src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 12 Oct 2010 09:36:48 -0700

author
johnc
date
Tue, 12 Oct 2010 09:36:48 -0700
changeset 2216
c32059ef4dc0
parent 2195
4e0094bc41fa
child 2217
b14ec34b1e07
permissions
-rw-r--r--

6971296: G1: simplify G1RemSet class hierarchy
Summary: Remove G1RemSet base class and StupidG1RemSet class; rename HRInto_G1RemSet to just G1RemSet.
Reviewed-by: ysr, tonyp

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    30 // turn it on so that the contents of the young list (scan-only /
    31 // to-be-collected) are printed at "strategic" points before / during
    32 // / after the collection --- this is useful for debugging
    33 #define YOUNG_LIST_VERBOSE 0
    34 // CURRENT STATUS
    35 // This file is under construction.  Search for "FIXME".
    37 // INVARIANTS/NOTES
    38 //
    39 // All allocation activity covered by the G1CollectedHeap interface is
    40 //   serialized by acquiring the HeapLock.  This happens in
    41 //   mem_allocate_work, which all such allocation functions call.
    42 //   (Note that this does not apply to TLAB allocation, which is not part
    43 //   of this interface: it is done by clients of this interface.)
    45 // Local to this file.
    47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    48   SuspendibleThreadSet* _sts;
    49   G1RemSet* _g1rs;
    50   ConcurrentG1Refine* _cg1r;
    51   bool _concurrent;
    52 public:
    53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    54                               G1RemSet* g1rs,
    55                               ConcurrentG1Refine* cg1r) :
    56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    57   {}
    58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    59     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    60     // This path is executed by the concurrent refine or mutator threads,
    61     // concurrently, and so we do not care if card_ptr contains references
    62     // that point into the collection set.
    63     assert(!oops_into_cset, "should be");
    65     if (_concurrent && _sts->should_yield()) {
    66       // Caller will actually yield.
    67       return false;
    68     }
    69     // Otherwise, we finished successfully; return true.
    70     return true;
    71   }
    72   void set_concurrent(bool b) { _concurrent = b; }
    73 };
    76 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    77   int _calls;
    78   G1CollectedHeap* _g1h;
    79   CardTableModRefBS* _ctbs;
    80   int _histo[256];
    81 public:
    82   ClearLoggedCardTableEntryClosure() :
    83     _calls(0)
    84   {
    85     _g1h = G1CollectedHeap::heap();
    86     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    87     for (int i = 0; i < 256; i++) _histo[i] = 0;
    88   }
    89   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    90     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    91       _calls++;
    92       unsigned char* ujb = (unsigned char*)card_ptr;
    93       int ind = (int)(*ujb);
    94       _histo[ind]++;
    95       *card_ptr = -1;
    96     }
    97     return true;
    98   }
    99   int calls() { return _calls; }
   100   void print_histo() {
   101     gclog_or_tty->print_cr("Card table value histogram:");
   102     for (int i = 0; i < 256; i++) {
   103       if (_histo[i] != 0) {
   104         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   105       }
   106     }
   107   }
   108 };
   110 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   111   int _calls;
   112   G1CollectedHeap* _g1h;
   113   CardTableModRefBS* _ctbs;
   114 public:
   115   RedirtyLoggedCardTableEntryClosure() :
   116     _calls(0)
   117   {
   118     _g1h = G1CollectedHeap::heap();
   119     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   120   }
   121   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   122     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   123       _calls++;
   124       *card_ptr = 0;
   125     }
   126     return true;
   127   }
   128   int calls() { return _calls; }
   129 };
   131 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   132 public:
   133   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   134     *card_ptr = CardTableModRefBS::dirty_card_val();
   135     return true;
   136   }
   137 };
   139 YoungList::YoungList(G1CollectedHeap* g1h)
   140   : _g1h(g1h), _head(NULL),
   141     _length(0),
   142     _last_sampled_rs_lengths(0),
   143     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   144 {
   145   guarantee( check_list_empty(false), "just making sure..." );
   146 }
   148 void YoungList::push_region(HeapRegion *hr) {
   149   assert(!hr->is_young(), "should not already be young");
   150   assert(hr->get_next_young_region() == NULL, "cause it should!");
   152   hr->set_next_young_region(_head);
   153   _head = hr;
   155   hr->set_young();
   156   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   157   ++_length;
   158 }
   160 void YoungList::add_survivor_region(HeapRegion* hr) {
   161   assert(hr->is_survivor(), "should be flagged as survivor region");
   162   assert(hr->get_next_young_region() == NULL, "cause it should!");
   164   hr->set_next_young_region(_survivor_head);
   165   if (_survivor_head == NULL) {
   166     _survivor_tail = hr;
   167   }
   168   _survivor_head = hr;
   170   ++_survivor_length;
   171 }
   173 void YoungList::empty_list(HeapRegion* list) {
   174   while (list != NULL) {
   175     HeapRegion* next = list->get_next_young_region();
   176     list->set_next_young_region(NULL);
   177     list->uninstall_surv_rate_group();
   178     list->set_not_young();
   179     list = next;
   180   }
   181 }
   183 void YoungList::empty_list() {
   184   assert(check_list_well_formed(), "young list should be well formed");
   186   empty_list(_head);
   187   _head = NULL;
   188   _length = 0;
   190   empty_list(_survivor_head);
   191   _survivor_head = NULL;
   192   _survivor_tail = NULL;
   193   _survivor_length = 0;
   195   _last_sampled_rs_lengths = 0;
   197   assert(check_list_empty(false), "just making sure...");
   198 }
   200 bool YoungList::check_list_well_formed() {
   201   bool ret = true;
   203   size_t length = 0;
   204   HeapRegion* curr = _head;
   205   HeapRegion* last = NULL;
   206   while (curr != NULL) {
   207     if (!curr->is_young()) {
   208       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   209                              "incorrectly tagged (y: %d, surv: %d)",
   210                              curr->bottom(), curr->end(),
   211                              curr->is_young(), curr->is_survivor());
   212       ret = false;
   213     }
   214     ++length;
   215     last = curr;
   216     curr = curr->get_next_young_region();
   217   }
   218   ret = ret && (length == _length);
   220   if (!ret) {
   221     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   222     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   223                            length, _length);
   224   }
   226   return ret;
   227 }
   229 bool YoungList::check_list_empty(bool check_sample) {
   230   bool ret = true;
   232   if (_length != 0) {
   233     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   234                   _length);
   235     ret = false;
   236   }
   237   if (check_sample && _last_sampled_rs_lengths != 0) {
   238     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   239     ret = false;
   240   }
   241   if (_head != NULL) {
   242     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   243     ret = false;
   244   }
   245   if (!ret) {
   246     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   247   }
   249   return ret;
   250 }
   252 void
   253 YoungList::rs_length_sampling_init() {
   254   _sampled_rs_lengths = 0;
   255   _curr               = _head;
   256 }
   258 bool
   259 YoungList::rs_length_sampling_more() {
   260   return _curr != NULL;
   261 }
   263 void
   264 YoungList::rs_length_sampling_next() {
   265   assert( _curr != NULL, "invariant" );
   266   size_t rs_length = _curr->rem_set()->occupied();
   268   _sampled_rs_lengths += rs_length;
   270   // The current region may not yet have been added to the
   271   // incremental collection set (it gets added when it is
   272   // retired as the current allocation region).
   273   if (_curr->in_collection_set()) {
   274     // Update the collection set policy information for this region
   275     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   276   }
   278   _curr = _curr->get_next_young_region();
   279   if (_curr == NULL) {
   280     _last_sampled_rs_lengths = _sampled_rs_lengths;
   281     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   282   }
   283 }
   285 void
   286 YoungList::reset_auxilary_lists() {
   287   guarantee( is_empty(), "young list should be empty" );
   288   assert(check_list_well_formed(), "young list should be well formed");
   290   // Add survivor regions to SurvRateGroup.
   291   _g1h->g1_policy()->note_start_adding_survivor_regions();
   292   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   294   for (HeapRegion* curr = _survivor_head;
   295        curr != NULL;
   296        curr = curr->get_next_young_region()) {
   297     _g1h->g1_policy()->set_region_survivors(curr);
   299     // The region is a non-empty survivor so let's add it to
   300     // the incremental collection set for the next evacuation
   301     // pause.
   302     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   303   }
   304   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   306   _head   = _survivor_head;
   307   _length = _survivor_length;
   308   if (_survivor_head != NULL) {
   309     assert(_survivor_tail != NULL, "cause it shouldn't be");
   310     assert(_survivor_length > 0, "invariant");
   311     _survivor_tail->set_next_young_region(NULL);
   312   }
   314   // Don't clear the survivor list handles until the start of
   315   // the next evacuation pause - we need it in order to re-tag
   316   // the survivor regions from this evacuation pause as 'young'
   317   // at the start of the next.
   319   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   321   assert(check_list_well_formed(), "young list should be well formed");
   322 }
   324 void YoungList::print() {
   325   HeapRegion* lists[] = {_head,   _survivor_head};
   326   const char* names[] = {"YOUNG", "SURVIVOR"};
   328   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   329     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   330     HeapRegion *curr = lists[list];
   331     if (curr == NULL)
   332       gclog_or_tty->print_cr("  empty");
   333     while (curr != NULL) {
   334       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   335                              "age: %4d, y: %d, surv: %d",
   336                              curr->bottom(), curr->end(),
   337                              curr->top(),
   338                              curr->prev_top_at_mark_start(),
   339                              curr->next_top_at_mark_start(),
   340                              curr->top_at_conc_mark_count(),
   341                              curr->age_in_surv_rate_group_cond(),
   342                              curr->is_young(),
   343                              curr->is_survivor());
   344       curr = curr->get_next_young_region();
   345     }
   346   }
   348   gclog_or_tty->print_cr("");
   349 }
   351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   352 {
   353   // Claim the right to put the region on the dirty cards region list
   354   // by installing a self pointer.
   355   HeapRegion* next = hr->get_next_dirty_cards_region();
   356   if (next == NULL) {
   357     HeapRegion* res = (HeapRegion*)
   358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   359                           NULL);
   360     if (res == NULL) {
   361       HeapRegion* head;
   362       do {
   363         // Put the region to the dirty cards region list.
   364         head = _dirty_cards_region_list;
   365         next = (HeapRegion*)
   366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   367         if (next == head) {
   368           assert(hr->get_next_dirty_cards_region() == hr,
   369                  "hr->get_next_dirty_cards_region() != hr");
   370           if (next == NULL) {
   371             // The last region in the list points to itself.
   372             hr->set_next_dirty_cards_region(hr);
   373           } else {
   374             hr->set_next_dirty_cards_region(next);
   375           }
   376         }
   377       } while (next != head);
   378     }
   379   }
   380 }
   382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   383 {
   384   HeapRegion* head;
   385   HeapRegion* hr;
   386   do {
   387     head = _dirty_cards_region_list;
   388     if (head == NULL) {
   389       return NULL;
   390     }
   391     HeapRegion* new_head = head->get_next_dirty_cards_region();
   392     if (head == new_head) {
   393       // The last region.
   394       new_head = NULL;
   395     }
   396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   397                                           head);
   398   } while (hr != head);
   399   assert(hr != NULL, "invariant");
   400   hr->set_next_dirty_cards_region(NULL);
   401   return hr;
   402 }
   404 void G1CollectedHeap::stop_conc_gc_threads() {
   405   _cg1r->stop();
   406   _czft->stop();
   407   _cmThread->stop();
   408 }
   411 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   412   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   413   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   415   // Count the dirty cards at the start.
   416   CountNonCleanMemRegionClosure count1(this);
   417   ct_bs->mod_card_iterate(&count1);
   418   int orig_count = count1.n();
   420   // First clear the logged cards.
   421   ClearLoggedCardTableEntryClosure clear;
   422   dcqs.set_closure(&clear);
   423   dcqs.apply_closure_to_all_completed_buffers();
   424   dcqs.iterate_closure_all_threads(false);
   425   clear.print_histo();
   427   // Now ensure that there's no dirty cards.
   428   CountNonCleanMemRegionClosure count2(this);
   429   ct_bs->mod_card_iterate(&count2);
   430   if (count2.n() != 0) {
   431     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   432                            count2.n(), orig_count);
   433   }
   434   guarantee(count2.n() == 0, "Card table should be clean.");
   436   RedirtyLoggedCardTableEntryClosure redirty;
   437   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   438   dcqs.apply_closure_to_all_completed_buffers();
   439   dcqs.iterate_closure_all_threads(false);
   440   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   441                          clear.calls(), orig_count);
   442   guarantee(redirty.calls() == clear.calls(),
   443             "Or else mechanism is broken.");
   445   CountNonCleanMemRegionClosure count3(this);
   446   ct_bs->mod_card_iterate(&count3);
   447   if (count3.n() != orig_count) {
   448     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   449                            orig_count, count3.n());
   450     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   451   }
   453   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   454 }
   456 // Private class members.
   458 G1CollectedHeap* G1CollectedHeap::_g1h;
   460 // Private methods.
   462 // Finds a HeapRegion that can be used to allocate a given size of block.
   465 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   466                                                  bool do_expand,
   467                                                  bool zero_filled) {
   468   ConcurrentZFThread::note_region_alloc();
   469   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   470   if (res == NULL && do_expand) {
   471     expand(word_size * HeapWordSize);
   472     res = alloc_free_region_from_lists(zero_filled);
   473     assert(res == NULL ||
   474            (!res->isHumongous() &&
   475             (!zero_filled ||
   476              res->zero_fill_state() == HeapRegion::Allocated)),
   477            "Alloc Regions must be zero filled (and non-H)");
   478   }
   479   if (res != NULL) {
   480     if (res->is_empty()) {
   481       _free_regions--;
   482     }
   483     assert(!res->isHumongous() &&
   484            (!zero_filled || res->zero_fill_state() == HeapRegion::Allocated),
   485            err_msg("Non-young alloc Regions must be zero filled (and non-H):"
   486                    " res->isHumongous()=%d, zero_filled=%d, res->zero_fill_state()=%d",
   487                    res->isHumongous(), zero_filled, res->zero_fill_state()));
   488     assert(!res->is_on_unclean_list(),
   489            "Alloc Regions must not be on the unclean list");
   490     if (G1PrintHeapRegions) {
   491       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   492                              "top "PTR_FORMAT,
   493                              res->hrs_index(), res->bottom(), res->end(), res->top());
   494     }
   495   }
   496   return res;
   497 }
   499 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   500                                                          size_t word_size,
   501                                                          bool zero_filled) {
   502   HeapRegion* alloc_region = NULL;
   503   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   504     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   505     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   506       alloc_region->set_survivor();
   507     }
   508     ++_gc_alloc_region_counts[purpose];
   509   } else {
   510     g1_policy()->note_alloc_region_limit_reached(purpose);
   511   }
   512   return alloc_region;
   513 }
   515 // If could fit into free regions w/o expansion, try.
   516 // Otherwise, if can expand, do so.
   517 // Otherwise, if using ex regions might help, try with ex given back.
   518 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   519   assert(regions_accounted_for(), "Region leakage!");
   521   // We can't allocate H regions while cleanupComplete is running, since
   522   // some of the regions we find to be empty might not yet be added to the
   523   // unclean list.  (If we're already at a safepoint, this call is
   524   // unnecessary, not to mention wrong.)
   525   if (!SafepointSynchronize::is_at_safepoint())
   526     wait_for_cleanup_complete();
   528   size_t num_regions =
   529     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   531   // Special case if < one region???
   533   // Remember the ft size.
   534   size_t x_size = expansion_regions();
   536   HeapWord* res = NULL;
   537   bool eliminated_allocated_from_lists = false;
   539   // Can the allocation potentially fit in the free regions?
   540   if (free_regions() >= num_regions) {
   541     res = _hrs->obj_allocate(word_size);
   542   }
   543   if (res == NULL) {
   544     // Try expansion.
   545     size_t fs = _hrs->free_suffix();
   546     if (fs + x_size >= num_regions) {
   547       expand((num_regions - fs) * HeapRegion::GrainBytes);
   548       res = _hrs->obj_allocate(word_size);
   549       assert(res != NULL, "This should have worked.");
   550     } else {
   551       // Expansion won't help.  Are there enough free regions if we get rid
   552       // of reservations?
   553       size_t avail = free_regions();
   554       if (avail >= num_regions) {
   555         res = _hrs->obj_allocate(word_size);
   556         if (res != NULL) {
   557           remove_allocated_regions_from_lists();
   558           eliminated_allocated_from_lists = true;
   559         }
   560       }
   561     }
   562   }
   563   if (res != NULL) {
   564     // Increment by the number of regions allocated.
   565     // FIXME: Assumes regions all of size GrainBytes.
   566 #ifndef PRODUCT
   567     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   568                                            HeapRegion::GrainWords));
   569 #endif
   570     if (!eliminated_allocated_from_lists)
   571       remove_allocated_regions_from_lists();
   572     _summary_bytes_used += word_size * HeapWordSize;
   573     _free_regions -= num_regions;
   574     _num_humongous_regions += (int) num_regions;
   575   }
   576   assert(regions_accounted_for(), "Region Leakage");
   577   return res;
   578 }
   580 HeapWord*
   581 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   582                                          bool permit_collection_pause) {
   583   HeapWord* res = NULL;
   584   HeapRegion* allocated_young_region = NULL;
   586   assert( SafepointSynchronize::is_at_safepoint() ||
   587           Heap_lock->owned_by_self(), "pre condition of the call" );
   589   if (isHumongous(word_size)) {
   590     // Allocation of a humongous object can, in a sense, complete a
   591     // partial region, if the previous alloc was also humongous, and
   592     // caused the test below to succeed.
   593     if (permit_collection_pause)
   594       do_collection_pause_if_appropriate(word_size);
   595     res = humongousObjAllocate(word_size);
   596     assert(_cur_alloc_region == NULL
   597            || !_cur_alloc_region->isHumongous(),
   598            "Prevent a regression of this bug.");
   600   } else {
   601     // We may have concurrent cleanup working at the time. Wait for it
   602     // to complete. In the future we would probably want to make the
   603     // concurrent cleanup truly concurrent by decoupling it from the
   604     // allocation.
   605     if (!SafepointSynchronize::is_at_safepoint())
   606       wait_for_cleanup_complete();
   607     // If we do a collection pause, this will be reset to a non-NULL
   608     // value.  If we don't, nulling here ensures that we allocate a new
   609     // region below.
   610     if (_cur_alloc_region != NULL) {
   611       // We're finished with the _cur_alloc_region.
   612       // As we're builing (at least the young portion) of the collection
   613       // set incrementally we'll add the current allocation region to
   614       // the collection set here.
   615       if (_cur_alloc_region->is_young()) {
   616         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
   617       }
   618       _summary_bytes_used += _cur_alloc_region->used();
   619       _cur_alloc_region = NULL;
   620     }
   621     assert(_cur_alloc_region == NULL, "Invariant.");
   622     // Completion of a heap region is perhaps a good point at which to do
   623     // a collection pause.
   624     if (permit_collection_pause)
   625       do_collection_pause_if_appropriate(word_size);
   626     // Make sure we have an allocation region available.
   627     if (_cur_alloc_region == NULL) {
   628       if (!SafepointSynchronize::is_at_safepoint())
   629         wait_for_cleanup_complete();
   630       bool next_is_young = should_set_young_locked();
   631       // If the next region is not young, make sure it's zero-filled.
   632       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   633       if (_cur_alloc_region != NULL) {
   634         _summary_bytes_used -= _cur_alloc_region->used();
   635         if (next_is_young) {
   636           set_region_short_lived_locked(_cur_alloc_region);
   637           allocated_young_region = _cur_alloc_region;
   638         }
   639       }
   640     }
   641     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   642            "Prevent a regression of this bug.");
   644     // Now retry the allocation.
   645     if (_cur_alloc_region != NULL) {
   646       if (allocated_young_region != NULL) {
   647         // We need to ensure that the store to top does not
   648         // float above the setting of the young type.
