
   458         known_independent = true;
   459       else if (all_controls_dominate(this, st_alloc))
   460         known_independent = true;
   462       if (known_independent) {
   463         // The bases are provably independent: Either they are
   464         // manifestly distinct allocations, or else the control
   465         // of this load dominates the store's allocation.
   466         int alias_idx = phase->C->get_alias_index(adr_type());
   467         if (alias_idx == Compile::AliasIdxRaw) {
   468           mem = st_alloc->in(TypeFunc::Memory);
   469         } else {
   470           mem = st_init->memory(alias_idx);
   471         }
   472         continue;           // (a) advance through independent store memory
   473       }
   475       // (b) at this point, if we are not looking at a store initializing
   476       // the same allocation we are loading from, we lose.
   477       if (known_identical) {
   478         // From caller, can_see_stored_value will consult find_captured_store.
   479         return mem;         // let caller handle steps (c), (d)
   480       }
   482     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   483       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   484       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   485         CallNode *call = mem->in(0)->as_Call();
   486         if (!call->may_modify(addr_t, phase)) {
   487           mem = call->in(TypeFunc::Memory);
   488           continue;         // (a) advance through independent call memory
   489         }
   490       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   491         mem = mem->in(0)->in(TypeFunc::Memory);
   492         continue;           // (a) advance through independent MemBar memory
   493       } else if (mem->is_MergeMem()) {
   494         int alias_idx = phase->C->get_alias_index(adr_type());
   495         mem = mem->as_MergeMem()->memory_at(alias_idx);
   496         continue;           // (a) advance through independent MergeMem memory
   497       }
   498     }
   500     // Unless there is an explicit 'continue', we must bail out here,
   501     // because 'mem' is an inscrutable memory state (e.g., a call).
   502     break;
   503   }
   505   return NULL;              // bail out
   506 }
   508 //----------------------calculate_adr_type-------------------------------------
   509 // Helper function.  Notices when the given type of address hits top or bottom.
   510 // Also, asserts a cross-check of the type against the expected address type.
   511 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   512   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   513   #ifdef PRODUCT
   514   cross_check = NULL;
   515   #else
   516   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   517   #endif
   518   const TypePtr* tp = t->isa_ptr();
   519   if (tp == NULL) {
   520     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   521     return TypePtr::BOTTOM;           // touches lots of memory
   522   } else {
   523     #ifdef ASSERT
   524     // %%%% [phh] We don't check the alias index if cross_check is
   525     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   526     if (cross_check != NULL &&
   527         cross_check != TypePtr::BOTTOM &&
   528         cross_check != TypeRawPtr::BOTTOM) {
   529       // Recheck the alias index, to see if it has changed (due to a bug).
   530       Compile* C = Compile::current();
   531       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   532              "must stay in the original alias category");
   533       // The type of the address must be contained in the adr_type,
   534       // disregarding "null"-ness.
   535       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   536       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   537       assert(cross_check->meet(tp_notnull) == cross_check,
   538              "real address must not escape from expected memory type");
   539     }
   540     #endif
   541     return tp;
   542   }
   543 }
   545 //------------------------adr_phi_is_loop_invariant----------------------------
   546 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   547 // loop is loop invariant. Make a quick traversal of Phi and associated
   548 // CastPP nodes, looking to see if they are a closed group within the loop.
   549 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   550   // The idea is that the phi-nest must boil down to only CastPP nodes
   551   // with the same data. This implies that any path into the loop already
   552   // includes such a CastPP, and so the original cast, whatever its input,
   553   // must be covered by an equivalent cast, with an earlier control input.
   554   ResourceMark rm;
   556   // The loop entry input of the phi should be the unique dominating
   557   // node for every Phi/CastPP in the loop.
   558   Unique_Node_List closure;
   559   closure.push(adr_phi->in(LoopNode::EntryControl));
   561   // Add the phi node and the cast to the worklist.
   562   Unique_Node_List worklist;
   563   worklist.push(adr_phi);
   564   if( cast != NULL ){
   565     if( !cast->is_ConstraintCast() ) return false;
   566     worklist.push(cast);
   567   }
   569   // Begin recursive walk of phi nodes.
   570   while( worklist.size() ){
   571     // Take a node off the worklist
   572     Node *n = worklist.pop();
   573     if( !closure.member(n) ){
   574       // Add it to the closure.
   575       closure.push(n);
   576       // Make a sanity check to ensure we don't waste too much time here.
   577       if( closure.size() > 20) return false;
   578       // This node is OK if:
   579       //  - it is a cast of an identical value
   580       //  - or it is a phi node (then we add its inputs to the worklist)
   581       // Otherwise, the node is not OK, and we presume the cast is not invariant
   582       if( n->is_ConstraintCast() ){
   583         worklist.push(n->in(1));
   584       } else if( n->is_Phi() ) {
   585         for( uint i = 1; i < n->req(); i++ ) {
   586           worklist.push(n->in(i));
   587         }
   588       } else {
   589         return false;
   590       }
   591     }
   592   }
   594   // Quit when the worklist is empty, and we've found no offending nodes.
   595   return true;
   596 }
   598 //------------------------------Ideal_DU_postCCP-------------------------------
   599 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   600 // going away in this pass and we need to make this memory op depend on the
   601 // gating null check.
   602 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   603   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   604 }
   606 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   607 // some sense; we get to keep around the knowledge that an oop is not-null
   608 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   609 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   610 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   611 // some of the more trivial cases in the optimizer.  Removing more useless
   612 // Phi's started allowing Loads to illegally float above null checks.  I gave
   613 // up on this approach.  CNC 10/20/2000
   614 // This static method may be called not from MemNode (EncodePNode calls it).
   615 // Only the control edge of the node 'n' might be updated.
   616 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   617   Node *skipped_cast = NULL;
   618   // Need a null check?  Regular static accesses do not because they are
   619   // from constant addresses.  Array ops are gated by the range check (which
   620   // always includes a NULL check).  Just check field ops.
   621   if( n->in(MemNode::Control) == NULL ) {
   622     // Scan upwards for the highest location we can place this memory op.
   623     while( true ) {
   624       switch( adr->Opcode() ) {
   626       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   627         adr = adr->in(AddPNode::Base);
   628         continue;
   630       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   631         adr = adr->in(1);
   632         continue;
   634       case Op_CastPP:
   635         // If the CastPP is useless, just peek on through it.
   636         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   637           // Remember the cast that we've peeked though. If we peek
   638           // through more than one, then we end up remembering the highest
   639           // one, that is, if in a loop, the one closest to the top.
   640           skipped_cast = adr;
   641           adr = adr->in(1);
   642           continue;
   643         }
   644         // CastPP is going away in this pass!  We need this memory op to be
   645         // control-dependent on the test that is guarding the CastPP.
   646         ccp->hash_delete(n);
   647         n->set_req(MemNode::Control, adr->in(0));
   648         ccp->hash_insert(n);
   649         return n;
   651       case Op_Phi:
   652         // Attempt to float above a Phi to some dominating point.
   653         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   654           // If we've already peeked through a Cast (which could have set the
   655           // control), we can't float above a Phi, because the skipped Cast
   656           // may not be loop invariant.
   657           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   658             adr = adr->in(1);
   659             continue;
   660           }
   661         }
   663         // Intentional fallthrough!
   665         // No obvious dominating point.  The mem op is pinned below the Phi
   666         // by the Phi itself.  If the Phi goes away (no true value is merged)
   667         // then the mem op can float, but not indefinitely.  It must be pinned
   668         // behind the controls leading to the Phi.
   669       case Op_CheckCastPP:
   670         // These usually stick around to change address type, however a
   671         // useless one can be elided and we still need to pick up a control edge
   672         if (adr->in(0) == NULL) {
   673           // This CheckCastPP node has NO control and is likely useless. But we
   674           // need check further up the ancestor chain for a control input to keep
   675           // the node in place. 4959717.
   676           skipped_cast = adr;
   677           adr = adr->in(1);
   678           continue;
   679         }
   680         ccp->hash_delete(n);
   681         n->set_req(MemNode::Control, adr->in(0));
   682         ccp->hash_insert(n);
   683         return n;
   685         // List of "safe" opcodes; those that implicitly block the memory
   686         // op below any null check.
   687       case Op_CastX2P:          // no null checks on native pointers
   688       case Op_Parm:             // 'this' pointer is not null
   689       case Op_LoadP:            // Loading from within a klass
   690       case Op_LoadN:            // Loading from within a klass
   691       case Op_LoadKlass:        // Loading from within a klass
   692       case Op_LoadNKlass:       // Loading from within a klass
   693       case Op_ConP:             // Loading from a klass
   694       case Op_ConN:             // Loading from a klass
   695       case Op_CreateEx:         // Sucking up the guts of an exception oop
   696       case Op_Con:              // Reading from TLS
   697       case Op_CMoveP:           // CMoveP is pinned
   698       case Op_CMoveN:           // CMoveN is pinned
   699         break;                  // No progress
   701       case Op_Proj:             // Direct call to an allocation routine
   702       case Op_SCMemProj:        // Memory state from store conditional ops
   703 #ifdef ASSERT
   704         {
   705           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   706           const Node* call = adr->in(0);
   707           if (call->is_CallJava()) {
   708             const CallJavaNode* call_java = call->as_CallJava();
   709             const TypeTuple *r = call_java->tf()->range();
   710             assert(r->cnt() > TypeFunc::Parms, "must return value");
   711             const Type* ret_type = r->field_at(TypeFunc::Parms);
   712             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   713             // We further presume that this is one of
   714             // new_instance_Java, new_array_Java, or
   715             // the like, but do not assert for this.
   716           } else if (call->is_Allocate()) {
   717             // similar case to new_instance_Java, etc.
   718           } else if (!call->is_CallLeaf()) {
   719             // Projections from fetch_oop (OSR) are allowed as well.
   720             ShouldNotReachHere();
   721           }
   722         }
   723 #endif
   724         break;
   725       default:
   726         ShouldNotReachHere();
   727       }
   728       break;
   729     }
   730   }
   732   return  NULL;               // No progress
   733 }
   736 //=============================================================================
   737 uint LoadNode::size_of() const { return sizeof(*this); }
   738 uint LoadNode::cmp( const Node &n ) const
   739 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   740 const Type *LoadNode::bottom_type() const { return _type; }
   741 uint LoadNode::ideal_reg() const {
   742   return Matcher::base2reg[_type->base()];
   743 }
   745 #ifndef PRODUCT
   746 void LoadNode::dump_spec(outputStream *st) const {
   747   MemNode::dump_spec(st);
   748   if( !Verbose && !WizardMode ) {
   749     // standard dump does this in Verbose and WizardMode
   750     st->print(" #"); _type->dump_on(st);
   751   }
   752 }
   753 #endif
   756 //----------------------------LoadNode::make-----------------------------------
   757 // Polymorphic factory method:
   758 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   759   Compile* C = gvn.C;
   761   // sanity check the alias category against the created node type
   762   assert(!(adr_type->isa_oopptr() &&
   763            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   764          "use LoadKlassNode instead");
   765   assert(!(adr_type->isa_aryptr() &&
   766            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   767          "use LoadRangeNode instead");
   768   switch (bt) {
   769   case T_BOOLEAN:
   770   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   771   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   772   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   773   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   774   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   775   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   776   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   777   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   778   case T_OBJECT:
   779 #ifdef _LP64
   780     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   781       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   782       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   783     } else
   784 #endif
   785     {
   786       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   787       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   788     }
   789   }
   790   ShouldNotReachHere();
   791   return (LoadNode*)NULL;
   792 }
   794 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   795   bool require_atomic = true;
   796   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   797 }
   802 //------------------------------hash-------------------------------------------
   803 uint LoadNode::hash() const {
   804   // unroll addition of interesting fields
   805   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   806 }
   808 //---------------------------can_see_stored_value------------------------------
   809 // This routine exists to make sure this set of tests is done the same
   810 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   811 // will change the graph shape in a way which makes memory alive twice at the
   812 // same time (uses the Oracle model of aliasing), then some
   813 // LoadXNode::Identity will fold things back to the equivalence-class model
   814 // of aliasing.
   815 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   816   Node* ld_adr = in(MemNode::Address);
   818   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   819   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   820   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   821       atp->field() != NULL && !atp->field()->is_volatile()) {
   822     uint alias_idx = atp->index();
   823     bool final = atp->field()->is_final();
   824     Node* result = NULL;
   825     Node* current = st;
   826     // Skip through chains of MemBarNodes checking the MergeMems for
   827     // new states for the slice of this load.  Stop once any other
   828     // kind of node is encountered.  Loads from final memory can skip
   829     // through any kind of MemBar but normal loads shouldn't skip
   830     // through MemBarAcquire since the could allow them to move out of
   831     // a synchronized region.
   832     while (current->is_Proj()) {
   833       int opc = current->in(0)->Opcode();
   834       if ((final && opc == Op_MemBarAcquire) ||
   835           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   836         Node* mem = current->in(0)->in(TypeFunc::Memory);
   837         if (mem->is_MergeMem()) {
   838           MergeMemNode* merge = mem->as_MergeMem();
   839           Node* new_st = merge->memory_at(alias_idx);
   840           if (new_st == merge->base_memory()) {
   841             // Keep searching
   842             current = merge->base_memory();
   843             continue;
   844           }
   845           // Save the new memory state for the slice and fall through
   846           // to exit.
   847           result = new_st;
   848         }
   849       }
   850       break;
   851     }
   852     if (result != NULL) {
   853       st = result;
   854     }
   855   }
   858   // Loop around twice in the case Load -> Initialize -> Store.
   859   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   860   for (int trip = 0; trip <= 1; trip++) {
   862     if (st->is_Store()) {
   863       Node* st_adr = st->in(MemNode::Address);
   864       if (!phase->eqv(st_adr, ld_adr)) {
   865         // Try harder before giving up...  Match raw and non-raw pointers.
   866         intptr_t st_off = 0;
   867         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   868         if (alloc == NULL)       return NULL;
   869         intptr_t ld_off = 0;
   870         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   871         if (alloc != allo2)      return NULL;
   872         if (ld_off != st_off)    return NULL;
   873         // At this point we have proven something like this setup:
   874         //  A = Allocate(...)
