src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 02 Feb 2011 10:41:20 -0800

author
johnc
date
Wed, 02 Feb 2011 10:41:20 -0800
changeset 2504
c33825b68624
parent 2472
0fa27f37d4d4
child 2645
c93aa6caa02f
permissions
-rw-r--r--

6923430: G1: assert(res != 0,"This should have worked.")
7007446: G1: expand the heap with a single step, not one region at a time
Summary: Changed G1CollectedHeap::expand() to expand the committed space by calling VirtualSpace::expand_by() once rather than for every region in the expansion amount. This allows the success or failure of the expansion to be determined before creating any heap regions. Introduced a develop flag G1ExitOnExpansionFailure (false by default) that, when true, will exit the VM if the expansion of the committed space fails. Finally G1CollectedHeap::expand() returns a status back to it's caller so that the caller knows whether to attempt the allocation.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    33 #include "runtime/arguments.hpp"
    34 #include "runtime/java.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "utilities/debug.hpp"
    38 #define PREDICTIONS_VERBOSE 0
    40 // <NEW PREDICTION>
    42 // Different defaults for different number of GC threads
    43 // They were chosen by running GCOld and SPECjbb on debris with different
    44 //   numbers of GC threads and choosing them based on the results
    46 // all the same
    47 static double rs_length_diff_defaults[] = {
    48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    49 };
    51 static double cost_per_card_ms_defaults[] = {
    52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    53 };
    55 // all the same
    56 static double fully_young_cards_per_entry_ratio_defaults[] = {
    57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    58 };
    60 static double cost_per_entry_ms_defaults[] = {
    61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    62 };
    64 static double cost_per_byte_ms_defaults[] = {
    65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    66 };
    68 // these should be pretty consistent
    69 static double constant_other_time_ms_defaults[] = {
    70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    71 };
    74 static double young_other_cost_per_region_ms_defaults[] = {
    75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    76 };
    78 static double non_young_other_cost_per_region_ms_defaults[] = {
    79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    80 };
    82 // </NEW PREDICTION>
    84 G1CollectorPolicy::G1CollectorPolicy() :
    85   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    86     ? ParallelGCThreads : 1),
    89   _n_pauses(0),
    90   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    91   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    92   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    93   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    94   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
    95   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    96   _all_pause_times_ms(new NumberSeq()),
    97   _stop_world_start(0.0),
    98   _all_stop_world_times_ms(new NumberSeq()),
    99   _all_yield_times_ms(new NumberSeq()),
   101   _all_mod_union_times_ms(new NumberSeq()),
   103   _summary(new Summary()),
   105 #ifndef PRODUCT
   106   _cur_clear_ct_time_ms(0.0),
   107   _min_clear_cc_time_ms(-1.0),
   108   _max_clear_cc_time_ms(-1.0),
   109   _cur_clear_cc_time_ms(0.0),
   110   _cum_clear_cc_time_ms(0.0),
   111   _num_cc_clears(0L),
   112 #endif
   114   _region_num_young(0),
   115   _region_num_tenured(0),
   116   _prev_region_num_young(0),
   117   _prev_region_num_tenured(0),
   119   _aux_num(10),
   120   _all_aux_times_ms(new NumberSeq[_aux_num]),
   121   _cur_aux_start_times_ms(new double[_aux_num]),
   122   _cur_aux_times_ms(new double[_aux_num]),
   123   _cur_aux_times_set(new bool[_aux_num]),
   125   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   126   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   127   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   129   // <NEW PREDICTION>
   131   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   132   _prev_collection_pause_end_ms(0.0),
   133   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   134   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   135   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   136   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   137   _partially_young_cards_per_entry_ratio_seq(
   138                                          new TruncatedSeq(TruncatedSeqLength)),
   139   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   140   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   141   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   142   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   143   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   144   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   145   _non_young_other_cost_per_region_ms_seq(
   146                                          new TruncatedSeq(TruncatedSeqLength)),
   148   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   149   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   150   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   152   _pause_time_target_ms((double) MaxGCPauseMillis),
   154   // </NEW PREDICTION>
   156   _in_young_gc_mode(false),
   157   _full_young_gcs(true),
   158   _full_young_pause_num(0),
   159   _partial_young_pause_num(0),
   161   _during_marking(false),
   162   _in_marking_window(false),
   163   _in_marking_window_im(false),
   165   _known_garbage_ratio(0.0),
   166   _known_garbage_bytes(0),
   168   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   170    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   172   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
   173   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
   175   _recent_avg_pause_time_ratio(0.0),
   176   _num_markings(0),
   177   _n_marks(0),
   178   _n_pauses_at_mark_end(0),
   180   _all_full_gc_times_ms(new NumberSeq()),
   182   // G1PausesBtwnConcMark defaults to -1
   183   // so the hack is to do the cast  QQQ FIXME
   184   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
   185   _n_marks_since_last_pause(0),
   186   _initiate_conc_mark_if_possible(false),
   187   _during_initial_mark_pause(false),
   188   _should_revert_to_full_young_gcs(false),
   189   _last_full_young_gc(false),
   191   _prev_collection_pause_used_at_end_bytes(0),
   193   _collection_set(NULL),
   194   _collection_set_size(0),
   195   _collection_set_bytes_used_before(0),
   197   // Incremental CSet attributes
   198   _inc_cset_build_state(Inactive),
   199   _inc_cset_head(NULL),
   200   _inc_cset_tail(NULL),
   201   _inc_cset_size(0),
   202   _inc_cset_young_index(0),
   203   _inc_cset_bytes_used_before(0),
   204   _inc_cset_max_finger(NULL),
   205   _inc_cset_recorded_young_bytes(0),
   206   _inc_cset_recorded_rs_lengths(0),
   207   _inc_cset_predicted_elapsed_time_ms(0.0),
   208   _inc_cset_predicted_bytes_to_copy(0),
   210 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   211 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   212 #endif // _MSC_VER
   214   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   215                                                  G1YoungSurvRateNumRegionsSummary)),
   216   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   217                                               G1YoungSurvRateNumRegionsSummary)),
   218   // add here any more surv rate groups
   219   _recorded_survivor_regions(0),
   220   _recorded_survivor_head(NULL),
   221   _recorded_survivor_tail(NULL),
   222   _survivors_age_table(true),
   224   _gc_overhead_perc(0.0)
   226 {
   227   // Set up the region size and associated fields. Given that the
   228   // policy is created before the heap, we have to set this up here,
   229   // so it's done as soon as possible.
   230   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   231   HeapRegionRemSet::setup_remset_size();
   233   // Verify PLAB sizes
   234   const uint region_size = HeapRegion::GrainWords;
   235   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   236     char buffer[128];
   237     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
   238                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   239     vm_exit_during_initialization(buffer);
   240   }
   242   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   243   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   245   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   246   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   247   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   249   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   250   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   252   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   254   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   256   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   257   _par_last_termination_attempts = new double[_parallel_gc_threads];
   258   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   260   // start conservatively
   261   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   263   // <NEW PREDICTION>
   265   int index;
   266   if (ParallelGCThreads == 0)
   267     index = 0;
   268   else if (ParallelGCThreads > 8)
   269     index = 7;
   270   else
   271     index = ParallelGCThreads - 1;
   273   _pending_card_diff_seq->add(0.0);
   274   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   275   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   276   _fully_young_cards_per_entry_ratio_seq->add(
   277                             fully_young_cards_per_entry_ratio_defaults[index]);
   278   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   279   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   280   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   281   _young_other_cost_per_region_ms_seq->add(
   282                                young_other_cost_per_region_ms_defaults[index]);
   283   _non_young_other_cost_per_region_ms_seq->add(
   284                            non_young_other_cost_per_region_ms_defaults[index]);
   286   // </NEW PREDICTION>
   288   // Below, we might need to calculate the pause time target based on
   289   // the pause interval. When we do so we are going to give G1 maximum
   290   // flexibility and allow it to do pauses when it needs to. So, we'll
   291   // arrange that the pause interval to be pause time target + 1 to
   292   // ensure that a) the pause time target is maximized with respect to
   293   // the pause interval and b) we maintain the invariant that pause
   294   // time target < pause interval. If the user does not want this
   295   // maximum flexibility, they will have to set the pause interval
   296   // explicitly.
   298   // First make sure that, if either parameter is set, its value is
   299   // reasonable.
   300   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   301     if (MaxGCPauseMillis < 1) {
   302       vm_exit_during_initialization("MaxGCPauseMillis should be "
   303                                     "greater than 0");
   304     }
   305   }
   306   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   307     if (GCPauseIntervalMillis < 1) {
   308       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   309                                     "greater than 0");
   310     }
   311   }
   313   // Then, if the pause time target parameter was not set, set it to
   314   // the default value.
   315   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   316     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   317       // The default pause time target in G1 is 200ms
   318       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   319     } else {
   320       // We do not allow the pause interval to be set without the
   321       // pause time target
   322       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   323                                     "without setting MaxGCPauseMillis");
   324     }
   325   }
   327   // Then, if the interval parameter was not set, set it according to
   328   // the pause time target (this will also deal with the case when the
   329   // pause time target is the default value).
   330   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   331     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   332   }
   334   // Finally, make sure that the two parameters are consistent.
   335   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   336     char buffer[256];
   337     jio_snprintf(buffer, 256,
   338                  "MaxGCPauseMillis (%u) should be less than "
   339                  "GCPauseIntervalMillis (%u)",
   340                  MaxGCPauseMillis, GCPauseIntervalMillis);
   341     vm_exit_during_initialization(buffer);
   342   }
   344   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   345   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   346   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   347   _sigma = (double) G1ConfidencePercent / 100.0;
   349   // start conservatively (around 50ms is about right)
   350   _concurrent_mark_init_times_ms->add(0.05);
   351   _concurrent_mark_remark_times_ms->add(0.05);
   352   _concurrent_mark_cleanup_times_ms->add(0.20);
   353   _tenuring_threshold = MaxTenuringThreshold;
   355   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
   356   // fixed, then _max_survivor_regions will be calculated at
   357   // calculate_young_list_target_length during initialization
   358   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
   360   assert(GCTimeRatio > 0,
   361          "we should have set it to a default value set_g1_gc_flags() "
   362          "if a user set it to 0");
   363   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   365   initialize_all();
   366 }
   368 // Increment "i", mod "len"
   369 static void inc_mod(int& i, int len) {
   370   i++; if (i == len) i = 0;
   371 }
   373 void G1CollectorPolicy::initialize_flags() {
   374   set_min_alignment(HeapRegion::GrainBytes);
   375   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   376   if (SurvivorRatio < 1) {
   377     vm_exit_during_initialization("Invalid survivor ratio specified");
   378   }
   379   CollectorPolicy::initialize_flags();
   380 }
   382 // The easiest way to deal with the parsing of the NewSize /
   383 // MaxNewSize / etc. parameteres is to re-use the code in the
   384 // TwoGenerationCollectorPolicy class. This is similar to what
   385 // ParallelScavenge does with its GenerationSizer class (see
   386 // ParallelScavengeHeap::initialize()). We might change this in the
   387 // future, but it's a good start.
   388 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   389   size_t size_to_region_num(size_t byte_size) {
   390     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   391   }
   393 public:
   394   G1YoungGenSizer() {
   395     initialize_flags();
   396     initialize_size_info();
   397   }
   399   size_t min_young_region_num() {
   400     return size_to_region_num(_min_gen0_size);
   401   }
   402   size_t initial_young_region_num() {
   403     return size_to_region_num(_initial_gen0_size);
   404   }
   405   size_t max_young_region_num() {
   406     return size_to_region_num(_max_gen0_size);
   407   }
   408 };
   410 void G1CollectorPolicy::init() {
   411   // Set aside an initial future to_space.
