src/share/vm/memory/allocation.cpp

Mon, 23 Mar 2020 17:57:13 +0000

author
poonam
date
Mon, 23 Mar 2020 17:57:13 +0000
changeset 9965
c39172598323
parent 9507
7e72702243a4
child 9572
624a0741915c
permissions
-rw-r--r--

8231779: crash HeapWord*ParallelScavengeHeap::failed_mem_allocate
Reviewed-by: dlong, tschatzl, pliden

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_aix
    49 # include "os_aix.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_FAMILY_bsd
    52 # include "os_bsd.inline.hpp"
    53 #endif
    55 void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
    56 void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
    57 void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
    58 void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
    60 void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
    61 void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
    62 void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
    63 void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
    65 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    66                                  size_t word_size, bool read_only,
    67                                  MetaspaceObj::Type type, TRAPS) throw() {
    68   // Klass has it's own operator new
    69   return Metaspace::allocate(loader_data, word_size, read_only, type, THREAD);
    70 }
    72 bool MetaspaceObj::is_shared() const {
    73   return MetaspaceShared::is_in_shared_space(this);
    74 }
    76 bool MetaspaceObj::is_metaspace_object() const {
    77   return Metaspace::contains((void*)this);
    78 }
    80 void MetaspaceObj::print_address_on(outputStream* st) const {
    81   st->print(" {" INTPTR_FORMAT "}", p2i(this));
    82 }
    84 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
    85   address res = NULL;
    86   switch (type) {
    87    case C_HEAP:
    88     res = (address)AllocateHeap(size, flags, CALLER_PC);
    89     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    90     break;
    91    case RESOURCE_AREA:
    92     // new(size) sets allocation type RESOURCE_AREA.
    93     res = (address)operator new(size);
    94     break;
    95    default:
    96     ShouldNotReachHere();
    97   }
    98   return res;
    99 }
   101 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
   102   return (address) operator new(size, type, flags);
   103 }
   105 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   106     allocation_type type, MEMFLAGS flags) throw() {
   107   // should only call this with std::nothrow, use other operator new() otherwise
   108   address res = NULL;
   109   switch (type) {
   110    case C_HEAP:
   111     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   112     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   113     break;
   114    case RESOURCE_AREA:
   115     // new(size) sets allocation type RESOURCE_AREA.
   116     res = (address)operator new(size, std::nothrow);
   117     break;
   118    default:
   119     ShouldNotReachHere();
   120   }
   121   return res;
   122 }
   124 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   125     allocation_type type, MEMFLAGS flags) throw() {
   126   return (address)operator new(size, nothrow_constant, type, flags);
   127 }
   129 void ResourceObj::operator delete(void* p) {
   130   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   131          "delete only allowed for C_HEAP objects");
   132   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   133   FreeHeap(p);
   134 }
   136 void ResourceObj::operator delete [](void* p) {
   137   operator delete(p);
   138 }
   140 #ifdef ASSERT
   141 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   142     // Set allocation type in the resource object
   143     uintptr_t allocation = (uintptr_t)res;
   144     assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
   145     assert(type <= allocation_mask, "incorrect allocation type");
   146     ResourceObj* resobj = (ResourceObj *)res;
   147     resobj->_allocation_t[0] = ~(allocation + type);
   148     if (type != STACK_OR_EMBEDDED) {
   149       // Called from operator new() and CollectionSetChooser(),
   150       // set verification value.
   151       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   152     }
   153 }
   155 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   156     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   157     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   158 }
   160 bool ResourceObj::is_type_set() const {
   161     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   162     return get_allocation_type()  == type &&
   163            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   164 }
   166 ResourceObj::ResourceObj() { // default constructor
   167     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   168       // Operator new() is not called for allocations
   169       // on stack and for embedded objects.
   170       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   171     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   172       // For some reason we got a value which resembles
   173       // an embedded or stack object (operator new() does not
   174       // set such type). Keep it since it is valid value
   175       // (even if it was garbage).
   176       // Ignore garbage in other fields.
   177     } else if (is_type_set()) {
   178       // Operator new() was called and type was set.
   179       assert(!allocated_on_stack(),
   180              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   181                      p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   182     } else {
   183       // Operator new() was not called.
   184       // Assume that it is embedded or stack object.
   185       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   186     }
   187     _allocation_t[1] = 0; // Zap verification value
   188 }
   190 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   191     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   192     // Note: garbage may resembles valid value.