   649         OrderAccess::storestore();
   650       }
   651       res = _cur_alloc_region->allocate(word_size);
   652     }
   653   }
   655   // NOTE: fails frequently in PRT
   656   assert(regions_accounted_for(), "Region leakage!");
   658   if (res != NULL) {
   659     if (!SafepointSynchronize::is_at_safepoint()) {
   660       assert( permit_collection_pause, "invariant" );
   661       assert( Heap_lock->owned_by_self(), "invariant" );
   662       Heap_lock->unlock();
   663     }
   665     if (allocated_young_region != NULL) {
   666       HeapRegion* hr = allocated_young_region;
   667       HeapWord* bottom = hr->bottom();
   668       HeapWord* end = hr->end();
   669       MemRegion mr(bottom, end);
   670       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   671     }
   672   }
   674   assert( SafepointSynchronize::is_at_safepoint() ||
   675           (res == NULL && Heap_lock->owned_by_self()) ||
   676           (res != NULL && !Heap_lock->owned_by_self()),
   677           "post condition of the call" );
   679   return res;
   680 }
   682 HeapWord*
   683 G1CollectedHeap::mem_allocate(size_t word_size,
   684                               bool   is_noref,
   685                               bool   is_tlab,
   686                               bool* gc_overhead_limit_was_exceeded) {
   687   debug_only(check_for_valid_allocation_state());
   688   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   689   HeapWord* result = NULL;
   691   // Loop until the allocation is satisified,
   692   // or unsatisfied after GC.
   693   for (int try_count = 1; /* return or throw */; try_count += 1) {
   694     int gc_count_before;
   695     {
   696       Heap_lock->lock();
   697       result = attempt_allocation(word_size);
   698       if (result != NULL) {
   699         // attempt_allocation should have unlocked the heap lock
   700         assert(is_in(result), "result not in heap");
   701         return result;
   702       }
   703       // Read the gc count while the heap lock is held.
   704       gc_count_before = SharedHeap::heap()->total_collections();
   705       Heap_lock->unlock();
   706     }
   708     // Create the garbage collection operation...
   709     VM_G1CollectForAllocation op(word_size,
   710                                  gc_count_before);
   712     // ...and get the VM thread to execute it.
   713     VMThread::execute(&op);
   714     if (op.prologue_succeeded()) {
   715       result = op.result();
   716       assert(result == NULL || is_in(result), "result not in heap");
   717       return result;
   718     }
   720     // Give a warning if we seem to be looping forever.
   721     if ((QueuedAllocationWarningCount > 0) &&
   722         (try_count % QueuedAllocationWarningCount == 0)) {
   723       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   724               try_count);
   725     }
   726   }
   727 }
   729 void G1CollectedHeap::abandon_cur_alloc_region() {
   730   if (_cur_alloc_region != NULL) {
   731     // We're finished with the _cur_alloc_region.
   732     if (_cur_alloc_region->is_empty()) {
   733       _free_regions++;
   734       free_region(_cur_alloc_region);
   735     } else {
   736       // As we're builing (at least the young portion) of the collection
   737       // set incrementally we'll add the current allocation region to
   738       // the collection set here.
   739       if (_cur_alloc_region->is_young()) {
   740         g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
   741       }
   742       _summary_bytes_used += _cur_alloc_region->used();
   743     }
   744     _cur_alloc_region = NULL;
   745   }
   746 }
   748 void G1CollectedHeap::abandon_gc_alloc_regions() {
   749   // first, make sure that the GC alloc region list is empty (it should!)
   750   assert(_gc_alloc_region_list == NULL, "invariant");
   751   release_gc_alloc_regions(true /* totally */);
   752 }
   754 class PostMCRemSetClearClosure: public HeapRegionClosure {
   755   ModRefBarrierSet* _mr_bs;
   756 public:
   757   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   758   bool doHeapRegion(HeapRegion* r) {
   759     r->reset_gc_time_stamp();
   760     if (r->continuesHumongous())
   761       return false;
   762     HeapRegionRemSet* hrrs = r->rem_set();
   763     if (hrrs != NULL) hrrs->clear();
   764     // You might think here that we could clear just the cards
   765     // corresponding to the used region.  But no: if we leave a dirty card
   766     // in a region we might allocate into, then it would prevent that card
   767     // from being enqueued, and cause it to be missed.
   768     // Re: the performance cost: we shouldn't be doing full GC anyway!
   769     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   770     return false;
   771   }
   772 };
   775 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   776   ModRefBarrierSet* _mr_bs;
   777 public:
   778   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   779   bool doHeapRegion(HeapRegion* r) {
   780     if (r->continuesHumongous()) return false;
   781     if (r->used_region().word_size() != 0) {
   782       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   783     }
   784     return false;
   785   }
   786 };
   788 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   789   G1CollectedHeap*   _g1h;
   790   UpdateRSOopClosure _cl;
   791   int                _worker_i;
   792 public:
   793   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   794     _cl(g1->g1_rem_set(), worker_i),
   795     _worker_i(worker_i),
   796     _g1h(g1)
   797   { }
   798   bool doHeapRegion(HeapRegion* r) {
   799     if (!r->continuesHumongous()) {
   800       _cl.set_from(r);
   801       r->oop_iterate(&_cl);
   802     }
   803     return false;
   804   }
   805 };
   807 class ParRebuildRSTask: public AbstractGangTask {
   808   G1CollectedHeap* _g1;
   809 public:
   810   ParRebuildRSTask(G1CollectedHeap* g1)
   811     : AbstractGangTask("ParRebuildRSTask"),
   812       _g1(g1)
   813   { }
   815   void work(int i) {
   816     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   817     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   818                                          HeapRegion::RebuildRSClaimValue);
   819   }
   820 };
   822 void G1CollectedHeap::do_collection(bool explicit_gc,
   823                                     bool clear_all_soft_refs,
   824                                     size_t word_size) {
   825   if (GC_locker::check_active_before_gc()) {
   826     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   827   }
   829   ResourceMark rm;
   831   if (PrintHeapAtGC) {
   832     Universe::print_heap_before_gc();
   833   }
   835   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   836   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   838   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   839                            collector_policy()->should_clear_all_soft_refs();
   841   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   843   {
   844     IsGCActiveMark x;
   846     // Timing
   847     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
   848     assert(!system_gc || explicit_gc, "invariant");
   849     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   850     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   851     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
   852                 PrintGC, true, gclog_or_tty);
   854     TraceMemoryManagerStats tms(true /* fullGC */);
   856     double start = os::elapsedTime();
   857     g1_policy()->record_full_collection_start();
   859     gc_prologue(true);
   860     increment_total_collections(true /* full gc */);
   862     size_t g1h_prev_used = used();
   863     assert(used() == recalculate_used(), "Should be equal");
   865     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   866       HandleMark hm;  // Discard invalid handles created during verification
   867       prepare_for_verify();
   868       gclog_or_tty->print(" VerifyBeforeGC:");
   869       Universe::verify(true);
   870     }
   871     assert(regions_accounted_for(), "Region leakage!");
   873     COMPILER2_PRESENT(DerivedPointerTable::clear());
   875     // We want to discover references, but not process them yet.
   876     // This mode is disabled in
   877     // instanceRefKlass::process_discovered_references if the
   878     // generation does some collection work, or
   879     // instanceRefKlass::enqueue_discovered_references if the
   880     // generation returns without doing any work.
   881     ref_processor()->disable_discovery();
   882     ref_processor()->abandon_partial_discovery();
   883     ref_processor()->verify_no_references_recorded();
   885     // Abandon current iterations of concurrent marking and concurrent
   886     // refinement, if any are in progress.
   887     concurrent_mark()->abort();
   889     // Make sure we'll choose a new allocation region afterwards.
   890     abandon_cur_alloc_region();
   891     abandon_gc_alloc_regions();
   892     assert(_cur_alloc_region == NULL, "Invariant.");
   893     g1_rem_set()->cleanupHRRS();
   894     tear_down_region_lists();
   895     set_used_regions_to_need_zero_fill();
   897     // We may have added regions to the current incremental collection
   898     // set between the last GC or pause and now. We need to clear the
   899     // incremental collection set and then start rebuilding it afresh
   900     // after this full GC.
   901     abandon_collection_set(g1_policy()->inc_cset_head());
   902     g1_policy()->clear_incremental_cset();
   903     g1_policy()->stop_incremental_cset_building();
   905     if (g1_policy()->in_young_gc_mode()) {
   906       empty_young_list();
   907       g1_policy()->set_full_young_gcs(true);
   908     }
   910     // Temporarily make reference _discovery_ single threaded (non-MT).
   911     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   913     // Temporarily make refs discovery atomic
   914     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   916     // Temporarily clear _is_alive_non_header
   917     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   919     ref_processor()->enable_discovery();
   920     ref_processor()->setup_policy(do_clear_all_soft_refs);
   922     // Do collection work
   923     {
   924       HandleMark hm;  // Discard invalid handles created during gc
   925       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
   926     }
   927     // Because freeing humongous regions may have added some unclean
   928     // regions, it is necessary to tear down again before rebuilding.
   929     tear_down_region_lists();
   930     rebuild_region_lists();
   932     _summary_bytes_used = recalculate_used();
   934     ref_processor()->enqueue_discovered_references();
   936     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   938     MemoryService::track_memory_usage();
   940     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
   941       HandleMark hm;  // Discard invalid handles created during verification
   942       gclog_or_tty->print(" VerifyAfterGC:");
   943       prepare_for_verify();
   944       Universe::verify(false);
   945     }
   946     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   948     reset_gc_time_stamp();
   949     // Since everything potentially moved, we will clear all remembered
   950     // sets, and clear all cards.  Later we will rebuild remebered
   951     // sets. We will also reset the GC time stamps of the regions.
   952     PostMCRemSetClearClosure rs_clear(mr_bs());
   953     heap_region_iterate(&rs_clear);
   955     // Resize the heap if necessary.
   956     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
   958     if (_cg1r->use_cache()) {
   959       _cg1r->clear_and_record_card_counts();
   960       _cg1r->clear_hot_cache();
   961     }
   963     // Rebuild remembered sets of all regions.
   965     if (G1CollectedHeap::use_parallel_gc_threads()) {
   966       ParRebuildRSTask rebuild_rs_task(this);
   967       assert(check_heap_region_claim_values(
   968              HeapRegion::InitialClaimValue), "sanity check");
   969       set_par_threads(workers()->total_workers());
   970       workers()->run_task(&rebuild_rs_task);
   971       set_par_threads(0);
   972       assert(check_heap_region_claim_values(
   973              HeapRegion::RebuildRSClaimValue), "sanity check");
   974       reset_heap_region_claim_values();
   975     } else {
   976       RebuildRSOutOfRegionClosure rebuild_rs(this);
   977       heap_region_iterate(&rebuild_rs);
   978     }
   980     if (PrintGC) {
   981       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
   982     }
   984     if (true) { // FIXME
   985       // Ask the permanent generation to adjust size for full collections
   986       perm()->compute_new_size();
   987     }
   989     // Start a new incremental collection set for the next pause
   990     assert(g1_policy()->collection_set() == NULL, "must be");
   991     g1_policy()->start_incremental_cset_building();
   993     // Clear the _cset_fast_test bitmap in anticipation of adding
   994     // regions to the incremental collection set for the next
   995     // evacuation pause.
   996     clear_cset_fast_test();
   998     double end = os::elapsedTime();
   999     g1_policy()->record_full_collection_end();
  1001 #ifdef TRACESPINNING
  1002     ParallelTaskTerminator::print_termination_counts();
  1003 #endif
  1005     gc_epilogue(true);
  1007     // Discard all rset updates
  1008     JavaThread::dirty_card_queue_set().abandon_logs();
  1009     assert(!G1DeferredRSUpdate
  1010            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1011     assert(regions_accounted_for(), "Region leakage!");
  1014   if (g1_policy()->in_young_gc_mode()) {
  1015     _young_list->reset_sampled_info();
  1016     // At this point there should be no regions in the
  1017     // entire heap tagged as young.
  1018     assert( check_young_list_empty(true /* check_heap */),
  1019             "young list should be empty at this point");
  1022   // Update the number of full collections that have been completed.
  1023   increment_full_collections_completed(false /* outer */);
  1025   if (PrintHeapAtGC) {
  1026     Universe::print_heap_after_gc();
  1030 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1031   do_collection(true,                /* explicit_gc */
  1032                 clear_all_soft_refs,
  1033                 0                    /* word_size */);
  1036 // This code is mostly copied from TenuredGeneration.
  1037 void
  1038 G1CollectedHeap::
  1039 resize_if_necessary_after_full_collection(size_t word_size) {
  1040   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1042   // Include the current allocation, if any, and bytes that will be
  1043   // pre-allocated to support collections, as "used".
  1044   const size_t used_after_gc = used();
  1045   const size_t capacity_after_gc = capacity();
  1046   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1048   // This is enforced in arguments.cpp.
  1049   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1050          "otherwise the code below doesn't make sense");
  1052   // We don't have floating point command-line arguments
  1053   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1054   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1055   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1056   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1058   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1059   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1061   // We have to be careful here as these two calculations can overflow
  1062   // 32-bit size_t's.
  1063   double used_after_gc_d = (double) used_after_gc;
  1064   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1065   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1067   // Let's make sure that they are both under the max heap size, which
  1068   // by default will make them fit into a size_t.
  1069   double desired_capacity_upper_bound = (double) max_heap_size;
  1070   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1071                                     desired_capacity_upper_bound);
  1072   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1073                                     desired_capacity_upper_bound);
  1075   // We can now safely turn them into size_t's.
  1076   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1077   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1079   // This assert only makes sense here, before we adjust them
  1080   // with respect to the min and max heap size.
  1081   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1082          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1083                  "maximum_desired_capacity = "SIZE_FORMAT,
  1084                  minimum_desired_capacity, maximum_desired_capacity));
  1086   // Should not be greater than the heap max size. No need to adjust
  1087   // it with respect to the heap min size as it's a lower bound (i.e.,
  1088   // we'll try to make the capacity larger than it, not smaller).
  1089   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1090   // Should not be less than the heap min size. No need to adjust it
  1091   // with respect to the heap max size as it's an upper bound (i.e.,
  1092   // we'll try to make the capacity smaller than it, not greater).
  1093   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1095   if (PrintGC && Verbose) {
  1096     const double free_percentage =
  1097       (double) free_after_gc / (double) capacity_after_gc;
  1098     gclog_or_tty->print_cr("Computing new size after full GC ");
  1099     gclog_or_tty->print_cr("  "
  1100                            "  minimum_free_percentage: %6.2f",
  1101                            minimum_free_percentage);
  1102     gclog_or_tty->print_cr("  "
  1103                            "  maximum_free_percentage: %6.2f",
  1104                            maximum_free_percentage);
  1105     gclog_or_tty->print_cr("  "
  1106                            "  capacity: %6.1fK"
  1107                            "  minimum_desired_capacity: %6.1fK"
  1108                            "  maximum_desired_capacity: %6.1fK",
  1109                            (double) capacity_after_gc / (double) K,
  1110                            (double) minimum_desired_capacity / (double) K,
  1111                            (double) maximum_desired_capacity / (double) K);
  1112     gclog_or_tty->print_cr("  "
  1113                            "  free_after_gc: %6.1fK"
  1114                            "  used_after_gc: %6.1fK",
  1115                            (double) free_after_gc / (double) K,
  1116                            (double) used_after_gc / (double) K);
  1117     gclog_or_tty->print_cr("  "
  1118                            "   free_percentage: %6.2f",
  1119                            free_percentage);
  1121   if (capacity_after_gc < minimum_desired_capacity) {
  1122     // Don't expand unless it's significant
  1123     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1124     expand(expand_bytes);
  1125     if (PrintGC && Verbose) {
  1126       gclog_or_tty->print_cr("  "
  1127                              "  expanding:"
  1128                              "  max_heap_size: %6.1fK"
  1129                              "  minimum_desired_capacity: %6.1fK"
  1130                              "  expand_bytes: %6.1fK",
  1131                              (double) max_heap_size / (double) K,
  1132                              (double) minimum_desired_capacity / (double) K,
  1133                              (double) expand_bytes / (double) K);
  1136     // No expansion, now see if we want to shrink
  1137   } else if (capacity_after_gc > maximum_desired_capacity) {
  1138     // Capacity too large, compute shrinking size
  1139     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1140     shrink(shrink_bytes);
  1141     if (PrintGC && Verbose) {
  1142       gclog_or_tty->print_cr("  "
  1143                              "  shrinking:"
  1144                              "  min_heap_size: %6.1fK"
  1145                              "  maximum_desired_capacity: %6.1fK"
  1146                              "  shrink_bytes: %6.1fK",
  1147                              (double) min_heap_size / (double) K,
  1148                              (double) maximum_desired_capacity / (double) K,
  1149                              (double) shrink_bytes / (double) K);
  1155 HeapWord*
  1156 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1157   HeapWord* result = NULL;
  1159   // In a G1 heap, we're supposed to keep allocation from failing by
  1160   // incremental pauses.  Therefore, at least for now, we'll favor
  1161   // expansion over collection.  (This might change in the future if we can
  1162   // do something smarter than full collection to satisfy a failed alloc.)
  1164   result = expand_and_allocate(word_size);
  1165   if (result != NULL) {
  1166     assert(is_in(result), "result not in heap");
  1167     return result;
  1170   // OK, I guess we have to try collection.
  1172   do_collection(false, false, word_size);
  1174   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1176   if (result != NULL) {
  1177     assert(is_in(result), "result not in heap");
  1178     return result;
  1181   // Try collecting soft references.
  1182   do_collection(false, true, word_size);
  1183   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1184   if (result != NULL) {
  1185     assert(is_in(result), "result not in heap");
  1186     return result;
  1189   assert(!collector_policy()->should_clear_all_soft_refs(),
  1190     "Flag should have been handled and cleared prior to this point");
  1192   // What else?  We might try synchronous finalization later.  If the total
  1193   // space available is large enough for the allocation, then a more
  1194   // complete compaction phase than we've tried so far might be
  1195   // appropriate.
  1196   return NULL;
  1199 // Attempting to expand the heap sufficiently
  1200 // to support an allocation of the given "word_size".  If
  1201 // successful, perform the allocation and return the address of the
  1202 // allocated block, or else "NULL".
  1204 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1205   size_t expand_bytes = word_size * HeapWordSize;
  1206   if (expand_bytes < MinHeapDeltaBytes) {
  1207     expand_bytes = MinHeapDeltaBytes;
  1209   expand(expand_bytes);
  1210   assert(regions_accounted_for(), "Region leakage!");
  1211   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1212   return result;
  1215 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1216   size_t pre_used = 0;
  1217   size_t cleared_h_regions = 0;
  1218   size_t freed_regions = 0;
  1219   UncleanRegionList local_list;
  1220   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1221                                     freed_regions, &local_list);
  1223   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1224                           &local_list);
  1225   return pre_used;
  1228 void
  1229 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1230                                                    size_t& pre_used,
  1231                                                    size_t& cleared_h,
  1232                                                    size_t& freed_regions,
  1233                                                    UncleanRegionList* list,
  1234                                                    bool par) {
  1235   assert(!hr->continuesHumongous(), "should have filtered these out");
  1236   size_t res = 0;
  1237   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1238       !hr->is_young()) {
  1239     if (G1PolicyVerbose > 0)
  1240       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1241                                                                                " during cleanup", hr, hr->used());
  1242     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1246 // FIXME: both this and shrink could probably be more efficient by
  1247 // doing one "VirtualSpace::expand_by" call rather than several.
  1248 void G1CollectedHeap::expand(size_t expand_bytes) {
  1249   size_t old_mem_size = _g1_storage.committed_size();
  1250   // We expand by a minimum of 1K.
  1251   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1252   size_t aligned_expand_bytes =
  1253     ReservedSpace::page_align_size_up(expand_bytes);
  1254   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1255                                        HeapRegion::GrainBytes);
  1256   expand_bytes = aligned_expand_bytes;
  1257   while (expand_bytes > 0) {
  1258     HeapWord* base = (HeapWord*)_g1_storage.high();
  1259     // Commit more storage.
  1260     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1261     if (!successful) {
  1262         expand_bytes = 0;
  1263     } else {
  1264       expand_bytes -= HeapRegion::GrainBytes;
  1265       // Expand the committed region.