   412   _g1 = G1CollectedHeap::heap();
   414   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   416   initialize_gc_policy_counters();
   418   if (G1Gen) {
   419     _in_young_gc_mode = true;
   421     G1YoungGenSizer sizer;
   422     size_t initial_region_num = sizer.initial_young_region_num();
   424     if (UseAdaptiveSizePolicy) {
   425       set_adaptive_young_list_length(true);
   426       _young_list_fixed_length = 0;
   427     } else {
   428       set_adaptive_young_list_length(false);
   429       _young_list_fixed_length = initial_region_num;
   430     }
   431     _free_regions_at_end_of_collection = _g1->free_regions();
   432     calculate_young_list_min_length();
   433     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
   434     calculate_young_list_target_length();
   435   } else {
   436      _young_list_fixed_length = 0;
   437     _in_young_gc_mode = false;
   438   }
   440   // We may immediately start allocating regions and placing them on the
   441   // collection set list. Initialize the per-collection set info
   442   start_incremental_cset_building();
   443 }
   445 // Create the jstat counters for the policy.
   446 void G1CollectorPolicy::initialize_gc_policy_counters()
   447 {
   448   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
   449 }
   451 void G1CollectorPolicy::calculate_young_list_min_length() {
   452   _young_list_min_length = 0;
   454   if (!adaptive_young_list_length())
   455     return;
   457   if (_alloc_rate_ms_seq->num() > 3) {
   458     double now_sec = os::elapsedTime();
   459     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   460     double alloc_rate_ms = predict_alloc_rate_ms();
   461     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
   462     size_t current_region_num = _g1->young_list()->length();
   463     _young_list_min_length = min_regions + current_region_num;
   464   }
   465 }
   467 void G1CollectorPolicy::calculate_young_list_target_length() {
   468   if (adaptive_young_list_length()) {
   469     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   470     calculate_young_list_target_length(rs_lengths);
   471   } else {
   472     if (full_young_gcs())
   473       _young_list_target_length = _young_list_fixed_length;
   474     else
   475       _young_list_target_length = _young_list_fixed_length / 2;
   476   }
   478   // Make sure we allow the application to allocate at least one
   479   // region before we need to do a collection again.
   480   size_t min_length = _g1->young_list()->length() + 1;
   481   _young_list_target_length = MAX2(_young_list_target_length, min_length);
   482   calculate_max_gc_locker_expansion();
   483   calculate_survivors_policy();
   484 }
   486 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
   487   guarantee( adaptive_young_list_length(), "pre-condition" );
   488   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
   490   double start_time_sec = os::elapsedTime();
   491   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
   492   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
   493   size_t reserve_regions =
   494     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
   496   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
   497     // we are in fully-young mode and there are free regions in the heap
   499     double survivor_regions_evac_time =
   500         predict_survivor_regions_evac_time();
   502     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   503     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   504     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   505     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   506     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
   507                           + survivor_regions_evac_time;
   509     // the result
   510     size_t final_young_length = 0;
   512     size_t init_free_regions =
   513       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
   515     // if we're still under the pause target...
   516     if (base_time_ms <= target_pause_time_ms) {
   517       // We make sure that the shortest young length that makes sense
   518       // fits within the target pause time.
   519       size_t min_young_length = 1;
   521       if (predict_will_fit(min_young_length, base_time_ms,
   522                                      init_free_regions, target_pause_time_ms)) {
   523         // The shortest young length will fit within the target pause time;
   524         // we'll now check whether the absolute maximum number of young
   525         // regions will fit in the target pause time. If not, we'll do
   526         // a binary search between min_young_length and max_young_length
   527         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
   528         size_t max_young_length = abs_max_young_length;
   530         if (max_young_length > min_young_length) {
   531           // Let's check if the initial max young length will fit within the
   532           // target pause. If so then there is no need to search for a maximal
   533           // young length - we'll return the initial maximum
   535           if (predict_will_fit(max_young_length, base_time_ms,
   536                                 init_free_regions, target_pause_time_ms)) {
   537             // The maximum young length will satisfy the target pause time.
   538             // We are done so set min young length to this maximum length.
   539             // The code after the loop will then set final_young_length using
   540             // the value cached in the minimum length.
   541             min_young_length = max_young_length;
   542           } else {
   543             // The maximum possible number of young regions will not fit within
   544             // the target pause time so let's search....
   546             size_t diff = (max_young_length - min_young_length) / 2;
   547             max_young_length = min_young_length + diff;
   549             while (max_young_length > min_young_length) {
   550               if (predict_will_fit(max_young_length, base_time_ms,
   551                                         init_free_regions, target_pause_time_ms)) {
   553                 // The current max young length will fit within the target
   554                 // pause time. Note we do not exit the loop here. By setting
   555                 // min = max, and then increasing the max below means that
   556                 // we will continue searching for an upper bound in the
   557                 // range [max..max+diff]
   558                 min_young_length = max_young_length;
   559               }
   560               diff = (max_young_length - min_young_length) / 2;
   561               max_young_length = min_young_length + diff;
   562             }
   563             // the above loop found a maximal young length that will fit
   564             // within the target pause time.
   565           }
   566           assert(min_young_length <= abs_max_young_length, "just checking");
   567         }
   568         final_young_length = min_young_length;
   569       }
   570     }
   571     // and we're done!
   573     // we should have at least one region in the target young length
   574     _young_list_target_length =
   575                               final_young_length + _recorded_survivor_regions;
   577     // let's keep an eye of how long we spend on this calculation
   578     // right now, I assume that we'll print it when we need it; we
   579     // should really adde it to the breakdown of a pause
   580     double end_time_sec = os::elapsedTime();
   581     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
   583 #ifdef TRACE_CALC_YOUNG_LENGTH
   584     // leave this in for debugging, just in case
   585     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
   586                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
   587                            target_pause_time_ms,
   588                            _young_list_target_length
   589                            elapsed_time_ms,
   590                            full_young_gcs() ? "full" : "partial",
   591                            during_initial_mark_pause() ? " i-m" : "",
   592                            _in_marking_window,
   593                            _in_marking_window_im);
   594 #endif // TRACE_CALC_YOUNG_LENGTH
   596     if (_young_list_target_length < _young_list_min_length) {
   597       // bummer; this means that, if we do a pause when the maximal
   598       // length dictates, we'll violate the pause spacing target (the
   599       // min length was calculate based on the application's current
   600       // alloc rate);
   602       // so, we have to bite the bullet, and allocate the minimum
   603       // number. We'll violate our target, but we just can't meet it.
   605 #ifdef TRACE_CALC_YOUNG_LENGTH
   606       // leave this in for debugging, just in case
   607       gclog_or_tty->print_cr("adjusted target length from "
   608                              SIZE_FORMAT " to " SIZE_FORMAT,
   609                              _young_list_target_length, _young_list_min_length);
   610 #endif // TRACE_CALC_YOUNG_LENGTH
   612       _young_list_target_length = _young_list_min_length;
   613     }
   614   } else {
   615     // we are in a partially-young mode or we've run out of regions (due
   616     // to evacuation failure)
   618 #ifdef TRACE_CALC_YOUNG_LENGTH
   619     // leave this in for debugging, just in case
   620     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
   621                            _young_list_min_length);
   622 #endif // TRACE_CALC_YOUNG_LENGTH
   623     // we'll do the pause as soon as possible by choosing the minimum
   624     _young_list_target_length = _young_list_min_length;
   625   }
   627   _rs_lengths_prediction = rs_lengths;
   628 }
   630 // This is used by: calculate_young_list_target_length(rs_length). It
   631 // returns true iff:
   632 //   the predicted pause time for the given young list will not overflow
   633 //   the target pause time
   634 // and:
   635 //   the predicted amount of surviving data will not overflow the
   636 //   the amount of free space available for survivor regions.
   637 //
   638 bool
   639 G1CollectorPolicy::predict_will_fit(size_t young_length,
   640                                     double base_time_ms,
   641                                     size_t init_free_regions,
   642                                     double target_pause_time_ms) {
   644   if (young_length >= init_free_regions)
   645     // end condition 1: not enough space for the young regions
   646     return false;
   648   double accum_surv_rate_adj = 0.0;
   649   double accum_surv_rate =
   650     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   652   size_t bytes_to_copy =
   653     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   655   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   657   double young_other_time_ms =
   658                        predict_young_other_time_ms(young_length);
   660   double pause_time_ms =
   661                    base_time_ms + copy_time_ms + young_other_time_ms;
   663   if (pause_time_ms > target_pause_time_ms)
   664     // end condition 2: over the target pause time
   665     return false;
   667   size_t free_bytes =
   668                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
   670   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
   671     // end condition 3: out of to-space (conservatively)
   672     return false;
   674   // success!
   675   return true;
   676 }
   678 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   679   double survivor_regions_evac_time = 0.0;
   680   for (HeapRegion * r = _recorded_survivor_head;
   681        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   682        r = r->get_next_young_region()) {
   683     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   684   }
   685   return survivor_regions_evac_time;
   686 }
   688 void G1CollectorPolicy::check_prediction_validity() {
   689   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   691   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   692   if (rs_lengths > _rs_lengths_prediction) {
   693     // add 10% to avoid having to recalculate often
   694     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   695     calculate_young_list_target_length(rs_lengths_prediction);
   696   }
   697 }
   699 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   700                                                bool is_tlab,
   701                                                bool* gc_overhead_limit_was_exceeded) {
   702   guarantee(false, "Not using this policy feature yet.");
   703   return NULL;
   704 }
   706 // This method controls how a collector handles one or more
   707 // of its generations being fully allocated.
   708 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   709                                                        bool is_tlab) {
   710   guarantee(false, "Not using this policy feature yet.");
   711   return NULL;
   712 }
   715 #ifndef PRODUCT
   716 bool G1CollectorPolicy::verify_young_ages() {
   717   HeapRegion* head = _g1->young_list()->first_region();
   718   return
   719     verify_young_ages(head, _short_lived_surv_rate_group);
   720   // also call verify_young_ages on any additional surv rate groups
   721 }
   723 bool
   724 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   725                                      SurvRateGroup *surv_rate_group) {
   726   guarantee( surv_rate_group != NULL, "pre-condition" );
   728   const char* name = surv_rate_group->name();
   729   bool ret = true;
   730   int prev_age = -1;
   732   for (HeapRegion* curr = head;
   733        curr != NULL;
   734        curr = curr->get_next_young_region()) {
   735     SurvRateGroup* group = curr->surv_rate_group();
   736     if (group == NULL && !curr->is_survivor()) {
   737       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   738       ret = false;
   739     }
   741     if (surv_rate_group == group) {
   742       int age = curr->age_in_surv_rate_group();
   744       if (age < 0) {
   745         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   746         ret = false;
   747       }
   749       if (age <= prev_age) {
   750         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   751                                "(%d, %d)", name, age, prev_age);
   752         ret = false;
   753       }
   754       prev_age = age;
   755     }
   756   }
   758   return ret;
   759 }
   760 #endif // PRODUCT
   762 void G1CollectorPolicy::record_full_collection_start() {
   763   _cur_collection_start_sec = os::elapsedTime();
   764   // Release the future to-space so that it is available for compaction into.
   765   _g1->set_full_collection();
   766 }
   768 void G1CollectorPolicy::record_full_collection_end() {
   769   // Consider this like a collection pause for the purposes of allocation
   770   // since last pause.
   771   double end_sec = os::elapsedTime();
   772   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   773   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   775   _all_full_gc_times_ms->add(full_gc_time_ms);
   777   update_recent_gc_times(end_sec, full_gc_time_ms);
   779   _g1->clear_full_collection();
   781   // "Nuke" the heuristics that control the fully/partially young GC
   782   // transitions and make sure we start with fully young GCs after the
   783   // Full GC.
   784   set_full_young_gcs(true);
   785   _last_full_young_gc = false;
   786   _should_revert_to_full_young_gcs = false;
   787   clear_initiate_conc_mark_if_possible();
   788   clear_during_initial_mark_pause();
   789   _known_garbage_bytes = 0;
   790   _known_garbage_ratio = 0.0;
   791   _in_marking_window = false;
   792   _in_marking_window_im = false;
   794   _short_lived_surv_rate_group->start_adding_regions();
   795   // also call this on any additional surv rate groups
   797   record_survivor_regions(0, NULL, NULL);
   799   _prev_region_num_young   = _region_num_young;
   800   _prev_region_num_tenured = _region_num_tenured;
   802   _free_regions_at_end_of_collection = _g1->free_regions();
   803   // Reset survivors SurvRateGroup.