   875         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   876         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   877         // (Actually, we haven't yet proven the Q's are the same.)
   878         // In other words, we are loading from a casted version of
   879         // the same pointer-and-offset that we stored to.
   880         // Thus, we are able to replace L by V.
   881       }
   882       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   883       if (store_Opcode() != st->Opcode())
   884         return NULL;
   885       return st->in(MemNode::ValueIn);
   886     }
   888     intptr_t offset = 0;  // scratch
   890     // A load from a freshly-created object always returns zero.
   891     // (This can happen after LoadNode::Ideal resets the load's memory input
   892     // to find_captured_store, which returned InitializeNode::zero_memory.)
   893     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   894         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   895         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   896       // return a zero value for the load's basic type
   897       // (This is one of the few places where a generic PhaseTransform
   898       // can create new nodes.  Think of it as lazily manifesting
   899       // virtually pre-existing constants.)
   900       return phase->zerocon(memory_type());
   901     }
   903     // A load from an initialization barrier can match a captured store.
   904     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   905       InitializeNode* init = st->in(0)->as_Initialize();
   906       AllocateNode* alloc = init->allocation();
   907       if (alloc != NULL &&
   908           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   909         // examine a captured store value
   910         st = init->find_captured_store(offset, memory_size(), phase);
   911         if (st != NULL)
   912           continue;             // take one more trip around
   913       }
   914     }
   916     break;
   917   }
   919   return NULL;
   920 }
   922 //----------------------is_instance_field_load_with_local_phi------------------
   923 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   924   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   925       in(MemNode::Address)->is_AddP() ) {
   926     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   927     // Only instances.
   928     if( t_oop != NULL && t_oop->is_known_instance_field() &&
   929         t_oop->offset() != Type::OffsetBot &&
   930         t_oop->offset() != Type::OffsetTop) {
   931       return true;
   932     }
   933   }
   934   return false;
   935 }
   937 //------------------------------Identity---------------------------------------
   938 // Loads are identity if previous store is to same address
   939 Node *LoadNode::Identity( PhaseTransform *phase ) {
   940   // If the previous store-maker is the right kind of Store, and the store is
   941   // to the same address, then we are equal to the value stored.
   942   Node* mem = in(MemNode::Memory);
   943   Node* value = can_see_stored_value(mem, phase);
   944   if( value ) {
   945     // byte, short & char stores truncate naturally.
   946     // A load has to load the truncated value which requires
   947     // some sort of masking operation and that requires an
   948     // Ideal call instead of an Identity call.
   949     if (memory_size() < BytesPerInt) {
   950       // If the input to the store does not fit with the load's result type,
   951       // it must be truncated via an Ideal call.
   952       if (!phase->type(value)->higher_equal(phase->type(this)))
   953         return this;
   954     }
   955     // (This works even when value is a Con, but LoadNode::Value
   956     // usually runs first, producing the singleton type of the Con.)
   957     return value;
   958   }
   960   // Search for an existing data phi which was generated before for the same
   961   // instance's field to avoid infinite genertion of phis in a loop.
   962   Node *region = mem->in(0);
   963   if (is_instance_field_load_with_local_phi(region)) {
   964     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   965     int this_index  = phase->C->get_alias_index(addr_t);
   966     int this_offset = addr_t->offset();
   967     int this_id    = addr_t->is_oopptr()->instance_id();
   968     const Type* this_type = bottom_type();
   969     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   970       Node* phi = region->fast_out(i);
   971       if (phi->is_Phi() && phi != mem &&
   972           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   973         return phi;
   974       }
   975     }
   976   }
   978   return this;
   979 }
   982 // Returns true if the AliasType refers to the field that holds the
   983 // cached box array.  Currently only handles the IntegerCache case.
   984 static bool is_autobox_cache(Compile::AliasType* atp) {
   985   if (atp != NULL && atp->field() != NULL) {
   986     ciField* field = atp->field();
   987     ciSymbol* klass = field->holder()->name();
   988     if (field->name() == ciSymbol::cache_field_name() &&
   989         field->holder()->uses_default_loader() &&
   990         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
   991       return true;
   992     }
   993   }
   994   return false;
   995 }
   997 // Fetch the base value in the autobox array
   998 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
   999   if (atp != NULL && atp->field() != NULL) {
  1000     ciField* field = atp->field();
  1001     ciSymbol* klass = field->holder()->name();
  1002     if (field->name() == ciSymbol::cache_field_name() &&
  1003         field->holder()->uses_default_loader() &&
  1004         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1005       assert(field->is_constant(), "what?");
  1006       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1007       // Fetch the box object at the base of the array and get its value
  1008       ciInstance* box = array->obj_at(0)->as_instance();
  1009       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1010       if (ik->nof_nonstatic_fields() == 1) {
  1011         // This should be true nonstatic_field_at requires calling
  1012         // nof_nonstatic_fields so check it anyway
  1013         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1014         cache_offset = c.as_int();
  1016       return true;
  1019   return false;
  1022 // Returns true if the AliasType refers to the value field of an
  1023 // autobox object.  Currently only handles Integer.
  1024 static bool is_autobox_object(Compile::AliasType* atp) {
  1025   if (atp != NULL && atp->field() != NULL) {
  1026     ciField* field = atp->field();
  1027     ciSymbol* klass = field->holder()->name();
  1028     if (field->name() == ciSymbol::value_name() &&
  1029         field->holder()->uses_default_loader() &&
  1030         klass == ciSymbol::java_lang_Integer()) {
  1031       return true;
  1034   return false;
  1038 // We're loading from an object which has autobox behaviour.
  1039 // If this object is result of a valueOf call we'll have a phi
  1040 // merging a newly allocated object and a load from the cache.
  1041 // We want to replace this load with the original incoming
  1042 // argument to the valueOf call.
  1043 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1044   Node* base = in(Address)->in(AddPNode::Base);
  1045   if (base->is_Phi() && base->req() == 3) {
  1046     AllocateNode* allocation = NULL;
  1047     int allocation_index = -1;
  1048     int load_index = -1;
  1049     for (uint i = 1; i < base->req(); i++) {
  1050       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1051       if (allocation != NULL) {
  1052         allocation_index = i;
  1053         load_index = 3 - allocation_index;
  1054         break;
  1057     LoadNode* load = NULL;
  1058     if (allocation != NULL && base->in(load_index)->is_Load()) {
  1059       load = base->in(load_index)->as_Load();
  1061     if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1062       // Push the loads from the phi that comes from valueOf up
  1063       // through it to allow elimination of the loads and the recovery
  1064       // of the original value.
  1065       Node* mem_phi = in(Memory);
  1066       Node* offset = in(Address)->in(AddPNode::Offset);
  1068       Node* in1 = clone();
  1069       Node* in1_addr = in1->in(Address)->clone();
  1070       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1071       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1072       in1_addr->set_req(AddPNode::Offset, offset);
  1073       in1->set_req(0, base->in(allocation_index));
  1074       in1->set_req(Address, in1_addr);
  1075       in1->set_req(Memory, mem_phi->in(allocation_index));
  1077       Node* in2 = clone();
  1078       Node* in2_addr = in2->in(Address)->clone();
  1079       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1080       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1081       in2_addr->set_req(AddPNode::Offset, offset);
  1082       in2->set_req(0, base->in(load_index));
  1083       in2->set_req(Address, in2_addr);
  1084       in2->set_req(Memory, mem_phi->in(load_index));
  1086       in1_addr = phase->transform(in1_addr);
  1087       in1 =      phase->transform(in1);
  1088       in2_addr = phase->transform(in2_addr);
  1089       in2 =      phase->transform(in2);
  1091       PhiNode* result = PhiNode::make_blank(base->in(0), this);
  1092       result->set_req(allocation_index, in1);
  1093       result->set_req(load_index, in2);
  1094       return result;
  1096   } else if (base->is_Load()) {
  1097     // Eliminate the load of Integer.value for integers from the cache
  1098     // array by deriving the value from the index into the array.
  1099     // Capture the offset of the load and then reverse the computation.
  1100     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1101     if (load_base != NULL) {
  1102       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1103       intptr_t cache_offset;
  1104       int shift = -1;
  1105       Node* cache = NULL;
  1106       if (is_autobox_cache(atp)) {
  1107         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1108         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1110       if (cache != NULL && base->in(Address)->is_AddP()) {
  1111         Node* elements[4];
  1112         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1113         int cache_low;
  1114         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1115           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1116           // Add up all the offsets making of the address of the load
  1117           Node* result = elements[0];
  1118           for (int i = 1; i < count; i++) {
  1119             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1121           // Remove the constant offset from the address and then
  1122           // remove the scaling of the offset to recover the original index.
  1123           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1124           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1125             // Peel the shift off directly but wrap it in a dummy node
  1126             // since Ideal can't return existing nodes
  1127             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1128           } else {
  1129             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1131 #ifdef _LP64
  1132           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1133 #endif
  1134           return result;
  1139   return NULL;
  1142 //------------------------------split_through_phi------------------------------
  1143 // Split instance field load through Phi.
  1144 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1145   Node* mem     = in(MemNode::Memory);
  1146   Node* address = in(MemNode::Address);
  1147   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1148   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1150   assert(mem->is_Phi() && (t_oop != NULL) &&
  1151          t_oop->is_known_instance_field(), "invalide conditions");
  1153   Node *region = mem->in(0);
  1154   if (region == NULL) {
  1155     return NULL; // Wait stable graph
  1157   uint cnt = mem->req();
  1158   for( uint i = 1; i < cnt; i++ ) {
  1159     Node *in = mem->in(i);
  1160     if( in == NULL ) {
  1161       return NULL; // Wait stable graph
  1164   // Check for loop invariant.
  1165   if (cnt == 3) {
  1166     for( uint i = 1; i < cnt; i++ ) {
  1167       Node *in = mem->in(i);
  1168       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1169       if (m == mem) {
  1170         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1171         return this;
  1175   // Split through Phi (see original code in loopopts.cpp).
  1176   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1178   // Do nothing here if Identity will find a value
  1179   // (to avoid infinite chain of value phis generation).
  1180   if ( !phase->eqv(this, this->Identity(phase)) )
  1181     return NULL;
  1183   // Skip the split if the region dominates some control edge of the address.
  1184   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1185     return NULL;
  1187   const Type* this_type = this->bottom_type();
  1188   int this_index  = phase->C->get_alias_index(addr_t);
  1189   int this_offset = addr_t->offset();
  1190   int this_iid    = addr_t->is_oopptr()->instance_id();
  1191   int wins = 0;
  1192   PhaseIterGVN *igvn = phase->is_IterGVN();
  1193   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1194   for( uint i = 1; i < region->req(); i++ ) {
  1195     Node *x;
  1196     Node* the_clone = NULL;
  1197     if( region->in(i) == phase->C->top() ) {
  1198       x = phase->C->top();      // Dead path?  Use a dead data op
  1199     } else {
  1200       x = this->clone();        // Else clone up the data op
  1201       the_clone = x;            // Remember for possible deletion.
  1202       // Alter data node to use pre-phi inputs
  1203       if( this->in(0) == region ) {
  1204         x->set_req( 0, region->in(i) );
  1205       } else {
  1206         x->set_req( 0, NULL );
  1208       for( uint j = 1; j < this->req(); j++ ) {
  1209         Node *in = this->in(j);
  1210         if( in->is_Phi() && in->in(0) == region )
  1211           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1214     // Check for a 'win' on some paths
  1215     const Type *t = x->Value(igvn);
  1217     bool singleton = t->singleton();
  1219     // See comments in PhaseIdealLoop::split_thru_phi().
  1220     if( singleton && t == Type::TOP ) {
  1221       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1224     if( singleton ) {
  1225       wins++;
  1226       x = igvn->makecon(t);
  1227     } else {
  1228       // We now call Identity to try to simplify the cloned node.
  1229       // Note that some Identity methods call phase->type(this).
  1230       // Make sure that the type array is big enough for
  1231       // our new node, even though we may throw the node away.
  1232       // (This tweaking with igvn only works because x is a new node.)
  1233       igvn->set_type(x, t);
  1234       // If x is a TypeNode, capture any more-precise type permanently into Node
  1235       // othewise it will be not updated during igvn->transform since
  1236       // igvn->type(x) is set to x->Value() already.
  1237       x->raise_bottom_type(t);
  1238       Node *y = x->Identity(igvn);
  1239       if( y != x ) {
  1240         wins++;
  1241         x = y;
  1242       } else {
  1243         y = igvn->hash_find(x);
  1244         if( y ) {
  1245           wins++;
  1246           x = y;
  1247         } else {
  1248           // Else x is a new node we are keeping
  1249           // We do not need register_new_node_with_optimizer
  1250           // because set_type has already been called.
  1251           igvn->_worklist.push(x);
  1255     if (x != the_clone && the_clone != NULL)
  1256       igvn->remove_dead_node(the_clone);
  1257     phi->set_req(i, x);
  1259   if( wins > 0 ) {
  1260     // Record Phi
  1261     igvn->register_new_node_with_optimizer(phi);
  1262     return phi;
  1264   igvn->remove_dead_node(phi);
  1265   return NULL;
  1268 //------------------------------Ideal------------------------------------------
  1269 // If the load is from Field memory and the pointer is non-null, we can
  1270 // zero out the control input.
  1271 // If the offset is constant and the base is an object allocation,
  1272 // try to hook me up to the exact initializing store.
  1273 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1274   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1275   if (p)  return (p == NodeSentinel) ? NULL : p;
  1277   Node* ctrl    = in(MemNode::Control);
  1278   Node* address = in(MemNode::Address);
  1280   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1281   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1282   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1283       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1284     ctrl = ctrl->in(0);
  1285     set_req(MemNode::Control,ctrl);
  1288   // Check for useless control edge in some common special cases
  1289   if (in(MemNode::Control) != NULL) {
  1290     intptr_t ignore = 0;
  1291     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1292     if (base != NULL
  1293         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1294         && all_controls_dominate(base, phase->C->start())) {
  1295       // A method-invariant, non-null address (constant or 'this' argument).