  1266       HeapWord* high = (HeapWord*) _g1_storage.high();
  1267       _g1_committed.set_end(high);
  1268       // Create a new HeapRegion.
  1269       MemRegion mr(base, high);
  1270       bool is_zeroed = !_g1_max_committed.contains(base);
  1271       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1273       // Now update max_committed if necessary.
  1274       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1276       // Add it to the HeapRegionSeq.
  1277       _hrs->insert(hr);
  1278       // Set the zero-fill state, according to whether it's already
  1279       // zeroed.
  1281         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1282         if (is_zeroed) {
  1283           hr->set_zero_fill_complete();
  1284           put_free_region_on_list_locked(hr);
  1285         } else {
  1286           hr->set_zero_fill_needed();
  1287           put_region_on_unclean_list_locked(hr);
  1290       _free_regions++;
  1291       // And we used up an expansion region to create it.
  1292       _expansion_regions--;
  1293       // Tell the cardtable about it.
  1294       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1295       // And the offset table as well.
  1296       _bot_shared->resize(_g1_committed.word_size());
  1299   if (Verbose && PrintGC) {
  1300     size_t new_mem_size = _g1_storage.committed_size();
  1301     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1302                            old_mem_size/K, aligned_expand_bytes/K,
  1303                            new_mem_size/K);
  1307 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1309   size_t old_mem_size = _g1_storage.committed_size();
  1310   size_t aligned_shrink_bytes =
  1311     ReservedSpace::page_align_size_down(shrink_bytes);
  1312   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1313                                          HeapRegion::GrainBytes);
  1314   size_t num_regions_deleted = 0;
  1315   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1317   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1318   if (mr.byte_size() > 0)
  1319     _g1_storage.shrink_by(mr.byte_size());
  1320   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1322   _g1_committed.set_end(mr.start());
  1323   _free_regions -= num_regions_deleted;
  1324   _expansion_regions += num_regions_deleted;
  1326   // Tell the cardtable about it.
  1327   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1329   // And the offset table as well.
  1330   _bot_shared->resize(_g1_committed.word_size());
  1332   HeapRegionRemSet::shrink_heap(n_regions());
  1334   if (Verbose && PrintGC) {
  1335     size_t new_mem_size = _g1_storage.committed_size();
  1336     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1337                            old_mem_size/K, aligned_shrink_bytes/K,
  1338                            new_mem_size/K);
  1342 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1343   release_gc_alloc_regions(true /* totally */);
  1344   tear_down_region_lists();  // We will rebuild them in a moment.
  1345   shrink_helper(shrink_bytes);
  1346   rebuild_region_lists();
  1349 // Public methods.
  1351 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1352 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1353 #endif // _MSC_VER
  1356 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1357   SharedHeap(policy_),
  1358   _g1_policy(policy_),
  1359   _dirty_card_queue_set(false),
  1360   _into_cset_dirty_card_queue_set(false),
  1361   _ref_processor(NULL),
  1362   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1363   _bot_shared(NULL),
  1364   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1365   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1366   _evac_failure_scan_stack(NULL) ,
  1367   _mark_in_progress(false),
  1368   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1369   _cur_alloc_region(NULL),
  1370   _refine_cte_cl(NULL),
  1371   _free_region_list(NULL), _free_region_list_size(0),
  1372   _free_regions(0),
  1373   _full_collection(false),
  1374   _unclean_region_list(),
  1375   _unclean_regions_coming(false),
  1376   _young_list(new YoungList(this)),
  1377   _gc_time_stamp(0),
  1378   _surviving_young_words(NULL),
  1379   _full_collections_completed(0),
  1380   _in_cset_fast_test(NULL),
  1381   _in_cset_fast_test_base(NULL),
  1382   _dirty_cards_region_list(NULL) {
  1383   _g1h = this; // To catch bugs.
  1384   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1385     vm_exit_during_initialization("Failed necessary allocation.");
  1388   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1390   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1391   _task_queues = new RefToScanQueueSet(n_queues);
  1393   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1394   assert(n_rem_sets > 0, "Invariant.");
  1396   HeapRegionRemSetIterator** iter_arr =
  1397     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1398   for (int i = 0; i < n_queues; i++) {
  1399     iter_arr[i] = new HeapRegionRemSetIterator();
  1401   _rem_set_iterator = iter_arr;
  1403   for (int i = 0; i < n_queues; i++) {
  1404     RefToScanQueue* q = new RefToScanQueue();
  1405     q->initialize();
  1406     _task_queues->register_queue(i, q);
  1409   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1410     _gc_alloc_regions[ap]          = NULL;
  1411     _gc_alloc_region_counts[ap]    = 0;
  1412     _retained_gc_alloc_regions[ap] = NULL;
  1413     // by default, we do not retain a GC alloc region for each ap;
  1414     // we'll override this, when appropriate, below
  1415     _retain_gc_alloc_region[ap]    = false;
  1418   // We will try to remember the last half-full tenured region we
  1419   // allocated to at the end of a collection so that we can re-use it
  1420   // during the next collection.
  1421   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1423   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1426 jint G1CollectedHeap::initialize() {
  1427   CollectedHeap::pre_initialize();
  1428   os::enable_vtime();
  1430   // Necessary to satisfy locking discipline assertions.
  1432   MutexLocker x(Heap_lock);
  1434   // While there are no constraints in the GC code that HeapWordSize
  1435   // be any particular value, there are multiple other areas in the
  1436   // system which believe this to be true (e.g. oop->object_size in some
  1437   // cases incorrectly returns the size in wordSize units rather than
  1438   // HeapWordSize).
  1439   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1441   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1442   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1444   // Ensure that the sizes are properly aligned.
  1445   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1446   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1448   _cg1r = new ConcurrentG1Refine();
  1450   // Reserve the maximum.
  1451   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1452   // Includes the perm-gen.
  1454   const size_t total_reserved = max_byte_size + pgs->max_size();
  1455   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1457   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1458                         HeapRegion::GrainBytes,
  1459                         false /*ism*/, addr);
  1461   if (UseCompressedOops) {
  1462     if (addr != NULL && !heap_rs.is_reserved()) {
  1463       // Failed to reserve at specified address - the requested memory
  1464       // region is taken already, for example, by 'java' launcher.
  1465       // Try again to reserver heap higher.
  1466       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1467       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1468                              false /*ism*/, addr);
  1469       if (addr != NULL && !heap_rs0.is_reserved()) {
  1470         // Failed to reserve at specified address again - give up.
  1471         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1472         assert(addr == NULL, "");
  1473         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1474                                false /*ism*/, addr);
  1475         heap_rs = heap_rs1;
  1476       } else {
  1477         heap_rs = heap_rs0;
  1482   if (!heap_rs.is_reserved()) {
  1483     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1484     return JNI_ENOMEM;
  1487   // It is important to do this in a way such that concurrent readers can't
  1488   // temporarily think somethings in the heap.  (I've actually seen this
  1489   // happen in asserts: DLD.)
  1490   _reserved.set_word_size(0);
  1491   _reserved.set_start((HeapWord*)heap_rs.base());
  1492   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1494   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1496   _num_humongous_regions = 0;
  1498   // Create the gen rem set (and barrier set) for the entire reserved region.
  1499   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1500   set_barrier_set(rem_set()->bs());
  1501   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1502     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1503   } else {
  1504     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1505     return JNI_ENOMEM;
  1508   // Also create a G1 rem set.
  1509   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1510     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1511   } else {
  1512     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1513     return JNI_ENOMEM;
  1516   // Carve out the G1 part of the heap.
  1518   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1519   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1520                            g1_rs.size()/HeapWordSize);
  1521   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1523   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1525   _g1_storage.initialize(g1_rs, 0);
  1526   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1527   _g1_max_committed = _g1_committed;
  1528   _hrs = new HeapRegionSeq(_expansion_regions);
  1529   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1530   guarantee(_cur_alloc_region == NULL, "from constructor");
  1532   // 6843694 - ensure that the maximum region index can fit
  1533   // in the remembered set structures.
  1534   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1535   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1537   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1538   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1539   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1540             "too many cards per region");
  1542   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1543                                              heap_word_size(init_byte_size));
  1545   _g1h = this;
  1547    _in_cset_fast_test_length = max_regions();
  1548    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1550    // We're biasing _in_cset_fast_test to avoid subtracting the
  1551    // beginning of the heap every time we want to index; basically
  1552    // it's the same with what we do with the card table.
  1553    _in_cset_fast_test = _in_cset_fast_test_base -
  1554                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1556    // Clear the _cset_fast_test bitmap in anticipation of adding
  1557    // regions to the incremental collection set for the first
  1558    // evacuation pause.
  1559    clear_cset_fast_test();
  1561   // Create the ConcurrentMark data structure and thread.
  1562   // (Must do this late, so that "max_regions" is defined.)
  1563   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1564   _cmThread = _cm->cmThread();
  1566   // ...and the concurrent zero-fill thread, if necessary.
  1567   if (G1ConcZeroFill) {
  1568     _czft = new ConcurrentZFThread();
  1571   // Initialize the from_card cache structure of HeapRegionRemSet.
  1572   HeapRegionRemSet::init_heap(max_regions());
  1574   // Now expand into the initial heap size.
  1575   expand(init_byte_size);
  1577   // Perform any initialization actions delegated to the policy.
  1578   g1_policy()->init();
  1580   g1_policy()->note_start_of_mark_thread();
  1582   _refine_cte_cl =
  1583     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1584                                     g1_rem_set(),
  1585                                     concurrent_g1_refine());
  1586   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1588   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1589                                                SATB_Q_FL_lock,
  1590                                                G1SATBProcessCompletedThreshold,
  1591                                                Shared_SATB_Q_lock);
  1593   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1594                                                 DirtyCardQ_FL_lock,
  1595                                                 concurrent_g1_refine()->yellow_zone(),
  1596                                                 concurrent_g1_refine()->red_zone(),
  1597                                                 Shared_DirtyCardQ_lock);
  1599   if (G1DeferredRSUpdate) {
  1600     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1601                                       DirtyCardQ_FL_lock,
  1602                                       -1, // never trigger processing
  1603                                       -1, // no limit on length
  1604                                       Shared_DirtyCardQ_lock,
  1605                                       &JavaThread::dirty_card_queue_set());
  1608   // Initialize the card queue set used to hold cards containing
  1609   // references into the collection set.
  1610   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  1611                                              DirtyCardQ_FL_lock,
  1612                                              -1, // never trigger processing
  1613                                              -1, // no limit on length
  1614                                              Shared_DirtyCardQ_lock,
  1615                                              &JavaThread::dirty_card_queue_set());
  1617   // In case we're keeping closure specialization stats, initialize those
  1618   // counts and that mechanism.
  1619   SpecializationStats::clear();
  1621   _gc_alloc_region_list = NULL;
  1623   // Do later initialization work for concurrent refinement.
  1624   _cg1r->init();
  1626   return JNI_OK;
  1629 void G1CollectedHeap::ref_processing_init() {
  1630   SharedHeap::ref_processing_init();
  1631   MemRegion mr = reserved_region();
  1632   _ref_processor = ReferenceProcessor::create_ref_processor(
  1633                                          mr,    // span
  1634                                          false, // Reference discovery is not atomic
  1635                                                 // (though it shouldn't matter here.)
  1636                                          true,  // mt_discovery
  1637                                          NULL,  // is alive closure: need to fill this in for efficiency
  1638                                          ParallelGCThreads,
  1639                                          ParallelRefProcEnabled,
  1640                                          true); // Setting next fields of discovered
  1641                                                 // lists requires a barrier.
  1644 size_t G1CollectedHeap::capacity() const {
  1645   return _g1_committed.byte_size();
  1648 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1649                                                  DirtyCardQueue* into_cset_dcq,
  1650                                                  bool concurrent,
  1651                                                  int worker_i) {
  1652   // Clean cards in the hot card cache
  1653   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  1655   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1656   int n_completed_buffers = 0;
  1657   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  1658     n_completed_buffers++;
  1660   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1661                                                   (double) n_completed_buffers);
  1662   dcqs.clear_n_completed_buffers();
  1663   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1667 // Computes the sum of the storage used by the various regions.
  1669 size_t G1CollectedHeap::used() const {
  1670   assert(Heap_lock->owner() != NULL,
  1671          "Should be owned on this thread's behalf.");
  1672   size_t result = _summary_bytes_used;
  1673   // Read only once in case it is set to NULL concurrently
  1674   HeapRegion* hr = _cur_alloc_region;
  1675   if (hr != NULL)
  1676     result += hr->used();
  1677   return result;
  1680 size_t G1CollectedHeap::used_unlocked() const {
  1681   size_t result = _summary_bytes_used;
  1682   return result;
  1685 class SumUsedClosure: public HeapRegionClosure {
  1686   size_t _used;
  1687 public:
  1688   SumUsedClosure() : _used(0) {}
  1689   bool doHeapRegion(HeapRegion* r) {
  1690     if (!r->continuesHumongous()) {
  1691       _used += r->used();
  1693     return false;
  1695   size_t result() { return _used; }
  1696 };
  1698 size_t G1CollectedHeap::recalculate_used() const {
  1699   SumUsedClosure blk;
  1700   _hrs->iterate(&blk);
  1701   return blk.result();
  1704 #ifndef PRODUCT
  1705 class SumUsedRegionsClosure: public HeapRegionClosure {
  1706   size_t _num;
  1707 public:
  1708   SumUsedRegionsClosure() : _num(0) {}
  1709   bool doHeapRegion(HeapRegion* r) {
  1710     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1711       _num += 1;
  1713     return false;
  1715   size_t result() { return _num; }
  1716 };
  1718 size_t G1CollectedHeap::recalculate_used_regions() const {
  1719   SumUsedRegionsClosure blk;
  1720   _hrs->iterate(&blk);
  1721   return blk.result();
  1723 #endif // PRODUCT
  1725 size_t G1CollectedHeap::unsafe_max_alloc() {
  1726   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1727   // otherwise, is there space in the current allocation region?
  1729   // We need to store the current allocation region in a local variable
  1730   // here. The problem is that this method doesn't take any locks and
  1731   // there may be other threads which overwrite the current allocation
  1732   // region field. attempt_allocation(), for example, sets it to NULL
  1733   // and this can happen *after* the NULL check here but before the call
  1734   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1735   // to be a problem in the optimized build, since the two loads of the
  1736   // current allocation region field are optimized away.
  1737   HeapRegion* car = _cur_alloc_region;
  1739   // FIXME: should iterate over all regions?
  1740   if (car == NULL) {
  1741     return 0;
  1743   return car->free();
  1746 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  1747   return
  1748     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  1749      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  1752 void G1CollectedHeap::increment_full_collections_completed(bool outer) {
  1753   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  1755   // We have already incremented _total_full_collections at the start
  1756   // of the GC, so total_full_collections() represents how many full
  1757   // collections have been started.
  1758   unsigned int full_collections_started = total_full_collections();
  1760   // Given that this method is called at the end of a Full GC or of a
  1761   // concurrent cycle, and those can be nested (i.e., a Full GC can
  1762   // interrupt a concurrent cycle), the number of full collections
  1763   // completed should be either one (in the case where there was no
  1764   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  1765   // behind the number of full collections started.
  1767   // This is the case for the inner caller, i.e. a Full GC.
  1768   assert(outer ||
  1769          (full_collections_started == _full_collections_completed + 1) ||
  1770          (full_collections_started == _full_collections_completed + 2),
  1771          err_msg("for inner caller: full_collections_started = %u "
  1772                  "is inconsistent with _full_collections_completed = %u",
  1773                  full_collections_started, _full_collections_completed));
  1775   // This is the case for the outer caller, i.e. the concurrent cycle.
  1776   assert(!outer ||
  1777          (full_collections_started == _full_collections_completed + 1),
  1778          err_msg("for outer caller: full_collections_started = %u "
  1779                  "is inconsistent with _full_collections_completed = %u",
  1780                  full_collections_started, _full_collections_completed));
  1782   _full_collections_completed += 1;
  1784   // We need to clear the "in_progress" flag in the CM thread before
  1785   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  1786   // is set) so that if a waiter requests another System.gc() it doesn't
  1787   // incorrectly see that a marking cyle is still in progress.
  1788   if (outer) {
  1789     _cmThread->clear_in_progress();
  1792   // This notify_all() will ensure that a thread that called
  1793   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  1794   // and it's waiting for a full GC to finish will be woken up. It is
  1795   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  1796   FullGCCount_lock->notify_all();
  1799 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1800   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1801   assert(Heap_lock->is_locked(), "Precondition#2");
  1802   GCCauseSetter gcs(this, cause);
  1803   switch (cause) {
  1804     case GCCause::_heap_inspection:
  1805     case GCCause::_heap_dump: {
  1806       HandleMark hm;
  1807       do_full_collection(false);         // don't clear all soft refs
  1808       break;
  1810     default: // XXX FIX ME
  1811       ShouldNotReachHere(); // Unexpected use of this function
  1815 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1816   // The caller doesn't have the Heap_lock
  1817   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1819   unsigned int gc_count_before;
  1820   unsigned int full_gc_count_before;
  1822     MutexLocker ml(Heap_lock);
  1823     // Read the GC count while holding the Heap_lock
  1824     gc_count_before = SharedHeap::heap()->total_collections();
  1825     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  1827     // Don't want to do a GC until cleanup is completed.
  1828     wait_for_cleanup_complete();
  1830     // We give up heap lock; VMThread::execute gets it back below
  1833   if (should_do_concurrent_full_gc(cause)) {
  1834     // Schedule an initial-mark evacuation pause that will start a
  1835     // concurrent cycle.
  1836     VM_G1IncCollectionPause op(gc_count_before,
  1837                                true, /* should_initiate_conc_mark */
  1838                                g1_policy()->max_pause_time_ms(),
  1839                                cause);
  1840     VMThread::execute(&op);
  1841   } else {
  1842     if (cause == GCCause::_gc_locker
  1843         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  1845       // Schedule a standard evacuation pause.
  1846       VM_G1IncCollectionPause op(gc_count_before,
  1847                                  false, /* should_initiate_conc_mark */
  1848                                  g1_policy()->max_pause_time_ms(),
  1849                                  cause);
  1850       VMThread::execute(&op);
  1851     } else {
  1852       // Schedule a Full GC.
  1853       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  1854       VMThread::execute(&op);
  1859 bool G1CollectedHeap::is_in(const void* p) const {
  1860   if (_g1_committed.contains(p)) {
  1861     HeapRegion* hr = _hrs->addr_to_region(p);
  1862     return hr->is_in(p);
  1863   } else {
  1864     return _perm_gen->as_gen()->is_in(p);
  1868 // Iteration functions.
  1870 // Iterates an OopClosure over all ref-containing fields of objects
  1871 // within a HeapRegion.
  1873 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1874   MemRegion _mr;
  1875   OopClosure* _cl;
  1876 public:
  1877   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1878     : _mr(mr), _cl(cl) {}
  1879   bool doHeapRegion(HeapRegion* r) {
  1880     if (! r->continuesHumongous()) {
  1881       r->oop_iterate(_cl);
  1883     return false;
  1885 };
  1887 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1888   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1889   _hrs->iterate(&blk);
  1890   if (do_perm) {
  1891     perm_gen()->oop_iterate(cl);
  1895 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1896   IterateOopClosureRegionClosure blk(mr, cl);
  1897   _hrs->iterate(&blk);
  1898   if (do_perm) {
  1899     perm_gen()->oop_iterate(cl);
  1903 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1905 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1906   ObjectClosure* _cl;
  1907 public:
  1908   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1909   bool doHeapRegion(HeapRegion* r) {
  1910     if (! r->continuesHumongous()) {
  1911       r->object_iterate(_cl);
  1913     return false;
  1915 };
  1917 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1918   IterateObjectClosureRegionClosure blk(cl);
  1919   _hrs->iterate(&blk);
  1920   if (do_perm) {
  1921     perm_gen()->object_iterate(cl);
  1925 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1926   // FIXME: is this right?
  1927   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1930 // Calls a SpaceClosure on a HeapRegion.