   804   _survivor_surv_rate_group->reset();
   805   calculate_young_list_min_length();
   806   calculate_young_list_target_length();
   807 }
   809 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
   810   _bytes_in_to_space_before_gc += bytes;
   811 }
   813 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
   814   _bytes_in_to_space_after_gc += bytes;
   815 }
   817 void G1CollectorPolicy::record_stop_world_start() {
   818   _stop_world_start = os::elapsedTime();
   819 }
   821 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   822                                                       size_t start_used) {
   823   if (PrintGCDetails) {
   824     gclog_or_tty->stamp(PrintGCTimeStamps);
   825     gclog_or_tty->print("[GC pause");
   826     if (in_young_gc_mode())
   827       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
   828   }
   830   assert(_g1->used() == _g1->recalculate_used(),
   831          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   832                  _g1->used(), _g1->recalculate_used()));
   834   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   835   _all_stop_world_times_ms->add(s_w_t_ms);
   836   _stop_world_start = 0.0;
   838   _cur_collection_start_sec = start_time_sec;
   839   _cur_collection_pause_used_at_start_bytes = start_used;
   840   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   841   _pending_cards = _g1->pending_card_num();
   842   _max_pending_cards = _g1->max_pending_card_num();
   844   _bytes_in_to_space_before_gc = 0;
   845   _bytes_in_to_space_after_gc = 0;
   846   _bytes_in_collection_set_before_gc = 0;
   848 #ifdef DEBUG
   849   // initialise these to something well known so that we can spot
   850   // if they are not set properly
   852   for (int i = 0; i < _parallel_gc_threads; ++i) {
   853     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   854     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   855     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   856     _par_last_update_rs_times_ms[i] = -1234.0;
   857     _par_last_update_rs_processed_buffers[i] = -1234.0;
   858     _par_last_scan_rs_times_ms[i] = -1234.0;
   859     _par_last_obj_copy_times_ms[i] = -1234.0;
   860     _par_last_termination_times_ms[i] = -1234.0;
   861     _par_last_termination_attempts[i] = -1234.0;
   862     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   863   }
   864 #endif
   866   for (int i = 0; i < _aux_num; ++i) {
   867     _cur_aux_times_ms[i] = 0.0;
   868     _cur_aux_times_set[i] = false;
   869   }
   871   _satb_drain_time_set = false;
   872   _last_satb_drain_processed_buffers = -1;
   874   if (in_young_gc_mode())
   875     _last_young_gc_full = false;
   877   // do that for any other surv rate groups
   878   _short_lived_surv_rate_group->stop_adding_regions();
   879   _survivors_age_table.clear();
   881   assert( verify_young_ages(), "region age verification" );
   882 }
   884 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
   885   _mark_closure_time_ms = mark_closure_time_ms;
   886 }
   888 void G1CollectorPolicy::record_concurrent_mark_init_start() {
   889   _mark_init_start_sec = os::elapsedTime();
   890   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
   891 }
   893 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
   894                                                    mark_init_elapsed_time_ms) {
   895   _during_marking = true;
   896   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   897   clear_during_initial_mark_pause();
   898   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   899 }
   901 void G1CollectorPolicy::record_concurrent_mark_init_end() {
   902   double end_time_sec = os::elapsedTime();
   903   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
   904   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
   905   record_concurrent_mark_init_end_pre(elapsed_time_ms);
   907   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
   908 }
   910 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   911   _mark_remark_start_sec = os::elapsedTime();
   912   _during_marking = false;
   913 }
   915 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   916   double end_time_sec = os::elapsedTime();
   917   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   918   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   919   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   920   _prev_collection_pause_end_ms += elapsed_time_ms;
   922   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   923 }
   925 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   926   _mark_cleanup_start_sec = os::elapsedTime();
   927 }
   929 void
   930 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
   931                                                       size_t max_live_bytes) {
   932   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
   933   record_concurrent_mark_cleanup_end_work2();
   934 }
   936 void
   937 G1CollectorPolicy::
   938 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   939                                          size_t max_live_bytes) {
   940   if (_n_marks < 2) _n_marks++;
   941   if (G1PolicyVerbose > 0)
   942     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
   943                            " (of " SIZE_FORMAT " MB heap).",
   944                            max_live_bytes/M, _g1->capacity()/M);
   945 }
   947 // The important thing about this is that it includes "os::elapsedTime".
   948 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
   949   double end_time_sec = os::elapsedTime();
   950   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
   951   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
   952   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   953   _prev_collection_pause_end_ms += elapsed_time_ms;
   955   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
   957   _num_markings++;
   959   // We did a marking, so reset the "since_last_mark" variables.
   960   double considerConcMarkCost = 1.0;
   961   // If there are available processors, concurrent activity is free...
   962   if (Threads::number_of_non_daemon_threads() * 2 <
   963       os::active_processor_count()) {
   964     considerConcMarkCost = 0.0;
   965   }
   966   _n_pauses_at_mark_end = _n_pauses;
   967   _n_marks_since_last_pause++;
   968 }
   970 void
   971 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   972   if (in_young_gc_mode()) {
   973     _should_revert_to_full_young_gcs = false;
   974     _last_full_young_gc = true;
   975     _in_marking_window = false;
   976     if (adaptive_young_list_length())
   977       calculate_young_list_target_length();
   978   }
   979 }
   981 void G1CollectorPolicy::record_concurrent_pause() {
   982   if (_stop_world_start > 0.0) {
   983     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   984     _all_yield_times_ms->add(yield_ms);
   985   }
   986 }
   988 void G1CollectorPolicy::record_concurrent_pause_end() {
   989 }
   991 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
   992   _cur_CH_strong_roots_end_sec = os::elapsedTime();
   993   _cur_CH_strong_roots_dur_ms =
   994     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
   995 }
   997 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
   998   _cur_G1_strong_roots_end_sec = os::elapsedTime();
   999   _cur_G1_strong_roots_dur_ms =
  1000     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
  1003 template<class T>
  1004 T sum_of(T* sum_arr, int start, int n, int N) {
  1005   T sum = (T)0;
  1006   for (int i = 0; i < n; i++) {
  1007     int j = (start + i) % N;
  1008     sum += sum_arr[j];
  1010   return sum;
  1013 void G1CollectorPolicy::print_par_stats(int level,
  1014                                         const char* str,
  1015                                         double* data,
  1016                                          bool summary) {
  1017   double min = data[0], max = data[0];
  1018   double total = 0.0;
  1019   int j;
  1020   for (j = 0; j < level; ++j)
  1021     gclog_or_tty->print("   ");
  1022   gclog_or_tty->print("[%s (ms):", str);
  1023   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1024     double val = data[i];
  1025     if (val < min)
  1026       min = val;
  1027     if (val > max)
  1028       max = val;
  1029     total += val;
  1030     gclog_or_tty->print("  %3.1lf", val);
  1032   if (summary) {
  1033     gclog_or_tty->print_cr("");
  1034     double avg = total / (double) ParallelGCThreads;
  1035     gclog_or_tty->print(" ");
  1036     for (j = 0; j < level; ++j)
  1037       gclog_or_tty->print("   ");
  1038     gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
  1039                         avg, min, max);
  1041   gclog_or_tty->print_cr("]");
  1044 void G1CollectorPolicy::print_par_sizes(int level,
  1045                                         const char* str,
  1046                                         double* data,
  1047                                         bool summary) {
  1048   double min = data[0], max = data[0];
  1049   double total = 0.0;
  1050   int j;
  1051   for (j = 0; j < level; ++j)
  1052     gclog_or_tty->print("   ");
  1053   gclog_or_tty->print("[%s :", str);
  1054   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1055     double val = data[i];
  1056     if (val < min)
  1057       min = val;
  1058     if (val > max)
  1059       max = val;
  1060     total += val;
  1061     gclog_or_tty->print(" %d", (int) val);
  1063   if (summary) {
  1064     gclog_or_tty->print_cr("");
  1065     double avg = total / (double) ParallelGCThreads;
  1066     gclog_or_tty->print(" ");
  1067     for (j = 0; j < level; ++j)
  1068       gclog_or_tty->print("   ");
  1069     gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
  1070                (int)total, (int)avg, (int)min, (int)max);
  1072   gclog_or_tty->print_cr("]");
  1075 void G1CollectorPolicy::print_stats (int level,
  1076                                      const char* str,
  1077                                      double value) {
  1078   for (int j = 0; j < level; ++j)
  1079     gclog_or_tty->print("   ");
  1080   gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
  1083 void G1CollectorPolicy::print_stats (int level,
  1084                                      const char* str,
  1085                                      int value) {
  1086   for (int j = 0; j < level; ++j)
  1087     gclog_or_tty->print("   ");
  1088   gclog_or_tty->print_cr("[%s: %d]", str, value);
  1091 double G1CollectorPolicy::avg_value (double* data) {
  1092   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1093     double ret = 0.0;
  1094     for (uint i = 0; i < ParallelGCThreads; ++i)
  1095       ret += data[i];
  1096     return ret / (double) ParallelGCThreads;
  1097   } else {
  1098     return data[0];
  1102 double G1CollectorPolicy::max_value (double* data) {
  1103   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1104     double ret = data[0];
  1105     for (uint i = 1; i < ParallelGCThreads; ++i)
  1106       if (data[i] > ret)
  1107         ret = data[i];
  1108     return ret;
  1109   } else {
  1110     return data[0];
  1114 double G1CollectorPolicy::sum_of_values (double* data) {
  1115   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1116     double sum = 0.0;
  1117     for (uint i = 0; i < ParallelGCThreads; i++)
  1118       sum += data[i];
  1119     return sum;
  1120   } else {
  1121     return data[0];
  1125 double G1CollectorPolicy::max_sum (double* data1,
  1126                                    double* data2) {
  1127   double ret = data1[0] + data2[0];
  1129   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1130     for (uint i = 1; i < ParallelGCThreads; ++i) {
  1131       double data = data1[i] + data2[i];
  1132       if (data > ret)
  1133         ret = data;
  1136   return ret;
  1139 // Anything below that is considered to be zero
  1140 #define MIN_TIMER_GRANULARITY 0.0000001
  1142 void G1CollectorPolicy::record_collection_pause_end() {
  1143   double end_time_sec = os::elapsedTime();
  1144   double elapsed_ms = _last_pause_time_ms;
  1145   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1146   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  1147   size_t rs_size =
  1148     _cur_collection_pause_used_regions_at_start - collection_set_size();
  1149   size_t cur_used_bytes = _g1->used();
  1150   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1151   bool last_pause_included_initial_mark = false;
  1152   bool update_stats = !_g1->evacuation_failed();
  1154 #ifndef PRODUCT
  1155   if (G1YoungSurvRateVerbose) {
  1156     gclog_or_tty->print_cr("");
  1157     _short_lived_surv_rate_group->print();
  1158     // do that for any other surv rate groups too
  1160 #endif // PRODUCT
  1162   if (in_young_gc_mode()) {
  1163     last_pause_included_initial_mark = during_initial_mark_pause();
  1164     if (last_pause_included_initial_mark)
  1165       record_concurrent_mark_init_end_pre(0.0);
  1167     size_t min_used_targ =
  1168       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1171     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1172       assert(!last_pause_included_initial_mark, "invariant");
  1173       if (cur_used_bytes > min_used_targ &&
  1174           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1175         assert(!during_initial_mark_pause(), "we should not see this here");
  1177         // Note: this might have already been set, if during the last
  1178         // pause we decided to start a cycle but at the beginning of
  1179         // this pause we decided to postpone it. That's OK.
