src/os/linux/vm/os_linux.cpp

Tue, 26 Apr 2011 11:46:34 -0700

author
iveresov
date
Tue, 26 Apr 2011 11:46:34 -0700
changeset 2824
c303b3532d4a
parent 2822
7f3faf7159fd
child 2850
188c9a5d6a6d
permissions
-rw-r--r--

7037939: NUMA: Disable adaptive resizing if SHM large pages are used
Summary: Make the NUMA allocator behave properly with SHM and ISM large pages.
Reviewed-by: ysr

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # define __STDC_FORMAT_MACROS
    27 // no precompiled headers
    28 #include "classfile/classLoader.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "classfile/vmSymbols.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "code/vtableStubs.hpp"
    33 #include "compiler/compileBroker.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "jvm_linux.h"
    36 #include "memory/allocation.inline.hpp"
    37 #include "memory/filemap.hpp"
    38 #include "mutex_linux.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "os_share_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/perfMemory.hpp"
    54 #include "runtime/sharedRuntime.hpp"
    55 #include "runtime/statSampler.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/runtimeService.hpp"
    61 #include "thread_linux.inline.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    67 #ifdef TARGET_ARCH_x86
    68 # include "assembler_x86.inline.hpp"
    69 # include "nativeInst_x86.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_sparc
    72 # include "assembler_sparc.inline.hpp"
    73 # include "nativeInst_sparc.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_zero
    76 # include "assembler_zero.inline.hpp"
    77 # include "nativeInst_zero.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_arm
    80 # include "assembler_arm.inline.hpp"
    81 # include "nativeInst_arm.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_ppc
    84 # include "assembler_ppc.inline.hpp"
    85 # include "nativeInst_ppc.hpp"
    86 #endif
    87 #ifdef COMPILER1
    88 #include "c1/c1_Runtime1.hpp"
    89 #endif
    90 #ifdef COMPILER2
    91 #include "opto/runtime.hpp"
    92 #endif
    94 // put OS-includes here
    95 # include <sys/types.h>
    96 # include <sys/mman.h>
    97 # include <sys/stat.h>
    98 # include <sys/select.h>
    99 # include <pthread.h>
   100 # include <signal.h>
   101 # include <errno.h>
   102 # include <dlfcn.h>
   103 # include <stdio.h>
   104 # include <unistd.h>
   105 # include <sys/resource.h>
   106 # include <pthread.h>
   107 # include <sys/stat.h>
   108 # include <sys/time.h>
   109 # include <sys/times.h>
   110 # include <sys/utsname.h>
   111 # include <sys/socket.h>
   112 # include <sys/wait.h>
   113 # include <pwd.h>
   114 # include <poll.h>
   115 # include <semaphore.h>
   116 # include <fcntl.h>
   117 # include <string.h>
   118 # include <syscall.h>
   119 # include <sys/sysinfo.h>
   120 # include <gnu/libc-version.h>
   121 # include <sys/ipc.h>
   122 # include <sys/shm.h>
   123 # include <link.h>
   124 # include <stdint.h>
   125 # include <inttypes.h>
   126 # include <sys/ioctl.h>
   128 #define MAX_PATH    (2 * K)
   130 // for timer info max values which include all bits
   131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   132 #define SEC_IN_NANOSECS  1000000000LL
   134 #define LARGEPAGES_BIT (1 << 6)
   135 ////////////////////////////////////////////////////////////////////////////////
   136 // global variables
   137 julong os::Linux::_physical_memory = 0;
   139 address   os::Linux::_initial_thread_stack_bottom = NULL;
   140 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   142 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   143 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   144 Mutex* os::Linux::_createThread_lock = NULL;
   145 pthread_t os::Linux::_main_thread;
   146 int os::Linux::_page_size = -1;
   147 bool os::Linux::_is_floating_stack = false;
   148 bool os::Linux::_is_NPTL = false;
   149 bool os::Linux::_supports_fast_thread_cpu_time = false;
   150 const char * os::Linux::_glibc_version = NULL;
   151 const char * os::Linux::_libpthread_version = NULL;
   153 static jlong initial_time_count=0;