  1296       set_req(MemNode::Control, NULL);
  1300   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1301     Node* base = in(Address)->in(AddPNode::Base);
  1302     if (base != NULL) {
  1303       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1304       if (is_autobox_object(atp)) {
  1305         Node* result = eliminate_autobox(phase);
  1306         if (result != NULL) return result;
  1311   Node* mem = in(MemNode::Memory);
  1312   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1314   if (addr_t != NULL) {
  1315     // try to optimize our memory input
  1316     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1317     if (opt_mem != mem) {
  1318       set_req(MemNode::Memory, opt_mem);
  1319       return this;
  1321     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1322     if (can_reshape && opt_mem->is_Phi() &&
  1323         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1324       // Split instance field load through Phi.
  1325       Node* result = split_through_phi(phase);
  1326       if (result != NULL) return result;
  1330   // Check for prior store with a different base or offset; make Load
  1331   // independent.  Skip through any number of them.  Bail out if the stores
  1332   // are in an endless dead cycle and report no progress.  This is a key
  1333   // transform for Reflection.  However, if after skipping through the Stores
  1334   // we can't then fold up against a prior store do NOT do the transform as
  1335   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1336   // array memory alive twice: once for the hoisted Load and again after the
  1337   // bypassed Store.  This situation only works if EVERYBODY who does
  1338   // anti-dependence work knows how to bypass.  I.e. we need all
  1339   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1340   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1341   // fold up, do so.
  1342   Node* prev_mem = find_previous_store(phase);
  1343   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1344   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1345     // (c) See if we can fold up on the spot, but don't fold up here.
  1346     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
  1347     // just return a prior value, which is done by Identity calls.
  1348     if (can_see_stored_value(prev_mem, phase)) {
  1349       // Make ready for step (d):
  1350       set_req(MemNode::Memory, prev_mem);
  1351       return this;
  1355   return NULL;                  // No further progress
  1358 // Helper to recognize certain Klass fields which are invariant across
  1359 // some group of array types (e.g., int[] or all T[] where T < Object).
  1360 const Type*
  1361 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1362                                  ciKlass* klass) const {
  1363   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1364     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1365     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1366     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1367     return TypeInt::make(klass->modifier_flags());
  1369   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1370     // The field is Klass::_access_flags.  Return its (constant) value.
  1371     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1372     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1373     return TypeInt::make(klass->access_flags());
  1375   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1376     // The field is Klass::_layout_helper.  Return its constant value if known.
  1377     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1378     return TypeInt::make(klass->layout_helper());
  1381   // No match.
  1382   return NULL;
  1385 //------------------------------Value-----------------------------------------
  1386 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1387   // Either input is TOP ==> the result is TOP
  1388   Node* mem = in(MemNode::Memory);
  1389   const Type *t1 = phase->type(mem);
  1390   if (t1 == Type::TOP)  return Type::TOP;
  1391   Node* adr = in(MemNode::Address);
  1392   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1393   if (tp == NULL || tp->empty())  return Type::TOP;
  1394   int off = tp->offset();
  1395   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1397   // Try to guess loaded type from pointer type
  1398   if (tp->base() == Type::AryPtr) {
  1399     const Type *t = tp->is_aryptr()->elem();
  1400     // Don't do this for integer types. There is only potential profit if
  1401     // the element type t is lower than _type; that is, for int types, if _type is
  1402     // more restrictive than t.  This only happens here if one is short and the other
  1403     // char (both 16 bits), and in those cases we've made an intentional decision
  1404     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1405     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1406     //
  1407     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1408     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1409     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1410     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1411     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1412     // In fact, that could have been the original type of p1, and p1 could have
  1413     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1414     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1415     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1416         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1417       // t might actually be lower than _type, if _type is a unique
  1418       // concrete subclass of abstract class t.
  1419       // Make sure the reference is not into the header, by comparing
  1420       // the offset against the offset of the start of the array's data.
  1421       // Different array types begin at slightly different offsets (12 vs. 16).
  1422       // We choose T_BYTE as an example base type that is least restrictive
  1423       // as to alignment, which will therefore produce the smallest
  1424       // possible base offset.
  1425       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1426       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1427         const Type* jt = t->join(_type);
  1428         // In any case, do not allow the join, per se, to empty out the type.
  1429         if (jt->empty() && !t->empty()) {
  1430           // This can happen if a interface-typed array narrows to a class type.
  1431           jt = _type;
  1434         if (EliminateAutoBox) {
  1435           // The pointers in the autobox arrays are always non-null
  1436           Node* base = in(Address)->in(AddPNode::Base);
  1437           if (base != NULL) {
  1438             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1439             if (is_autobox_cache(atp)) {
  1440               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1444         return jt;
  1447   } else if (tp->base() == Type::InstPtr) {
  1448     assert( off != Type::OffsetBot ||
  1449             // arrays can be cast to Objects
  1450             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1451             // unsafe field access may not have a constant offset
  1452             phase->C->has_unsafe_access(),
  1453             "Field accesses must be precise" );
  1454     // For oop loads, we expect the _type to be precise
  1455   } else if (tp->base() == Type::KlassPtr) {
  1456     assert( off != Type::OffsetBot ||
  1457             // arrays can be cast to Objects
  1458             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1459             // also allow array-loading from the primary supertype
  1460             // array during subtype checks
  1461             Opcode() == Op_LoadKlass,
  1462             "Field accesses must be precise" );
  1463     // For klass/static loads, we expect the _type to be precise
  1466   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1467   if (tkls != NULL && !StressReflectiveCode) {
  1468     ciKlass* klass = tkls->klass();
  1469     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1470       // We are loading a field from a Klass metaobject whose identity
  1471       // is known at compile time (the type is "exact" or "precise").
  1472       // Check for fields we know are maintained as constants by the VM.
  1473       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1474         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1475         // (Folds up type checking code.)
  1476         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1477         return TypeInt::make(klass->super_check_offset());
  1479       // Compute index into primary_supers array
  1480       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1481       // Check for overflowing; use unsigned compare to handle the negative case.
  1482       if( depth < ciKlass::primary_super_limit() ) {
  1483         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1484         // (Folds up type checking code.)
  1485         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1486         ciKlass *ss = klass->super_of_depth(depth);
  1487         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1489       const Type* aift = load_array_final_field(tkls, klass);
  1490       if (aift != NULL)  return aift;
  1491       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1492           && klass->is_array_klass()) {
  1493         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1494         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1495         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1496         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1498       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1499         // The field is Klass::_java_mirror.  Return its (constant) value.
  1500         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1501         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1502         return TypeInstPtr::make(klass->java_mirror());
  1506     // We can still check if we are loading from the primary_supers array at a
  1507     // shallow enough depth.  Even though the klass is not exact, entries less
  1508     // than or equal to its super depth are correct.
  1509     if (klass->is_loaded() ) {
  1510       ciType *inner = klass->klass();
  1511       while( inner->is_obj_array_klass() )
  1512         inner = inner->as_obj_array_klass()->base_element_type();
  1513       if( inner->is_instance_klass() &&
  1514           !inner->as_instance_klass()->flags().is_interface() ) {
  1515         // Compute index into primary_supers array
  1516         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1517         // Check for overflowing; use unsigned compare to handle the negative case.
  1518         if( depth < ciKlass::primary_super_limit() &&
  1519             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1520           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1521           // (Folds up type checking code.)
  1522           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1523           ciKlass *ss = klass->super_of_depth(depth);
  1524           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1529     // If the type is enough to determine that the thing is not an array,
  1530     // we can give the layout_helper a positive interval type.
  1531     // This will help short-circuit some reflective code.
  1532     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1533         && !klass->is_array_klass() // not directly typed as an array
  1534         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1535         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1536         ) {
  1537       // Note:  When interfaces are reliable, we can narrow the interface
  1538       // test to (klass != Serializable && klass != Cloneable).
  1539       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1540       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1541       // The key property of this type is that it folds up tests
  1542       // for array-ness, since it proves that the layout_helper is positive.
  1543       // Thus, a generic value like the basic object layout helper works fine.
  1544       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1548   // If we are loading from a freshly-allocated object, produce a zero,
  1549   // if the load is provably beyond the header of the object.
  1550   // (Also allow a variable load from a fresh array to produce zero.)
  1551   if (ReduceFieldZeroing) {
  1552     Node* value = can_see_stored_value(mem,phase);
  1553     if (value != NULL && value->is_Con())
  1554       return value->bottom_type();
  1557   const TypeOopPtr *tinst = tp->isa_oopptr();
  1558   if (tinst != NULL && tinst->is_known_instance_field()) {
  1559     // If we have an instance type and our memory input is the
  1560     // programs's initial memory state, there is no matching store,
  1561     // so just return a zero of the appropriate type
  1562     Node *mem = in(MemNode::Memory);
  1563     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1564       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1565       return Type::get_zero_type(_type->basic_type());
  1568   return _type;
  1571 //------------------------------match_edge-------------------------------------
  1572 // Do we Match on this edge index or not?  Match only the address.
  1573 uint LoadNode::match_edge(uint idx) const {
  1574   return idx == MemNode::Address;
  1577 //--------------------------LoadBNode::Ideal--------------------------------------
  1578 //
  1579 //  If the previous store is to the same address as this load,
  1580 //  and the value stored was larger than a byte, replace this load
  1581 //  with the value stored truncated to a byte.  If no truncation is
  1582 //  needed, the replacement is done in LoadNode::Identity().
  1583 //
  1584 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1585   Node* mem = in(MemNode::Memory);
  1586   Node* value = can_see_stored_value(mem,phase);
  1587   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1588     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1589     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1591   // Identity call will handle the case where truncation is not needed.
  1592   return LoadNode::Ideal(phase, can_reshape);
  1595 //--------------------------LoadCNode::Ideal--------------------------------------
  1596 //
  1597 //  If the previous store is to the same address as this load,
  1598 //  and the value stored was larger than a char, replace this load
  1599 //  with the value stored truncated to a char.  If no truncation is
  1600 //  needed, the replacement is done in LoadNode::Identity().
  1601 //
  1602 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1603   Node* mem = in(MemNode::Memory);
  1604   Node* value = can_see_stored_value(mem,phase);
  1605   if( value && !phase->type(value)->higher_equal( _type ) )
  1606     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1607   // Identity call will handle the case where truncation is not needed.
  1608   return LoadNode::Ideal(phase, can_reshape);
  1611 //--------------------------LoadSNode::Ideal--------------------------------------
  1612 //
  1613 //  If the previous store is to the same address as this load,
  1614 //  and the value stored was larger than a short, replace this load
  1615 //  with the value stored truncated to a short.  If no truncation is
  1616 //  needed, the replacement is done in LoadNode::Identity().
  1617 //
  1618 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1619   Node* mem = in(MemNode::Memory);
  1620   Node* value = can_see_stored_value(mem,phase);
  1621   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1622     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1623     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1625   // Identity call will handle the case where truncation is not needed.
  1626   return LoadNode::Ideal(phase, can_reshape);
  1629 //=============================================================================
  1630 //----------------------------LoadKlassNode::make------------------------------
  1631 // Polymorphic factory method:
  1632 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1633   Compile* C = gvn.C;
  1634   Node *ctl = NULL;
  1635   // sanity check the alias category against the created node type
  1636   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1637   assert(adr_type != NULL, "expecting TypeOopPtr");
  1638 #ifdef _LP64
  1639   if (adr_type->is_ptr_to_narrowoop()) {
  1640     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1641     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1643 #endif
  1644   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1645   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1648 //------------------------------Value------------------------------------------
  1649 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1650   return klass_value_common(phase);
  1653 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1654   // Either input is TOP ==> the result is TOP
  1655   const Type *t1 = phase->type( in(MemNode::Memory) );
  1656   if (t1 == Type::TOP)  return Type::TOP;
  1657   Node *adr = in(MemNode::Address);
  1658   const Type *t2 = phase->type( adr );
  1659   if (t2 == Type::TOP)  return Type::TOP;
  1660   const TypePtr *tp = t2->is_ptr();
  1661   if (TypePtr::above_centerline(tp->ptr()) ||
  1662       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1664   // Return a more precise klass, if possible
  1665   const TypeInstPtr *tinst = tp->isa_instptr();
  1666   if (tinst != NULL) {
  1667     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1668     int offset = tinst->offset();
  1669     if (ik == phase->C->env()->Class_klass()
  1670         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1671             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1672       // We are loading a special hidden field from a Class mirror object,
  1673       // the field which points to the VM's Klass metaobject.
  1674       ciType* t = tinst->java_mirror_type();
  1675       // java_mirror_type returns non-null for compile-time Class constants.
  1676       if (t != NULL) {
  1677         // constant oop => constant klass
  1678         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1679           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1681         if (!t->is_klass()) {
  1682           // a primitive Class (e.g., int.class) has NULL for a klass field
  1683           return TypePtr::NULL_PTR;
  1685         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1686         return TypeKlassPtr::make(t->as_klass());
  1688       // non-constant mirror, so we can't tell what's going on
  1690     if( !ik->is_loaded() )
  1691       return _type;             // Bail out if not loaded
  1692     if (offset == oopDesc::klass_offset_in_bytes()) {
  1693       if (tinst->klass_is_exact()) {
  1694         return TypeKlassPtr::make(ik);
  1696       // See if we can become precise: no subklasses and no interface
  1697       // (Note:  We need to support verified interfaces.)
  1698       if (!ik->is_interface() && !ik->has_subklass()) {
  1699         //assert(!UseExactTypes, "this code should be useless with exact types");
  1700         // Add a dependence; if any subclass added we need to recompile
  1701         if (!ik->is_final()) {
  1702           // %%% should use stronger assert_unique_concrete_subtype instead
  1703           phase->C->dependencies()->assert_leaf_type(ik);
  1705         // Return precise klass
  1706         return TypeKlassPtr::make(ik);
  1709       // Return root of possible klass
  1710       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1714   // Check for loading klass from an array
  1715   const TypeAryPtr *tary = tp->isa_aryptr();
  1716   if( tary != NULL ) {
  1717     ciKlass *tary_klass = tary->klass();
  1718     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1719         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1720       if (tary->klass_is_exact()) {
  1721         return TypeKlassPtr::make(tary_klass);
  1723       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1724       // If the klass is an object array, we defer the question to the
  1725       // array component klass.