  1932 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1933   SpaceClosure* _cl;
  1934 public:
  1935   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1936   bool doHeapRegion(HeapRegion* r) {
  1937     _cl->do_space(r);
  1938     return false;
  1940 };
  1942 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1943   SpaceClosureRegionClosure blk(cl);
  1944   _hrs->iterate(&blk);
  1947 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1948   _hrs->iterate(cl);
  1951 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1952                                                HeapRegionClosure* cl) {
  1953   _hrs->iterate_from(r, cl);
  1956 void
  1957 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1958   _hrs->iterate_from(idx, cl);
  1961 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1963 void
  1964 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1965                                                  int worker,
  1966                                                  jint claim_value) {
  1967   const size_t regions = n_regions();
  1968   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  1969   // try to spread out the starting points of the workers
  1970   const size_t start_index = regions / worker_num * (size_t) worker;
  1972   // each worker will actually look at all regions
  1973   for (size_t count = 0; count < regions; ++count) {
  1974     const size_t index = (start_index + count) % regions;
  1975     assert(0 <= index && index < regions, "sanity");
  1976     HeapRegion* r = region_at(index);
  1977     // we'll ignore "continues humongous" regions (we'll process them
  1978     // when we come across their corresponding "start humongous"
  1979     // region) and regions already claimed
  1980     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1981       continue;
  1983     // OK, try to claim it
  1984     if (r->claimHeapRegion(claim_value)) {
  1985       // success!
  1986       assert(!r->continuesHumongous(), "sanity");
  1987       if (r->startsHumongous()) {
  1988         // If the region is "starts humongous" we'll iterate over its
  1989         // "continues humongous" first; in fact we'll do them
  1990         // first. The order is important. In on case, calling the
  1991         // closure on the "starts humongous" region might de-allocate
  1992         // and clear all its "continues humongous" regions and, as a
  1993         // result, we might end up processing them twice. So, we'll do
  1994         // them first (notice: most closures will ignore them anyway) and
  1995         // then we'll do the "starts humongous" region.
  1996         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1997           HeapRegion* chr = region_at(ch_index);
  1999           // if the region has already been claimed or it's not
  2000           // "continues humongous" we're done
  2001           if (chr->claim_value() == claim_value ||
  2002               !chr->continuesHumongous()) {
  2003             break;
  2006           // Noone should have claimed it directly. We can given
  2007           // that we claimed its "starts humongous" region.
  2008           assert(chr->claim_value() != claim_value, "sanity");
  2009           assert(chr->humongous_start_region() == r, "sanity");
  2011           if (chr->claimHeapRegion(claim_value)) {
  2012             // we should always be able to claim it; noone else should
  2013             // be trying to claim this region
  2015             bool res2 = cl->doHeapRegion(chr);
  2016             assert(!res2, "Should not abort");
  2018             // Right now, this holds (i.e., no closure that actually
  2019             // does something with "continues humongous" regions
  2020             // clears them). We might have to weaken it in the future,
  2021             // but let's leave these two asserts here for extra safety.
  2022             assert(chr->continuesHumongous(), "should still be the case");
  2023             assert(chr->humongous_start_region() == r, "sanity");
  2024           } else {
  2025             guarantee(false, "we should not reach here");
  2030       assert(!r->continuesHumongous(), "sanity");
  2031       bool res = cl->doHeapRegion(r);
  2032       assert(!res, "Should not abort");
  2037 class ResetClaimValuesClosure: public HeapRegionClosure {
  2038 public:
  2039   bool doHeapRegion(HeapRegion* r) {
  2040     r->set_claim_value(HeapRegion::InitialClaimValue);
  2041     return false;
  2043 };
  2045 void
  2046 G1CollectedHeap::reset_heap_region_claim_values() {
  2047   ResetClaimValuesClosure blk;
  2048   heap_region_iterate(&blk);
  2051 #ifdef ASSERT
  2052 // This checks whether all regions in the heap have the correct claim
  2053 // value. I also piggy-backed on this a check to ensure that the
  2054 // humongous_start_region() information on "continues humongous"
  2055 // regions is correct.
  2057 class CheckClaimValuesClosure : public HeapRegionClosure {
  2058 private:
  2059   jint _claim_value;
  2060   size_t _failures;
  2061   HeapRegion* _sh_region;
  2062 public:
  2063   CheckClaimValuesClosure(jint claim_value) :
  2064     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2065   bool doHeapRegion(HeapRegion* r) {
  2066     if (r->claim_value() != _claim_value) {
  2067       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2068                              "claim value = %d, should be %d",
  2069                              r->bottom(), r->end(), r->claim_value(),
  2070                              _claim_value);
  2071       ++_failures;
  2073     if (!r->isHumongous()) {
  2074       _sh_region = NULL;
  2075     } else if (r->startsHumongous()) {
  2076       _sh_region = r;
  2077     } else if (r->continuesHumongous()) {
  2078       if (r->humongous_start_region() != _sh_region) {
  2079         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2080                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2081                                r->bottom(), r->end(),
  2082                                r->humongous_start_region(),
  2083                                _sh_region);
  2084         ++_failures;
  2087     return false;
  2089   size_t failures() {
  2090     return _failures;
  2092 };
  2094 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2095   CheckClaimValuesClosure cl(claim_value);
  2096   heap_region_iterate(&cl);
  2097   return cl.failures() == 0;
  2099 #endif // ASSERT
  2101 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2102   HeapRegion* r = g1_policy()->collection_set();
  2103   while (r != NULL) {
  2104     HeapRegion* next = r->next_in_collection_set();
  2105     if (cl->doHeapRegion(r)) {
  2106       cl->incomplete();
  2107       return;
  2109     r = next;
  2113 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2114                                                   HeapRegionClosure *cl) {
  2115   if (r == NULL) {
  2116     // The CSet is empty so there's nothing to do.
  2117     return;
  2120   assert(r->in_collection_set(),
  2121          "Start region must be a member of the collection set.");
  2122   HeapRegion* cur = r;
  2123   while (cur != NULL) {
  2124     HeapRegion* next = cur->next_in_collection_set();
  2125     if (cl->doHeapRegion(cur) && false) {
  2126       cl->incomplete();
  2127       return;
  2129     cur = next;
  2131   cur = g1_policy()->collection_set();
  2132   while (cur != r) {
  2133     HeapRegion* next = cur->next_in_collection_set();
  2134     if (cl->doHeapRegion(cur) && false) {
  2135       cl->incomplete();
  2136       return;
  2138     cur = next;
  2142 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2143   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2147 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2148   Space* res = heap_region_containing(addr);
  2149   if (res == NULL)
  2150     res = perm_gen()->space_containing(addr);
  2151   return res;
  2154 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2155   Space* sp = space_containing(addr);
  2156   if (sp != NULL) {
  2157     return sp->block_start(addr);
  2159   return NULL;
  2162 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2163   Space* sp = space_containing(addr);
  2164   assert(sp != NULL, "block_size of address outside of heap");
  2165   return sp->block_size(addr);
  2168 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2169   Space* sp = space_containing(addr);
  2170   return sp->block_is_obj(addr);
  2173 bool G1CollectedHeap::supports_tlab_allocation() const {
  2174   return true;
  2177 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2178   return HeapRegion::GrainBytes;
  2181 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2182   // Return the remaining space in the cur alloc region, but not less than
  2183   // the min TLAB size.
  2185   // Also, this value can be at most the humongous object threshold,
  2186   // since we can't allow tlabs to grow big enough to accomodate
  2187   // humongous objects.
  2189   // We need to store the cur alloc region locally, since it might change
  2190   // between when we test for NULL and when we use it later.
  2191   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2192   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2194   if (cur_alloc_space == NULL) {
  2195     return max_tlab_size;
  2196   } else {
  2197     return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
  2198                 max_tlab_size);
  2202 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  2203   assert(!isHumongous(word_size),
  2204          err_msg("a TLAB should not be of humongous size, "
  2205                  "word_size = "SIZE_FORMAT, word_size));
  2206   bool dummy;
  2207   return G1CollectedHeap::mem_allocate(word_size, false, true, &dummy);
  2210 bool G1CollectedHeap::allocs_are_zero_filled() {
  2211   return false;
  2214 size_t G1CollectedHeap::large_typearray_limit() {
  2215   // FIXME
  2216   return HeapRegion::GrainBytes/HeapWordSize;
  2219 size_t G1CollectedHeap::max_capacity() const {
  2220   return g1_reserved_obj_bytes();
  2223 jlong G1CollectedHeap::millis_since_last_gc() {
  2224   // assert(false, "NYI");
  2225   return 0;
  2229 void G1CollectedHeap::prepare_for_verify() {
  2230   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2231     ensure_parsability(false);
  2233   g1_rem_set()->prepare_for_verify();
  2236 class VerifyLivenessOopClosure: public OopClosure {
  2237   G1CollectedHeap* g1h;
  2238 public:
  2239   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2240     g1h = _g1h;
  2242   void do_oop(narrowOop *p) { do_oop_work(p); }
  2243   void do_oop(      oop *p) { do_oop_work(p); }
  2245   template <class T> void do_oop_work(T *p) {
  2246     oop obj = oopDesc::load_decode_heap_oop(p);
  2247     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2248               "Dead object referenced by a not dead object");
  2250 };
  2252 class VerifyObjsInRegionClosure: public ObjectClosure {
  2253 private:
  2254   G1CollectedHeap* _g1h;
  2255   size_t _live_bytes;
  2256   HeapRegion *_hr;
  2257   bool _use_prev_marking;
  2258 public:
  2259   // use_prev_marking == true  -> use "prev" marking information,
  2260   // use_prev_marking == false -> use "next" marking information
  2261   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2262     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2263     _g1h = G1CollectedHeap::heap();
  2265   void do_object(oop o) {
  2266     VerifyLivenessOopClosure isLive(_g1h);
  2267     assert(o != NULL, "Huh?");
  2268     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2269       o->oop_iterate(&isLive);
  2270       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2271         size_t obj_size = o->size();    // Make sure we don't overflow
  2272         _live_bytes += (obj_size * HeapWordSize);
  2276   size_t live_bytes() { return _live_bytes; }
  2277 };
  2279 class PrintObjsInRegionClosure : public ObjectClosure {
  2280   HeapRegion *_hr;
  2281   G1CollectedHeap *_g1;
  2282 public:
  2283   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2284     _g1 = G1CollectedHeap::heap();
  2285   };
  2287   void do_object(oop o) {
  2288     if (o != NULL) {
  2289       HeapWord *start = (HeapWord *) o;
  2290       size_t word_sz = o->size();
  2291       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2292                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2293                           (void*) o, word_sz,
  2294                           _g1->isMarkedPrev(o),
  2295                           _g1->isMarkedNext(o),
  2296                           _hr->obj_allocated_since_prev_marking(o));
  2297       HeapWord *end = start + word_sz;
  2298       HeapWord *cur;
  2299       int *val;
  2300       for (cur = start; cur < end; cur++) {
  2301         val = (int *) cur;
  2302         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2306 };
  2308 class VerifyRegionClosure: public HeapRegionClosure {
  2309 private:
  2310   bool _allow_dirty;
  2311   bool _par;
  2312   bool _use_prev_marking;
  2313   bool _failures;
  2314 public:
  2315   // use_prev_marking == true  -> use "prev" marking information,
  2316   // use_prev_marking == false -> use "next" marking information
  2317   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2318     : _allow_dirty(allow_dirty),
  2319       _par(par),
  2320       _use_prev_marking(use_prev_marking),
  2321       _failures(false) {}
  2323   bool failures() {
  2324     return _failures;
  2327   bool doHeapRegion(HeapRegion* r) {
  2328     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2329               "Should be unclaimed at verify points.");
  2330     if (!r->continuesHumongous()) {
  2331       bool failures = false;
  2332       r->verify(_allow_dirty, _use_prev_marking, &failures);
  2333       if (failures) {
  2334         _failures = true;
  2335       } else {
  2336         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2337         r->object_iterate(&not_dead_yet_cl);
  2338         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2339           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2340                                  "max_live_bytes "SIZE_FORMAT" "
  2341                                  "< calculated "SIZE_FORMAT,
  2342                                  r->bottom(), r->end(),
  2343                                  r->max_live_bytes(),
  2344                                  not_dead_yet_cl.live_bytes());
  2345           _failures = true;
  2349     return false; // stop the region iteration if we hit a failure
  2351 };
  2353 class VerifyRootsClosure: public OopsInGenClosure {
  2354 private:
  2355   G1CollectedHeap* _g1h;
  2356   bool             _use_prev_marking;
  2357   bool             _failures;
  2358 public:
  2359   // use_prev_marking == true  -> use "prev" marking information,
  2360   // use_prev_marking == false -> use "next" marking information
  2361   VerifyRootsClosure(bool use_prev_marking) :
  2362     _g1h(G1CollectedHeap::heap()),
  2363     _use_prev_marking(use_prev_marking),
  2364     _failures(false) { }
  2366   bool failures() { return _failures; }
  2368   template <class T> void do_oop_nv(T* p) {
  2369     T heap_oop = oopDesc::load_heap_oop(p);
  2370     if (!oopDesc::is_null(heap_oop)) {
  2371       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2372       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2373         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2374                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2375         obj->print_on(gclog_or_tty);
  2376         _failures = true;
  2381   void do_oop(oop* p)       { do_oop_nv(p); }
  2382   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2383 };
  2385 // This is the task used for parallel heap verification.
  2387 class G1ParVerifyTask: public AbstractGangTask {
  2388 private:
  2389   G1CollectedHeap* _g1h;
  2390   bool _allow_dirty;
  2391   bool _use_prev_marking;
  2392   bool _failures;
  2394 public:
  2395   // use_prev_marking == true  -> use "prev" marking information,
  2396   // use_prev_marking == false -> use "next" marking information
  2397   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2398                   bool use_prev_marking) :
  2399     AbstractGangTask("Parallel verify task"),
  2400     _g1h(g1h),
  2401     _allow_dirty(allow_dirty),
  2402     _use_prev_marking(use_prev_marking),
  2403     _failures(false) { }
  2405   bool failures() {
  2406     return _failures;
  2409   void work(int worker_i) {
  2410     HandleMark hm;
  2411     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2412     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2413                                           HeapRegion::ParVerifyClaimValue);
  2414     if (blk.failures()) {
  2415       _failures = true;
  2418 };
  2420 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2421   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2424 void G1CollectedHeap::verify(bool allow_dirty,
  2425                              bool silent,
  2426                              bool use_prev_marking) {
  2427   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2428     if (!silent) { gclog_or_tty->print("roots "); }
  2429     VerifyRootsClosure rootsCl(use_prev_marking);
  2430     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2431     process_strong_roots(true,  // activate StrongRootsScope
  2432                          false,
  2433                          SharedHeap::SO_AllClasses,
  2434                          &rootsCl,
  2435                          &blobsCl,
  2436                          &rootsCl);
  2437     bool failures = rootsCl.failures();
  2438     rem_set()->invalidate(perm_gen()->used_region(), false);
  2439     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2440     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2441       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2442              "sanity check");
  2444       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2445       int n_workers = workers()->total_workers();
  2446       set_par_threads(n_workers);
  2447       workers()->run_task(&task);
  2448       set_par_threads(0);
  2449       if (task.failures()) {
  2450         failures = true;
  2453       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2454              "sanity check");
  2456       reset_heap_region_claim_values();
  2458       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2459              "sanity check");
  2460     } else {
  2461       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2462       _hrs->iterate(&blk);
  2463       if (blk.failures()) {
  2464         failures = true;
  2467     if (!silent) gclog_or_tty->print("remset ");
  2468     rem_set()->verify();
  2470     if (failures) {
  2471       gclog_or_tty->print_cr("Heap:");
  2472       print_on(gclog_or_tty, true /* extended */);
  2473       gclog_or_tty->print_cr("");
  2474 #ifndef PRODUCT
  2475       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2476         concurrent_mark()->print_reachable("at-verification-failure",
  2477                                            use_prev_marking, false /* all */);
  2479 #endif
  2480       gclog_or_tty->flush();
  2482     guarantee(!failures, "there should not have been any failures");
  2483   } else {
  2484     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2488 class PrintRegionClosure: public HeapRegionClosure {
  2489   outputStream* _st;
  2490 public:
  2491   PrintRegionClosure(outputStream* st) : _st(st) {}
  2492   bool doHeapRegion(HeapRegion* r) {
  2493     r->print_on(_st);
  2494     return false;
  2496 };
  2498 void G1CollectedHeap::print() const { print_on(tty); }
  2500 void G1CollectedHeap::print_on(outputStream* st) const {
  2501   print_on(st, PrintHeapAtGCExtended);
  2504 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2505   st->print(" %-20s", "garbage-first heap");
  2506   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2507             capacity()/K, used_unlocked()/K);
  2508   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2509             _g1_storage.low_boundary(),
  2510             _g1_storage.high(),
  2511             _g1_storage.high_boundary());
  2512   st->cr();
  2513   st->print("  region size " SIZE_FORMAT "K, ",
  2514             HeapRegion::GrainBytes/K);
  2515   size_t young_regions = _young_list->length();
  2516   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2517             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2518   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2519   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2520             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2521   st->cr();
  2522   perm()->as_gen()->print_on(st);
  2523   if (extended) {
  2524     st->cr();
  2525     print_on_extended(st);
  2529 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2530   PrintRegionClosure blk(st);
  2531   _hrs->iterate(&blk);
  2534 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2535   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2536     workers()->print_worker_threads_on(st);
  2539   _cmThread->print_on(st);
  2540   st->cr();
  2542   _cm->print_worker_threads_on(st);
  2544   _cg1r->print_worker_threads_on(st);
  2546   _czft->print_on(st);
  2547   st->cr();
  2550 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2551   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2552     workers()->threads_do(tc);
  2554   tc->do_thread(_cmThread);
  2555   _cg1r->threads_do(tc);
  2556   tc->do_thread(_czft);
  2559 void G1CollectedHeap::print_tracing_info() const {
  2560   // We'll overload this to mean "trace GC pause statistics."
  2561   if (TraceGen0Time || TraceGen1Time) {
  2562     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2563     // to that.
  2564     g1_policy()->print_tracing_info();
  2566   if (G1SummarizeRSetStats) {
  2567     g1_rem_set()->print_summary_info();
  2569   if (G1SummarizeConcMark) {
  2570     concurrent_mark()->print_summary_info();
  2572   if (G1SummarizeZFStats) {
  2573     ConcurrentZFThread::print_summary_info();
  2575   g1_policy()->print_yg_surv_rate_info();
  2577   SpecializationStats::print();
  2581 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2582   HeapRegion* hr = heap_region_containing(addr);
  2583   if (hr == NULL) {
  2584     return 0;
  2585   } else {
  2586     return 1;
  2590 G1CollectedHeap* G1CollectedHeap::heap() {
  2591   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2592          "not a garbage-first heap");
  2593   return _g1h;
  2596 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2597   // always_do_update_barrier = false;
  2598   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2599   // Call allocation profiler
  2600   AllocationProfiler::iterate_since_last_gc();
  2601   // Fill TLAB's and such
  2602   ensure_parsability(true);
  2605 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2606   // FIXME: what is this about?
  2607   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2608   // is set.
  2609   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2610                         "derived pointer present"));
  2611   // always_do_update_barrier = true;
  2614 void G1CollectedHeap::do_collection_pause() {
  2615   assert(Heap_lock->owned_by_self(), "we assume we'reholding the Heap_lock");
  2617   // Read the GC count while holding the Heap_lock
  2618   // we need to do this _before_ wait_for_cleanup_complete(), to
  2619   // ensure that we do not give up the heap lock and potentially
  2620   // pick up the wrong count
  2621   unsigned int gc_count_before = SharedHeap::heap()->total_collections();
  2623   // Don't want to do a GC pause while cleanup is being completed!