   155 static int clock_tics_per_sec = 100;
   157 // For diagnostics to print a message once. see run_periodic_checks
   158 static sigset_t check_signal_done;
   159 static bool check_signals = true;;
   161 static pid_t _initial_pid = 0;
   163 /* Signal number used to suspend/resume a thread */
   165 /* do not use any signal number less than SIGSEGV, see 4355769 */
   166 static int SR_signum = SIGUSR2;
   167 sigset_t SR_sigset;
   169 /* Used to protect dlsym() calls */
   170 static pthread_mutex_t dl_mutex;
   172 ////////////////////////////////////////////////////////////////////////////////
   173 // utility functions
   175 static int SR_initialize();
   176 static int SR_finalize();
   178 julong os::available_memory() {
   179   return Linux::available_memory();
   180 }
   182 julong os::Linux::available_memory() {
   183   // values in struct sysinfo are "unsigned long"
   184   struct sysinfo si;
   185   sysinfo(&si);
   187   return (julong)si.freeram * si.mem_unit;
   188 }
   190 julong os::physical_memory() {
   191   return Linux::physical_memory();
   192 }
   194 julong os::allocatable_physical_memory(julong size) {
   195 #ifdef _LP64
   196   return size;
   197 #else
   198   julong result = MIN2(size, (julong)3800*M);
   199    if (!is_allocatable(result)) {
   200      // See comments under solaris for alignment considerations
   201      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   202      result =  MIN2(size, reasonable_size);
   203    }
   204    return result;
   205 #endif // _LP64
   206 }
   208 ////////////////////////////////////////////////////////////////////////////////
   209 // environment support
   211 bool os::getenv(const char* name, char* buf, int len) {
   212   const char* val = ::getenv(name);
   213   if (val != NULL && strlen(val) < (size_t)len) {
   214     strcpy(buf, val);
   215     return true;
   216   }
   217   if (len > 0) buf[0] = 0;  // return a null string
   218   return false;
   219 }
   222 // Return true if user is running as root.
   224 bool os::have_special_privileges() {
   225   static bool init = false;
   226   static bool privileges = false;
   227   if (!init) {
   228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   229     init = true;
   230   }
   231   return privileges;
   232 }
   235 #ifndef SYS_gettid
   236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   237 #ifdef __ia64__
   238 #define SYS_gettid 1105
   239 #elif __i386__
   240 #define SYS_gettid 224
   241 #elif __amd64__
   242 #define SYS_gettid 186
   243 #elif __sparc__
   244 #define SYS_gettid 143
   245 #else
   246 #error define gettid for the arch
   247 #endif
   248 #endif
   250 // Cpu architecture string
   251 #if   defined(ZERO)
   252 static char cpu_arch[] = ZERO_LIBARCH;
   253 #elif defined(IA64)
   254 static char cpu_arch[] = "ia64";
   255 #elif defined(IA32)
   256 static char cpu_arch[] = "i386";
   257 #elif defined(AMD64)
   258 static char cpu_arch[] = "amd64";
   259 #elif defined(ARM)
   260 static char cpu_arch[] = "arm";
   261 #elif defined(PPC)
   262 static char cpu_arch[] = "ppc";
   263 #elif defined(SPARC)
   264 #  ifdef _LP64
   265 static char cpu_arch[] = "sparcv9";
   266 #  else
   267 static char cpu_arch[] = "sparc";
   268 #  endif
   269 #else
   270 #error Add appropriate cpu_arch setting
   271 #endif
   274 // pid_t gettid()
   275 //
   276 // Returns the kernel thread id of the currently running thread. Kernel
   277 // thread id is used to access /proc.
   278 //
   279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   281 //
   282 pid_t os::Linux::gettid() {
   283   int rslt = syscall(SYS_gettid);
   284   if (rslt == -1) {
   285      // old kernel, no NPTL support
   286      return getpid();
   287   } else {
   288      return (pid_t)rslt;
   289   }
   290 }
   292 // Most versions of linux have a bug where the number of processors are
   293 // determined by looking at the /proc file system.  In a chroot environment,
   294 // the system call returns 1.  This causes the VM to act as if it is
   295 // a single processor and elide locking (see is_MP() call).