  1180         set_initiate_conc_mark_if_possible();
  1184     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1187   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1188                           end_time_sec, false);
  1190   guarantee(_cur_collection_pause_used_regions_at_start >=
  1191             collection_set_size(),
  1192             "Negative RS size?");
  1194   // This assert is exempted when we're doing parallel collection pauses,
  1195   // because the fragmentation caused by the parallel GC allocation buffers
  1196   // can lead to more memory being used during collection than was used
  1197   // before. Best leave this out until the fragmentation problem is fixed.
  1198   // Pauses in which evacuation failed can also lead to negative
  1199   // collections, since no space is reclaimed from a region containing an
  1200   // object whose evacuation failed.
  1201   // Further, we're now always doing parallel collection.  But I'm still
  1202   // leaving this here as a placeholder for a more precise assertion later.
  1203   // (DLD, 10/05.)
  1204   assert((true || parallel) // Always using GC LABs now.
  1205          || _g1->evacuation_failed()
  1206          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1207          "Negative collection");
  1209   size_t freed_bytes =
  1210     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1211   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1213   double survival_fraction =
  1214     (double)surviving_bytes/
  1215     (double)_collection_set_bytes_used_before;
  1217   _n_pauses++;
  1219   if (update_stats) {
  1220     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
  1221     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
  1222     _recent_evac_times_ms->add(evac_ms);
  1223     _recent_pause_times_ms->add(elapsed_ms);
  1225     _recent_rs_sizes->add(rs_size);
  1227     // We exempt parallel collection from this check because Alloc Buffer
  1228     // fragmentation can produce negative collections.  Same with evac
  1229     // failure.
  1230     // Further, we're now always doing parallel collection.  But I'm still
  1231     // leaving this here as a placeholder for a more precise assertion later.
  1232     // (DLD, 10/05.
  1233     assert((true || parallel)
  1234            || _g1->evacuation_failed()
  1235            || surviving_bytes <= _collection_set_bytes_used_before,
  1236            "Or else negative collection!");
  1237     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
  1238     _recent_CS_bytes_surviving->add(surviving_bytes);
  1240     // this is where we update the allocation rate of the application
  1241     double app_time_ms =
  1242       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1243     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1244       // This usually happens due to the timer not having the required
  1245       // granularity. Some Linuxes are the usual culprits.
  1246       // We'll just set it to something (arbitrarily) small.
  1247       app_time_ms = 1.0;
  1249     size_t regions_allocated =
  1250       (_region_num_young - _prev_region_num_young) +
  1251       (_region_num_tenured - _prev_region_num_tenured);
  1252     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1253     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1254     _prev_region_num_young   = _region_num_young;
  1255     _prev_region_num_tenured = _region_num_tenured;
  1257     double interval_ms =
  1258       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1259     update_recent_gc_times(end_time_sec, elapsed_ms);
  1260     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1261     if (recent_avg_pause_time_ratio() < 0.0 ||
  1262         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1263 #ifndef PRODUCT
  1264       // Dump info to allow post-facto debugging
  1265       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1266       gclog_or_tty->print_cr("-------------------------------------------");
  1267       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1268       _recent_gc_times_ms->dump();
  1269       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1270       _recent_prev_end_times_for_all_gcs_sec->dump();
  1271       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1272                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1273       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1274       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1275 #endif  // !PRODUCT
  1276       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1277       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1278       if (_recent_avg_pause_time_ratio < 0.0) {
  1279         _recent_avg_pause_time_ratio = 0.0;
  1280       } else {
  1281         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1282         _recent_avg_pause_time_ratio = 1.0;
  1287   if (G1PolicyVerbose > 1) {
  1288     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  1291   PauseSummary* summary = _summary;
  1293   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1294   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1295   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1296   double update_rs_processed_buffers =
  1297     sum_of_values(_par_last_update_rs_processed_buffers);
  1298   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1299   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1300   double termination_time = avg_value(_par_last_termination_times_ms);
  1302   double parallel_other_time = _cur_collection_par_time_ms -
  1303     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
  1304      scan_rs_time + obj_copy_time + termination_time);
  1305   if (update_stats) {
  1306     MainBodySummary* body_summary = summary->main_body_summary();
  1307     guarantee(body_summary != NULL, "should not be null!");
  1309     if (_satb_drain_time_set)
  1310       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1311     else
  1312       body_summary->record_satb_drain_time_ms(0.0);
  1313     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1314     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1315     body_summary->record_update_rs_time_ms(update_rs_time);
  1316     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1317     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1318     if (parallel) {
  1319       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1320       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1321       body_summary->record_termination_time_ms(termination_time);
  1322       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1324     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1327   if (G1PolicyVerbose > 1) {
  1328     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
  1329                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1330                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1331                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
  1332                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
  1333                            "      |RS|: " SIZE_FORMAT,
  1334                            elapsed_ms, recent_avg_time_for_pauses_ms(),
  1335                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
  1336                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
  1337                            evac_ms, recent_avg_time_for_evac_ms(),
  1338                            scan_rs_time,
  1339                            recent_avg_time_for_pauses_ms() -
  1340                            recent_avg_time_for_G1_strong_ms(),
  1341                            rs_size);
  1343     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
  1344                            "       At end " SIZE_FORMAT "K\n"
  1345                            "       garbage      : " SIZE_FORMAT "K"
  1346                            "       of     " SIZE_FORMAT "K\n"
  1347                            "       survival     : %6.2f%%  (%6.2f%% avg)",
  1348                            _cur_collection_pause_used_at_start_bytes/K,
  1349                            _g1->used()/K, freed_bytes/K,
  1350                            _collection_set_bytes_used_before/K,
  1351                            survival_fraction*100.0,
  1352                            recent_avg_survival_fraction()*100.0);
  1353     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
  1354                            recent_avg_pause_time_ratio() * 100.0);
  1357   double other_time_ms = elapsed_ms;
  1359   if (_satb_drain_time_set) {
  1360     other_time_ms -= _cur_satb_drain_time_ms;
  1363   if (parallel) {
  1364     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  1365   } else {
  1366     other_time_ms -=
  1367       update_rs_time +
  1368       ext_root_scan_time + mark_stack_scan_time +
  1369       scan_rs_time + obj_copy_time;
  1372   if (PrintGCDetails) {
  1373     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1374                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1375                            elapsed_ms / 1000.0);
  1377     if (_satb_drain_time_set) {
  1378       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1380     if (_last_satb_drain_processed_buffers >= 0) {
  1381       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1383     if (parallel) {
  1384       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1385       print_par_stats(2, "GC Worker Start Time",
  1386                       _par_last_gc_worker_start_times_ms, false);
  1387       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1388       print_par_sizes(3, "Processed Buffers",
  1389                       _par_last_update_rs_processed_buffers, true);
  1390       print_par_stats(2, "Ext Root Scanning",
  1391                       _par_last_ext_root_scan_times_ms);
  1392       print_par_stats(2, "Mark Stack Scanning",
  1393                       _par_last_mark_stack_scan_times_ms);
  1394       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1395       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1396       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1397       print_par_sizes(3, "Termination Attempts",
  1398                       _par_last_termination_attempts, true);
  1399       print_par_stats(2, "GC Worker End Time",
  1400                       _par_last_gc_worker_end_times_ms, false);
  1401       print_stats(2, "Other", parallel_other_time);
  1402       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1403     } else {
  1404       print_stats(1, "Update RS", update_rs_time);
  1405       print_stats(2, "Processed Buffers",
  1406                   (int)update_rs_processed_buffers);
  1407       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1408       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1409       print_stats(1, "Scan RS", scan_rs_time);
  1410       print_stats(1, "Object Copying", obj_copy_time);
  1412 #ifndef PRODUCT
  1413     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1414     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1415     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1416     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1417     if (_num_cc_clears > 0) {
  1418       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1420 #endif
  1421     print_stats(1, "Other", other_time_ms);
  1422     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
  1424     for (int i = 0; i < _aux_num; ++i) {
  1425       if (_cur_aux_times_set[i]) {
  1426         char buffer[96];
  1427         sprintf(buffer, "Aux%d", i);
  1428         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1432   if (PrintGCDetails)
  1433     gclog_or_tty->print("   [");
  1434   if (PrintGC || PrintGCDetails)
  1435     _g1->print_size_transition(gclog_or_tty,
  1436                                _cur_collection_pause_used_at_start_bytes,
  1437                                _g1->used(), _g1->capacity());
  1438   if (PrintGCDetails)
  1439     gclog_or_tty->print_cr("]");
  1441   _all_pause_times_ms->add(elapsed_ms);
  1442   if (update_stats) {
  1443     summary->record_total_time_ms(elapsed_ms);
  1444     summary->record_other_time_ms(other_time_ms);
  1446   for (int i = 0; i < _aux_num; ++i)
  1447     if (_cur_aux_times_set[i])
  1448       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1450   // Reset marks-between-pauses counter.
  1451   _n_marks_since_last_pause = 0;
  1453   // Update the efficiency-since-mark vars.
  1454   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1455   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1456     // This usually happens due to the timer not having the required
  1457     // granularity. Some Linuxes are the usual culprits.
  1458     // We'll just set it to something (arbitrarily) small.