  1726       if( ak->is_obj_array_klass() ) {
  1727         assert( ak->is_loaded(), "" );
  1728         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1729         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1730           ciInstanceKlass* ik = base_k->as_instance_klass();
  1731           // See if we can become precise: no subklasses and no interface
  1732           if (!ik->is_interface() && !ik->has_subklass()) {
  1733             //assert(!UseExactTypes, "this code should be useless with exact types");
  1734             // Add a dependence; if any subclass added we need to recompile
  1735             if (!ik->is_final()) {
  1736               phase->C->dependencies()->assert_leaf_type(ik);
  1738             // Return precise array klass
  1739             return TypeKlassPtr::make(ak);
  1742         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1743       } else {                  // Found a type-array?
  1744         //assert(!UseExactTypes, "this code should be useless with exact types");
  1745         assert( ak->is_type_array_klass(), "" );
  1746         return TypeKlassPtr::make(ak); // These are always precise
  1751   // Check for loading klass from an array klass
  1752   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1753   if (tkls != NULL && !StressReflectiveCode) {
  1754     ciKlass* klass = tkls->klass();
  1755     if( !klass->is_loaded() )
  1756       return _type;             // Bail out if not loaded
  1757     if( klass->is_obj_array_klass() &&
  1758         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1759       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1760       // // Always returning precise element type is incorrect,
  1761       // // e.g., element type could be object and array may contain strings
  1762       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1764       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1765       // according to the element type's subclassing.
  1766       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1768     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1769         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1770       ciKlass* sup = klass->as_instance_klass()->super();
  1771       // The field is Klass::_super.  Return its (constant) value.
  1772       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1773       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1777   // Bailout case
  1778   return LoadNode::Value(phase);
  1781 //------------------------------Identity---------------------------------------
  1782 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1783 // Also feed through the klass in Allocate(...klass...)._klass.
  1784 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1785   return klass_identity_common(phase);
  1788 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1789   Node* x = LoadNode::Identity(phase);
  1790   if (x != this)  return x;
  1792   // Take apart the address into an oop and and offset.
  1793   // Return 'this' if we cannot.
  1794   Node*    adr    = in(MemNode::Address);
  1795   intptr_t offset = 0;
  1796   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1797   if (base == NULL)     return this;
  1798   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1799   if (toop == NULL)     return this;
  1801   // We can fetch the klass directly through an AllocateNode.
  1802   // This works even if the klass is not constant (clone or newArray).
  1803   if (offset == oopDesc::klass_offset_in_bytes()) {
  1804     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1805     if (allocated_klass != NULL) {
  1806       return allocated_klass;
  1810   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1811   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1812   // See inline_native_Class_query for occurrences of these patterns.
  1813   // Java Example:  x.getClass().isAssignableFrom(y)
  1814   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1815   //
  1816   // This improves reflective code, often making the Class
  1817   // mirror go completely dead.  (Current exception:  Class
  1818   // mirrors may appear in debug info, but we could clean them out by
  1819   // introducing a new debug info operator for klassOop.java_mirror).
  1820   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1821       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1822           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1823     // We are loading a special hidden field from a Class mirror,
  1824     // the field which points to its Klass or arrayKlass metaobject.
  1825     if (base->is_Load()) {
  1826       Node* adr2 = base->in(MemNode::Address);
  1827       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1828       if (tkls != NULL && !tkls->empty()
  1829           && (tkls->klass()->is_instance_klass() ||
  1830               tkls->klass()->is_array_klass())
  1831           && adr2->is_AddP()
  1832           ) {
  1833         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1834         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1835           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1837         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1838           return adr2->in(AddPNode::Base);
  1844   return this;
  1848 //------------------------------Value------------------------------------------
  1849 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1850   const Type *t = klass_value_common(phase);
  1851   if (t == Type::TOP)
  1852     return t;
  1854   return t->make_narrowoop();
  1857 //------------------------------Identity---------------------------------------
  1858 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1859 // Also feed through the klass in Allocate(...klass...)._klass.
  1860 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1861   Node *x = klass_identity_common(phase);
  1863   const Type *t = phase->type( x );
  1864   if( t == Type::TOP ) return x;
  1865   if( t->isa_narrowoop()) return x;
  1867   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1870 //------------------------------Value-----------------------------------------
  1871 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1872   // Either input is TOP ==> the result is TOP
  1873   const Type *t1 = phase->type( in(MemNode::Memory) );
  1874   if( t1 == Type::TOP ) return Type::TOP;
  1875   Node *adr = in(MemNode::Address);
  1876   const Type *t2 = phase->type( adr );
  1877   if( t2 == Type::TOP ) return Type::TOP;
  1878   const TypePtr *tp = t2->is_ptr();
  1879   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1880   const TypeAryPtr *tap = tp->isa_aryptr();
  1881   if( !tap ) return _type;
  1882   return tap->size();
  1885 //------------------------------Identity---------------------------------------
  1886 // Feed through the length in AllocateArray(...length...)._length.
  1887 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1888   Node* x = LoadINode::Identity(phase);
  1889   if (x != this)  return x;
  1891   // Take apart the address into an oop and and offset.
  1892   // Return 'this' if we cannot.
  1893   Node*    adr    = in(MemNode::Address);
  1894   intptr_t offset = 0;
  1895   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1896   if (base == NULL)     return this;
  1897   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1898   if (tary == NULL)     return this;
  1900   // We can fetch the length directly through an AllocateArrayNode.
  1901   // This works even if the length is not constant (clone or newArray).
  1902   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1903     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1904     if (allocated_length != NULL) {
  1905       return allocated_length;
  1909   return this;
  1912 //=============================================================================
  1913 //---------------------------StoreNode::make-----------------------------------
  1914 // Polymorphic factory method:
  1915 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1916   Compile* C = gvn.C;
  1918   switch (bt) {
  1919   case T_BOOLEAN:
  1920   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1921   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1922   case T_CHAR:
  1923   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1924   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1925   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1926   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1927   case T_ADDRESS:
  1928   case T_OBJECT:
  1929 #ifdef _LP64
  1930     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  1931         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  1932          adr->bottom_type()->isa_rawptr())) {
  1933       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  1934       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  1935     } else
  1936 #endif
  1938       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1941   ShouldNotReachHere();
  1942   return (StoreNode*)NULL;
  1945 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1946   bool require_atomic = true;
  1947   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1951 //--------------------------bottom_type----------------------------------------
  1952 const Type *StoreNode::bottom_type() const {
  1953   return Type::MEMORY;
  1956 //------------------------------hash-------------------------------------------
  1957 uint StoreNode::hash() const {
  1958   // unroll addition of interesting fields
  1959   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1961   // Since they are not commoned, do not hash them:
  1962   return NO_HASH;
  1965 //------------------------------Ideal------------------------------------------
  1966 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1967 // When a store immediately follows a relevant allocation/initialization,
  1968 // try to capture it into the initialization, or hoist it above.
  1969 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1970   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1971   if (p)  return (p == NodeSentinel) ? NULL : p;
  1973   Node* mem     = in(MemNode::Memory);
  1974   Node* address = in(MemNode::Address);
  1976   // Back-to-back stores to same address?  Fold em up.
  1977   // Generally unsafe if I have intervening uses...
  1978   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1979     // Looking at a dead closed cycle of memory?
  1980     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1982     assert(Opcode() == mem->Opcode() ||
  1983            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1984            "no mismatched stores, except on raw memory");
  1986     if (mem->outcnt() == 1 &&           // check for intervening uses
  1987         mem->as_Store()->memory_size() <= this->memory_size()) {
  1988       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1989       // For example, 'mem' might be the final state at a conditional return.
  1990       // Or, 'mem' might be used by some node which is live at the same time
  1991       // 'this' is live, which might be unschedulable.  So, require exactly
  1992       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1993       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1994       if (can_reshape) {  // (%%% is this an anachronism?)
  1995         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1996                   phase->is_IterGVN());
  1997       } else {
  1998         // It's OK to do this in the parser, since DU info is always accurate,
  1999         // and the parser always refers to nodes via SafePointNode maps.
  2000         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2002       return this;
  2006   // Capture an unaliased, unconditional, simple store into an initializer.
  2007   // Or, if it is independent of the allocation, hoist it above the allocation.
  2008   if (ReduceFieldZeroing && /*can_reshape &&*/
  2009       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2010     InitializeNode* init = mem->in(0)->as_Initialize();
  2011     intptr_t offset = init->can_capture_store(this, phase);
  2012     if (offset > 0) {
  2013       Node* moved = init->capture_store(this, offset, phase);
  2014       // If the InitializeNode captured me, it made a raw copy of me,
  2015       // and I need to disappear.
  2016       if (moved != NULL) {
  2017         // %%% hack to ensure that Ideal returns a new node:
  2018         mem = MergeMemNode::make(phase->C, mem);
  2019         return mem;             // fold me away
  2024   return NULL;                  // No further progress
  2027 //------------------------------Value-----------------------------------------
  2028 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2029   // Either input is TOP ==> the result is TOP
  2030   const Type *t1 = phase->type( in(MemNode::Memory) );
  2031   if( t1 == Type::TOP ) return Type::TOP;
  2032   const Type *t2 = phase->type( in(MemNode::Address) );
  2033   if( t2 == Type::TOP ) return Type::TOP;
  2034   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2035   if( t3 == Type::TOP ) return Type::TOP;
  2036   return Type::MEMORY;
  2039 //------------------------------Identity---------------------------------------
  2040 // Remove redundant stores:
  2041 //   Store(m, p, Load(m, p)) changes to m.
  2042 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2043 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2044   Node* mem = in(MemNode::Memory);
  2045   Node* adr = in(MemNode::Address);
  2046   Node* val = in(MemNode::ValueIn);
  2048   // Load then Store?  Then the Store is useless
  2049   if (val->is_Load() &&
  2050       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2051       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2052       val->as_Load()->store_Opcode() == Opcode()) {
  2053     return mem;
  2056   // Two stores in a row of the same value?
  2057   if (mem->is_Store() &&
  2058       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2059       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2060       mem->Opcode() == Opcode()) {
  2061     return mem;
  2064   // Store of zero anywhere into a freshly-allocated object?
  2065   // Then the store is useless.
  2066   // (It must already have been captured by the InitializeNode.)
  2067   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2068     // a newly allocated object is already all-zeroes everywhere
  2069     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2070       return mem;
  2073     // the store may also apply to zero-bits in an earlier object
  2074     Node* prev_mem = find_previous_store(phase);
  2075     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2076     if (prev_mem != NULL) {
  2077       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2078       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2079         // prev_val and val might differ by a cast; it would be good
  2080         // to keep the more informative of the two.
  2081         return mem;
  2086   return this;
  2089 //------------------------------match_edge-------------------------------------
  2090 // Do we Match on this edge index or not?  Match only memory & value
  2091 uint StoreNode::match_edge(uint idx) const {
  2092   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2095 //------------------------------cmp--------------------------------------------
  2096 // Do not common stores up together.  They generally have to be split
  2097 // back up anyways, so do not bother.
  2098 uint StoreNode::cmp( const Node &n ) const {
  2099   return (&n == this);          // Always fail except on self
  2102 //------------------------------Ideal_masked_input-----------------------------
  2103 // Check for a useless mask before a partial-word store
  2104 // (StoreB ... (AndI valIn conIa) )
  2105 // If (conIa & mask == mask) this simplifies to
  2106 // (StoreB ... (valIn) )
  2107 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2108   Node *val = in(MemNode::ValueIn);
  2109   if( val->Opcode() == Op_AndI ) {
  2110     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2111     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2112       set_req(MemNode::ValueIn, val->in(1));
  2113       return this;
  2116   return NULL;
  2120 //------------------------------Ideal_sign_extended_input----------------------
  2121 // Check for useless sign-extension before a partial-word store
  2122 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2123 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2124 // (StoreB ... (valIn) )
  2125 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2126   Node *val = in(MemNode::ValueIn);
  2127   if( val->Opcode() == Op_RShiftI ) {
  2128     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2129     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2130       Node *shl = val->in(1);
  2131       if( shl->Opcode() == Op_LShiftI ) {
  2132         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2133         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2134           set_req(MemNode::ValueIn, shl->in(1));
  2135           return this;
  2140   return NULL;
  2143 //------------------------------value_never_loaded-----------------------------------
  2144 // Determine whether there are any possible loads of the value stored.
  2145 // For simplicity, we actually check if there are any loads from the
  2146 // address stored to, not just for loads of the value stored by this node.
  2147 //
  2148 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2149   Node *adr = in(Address);
  2150   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2151   if (adr_oop == NULL)
  2152     return false;
  2153   if (!adr_oop->is_known_instance_field())
  2154     return false; // if not a distinct instance, there may be aliases of the address
  2155   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2156     Node *use = adr->fast_out(i);
  2157     int opc = use->Opcode();
  2158     if (use->is_Load() || use->is_LoadStore()) {
  2159       return false;
  2162   return true;
  2165 //=============================================================================
  2166 //------------------------------Ideal------------------------------------------
  2167 // If the store is from an AND mask that leaves the low bits untouched, then
  2168 // we can skip the AND operation.  If the store is from a sign-extension
  2169 // (a left shift, then right shift) we can skip both.