   193     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   194            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   195                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   196     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   197     _allocation_t[1] = 0; // Zap verification value
   198 }
   200 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   201     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   202     assert(allocated_on_stack(),
   203            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   204                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   205     // Keep current _allocation_t value;
   206     return *this;
   207 }
   209 ResourceObj::~ResourceObj() {
   210     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   211     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   212       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   213     }
   214 }
   215 #endif // ASSERT
   218 void trace_heap_malloc(size_t size, const char* name, void* p) {
   219   // A lock is not needed here - tty uses a lock internally
   220   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
   221 }
   224 void trace_heap_free(void* p) {
   225   // A lock is not needed here - tty uses a lock internally
   226   tty->print_cr("Heap free   " INTPTR_FORMAT, p2i(p));
   227 }
   229 //--------------------------------------------------------------------------------------
   230 // ChunkPool implementation
   232 // MT-safe pool of chunks to reduce malloc/free thrashing
   233 // NB: not using Mutex because pools are used before Threads are initialized
   234 class ChunkPool: public CHeapObj<mtInternal> {
   235   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   236   size_t       _num_chunks;   // number of unused chunks in pool
   237   size_t       _num_used;     // number of chunks currently checked out
   238   const size_t _size;         // size of each chunk (must be uniform)
   240   // Our four static pools
   241   static ChunkPool* _large_pool;
   242   static ChunkPool* _medium_pool;
   243   static ChunkPool* _small_pool;
   244   static ChunkPool* _tiny_pool;
   246   // return first element or null
   247   void* get_first() {
   248     Chunk* c = _first;
   249     if (_first) {
   250       _first = _first->next();
   251       _num_chunks--;
   252     }
   253     return c;
   254   }
   256  public:
   257   // All chunks in a ChunkPool has the same size
   258    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   260   // Allocate a new chunk from the pool (might expand the pool)
   261   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   262     assert(bytes == _size, "bad size");
   263     void* p = NULL;
   264     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   265     // should be done outside ThreadCritical lock due to NMT
   266     { ThreadCritical tc;
   267       _num_used++;
   268       p = get_first();
   269     }
   270     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   271     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   272       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   273     }
   274     return p;
   275   }
   277   // Return a chunk to the pool
   278   void free(Chunk* chunk) {
   279     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   280     ThreadCritical tc;
   281     _num_used--;
   283     // Add chunk to list
   284     chunk->set_next(_first);
   285     _first = chunk;
   286     _num_chunks++;
   287   }
   289   // Prune the pool
   290   void free_all_but(size_t n) {
   291     Chunk* cur = NULL;
   292     Chunk* next;
   293     {
   294     // if we have more than n chunks, free all of them
   295     ThreadCritical tc;
   296     if (_num_chunks > n) {
   297       // free chunks at end of queue, for better locality
   298         cur = _first;
   299       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   301       if (cur != NULL) {
   302           next = cur->next();
   303         cur->set_next(NULL);
   304         cur = next;
   306           _num_chunks = n;
   307         }
   308       }
   309     }
   311     // Free all remaining chunks, outside of ThreadCritical
   312     // to avoid deadlock with NMT
   313         while(cur != NULL) {
   314           next = cur->next();
   315       os::free(cur, mtChunk);
   316           cur = next;
   317         }
   318       }
   320   // Accessors to preallocated pool's
   321   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   322   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   323   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   324   static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
   326   static void initialize() {
   327     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   328     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   329     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   330     _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
   331   }
   333   static void clean() {
   334     enum { BlocksToKeep = 5 };
   335      _tiny_pool->free_all_but(BlocksToKeep);
   336      _small_pool->free_all_but(BlocksToKeep);
   337      _medium_pool->free_all_but(BlocksToKeep);
   338      _large_pool->free_all_but(BlocksToKeep);
   339   }
   340 };
   342 ChunkPool* ChunkPool::_large_pool  = NULL;
   343 ChunkPool* ChunkPool::_medium_pool = NULL;
   344 ChunkPool* ChunkPool::_small_pool  = NULL;
   345 ChunkPool* ChunkPool::_tiny_pool   = NULL;
   347 void chunkpool_init() {
   348   ChunkPool::initialize();
   349 }
   351 void
   352 Chunk::clean_chunk_pool() {
   353   ChunkPool::clean();
   354 }
   357 //--------------------------------------------------------------------------------------
   358 // ChunkPoolCleaner implementation
   359 //
   361 class ChunkPoolCleaner : public PeriodicTask {
   362   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   364  public:
   365    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   366    void task() {
   367      ChunkPool::clean();
   368    }
   369 };
   371 //--------------------------------------------------------------------------------------
   372 // Chunk implementation
   374 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
   375   // requested_size is equal to sizeof(Chunk) but in order for the arena
   376   // allocations to come out aligned as expected the size must be aligned
   377   // to expected arena alignment.