  1459     proc_ms = 1.0;
  1461   double cur_efficiency = (double) freed_bytes / proc_ms;
  1463   bool new_in_marking_window = _in_marking_window;
  1464   bool new_in_marking_window_im = false;
  1465   if (during_initial_mark_pause()) {
  1466     new_in_marking_window = true;
  1467     new_in_marking_window_im = true;
  1470   if (in_young_gc_mode()) {
  1471     if (_last_full_young_gc) {
  1472       set_full_young_gcs(false);
  1473       _last_full_young_gc = false;
  1476     if ( !_last_young_gc_full ) {
  1477       if ( _should_revert_to_full_young_gcs ||
  1478            _known_garbage_ratio < 0.05 ||
  1479            (adaptive_young_list_length() &&
  1480            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
  1481         set_full_young_gcs(true);
  1484     _should_revert_to_full_young_gcs = false;
  1486     if (_last_young_gc_full && !_during_marking)
  1487       _young_gc_eff_seq->add(cur_efficiency);
  1490   _short_lived_surv_rate_group->start_adding_regions();
  1491   // do that for any other surv rate groupsx
  1493   // <NEW PREDICTION>
  1495   if (update_stats) {
  1496     double pause_time_ms = elapsed_ms;
  1498     size_t diff = 0;
  1499     if (_max_pending_cards >= _pending_cards)
  1500       diff = _max_pending_cards - _pending_cards;
  1501     _pending_card_diff_seq->add((double) diff);
  1503     double cost_per_card_ms = 0.0;
  1504     if (_pending_cards > 0) {
  1505       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1506       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1509     size_t cards_scanned = _g1->cards_scanned();
  1511     double cost_per_entry_ms = 0.0;
  1512     if (cards_scanned > 10) {
  1513       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1514       if (_last_young_gc_full)
  1515         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1516       else
  1517         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1520     if (_max_rs_lengths > 0) {
  1521       double cards_per_entry_ratio =
  1522         (double) cards_scanned / (double) _max_rs_lengths;
  1523       if (_last_young_gc_full)
  1524         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1525       else
  1526         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1529     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1530     if (rs_length_diff >= 0)
  1531       _rs_length_diff_seq->add((double) rs_length_diff);
  1533     size_t copied_bytes = surviving_bytes;
  1534     double cost_per_byte_ms = 0.0;
  1535     if (copied_bytes > 0) {
  1536       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1537       if (_in_marking_window)
  1538         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1539       else
  1540         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1543     double all_other_time_ms = pause_time_ms -
  1544       (update_rs_time + scan_rs_time + obj_copy_time +
  1545        _mark_closure_time_ms + termination_time);
  1547     double young_other_time_ms = 0.0;
  1548     if (_recorded_young_regions > 0) {
  1549       young_other_time_ms =
  1550         _recorded_young_cset_choice_time_ms +
  1551         _recorded_young_free_cset_time_ms;
  1552       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1553                                              (double) _recorded_young_regions);
  1555     double non_young_other_time_ms = 0.0;
  1556     if (_recorded_non_young_regions > 0) {
  1557       non_young_other_time_ms =
  1558         _recorded_non_young_cset_choice_time_ms +
  1559         _recorded_non_young_free_cset_time_ms;
  1561       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1562                                          (double) _recorded_non_young_regions);
  1565     double constant_other_time_ms = all_other_time_ms -
  1566       (young_other_time_ms + non_young_other_time_ms);
  1567     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1569     double survival_ratio = 0.0;
  1570     if (_bytes_in_collection_set_before_gc > 0) {
  1571       survival_ratio = (double) bytes_in_to_space_during_gc() /
  1572         (double) _bytes_in_collection_set_before_gc;
  1575     _pending_cards_seq->add((double) _pending_cards);
  1576     _scanned_cards_seq->add((double) cards_scanned);
  1577     _rs_lengths_seq->add((double) _max_rs_lengths);
  1579     double expensive_region_limit_ms =
  1580       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1581     if (expensive_region_limit_ms < 0.0) {
  1582       // this means that the other time was predicted to be longer than
  1583       // than the max pause time
  1584       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1586     _expensive_region_limit_ms = expensive_region_limit_ms;
  1588     if (PREDICTIONS_VERBOSE) {
  1589       gclog_or_tty->print_cr("");
  1590       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
  1591                     "REGIONS %d %d %d "
  1592                     "PENDING_CARDS %d %d "
  1593                     "CARDS_SCANNED %d %d "
  1594                     "RS_LENGTHS %d %d "
  1595                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
  1596                     "SURVIVAL_RATIO %1.6lf %1.6lf "
  1597                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
  1598                     "OTHER_YOUNG %1.6lf %1.6lf "
  1599                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
  1600                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
  1601                     "ELAPSED %1.6lf %1.6lf ",
  1602                     _cur_collection_start_sec,
  1603                     (!_last_young_gc_full) ? 2 :
  1604                     (last_pause_included_initial_mark) ? 1 : 0,
  1605                     _recorded_region_num,
  1606                     _recorded_young_regions,
  1607                     _recorded_non_young_regions,
  1608                     _predicted_pending_cards, _pending_cards,
  1609                     _predicted_cards_scanned, cards_scanned,
  1610                     _predicted_rs_lengths, _max_rs_lengths,
  1611                     _predicted_rs_update_time_ms, update_rs_time,
  1612                     _predicted_rs_scan_time_ms, scan_rs_time,
  1613                     _predicted_survival_ratio, survival_ratio,
  1614                     _predicted_object_copy_time_ms, obj_copy_time,
  1615                     _predicted_constant_other_time_ms, constant_other_time_ms,
  1616                     _predicted_young_other_time_ms, young_other_time_ms,
  1617                     _predicted_non_young_other_time_ms,
  1618                     non_young_other_time_ms,
  1619                     _vtime_diff_ms, termination_time,
  1620                     _predicted_pause_time_ms, elapsed_ms);
  1623     if (G1PolicyVerbose > 0) {
  1624       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
  1625                     _predicted_pause_time_ms,
  1626                     (_within_target) ? "within" : "outside",
  1627                     elapsed_ms);
  1632   _in_marking_window = new_in_marking_window;
  1633   _in_marking_window_im = new_in_marking_window_im;
  1634   _free_regions_at_end_of_collection = _g1->free_regions();
  1635   calculate_young_list_min_length();
  1636   calculate_young_list_target_length();
  1638   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1639   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1640   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1641   // </NEW PREDICTION>
  1644 // <NEW PREDICTION>
  1646 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1647                                                      double update_rs_processed_buffers,
  1648                                                      double goal_ms) {
  1649   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1650   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1652   if (G1UseAdaptiveConcRefinement) {
  1653     const int k_gy = 3, k_gr = 6;
  1654     const double inc_k = 1.1, dec_k = 0.9;
  1656     int g = cg1r->green_zone();
  1657     if (update_rs_time > goal_ms) {
  1658       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1659     } else {
  1660       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1661         g = (int)MAX2(g * inc_k, g + 1.0);
  1664     // Change the refinement threads params
  1665     cg1r->set_green_zone(g);
  1666     cg1r->set_yellow_zone(g * k_gy);
  1667     cg1r->set_red_zone(g * k_gr);
  1668     cg1r->reinitialize_threads();
  1670     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1671     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1672                                     cg1r->yellow_zone());
  1673     // Change the barrier params
  1674     dcqs.set_process_completed_threshold(processing_threshold);
  1675     dcqs.set_max_completed_queue(cg1r->red_zone());
  1678   int curr_queue_size = dcqs.completed_buffers_num();
  1679   if (curr_queue_size >= cg1r->yellow_zone()) {
  1680     dcqs.set_completed_queue_padding(curr_queue_size);
  1681   } else {
  1682     dcqs.set_completed_queue_padding(0);
  1684   dcqs.notify_if_necessary();
  1687 double
  1688 G1CollectorPolicy::
  1689 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1690   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1692   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1693   size_t young_num = g1h->young_list()->length();
  1694   if (young_num == 0)
  1695     return 0.0;
  1697   young_num += adjustment;
  1698   size_t pending_cards = predict_pending_cards();
  1699   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1700                       predict_rs_length_diff();
  1701   size_t card_num;
  1702   if (full_young_gcs())
  1703     card_num = predict_young_card_num(rs_lengths);
  1704   else
  1705     card_num = predict_non_young_card_num(rs_lengths);
  1706   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1707   double accum_yg_surv_rate =
  1708     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1710   size_t bytes_to_copy =
  1711     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1713   return
  1714     predict_rs_update_time_ms(pending_cards) +
  1715     predict_rs_scan_time_ms(card_num) +
  1716     predict_object_copy_time_ms(bytes_to_copy) +
  1717     predict_young_other_time_ms(young_num) +
  1718     predict_constant_other_time_ms();
  1721 double
  1722 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1723   size_t rs_length = predict_rs_length_diff();
  1724   size_t card_num;
  1725   if (full_young_gcs())
  1726     card_num = predict_young_card_num(rs_length);
  1727   else
  1728     card_num = predict_non_young_card_num(rs_length);
  1729   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1732 double
  1733 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1734                                                 size_t scanned_cards) {
  1735   return
  1736     predict_rs_update_time_ms(pending_cards) +
  1737     predict_rs_scan_time_ms(scanned_cards) +
  1738     predict_constant_other_time_ms();
  1741 double
  1742 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1743                                                   bool young) {
  1744   size_t rs_length = hr->rem_set()->occupied();
  1745   size_t card_num;
  1746   if (full_young_gcs())
  1747     card_num = predict_young_card_num(rs_length);
  1748   else
  1749     card_num = predict_non_young_card_num(rs_length);
  1750   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1752   double region_elapsed_time_ms =
  1753     predict_rs_scan_time_ms(card_num) +
  1754     predict_object_copy_time_ms(bytes_to_copy);
  1756   if (young)
  1757     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1758   else
  1759     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1761   return region_elapsed_time_ms;
  1764 size_t
  1765 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1766   size_t bytes_to_copy;
  1767   if (hr->is_marked())
  1768     bytes_to_copy = hr->max_live_bytes();
  1769   else {
  1770     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1771                "invariant" );
  1772     int age = hr->age_in_surv_rate_group();
  1773     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1774     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1777   return bytes_to_copy;
  1780 void
  1781 G1CollectorPolicy::start_recording_regions() {
  1782   _recorded_rs_lengths            = 0;
  1783   _recorded_young_regions         = 0;
  1784   _recorded_non_young_regions     = 0;
  1786 #if PREDICTIONS_VERBOSE
  1787   _recorded_marked_bytes          = 0;
  1788   _recorded_young_bytes           = 0;
  1789   _predicted_bytes_to_copy        = 0;
  1790   _predicted_rs_lengths           = 0;
  1791   _predicted_cards_scanned        = 0;
  1792 #endif // PREDICTIONS_VERBOSE
  1795 void
  1796 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
  1797 #if PREDICTIONS_VERBOSE
  1798   if (!young) {
  1799     _recorded_marked_bytes += hr->max_live_bytes();
  1801   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
  1802 #endif // PREDICTIONS_VERBOSE
  1804   size_t rs_length = hr->rem_set()->occupied();
  1805   _recorded_rs_lengths += rs_length;
  1808 void
  1809 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  1810   assert(!hr->is_young(), "should not call this");
  1811   ++_recorded_non_young_regions;
  1812   record_cset_region_info(hr, false);
  1815 void
  1816 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  1817   _recorded_young_regions = n_regions;
  1820 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
  1821 #if PREDICTIONS_VERBOSE
  1822   _recorded_young_bytes = bytes;
  1823 #endif // PREDICTIONS_VERBOSE
  1826 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1827   _recorded_rs_lengths = rs_lengths;
  1830 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  1831   _predicted_bytes_to_copy = bytes;
  1834 void
  1835 G1CollectorPolicy::end_recording_regions() {
  1836   // The _predicted_pause_time_ms field is referenced in code
  1837   // not under PREDICTIONS_VERBOSE. Let's initialize it.
  1838   _predicted_pause_time_ms = -1.0;
  1840 #if PREDICTIONS_VERBOSE
  1841   _predicted_pending_cards = predict_pending_cards();
  1842   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  1843   if (full_young_gcs())
  1844     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  1845   else
  1846     _predicted_cards_scanned +=
  1847       predict_non_young_card_num(_predicted_rs_lengths);
  1848   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
  1850   _predicted_rs_update_time_ms =
  1851     predict_rs_update_time_ms(_g1->pending_card_num());
  1852   _predicted_rs_scan_time_ms =
  1853     predict_rs_scan_time_ms(_predicted_cards_scanned);
  1854   _predicted_object_copy_time_ms =
  1855     predict_object_copy_time_ms(_predicted_bytes_to_copy);
  1856   _predicted_constant_other_time_ms =
  1857     predict_constant_other_time_ms();
  1858   _predicted_young_other_time_ms =
  1859     predict_young_other_time_ms(_recorded_young_regions);
  1860   _predicted_non_young_other_time_ms =
  1861     predict_non_young_other_time_ms(_recorded_non_young_regions);
  1863   _predicted_pause_time_ms =
  1864     _predicted_rs_update_time_ms +
  1865     _predicted_rs_scan_time_ms +
  1866     _predicted_object_copy_time_ms +
  1867     _predicted_constant_other_time_ms +
  1868     _predicted_young_other_time_ms +
  1869     _predicted_non_young_other_time_ms;
  1870 #endif // PREDICTIONS_VERBOSE
  1873 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1874                                                            predicted_time_ms) {
  1875   // I don't think we need to do this when in young GC mode since
  1876   // marking will be initiated next time we hit the soft limit anyway...