  2624   wait_for_cleanup_complete();
  2626   g1_policy()->record_stop_world_start();
  2628     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2629     VM_G1IncCollectionPause op(gc_count_before,
  2630                                false, /* should_initiate_conc_mark */
  2631                                g1_policy()->max_pause_time_ms(),
  2632                                GCCause::_g1_inc_collection_pause);
  2633     VMThread::execute(&op);
  2637 void
  2638 G1CollectedHeap::doConcurrentMark() {
  2639   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2640   if (!_cmThread->in_progress()) {
  2641     _cmThread->set_started();
  2642     CGC_lock->notify();
  2646 class VerifyMarkedObjsClosure: public ObjectClosure {
  2647     G1CollectedHeap* _g1h;
  2648     public:
  2649     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2650     void do_object(oop obj) {
  2651       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2652              "markandsweep mark should agree with concurrent deadness");
  2654 };
  2656 void
  2657 G1CollectedHeap::checkConcurrentMark() {
  2658     VerifyMarkedObjsClosure verifycl(this);
  2659     //    MutexLockerEx x(getMarkBitMapLock(),
  2660     //              Mutex::_no_safepoint_check_flag);
  2661     object_iterate(&verifycl, false);
  2664 void G1CollectedHeap::do_sync_mark() {
  2665   _cm->checkpointRootsInitial();
  2666   _cm->markFromRoots();
  2667   _cm->checkpointRootsFinal(false);
  2670 // <NEW PREDICTION>
  2672 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2673                                                        bool young) {
  2674   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2677 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2678                                                            predicted_time_ms) {
  2679   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2682 size_t G1CollectedHeap::pending_card_num() {
  2683   size_t extra_cards = 0;
  2684   JavaThread *curr = Threads::first();
  2685   while (curr != NULL) {
  2686     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2687     extra_cards += dcq.size();
  2688     curr = curr->next();
  2690   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2691   size_t buffer_size = dcqs.buffer_size();
  2692   size_t buffer_num = dcqs.completed_buffers_num();
  2693   return buffer_size * buffer_num + extra_cards;
  2696 size_t G1CollectedHeap::max_pending_card_num() {
  2697   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2698   size_t buffer_size = dcqs.buffer_size();
  2699   size_t buffer_num  = dcqs.completed_buffers_num();
  2700   int thread_num  = Threads::number_of_threads();
  2701   return (buffer_num + thread_num) * buffer_size;
  2704 size_t G1CollectedHeap::cards_scanned() {
  2705   return g1_rem_set()->cardsScanned();
  2708 void
  2709 G1CollectedHeap::setup_surviving_young_words() {
  2710   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2711   size_t array_length = g1_policy()->young_cset_length();
  2712   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2713   if (_surviving_young_words == NULL) {
  2714     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2715                           "Not enough space for young surv words summary.");
  2717   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2718 #ifdef ASSERT
  2719   for (size_t i = 0;  i < array_length; ++i) {
  2720     assert( _surviving_young_words[i] == 0, "memset above" );
  2722 #endif // !ASSERT
  2725 void
  2726 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2727   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2728   size_t array_length = g1_policy()->young_cset_length();
  2729   for (size_t i = 0; i < array_length; ++i)
  2730     _surviving_young_words[i] += surv_young_words[i];
  2733 void
  2734 G1CollectedHeap::cleanup_surviving_young_words() {
  2735   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2736   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2737   _surviving_young_words = NULL;
  2740 // </NEW PREDICTION>
  2742 struct PrepareForRSScanningClosure : public HeapRegionClosure {
  2743   bool doHeapRegion(HeapRegion *r) {
  2744     r->rem_set()->set_iter_claimed(0);
  2745     return false;
  2747 };
  2749 #if TASKQUEUE_STATS
  2750 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  2751   st->print_raw_cr("GC Task Stats");
  2752   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  2753   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  2756 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  2757   print_taskqueue_stats_hdr(st);
  2759   TaskQueueStats totals;
  2760   const int n = workers() != NULL ? workers()->total_workers() : 1;
  2761   for (int i = 0; i < n; ++i) {
  2762     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  2763     totals += task_queue(i)->stats;
  2765   st->print_raw("tot "); totals.print(st); st->cr();
  2767   DEBUG_ONLY(totals.verify());
  2770 void G1CollectedHeap::reset_taskqueue_stats() {
  2771   const int n = workers() != NULL ? workers()->total_workers() : 1;
  2772   for (int i = 0; i < n; ++i) {
  2773     task_queue(i)->stats.reset();
  2776 #endif // TASKQUEUE_STATS
  2778 void
  2779 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  2780   if (GC_locker::check_active_before_gc()) {
  2781     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2784   if (PrintHeapAtGC) {
  2785     Universe::print_heap_before_gc();
  2789     ResourceMark rm;
  2791     // This call will decide whether this pause is an initial-mark
  2792     // pause. If it is, during_initial_mark_pause() will return true
  2793     // for the duration of this pause.
  2794     g1_policy()->decide_on_conc_mark_initiation();
  2796     char verbose_str[128];
  2797     sprintf(verbose_str, "GC pause ");
  2798     if (g1_policy()->in_young_gc_mode()) {
  2799       if (g1_policy()->full_young_gcs())
  2800         strcat(verbose_str, "(young)");
  2801       else
  2802         strcat(verbose_str, "(partial)");
  2804     if (g1_policy()->during_initial_mark_pause()) {
  2805       strcat(verbose_str, " (initial-mark)");
  2806       // We are about to start a marking cycle, so we increment the
  2807       // full collection counter.
  2808       increment_total_full_collections();
  2811     // if PrintGCDetails is on, we'll print long statistics information
  2812     // in the collector policy code, so let's not print this as the output
  2813     // is messy if we do.
  2814     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2815     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2816     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2818     TraceMemoryManagerStats tms(false /* fullGC */);
  2820     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2821     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2822     guarantee(!is_gc_active(), "collection is not reentrant");
  2823     assert(regions_accounted_for(), "Region leakage!");
  2825     increment_gc_time_stamp();
  2827     if (g1_policy()->in_young_gc_mode()) {
  2828       assert(check_young_list_well_formed(),
  2829              "young list should be well formed");
  2832     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2833       IsGCActiveMark x;
  2835       gc_prologue(false);
  2836       increment_total_collections(false /* full gc */);
  2838 #if G1_REM_SET_LOGGING
  2839       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2840       print();
  2841 #endif
  2843       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2844         HandleMark hm;  // Discard invalid handles created during verification
  2845         prepare_for_verify();
  2846         gclog_or_tty->print(" VerifyBeforeGC:");
  2847         Universe::verify(false);
  2850       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2852       // We want to turn off ref discovery, if necessary, and turn it back on
  2853       // on again later if we do. XXX Dubious: why is discovery disabled?
  2854       bool was_enabled = ref_processor()->discovery_enabled();
  2855       if (was_enabled) ref_processor()->disable_discovery();
  2857       // Forget the current alloc region (we might even choose it to be part
  2858       // of the collection set!).
  2859       abandon_cur_alloc_region();
  2861       // The elapsed time induced by the start time below deliberately elides
  2862       // the possible verification above.
  2863       double start_time_sec = os::elapsedTime();
  2864       size_t start_used_bytes = used();
  2866 #if YOUNG_LIST_VERBOSE
  2867       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  2868       _young_list->print();
  2869       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2870 #endif // YOUNG_LIST_VERBOSE
  2872       g1_policy()->record_collection_pause_start(start_time_sec,
  2873                                                  start_used_bytes);
  2875 #if YOUNG_LIST_VERBOSE
  2876       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  2877       _young_list->print();
  2878 #endif // YOUNG_LIST_VERBOSE
  2880       if (g1_policy()->during_initial_mark_pause()) {
  2881         concurrent_mark()->checkpointRootsInitialPre();
  2883       save_marks();
  2885       // We must do this before any possible evacuation that should propagate
  2886       // marks.
  2887       if (mark_in_progress()) {
  2888         double start_time_sec = os::elapsedTime();
  2890         _cm->drainAllSATBBuffers();
  2891         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2892         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2894       // Record the number of elements currently on the mark stack, so we
  2895       // only iterate over these.  (Since evacuation may add to the mark
  2896       // stack, doing more exposes race conditions.)  If no mark is in
  2897       // progress, this will be zero.
  2898       _cm->set_oops_do_bound();
  2900       assert(regions_accounted_for(), "Region leakage.");
  2902       if (mark_in_progress())
  2903         concurrent_mark()->newCSet();
  2905 #if YOUNG_LIST_VERBOSE
  2906       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  2907       _young_list->print();
  2908       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2909 #endif // YOUNG_LIST_VERBOSE
  2911       g1_policy()->choose_collection_set(target_pause_time_ms);
  2913       // Nothing to do if we were unable to choose a collection set.
  2914 #if G1_REM_SET_LOGGING
  2915       gclog_or_tty->print_cr("\nAfter pause, heap:");
  2916       print();
  2917 #endif
  2918       PrepareForRSScanningClosure prepare_for_rs_scan;
  2919       collection_set_iterate(&prepare_for_rs_scan);
  2921       setup_surviving_young_words();
  2923       // Set up the gc allocation regions.
  2924       get_gc_alloc_regions();
  2926       // Actually do the work...
  2927       evacuate_collection_set();
  2929       free_collection_set(g1_policy()->collection_set());
  2930       g1_policy()->clear_collection_set();
  2932       cleanup_surviving_young_words();
  2934       // Start a new incremental collection set for the next pause.
  2935       g1_policy()->start_incremental_cset_building();
  2937       // Clear the _cset_fast_test bitmap in anticipation of adding
  2938       // regions to the incremental collection set for the next
  2939       // evacuation pause.
  2940       clear_cset_fast_test();
  2942       if (g1_policy()->in_young_gc_mode()) {
  2943         _young_list->reset_sampled_info();
  2945         // Don't check the whole heap at this point as the
  2946         // GC alloc regions from this pause have been tagged
  2947         // as survivors and moved on to the survivor list.
  2948         // Survivor regions will fail the !is_young() check.
  2949         assert(check_young_list_empty(false /* check_heap */),
  2950                "young list should be empty");
  2952 #if YOUNG_LIST_VERBOSE
  2953         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  2954         _young_list->print();
  2955 #endif // YOUNG_LIST_VERBOSE
  2957         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2958                                           _young_list->first_survivor_region(),
  2959                                           _young_list->last_survivor_region());
  2961         _young_list->reset_auxilary_lists();
  2964       if (evacuation_failed()) {
  2965         _summary_bytes_used = recalculate_used();
  2966       } else {
  2967         // The "used" of the the collection set have already been subtracted
  2968         // when they were freed.  Add in the bytes evacuated.
  2969         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2972       if (g1_policy()->in_young_gc_mode() &&
  2973           g1_policy()->during_initial_mark_pause()) {
  2974         concurrent_mark()->checkpointRootsInitialPost();
  2975         set_marking_started();
  2976         // CAUTION: after the doConcurrentMark() call below,
  2977         // the concurrent marking thread(s) could be running
  2978         // concurrently with us. Make sure that anything after
  2979         // this point does not assume that we are the only GC thread
  2980         // running. Note: of course, the actual marking work will
  2981         // not start until the safepoint itself is released in
  2982         // ConcurrentGCThread::safepoint_desynchronize().
  2983         doConcurrentMark();
  2986 #if YOUNG_LIST_VERBOSE
  2987       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  2988       _young_list->print();
  2989       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  2990 #endif // YOUNG_LIST_VERBOSE
  2992       double end_time_sec = os::elapsedTime();
  2993       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2994       g1_policy()->record_pause_time_ms(pause_time_ms);
  2995       g1_policy()->record_collection_pause_end();
  2997       assert(regions_accounted_for(), "Region leakage.");
  2999       MemoryService::track_memory_usage();
  3001       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3002         HandleMark hm;  // Discard invalid handles created during verification
  3003         gclog_or_tty->print(" VerifyAfterGC:");
  3004         prepare_for_verify();
  3005         Universe::verify(false);
  3008       if (was_enabled) ref_processor()->enable_discovery();
  3011         size_t expand_bytes = g1_policy()->expansion_amount();
  3012         if (expand_bytes > 0) {
  3013           size_t bytes_before = capacity();
  3014           expand(expand_bytes);
  3018       if (mark_in_progress()) {
  3019         concurrent_mark()->update_g1_committed();
  3022 #ifdef TRACESPINNING
  3023       ParallelTaskTerminator::print_termination_counts();
  3024 #endif
  3026       gc_epilogue(false);
  3029     assert(verify_region_lists(), "Bad region lists.");
  3031     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3032       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3033       print_tracing_info();
  3034       vm_exit(-1);
  3038   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3039   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3041   if (PrintHeapAtGC) {
  3042     Universe::print_heap_after_gc();
  3044   if (G1SummarizeRSetStats &&
  3045       (G1SummarizeRSetStatsPeriod > 0) &&
  3046       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3047     g1_rem_set()->print_summary_info();
  3051 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3053   size_t gclab_word_size;
  3054   switch (purpose) {
  3055     case GCAllocForSurvived:
  3056       gclab_word_size = YoungPLABSize;
  3057       break;
  3058     case GCAllocForTenured:
  3059       gclab_word_size = OldPLABSize;
  3060       break;
  3061     default:
  3062       assert(false, "unknown GCAllocPurpose");
  3063       gclab_word_size = OldPLABSize;
  3064       break;
  3066   return gclab_word_size;
  3070 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  3071   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  3072   // make sure we don't call set_gc_alloc_region() multiple times on
  3073   // the same region
  3074   assert(r == NULL || !r->is_gc_alloc_region(),
  3075          "shouldn't already be a GC alloc region");
  3076   assert(r == NULL || !r->isHumongous(),
  3077          "humongous regions shouldn't be used as GC alloc regions");
  3079   HeapWord* original_top = NULL;
  3080   if (r != NULL)
  3081     original_top = r->top();
  3083   // We will want to record the used space in r as being there before gc.
  3084   // One we install it as a GC alloc region it's eligible for allocation.
  3085   // So record it now and use it later.
  3086   size_t r_used = 0;
  3087   if (r != NULL) {
  3088     r_used = r->used();
  3090     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3091       // need to take the lock to guard against two threads calling
  3092       // get_gc_alloc_region concurrently (very unlikely but...)
  3093       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3094       r->save_marks();
  3097   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  3098   _gc_alloc_regions[purpose] = r;
  3099   if (old_alloc_region != NULL) {
  3100     // Replace aliases too.
  3101     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3102       if (_gc_alloc_regions[ap] == old_alloc_region) {
  3103         _gc_alloc_regions[ap] = r;
  3107   if (r != NULL) {
  3108     push_gc_alloc_region(r);
  3109     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  3110       // We are using a region as a GC alloc region after it has been used
  3111       // as a mutator allocation region during the current marking cycle.
  3112       // The mutator-allocated objects are currently implicitly marked, but
  3113       // when we move hr->next_top_at_mark_start() forward at the the end
  3114       // of the GC pause, they won't be.  We therefore mark all objects in
  3115       // the "gap".  We do this object-by-object, since marking densely
  3116       // does not currently work right with marking bitmap iteration.  This
  3117       // means we rely on TLAB filling at the start of pauses, and no
  3118       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  3119       // to fix the marking bitmap iteration.
  3120       HeapWord* curhw = r->next_top_at_mark_start();
  3121       HeapWord* t = original_top;
  3123       while (curhw < t) {
  3124         oop cur = (oop)curhw;
  3125         // We'll assume parallel for generality.  This is rare code.
  3126         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  3127         curhw = curhw + cur->size();
  3129       assert(curhw == t, "Should have parsed correctly.");
  3131     if (G1PolicyVerbose > 1) {
  3132       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  3133                           "for survivors:", r->bottom(), original_top, r->end());
  3134       r->print();
  3136     g1_policy()->record_before_bytes(r_used);
  3140 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  3141   assert(Thread::current()->is_VM_thread() ||
  3142          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  3143   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  3144          "Precondition.");
  3145   hr->set_is_gc_alloc_region(true);
  3146   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  3147   _gc_alloc_region_list = hr;
  3150 #ifdef G1_DEBUG
  3151 class FindGCAllocRegion: public HeapRegionClosure {
  3152 public:
  3153   bool doHeapRegion(HeapRegion* r) {
  3154     if (r->is_gc_alloc_region()) {
  3155       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  3156                              r->hrs_index(), r->bottom());
  3158     return false;
  3160 };
  3161 #endif // G1_DEBUG
  3163 void G1CollectedHeap::forget_alloc_region_list() {
  3164   assert(Thread::current()->is_VM_thread(), "Precondition");
  3165   while (_gc_alloc_region_list != NULL) {
  3166     HeapRegion* r = _gc_alloc_region_list;
  3167     assert(r->is_gc_alloc_region(), "Invariant.");
  3168     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  3169     // newly allocated data in order to be able to apply deferred updates
  3170     // before the GC is done for verification purposes (i.e to allow
  3171     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  3172     // collection.
  3173     r->ContiguousSpace::set_saved_mark();
  3174     _gc_alloc_region_list = r->next_gc_alloc_region();
  3175     r->set_next_gc_alloc_region(NULL);
  3176     r->set_is_gc_alloc_region(false);
  3177     if (r->is_survivor()) {
  3178       if (r->is_empty()) {
  3179         r->set_not_young();
  3180       } else {
  3181         _young_list->add_survivor_region(r);
  3184     if (r->is_empty()) {
  3185       ++_free_regions;
  3188 #ifdef G1_DEBUG
  3189   FindGCAllocRegion fa;
  3190   heap_region_iterate(&fa);
  3191 #endif // G1_DEBUG
  3195 bool G1CollectedHeap::check_gc_alloc_regions() {
  3196   // TODO: allocation regions check
  3197   return true;
  3200 void G1CollectedHeap::get_gc_alloc_regions() {
  3201   // First, let's check that the GC alloc region list is empty (it should)
  3202   assert(_gc_alloc_region_list == NULL, "invariant");
  3204   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3205     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  3206     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  3208     // Create new GC alloc regions.
  3209     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  3210     _retained_gc_alloc_regions[ap] = NULL;
  3212     if (alloc_region != NULL) {
  3213       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  3215       // let's make sure that the GC alloc region is not tagged as such
  3216       // outside a GC operation
  3217       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3219       if (alloc_region->in_collection_set() ||
  3220           alloc_region->top() == alloc_region->end() ||
  3221           alloc_region->top() == alloc_region->bottom() ||
  3222           alloc_region->isHumongous()) {
  3223         // we will discard the current GC alloc region if
  3224         // * it's in the collection set (it can happen!),
  3225         // * it's already full (no point in using it),
  3226         // * it's empty (this means that it was emptied during
  3227         // a cleanup and it should be on the free list now), or
  3228         // * it's humongous (this means that it was emptied
  3229         // during a cleanup and was added to the free list, but
  3230         // has been subseqently used to allocate a humongous
  3231         // object that may be less than the region size).
  3233         alloc_region = NULL;
  3237     if (alloc_region == NULL) {
  3238       // we will get a new GC alloc region
  3239       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3240     } else {
  3241       // the region was retained from the last collection
  3242       ++_gc_alloc_region_counts[ap];
  3243       if (G1PrintHeapRegions) {
  3244         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
  3245                                "top "PTR_FORMAT,
  3246                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
  3250     if (alloc_region != NULL) {
  3251       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3252       set_gc_alloc_region(ap, alloc_region);
  3255     assert(_gc_alloc_regions[ap] == NULL ||
  3256            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3257            "the GC alloc region should be tagged as such");
  3258     assert(_gc_alloc_regions[ap] == NULL ||
  3259            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3260            "the GC alloc region should be the same as the GC alloc list head");
  3262   // Set alternative regions for allocation purposes that have reached
  3263   // their limit.
  3264   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3265     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3266     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3267       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3270   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3273 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3274   // We keep a separate list of all regions that have been alloc regions in
  3275   // the current collection pause. Forget that now. This method will
  3276   // untag the GC alloc regions and tear down the GC alloc region
  3277   // list. It's desirable that no regions are tagged as GC alloc
  3278   // outside GCs.
  3279   forget_alloc_region_list();
  3281   // The current alloc regions contain objs that have survived
  3282   // collection. Make them no longer GC alloc regions.