   378   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   379   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   380   size_t bytes = ARENA_ALIGN(requested_size) + length;
   381   switch (length) {
   382    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   383    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   384    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   385    case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
   386    default: {
   387      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   388      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   389        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   390      }
   391      return p;
   392    }
   393   }
   394 }
   396 void Chunk::operator delete(void* p) {
   397   Chunk* c = (Chunk*)p;
   398   switch (c->length()) {
   399    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   400    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   401    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   402    case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
   403    default:                 os::free(c, mtChunk);
   404   }
   405 }
   407 Chunk::Chunk(size_t length) : _len(length) {
   408   _next = NULL;         // Chain on the linked list
   409 }
   412 void Chunk::chop() {
   413   Chunk *k = this;
   414   while( k ) {
   415     Chunk *tmp = k->next();
   416     // clear out this chunk (to detect allocation bugs)
   417     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   418     delete k;                   // Free chunk (was malloc'd)
   419     k = tmp;
   420   }
   421 }
   423 void Chunk::next_chop() {
   424   _next->chop();
   425   _next = NULL;
   426 }
   429 void Chunk::start_chunk_pool_cleaner_task() {
   430 #ifdef ASSERT
   431   static bool task_created = false;
   432   assert(!task_created, "should not start chuck pool cleaner twice");
   433   task_created = true;
   434 #endif
   435   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   436   cleaner->enroll();
   437 }
   439 //------------------------------Arena------------------------------------------
   440 Arena::Arena(MEMFLAGS flag, size_t init_size) : _flags(flag), _size_in_bytes(0)  {
   441   size_t round_size = (sizeof (char *)) - 1;
   442   init_size = (init_size+round_size) & ~round_size;
   443   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   444   _hwm = _chunk->bottom();      // Save the cached hwm, max
   445   _max = _chunk->top();
   446   MemTracker::record_new_arena(flag);
   447   set_size_in_bytes(init_size);
   448 }
   450 Arena::Arena(MEMFLAGS flag) : _flags(flag), _size_in_bytes(0) {
   451   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   452   _hwm = _chunk->bottom();      // Save the cached hwm, max
   453   _max = _chunk->top();
   454   MemTracker::record_new_arena(flag);
   455   set_size_in_bytes(Chunk::init_size);
   456 }
   458 Arena *Arena::move_contents(Arena *copy) {
   459   copy->destruct_contents();
   460   copy->_chunk = _chunk;
   461   copy->_hwm   = _hwm;
   462   copy->_max   = _max;
   463   copy->_first = _first;
   465   // workaround rare racing condition, which could double count
   466   // the arena size by native memory tracking
   467   size_t size = size_in_bytes();
   468   set_size_in_bytes(0);
   469   copy->set_size_in_bytes(size);
   470   // Destroy original arena
   471   reset();
   472   return copy;            // Return Arena with contents
   473 }
   475 Arena::~Arena() {
   476   destruct_contents();
   477   MemTracker::record_arena_free(_flags);
   478 }
   480 void* Arena::operator new(size_t size) throw() {
   481   assert(false, "Use dynamic memory type binding");
   482   return NULL;
   483 }
   485 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   486   assert(false, "Use dynamic memory type binding");
   487   return NULL;
   488 }
   490   // dynamic memory type binding
   491 void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
   492 #ifdef ASSERT
   493   void* p = (void*)AllocateHeap(size, flags, CALLER_PC);
   494   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   495   return p;
   496 #else
   497   return (void *) AllocateHeap(size, flags, CALLER_PC);
   498 #endif
   499 }
   501 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
   502 #ifdef ASSERT
   503   void* p = os::malloc(size, flags, CALLER_PC);
   504   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   505   return p;
   506 #else
   507   return os::malloc(size, flags, CALLER_PC);
   508 #endif
   509 }
   511 void Arena::operator delete(void* p) {
   512   FreeHeap(p);
   513 }
   515 // Destroy this arenas contents and reset to empty
   516 void Arena::destruct_contents() {
   517   if (UseMallocOnly && _first != NULL) {
   518     char* end = _first->next() ? _first->top() : _hwm;
   519     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   520   }
   521   // reset size before chop to avoid a rare racing condition
   522   // that can have total arena memory exceed total chunk memory
   523   set_size_in_bytes(0);
   524   _first->chop();
   525   reset();
   526 }
   528 // This is high traffic method, but many calls actually don't
   529 // change the size
   530 void Arena::set_size_in_bytes(size_t size) {
   531   if (_size_in_bytes != size) {
   532     long delta = (long)(size - size_in_bytes());
   533     _size_in_bytes = size;
   534     MemTracker::record_arena_size_change(delta, _flags);
   535   }
   536 }
   538 // Total of all Chunks in arena
   539 size_t Arena::used() const {
   540   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   541   register Chunk *k = _first;
   542   while( k != _chunk) {         // Whilst have Chunks in a row
   543     sum += k->length();         // Total size of this Chunk
   544     k = k->next();              // Bump along to next Chunk
   545   }
   546   return sum;                   // Return total consumed space.