   296 static bool unsafe_chroot_detected = false;
   297 static const char *unstable_chroot_error = "/proc file system not found.\n"
   298                      "Java may be unstable running multithreaded in a chroot "
   299                      "environment on Linux when /proc filesystem is not mounted.";
   301 void os::Linux::initialize_system_info() {
   302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   303   if (processor_count() == 1) {
   304     pid_t pid = os::Linux::gettid();
   305     char fname[32];
   306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   307     FILE *fp = fopen(fname, "r");
   308     if (fp == NULL) {
   309       unsafe_chroot_detected = true;
   310     } else {
   311       fclose(fp);
   312     }
   313   }
   314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   315   assert(processor_count() > 0, "linux error");
   316 }
   318 void os::init_system_properties_values() {
   319 //  char arch[12];
   320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   322   // The next steps are taken in the product version:
   323   //
   324   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   325   // This library should be located at:
   326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   327   //
   328   // If "/jre/lib/" appears at the right place in the path, then we
   329   // assume libjvm[_g].so is installed in a JDK and we use this path.
   330   //
   331   // Otherwise exit with message: "Could not create the Java virtual machine."
   332   //
   333   // The following extra steps are taken in the debugging version:
   334   //
   335   // If "/jre/lib/" does NOT appear at the right place in the path
   336   // instead of exit check for $JAVA_HOME environment variable.
   337   //
   338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   339   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   340   // it looks like libjvm[_g].so is installed there
   341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   342   //
   343   // Otherwise exit.
   344   //
   345   // Important note: if the location of libjvm.so changes this
   346   // code needs to be changed accordingly.
   348   // The next few definitions allow the code to be verbatim:
   349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   350 #define getenv(n) ::getenv(n)
   352 /*
   353  * See ld(1):
   354  *      The linker uses the following search paths to locate required
   355  *      shared libraries:
   356  *        1: ...
   357  *        ...
   358  *        7: The default directories, normally /lib and /usr/lib.
   359  */
   360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   362 #else
   363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   364 #endif
   366 #define EXTENSIONS_DIR  "/lib/ext"
   367 #define ENDORSED_DIR    "/lib/endorsed"
   368 #define REG_DIR         "/usr/java/packages"
   370   {
   371     /* sysclasspath, java_home, dll_dir */
   372     {
   373         char *home_path;
   374         char *dll_path;
   375         char *pslash;
   376         char buf[MAXPATHLEN];
   377         os::jvm_path(buf, sizeof(buf));
   379         // Found the full path to libjvm.so.
   380         // Now cut the path to <java_home>/jre if we can.
   381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   382         pslash = strrchr(buf, '/');
   383         if (pslash != NULL)
   384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   385         dll_path = malloc(strlen(buf) + 1);
   386         if (dll_path == NULL)
   387             return;
   388         strcpy(dll_path, buf);
   389         Arguments::set_dll_dir(dll_path);
   391         if (pslash != NULL) {
   392             pslash = strrchr(buf, '/');
   393             if (pslash != NULL) {
   394                 *pslash = '\0';       /* get rid of /<arch> */
   395                 pslash = strrchr(buf, '/');
   396                 if (pslash != NULL)
   397                     *pslash = '\0';   /* get rid of /lib */
   398             }
   399         }
   401         home_path = malloc(strlen(buf) + 1);
   402         if (home_path == NULL)
   403             return;
   404         strcpy(home_path, buf);
   405         Arguments::set_java_home(home_path);
   407         if (!set_boot_path('/', ':'))
   408             return;
   409     }
   411     /*
   412      * Where to look for native libraries
   413      *
   414      * Note: Due to a legacy implementation, most of the library path
   415      * is set in the launcher.  This was to accomodate linking restrictions
   416      * on legacy Linux implementations (which are no longer supported).
   417      * Eventually, all the library path setting will be done here.
   418      *
   419      * However, to prevent the proliferation of improperly built native
   420      * libraries, the new path component /usr/java/packages is added here.
   421      * Eventually, all the library path setting will be done here.