  2170 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2171   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2172   if( progress != NULL ) return progress;
  2174   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2175   if( progress != NULL ) return progress;
  2177   // Finally check the default case
  2178   return StoreNode::Ideal(phase, can_reshape);
  2181 //=============================================================================
  2182 //------------------------------Ideal------------------------------------------
  2183 // If the store is from an AND mask that leaves the low bits untouched, then
  2184 // we can skip the AND operation
  2185 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2186   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2187   if( progress != NULL ) return progress;
  2189   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2190   if( progress != NULL ) return progress;
  2192   // Finally check the default case
  2193   return StoreNode::Ideal(phase, can_reshape);
  2196 //=============================================================================
  2197 //------------------------------Identity---------------------------------------
  2198 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2199   // No need to card mark when storing a null ptr
  2200   Node* my_store = in(MemNode::OopStore);
  2201   if (my_store->is_Store()) {
  2202     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2203     if( t1 == TypePtr::NULL_PTR ) {
  2204       return in(MemNode::Memory);
  2207   return this;
  2210 //------------------------------Value-----------------------------------------
  2211 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2212   // Either input is TOP ==> the result is TOP
  2213   const Type *t = phase->type( in(MemNode::Memory) );
  2214   if( t == Type::TOP ) return Type::TOP;
  2215   t = phase->type( in(MemNode::Address) );
  2216   if( t == Type::TOP ) return Type::TOP;
  2217   t = phase->type( in(MemNode::ValueIn) );
  2218   if( t == Type::TOP ) return Type::TOP;
  2219   // If extra input is TOP ==> the result is TOP
  2220   t = phase->type( in(MemNode::OopStore) );
  2221   if( t == Type::TOP ) return Type::TOP;
  2223   return StoreNode::Value( phase );
  2227 //=============================================================================
  2228 //----------------------------------SCMemProjNode------------------------------
  2229 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2231   return bottom_type();
  2234 //=============================================================================
  2235 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2236   init_req(MemNode::Control, c  );
  2237   init_req(MemNode::Memory , mem);
  2238   init_req(MemNode::Address, adr);
  2239   init_req(MemNode::ValueIn, val);
  2240   init_req(         ExpectedIn, ex );
  2241   init_class_id(Class_LoadStore);
  2245 //=============================================================================
  2246 //-------------------------------adr_type--------------------------------------
  2247 // Do we Match on this edge index or not?  Do not match memory
  2248 const TypePtr* ClearArrayNode::adr_type() const {
  2249   Node *adr = in(3);
  2250   return MemNode::calculate_adr_type(adr->bottom_type());
  2253 //------------------------------match_edge-------------------------------------
  2254 // Do we Match on this edge index or not?  Do not match memory
  2255 uint ClearArrayNode::match_edge(uint idx) const {
  2256   return idx > 1;
  2259 //------------------------------Identity---------------------------------------
  2260 // Clearing a zero length array does nothing
  2261 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2262   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2265 //------------------------------Idealize---------------------------------------
  2266 // Clearing a short array is faster with stores
  2267 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2268   const int unit = BytesPerLong;
  2269   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2270   if (!t)  return NULL;
  2271   if (!t->is_con())  return NULL;
  2272   intptr_t raw_count = t->get_con();
  2273   intptr_t size = raw_count;
  2274   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2275   // Clearing nothing uses the Identity call.
  2276   // Negative clears are possible on dead ClearArrays
  2277   // (see jck test stmt114.stmt11402.val).
  2278   if (size <= 0 || size % unit != 0)  return NULL;
  2279   intptr_t count = size / unit;
  2280   // Length too long; use fast hardware clear
  2281   if (size > Matcher::init_array_short_size)  return NULL;
  2282   Node *mem = in(1);
  2283   if( phase->type(mem)==Type::TOP ) return NULL;
  2284   Node *adr = in(3);
  2285   const Type* at = phase->type(adr);
  2286   if( at==Type::TOP ) return NULL;
  2287   const TypePtr* atp = at->isa_ptr();
  2288   // adjust atp to be the correct array element address type
  2289   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2290   else              atp = atp->add_offset(Type::OffsetBot);
  2291   // Get base for derived pointer purposes
  2292   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2293   Node *base = adr->in(1);
  2295   Node *zero = phase->makecon(TypeLong::ZERO);
  2296   Node *off  = phase->MakeConX(BytesPerLong);
  2297   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2298   count--;
  2299   while( count-- ) {
  2300     mem = phase->transform(mem);
  2301     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2302     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2304   return mem;
  2307 //----------------------------clear_memory-------------------------------------
  2308 // Generate code to initialize object storage to zero.
  2309 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2310                                    intptr_t start_offset,
  2311                                    Node* end_offset,
  2312                                    PhaseGVN* phase) {
  2313   Compile* C = phase->C;
  2314   intptr_t offset = start_offset;
  2316   int unit = BytesPerLong;
  2317   if ((offset % unit) != 0) {
  2318     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2319     adr = phase->transform(adr);
  2320     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2321     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2322     mem = phase->transform(mem);
  2323     offset += BytesPerInt;
  2325   assert((offset % unit) == 0, "");
  2327   // Initialize the remaining stuff, if any, with a ClearArray.
  2328   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2331 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2332                                    Node* start_offset,
  2333                                    Node* end_offset,
  2334                                    PhaseGVN* phase) {
  2335   if (start_offset == end_offset) {
  2336     // nothing to do
  2337     return mem;
  2340   Compile* C = phase->C;
  2341   int unit = BytesPerLong;
  2342   Node* zbase = start_offset;
  2343   Node* zend  = end_offset;
  2345   // Scale to the unit required by the CPU:
  2346   if (!Matcher::init_array_count_is_in_bytes) {
  2347     Node* shift = phase->intcon(exact_log2(unit));
  2348     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2349     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2352   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2353   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2355   // Bulk clear double-words
  2356   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2357   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2358   return phase->transform(mem);
  2361 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2362                                    intptr_t start_offset,
  2363                                    intptr_t end_offset,
  2364                                    PhaseGVN* phase) {
  2365   if (start_offset == end_offset) {
  2366     // nothing to do
  2367     return mem;
  2370   Compile* C = phase->C;
  2371   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2372   intptr_t done_offset = end_offset;
  2373   if ((done_offset % BytesPerLong) != 0) {
  2374     done_offset -= BytesPerInt;
  2376   if (done_offset > start_offset) {
  2377     mem = clear_memory(ctl, mem, dest,
  2378                        start_offset, phase->MakeConX(done_offset), phase);
  2380   if (done_offset < end_offset) { // emit the final 32-bit store
  2381     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2382     adr = phase->transform(adr);
  2383     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2384     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2385     mem = phase->transform(mem);
  2386     done_offset += BytesPerInt;
  2388   assert(done_offset == end_offset, "");
  2389   return mem;
  2392 //=============================================================================
  2393 // Do we match on this edge? No memory edges
  2394 uint StrCompNode::match_edge(uint idx) const {
  2395   return idx == 5 || idx == 6;
  2398 //------------------------------Ideal------------------------------------------
  2399 // Return a node which is more "ideal" than the current node.  Strip out
  2400 // control copies
  2401 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2402   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2405 //------------------------------Ideal------------------------------------------
  2406 // Return a node which is more "ideal" than the current node.  Strip out
  2407 // control copies
  2408 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2409   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2413 //=============================================================================
  2414 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2415   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2416     _adr_type(C->get_adr_type(alias_idx))
  2418   init_class_id(Class_MemBar);
  2419   Node* top = C->top();
  2420   init_req(TypeFunc::I_O,top);
  2421   init_req(TypeFunc::FramePtr,top);
  2422   init_req(TypeFunc::ReturnAdr,top);
  2423   if (precedent != NULL)
  2424     init_req(TypeFunc::Parms, precedent);
  2427 //------------------------------cmp--------------------------------------------
  2428 uint MemBarNode::hash() const { return NO_HASH; }
  2429 uint MemBarNode::cmp( const Node &n ) const {
  2430   return (&n == this);          // Always fail except on self
  2433 //------------------------------make-------------------------------------------
  2434 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2435   int len = Precedent + (pn == NULL? 0: 1);
  2436   switch (opcode) {
  2437   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2438   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2439   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2440   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2441   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2442   default:                 ShouldNotReachHere(); return NULL;
  2446 //------------------------------Ideal------------------------------------------
  2447 // Return a node which is more "ideal" than the current node.  Strip out
  2448 // control copies
  2449 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2450   if (remove_dead_region(phase, can_reshape))  return this;
  2451   return NULL;
  2454 //------------------------------Value------------------------------------------
  2455 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2456   if( !in(0) ) return Type::TOP;
  2457   if( phase->type(in(0)) == Type::TOP )
  2458     return Type::TOP;
  2459   return TypeTuple::MEMBAR;
  2462 //------------------------------match------------------------------------------
  2463 // Construct projections for memory.
  2464 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2465   switch (proj->_con) {
  2466   case TypeFunc::Control:
  2467   case TypeFunc::Memory:
  2468     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2470   ShouldNotReachHere();
  2471   return NULL;
  2474 //===========================InitializeNode====================================
  2475 // SUMMARY:
  2476 // This node acts as a memory barrier on raw memory, after some raw stores.
  2477 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2478 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2479 // It can coalesce related raw stores into larger units (called 'tiles').
  2480 // It can avoid zeroing new storage for memory units which have raw inits.
  2481 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2482 //
  2483 // EXAMPLE:
  2484 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2485 //   ctl = incoming control; mem* = incoming memory
  2486 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2487 // First allocate uninitialized memory and fill in the header:
  2488 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2489 //   ctl := alloc.Control; mem* := alloc.Memory*
  2490 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2491 // Then initialize to zero the non-header parts of the raw memory block:
  2492 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2493 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2494 // After the initialize node executes, the object is ready for service:
  2495 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2496 // Suppose its body is immediately initialized as {1,2}:
  2497 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2498 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2499 //   mem.SLICE(#short[*]) := store2
  2500 //
  2501 // DETAILS:
  2502 // An InitializeNode collects and isolates object initialization after
  2503 // an AllocateNode and before the next possible safepoint.  As a
  2504 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2505 // down past any safepoint or any publication of the allocation.
  2506 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2507 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2508 //
  2509 // The semantics of the InitializeNode include an implicit zeroing of
  2510 // the new object from object header to the end of the object.
  2511 // (The object header and end are determined by the AllocateNode.)
  2512 //
  2513 // Certain stores may be added as direct inputs to the InitializeNode.
  2514 // These stores must update raw memory, and they must be to addresses
  2515 // derived from the raw address produced by AllocateNode, and with
  2516 // a constant offset.  They must be ordered by increasing offset.
  2517 // The first one is at in(RawStores), the last at in(req()-1).
  2518 // Unlike most memory operations, they are not linked in a chain,
  2519 // but are displayed in parallel as users of the rawmem output of
  2520 // the allocation.
  2521 //
  2522 // (See comments in InitializeNode::capture_store, which continue
  2523 // the example given above.)
  2524 //
  2525 // When the associated Allocate is macro-expanded, the InitializeNode
  2526 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2527 // may also be created at that point to represent any required zeroing.
  2528 // The InitializeNode is then marked 'complete', prohibiting further
  2529 // capturing of nearby memory operations.
  2530 //
  2531 // During macro-expansion, all captured initializations which store
  2532 // constant values of 32 bits or smaller are coalesced (if advantagous)
  2533 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2534 // initialized in fewer memory operations.  Memory words which are
  2535 // covered by neither tiles nor non-constant stores are pre-zeroed
  2536 // by explicit stores of zero.  (The code shape happens to do all
  2537 // zeroing first, then all other stores, with both sequences occurring
  2538 // in order of ascending offsets.)
  2539 //
  2540 // Alternatively, code may be inserted between an AllocateNode and its
  2541 // InitializeNode, to perform arbitrary initialization of the new object.
  2542 // E.g., the object copying intrinsics insert complex data transfers here.
  2543 // The initialization must then be marked as 'complete' disable the
  2544 // built-in zeroing semantics and the collection of initializing stores.
  2545 //
  2546 // While an InitializeNode is incomplete, reads from the memory state
  2547 // produced by it are optimizable if they match the control edge and
  2548 // new oop address associated with the allocation/initialization.
  2549 // They return a stored value (if the offset matches) or else zero.
  2550 // A write to the memory state, if it matches control and address,
  2551 // and if it is to a constant offset, may be 'captured' by the
  2552 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2553 // inside the initialization, to the raw oop produced by the allocation.
  2554 // Operations on addresses which are provably distinct (e.g., to
  2555 // other AllocateNodes) are allowed to bypass the initialization.
  2556 //
  2557 // The effect of all this is to consolidate object initialization
  2558 // (both arrays and non-arrays, both piecewise and bulk) into a
  2559 // single location, where it can be optimized as a unit.
  2560 //
  2561 // Only stores with an offset less than TrackedInitializationLimit words
  2562 // will be considered for capture by an InitializeNode.  This puts a
  2563 // reasonable limit on the complexity of optimized initializations.
  2565 //---------------------------InitializeNode------------------------------------
  2566 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2567   : _is_complete(false),
  2568     MemBarNode(C, adr_type, rawoop)
  2570   init_class_id(Class_Initialize);
  2572   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2573   assert(in(RawAddress) == rawoop, "proper init");
  2574   // Note:  allocation() can be NULL, for secondary initialization barriers
  2577 // Since this node is not matched, it will be processed by the
  2578 // register allocator.  Declare that there are no constraints
  2579 // on the allocation of the RawAddress edge.
  2580 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2581   // This edge should be set to top, by the set_complete.  But be conservative.
  2582   if (idx == InitializeNode::RawAddress)
  2583     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2584   return RegMask::Empty;
  2587 Node* InitializeNode::memory(uint alias_idx) {
  2588   Node* mem = in(Memory);
  2589   if (mem->is_MergeMem()) {
  2590     return mem->as_MergeMem()->memory_at(alias_idx);
  2591   } else {
  2592     // incoming raw memory is not split
  2593     return mem;
  2597 bool InitializeNode::is_non_zero() {
  2598   if (is_complete())  return false;
  2599   remove_extra_zeroes();
  2600   return (req() > RawStores);
  2603 void InitializeNode::set_complete(PhaseGVN* phase) {
  2604   assert(!is_complete(), "caller responsibility");
  2605   _is_complete = true;
  2607   // After this node is complete, it contains a bunch of
  2608   // raw-memory initializations.  There is no need for
  2609   // it to have anything to do with non-raw memory effects.
  2610   // Therefore, tell all non-raw users to re-optimize themselves,
  2611   // after skipping the memory effects of this initialization.