  1877   if (predicted_time_ms > _expensive_region_limit_ms) {
  1878     if (!in_young_gc_mode()) {
  1879         set_full_young_gcs(true);
  1880         // We might want to do something different here. However,
  1881         // right now we don't support the non-generational G1 mode
  1882         // (and in fact we are planning to remove the associated code,
  1883         // see CR 6814390). So, let's leave it as is and this will be
  1884         // removed some time in the future
  1885         ShouldNotReachHere();
  1886         set_during_initial_mark_pause();
  1887     } else
  1888       // no point in doing another partial one
  1889       _should_revert_to_full_young_gcs = true;
  1893 // </NEW PREDICTION>
  1896 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1897                                                double elapsed_ms) {
  1898   _recent_gc_times_ms->add(elapsed_ms);
  1899   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1900   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1903 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  1904   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  1905   else return _recent_pause_times_ms->avg();
  1908 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  1909   if (_recent_CH_strong_roots_times_ms->num() == 0)
  1910     return (double)MaxGCPauseMillis/3.0;
  1911   else return _recent_CH_strong_roots_times_ms->avg();
  1914 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  1915   if (_recent_G1_strong_roots_times_ms->num() == 0)
  1916     return (double)MaxGCPauseMillis/3.0;
  1917   else return _recent_G1_strong_roots_times_ms->avg();
  1920 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  1921   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  1922   else return _recent_evac_times_ms->avg();
  1925 int G1CollectorPolicy::number_of_recent_gcs() {
  1926   assert(_recent_CH_strong_roots_times_ms->num() ==
  1927          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  1928   assert(_recent_G1_strong_roots_times_ms->num() ==
  1929          _recent_evac_times_ms->num(), "Sequence out of sync");
  1930   assert(_recent_evac_times_ms->num() ==
  1931          _recent_pause_times_ms->num(), "Sequence out of sync");
  1932   assert(_recent_pause_times_ms->num() ==
  1933          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  1934   assert(_recent_CS_bytes_used_before->num() ==
  1935          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  1936   return _recent_pause_times_ms->num();
  1939 double G1CollectorPolicy::recent_avg_survival_fraction() {
  1940   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
  1941                                            _recent_CS_bytes_used_before);
  1944 double G1CollectorPolicy::last_survival_fraction() {
  1945   return last_survival_fraction_work(_recent_CS_bytes_surviving,
  1946                                      _recent_CS_bytes_used_before);
  1949 double
  1950 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
  1951                                                      TruncatedSeq* before) {
  1952   assert(surviving->num() == before->num(), "Sequence out of sync");
  1953   if (before->sum() > 0.0) {
  1954       double recent_survival_rate = surviving->sum() / before->sum();
  1955       // We exempt parallel collection from this check because Alloc Buffer
  1956       // fragmentation can produce negative collections.
  1957       // Further, we're now always doing parallel collection.  But I'm still
  1958       // leaving this here as a placeholder for a more precise assertion later.
  1959       // (DLD, 10/05.)
  1960       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  1961              _g1->evacuation_failed() ||
  1962              recent_survival_rate <= 1.0, "Or bad frac");
  1963       return recent_survival_rate;
  1964   } else {
  1965     return 1.0; // Be conservative.
  1969 double
  1970 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
  1971                                                TruncatedSeq* before) {
  1972   assert(surviving->num() == before->num(), "Sequence out of sync");
  1973   if (surviving->num() > 0 && before->last() > 0.0) {
  1974     double last_survival_rate = surviving->last() / before->last();
  1975     // We exempt parallel collection from this check because Alloc Buffer
  1976     // fragmentation can produce negative collections.
  1977     // Further, we're now always doing parallel collection.  But I'm still
  1978     // leaving this here as a placeholder for a more precise assertion later.
  1979     // (DLD, 10/05.)
  1980     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  1981            last_survival_rate <= 1.0, "Or bad frac");
  1982     return last_survival_rate;
  1983   } else {
  1984     return 1.0;
  1988 static const int survival_min_obs = 5;
  1989 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
  1990 static const double min_survival_rate = 0.1;
  1992 double
  1993 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
  1994                                                            double latest) {
  1995   double res = avg;
  1996   if (number_of_recent_gcs() < survival_min_obs) {
  1997     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  1999   res = MAX2(res, latest);
  2000   res = MAX2(res, min_survival_rate);
  2001   // In the parallel case, LAB fragmentation can produce "negative
  2002   // collections"; so can evac failure.  Cap at 1.0
  2003   res = MIN2(res, 1.0);
  2004   return res;
  2007 size_t G1CollectorPolicy::expansion_amount() {
  2008   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
  2009     // We will double the existing space, or take
  2010     // G1ExpandByPercentOfAvailable % of the available expansion
  2011     // space, whichever is smaller, bounded below by a minimum
  2012     // expansion (unless that's all that's left.)
  2013     const size_t min_expand_bytes = 1*M;
  2014     size_t reserved_bytes = _g1->max_capacity();
  2015     size_t committed_bytes = _g1->capacity();
  2016     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  2017     size_t expand_bytes;
  2018     size_t expand_bytes_via_pct =
  2019       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  2020     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  2021     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  2022     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  2023     if (G1PolicyVerbose > 1) {
  2024       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
  2025                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
  2026                  "                   Answer = %d.\n",
  2027                  recent_avg_pause_time_ratio(),
  2028                  byte_size_in_proper_unit(committed_bytes),
  2029                  proper_unit_for_byte_size(committed_bytes),
  2030                  byte_size_in_proper_unit(uncommitted_bytes),
  2031                  proper_unit_for_byte_size(uncommitted_bytes),
  2032                  byte_size_in_proper_unit(expand_bytes_via_pct),
  2033                  proper_unit_for_byte_size(expand_bytes_via_pct),
  2034                  byte_size_in_proper_unit(expand_bytes),
  2035                  proper_unit_for_byte_size(expand_bytes));
  2037     return expand_bytes;
  2038   } else {
  2039     return 0;
  2043 void G1CollectorPolicy::note_start_of_mark_thread() {
  2044   _mark_thread_startup_sec = os::elapsedTime();
  2047 class CountCSClosure: public HeapRegionClosure {
  2048   G1CollectorPolicy* _g1_policy;
  2049 public:
  2050   CountCSClosure(G1CollectorPolicy* g1_policy) :
  2051     _g1_policy(g1_policy) {}
  2052   bool doHeapRegion(HeapRegion* r) {
  2053     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  2054     return false;
  2056 };
  2058 void G1CollectorPolicy::count_CS_bytes_used() {
  2059   CountCSClosure cs_closure(this);
  2060   _g1->collection_set_iterate(&cs_closure);
  2063 static void print_indent(int level) {
  2064   for (int j = 0; j < level+1; ++j)
  2065     gclog_or_tty->print("   ");
  2068 void G1CollectorPolicy::print_summary (int level,
  2069                                        const char* str,
  2070                                        NumberSeq* seq) const {
  2071   double sum = seq->sum();
  2072   print_indent(level);
  2073   gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  2074                 str, sum / 1000.0, seq->avg());
  2077 void G1CollectorPolicy::print_summary_sd (int level,
  2078                                           const char* str,
  2079                                           NumberSeq* seq) const {
  2080   print_summary(level, str, seq);
  2081   print_indent(level + 5);
  2082   gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2083                 seq->num(), seq->sd(), seq->maximum());
  2086 void G1CollectorPolicy::check_other_times(int level,
  2087                                         NumberSeq* other_times_ms,
  2088                                         NumberSeq* calc_other_times_ms) const {
  2089   bool should_print = false;
  2091   double max_sum = MAX2(fabs(other_times_ms->sum()),
  2092                         fabs(calc_other_times_ms->sum()));
  2093   double min_sum = MIN2(fabs(other_times_ms->sum()),
  2094                         fabs(calc_other_times_ms->sum()));
  2095   double sum_ratio = max_sum / min_sum;
  2096   if (sum_ratio > 1.1) {
  2097     should_print = true;
  2098     print_indent(level + 1);
  2099     gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  2102   double max_avg = MAX2(fabs(other_times_ms->avg()),
  2103                         fabs(calc_other_times_ms->avg()));
  2104   double min_avg = MIN2(fabs(other_times_ms->avg()),
  2105                         fabs(calc_other_times_ms->avg()));
  2106   double avg_ratio = max_avg / min_avg;
  2107   if (avg_ratio > 1.1) {
  2108     should_print = true;
  2109     print_indent(level + 1);
  2110     gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  2113   if (other_times_ms->sum() < -0.01) {
  2114     print_indent(level + 1);
  2115     gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  2118   if (other_times_ms->avg() < -0.01) {
  2119     print_indent(level + 1);
  2120     gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  2123   if (calc_other_times_ms->sum() < -0.01) {
  2124     should_print = true;
  2125     print_indent(level + 1);
  2126     gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  2129   if (calc_other_times_ms->avg() < -0.01) {
  2130     should_print = true;
  2131     print_indent(level + 1);
  2132     gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  2135   if (should_print)
  2136     print_summary(level, "Other(Calc)", calc_other_times_ms);
  2139 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  2140   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  2141   MainBodySummary*    body_summary = summary->main_body_summary();
  2142   if (summary->get_total_seq()->num() > 0) {
  2143     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  2144     if (body_summary != NULL) {
  2145       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  2146       if (parallel) {
  2147         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2148         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2149         print_summary(2, "Ext Root Scanning",
  2150                       body_summary->get_ext_root_scan_seq());
  2151         print_summary(2, "Mark Stack Scanning",
  2152                       body_summary->get_mark_stack_scan_seq());
  2153         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2154         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2155         print_summary(2, "Termination", body_summary->get_termination_seq());
  2156         print_summary(2, "Other", body_summary->get_parallel_other_seq());
  2158           NumberSeq* other_parts[] = {
  2159             body_summary->get_update_rs_seq(),
  2160             body_summary->get_ext_root_scan_seq(),
  2161             body_summary->get_mark_stack_scan_seq(),
  2162             body_summary->get_scan_rs_seq(),
  2163             body_summary->get_obj_copy_seq(),
  2164             body_summary->get_termination_seq()
  2165           };
  2166           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2167                                         6, other_parts);
  2168           check_other_times(2, body_summary->get_parallel_other_seq(),
  2169                             &calc_other_times_ms);
  2171         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2172         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2173       } else {
  2174         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2175         print_summary(1, "Ext Root Scanning",
  2176                       body_summary->get_ext_root_scan_seq());
  2177         print_summary(1, "Mark Stack Scanning",
  2178                       body_summary->get_mark_stack_scan_seq());
  2179         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2180         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2183     print_summary(1, "Other", summary->get_other_seq());
  2185       if (body_summary != NULL) {
  2186         NumberSeq calc_other_times_ms;
  2187         if (parallel) {
  2188           // parallel
  2189           NumberSeq* other_parts[] = {
  2190             body_summary->get_satb_drain_seq(),
  2191             body_summary->get_parallel_seq(),
  2192             body_summary->get_clear_ct_seq()
  2193           };
  2194           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2195                                                 3, other_parts);
  2196         } else {
  2197           // serial
  2198           NumberSeq* other_parts[] = {
  2199             body_summary->get_satb_drain_seq(),
  2200             body_summary->get_update_rs_seq(),
  2201             body_summary->get_ext_root_scan_seq(),
  2202             body_summary->get_mark_stack_scan_seq(),
  2203             body_summary->get_scan_rs_seq(),
  2204             body_summary->get_obj_copy_seq()
  2205           };
  2206           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2207                                                 6, other_parts);
  2209         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2212   } else {
  2213     print_indent(0);
  2214     gclog_or_tty->print_cr("none");
  2216   gclog_or_tty->print_cr("");
  2219 void G1CollectorPolicy::print_tracing_info() const {
  2220   if (TraceGen0Time) {
  2221     gclog_or_tty->print_cr("ALL PAUSES");
  2222     print_summary_sd(0, "Total", _all_pause_times_ms);
  2223     gclog_or_tty->print_cr("");
  2224     gclog_or_tty->print_cr("");
  2225     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2226     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2227     gclog_or_tty->print_cr("");
  2229     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2230     print_summary(_summary);
  2232     gclog_or_tty->print_cr("MISC");
  2233     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2234     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2235     for (int i = 0; i < _aux_num; ++i) {
  2236       if (_all_aux_times_ms[i].num() > 0) {
  2237         char buffer[96];
  2238         sprintf(buffer, "Aux%d", i);
  2239         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2243     size_t all_region_num = _region_num_young + _region_num_tenured;
  2244     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
  2245                "Tenured %8d (%6.2lf%%)",
  2246                all_region_num,
  2247                _region_num_young,
  2248                (double) _region_num_young / (double) all_region_num * 100.0,
  2249                _region_num_tenured,
  2250                (double) _region_num_tenured / (double) all_region_num * 100.0);
  2252   if (TraceGen1Time) {
  2253     if (_all_full_gc_times_ms->num() > 0) {
  2254       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2255                  _all_full_gc_times_ms->num(),
  2256                  _all_full_gc_times_ms->sum() / 1000.0);
  2257       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2258       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2259                     _all_full_gc_times_ms->sd(),
  2260                     _all_full_gc_times_ms->maximum());
  2265 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2266 #ifndef PRODUCT
  2267   _short_lived_surv_rate_group->print_surv_rate_summary();
  2268   // add this call for any other surv rate groups
  2269 #endif // PRODUCT
  2272 void
  2273 G1CollectorPolicy::update_region_num(bool young) {
  2274   if (young) {
  2275     ++_region_num_young;
  2276   } else {
  2277     ++_region_num_tenured;
  2281 #ifndef PRODUCT
  2282 // for debugging, bit of a hack...