   422      */
   423     {
   424         char *ld_library_path;
   426         /*
   427          * Construct the invariant part of ld_library_path. Note that the
   428          * space for the colon and the trailing null are provided by the
   429          * nulls included by the sizeof operator (so actually we allocate
   430          * a byte more than necessary).
   431          */
   432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   436         /*
   437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   438          * should always exist (until the legacy problem cited above is
   439          * addressed).
   440          */
   441         char *v = getenv("LD_LIBRARY_PATH");
   442         if (v != NULL) {
   443             char *t = ld_library_path;
   444             /* That's +1 for the colon and +1 for the trailing '\0' */
   445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   446             sprintf(ld_library_path, "%s:%s", v, t);
   447         }
   448         Arguments::set_library_path(ld_library_path);
   449     }
   451     /*
   452      * Extensions directories.
   453      *
   454      * Note that the space for the colon and the trailing null are provided
   455      * by the nulls included by the sizeof operator (so actually one byte more
   456      * than necessary is allocated).
   457      */
   458     {
   459         char *buf = malloc(strlen(Arguments::get_java_home()) +
   460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   462             Arguments::get_java_home());
   463         Arguments::set_ext_dirs(buf);
   464     }
   466     /* Endorsed standards default directory. */
   467     {
   468         char * buf;
   469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   471         Arguments::set_endorsed_dirs(buf);
   472     }
   473   }
   475 #undef malloc
   476 #undef getenv
   477 #undef EXTENSIONS_DIR
   478 #undef ENDORSED_DIR
   480   // Done
   481   return;
   482 }
   484 ////////////////////////////////////////////////////////////////////////////////
   485 // breakpoint support
   487 void os::breakpoint() {
   488   BREAKPOINT;
   489 }
   491 extern "C" void breakpoint() {
   492   // use debugger to set breakpoint here
   493 }
   495 ////////////////////////////////////////////////////////////////////////////////
   496 // signal support
   498 debug_only(static bool signal_sets_initialized = false);
   499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   501 bool os::Linux::is_sig_ignored(int sig) {
   502       struct sigaction oact;
   503       sigaction(sig, (struct sigaction*)NULL, &oact);
   504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   507            return true;
   508       else
   509            return false;
   510 }
   512 void os::Linux::signal_sets_init() {
   513   // Should also have an assertion stating we are still single-threaded.
   514   assert(!signal_sets_initialized, "Already initialized");
   515   // Fill in signals that are necessarily unblocked for all threads in
   516   // the VM. Currently, we unblock the following signals:
   517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   518   //                         by -Xrs (=ReduceSignalUsage));
   519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   521   // the dispositions or masks wrt these signals.
   522   // Programs embedding the VM that want to use the above signals for their
   523   // own purposes must, at this time, use the "-Xrs" option to prevent
   524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   525   // (See bug 4345157, and other related bugs).
   526   // In reality, though, unblocking these signals is really a nop, since
   527   // these signals are not blocked by default.
   528   sigemptyset(&unblocked_sigs);
   529   sigemptyset(&allowdebug_blocked_sigs);
   530   sigaddset(&unblocked_sigs, SIGILL);
   531   sigaddset(&unblocked_sigs, SIGSEGV);
   532   sigaddset(&unblocked_sigs, SIGBUS);
   533   sigaddset(&unblocked_sigs, SIGFPE);
   534   sigaddset(&unblocked_sigs, SR_signum);
   536   if (!ReduceSignalUsage) {
   537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   540    }
   541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   544    }
   545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   548    }
   549   }
   550   // Fill in signals that are blocked by all but the VM thread.
   551   sigemptyset(&vm_sigs);
   552   if (!ReduceSignalUsage)
   553     sigaddset(&vm_sigs, BREAK_SIGNAL);
   554   debug_only(signal_sets_initialized = true);
   556 }
   558 // These are signals that are unblocked while a thread is running Java.
   559 // (For some reason, they get blocked by default.)
   560 sigset_t* os::Linux::unblocked_signals() {
   561   assert(signal_sets_initialized, "Not initialized");
   562   return &unblocked_sigs;
   563 }
   565 // These are the signals that are blocked while a (non-VM) thread is
   566 // running Java. Only the VM thread handles these signals.