  3283   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3284     HeapRegion* r = _gc_alloc_regions[ap];
  3285     _retained_gc_alloc_regions[ap] = NULL;
  3286     _gc_alloc_region_counts[ap] = 0;
  3288     if (r != NULL) {
  3289       // we retain nothing on _gc_alloc_regions between GCs
  3290       set_gc_alloc_region(ap, NULL);
  3292       if (r->is_empty()) {
  3293         // we didn't actually allocate anything in it; let's just put
  3294         // it on the free list
  3295         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3296         r->set_zero_fill_complete();
  3297         put_free_region_on_list_locked(r);
  3298       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3299         // retain it so that we can use it at the beginning of the next GC
  3300         _retained_gc_alloc_regions[ap] = r;
  3306 #ifndef PRODUCT
  3307 // Useful for debugging
  3309 void G1CollectedHeap::print_gc_alloc_regions() {
  3310   gclog_or_tty->print_cr("GC alloc regions");
  3311   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3312     HeapRegion* r = _gc_alloc_regions[ap];
  3313     if (r == NULL) {
  3314       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3315     } else {
  3316       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3317                              ap, r->bottom(), r->used());
  3321 #endif // PRODUCT
  3323 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3324   _drain_in_progress = false;
  3325   set_evac_failure_closure(cl);
  3326   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3329 void G1CollectedHeap::finalize_for_evac_failure() {
  3330   assert(_evac_failure_scan_stack != NULL &&
  3331          _evac_failure_scan_stack->length() == 0,
  3332          "Postcondition");
  3333   assert(!_drain_in_progress, "Postcondition");
  3334   delete _evac_failure_scan_stack;
  3335   _evac_failure_scan_stack = NULL;
  3340 // *** Sequential G1 Evacuation
  3342 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3343   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3344   // let the caller handle alloc failure
  3345   if (alloc_region == NULL) return NULL;
  3346   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3347          "Either the object is humongous or the region isn't");
  3348   HeapWord* block = alloc_region->allocate(word_size);
  3349   if (block == NULL) {
  3350     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3352   return block;
  3355 class G1IsAliveClosure: public BoolObjectClosure {
  3356   G1CollectedHeap* _g1;
  3357 public:
  3358   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3359   void do_object(oop p) { assert(false, "Do not call."); }
  3360   bool do_object_b(oop p) {
  3361     // It is reachable if it is outside the collection set, or is inside
  3362     // and forwarded.
  3364 #ifdef G1_DEBUG
  3365     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3366                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3367                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3368 #endif // G1_DEBUG
  3370     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3372 };
  3374 class G1KeepAliveClosure: public OopClosure {
  3375   G1CollectedHeap* _g1;
  3376 public:
  3377   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3378   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3379   void do_oop(      oop* p) {
  3380     oop obj = *p;
  3381 #ifdef G1_DEBUG
  3382     if (PrintGC && Verbose) {
  3383       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3384                              p, (void*) obj, (void*) *p);
  3386 #endif // G1_DEBUG
  3388     if (_g1->obj_in_cs(obj)) {
  3389       assert( obj->is_forwarded(), "invariant" );
  3390       *p = obj->forwardee();
  3391 #ifdef G1_DEBUG
  3392       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3393                              (void*) obj, (void*) *p);
  3394 #endif // G1_DEBUG
  3397 };
  3399 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3400 private:
  3401   G1CollectedHeap* _g1;
  3402   DirtyCardQueue *_dcq;
  3403   CardTableModRefBS* _ct_bs;
  3405 public:
  3406   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3407     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3409   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3410   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3411   template <class T> void do_oop_work(T* p) {
  3412     assert(_from->is_in_reserved(p), "paranoia");
  3413     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3414         !_from->is_survivor()) {
  3415       size_t card_index = _ct_bs->index_for(p);
  3416       if (_ct_bs->mark_card_deferred(card_index)) {
  3417         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3421 };
  3423 class RemoveSelfPointerClosure: public ObjectClosure {
  3424 private:
  3425   G1CollectedHeap* _g1;
  3426   ConcurrentMark* _cm;
  3427   HeapRegion* _hr;
  3428   size_t _prev_marked_bytes;
  3429   size_t _next_marked_bytes;
  3430   OopsInHeapRegionClosure *_cl;
  3431 public:
  3432   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3433     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3434     _next_marked_bytes(0), _cl(cl) {}
  3436   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3437   size_t next_marked_bytes() { return _next_marked_bytes; }
  3439   // The original idea here was to coalesce evacuated and dead objects.
  3440   // However that caused complications with the block offset table (BOT).
  3441   // In particular if there were two TLABs, one of them partially refined.
  3442   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3443   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3444   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3445   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3446   // would point into middle of the filler object.
  3447   //
  3448   // The current approach is to not coalesce and leave the BOT contents intact.
  3449   void do_object(oop obj) {
  3450     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3451       // The object failed to move.
  3452       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3453       _cm->markPrev(obj);
  3454       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3455       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3456       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3457         _cm->markAndGrayObjectIfNecessary(obj);
  3459       obj->set_mark(markOopDesc::prototype());
  3460       // While we were processing RSet buffers during the
  3461       // collection, we actually didn't scan any cards on the
  3462       // collection set, since we didn't want to update remebered
  3463       // sets with entries that point into the collection set, given
  3464       // that live objects fromthe collection set are about to move
  3465       // and such entries will be stale very soon. This change also
  3466       // dealt with a reliability issue which involved scanning a
  3467       // card in the collection set and coming across an array that
  3468       // was being chunked and looking malformed. The problem is
  3469       // that, if evacuation fails, we might have remembered set
  3470       // entries missing given that we skipped cards on the
  3471       // collection set. So, we'll recreate such entries now.
  3472       obj->oop_iterate(_cl);
  3473       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3474     } else {
  3475       // The object has been either evacuated or is dead. Fill it with a
  3476       // dummy object.
  3477       MemRegion mr((HeapWord*)obj, obj->size());
  3478       CollectedHeap::fill_with_object(mr);
  3479       _cm->clearRangeBothMaps(mr);
  3482 };
  3484 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3485   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  3486   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3487   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3488   OopsInHeapRegionClosure *cl;
  3489   if (G1DeferredRSUpdate) {
  3490     cl = &deferred_update;
  3491   } else {
  3492     cl = &immediate_update;
  3494   HeapRegion* cur = g1_policy()->collection_set();
  3495   while (cur != NULL) {
  3496     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3498     RemoveSelfPointerClosure rspc(_g1h, cl);
  3499     if (cur->evacuation_failed()) {
  3500       assert(cur->in_collection_set(), "bad CS");
  3501       cl->set_region(cur);
  3502       cur->object_iterate(&rspc);
  3504       // A number of manipulations to make the TAMS be the current top,
  3505       // and the marked bytes be the ones observed in the iteration.
  3506       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3507         // The comments below are the postconditions achieved by the
  3508         // calls.  Note especially the last such condition, which says that
  3509         // the count of marked bytes has been properly restored.
  3510         cur->note_start_of_marking(false);
  3511         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3512         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3513         // _next_marked_bytes == prev_marked_bytes.
  3514         cur->note_end_of_marking();
  3515         // _prev_top_at_mark_start == top(),
  3516         // _prev_marked_bytes == prev_marked_bytes
  3518       // If there is no mark in progress, we modified the _next variables
  3519       // above needlessly, but harmlessly.
  3520       if (_g1h->mark_in_progress()) {
  3521         cur->note_start_of_marking(false);
  3522         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3523         // _next_marked_bytes == next_marked_bytes.
  3526       // Now make sure the region has the right index in the sorted array.
  3527       g1_policy()->note_change_in_marked_bytes(cur);
  3529     cur = cur->next_in_collection_set();
  3531   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3533   // Now restore saved marks, if any.
  3534   if (_objs_with_preserved_marks != NULL) {
  3535     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3536     assert(_objs_with_preserved_marks->length() ==
  3537            _preserved_marks_of_objs->length(), "Both or none.");
  3538     guarantee(_objs_with_preserved_marks->length() ==
  3539               _preserved_marks_of_objs->length(), "Both or none.");
  3540     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3541       oop obj   = _objs_with_preserved_marks->at(i);
  3542       markOop m = _preserved_marks_of_objs->at(i);
  3543       obj->set_mark(m);
  3545     // Delete the preserved marks growable arrays (allocated on the C heap).
  3546     delete _objs_with_preserved_marks;
  3547     delete _preserved_marks_of_objs;
  3548     _objs_with_preserved_marks = NULL;
  3549     _preserved_marks_of_objs = NULL;
  3553 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3554   _evac_failure_scan_stack->push(obj);
  3557 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3558   assert(_evac_failure_scan_stack != NULL, "precondition");
  3560   while (_evac_failure_scan_stack->length() > 0) {
  3561      oop obj = _evac_failure_scan_stack->pop();
  3562      _evac_failure_closure->set_region(heap_region_containing(obj));
  3563      obj->oop_iterate_backwards(_evac_failure_closure);
  3567 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3568   markOop m = old->mark();
  3569   // forward to self
  3570   assert(!old->is_forwarded(), "precondition");
  3572   old->forward_to(old);
  3573   handle_evacuation_failure_common(old, m);
  3576 oop
  3577 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3578                                                oop old) {
  3579   markOop m = old->mark();
  3580   oop forward_ptr = old->forward_to_atomic(old);
  3581   if (forward_ptr == NULL) {
  3582     // Forward-to-self succeeded.
  3583     if (_evac_failure_closure != cl) {
  3584       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3585       assert(!_drain_in_progress,
  3586              "Should only be true while someone holds the lock.");
  3587       // Set the global evac-failure closure to the current thread's.
  3588       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3589       set_evac_failure_closure(cl);
  3590       // Now do the common part.
  3591       handle_evacuation_failure_common(old, m);
  3592       // Reset to NULL.
  3593       set_evac_failure_closure(NULL);
  3594     } else {
  3595       // The lock is already held, and this is recursive.
  3596       assert(_drain_in_progress, "This should only be the recursive case.");
  3597       handle_evacuation_failure_common(old, m);
  3599     return old;
  3600   } else {
  3601     // Someone else had a place to copy it.
  3602     return forward_ptr;
  3606 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3607   set_evacuation_failed(true);
  3609   preserve_mark_if_necessary(old, m);
  3611   HeapRegion* r = heap_region_containing(old);
  3612   if (!r->evacuation_failed()) {
  3613     r->set_evacuation_failed(true);
  3614     if (G1PrintHeapRegions) {
  3615       gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
  3616                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3617                           r, r->bottom(), r->end());
  3621   push_on_evac_failure_scan_stack(old);
  3623   if (!_drain_in_progress) {
  3624     // prevent recursion in copy_to_survivor_space()
  3625     _drain_in_progress = true;
  3626     drain_evac_failure_scan_stack();
  3627     _drain_in_progress = false;
  3631 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3632   if (m != markOopDesc::prototype()) {
  3633     if (_objs_with_preserved_marks == NULL) {
  3634       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3635       _objs_with_preserved_marks =
  3636         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3637       _preserved_marks_of_objs =
  3638         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3640     _objs_with_preserved_marks->push(obj);
  3641     _preserved_marks_of_objs->push(m);
  3645 // *** Parallel G1 Evacuation
  3647 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3648                                                   size_t word_size) {
  3649   assert(!isHumongous(word_size),
  3650          err_msg("we should not be seeing humongous allocation requests "
  3651                  "during GC, word_size = "SIZE_FORMAT, word_size));
  3653   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3654   // let the caller handle alloc failure
  3655   if (alloc_region == NULL) return NULL;
  3657   HeapWord* block = alloc_region->par_allocate(word_size);
  3658   if (block == NULL) {
  3659     MutexLockerEx x(par_alloc_during_gc_lock(),
  3660                     Mutex::_no_safepoint_check_flag);
  3661     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3663   return block;
  3666 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3667                                             bool par) {
  3668   // Another thread might have obtained alloc_region for the given
  3669   // purpose, and might be attempting to allocate in it, and might
  3670   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3671   // region below until we're sure the last allocation has happened.
  3672   // We ensure this by allocating the remaining space with a garbage
  3673   // object.
  3674   if (par) par_allocate_remaining_space(alloc_region);
  3675   // Now we can do the post-GC stuff on the region.
  3676   alloc_region->note_end_of_copying();
  3677   g1_policy()->record_after_bytes(alloc_region->used());
  3680 HeapWord*
  3681 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3682                                          HeapRegion*    alloc_region,
  3683                                          bool           par,
  3684                                          size_t         word_size) {
  3685   assert(!isHumongous(word_size),
  3686          err_msg("we should not be seeing humongous allocation requests "
  3687                  "during GC, word_size = "SIZE_FORMAT, word_size));
  3689   HeapWord* block = NULL;
  3690   // In the parallel case, a previous thread to obtain the lock may have
  3691   // already assigned a new gc_alloc_region.
  3692   if (alloc_region != _gc_alloc_regions[purpose]) {
  3693     assert(par, "But should only happen in parallel case.");
  3694     alloc_region = _gc_alloc_regions[purpose];
  3695     if (alloc_region == NULL) return NULL;
  3696     block = alloc_region->par_allocate(word_size);
  3697     if (block != NULL) return block;
  3698     // Otherwise, continue; this new region is empty, too.
  3700   assert(alloc_region != NULL, "We better have an allocation region");
  3701   retire_alloc_region(alloc_region, par);
  3703   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3704     // Cannot allocate more regions for the given purpose.
  3705     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3706     // Is there an alternative?
  3707     if (purpose != alt_purpose) {
  3708       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3709       // Has not the alternative region been aliased?
  3710       if (alloc_region != alt_region && alt_region != NULL) {
  3711         // Try to allocate in the alternative region.
  3712         if (par) {
  3713           block = alt_region->par_allocate(word_size);
  3714         } else {
  3715           block = alt_region->allocate(word_size);
  3717         // Make an alias.
  3718         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3719         if (block != NULL) {
  3720           return block;
  3722         retire_alloc_region(alt_region, par);
  3724       // Both the allocation region and the alternative one are full
  3725       // and aliased, replace them with a new allocation region.
  3726       purpose = alt_purpose;
  3727     } else {
  3728       set_gc_alloc_region(purpose, NULL);
  3729       return NULL;
  3733   // Now allocate a new region for allocation.
  3734   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3736   // let the caller handle alloc failure
  3737   if (alloc_region != NULL) {
  3739     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3740     assert(alloc_region->saved_mark_at_top(),
  3741            "Mark should have been saved already.");
  3742     // We used to assert that the region was zero-filled here, but no
  3743     // longer.
  3745     // This must be done last: once it's installed, other regions may
  3746     // allocate in it (without holding the lock.)
  3747     set_gc_alloc_region(purpose, alloc_region);
  3749     if (par) {
  3750       block = alloc_region->par_allocate(word_size);
  3751     } else {
  3752       block = alloc_region->allocate(word_size);
  3754     // Caller handles alloc failure.
  3755   } else {
  3756     // This sets other apis using the same old alloc region to NULL, also.
  3757     set_gc_alloc_region(purpose, NULL);
  3759   return block;  // May be NULL.
  3762 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3763   HeapWord* block = NULL;
  3764   size_t free_words;
  3765   do {
  3766     free_words = r->free()/HeapWordSize;
  3767     // If there's too little space, no one can allocate, so we're done.
  3768     if (free_words < CollectedHeap::min_fill_size()) return;
  3769     // Otherwise, try to claim it.
  3770     block = r->par_allocate(free_words);
  3771   } while (block == NULL);
  3772   fill_with_object(block, free_words);
  3775 #ifndef PRODUCT
  3776 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3777   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3778   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3779   return true;
  3781 #endif // PRODUCT
  3783 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3784   : _g1h(g1h),
  3785     _refs(g1h->task_queue(queue_num)),
  3786     _dcq(&g1h->dirty_card_queue_set()),
  3787     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3788     _g1_rem(g1h->g1_rem_set()),
  3789     _hash_seed(17), _queue_num(queue_num),
  3790     _term_attempts(0),
  3791     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  3792     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  3793     _age_table(false),
  3794     _strong_roots_time(0), _term_time(0),
  3795     _alloc_buffer_waste(0), _undo_waste(0)
  3797   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3798   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3799   // non-young regions (where the age is -1)
  3800   // We also add a few elements at the beginning and at the end in
  3801   // an attempt to eliminate cache contention
  3802   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3803   size_t array_length = PADDING_ELEM_NUM +
  3804                         real_length +
  3805                         PADDING_ELEM_NUM;
  3806   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3807   if (_surviving_young_words_base == NULL)
  3808     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3809                           "Not enough space for young surv histo.");
  3810   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3811   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3813   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  3814   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  3816   _start = os::elapsedTime();
  3819 void
  3820 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  3822   st->print_raw_cr("GC Termination Stats");
  3823   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  3824                    " ------waste (KiB)------");
  3825   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  3826                    "  total   alloc    undo");
  3827   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  3828                    " ------- ------- -------");
  3831 void
  3832 G1ParScanThreadState::print_termination_stats(int i,
  3833                                               outputStream* const st) const
  3835   const double elapsed_ms = elapsed_time() * 1000.0;
  3836   const double s_roots_ms = strong_roots_time() * 1000.0;
  3837   const double term_ms    = term_time() * 1000.0;
  3838   st->print_cr("%3d %9.2f %9.2f %6.2f "
  3839                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  3840                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  3841                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  3842                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  3843                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  3844                alloc_buffer_waste() * HeapWordSize / K,
  3845                undo_waste() * HeapWordSize / K);
  3848 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3849   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3850   _par_scan_state(par_scan_state) { }
  3852 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3853   // This is called _after_ do_oop_work has been called, hence after
  3854   // the object has been relocated to its new location and *p points
  3855   // to its new location.
  3857   T heap_oop = oopDesc::load_heap_oop(p);
  3858   if (!oopDesc::is_null(heap_oop)) {
  3859     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3860     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3861            "shouldn't still be in the CSet if evacuation didn't fail.");
  3862     HeapWord* addr = (HeapWord*)obj;
  3863     if (_g1->is_in_g1_reserved(addr))
  3864       _cm->grayRoot(oop(addr));
  3868 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3869   size_t    word_sz = old->size();
  3870   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3871   // +1 to make the -1 indexes valid...
  3872   int       young_index = from_region->young_index_in_cset()+1;
  3873   assert( (from_region->is_young() && young_index > 0) ||
  3874           (!from_region->is_young() && young_index == 0), "invariant" );
  3875   G1CollectorPolicy* g1p = _g1->g1_policy();
  3876   markOop m = old->mark();
  3877   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3878                                            : m->age();
  3879   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3880                                                              word_sz);
  3881   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3882   oop       obj     = oop(obj_ptr);
  3884   if (obj_ptr == NULL) {
  3885     // This will either forward-to-self, or detect that someone else has
  3886     // installed a forwarding pointer.
  3887     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3888     return _g1->handle_evacuation_failure_par(cl, old);
  3891   // We're going to allocate linearly, so might as well prefetch ahead.
  3892   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3894   oop forward_ptr = old->forward_to_atomic(obj);
  3895   if (forward_ptr == NULL) {
  3896     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3897     if (g1p->track_object_age(alloc_purpose)) {
  3898       // We could simply do obj->incr_age(). However, this causes a
  3899       // performance issue. obj->incr_age() will first check whether
  3900       // the object has a displaced mark by checking its mark word;
  3901       // getting the mark word from the new location of the object
  3902       // stalls. So, given that we already have the mark word and we
  3903       // are about to install it anyway, it's better to increase the
  3904       // age on the mark word, when the object does not have a
  3905       // displaced mark word. We're not expecting many objects to have
  3906       // a displaced marked word, so that case is not optimized
  3907       // further (it could be...) and we simply call obj->incr_age().
  3909       if (m->has_displaced_mark_helper()) {
  3910         // in this case, we have to install the mark word first,
  3911         // otherwise obj looks to be forwarded (the old mark word,
  3912         // which contains the forward pointer, was copied)
  3913         obj->set_mark(m);
  3914         obj->incr_age();
  3915       } else {
  3916         m = m->incr_age();
  3917         obj->set_mark(m);
  3919       _par_scan_state->age_table()->add(obj, word_sz);
  3920     } else {
  3921       obj->set_mark(m);
  3924     // preserve "next" mark bit
  3925     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3926       if (!use_local_bitmaps ||
  3927           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3928         // if we couldn't mark it on the local bitmap (this happens when
  3929         // the object was not allocated in the GCLab), we have to bite
  3930         // the bullet and do the standard parallel mark
  3931         _cm->markAndGrayObjectIfNecessary(obj);
  3933 #if 1
  3934       if (_g1->isMarkedNext(old)) {
  3935         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3937 #endif
  3940     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3941     surv_young_words[young_index] += word_sz;
  3943     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3944       arrayOop(old)->set_length(0);
  3945       oop* old_p = set_partial_array_mask(old);
  3946       _par_scan_state->push_on_queue(old_p);
  3947     } else {
  3948       // No point in using the slower heap_region_containing() method,
  3949       // given that we know obj is in the heap.