   547 }
   549 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   550   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   551 }
   553 // Grow a new Chunk
   554 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   555   // Get minimal required size.  Either real big, or even bigger for giant objs
   556   size_t len = MAX2(x, (size_t) Chunk::size);
   558   Chunk *k = _chunk;            // Get filled-up chunk address
   559   _chunk = new (alloc_failmode, len) Chunk(len);
   561   if (_chunk == NULL) {
   562     _chunk = k;                 // restore the previous value of _chunk
   563     return NULL;
   564   }
   565   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   566   else _first = _chunk;
   567   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   568   _max =  _chunk->top();
   569   set_size_in_bytes(size_in_bytes() + len);
   570   void* result = _hwm;
   571   _hwm += x;
   572   return result;
   573 }
   577 // Reallocate storage in Arena.
   578 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   579   assert(new_size >= 0, "bad size");
   580   if (new_size == 0) return NULL;
   581 #ifdef ASSERT
   582   if (UseMallocOnly) {
   583     // always allocate a new object  (otherwise we'll free this one twice)
   584     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   585     if (copy == NULL) {
   586       return NULL;
   587     }
   588     size_t n = MIN2(old_size, new_size);
   589     if (n > 0) memcpy(copy, old_ptr, n);
   590     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   591     return copy;
   592   }
   593 #endif
   594   char *c_old = (char*)old_ptr; // Handy name
   595   // Stupid fast special case
   596   if( new_size <= old_size ) {  // Shrink in-place
   597     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   598       _hwm = c_old+new_size;    // Adjust hwm
   599     return c_old;
   600   }
   602   // make sure that new_size is legal
   603   size_t corrected_new_size = ARENA_ALIGN(new_size);
   605   // See if we can resize in-place
   606   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   607       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   608     _hwm = c_old+corrected_new_size;      // Adjust hwm
   609     return c_old;               // Return old pointer
   610   }
   612   // Oops, got to relocate guts
   613   void *new_ptr = Amalloc(new_size, alloc_failmode);
   614   if (new_ptr == NULL) {
   615     return NULL;
   616   }
   617   memcpy( new_ptr, c_old, old_size );
   618   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   619   return new_ptr;
   620 }
   623 // Determine if pointer belongs to this Arena or not.
   624 bool Arena::contains( const void *ptr ) const {
   625 #ifdef ASSERT
   626   if (UseMallocOnly) {
   627     // really slow, but not easy to make fast
   628     if (_chunk == NULL) return false;
   629     char** bottom = (char**)_chunk->bottom();
   630     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   631       if (*p == ptr) return true;
   632     }
   633     for (Chunk *c = _first; c != NULL; c = c->next()) {
   634       if (c == _chunk) continue;  // current chunk has been processed
   635       char** bottom = (char**)c->bottom();
   636       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   637         if (*p == ptr) return true;
   638       }
   639     }
   640     return false;
   641   }
   642 #endif
   643   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   644     return true;                // Check for in this chunk
   645   for (Chunk *c = _first; c; c = c->next()) {
   646     if (c == _chunk) continue;  // current chunk has been processed
   647     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   648       return true;              // Check for every chunk in Arena
   649     }
   650   }
   651   return false;                 // Not in any Chunk, so not in Arena
   652 }
   655 #ifdef ASSERT
   656 void* Arena::malloc(size_t size) {
   657   assert(UseMallocOnly, "shouldn't call");
   658   // use malloc, but save pointer in res. area for later freeing
   659   char** save = (char**)internal_malloc_4(sizeof(char*));
   660   return (*save = (char*)os::malloc(size, mtChunk));
   661 }
   663 // for debugging with UseMallocOnly
   664 void* Arena::internal_malloc_4(size_t x) {
   665   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   666   check_for_overflow(x, "Arena::internal_malloc_4");
   667   if (_hwm + x > _max) {
   668     return grow(x);
   669   } else {
   670     char *old = _hwm;
   671     _hwm += x;
   672     return old;
   673   }
   674 }
   675 #endif
   678 //--------------------------------------------------------------------------------------
   679 // Non-product code
   681 #ifndef PRODUCT
   682 // The global operator new should never be called since it will usually indicate
   683 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   684 // that they're allocated on the C heap.