   567 sigset_t* os::Linux::vm_signals() {
   568   assert(signal_sets_initialized, "Not initialized");
   569   return &vm_sigs;
   570 }
   572 // These are signals that are blocked during cond_wait to allow debugger in
   573 sigset_t* os::Linux::allowdebug_blocked_signals() {
   574   assert(signal_sets_initialized, "Not initialized");
   575   return &allowdebug_blocked_sigs;
   576 }
   578 void os::Linux::hotspot_sigmask(Thread* thread) {
   580   //Save caller's signal mask before setting VM signal mask
   581   sigset_t caller_sigmask;
   582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   584   OSThread* osthread = thread->osthread();
   585   osthread->set_caller_sigmask(caller_sigmask);
   587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   589   if (!ReduceSignalUsage) {
   590     if (thread->is_VM_thread()) {
   591       // Only the VM thread handles BREAK_SIGNAL ...
   592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   593     } else {
   594       // ... all other threads block BREAK_SIGNAL
   595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   596     }
   597   }
   598 }
   600 //////////////////////////////////////////////////////////////////////////////
   601 // detecting pthread library
   603 void os::Linux::libpthread_init() {
   604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   606   // generic name for earlier versions.
   607   // Define macros here so we can build HotSpot on old systems.
   608 # ifndef _CS_GNU_LIBC_VERSION
   609 # define _CS_GNU_LIBC_VERSION 2
   610 # endif
   611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   612 # define _CS_GNU_LIBPTHREAD_VERSION 3
   613 # endif
   615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   616   if (n > 0) {
   617      char *str = (char *)malloc(n);
   618      confstr(_CS_GNU_LIBC_VERSION, str, n);
   619      os::Linux::set_glibc_version(str);
   620   } else {
   621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   622      static char _gnu_libc_version[32];
   623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   625      os::Linux::set_glibc_version(_gnu_libc_version);
   626   }
   628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   629   if (n > 0) {
   630      char *str = (char *)malloc(n);
   631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   634      // is the case. LinuxThreads has a hard limit on max number of threads.
   635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   636      // On the other hand, NPTL does not have such a limit, sysconf()
   637      // will return -1 and errno is not changed. Check if it is really NPTL.
   638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   639          strstr(str, "NPTL") &&
   640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   641        free(str);
   642        os::Linux::set_libpthread_version("linuxthreads");
   643      } else {
   644        os::Linux::set_libpthread_version(str);
   645      }
   646   } else {
   647     // glibc before 2.3.2 only has LinuxThreads.
   648     os::Linux::set_libpthread_version("linuxthreads");
   649   }
   651   if (strstr(libpthread_version(), "NPTL")) {
   652      os::Linux::set_is_NPTL();
   653   } else {
   654      os::Linux::set_is_LinuxThreads();
   655   }
   657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   660      os::Linux::set_is_floating_stack();
   661   }
   662 }
   664 /////////////////////////////////////////////////////////////////////////////
   665 // thread stack
   667 // Force Linux kernel to expand current thread stack. If "bottom" is close
   668 // to the stack guard, caller should block all signals.
   669 //
   670 // MAP_GROWSDOWN:
   671 //   A special mmap() flag that is used to implement thread stacks. It tells
   672 //   kernel that the memory region should extend downwards when needed. This
   673 //   allows early versions of LinuxThreads to only mmap the first few pages
   674 //   when creating a new thread. Linux kernel will automatically expand thread
   675 //   stack as needed (on page faults).
   676 //
   677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   679 //   region, it's hard to tell if the fault is due to a legitimate stack
   680 //   access or because of reading/writing non-exist memory (e.g. buffer
   681 //   overrun). As a rule, if the fault happens below current stack pointer,
   682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   683 //   application (see Linux kernel fault.c).
   684 //
   685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   686 //   stack overflow detection.
   687 //
   688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   689 //   not use this flag. However, the stack of initial thread is not created
   690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   692 //   and then attach the thread to JVM.