  3950       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3951       obj->oop_iterate_backwards(_scanner);
  3953   } else {
  3954     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3955     obj = forward_ptr;
  3957   return obj;
  3960 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  3961 template <class T>
  3962 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  3963 ::do_oop_work(T* p) {
  3964   oop obj = oopDesc::load_decode_heap_oop(p);
  3965   assert(barrier != G1BarrierRS || obj != NULL,
  3966          "Precondition: G1BarrierRS implies obj is nonNull");
  3968   // here the null check is implicit in the cset_fast_test() test
  3969   if (_g1->in_cset_fast_test(obj)) {
  3970 #if G1_REM_SET_LOGGING
  3971     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3972                            "into CS.", p, (void*) obj);
  3973 #endif
  3974     if (obj->is_forwarded()) {
  3975       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3976     } else {
  3977       oop copy_oop = copy_to_survivor_space(obj);
  3978       oopDesc::encode_store_heap_oop(p, copy_oop);
  3980     // When scanning the RS, we only care about objs in CS.
  3981     if (barrier == G1BarrierRS) {
  3982       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3986   if (barrier == G1BarrierEvac && obj != NULL) {
  3987     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3990   if (do_gen_barrier && obj != NULL) {
  3991     par_do_barrier(p);
  3995 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  3996 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  3998 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3999   assert(has_partial_array_mask(p), "invariant");
  4000   oop old = clear_partial_array_mask(p);
  4001   assert(old->is_objArray(), "must be obj array");
  4002   assert(old->is_forwarded(), "must be forwarded");
  4003   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4005   objArrayOop obj = objArrayOop(old->forwardee());
  4006   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4007   // Process ParGCArrayScanChunk elements now
  4008   // and push the remainder back onto queue
  4009   int start     = arrayOop(old)->length();
  4010   int end       = obj->length();
  4011   int remainder = end - start;
  4012   assert(start <= end, "just checking");
  4013   if (remainder > 2 * ParGCArrayScanChunk) {
  4014     // Test above combines last partial chunk with a full chunk
  4015     end = start + ParGCArrayScanChunk;
  4016     arrayOop(old)->set_length(end);
  4017     // Push remainder.
  4018     oop* old_p = set_partial_array_mask(old);
  4019     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4020     _par_scan_state->push_on_queue(old_p);
  4021   } else {
  4022     // Restore length so that the heap remains parsable in
  4023     // case of evacuation failure.
  4024     arrayOop(old)->set_length(end);
  4026   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4027   // process our set of indices (include header in first chunk)
  4028   obj->oop_iterate_range(&_scanner, start, end);
  4031 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4032 protected:
  4033   G1CollectedHeap*              _g1h;
  4034   G1ParScanThreadState*         _par_scan_state;
  4035   RefToScanQueueSet*            _queues;
  4036   ParallelTaskTerminator*       _terminator;
  4038   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4039   RefToScanQueueSet*      queues()         { return _queues; }
  4040   ParallelTaskTerminator* terminator()     { return _terminator; }
  4042 public:
  4043   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4044                                 G1ParScanThreadState* par_scan_state,
  4045                                 RefToScanQueueSet* queues,
  4046                                 ParallelTaskTerminator* terminator)
  4047     : _g1h(g1h), _par_scan_state(par_scan_state),
  4048       _queues(queues), _terminator(terminator) {}
  4050   void do_void() {
  4051     G1ParScanThreadState* pss = par_scan_state();
  4052     while (true) {
  4053       pss->trim_queue();
  4055       StarTask stolen_task;
  4056       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4057         // slightly paranoid tests; I'm trying to catch potential
  4058         // problems before we go into push_on_queue to know where the
  4059         // problem is coming from
  4060         assert((oop*)stolen_task != NULL, "Error");
  4061         if (stolen_task.is_narrow()) {
  4062           assert(UseCompressedOops, "Error");
  4063           narrowOop* p = (narrowOop*) stolen_task;
  4064           assert(has_partial_array_mask(p) ||
  4065                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "Error");
  4066           pss->push_on_queue(p);
  4067         } else {
  4068           oop* p = (oop*) stolen_task;
  4069           assert(has_partial_array_mask(p) || _g1h->is_in_g1_reserved(*p), "Error");
  4070           pss->push_on_queue(p);
  4072         continue;
  4074       pss->start_term_time();
  4075       if (terminator()->offer_termination()) break;
  4076       pss->end_term_time();
  4078     pss->end_term_time();
  4079     pss->retire_alloc_buffers();
  4081 };
  4083 class G1ParTask : public AbstractGangTask {
  4084 protected:
  4085   G1CollectedHeap*       _g1h;
  4086   RefToScanQueueSet      *_queues;
  4087   ParallelTaskTerminator _terminator;
  4088   int _n_workers;
  4090   Mutex _stats_lock;
  4091   Mutex* stats_lock() { return &_stats_lock; }
  4093   size_t getNCards() {
  4094     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4095       / G1BlockOffsetSharedArray::N_bytes;
  4098 public:
  4099   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4100     : AbstractGangTask("G1 collection"),
  4101       _g1h(g1h),
  4102       _queues(task_queues),
  4103       _terminator(workers, _queues),
  4104       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4105       _n_workers(workers)
  4106   {}
  4108   RefToScanQueueSet* queues() { return _queues; }
  4110   RefToScanQueue *work_queue(int i) {
  4111     return queues()->queue(i);
  4114   void work(int i) {
  4115     if (i >= _n_workers) return;  // no work needed this round
  4117     double start_time_ms = os::elapsedTime() * 1000.0;
  4118     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4120     ResourceMark rm;
  4121     HandleMark   hm;
  4123     G1ParScanThreadState            pss(_g1h, i);
  4124     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4125     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4126     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4128     pss.set_evac_closure(&scan_evac_cl);
  4129     pss.set_evac_failure_closure(&evac_failure_cl);
  4130     pss.set_partial_scan_closure(&partial_scan_cl);
  4132     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4133     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4134     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4135     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4137     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4138     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4139     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4141     OopsInHeapRegionClosure        *scan_root_cl;
  4142     OopsInHeapRegionClosure        *scan_perm_cl;
  4144     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4145       scan_root_cl = &scan_mark_root_cl;
  4146       scan_perm_cl = &scan_mark_perm_cl;
  4147     } else {
  4148       scan_root_cl = &only_scan_root_cl;
  4149       scan_perm_cl = &only_scan_perm_cl;
  4152     pss.start_strong_roots();
  4153     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4154                                   SharedHeap::SO_AllClasses,
  4155                                   scan_root_cl,
  4156                                   &push_heap_rs_cl,
  4157                                   scan_perm_cl,
  4158                                   i);
  4159     pss.end_strong_roots();
  4161       double start = os::elapsedTime();
  4162       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4163       evac.do_void();
  4164       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4165       double term_ms = pss.term_time()*1000.0;
  4166       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4167       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4169     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4170     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4172     // Clean up any par-expanded rem sets.
  4173     HeapRegionRemSet::par_cleanup();
  4175     if (ParallelGCVerbose) {
  4176       MutexLocker x(stats_lock());
  4177       pss.print_termination_stats(i);
  4180     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4181     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4182     double end_time_ms = os::elapsedTime() * 1000.0;
  4183     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4185 };
  4187 // *** Common G1 Evacuation Stuff
  4189 // This method is run in a GC worker.
  4191 void
  4192 G1CollectedHeap::
  4193 g1_process_strong_roots(bool collecting_perm_gen,
  4194                         SharedHeap::ScanningOption so,
  4195                         OopClosure* scan_non_heap_roots,
  4196                         OopsInHeapRegionClosure* scan_rs,
  4197                         OopsInGenClosure* scan_perm,
  4198                         int worker_i) {
  4199   // First scan the strong roots, including the perm gen.
  4200   double ext_roots_start = os::elapsedTime();
  4201   double closure_app_time_sec = 0.0;
  4203   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4204   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4205   buf_scan_perm.set_generation(perm_gen());
  4207   // Walk the code cache w/o buffering, because StarTask cannot handle
  4208   // unaligned oop locations.
  4209   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4211   process_strong_roots(false, // no scoping; this is parallel code
  4212                        collecting_perm_gen, so,
  4213                        &buf_scan_non_heap_roots,
  4214                        &eager_scan_code_roots,
  4215                        &buf_scan_perm);
  4217   // Finish up any enqueued closure apps.
  4218   buf_scan_non_heap_roots.done();
  4219   buf_scan_perm.done();
  4220   double ext_roots_end = os::elapsedTime();
  4221   g1_policy()->reset_obj_copy_time(worker_i);
  4222   double obj_copy_time_sec =
  4223     buf_scan_non_heap_roots.closure_app_seconds() +
  4224     buf_scan_perm.closure_app_seconds();
  4225   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4226   double ext_root_time_ms =
  4227     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4228   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4230   // Scan strong roots in mark stack.
  4231   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4232     concurrent_mark()->oops_do(scan_non_heap_roots);
  4234   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4235   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4237   // XXX What should this be doing in the parallel case?
  4238   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4239   // Now scan the complement of the collection set.
  4240   if (scan_rs != NULL) {
  4241     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4243   // Finish with the ref_processor roots.
  4244   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4245     ref_processor()->oops_do(scan_non_heap_roots);
  4247   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4248   _process_strong_tasks->all_tasks_completed();
  4251 void
  4252 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4253                                        OopClosure* non_root_closure) {
  4254   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4255   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4259 class SaveMarksClosure: public HeapRegionClosure {
  4260 public:
  4261   bool doHeapRegion(HeapRegion* r) {
  4262     r->save_marks();
  4263     return false;
  4265 };
  4267 void G1CollectedHeap::save_marks() {
  4268   if (!CollectedHeap::use_parallel_gc_threads()) {
  4269     SaveMarksClosure sm;
  4270     heap_region_iterate(&sm);
  4272   // We do this even in the parallel case
  4273   perm_gen()->save_marks();
  4276 void G1CollectedHeap::evacuate_collection_set() {
  4277   set_evacuation_failed(false);
  4279   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4280   concurrent_g1_refine()->set_use_cache(false);
  4281   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4283   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4284   set_par_threads(n_workers);
  4285   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4287   init_for_evac_failure(NULL);
  4289   rem_set()->prepare_for_younger_refs_iterate(true);
  4291   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4292   double start_par = os::elapsedTime();
  4293   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4294     // The individual threads will set their evac-failure closures.
  4295     StrongRootsScope srs(this);
  4296     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  4297     workers()->run_task(&g1_par_task);
  4298   } else {
  4299     StrongRootsScope srs(this);
  4300     g1_par_task.work(0);
  4303   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4304   g1_policy()->record_par_time(par_time);
  4305   set_par_threads(0);
  4306   // Is this the right thing to do here?  We don't save marks
  4307   // on individual heap regions when we allocate from
  4308   // them in parallel, so this seems like the correct place for this.
  4309   retire_all_alloc_regions();
  4311     G1IsAliveClosure is_alive(this);
  4312     G1KeepAliveClosure keep_alive(this);
  4313     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4315   release_gc_alloc_regions(false /* totally */);
  4316   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4318   concurrent_g1_refine()->clear_hot_cache();
  4319   concurrent_g1_refine()->set_use_cache(true);
  4321   finalize_for_evac_failure();
  4323   // Must do this before removing self-forwarding pointers, which clears
  4324   // the per-region evac-failure flags.
  4325   concurrent_mark()->complete_marking_in_collection_set();
  4327   if (evacuation_failed()) {
  4328     remove_self_forwarding_pointers();
  4329     if (PrintGCDetails) {
  4330       gclog_or_tty->print(" (to-space overflow)");
  4331     } else if (PrintGC) {
  4332       gclog_or_tty->print("--");
  4336   if (G1DeferredRSUpdate) {
  4337     RedirtyLoggedCardTableEntryFastClosure redirty;
  4338     dirty_card_queue_set().set_closure(&redirty);
  4339     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4341     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4342     dcq.merge_bufferlists(&dirty_card_queue_set());
  4343     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4345   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4348 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4349   size_t pre_used = 0;
  4350   size_t cleared_h_regions = 0;
  4351   size_t freed_regions = 0;
  4352   UncleanRegionList local_list;
  4354   HeapWord* start = hr->bottom();
  4355   HeapWord* end   = hr->prev_top_at_mark_start();
  4356   size_t used_bytes = hr->used();
  4357   size_t live_bytes = hr->max_live_bytes();
  4358   if (used_bytes > 0) {
  4359     guarantee( live_bytes <= used_bytes, "invariant" );
  4360   } else {
  4361     guarantee( live_bytes == 0, "invariant" );
  4364   size_t garbage_bytes = used_bytes - live_bytes;
  4365   if (garbage_bytes > 0)
  4366     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4368   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4369                    &local_list);
  4370   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4371                           &local_list);
  4374 void
  4375 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4376                                   size_t& pre_used,
  4377                                   size_t& cleared_h_regions,
  4378                                   size_t& freed_regions,
  4379                                   UncleanRegionList* list,
  4380                                   bool par) {
  4381   pre_used += hr->used();
  4382   if (hr->isHumongous()) {
  4383     assert(hr->startsHumongous(),
  4384            "Only the start of a humongous region should be freed.");
  4385     int ind = _hrs->find(hr);
  4386     assert(ind != -1, "Should have an index.");
  4387     // Clear the start region.
  4388     hr->hr_clear(par, true /*clear_space*/);
  4389     list->insert_before_head(hr);
  4390     cleared_h_regions++;
  4391     freed_regions++;
  4392     // Clear any continued regions.
  4393     ind++;
  4394     while ((size_t)ind < n_regions()) {
  4395       HeapRegion* hrc = _hrs->at(ind);
  4396       if (!hrc->continuesHumongous()) break;
  4397       // Otherwise, does continue the H region.
  4398       assert(hrc->humongous_start_region() == hr, "Huh?");
  4399       hrc->hr_clear(par, true /*clear_space*/);
  4400       cleared_h_regions++;
  4401       freed_regions++;
  4402       list->insert_before_head(hrc);
  4403       ind++;
  4405   } else {
  4406     hr->hr_clear(par, true /*clear_space*/);
  4407     list->insert_before_head(hr);
  4408     freed_regions++;
  4409     // If we're using clear2, this should not be enabled.
  4410     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4414 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4415                                               size_t cleared_h_regions,
  4416                                               size_t freed_regions,
  4417                                               UncleanRegionList* list) {
  4418   if (list != NULL && list->sz() > 0) {
  4419     prepend_region_list_on_unclean_list(list);
  4421   // Acquire a lock, if we're parallel, to update possibly-shared
  4422   // variables.
  4423   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4425     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4426     _summary_bytes_used -= pre_used;
  4427     _num_humongous_regions -= (int) cleared_h_regions;
  4428     _free_regions += freed_regions;
  4433 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4434   while (list != NULL) {
  4435     guarantee( list->is_young(), "invariant" );
  4437     HeapWord* bottom = list->bottom();
  4438     HeapWord* end = list->end();
  4439     MemRegion mr(bottom, end);
  4440     ct_bs->dirty(mr);
  4442     list = list->get_next_young_region();
  4447 class G1ParCleanupCTTask : public AbstractGangTask {
  4448   CardTableModRefBS* _ct_bs;
  4449   G1CollectedHeap* _g1h;
  4450   HeapRegion* volatile _su_head;
  4451 public:
  4452   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4453                      G1CollectedHeap* g1h,
  4454                      HeapRegion* survivor_list) :
  4455     AbstractGangTask("G1 Par Cleanup CT Task"),
  4456     _ct_bs(ct_bs),
  4457     _g1h(g1h),
  4458     _su_head(survivor_list)
  4459   { }
  4461   void work(int i) {
  4462     HeapRegion* r;
  4463     while (r = _g1h->pop_dirty_cards_region()) {
  4464       clear_cards(r);
  4466     // Redirty the cards of the survivor regions.
  4467     dirty_list(&this->_su_head);
  4470   void clear_cards(HeapRegion* r) {
  4471     // Cards for Survivor regions will be dirtied later.
  4472     if (!r->is_survivor()) {
  4473       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4477   void dirty_list(HeapRegion* volatile * head_ptr) {
  4478     HeapRegion* head;
  4479     do {
  4480       // Pop region off the list.
  4481       head = *head_ptr;
  4482       if (head != NULL) {
  4483         HeapRegion* r = (HeapRegion*)
  4484           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4485         if (r == head) {
  4486           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4487           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4490     } while (*head_ptr != NULL);
  4492 };
  4495 #ifndef PRODUCT
  4496 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4497   CardTableModRefBS* _ct_bs;
  4498 public:
  4499   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4500     : _ct_bs(ct_bs)
  4501   { }
  4502   virtual bool doHeapRegion(HeapRegion* r)
  4504     MemRegion mr(r->bottom(), r->end());
  4505     if (r->is_survivor()) {
  4506       _ct_bs->verify_dirty_region(mr);
  4507     } else {
  4508       _ct_bs->verify_clean_region(mr);
  4510     return false;
  4512 };
  4513 #endif
  4515 void G1CollectedHeap::cleanUpCardTable() {
  4516   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4517   double start = os::elapsedTime();
  4519   // Iterate over the dirty cards region list.
  4520   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4521                                   _young_list->first_survivor_region());
  4523   if (ParallelGCThreads > 0) {
  4524     set_par_threads(workers()->total_workers());
  4525     workers()->run_task(&cleanup_task);
  4526     set_par_threads(0);
  4527   } else {
  4528     while (_dirty_cards_region_list) {
  4529       HeapRegion* r = _dirty_cards_region_list;
  4530       cleanup_task.clear_cards(r);
  4531       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4532       if (_dirty_cards_region_list == r) {
  4533         // The last region.
  4534         _dirty_cards_region_list = NULL;
  4536       r->set_next_dirty_cards_region(NULL);
  4538     // now, redirty the cards of the survivor regions
  4539     // (it seemed faster to do it this way, instead of iterating over
  4540     // all regions and then clearing / dirtying as appropriate)
  4541     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4544   double elapsed = os::elapsedTime() - start;
  4545   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4546 #ifndef PRODUCT
  4547   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4548     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4549     heap_region_iterate(&cleanup_verifier);
  4551 #endif
  4554 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4555   if (g1_policy()->should_do_collection_pause(word_size)) {
  4556     do_collection_pause();
  4560 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4561   double young_time_ms     = 0.0;
  4562   double non_young_time_ms = 0.0;
  4564   // Since the collection set is a superset of the the young list,
  4565   // all we need to do to clear the young list is clear its
  4566   // head and length, and unlink any young regions in the code below
  4567   _young_list->clear();
  4569   G1CollectorPolicy* policy = g1_policy();
  4571   double start_sec = os::elapsedTime();
  4572   bool non_young = true;
  4574   HeapRegion* cur = cs_head;
  4575   int age_bound = -1;
  4576   size_t rs_lengths = 0;
  4578   while (cur != NULL) {
  4579     if (non_young) {
  4580       if (cur->is_young()) {
  4581         double end_sec = os::elapsedTime();
  4582         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4583         non_young_time_ms += elapsed_ms;
  4585         start_sec = os::elapsedTime();
  4586         non_young = false;
  4588     } else {
  4589       if (!cur->is_on_free_list()) {
  4590         double end_sec = os::elapsedTime();
  4591         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4592         young_time_ms += elapsed_ms;
  4594         start_sec = os::elapsedTime();
  4595         non_young = true;
  4599     rs_lengths += cur->rem_set()->occupied();
  4601     HeapRegion* next = cur->next_in_collection_set();
  4602     assert(cur->in_collection_set(), "bad CS");
  4603     cur->set_next_in_collection_set(NULL);
  4604     cur->set_in_collection_set(false);
  4606     if (cur->is_young()) {
  4607       int index = cur->young_index_in_cset();
  4608       guarantee( index != -1, "invariant" );
  4609       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4610       size_t words_survived = _surviving_young_words[index];
  4611       cur->record_surv_words_in_group(words_survived);
  4613       // At this point the we have 'popped' cur from the collection set
  4614       // (linked via next_in_collection_set()) but it is still in the
  4615       // young list (linked via next_young_region()). Clear the
  4616       // _next_young_region field.