  2612   PhaseIterGVN* igvn = phase->is_IterGVN();
  2613   if (igvn)  igvn->add_users_to_worklist(this);
  2616 // convenience function
  2617 // return false if the init contains any stores already
  2618 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2619   InitializeNode* init = initialization();
  2620   if (init == NULL || init->is_complete())  return false;
  2621   init->remove_extra_zeroes();
  2622   // for now, if this allocation has already collected any inits, bail:
  2623   if (init->is_non_zero())  return false;
  2624   init->set_complete(phase);
  2625   return true;
  2628 void InitializeNode::remove_extra_zeroes() {
  2629   if (req() == RawStores)  return;
  2630   Node* zmem = zero_memory();
  2631   uint fill = RawStores;
  2632   for (uint i = fill; i < req(); i++) {
  2633     Node* n = in(i);
  2634     if (n->is_top() || n == zmem)  continue;  // skip
  2635     if (fill < i)  set_req(fill, n);          // compact
  2636     ++fill;
  2638   // delete any empty spaces created:
  2639   while (fill < req()) {
  2640     del_req(fill);
  2644 // Helper for remembering which stores go with which offsets.
  2645 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2646   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2647   intptr_t offset = -1;
  2648   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2649                                                phase, offset);
  2650   if (base == NULL)     return -1;  // something is dead,
  2651   if (offset < 0)       return -1;  //        dead, dead
  2652   return offset;
  2655 // Helper for proving that an initialization expression is
  2656 // "simple enough" to be folded into an object initialization.
  2657 // Attempts to prove that a store's initial value 'n' can be captured
  2658 // within the initialization without creating a vicious cycle, such as:
  2659 //     { Foo p = new Foo(); p.next = p; }
  2660 // True for constants and parameters and small combinations thereof.
  2661 bool InitializeNode::detect_init_independence(Node* n,
  2662                                               bool st_is_pinned,
  2663                                               int& count) {
  2664   if (n == NULL)      return true;   // (can this really happen?)
  2665   if (n->is_Proj())   n = n->in(0);
  2666   if (n == this)      return false;  // found a cycle
  2667   if (n->is_Con())    return true;
  2668   if (n->is_Start())  return true;   // params, etc., are OK
  2669   if (n->is_Root())   return true;   // even better
  2671   Node* ctl = n->in(0);
  2672   if (ctl != NULL && !ctl->is_top()) {
  2673     if (ctl->is_Proj())  ctl = ctl->in(0);
  2674     if (ctl == this)  return false;
  2676     // If we already know that the enclosing memory op is pinned right after
  2677     // the init, then any control flow that the store has picked up
  2678     // must have preceded the init, or else be equal to the init.
  2679     // Even after loop optimizations (which might change control edges)
  2680     // a store is never pinned *before* the availability of its inputs.
  2681     if (!MemNode::all_controls_dominate(n, this))
  2682       return false;                  // failed to prove a good control
  2686   // Check data edges for possible dependencies on 'this'.
  2687   if ((count += 1) > 20)  return false;  // complexity limit
  2688   for (uint i = 1; i < n->req(); i++) {
  2689     Node* m = n->in(i);
  2690     if (m == NULL || m == n || m->is_top())  continue;
  2691     uint first_i = n->find_edge(m);
  2692     if (i != first_i)  continue;  // process duplicate edge just once
  2693     if (!detect_init_independence(m, st_is_pinned, count)) {
  2694       return false;
  2698   return true;
  2701 // Here are all the checks a Store must pass before it can be moved into
  2702 // an initialization.  Returns zero if a check fails.
  2703 // On success, returns the (constant) offset to which the store applies,
  2704 // within the initialized memory.
  2705 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2706   const int FAIL = 0;
  2707   if (st->req() != MemNode::ValueIn + 1)
  2708     return FAIL;                // an inscrutable StoreNode (card mark?)
  2709   Node* ctl = st->in(MemNode::Control);
  2710   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2711     return FAIL;                // must be unconditional after the initialization
  2712   Node* mem = st->in(MemNode::Memory);
  2713   if (!(mem->is_Proj() && mem->in(0) == this))
  2714     return FAIL;                // must not be preceded by other stores
  2715   Node* adr = st->in(MemNode::Address);
  2716   intptr_t offset;
  2717   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2718   if (alloc == NULL)
  2719     return FAIL;                // inscrutable address
  2720   if (alloc != allocation())
  2721     return FAIL;                // wrong allocation!  (store needs to float up)
  2722   Node* val = st->in(MemNode::ValueIn);
  2723   int complexity_count = 0;
  2724   if (!detect_init_independence(val, true, complexity_count))
  2725     return FAIL;                // stored value must be 'simple enough'
  2727   return offset;                // success
  2730 // Find the captured store in(i) which corresponds to the range
  2731 // [start..start+size) in the initialized object.
  2732 // If there is one, return its index i.  If there isn't, return the
  2733 // negative of the index where it should be inserted.
  2734 // Return 0 if the queried range overlaps an initialization boundary
  2735 // or if dead code is encountered.
  2736 // If size_in_bytes is zero, do not bother with overlap checks.
  2737 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2738                                                    int size_in_bytes,
  2739                                                    PhaseTransform* phase) {
  2740   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2742   if (is_complete())
  2743     return FAIL;                // arraycopy got here first; punt
  2745   assert(allocation() != NULL, "must be present");
  2747   // no negatives, no header fields:
  2748   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2750   // after a certain size, we bail out on tracking all the stores:
  2751   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2752   if (start >= ti_limit)  return FAIL;
  2754   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2755     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2757     Node*    st     = in(i);
  2758     intptr_t st_off = get_store_offset(st, phase);
  2759     if (st_off < 0) {
  2760       if (st != zero_memory()) {
  2761         return FAIL;            // bail out if there is dead garbage
  2763     } else if (st_off > start) {
  2764       // ...we are done, since stores are ordered
  2765       if (st_off < start + size_in_bytes) {
  2766         return FAIL;            // the next store overlaps
  2768       return -(int)i;           // not found; here is where to put it
  2769     } else if (st_off < start) {
  2770       if (size_in_bytes != 0 &&
  2771           start < st_off + MAX_STORE &&
  2772           start < st_off + st->as_Store()->memory_size()) {
  2773         return FAIL;            // the previous store overlaps
  2775     } else {
  2776       if (size_in_bytes != 0 &&
  2777           st->as_Store()->memory_size() != size_in_bytes) {
  2778         return FAIL;            // mismatched store size
  2780       return i;
  2783     ++i;
  2787 // Look for a captured store which initializes at the offset 'start'
  2788 // with the given size.  If there is no such store, and no other
  2789 // initialization interferes, then return zero_memory (the memory
  2790 // projection of the AllocateNode).
  2791 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2792                                           PhaseTransform* phase) {
  2793   assert(stores_are_sane(phase), "");
  2794   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2795   if (i == 0) {
  2796     return NULL;                // something is dead
  2797   } else if (i < 0) {
  2798     return zero_memory();       // just primordial zero bits here
  2799   } else {
  2800     Node* st = in(i);           // here is the store at this position
  2801     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2802     return st;
  2806 // Create, as a raw pointer, an address within my new object at 'offset'.
  2807 Node* InitializeNode::make_raw_address(intptr_t offset,
  2808                                        PhaseTransform* phase) {
  2809   Node* addr = in(RawAddress);
  2810   if (offset != 0) {
  2811     Compile* C = phase->C;
  2812     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2813                                                  phase->MakeConX(offset)) );
  2815   return addr;
  2818 // Clone the given store, converting it into a raw store
  2819 // initializing a field or element of my new object.
  2820 // Caller is responsible for retiring the original store,
  2821 // with subsume_node or the like.
  2822 //
  2823 // From the example above InitializeNode::InitializeNode,
  2824 // here are the old stores to be captured:
  2825 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2826 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2827 //
  2828 // Here is the changed code; note the extra edges on init:
  2829 //   alloc = (Allocate ...)
  2830 //   rawoop = alloc.RawAddress
  2831 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2832 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2833 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2834 //                      rawstore1 rawstore2)
  2835 //
  2836 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2837                                     PhaseTransform* phase) {
  2838   assert(stores_are_sane(phase), "");
  2840   if (start < 0)  return NULL;
  2841   assert(can_capture_store(st, phase) == start, "sanity");
  2843   Compile* C = phase->C;
  2844   int size_in_bytes = st->memory_size();
  2845   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2846   if (i == 0)  return NULL;     // bail out
  2847   Node* prev_mem = NULL;        // raw memory for the captured store
  2848   if (i > 0) {
  2849     prev_mem = in(i);           // there is a pre-existing store under this one
  2850     set_req(i, C->top());       // temporarily disconnect it
  2851     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2852   } else {
  2853     i = -i;                     // no pre-existing store
  2854     prev_mem = zero_memory();   // a slice of the newly allocated object
  2855     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2856       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2857     else
  2858       ins_req(i, C->top());     // build a new edge
  2860   Node* new_st = st->clone();
  2861   new_st->set_req(MemNode::Control, in(Control));
  2862   new_st->set_req(MemNode::Memory,  prev_mem);
  2863   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2864   new_st = phase->transform(new_st);
  2866   // At this point, new_st might have swallowed a pre-existing store
  2867   // at the same offset, or perhaps new_st might have disappeared,
  2868   // if it redundantly stored the same value (or zero to fresh memory).
  2870   // In any case, wire it in:
  2871   set_req(i, new_st);
  2873   // The caller may now kill the old guy.
  2874   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2875   assert(check_st == new_st || check_st == NULL, "must be findable");
  2876   assert(!is_complete(), "");
  2877   return new_st;
  2880 static bool store_constant(jlong* tiles, int num_tiles,
  2881                            intptr_t st_off, int st_size,
  2882                            jlong con) {
  2883   if ((st_off & (st_size-1)) != 0)
  2884     return false;               // strange store offset (assume size==2**N)
  2885   address addr = (address)tiles + st_off;
  2886   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2887   switch (st_size) {
  2888   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2889   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2890   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2891   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2892   default: return false;        // strange store size (detect size!=2**N here)
  2894   return true;                  // return success to caller
  2897 // Coalesce subword constants into int constants and possibly
  2898 // into long constants.  The goal, if the CPU permits,
  2899 // is to initialize the object with a small number of 64-bit tiles.
  2900 // Also, convert floating-point constants to bit patterns.
  2901 // Non-constants are not relevant to this pass.
  2902 //
  2903 // In terms of the running example on InitializeNode::InitializeNode
  2904 // and InitializeNode::capture_store, here is the transformation
  2905 // of rawstore1 and rawstore2 into rawstore12:
  2906 //   alloc = (Allocate ...)
  2907 //   rawoop = alloc.RawAddress
  2908 //   tile12 = 0x00010002
  2909 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2910 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2911 //
  2912 void
  2913 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2914                                         Node* size_in_bytes,
  2915                                         PhaseGVN* phase) {
  2916   Compile* C = phase->C;
  2918   assert(stores_are_sane(phase), "");
  2919   // Note:  After this pass, they are not completely sane,
  2920   // since there may be some overlaps.
  2922   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2924   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2925   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2926   size_limit = MIN2(size_limit, ti_limit);
  2927   size_limit = align_size_up(size_limit, BytesPerLong);
  2928   int num_tiles = size_limit / BytesPerLong;
  2930   // allocate space for the tile map:
  2931   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2932   jlong  tiles_buf[small_len];
  2933   Node*  nodes_buf[small_len];
  2934   jlong  inits_buf[small_len];
  2935   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2936                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2937   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2938                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2939   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2940                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2941   // tiles: exact bitwise model of all primitive constants
  2942   // nodes: last constant-storing node subsumed into the tiles model
  2943   // inits: which bytes (in each tile) are touched by any initializations
  2945   //// Pass A: Fill in the tile model with any relevant stores.
  2947   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2948   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2949   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2950   Node* zmem = zero_memory(); // initially zero memory state
  2951   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2952     Node* st = in(i);
  2953     intptr_t st_off = get_store_offset(st, phase);
  2955     // Figure out the store's offset and constant value:
  2956     if (st_off < header_size)             continue; //skip (ignore header)
  2957     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2958     int st_size = st->as_Store()->memory_size();
  2959     if (st_off + st_size > size_limit)    break;
  2961     // Record which bytes are touched, whether by constant or not.
  2962     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2963       continue;                 // skip (strange store size)
  2965     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2966     if (!val->singleton())                continue; //skip (non-con store)
  2967     BasicType type = val->basic_type();
  2969     jlong con = 0;
  2970     switch (type) {
  2971     case T_INT:    con = val->is_int()->get_con();  break;
  2972     case T_LONG:   con = val->is_long()->get_con(); break;
  2973     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2974     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2975     default:                              continue; //skip (odd store type)
  2978     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2979         st->Opcode() == Op_StoreL) {
  2980       continue;                 // This StoreL is already optimal.
  2983     // Store down the constant.
  2984     store_constant(tiles, num_tiles, st_off, st_size, con);
  2986     intptr_t j = st_off >> LogBytesPerLong;
  2988     if (type == T_INT && st_size == BytesPerInt
  2989         && (st_off & BytesPerInt) == BytesPerInt) {
  2990       jlong lcon = tiles[j];
  2991       if (!Matcher::isSimpleConstant64(lcon) &&
  2992           st->Opcode() == Op_StoreI) {
  2993         // This StoreI is already optimal by itself.
  2994         jint* intcon = (jint*) &tiles[j];
  2995         intcon[1] = 0;  // undo the store_constant()
  2997         // If the previous store is also optimal by itself, back up and
  2998         // undo the action of the previous loop iteration... if we can.
  2999         // But if we can't, just let the previous half take care of itself.
  3000         st = nodes[j];
  3001         st_off -= BytesPerInt;
  3002         con = intcon[0];
  3003         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3004           assert(st_off >= header_size, "still ignoring header");
  3005           assert(get_store_offset(st, phase) == st_off, "must be");
  3006           assert(in(i-1) == zmem, "must be");
  3007           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3008           assert(con == tcon->is_int()->get_con(), "must be");
  3009           // Undo the effects of the previous loop trip, which swallowed st:
  3010           intcon[0] = 0;        // undo store_constant()
  3011           set_req(i-1, st);     // undo set_req(i, zmem)
  3012           nodes[j] = NULL;      // undo nodes[j] = st
  3013           --old_subword;        // undo ++old_subword
  3015         continue;               // This StoreI is already optimal.
  3019     // This store is not needed.