   693 //
   694 // To get around the problem and allow stack banging on Linux, we need to
   695 // manually expand thread stack after receiving the SIGSEGV.
   696 //
   697 // There are two ways to expand thread stack to address "bottom", we used
   698 // both of them in JVM before 1.5:
   699 //   1. adjust stack pointer first so that it is below "bottom", and then
   700 //      touch "bottom"
   701 //   2. mmap() the page in question
   702 //
   703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   704 // if current sp is already near the lower end of page 101, and we need to
   705 // call mmap() to map page 100, it is possible that part of the mmap() frame
   706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   707 // That will destroy the mmap() frame and cause VM to crash.
   708 //
   709 // The following code works by adjusting sp first, then accessing the "bottom"
   710 // page to force a page fault. Linux kernel will then automatically expand the
   711 // stack mapping.
   712 //
   713 // _expand_stack_to() assumes its frame size is less than page size, which
   714 // should always be true if the function is not inlined.
   716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   717 #define NOINLINE
   718 #else
   719 #define NOINLINE __attribute__ ((noinline))
   720 #endif
   722 static void _expand_stack_to(address bottom) NOINLINE;
   724 static void _expand_stack_to(address bottom) {
   725   address sp;
   726   size_t size;
   727   volatile char *p;
   729   // Adjust bottom to point to the largest address within the same page, it
   730   // gives us a one-page buffer if alloca() allocates slightly more memory.
   731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   732   bottom += os::Linux::page_size() - 1;
   734   // sp might be slightly above current stack pointer; if that's the case, we
   735   // will alloca() a little more space than necessary, which is OK. Don't use
   736   // os::current_stack_pointer(), as its result can be slightly below current
   737   // stack pointer, causing us to not alloca enough to reach "bottom".
   738   sp = (address)&sp;
   740   if (sp > bottom) {
   741     size = sp - bottom;
   742     p = (volatile char *)alloca(size);
   743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   744     p[0] = '\0';
   745   }
   746 }
   748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   749   assert(t!=NULL, "just checking");
   750   assert(t->osthread()->expanding_stack(), "expand should be set");
   751   assert(t->stack_base() != NULL, "stack_base was not initialized");
   753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   754     sigset_t mask_all, old_sigset;
   755     sigfillset(&mask_all);
   756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   757     _expand_stack_to(addr);
   758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   759     return true;
   760   }
   761   return false;
   762 }
   764 //////////////////////////////////////////////////////////////////////////////
   765 // create new thread
   767 static address highest_vm_reserved_address();
   769 // check if it's safe to start a new thread
   770 static bool _thread_safety_check(Thread* thread) {
   771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   774     //   allocated (MAP_FIXED) from high address space. Every thread stack
   775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   776     //   it to other values if they rebuild LinuxThreads).
   777     //
   778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   779     // the memory region has already been mmap'ed. That means if we have too
   780     // many threads and/or very large heap, eventually thread stack will
   781     // collide with heap.
   782     //
   783     // Here we try to prevent heap/stack collision by comparing current
   784     // stack bottom with the highest address that has been mmap'ed by JVM
   785     // plus a safety margin for memory maps created by native code.
   786     //
   787     // This feature can be disabled by setting ThreadSafetyMargin to 0
   788     //
   789     if (ThreadSafetyMargin > 0) {
   790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   792       // not safe if our stack extends below the safety margin
   793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   794     } else {
   795       return true;
   796     }
   797   } else {
   798     // Floating stack LinuxThreads or NPTL:
   799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   800     //   there's not enough space left, pthread_create() will fail. If we come
   801     //   here, that means enough space has been reserved for stack.
   802     return true;
   803   }
   804 }
   806 // Thread start routine for all newly created threads
   807 static void *java_start(Thread *thread) {
   808   // Try to randomize the cache line index of hot stack frames.
   809   // This helps when threads of the same stack traces evict each other's
   810   // cache lines. The threads can be either from the same JVM instance, or
   811   // from different JVM instances. The benefit is especially true for
   812   // processors with hyperthreading technology.