   685 // Commented out in product version to avoid conflicts with third-party C++ native code.
   686 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   687 // from jdk source and causing data corruption. Such as
   688 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   689 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   690 //
   691 #ifndef ALLOW_OPERATOR_NEW_USAGE
   692 void* operator new(size_t size) throw() {
   693   assert(false, "Should not call global operator new");
   694   return 0;
   695 }
   697 void* operator new [](size_t size) throw() {
   698   assert(false, "Should not call global operator new[]");
   699   return 0;
   700 }
   702 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   703   assert(false, "Should not call global operator new");
   704   return 0;
   705 }
   707 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
   708   assert(false, "Should not call global operator new[]");
   709   return 0;
   710 }
   712 void operator delete(void* p) {
   713   assert(false, "Should not call global delete");
   714 }
   716 void operator delete [](void* p) {
   717   assert(false, "Should not call global delete []");
   718 }
   719 #endif // ALLOW_OPERATOR_NEW_USAGE
   721 void AllocatedObj::print() const       { print_on(tty); }
   722 void AllocatedObj::print_value() const { print_value_on(tty); }
   724 void AllocatedObj::print_on(outputStream* st) const {
   725   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   726 }
   728 void AllocatedObj::print_value_on(outputStream* st) const {
   729   st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   730 }
   732 julong Arena::_bytes_allocated = 0;
   734 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   736 AllocStats::AllocStats() {
   737   start_mallocs      = os::num_mallocs;
   738   start_frees        = os::num_frees;
   739   start_malloc_bytes = os::alloc_bytes;
   740   start_mfree_bytes  = os::free_bytes;
   741   start_res_bytes    = Arena::_bytes_allocated;
   742 }
   744 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   745 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   746 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   747 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   748 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   749 void    AllocStats::print() {
   750   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   751                 UINT64_FORMAT " frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   752                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   753 }
   756 // debugging code
   757 inline void Arena::free_all(char** start, char** end) {
   758   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   759 }
   761 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   762   assert(UseMallocOnly, "should not call");
   763   // free all objects malloced since resource mark was created; resource area
   764   // contains their addresses
   765   if (chunk->next()) {
   766     // this chunk is full, and some others too
   767     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   768       char* top = c->top();
   769       if (c->next() == NULL) {
   770         top = hwm2;     // last junk is only used up to hwm2
   771         assert(c->contains(hwm2), "bad hwm2");
   772       }
   773       free_all((char**)c->bottom(), (char**)top);
   774     }
   775     assert(chunk->contains(hwm), "bad hwm");
   776     assert(chunk->contains(max), "bad max");
   777     free_all((char**)hwm, (char**)max);
   778   } else {
   779     // this chunk was partially used
   780     assert(chunk->contains(hwm), "bad hwm");
   781     assert(chunk->contains(hwm2), "bad hwm2");
   782     free_all((char**)hwm, (char**)hwm2);
   783   }
   784 }
   787 ReallocMark::ReallocMark() {
   788 #ifdef ASSERT
   789   Thread *thread = ThreadLocalStorage::get_thread_slow();
   790   _nesting = thread->resource_area()->nesting();
   791 #endif
   792 }
   794 void ReallocMark::check() {
   795 #ifdef ASSERT
   796   if (_nesting != Thread::current()->resource_area()->nesting()) {
   797     fatal("allocation bug: array could grow within nested ResourceMark");
   798   }
   799 #endif
   800 }
   802 #endif // Non-product

mercurial