  3020     set_req(i, zmem);
  3021     nodes[j] = st;              // record for the moment
  3022     if (st_size < BytesPerLong) // something has changed
  3023           ++old_subword;        // includes int/float, but who's counting...
  3024     else  ++old_long;
  3027   if ((old_subword + old_long) == 0)
  3028     return;                     // nothing more to do
  3030   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3031   // Be sure to insert them before overlapping non-constant stores.
  3032   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3033   for (int j = 0; j < num_tiles; j++) {
  3034     jlong con  = tiles[j];
  3035     jlong init = inits[j];
  3036     if (con == 0)  continue;
  3037     jint con0,  con1;           // split the constant, address-wise
  3038     jint init0, init1;          // split the init map, address-wise
  3039     { union { jlong con; jint intcon[2]; } u;
  3040       u.con = con;
  3041       con0  = u.intcon[0];
  3042       con1  = u.intcon[1];
  3043       u.con = init;
  3044       init0 = u.intcon[0];
  3045       init1 = u.intcon[1];
  3048     Node* old = nodes[j];
  3049     assert(old != NULL, "need the prior store");
  3050     intptr_t offset = (j * BytesPerLong);
  3052     bool split = !Matcher::isSimpleConstant64(con);
  3054     if (offset < header_size) {
  3055       assert(offset + BytesPerInt >= header_size, "second int counts");
  3056       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3057       split = true;             // only the second word counts
  3058       // Example:  int a[] = { 42 ... }
  3059     } else if (con0 == 0 && init0 == -1) {
  3060       split = true;             // first word is covered by full inits
  3061       // Example:  int a[] = { ... foo(), 42 ... }
  3062     } else if (con1 == 0 && init1 == -1) {
  3063       split = true;             // second word is covered by full inits
  3064       // Example:  int a[] = { ... 42, foo() ... }
  3067     // Here's a case where init0 is neither 0 nor -1:
  3068     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3069     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3070     // In this case the tile is not split; it is (jlong)42.
  3071     // The big tile is stored down, and then the foo() value is inserted.
  3072     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3074     Node* ctl = old->in(MemNode::Control);
  3075     Node* adr = make_raw_address(offset, phase);
  3076     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3078     // One or two coalesced stores to plop down.
  3079     Node*    st[2];
  3080     intptr_t off[2];
  3081     int  nst = 0;
  3082     if (!split) {
  3083       ++new_long;
  3084       off[nst] = offset;
  3085       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3086                                   phase->longcon(con), T_LONG);
  3087     } else {
  3088       // Omit either if it is a zero.
  3089       if (con0 != 0) {
  3090         ++new_int;
  3091         off[nst]  = offset;
  3092         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3093                                     phase->intcon(con0), T_INT);
  3095       if (con1 != 0) {
  3096         ++new_int;
  3097         offset += BytesPerInt;
  3098         adr = make_raw_address(offset, phase);
  3099         off[nst]  = offset;
  3100         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3101                                     phase->intcon(con1), T_INT);
  3105     // Insert second store first, then the first before the second.
  3106     // Insert each one just before any overlapping non-constant stores.
  3107     while (nst > 0) {
  3108       Node* st1 = st[--nst];
  3109       C->copy_node_notes_to(st1, old);
  3110       st1 = phase->transform(st1);
  3111       offset = off[nst];
  3112       assert(offset >= header_size, "do not smash header");
  3113       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3114       guarantee(ins_idx != 0, "must re-insert constant store");
  3115       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3116       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3117         set_req(--ins_idx, st1);
  3118       else
  3119         ins_req(ins_idx, st1);
  3123   if (PrintCompilation && WizardMode)
  3124     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3125                   old_subword, old_long, new_int, new_long);
  3126   if (C->log() != NULL)
  3127     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3128                    old_subword, old_long, new_int, new_long);
  3130   // Clean up any remaining occurrences of zmem:
  3131   remove_extra_zeroes();
  3134 // Explore forward from in(start) to find the first fully initialized
  3135 // word, and return its offset.  Skip groups of subword stores which
  3136 // together initialize full words.  If in(start) is itself part of a
  3137 // fully initialized word, return the offset of in(start).  If there
  3138 // are no following full-word stores, or if something is fishy, return
  3139 // a negative value.
  3140 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3141   int       int_map = 0;
  3142   intptr_t  int_map_off = 0;
  3143   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3145   for (uint i = start, limit = req(); i < limit; i++) {
  3146     Node* st = in(i);
  3148     intptr_t st_off = get_store_offset(st, phase);
  3149     if (st_off < 0)  break;  // return conservative answer
  3151     int st_size = st->as_Store()->memory_size();
  3152     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3153       return st_off;            // we found a complete word init
  3156     // update the map:
  3158     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3159     if (this_int_off != int_map_off) {
  3160       // reset the map:
  3161       int_map = 0;
  3162       int_map_off = this_int_off;
  3165     int subword_off = st_off - this_int_off;
  3166     int_map |= right_n_bits(st_size) << subword_off;
  3167     if ((int_map & FULL_MAP) == FULL_MAP) {
  3168       return this_int_off;      // we found a complete word init
  3171     // Did this store hit or cross the word boundary?
  3172     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3173     if (next_int_off == this_int_off + BytesPerInt) {
  3174       // We passed the current int, without fully initializing it.
  3175       int_map_off = next_int_off;
  3176       int_map >>= BytesPerInt;
  3177     } else if (next_int_off > this_int_off + BytesPerInt) {
  3178       // We passed the current and next int.
  3179       return this_int_off + BytesPerInt;
  3183   return -1;
  3187 // Called when the associated AllocateNode is expanded into CFG.
  3188 // At this point, we may perform additional optimizations.
  3189 // Linearize the stores by ascending offset, to make memory
  3190 // activity as coherent as possible.
  3191 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3192                                       intptr_t header_size,
  3193                                       Node* size_in_bytes,
  3194                                       PhaseGVN* phase) {
  3195   assert(!is_complete(), "not already complete");
  3196   assert(stores_are_sane(phase), "");
  3197   assert(allocation() != NULL, "must be present");
  3199   remove_extra_zeroes();
  3201   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3202     // reduce instruction count for common initialization patterns
  3203     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3205   Node* zmem = zero_memory();   // initially zero memory state
  3206   Node* inits = zmem;           // accumulating a linearized chain of inits
  3207   #ifdef ASSERT
  3208   intptr_t first_offset = allocation()->minimum_header_size();
  3209   intptr_t last_init_off = first_offset;  // previous init offset
  3210   intptr_t last_init_end = first_offset;  // previous init offset+size
  3211   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3212   #endif
  3213   intptr_t zeroes_done = header_size;
  3215   bool do_zeroing = true;       // we might give up if inits are very sparse
  3216   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3218   if (ZeroTLAB)  do_zeroing = false;
  3219   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3221   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3222     Node* st = in(i);
  3223     intptr_t st_off = get_store_offset(st, phase);
  3224     if (st_off < 0)
  3225       break;                    // unknown junk in the inits
  3226     if (st->in(MemNode::Memory) != zmem)
  3227       break;                    // complicated store chains somehow in list
  3229     int st_size = st->as_Store()->memory_size();
  3230     intptr_t next_init_off = st_off + st_size;
  3232     if (do_zeroing && zeroes_done < next_init_off) {
  3233       // See if this store needs a zero before it or under it.
  3234       intptr_t zeroes_needed = st_off;
  3236       if (st_size < BytesPerInt) {
  3237         // Look for subword stores which only partially initialize words.
  3238         // If we find some, we must lay down some word-level zeroes first,
  3239         // underneath the subword stores.
  3240         //
  3241         // Examples:
  3242         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3243         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3244         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3245         //
  3246         // Note:  coalesce_subword_stores may have already done this,
  3247         // if it was prompted by constant non-zero subword initializers.
  3248         // But this case can still arise with non-constant stores.
  3250         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3252         // In the examples above:
  3253         //   in(i)          p   q   r   s     x   y     z
  3254         //   st_off        12  13  14  15    12  13    14
  3255         //   st_size        1   1   1   1     1   1     1
  3256         //   next_full_s.  12  16  16  16    16  16    16
  3257         //   z's_done      12  16  16  16    12  16    12
  3258         //   z's_needed    12  16  16  16    16  16    16
  3259         //   zsize          0   0   0   0     4   0     4
  3260         if (next_full_store < 0) {
  3261           // Conservative tack:  Zero to end of current word.
  3262           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3263         } else {
  3264           // Zero to beginning of next fully initialized word.
  3265           // Or, don't zero at all, if we are already in that word.
  3266           assert(next_full_store >= zeroes_needed, "must go forward");
  3267           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3268           zeroes_needed = next_full_store;
  3272       if (zeroes_needed > zeroes_done) {
  3273         intptr_t zsize = zeroes_needed - zeroes_done;
  3274         // Do some incremental zeroing on rawmem, in parallel with inits.
  3275         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3276         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3277                                               zeroes_done, zeroes_needed,
  3278                                               phase);
  3279         zeroes_done = zeroes_needed;
  3280         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3281           do_zeroing = false;   // leave the hole, next time
  3285     // Collect the store and move on:
  3286     st->set_req(MemNode::Memory, inits);
  3287     inits = st;                 // put it on the linearized chain
  3288     set_req(i, zmem);           // unhook from previous position
  3290     if (zeroes_done == st_off)
  3291       zeroes_done = next_init_off;
  3293     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3295     #ifdef ASSERT
  3296     // Various order invariants.  Weaker than stores_are_sane because
  3297     // a large constant tile can be filled in by smaller non-constant stores.
  3298     assert(st_off >= last_init_off, "inits do not reverse");
  3299     last_init_off = st_off;
  3300     const Type* val = NULL;
  3301     if (st_size >= BytesPerInt &&
  3302         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3303         (int)val->basic_type() < (int)T_OBJECT) {
  3304       assert(st_off >= last_tile_end, "tiles do not overlap");
  3305       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3306       last_tile_end = MAX2(last_tile_end, next_init_off);
  3307     } else {
  3308       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3309       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3310       assert(st_off      >= last_init_end, "inits do not overlap");
  3311       last_init_end = next_init_off;  // it's a non-tile
  3313     #endif //ASSERT
  3316   remove_extra_zeroes();        // clear out all the zmems left over
  3317   add_req(inits);
  3319   if (!ZeroTLAB) {
  3320     // If anything remains to be zeroed, zero it all now.
  3321     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3322     // if it is the last unused 4 bytes of an instance, forget about it
  3323     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3324     if (zeroes_done + BytesPerLong >= size_limit) {
  3325       assert(allocation() != NULL, "");
  3326       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3327       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3328       if (zeroes_done == k->layout_helper())
  3329         zeroes_done = size_limit;
  3331     if (zeroes_done < size_limit) {
  3332       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3333                                             zeroes_done, size_in_bytes, phase);
  3337   set_complete(phase);
  3338   return rawmem;
  3342 #ifdef ASSERT
  3343 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3344   if (is_complete())
  3345     return true;                // stores could be anything at this point
  3346   assert(allocation() != NULL, "must be present");
  3347   intptr_t last_off = allocation()->minimum_header_size();
  3348   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3349     Node* st = in(i);
  3350     intptr_t st_off = get_store_offset(st, phase);
  3351     if (st_off < 0)  continue;  // ignore dead garbage
  3352     if (last_off > st_off) {
  3353       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3354       this->dump(2);
  3355       assert(false, "ascending store offsets");
  3356       return false;
  3358     last_off = st_off + st->as_Store()->memory_size();
  3360   return true;
  3362 #endif //ASSERT
  3367 //============================MergeMemNode=====================================
  3368 //
  3369 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3370 // contributing store or call operations.  Each contributor provides the memory
  3371 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3372 // if a MergeMem has an input X for alias category #6, then any memory reference
  3373 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3374 // to using the MergeMem as a whole.
  3375 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3376 //
  3377 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3378 //
  3379 // In one special case (and more cases in the future), alias categories overlap.
  3380 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3381 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3382 // it is exactly equivalent to that state W:
  3383 //   MergeMem(<Bot>: W) <==> W
  3384 //
  3385 // Usually, the merge has more than one input.  In that case, where inputs
  3386 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3387 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3388 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3389 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3390 //
  3391 // A merge can take a "wide" memory state as one of its narrow inputs.
  3392 // This simply means that the merge observes out only the relevant parts of
  3393 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3394 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3395 //
  3396 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3397 // and that memory slices "leak through":
  3398 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3399 //
  3400 // But, in such a cascade, repeated memory slices can "block the leak":
  3401 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3402 //
  3403 // In the last example, Y is not part of the combined memory state of the
  3404 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3405 // memory states from arising, so you can be sure that the state Y is somehow
  3406 // a precursor to state Y'.
  3407 //
  3408 //
  3409 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3410 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3411 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3412 // Compile::alias_type (and kin) produce and manage these indexes.
  3413 //
  3414 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3415 // (Note that this provides quick access to the top node inside MergeMem methods,
  3416 // without the need to reach out via TLS to Compile::current.)
  3417 //
  3418 // As a consequence of what was just described, a MergeMem that represents a full
  3419 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3420 // containing all alias categories.
  3421 //
  3422 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3423 //
  3424 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3425 // a memory state for the alias type <N>, or else the top node, meaning that
  3426 // there is no particular input for that alias type.  Note that the length of
  3427 // a MergeMem is variable, and may be extended at any time to accommodate new
  3428 // memory states at larger alias indexes.  When merges grow, they are of course
  3429 // filled with "top" in the unused in() positions.
  3430 //
  3431 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3432 // (Top was chosen because it works smoothly with passes like GCM.)
  3433 //
  3434 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3435 // the type of random VM bits like TLS references.)  Since it is always the
  3436 // first non-Bot memory slice, some low-level loops use it to initialize an
  3437 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3438 //
  3439 //
  3440 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3441 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3442 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3443 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3444 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3445 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3446 //
  3447 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3448 // really that different from the other memory inputs.  An abbreviation called
  3449 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3450 //
  3451 //
  3452 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3453 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3454 // that "emerges though" the base memory will be marked as excluding the alias types
  3455 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3456 //
  3457 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3458 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3459 //
  3460 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3461 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3462 // actually a disjoint union of memory states, rather than an overlay.