  2283 static char*
  2284 region_num_to_mbs(int length) {
  2285   static char buffer[64];
  2286   double bytes = (double) (length * HeapRegion::GrainBytes);
  2287   double mbs = bytes / (double) (1024 * 1024);
  2288   sprintf(buffer, "%7.2lfMB", mbs);
  2289   return buffer;
  2291 #endif // PRODUCT
  2293 size_t G1CollectorPolicy::max_regions(int purpose) {
  2294   switch (purpose) {
  2295     case GCAllocForSurvived:
  2296       return _max_survivor_regions;
  2297     case GCAllocForTenured:
  2298       return REGIONS_UNLIMITED;
  2299     default:
  2300       ShouldNotReachHere();
  2301       return REGIONS_UNLIMITED;
  2302   };
  2305 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
  2306   size_t expansion_region_num = 0;
  2307   if (GCLockerEdenExpansionPercent > 0) {
  2308     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2309     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2310     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2311     // less than 1.0) we'll get 1.
  2312     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2313   } else {
  2314     assert(expansion_region_num == 0, "sanity");
  2316   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2317   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2320 // Calculates survivor space parameters.
  2321 void G1CollectorPolicy::calculate_survivors_policy()
  2323   if (G1FixedSurvivorSpaceSize == 0) {
  2324     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  2325   } else {
  2326     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  2329   if (G1FixedTenuringThreshold) {
  2330     _tenuring_threshold = MaxTenuringThreshold;
  2331   } else {
  2332     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2333         HeapRegion::GrainWords * _max_survivor_regions);
  2337 #ifndef PRODUCT
  2338 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2339   CollectionSetChooser* _chooser;
  2340 public:
  2341   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2342     _chooser(chooser) {}
  2344   bool doHeapRegion(HeapRegion* r) {
  2345     if (!r->continuesHumongous()) {
  2346       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2348     return false;
  2350 };
  2352 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  2353   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2354   _g1->heap_region_iterate(&cl);
  2355   return true;
  2357 #endif
  2359 bool
  2360 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  2361   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2362   if (!during_cycle) {
  2363     set_initiate_conc_mark_if_possible();
  2364     return true;
  2365   } else {
  2366     return false;
  2370 void
  2371 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2372   // We are about to decide on whether this pause will be an
  2373   // initial-mark pause.
  2375   // First, during_initial_mark_pause() should not be already set. We
  2376   // will set it here if we have to. However, it should be cleared by
  2377   // the end of the pause (it's only set for the duration of an
  2378   // initial-mark pause).
  2379   assert(!during_initial_mark_pause(), "pre-condition");
  2381   if (initiate_conc_mark_if_possible()) {
  2382     // We had noticed on a previous pause that the heap occupancy has
  2383     // gone over the initiating threshold and we should start a
  2384     // concurrent marking cycle. So we might initiate one.
  2386     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2387     if (!during_cycle) {
  2388       // The concurrent marking thread is not "during a cycle", i.e.,
  2389       // it has completed the last one. So we can go ahead and
  2390       // initiate a new cycle.
  2392       set_during_initial_mark_pause();
  2394       // And we can now clear initiate_conc_mark_if_possible() as
  2395       // we've already acted on it.
  2396       clear_initiate_conc_mark_if_possible();
  2397     } else {
  2398       // The concurrent marking thread is still finishing up the
  2399       // previous cycle. If we start one right now the two cycles
  2400       // overlap. In particular, the concurrent marking thread might
  2401       // be in the process of clearing the next marking bitmap (which
  2402       // we will use for the next cycle if we start one). Starting a
  2403       // cycle now will be bad given that parts of the marking
  2404       // information might get cleared by the marking thread. And we
  2405       // cannot wait for the marking thread to finish the cycle as it
  2406       // periodically yields while clearing the next marking bitmap
  2407       // and, if it's in a yield point, it's waiting for us to
  2408       // finish. So, at this point we will not start a cycle and we'll
  2409       // let the concurrent marking thread complete the last one.
  2414 void
  2415 G1CollectorPolicy_BestRegionsFirst::
  2416 record_collection_pause_start(double start_time_sec, size_t start_used) {
  2417   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
  2420 class NextNonCSElemFinder: public HeapRegionClosure {
  2421   HeapRegion* _res;
  2422 public:
  2423   NextNonCSElemFinder(): _res(NULL) {}
  2424   bool doHeapRegion(HeapRegion* r) {
  2425     if (!r->in_collection_set()) {
  2426       _res = r;
  2427       return true;
  2428     } else {
  2429       return false;
  2432   HeapRegion* res() { return _res; }
  2433 };
  2435 class KnownGarbageClosure: public HeapRegionClosure {
  2436   CollectionSetChooser* _hrSorted;
  2438 public:
  2439   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2440     _hrSorted(hrSorted)
  2441   {}
  2443   bool doHeapRegion(HeapRegion* r) {
  2444     // We only include humongous regions in collection
  2445     // sets when concurrent mark shows that their contained object is
  2446     // unreachable.
  2448     // Do we have any marking information for this region?
  2449     if (r->is_marked()) {
  2450       // We don't include humongous regions in collection
  2451       // sets because we collect them immediately at the end of a marking
  2452       // cycle.  We also don't include young regions because we *must*
  2453       // include them in the next collection pause.
  2454       if (!r->isHumongous() && !r->is_young()) {
  2455         _hrSorted->addMarkedHeapRegion(r);
  2458     return false;
  2460 };
  2462 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2463   CollectionSetChooser* _hrSorted;
  2464   jint _marked_regions_added;
  2465   jint _chunk_size;
  2466   jint _cur_chunk_idx;
  2467   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2468   int _worker;
  2469   int _invokes;
  2471   void get_new_chunk() {
  2472     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2473     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2475   void add_region(HeapRegion* r) {
  2476     if (_cur_chunk_idx == _cur_chunk_end) {
  2477       get_new_chunk();
  2479     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2480     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2481     _marked_regions_added++;
  2482     _cur_chunk_idx++;
  2485 public:
  2486   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2487                            jint chunk_size,
  2488                            int worker) :
  2489     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2490     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2491     _invokes(0)
  2492   {}
  2494   bool doHeapRegion(HeapRegion* r) {
  2495     // We only include humongous regions in collection
  2496     // sets when concurrent mark shows that their contained object is
  2497     // unreachable.
  2498     _invokes++;
  2500     // Do we have any marking information for this region?
  2501     if (r->is_marked()) {
  2502       // We don't include humongous regions in collection
  2503       // sets because we collect them immediately at the end of a marking
  2504       // cycle.
  2505       // We also do not include young regions in collection sets
  2506       if (!r->isHumongous() && !r->is_young()) {
  2507         add_region(r);
  2510     return false;
  2512   jint marked_regions_added() { return _marked_regions_added; }
  2513   int invokes() { return _invokes; }
  2514 };
  2516 class ParKnownGarbageTask: public AbstractGangTask {
  2517   CollectionSetChooser* _hrSorted;
  2518   jint _chunk_size;
  2519   G1CollectedHeap* _g1;
  2520 public:
  2521   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2522     AbstractGangTask("ParKnownGarbageTask"),
  2523     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2524     _g1(G1CollectedHeap::heap())
  2525   {}
  2527   void work(int i) {
  2528     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2529     // Back to zero for the claim value.
  2530     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2531                                          HeapRegion::InitialClaimValue);
  2532     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2533     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2534     if (G1PrintParCleanupStats) {
  2535       gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
  2536                  i, parKnownGarbageCl.invokes(), regions_added);
  2539 };
  2541 void
  2542 G1CollectorPolicy_BestRegionsFirst::
  2543 record_concurrent_mark_cleanup_end(size_t freed_bytes,
  2544                                    size_t max_live_bytes) {
  2545   double start;
  2546   if (G1PrintParCleanupStats) start = os::elapsedTime();
  2547   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  2549   _collectionSetChooser->clearMarkedHeapRegions();
  2550   double clear_marked_end;
  2551   if (G1PrintParCleanupStats) {
  2552     clear_marked_end = os::elapsedTime();
  2553     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
  2554                   (clear_marked_end - start)*1000.0);
  2556   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2557     const size_t OverpartitionFactor = 4;
  2558     const size_t MinWorkUnit = 8;
  2559     const size_t WorkUnit =
  2560       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2561            MinWorkUnit);
  2562     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2563                                                              WorkUnit);
  2564     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2565                                             (int) WorkUnit);
  2566     _g1->workers()->run_task(&parKnownGarbageTask);
  2568     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2569            "sanity check");
  2570   } else {
  2571     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2572     _g1->heap_region_iterate(&knownGarbagecl);
  2574   double known_garbage_end;
  2575   if (G1PrintParCleanupStats) {
  2576     known_garbage_end = os::elapsedTime();
  2577     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2578                   (known_garbage_end - clear_marked_end)*1000.0);
  2580   _collectionSetChooser->sortMarkedHeapRegions();
  2581   double sort_end;
  2582   if (G1PrintParCleanupStats) {
  2583     sort_end = os::elapsedTime();
  2584     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2585                   (sort_end - known_garbage_end)*1000.0);
  2588   record_concurrent_mark_cleanup_end_work2();
  2589   double work2_end;
  2590   if (G1PrintParCleanupStats) {
  2591     work2_end = os::elapsedTime();
  2592     gclog_or_tty->print_cr("  work2: %8.3f ms.",
  2593                   (work2_end - sort_end)*1000.0);
  2597 // Add the heap region at the head of the non-incremental collection set
  2598 void G1CollectorPolicy::
  2599 add_to_collection_set(HeapRegion* hr) {
  2600   assert(_inc_cset_build_state == Active, "Precondition");
  2601   assert(!hr->is_young(), "non-incremental add of young region");
  2603   if (G1PrintHeapRegions) {
  2604     gclog_or_tty->print_cr("added region to cset "
  2605                            "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2606                            "top "PTR_FORMAT", %s",
  2607                            hr->hrs_index(), hr->bottom(), hr->end(),
  2608                            hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
  2611   if (_g1->mark_in_progress())
  2612     _g1->concurrent_mark()->registerCSetRegion(hr);
  2614   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2615   hr->set_in_collection_set(true);
  2616   hr->set_next_in_collection_set(_collection_set);
  2617   _collection_set = hr;
  2618   _collection_set_size++;
  2619   _collection_set_bytes_used_before += hr->used();
  2620   _g1->register_region_with_in_cset_fast_test(hr);
  2623 // Initialize the per-collection-set information
  2624 void G1CollectorPolicy::start_incremental_cset_building() {
  2625   assert(_inc_cset_build_state == Inactive, "Precondition");
  2627   _inc_cset_head = NULL;
  2628   _inc_cset_tail = NULL;
  2629   _inc_cset_size = 0;
  2630   _inc_cset_bytes_used_before = 0;
  2632   if (in_young_gc_mode()) {
  2633     _inc_cset_young_index = 0;
  2636   _inc_cset_max_finger = 0;
  2637   _inc_cset_recorded_young_bytes = 0;
  2638   _inc_cset_recorded_rs_lengths = 0;
  2639   _inc_cset_predicted_elapsed_time_ms = 0;
  2640   _inc_cset_predicted_bytes_to_copy = 0;
  2641   _inc_cset_build_state = Active;
  2644 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2645   // This routine is used when:
  2646   // * adding survivor regions to the incremental cset at the end of an
  2647   //   evacuation pause,
  2648   // * adding the current allocation region to the incremental cset
  2649   //   when it is retired, and
  2650   // * updating existing policy information for a region in the
  2651   //   incremental cset via young list RSet sampling.