  4617       cur->set_next_young_region(NULL);
  4618     } else {
  4619       int index = cur->young_index_in_cset();
  4620       guarantee( index == -1, "invariant" );
  4623     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4624             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4625             "invariant" );
  4627     if (!cur->evacuation_failed()) {
  4628       // And the region is empty.
  4629       assert(!cur->is_empty(),
  4630              "Should not have empty regions in a CS.");
  4631       free_region(cur);
  4632     } else {
  4633       cur->uninstall_surv_rate_group();
  4634       if (cur->is_young())
  4635         cur->set_young_index_in_cset(-1);
  4636       cur->set_not_young();
  4637       cur->set_evacuation_failed(false);
  4639     cur = next;
  4642   policy->record_max_rs_lengths(rs_lengths);
  4643   policy->cset_regions_freed();
  4645   double end_sec = os::elapsedTime();
  4646   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4647   if (non_young)
  4648     non_young_time_ms += elapsed_ms;
  4649   else
  4650     young_time_ms += elapsed_ms;
  4652   policy->record_young_free_cset_time_ms(young_time_ms);
  4653   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4656 // This routine is similar to the above but does not record
  4657 // any policy statistics or update free lists; we are abandoning
  4658 // the current incremental collection set in preparation of a
  4659 // full collection. After the full GC we will start to build up
  4660 // the incremental collection set again.
  4661 // This is only called when we're doing a full collection
  4662 // and is immediately followed by the tearing down of the young list.
  4664 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  4665   HeapRegion* cur = cs_head;
  4667   while (cur != NULL) {
  4668     HeapRegion* next = cur->next_in_collection_set();
  4669     assert(cur->in_collection_set(), "bad CS");
  4670     cur->set_next_in_collection_set(NULL);
  4671     cur->set_in_collection_set(false);
  4672     cur->set_young_index_in_cset(-1);
  4673     cur = next;
  4677 HeapRegion*
  4678 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4679   assert(ZF_mon->owned_by_self(), "Precondition");
  4680   HeapRegion* res = pop_unclean_region_list_locked();
  4681   if (res != NULL) {
  4682     assert(!res->continuesHumongous() &&
  4683            res->zero_fill_state() != HeapRegion::Allocated,
  4684            "Only free regions on unclean list.");
  4685     if (zero_filled) {
  4686       res->ensure_zero_filled_locked();
  4687       res->set_zero_fill_allocated();
  4690   return res;
  4693 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4694   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4695   return alloc_region_from_unclean_list_locked(zero_filled);
  4698 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4699   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4700   put_region_on_unclean_list_locked(r);
  4701   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4704 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4705   MutexLockerEx x(Cleanup_mon);
  4706   set_unclean_regions_coming_locked(b);
  4709 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4710   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4711   _unclean_regions_coming = b;
  4712   // Wake up mutator threads that might be waiting for completeCleanup to
  4713   // finish.
  4714   if (!b) Cleanup_mon->notify_all();
  4717 void G1CollectedHeap::wait_for_cleanup_complete() {
  4718   MutexLockerEx x(Cleanup_mon);
  4719   wait_for_cleanup_complete_locked();
  4722 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4723   assert(Cleanup_mon->owned_by_self(), "precondition");
  4724   while (_unclean_regions_coming) {
  4725     Cleanup_mon->wait();
  4729 void
  4730 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4731   assert(ZF_mon->owned_by_self(), "precondition.");
  4732 #ifdef ASSERT
  4733   if (r->is_gc_alloc_region()) {
  4734     ResourceMark rm;
  4735     stringStream region_str;
  4736     print_on(&region_str);
  4737     assert(!r->is_gc_alloc_region(), err_msg("Unexpected GC allocation region: %s",
  4738                                              region_str.as_string()));
  4740 #endif
  4741   _unclean_region_list.insert_before_head(r);
  4744 void
  4745 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4746   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4747   prepend_region_list_on_unclean_list_locked(list);
  4748   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4751 void
  4752 G1CollectedHeap::
  4753 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4754   assert(ZF_mon->owned_by_self(), "precondition.");
  4755   _unclean_region_list.prepend_list(list);
  4758 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4759   assert(ZF_mon->owned_by_self(), "precondition.");
  4760   HeapRegion* res = _unclean_region_list.pop();
  4761   if (res != NULL) {
  4762     // Inform ZF thread that there's a new unclean head.
  4763     if (_unclean_region_list.hd() != NULL && should_zf())
  4764       ZF_mon->notify_all();
  4766   return res;
  4769 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4770   assert(ZF_mon->owned_by_self(), "precondition.");
  4771   return _unclean_region_list.hd();
  4775 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4776   assert(ZF_mon->owned_by_self(), "Precondition");
  4777   HeapRegion* r = peek_unclean_region_list_locked();
  4778   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4779     // Result of below must be equal to "r", since we hold the lock.
  4780     (void)pop_unclean_region_list_locked();
  4781     put_free_region_on_list_locked(r);
  4782     return true;
  4783   } else {
  4784     return false;
  4788 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4789   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4790   return move_cleaned_region_to_free_list_locked();
  4794 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4795   assert(ZF_mon->owned_by_self(), "precondition.");
  4796   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4797   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4798         "Regions on free list must be zero filled");
  4799   assert(!r->isHumongous(), "Must not be humongous.");
  4800   assert(r->is_empty(), "Better be empty");
  4801   assert(!r->is_on_free_list(),
  4802          "Better not already be on free list");
  4803   assert(!r->is_on_unclean_list(),
  4804          "Better not already be on unclean list");
  4805   r->set_on_free_list(true);
  4806   r->set_next_on_free_list(_free_region_list);
  4807   _free_region_list = r;
  4808   _free_region_list_size++;
  4809   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4812 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4813   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4814   put_free_region_on_list_locked(r);
  4817 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4818   assert(ZF_mon->owned_by_self(), "precondition.");
  4819   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4820   HeapRegion* res = _free_region_list;
  4821   if (res != NULL) {
  4822     _free_region_list = res->next_from_free_list();
  4823     _free_region_list_size--;
  4824     res->set_on_free_list(false);
  4825     res->set_next_on_free_list(NULL);
  4826     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4828   return res;
  4832 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4833   // By self, or on behalf of self.
  4834   assert(Heap_lock->is_locked(), "Precondition");
  4835   HeapRegion* res = NULL;
  4836   bool first = true;
  4837   while (res == NULL) {
  4838     if (zero_filled || !first) {
  4839       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4840       res = pop_free_region_list_locked();
  4841       if (res != NULL) {
  4842         assert(!res->zero_fill_is_allocated(),
  4843                "No allocated regions on free list.");
  4844         res->set_zero_fill_allocated();
  4845       } else if (!first) {
  4846         break;  // We tried both, time to return NULL.
  4850     if (res == NULL) {
  4851       res = alloc_region_from_unclean_list(zero_filled);
  4853     assert(res == NULL ||
  4854            !zero_filled ||
  4855            res->zero_fill_is_allocated(),
  4856            "We must have allocated the region we're returning");
  4857     first = false;
  4859   return res;
  4862 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4863   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4865     HeapRegion* prev = NULL;
  4866     HeapRegion* cur = _unclean_region_list.hd();
  4867     while (cur != NULL) {
  4868       HeapRegion* next = cur->next_from_unclean_list();
  4869       if (cur->zero_fill_is_allocated()) {
  4870         // Remove from the list.
  4871         if (prev == NULL) {
  4872           (void)_unclean_region_list.pop();
  4873         } else {
  4874           _unclean_region_list.delete_after(prev);
  4876         cur->set_on_unclean_list(false);
  4877         cur->set_next_on_unclean_list(NULL);
  4878       } else {
  4879         prev = cur;
  4881       cur = next;
  4883     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4884            "Inv");
  4888     HeapRegion* prev = NULL;
  4889     HeapRegion* cur = _free_region_list;
  4890     while (cur != NULL) {
  4891       HeapRegion* next = cur->next_from_free_list();
  4892       if (cur->zero_fill_is_allocated()) {
  4893         // Remove from the list.
  4894         if (prev == NULL) {
  4895           _free_region_list = cur->next_from_free_list();
  4896         } else {
  4897           prev->set_next_on_free_list(cur->next_from_free_list());
  4899         cur->set_on_free_list(false);
  4900         cur->set_next_on_free_list(NULL);
  4901         _free_region_list_size--;
  4902       } else {
  4903         prev = cur;
  4905       cur = next;
  4907     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4911 bool G1CollectedHeap::verify_region_lists() {
  4912   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4913   return verify_region_lists_locked();
  4916 bool G1CollectedHeap::verify_region_lists_locked() {
  4917   HeapRegion* unclean = _unclean_region_list.hd();
  4918   while (unclean != NULL) {
  4919     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4920     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4921     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4922               "Everything else is possible.");
  4923     unclean = unclean->next_from_unclean_list();
  4925   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4927   HeapRegion* free_r = _free_region_list;
  4928   while (free_r != NULL) {
  4929     assert(free_r->is_on_free_list(), "Well, it is!");
  4930     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4931     switch (free_r->zero_fill_state()) {
  4932     case HeapRegion::NotZeroFilled:
  4933     case HeapRegion::ZeroFilling:
  4934       guarantee(false, "Should not be on free list.");
  4935       break;
  4936     default:
  4937       // Everything else is possible.
  4938       break;
  4940     free_r = free_r->next_from_free_list();
  4942   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4943   // If we didn't do an assertion...
  4944   return true;
  4947 size_t G1CollectedHeap::free_region_list_length() {
  4948   assert(ZF_mon->owned_by_self(), "precondition.");
  4949   size_t len = 0;
  4950   HeapRegion* cur = _free_region_list;
  4951   while (cur != NULL) {
  4952     len++;
  4953     cur = cur->next_from_free_list();
  4955   return len;
  4958 size_t G1CollectedHeap::unclean_region_list_length() {
  4959   assert(ZF_mon->owned_by_self(), "precondition.");
  4960   return _unclean_region_list.length();
  4963 size_t G1CollectedHeap::n_regions() {
  4964   return _hrs->length();
  4967 size_t G1CollectedHeap::max_regions() {
  4968   return
  4969     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4970     HeapRegion::GrainBytes;
  4973 size_t G1CollectedHeap::free_regions() {
  4974   /* Possibly-expensive assert.
  4975   assert(_free_regions == count_free_regions(),
  4976          "_free_regions is off.");
  4977   */
  4978   return _free_regions;
  4981 bool G1CollectedHeap::should_zf() {
  4982   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4985 class RegionCounter: public HeapRegionClosure {
  4986   size_t _n;
  4987 public:
  4988   RegionCounter() : _n(0) {}
  4989   bool doHeapRegion(HeapRegion* r) {
  4990     if (r->is_empty()) {
  4991       assert(!r->isHumongous(), "H regions should not be empty.");
  4992       _n++;
  4994     return false;
  4996   int res() { return (int) _n; }
  4997 };
  4999 size_t G1CollectedHeap::count_free_regions() {
  5000   RegionCounter rc;
  5001   heap_region_iterate(&rc);
  5002   size_t n = rc.res();
  5003   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  5004     n--;
  5005   return n;
  5008 size_t G1CollectedHeap::count_free_regions_list() {
  5009   size_t n = 0;
  5010   size_t o = 0;
  5011   ZF_mon->lock_without_safepoint_check();
  5012   HeapRegion* cur = _free_region_list;
  5013   while (cur != NULL) {
  5014     cur = cur->next_from_free_list();
  5015     n++;
  5017   size_t m = unclean_region_list_length();
  5018   ZF_mon->unlock();
  5019   return n + m;
  5022 bool G1CollectedHeap::should_set_young_locked() {
  5023   assert(heap_lock_held_for_gc(),
  5024               "the heap lock should already be held by or for this thread");
  5025   return  (g1_policy()->in_young_gc_mode() &&
  5026            g1_policy()->should_add_next_region_to_young_list());
  5029 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5030   assert(heap_lock_held_for_gc(),
  5031               "the heap lock should already be held by or for this thread");
  5032   _young_list->push_region(hr);
  5033   g1_policy()->set_region_short_lived(hr);
  5036 class NoYoungRegionsClosure: public HeapRegionClosure {
  5037 private:
  5038   bool _success;
  5039 public:
  5040   NoYoungRegionsClosure() : _success(true) { }
  5041   bool doHeapRegion(HeapRegion* r) {
  5042     if (r->is_young()) {
  5043       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5044                              r->bottom(), r->end());
  5045       _success = false;
  5047     return false;
  5049   bool success() { return _success; }
  5050 };
  5052 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5053   bool ret = _young_list->check_list_empty(check_sample);
  5055   if (check_heap) {
  5056     NoYoungRegionsClosure closure;
  5057     heap_region_iterate(&closure);
  5058     ret = ret && closure.success();
  5061   return ret;
  5064 void G1CollectedHeap::empty_young_list() {
  5065   assert(heap_lock_held_for_gc(),
  5066               "the heap lock should already be held by or for this thread");
  5067   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5069   _young_list->empty_list();
  5072 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5073   bool no_allocs = true;
  5074   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5075     HeapRegion* r = _gc_alloc_regions[ap];
  5076     no_allocs = r == NULL || r->saved_mark_at_top();
  5078   return no_allocs;
  5081 void G1CollectedHeap::retire_all_alloc_regions() {
  5082   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5083     HeapRegion* r = _gc_alloc_regions[ap];
  5084     if (r != NULL) {
  5085       // Check for aliases.
  5086       bool has_processed_alias = false;
  5087       for (int i = 0; i < ap; ++i) {
  5088         if (_gc_alloc_regions[i] == r) {
  5089           has_processed_alias = true;
  5090           break;
  5093       if (!has_processed_alias) {
  5094         retire_alloc_region(r, false /* par */);
  5101 // Done at the start of full GC.
  5102 void G1CollectedHeap::tear_down_region_lists() {
  5103   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5104   while (pop_unclean_region_list_locked() != NULL) ;
  5105   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5106          "Postconditions of loop.");
  5107   while (pop_free_region_list_locked() != NULL) ;
  5108   assert(_free_region_list == NULL, "Postcondition of loop.");
  5109   if (_free_region_list_size != 0) {
  5110     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5111     print_on(gclog_or_tty, true /* extended */);
  5113   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5117 class RegionResetter: public HeapRegionClosure {
  5118   G1CollectedHeap* _g1;
  5119   int _n;
  5120 public:
  5121   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5122   bool doHeapRegion(HeapRegion* r) {
  5123     if (r->continuesHumongous()) return false;
  5124     if (r->top() > r->bottom()) {
  5125       if (r->top() < r->end()) {
  5126         Copy::fill_to_words(r->top(),
  5127                           pointer_delta(r->end(), r->top()));
  5129       r->set_zero_fill_allocated();
  5130     } else {
  5131       assert(r->is_empty(), "tautology");
  5132       _n++;
  5133       switch (r->zero_fill_state()) {
  5134         case HeapRegion::NotZeroFilled:
  5135         case HeapRegion::ZeroFilling:
  5136           _g1->put_region_on_unclean_list_locked(r);
  5137           break;
  5138         case HeapRegion::Allocated:
  5139           r->set_zero_fill_complete();
  5140           // no break; go on to put on free list.
  5141         case HeapRegion::ZeroFilled:
  5142           _g1->put_free_region_on_list_locked(r);
  5143           break;
  5146     return false;
  5149   int getFreeRegionCount() {return _n;}
  5150 };
  5152 // Done at the end of full GC.
  5153 void G1CollectedHeap::rebuild_region_lists() {
  5154   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5155   // This needs to go at the end of the full GC.
  5156   RegionResetter rs;
  5157   heap_region_iterate(&rs);
  5158   _free_regions = rs.getFreeRegionCount();
  5159   // Tell the ZF thread it may have work to do.
  5160   if (should_zf()) ZF_mon->notify_all();
  5163 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5164   G1CollectedHeap* _g1;
  5165   int _n;
  5166 public:
  5167   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5168   bool doHeapRegion(HeapRegion* r) {
  5169     if (r->continuesHumongous()) return false;
  5170     if (r->top() > r->bottom()) {
  5171       // There are assertions in "set_zero_fill_needed()" below that
  5172       // require top() == bottom(), so this is technically illegal.
  5173       // We'll skirt the law here, by making that true temporarily.
  5174       DEBUG_ONLY(HeapWord* save_top = r->top();
  5175                  r->set_top(r->bottom()));
  5176       r->set_zero_fill_needed();
  5177       DEBUG_ONLY(r->set_top(save_top));
  5179     return false;
  5181 };
  5183 // Done at the start of full GC.
  5184 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5185   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5186   // This needs to go at the end of the full GC.
  5187   UsedRegionsNeedZeroFillSetter rs;
  5188   heap_region_iterate(&rs);
  5191 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5192   _refine_cte_cl->set_concurrent(concurrent);
  5195 #ifndef PRODUCT
  5197 class PrintHeapRegionClosure: public HeapRegionClosure {
  5198 public:
  5199   bool doHeapRegion(HeapRegion *r) {
  5200     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5201     if (r != NULL) {
  5202       if (r->is_on_free_list())
  5203         gclog_or_tty->print("Free ");
  5204       if (r->is_young())
  5205         gclog_or_tty->print("Young ");
  5206       if (r->isHumongous())
  5207         gclog_or_tty->print("Is Humongous ");
  5208       r->print();
  5210     return false;
  5212 };
  5214 class SortHeapRegionClosure : public HeapRegionClosure {
  5215   size_t young_regions,free_regions, unclean_regions;
  5216   size_t hum_regions, count;
  5217   size_t unaccounted, cur_unclean, cur_alloc;
  5218   size_t total_free;
  5219   HeapRegion* cur;
  5220 public:
  5221   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5222     free_regions(0), unclean_regions(0),
  5223     hum_regions(0),
  5224     count(0), unaccounted(0),
  5225     cur_alloc(0), total_free(0)
  5226   {}
  5227   bool doHeapRegion(HeapRegion *r) {
  5228     count++;
  5229     if (r->is_on_free_list()) free_regions++;
  5230     else if (r->is_on_unclean_list()) unclean_regions++;
  5231     else if (r->isHumongous())  hum_regions++;
  5232     else if (r->is_young()) young_regions++;
  5233     else if (r == cur) cur_alloc++;
  5234     else unaccounted++;
  5235     return false;
  5237   void print() {
  5238     total_free = free_regions + unclean_regions;
  5239     gclog_or_tty->print("%d regions\n", count);
  5240     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5241                         total_free, free_regions, unclean_regions);
  5242     gclog_or_tty->print("%d humongous %d young\n",
  5243                         hum_regions, young_regions);
  5244     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5245     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5247 };
  5249 void G1CollectedHeap::print_region_counts() {
  5250   SortHeapRegionClosure sc(_cur_alloc_region);
  5251   PrintHeapRegionClosure cl;
  5252   heap_region_iterate(&cl);
  5253   heap_region_iterate(&sc);
  5254   sc.print();
  5255   print_region_accounting_info();
  5256 };
  5258 bool G1CollectedHeap::regions_accounted_for() {
  5259   // TODO: regions accounting for young/survivor/tenured
  5260   return true;
  5263 bool G1CollectedHeap::print_region_accounting_info() {
  5264   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5265                          free_regions(),
  5266                          count_free_regions(), count_free_regions_list(),
  5267                          _free_region_list_size, _unclean_region_list.sz());
  5268   gclog_or_tty->print_cr("cur_alloc: %d.",
  5269                          (_cur_alloc_region == NULL ? 0 : 1));
  5270   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5272   // TODO: check regions accounting for young/survivor/tenured
  5273   return true;
  5276 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5277   HeapRegion* hr = heap_region_containing(p);
  5278   if (hr == NULL) {
  5279     return is_in_permanent(p);
  5280   } else {
  5281     return hr->is_in(p);
  5284 #endif // !PRODUCT
  5286 void G1CollectedHeap::g1_unimplemented() {
  5287   // Unimplemented();

mercurial