  3463 //
  3465 //------------------------------MergeMemNode-----------------------------------
  3466 Node* MergeMemNode::make_empty_memory() {
  3467   Node* empty_memory = (Node*) Compile::current()->top();
  3468   assert(empty_memory->is_top(), "correct sentinel identity");
  3469   return empty_memory;
  3472 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3473   init_class_id(Class_MergeMem);
  3474   // all inputs are nullified in Node::Node(int)
  3475   // set_input(0, NULL);  // no control input
  3477   // Initialize the edges uniformly to top, for starters.
  3478   Node* empty_mem = make_empty_memory();
  3479   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3480     init_req(i,empty_mem);
  3482   assert(empty_memory() == empty_mem, "");
  3484   if( new_base != NULL && new_base->is_MergeMem() ) {
  3485     MergeMemNode* mdef = new_base->as_MergeMem();
  3486     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3487     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3488       mms.set_memory(mms.memory2());
  3490     assert(base_memory() == mdef->base_memory(), "");
  3491   } else {
  3492     set_base_memory(new_base);
  3496 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3497 // If mem is itself a MergeMem, populate the result with the same edges.
  3498 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3499   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3502 //------------------------------cmp--------------------------------------------
  3503 uint MergeMemNode::hash() const { return NO_HASH; }
  3504 uint MergeMemNode::cmp( const Node &n ) const {
  3505   return (&n == this);          // Always fail except on self
  3508 //------------------------------Identity---------------------------------------
  3509 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3510   // Identity if this merge point does not record any interesting memory
  3511   // disambiguations.
  3512   Node* base_mem = base_memory();
  3513   Node* empty_mem = empty_memory();
  3514   if (base_mem != empty_mem) {  // Memory path is not dead?
  3515     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3516       Node* mem = in(i);
  3517       if (mem != empty_mem && mem != base_mem) {
  3518         return this;            // Many memory splits; no change
  3522   return base_mem;              // No memory splits; ID on the one true input
  3525 //------------------------------Ideal------------------------------------------
  3526 // This method is invoked recursively on chains of MergeMem nodes
  3527 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3528   // Remove chain'd MergeMems
  3529   //
  3530   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3531   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3532   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3533   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3534   Node *progress = NULL;
  3537   Node* old_base = base_memory();
  3538   Node* empty_mem = empty_memory();
  3539   if (old_base == empty_mem)
  3540     return NULL; // Dead memory path.
  3542   MergeMemNode* old_mbase;
  3543   if (old_base != NULL && old_base->is_MergeMem())
  3544     old_mbase = old_base->as_MergeMem();
  3545   else
  3546     old_mbase = NULL;
  3547   Node* new_base = old_base;
  3549   // simplify stacked MergeMems in base memory
  3550   if (old_mbase)  new_base = old_mbase->base_memory();
  3552   // the base memory might contribute new slices beyond my req()
  3553   if (old_mbase)  grow_to_match(old_mbase);
  3555   // Look carefully at the base node if it is a phi.
  3556   PhiNode* phi_base;
  3557   if (new_base != NULL && new_base->is_Phi())
  3558     phi_base = new_base->as_Phi();
  3559   else
  3560     phi_base = NULL;
  3562   Node*    phi_reg = NULL;
  3563   uint     phi_len = (uint)-1;
  3564   if (phi_base != NULL && !phi_base->is_copy()) {
  3565     // do not examine phi if degraded to a copy
  3566     phi_reg = phi_base->region();
  3567     phi_len = phi_base->req();
  3568     // see if the phi is unfinished
  3569     for (uint i = 1; i < phi_len; i++) {
  3570       if (phi_base->in(i) == NULL) {
  3571         // incomplete phi; do not look at it yet!
  3572         phi_reg = NULL;
  3573         phi_len = (uint)-1;
  3574         break;
  3579   // Note:  We do not call verify_sparse on entry, because inputs
  3580   // can normalize to the base_memory via subsume_node or similar
  3581   // mechanisms.  This method repairs that damage.
  3583   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3585   // Look at each slice.
  3586   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3587     Node* old_in = in(i);
  3588     // calculate the old memory value
  3589     Node* old_mem = old_in;
  3590     if (old_mem == empty_mem)  old_mem = old_base;
  3591     assert(old_mem == memory_at(i), "");
  3593     // maybe update (reslice) the old memory value
  3595     // simplify stacked MergeMems
  3596     Node* new_mem = old_mem;
  3597     MergeMemNode* old_mmem;
  3598     if (old_mem != NULL && old_mem->is_MergeMem())
  3599       old_mmem = old_mem->as_MergeMem();
  3600     else
  3601       old_mmem = NULL;
  3602     if (old_mmem == this) {
  3603       // This can happen if loops break up and safepoints disappear.
  3604       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3605       // safepoint can be rewritten to a merge of the same BotPtr with
  3606       // the BotPtr phi coming into the loop.  If that phi disappears
  3607       // also, we can end up with a self-loop of the mergemem.
  3608       // In general, if loops degenerate and memory effects disappear,
  3609       // a mergemem can be left looking at itself.  This simply means
  3610       // that the mergemem's default should be used, since there is
  3611       // no longer any apparent effect on this slice.
  3612       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3613       //       from start.  Update the input to TOP.
  3614       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3616     else if (old_mmem != NULL) {
  3617       new_mem = old_mmem->memory_at(i);
  3619     // else preceeding memory was not a MergeMem
  3621     // replace equivalent phis (unfortunately, they do not GVN together)
  3622     if (new_mem != NULL && new_mem != new_base &&
  3623         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3624       if (new_mem->is_Phi()) {
  3625         PhiNode* phi_mem = new_mem->as_Phi();
  3626         for (uint i = 1; i < phi_len; i++) {
  3627           if (phi_base->in(i) != phi_mem->in(i)) {
  3628             phi_mem = NULL;
  3629             break;
  3632         if (phi_mem != NULL) {
  3633           // equivalent phi nodes; revert to the def
  3634           new_mem = new_base;
  3639     // maybe store down a new value
  3640     Node* new_in = new_mem;
  3641     if (new_in == new_base)  new_in = empty_mem;
  3643     if (new_in != old_in) {
  3644       // Warning:  Do not combine this "if" with the previous "if"
  3645       // A memory slice might have be be rewritten even if it is semantically
  3646       // unchanged, if the base_memory value has changed.
  3647       set_req(i, new_in);
  3648       progress = this;          // Report progress
  3652   if (new_base != old_base) {
  3653     set_req(Compile::AliasIdxBot, new_base);
  3654     // Don't use set_base_memory(new_base), because we need to update du.
  3655     assert(base_memory() == new_base, "");
  3656     progress = this;
  3659   if( base_memory() == this ) {
  3660     // a self cycle indicates this memory path is dead
  3661     set_req(Compile::AliasIdxBot, empty_mem);
  3664   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3665   // Recursion must occur after the self cycle check above
  3666   if( base_memory()->is_MergeMem() ) {
  3667     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3668     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3669     if( m != NULL && (m->is_top() ||
  3670         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3671       // propagate rollup of dead cycle to self
  3672       set_req(Compile::AliasIdxBot, empty_mem);
  3676   if( base_memory() == empty_mem ) {
  3677     progress = this;
  3678     // Cut inputs during Parse phase only.
  3679     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3680     if( !can_reshape ) {
  3681       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3682         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3687   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3688     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3689     // transform should be attempted. Look for this->phi->this cycle.
  3690     uint merge_width = req();
  3691     if (merge_width > Compile::AliasIdxRaw) {
  3692       PhiNode* phi = base_memory()->as_Phi();
  3693       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3694         if (phi->in(i) == this) {
  3695           phase->is_IterGVN()->_worklist.push(phi);
  3696           break;
  3702   assert(progress || verify_sparse(), "please, no dups of base");
  3703   return progress;
  3706 //-------------------------set_base_memory-------------------------------------
  3707 void MergeMemNode::set_base_memory(Node *new_base) {
  3708   Node* empty_mem = empty_memory();
  3709   set_req(Compile::AliasIdxBot, new_base);
  3710   assert(memory_at(req()) == new_base, "must set default memory");
  3711   // Clear out other occurrences of new_base:
  3712   if (new_base != empty_mem) {
  3713     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3714       if (in(i) == new_base)  set_req(i, empty_mem);
  3719 //------------------------------out_RegMask------------------------------------
  3720 const RegMask &MergeMemNode::out_RegMask() const {
  3721   return RegMask::Empty;
  3724 //------------------------------dump_spec--------------------------------------
  3725 #ifndef PRODUCT
  3726 void MergeMemNode::dump_spec(outputStream *st) const {
  3727   st->print(" {");
  3728   Node* base_mem = base_memory();
  3729   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3730     Node* mem = memory_at(i);
  3731     if (mem == base_mem) { st->print(" -"); continue; }
  3732     st->print( " N%d:", mem->_idx );
  3733     Compile::current()->get_adr_type(i)->dump_on(st);
  3735   st->print(" }");
  3737 #endif // !PRODUCT
  3740 #ifdef ASSERT
  3741 static bool might_be_same(Node* a, Node* b) {
  3742   if (a == b)  return true;
  3743   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3744   // phis shift around during optimization
  3745   return true;  // pretty stupid...
  3748 // verify a narrow slice (either incoming or outgoing)
  3749 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3750   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3751   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3752   if (Node::in_dump())      return;  // muzzle asserts when printing
  3753   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3754   assert(n != NULL, "");
  3755   // Elide intervening MergeMem's
  3756   while (n->is_MergeMem()) {
  3757     n = n->as_MergeMem()->memory_at(alias_idx);
  3759   Compile* C = Compile::current();
  3760   const TypePtr* n_adr_type = n->adr_type();
  3761   if (n == m->empty_memory()) {
  3762     // Implicit copy of base_memory()
  3763   } else if (n_adr_type != TypePtr::BOTTOM) {
  3764     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3765     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3766   } else {
  3767     // A few places like make_runtime_call "know" that VM calls are narrow,
  3768     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3769     bool expected_wide_mem = false;
  3770     if (n == m->base_memory()) {
  3771       expected_wide_mem = true;
  3772     } else if (alias_idx == Compile::AliasIdxRaw ||
  3773                n == m->memory_at(Compile::AliasIdxRaw)) {
  3774       expected_wide_mem = true;
  3775     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3776       // memory can "leak through" calls on channels that
  3777       // are write-once.  Allow this also.
  3778       expected_wide_mem = true;
  3780     assert(expected_wide_mem, "expected narrow slice replacement");
  3783 #else // !ASSERT
  3784 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3785 #endif
  3788 //-----------------------------memory_at---------------------------------------
  3789 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3790   assert(alias_idx >= Compile::AliasIdxRaw ||
  3791          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3792          "must avoid base_memory and AliasIdxTop");
  3794   // Otherwise, it is a narrow slice.
  3795   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3796   Compile *C = Compile::current();
  3797   if (is_empty_memory(n)) {
  3798     // the array is sparse; empty slots are the "top" node
  3799     n = base_memory();
  3800     assert(Node::in_dump()
  3801            || n == NULL || n->bottom_type() == Type::TOP
  3802            || n->adr_type() == TypePtr::BOTTOM
  3803            || n->adr_type() == TypeRawPtr::BOTTOM
  3804            || Compile::current()->AliasLevel() == 0,
  3805            "must be a wide memory");
  3806     // AliasLevel == 0 if we are organizing the memory states manually.
  3807     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3808   } else {
  3809     // make sure the stored slice is sane
  3810     #ifdef ASSERT
  3811     if (is_error_reported() || Node::in_dump()) {
  3812     } else if (might_be_same(n, base_memory())) {
  3813       // Give it a pass:  It is a mostly harmless repetition of the base.
  3814       // This can arise normally from node subsumption during optimization.
  3815     } else {
  3816       verify_memory_slice(this, alias_idx, n);
  3818     #endif
  3820   return n;
  3823 //---------------------------set_memory_at-------------------------------------
  3824 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3825   verify_memory_slice(this, alias_idx, n);
  3826   Node* empty_mem = empty_memory();
  3827   if (n == base_memory())  n = empty_mem;  // collapse default
  3828   uint need_req = alias_idx+1;
  3829   if (req() < need_req) {
  3830     if (n == empty_mem)  return;  // already the default, so do not grow me
  3831     // grow the sparse array
  3832     do {
  3833       add_req(empty_mem);
  3834     } while (req() < need_req);
  3836   set_req( alias_idx, n );
  3841 //--------------------------iteration_setup------------------------------------
  3842 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3843   if (other != NULL) {
  3844     grow_to_match(other);
  3845     // invariant:  the finite support of mm2 is within mm->req()
  3846     #ifdef ASSERT
  3847     for (uint i = req(); i < other->req(); i++) {
  3848       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3850     #endif
  3852   // Replace spurious copies of base_memory by top.
  3853   Node* base_mem = base_memory();
  3854   if (base_mem != NULL && !base_mem->is_top()) {
  3855     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3856       if (in(i) == base_mem)
  3857         set_req(i, empty_memory());
  3862 //---------------------------grow_to_match-------------------------------------
  3863 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3864   Node* empty_mem = empty_memory();
  3865   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3866   // look for the finite support of the other memory
  3867   for (uint i = other->req(); --i >= req(); ) {
  3868     if (other->in(i) != empty_mem) {
  3869       uint new_len = i+1;
  3870       while (req() < new_len)  add_req(empty_mem);
  3871       break;
  3876 //---------------------------verify_sparse-------------------------------------
  3877 #ifndef PRODUCT
  3878 bool MergeMemNode::verify_sparse() const {
  3879   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3880   Node* base_mem = base_memory();
  3881   // The following can happen in degenerate cases, since empty==top.
  3882   if (is_empty_memory(base_mem))  return true;
  3883   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3884     assert(in(i) != NULL, "sane slice");
  3885     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3887   return true;
  3890 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3891   Node* n;
  3892   n = mm->in(idx);
  3893   if (mem == n)  return true;  // might be empty_memory()
  3894   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3895   if (mem == n)  return true;
  3896   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3897     if (mem == n)  return true;
  3898     if (n == NULL)  break;
  3900   return false;
  3902 #endif // !PRODUCT

mercurial