   813   static int counter = 0;
   814   int pid = os::current_process_id();
   815   alloca(((pid ^ counter++) & 7) * 128);
   817   ThreadLocalStorage::set_thread(thread);
   819   OSThread* osthread = thread->osthread();
   820   Monitor* sync = osthread->startThread_lock();
   822   // non floating stack LinuxThreads needs extra check, see above
   823   if (!_thread_safety_check(thread)) {
   824     // notify parent thread
   825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   826     osthread->set_state(ZOMBIE);
   827     sync->notify_all();
   828     return NULL;
   829   }
   831   // thread_id is kernel thread id (similar to Solaris LWP id)
   832   osthread->set_thread_id(os::Linux::gettid());
   834   if (UseNUMA) {
   835     int lgrp_id = os::numa_get_group_id();
   836     if (lgrp_id != -1) {
   837       thread->set_lgrp_id(lgrp_id);
   838     }
   839   }
   840   // initialize signal mask for this thread
   841   os::Linux::hotspot_sigmask(thread);
   843   // initialize floating point control register
   844   os::Linux::init_thread_fpu_state();
   846   // handshaking with parent thread
   847   {
   848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   850     // notify parent thread
   851     osthread->set_state(INITIALIZED);
   852     sync->notify_all();
   854     // wait until os::start_thread()
   855     while (osthread->get_state() == INITIALIZED) {
   856       sync->wait(Mutex::_no_safepoint_check_flag);
   857     }
   858   }
   860   // call one more level start routine
   861   thread->run();
   863   return 0;
   864 }
   866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   867   assert(thread->osthread() == NULL, "caller responsible");
   869   // Allocate the OSThread object
   870   OSThread* osthread = new OSThread(NULL, NULL);
   871   if (osthread == NULL) {
   872     return false;
   873   }
   875   // set the correct thread state
   876   osthread->set_thread_type(thr_type);
   878   // Initial state is ALLOCATED but not INITIALIZED
   879   osthread->set_state(ALLOCATED);
   881   thread->set_osthread(osthread);
   883   // init thread attributes
   884   pthread_attr_t attr;
   885   pthread_attr_init(&attr);
   886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   888   // stack size
   889   if (os::Linux::supports_variable_stack_size()) {
   890     // calculate stack size if it's not specified by caller
   891     if (stack_size == 0) {
   892       stack_size = os::Linux::default_stack_size(thr_type);
   894       switch (thr_type) {
   895       case os::java_thread:
   896         // Java threads use ThreadStackSize which default value can be
   897         // changed with the flag -Xss
   898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   899         stack_size = JavaThread::stack_size_at_create();
   900         break;
   901       case os::compiler_thread:
   902         if (CompilerThreadStackSize > 0) {
   903           stack_size = (size_t)(CompilerThreadStackSize * K);
   904           break;
   905         } // else fall through:
   906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   907       case os::vm_thread:
   908       case os::pgc_thread:
   909       case os::cgc_thread:
   910       case os::watcher_thread:
   911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   912         break;
   913       }
   914     }
   916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   917     pthread_attr_setstacksize(&attr, stack_size);
   918   } else {
   919     // let pthread_create() pick the default value.