  2652   // Therefore this routine may be called at a safepoint by the
  2653   // VM thread, or in-between safepoints by mutator threads (when
  2654   // retiring the current allocation region) or a concurrent
  2655   // refine thread (RSet sampling).
  2657   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2658   size_t used_bytes = hr->used();
  2660   _inc_cset_recorded_rs_lengths += rs_length;
  2661   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2663   _inc_cset_bytes_used_before += used_bytes;
  2665   // Cache the values we have added to the aggregated informtion
  2666   // in the heap region in case we have to remove this region from
  2667   // the incremental collection set, or it is updated by the
  2668   // rset sampling code
  2669   hr->set_recorded_rs_length(rs_length);
  2670   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2672 #if PREDICTIONS_VERBOSE
  2673   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  2674   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
  2676   // Record the number of bytes used in this region
  2677   _inc_cset_recorded_young_bytes += used_bytes;
  2679   // Cache the values we have added to the aggregated informtion
  2680   // in the heap region in case we have to remove this region from
  2681   // the incremental collection set, or it is updated by the
  2682   // rset sampling code
  2683   hr->set_predicted_bytes_to_copy(bytes_to_copy);
  2684 #endif // PREDICTIONS_VERBOSE
  2687 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  2688   // This routine is currently only called as part of the updating of
  2689   // existing policy information for regions in the incremental cset that
  2690   // is performed by the concurrent refine thread(s) as part of young list
  2691   // RSet sampling. Therefore we should not be at a safepoint.
  2693   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  2694   assert(hr->is_young(), "it should be");
  2696   size_t used_bytes = hr->used();
  2697   size_t old_rs_length = hr->recorded_rs_length();
  2698   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2700   // Subtract the old recorded/predicted policy information for
  2701   // the given heap region from the collection set info.
  2702   _inc_cset_recorded_rs_lengths -= old_rs_length;
  2703   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
  2705   _inc_cset_bytes_used_before -= used_bytes;
  2707   // Clear the values cached in the heap region
  2708   hr->set_recorded_rs_length(0);
  2709   hr->set_predicted_elapsed_time_ms(0);
  2711 #if PREDICTIONS_VERBOSE
  2712   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  2713   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
  2715   // Subtract the number of bytes used in this region
  2716   _inc_cset_recorded_young_bytes -= used_bytes;
  2718   // Clear the values cached in the heap region
  2719   hr->set_predicted_bytes_to_copy(0);
  2720 #endif // PREDICTIONS_VERBOSE
  2723 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  2724   // Update the collection set information that is dependent on the new RS length
  2725   assert(hr->is_young(), "Precondition");
  2727   remove_from_incremental_cset_info(hr);
  2728   add_to_incremental_cset_info(hr, new_rs_length);
  2731 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2732   assert( hr->is_young(), "invariant");
  2733   assert( hr->young_index_in_cset() == -1, "invariant" );
  2734   assert(_inc_cset_build_state == Active, "Precondition");
  2736   // We need to clear and set the cached recorded/cached collection set
  2737   // information in the heap region here (before the region gets added
  2738   // to the collection set). An individual heap region's cached values
  2739   // are calculated, aggregated with the policy collection set info,
  2740   // and cached in the heap region here (initially) and (subsequently)
  2741   // by the Young List sampling code.
  2743   size_t rs_length = hr->rem_set()->occupied();
  2744   add_to_incremental_cset_info(hr, rs_length);
  2746   HeapWord* hr_end = hr->end();
  2747   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2749   assert(!hr->in_collection_set(), "invariant");
  2750   hr->set_in_collection_set(true);
  2751   assert( hr->next_in_collection_set() == NULL, "invariant");
  2753   _inc_cset_size++;
  2754   _g1->register_region_with_in_cset_fast_test(hr);
  2756   hr->set_young_index_in_cset((int) _inc_cset_young_index);
  2757   ++_inc_cset_young_index;
  2760 // Add the region at the RHS of the incremental cset
  2761 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2762   // We should only ever be appending survivors at the end of a pause
  2763   assert( hr->is_survivor(), "Logic");
  2765   // Do the 'common' stuff
  2766   add_region_to_incremental_cset_common(hr);
  2768   // Now add the region at the right hand side
  2769   if (_inc_cset_tail == NULL) {
  2770     assert(_inc_cset_head == NULL, "invariant");
  2771     _inc_cset_head = hr;
  2772   } else {
  2773     _inc_cset_tail->set_next_in_collection_set(hr);
  2775   _inc_cset_tail = hr;
  2777   if (G1PrintHeapRegions) {
  2778     gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
  2779                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2780                   "top "PTR_FORMAT", young %s",
  2781                   hr->hrs_index(), hr->bottom(), hr->end(),
  2782                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2786 // Add the region to the LHS of the incremental cset
  2787 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2788   // Survivors should be added to the RHS at the end of a pause
  2789   assert(!hr->is_survivor(), "Logic");
  2791   // Do the 'common' stuff
  2792   add_region_to_incremental_cset_common(hr);
  2794   // Add the region at the left hand side
  2795   hr->set_next_in_collection_set(_inc_cset_head);
  2796   if (_inc_cset_head == NULL) {
  2797     assert(_inc_cset_tail == NULL, "Invariant");
  2798     _inc_cset_tail = hr;
  2800   _inc_cset_head = hr;
  2802   if (G1PrintHeapRegions) {
  2803     gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
  2804                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2805                   "top "PTR_FORMAT", young %s",
  2806                   hr->hrs_index(), hr->bottom(), hr->end(),
  2807                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2811 #ifndef PRODUCT
  2812 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2813   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2815   st->print_cr("\nCollection_set:");
  2816   HeapRegion* csr = list_head;
  2817   while (csr != NULL) {
  2818     HeapRegion* next = csr->next_in_collection_set();
  2819     assert(csr->in_collection_set(), "bad CS");
  2820     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2821                  "age: %4d, y: %d, surv: %d",
  2822                         csr->bottom(), csr->end(),
  2823                         csr->top(),
  2824                         csr->prev_top_at_mark_start(),
  2825                         csr->next_top_at_mark_start(),
  2826                         csr->top_at_conc_mark_count(),
  2827                         csr->age_in_surv_rate_group_cond(),
  2828                         csr->is_young(),
  2829                         csr->is_survivor());
  2830     csr = next;
  2833 #endif // !PRODUCT
  2835 void
  2836 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
  2837                                                   double target_pause_time_ms) {
  2838   // Set this here - in case we're not doing young collections.
  2839   double non_young_start_time_sec = os::elapsedTime();
  2841   start_recording_regions();
  2843   guarantee(target_pause_time_ms > 0.0,
  2844             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2845                     target_pause_time_ms));
  2846   guarantee(_collection_set == NULL, "Precondition");
  2848   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2849   double predicted_pause_time_ms = base_time_ms;
  2851   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2853   // the 10% and 50% values are arbitrary...
  2854   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
  2855     time_remaining_ms = 0.50 * target_pause_time_ms;
  2856     _within_target = false;
  2857   } else {
  2858     _within_target = true;
  2861   // We figure out the number of bytes available for future to-space.
  2862   // For new regions without marking information, we must assume the
  2863   // worst-case of complete survival.  If we have marking information for a
  2864   // region, we can bound the amount of live data.  We can add a number of
  2865   // such regions, as long as the sum of the live data bounds does not
  2866   // exceed the available evacuation space.
  2867   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
  2869   size_t expansion_bytes =
  2870     _g1->expansion_regions() * HeapRegion::GrainBytes;
  2872   _collection_set_bytes_used_before = 0;
  2873   _collection_set_size = 0;
  2875   // Adjust for expansion and slop.
  2876   max_live_bytes = max_live_bytes + expansion_bytes;
  2878   HeapRegion* hr;
  2879   if (in_young_gc_mode()) {
  2880     double young_start_time_sec = os::elapsedTime();
  2882     if (G1PolicyVerbose > 0) {
  2883       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
  2884                     _g1->young_list()->length());
  2887     _young_cset_length  = 0;
  2888     _last_young_gc_full = full_young_gcs() ? true : false;
  2890     if (_last_young_gc_full)
  2891       ++_full_young_pause_num;
  2892     else
  2893       ++_partial_young_pause_num;
  2895     // The young list is laid with the survivor regions from the previous
  2896     // pause are appended to the RHS of the young list, i.e.
  2897     //   [Newly Young Regions ++ Survivors from last pause].
  2899     hr = _g1->young_list()->first_survivor_region();
  2900     while (hr != NULL) {
  2901       assert(hr->is_survivor(), "badly formed young list");
  2902       hr->set_young();
  2903       hr = hr->get_next_young_region();
  2906     // Clear the fields that point to the survivor list - they are
  2907     // all young now.
  2908     _g1->young_list()->clear_survivors();
  2910     if (_g1->mark_in_progress())
  2911       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2913     _young_cset_length = _inc_cset_young_index;
  2914     _collection_set = _inc_cset_head;
  2915     _collection_set_size = _inc_cset_size;
  2916     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2918     // For young regions in the collection set, we assume the worst
  2919     // case of complete survival
  2920     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
  2922     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2923     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2925     // The number of recorded young regions is the incremental
  2926     // collection set's current size
  2927     set_recorded_young_regions(_inc_cset_size);
  2928     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2929     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
  2930 #if PREDICTIONS_VERBOSE
  2931     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
  2932 #endif // PREDICTIONS_VERBOSE
  2934     if (G1PolicyVerbose > 0) {
  2935       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
  2936                              _inc_cset_size);
  2937       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2938                             max_live_bytes/K);
  2941     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
  2943     double young_end_time_sec = os::elapsedTime();
  2944     _recorded_young_cset_choice_time_ms =
  2945       (young_end_time_sec - young_start_time_sec) * 1000.0;
  2947     // We are doing young collections so reset this.
  2948     non_young_start_time_sec = young_end_time_sec;
  2950     // Note we can use either _collection_set_size or
  2951     // _young_cset_length here
  2952     if (_collection_set_size > 0 && _last_young_gc_full) {
  2953       // don't bother adding more regions...
  2954       goto choose_collection_set_end;
  2958   if (!in_young_gc_mode() || !full_young_gcs()) {
  2959     bool should_continue = true;
  2960     NumberSeq seq;
  2961     double avg_prediction = 100000000000000000.0; // something very large
  2963     do {
  2964       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2965                                                       avg_prediction);
  2966       if (hr != NULL) {
  2967         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2968         time_remaining_ms -= predicted_time_ms;
  2969         predicted_pause_time_ms += predicted_time_ms;
  2970         add_to_collection_set(hr);
  2971         record_non_young_cset_region(hr);
  2972         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  2973         if (G1PolicyVerbose > 0) {
  2974           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2975                         max_live_bytes/K);
  2977         seq.add(predicted_time_ms);
  2978         avg_prediction = seq.avg() + seq.sd();
  2980       should_continue =
  2981         ( hr != NULL) &&
  2982         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
  2983           : _collection_set_size < _young_list_fixed_length );
  2984     } while (should_continue);
  2986     if (!adaptive_young_list_length() &&
  2987         _collection_set_size < _young_list_fixed_length)
  2988       _should_revert_to_full_young_gcs  = true;
  2991 choose_collection_set_end:
  2992   stop_incremental_cset_building();
  2994   count_CS_bytes_used();
  2996   end_recording_regions();
  2998   double non_young_end_time_sec = os::elapsedTime();
  2999   _recorded_non_young_cset_choice_time_ms =
  3000     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
  3003 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  3004   G1CollectorPolicy::record_full_collection_end();
  3005   _collectionSetChooser->updateAfterFullCollection();
  3008 void G1CollectorPolicy_BestRegionsFirst::
  3009 expand_if_possible(size_t numRegions) {
  3010   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  3011   _g1->expand(expansion_bytes);
  3014 void G1CollectorPolicy_BestRegionsFirst::
  3015 record_collection_pause_end() {
  3016   G1CollectorPolicy::record_collection_pause_end();
  3017   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");

mercurial