   920   }
   922   // glibc guard page
   923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   925   ThreadState state;
   927   {
   928     // Serialize thread creation if we are running with fixed stack LinuxThreads
   929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   930     if (lock) {
   931       os::Linux::createThread_lock()->lock_without_safepoint_check();
   932     }
   934     pthread_t tid;
   935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   937     pthread_attr_destroy(&attr);
   939     if (ret != 0) {
   940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   941         perror("pthread_create()");
   942       }
   943       // Need to clean up stuff we've allocated so far
   944       thread->set_osthread(NULL);
   945       delete osthread;
   946       if (lock) os::Linux::createThread_lock()->unlock();
   947       return false;
   948     }
   950     // Store pthread info into the OSThread
   951     osthread->set_pthread_id(tid);
   953     // Wait until child thread is either initialized or aborted
   954     {
   955       Monitor* sync_with_child = osthread->startThread_lock();
   956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   957       while ((state = osthread->get_state()) == ALLOCATED) {
   958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   959       }
   960     }
   962     if (lock) {
   963       os::Linux::createThread_lock()->unlock();
   964     }
   965   }
   967   // Aborted due to thread limit being reached
   968   if (state == ZOMBIE) {
   969       thread->set_osthread(NULL);
   970       delete osthread;
   971       return false;
   972   }
   974   // The thread is returned suspended (in state INITIALIZED),
   975   // and is started higher up in the call chain
   976   assert(state == INITIALIZED, "race condition");
   977   return true;
   978 }
   980 /////////////////////////////////////////////////////////////////////////////
   981 // attach existing thread
   983 // bootstrap the main thread
   984 bool os::create_main_thread(JavaThread* thread) {
   985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   986   return create_attached_thread(thread);
   987 }
   989 bool os::create_attached_thread(JavaThread* thread) {
   990 #ifdef ASSERT
   991     thread->verify_not_published();
   992 #endif
   994   // Allocate the OSThread object
   995   OSThread* osthread = new OSThread(NULL, NULL);
   997   if (osthread == NULL) {
   998     return false;
   999   }
  1001   // Store pthread info into the OSThread
  1002   osthread->set_thread_id(os::Linux::gettid());
  1003   osthread->set_pthread_id(::pthread_self());
  1005   // initialize floating point control register
  1006   os::Linux::init_thread_fpu_state();
  1008   // Initial thread state is RUNNABLE
  1009   osthread->set_state(RUNNABLE);
  1011   thread->set_osthread(osthread);
  1013   if (UseNUMA) {
  1014     int lgrp_id = os::numa_get_group_id();
  1015     if (lgrp_id != -1) {
  1016       thread->set_lgrp_id(lgrp_id);
  1020   if (os::Linux::is_initial_thread()) {
  1021     // If current thread is initial thread, its stack is mapped on demand,
  1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1023     // the entire stack region to avoid SEGV in stack banging.
  1024     // It is also useful to get around the heap-stack-gap problem on SuSE
  1025     // kernel (see 4821821 for details). We first expand stack to the top
  1026     // of yellow zone, then enable stack yellow zone (order is significant,
  1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1028     // is no gap between the last two virtual memory regions.
  1030     JavaThread *jt = (JavaThread *)thread;
  1031     address addr = jt->stack_yellow_zone_base();
  1032     assert(addr != NULL, "initialization problem?");
  1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1035     osthread->set_expanding_stack();
  1036     os::Linux::manually_expand_stack(jt, addr);
  1037     osthread->clear_expanding_stack();
  1040   // initialize signal mask for this thread
  1041   // and save the caller's signal mask
  1042   os::Linux::hotspot_sigmask(thread);
  1044   return true;
  1047 void os::pd_start_thread(Thread* thread) {
  1048   OSThread * osthread = thread->osthread();
  1049   assert(osthread->get_state() != INITIALIZED, "just checking");
  1050   Monitor* sync_with_child = osthread->startThread_lock();
  1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1052   sync_with_child->notify();
  1055 // Free Linux resources related to the OSThread
  1056 void os::free_thread(OSThread* osthread) {
  1057   assert(osthread != NULL, "osthread not set");
  1059   if (Thread::current()->osthread() == osthread) {
  1060     // Restore caller's signal mask
  1061     sigset_t sigmask = osthread->caller_sigmask();
  1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1065   delete osthread;
  1068 //////////////////////////////////////////////////////////////////////////////
  1069 // thread local storage
  1071 int os::allocate_thread_local_storage() {
  1072   pthread_key_t key;
  1073   int rslt = pthread_key_create(&key, NULL);
  1074   assert(rslt == 0, "cannot allocate thread local storage");
  1075   return (int)key;
  1078 // Note: This is currently not used by VM, as we don't destroy TLS key
  1079 // on VM exit.
  1080 void os::free_thread_local_storage(int index) {
  1081   int rslt = pthread_key_delete((pthread_key_t)index);
  1082   assert(rslt == 0, "invalid index");
  1085 void os::thread_local_storage_at_put(int index, void* value) {
  1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1087   assert(rslt == 0, "pthread_setspecific failed");
  1090 extern "C" Thread* get_thread() {
  1091   return ThreadLocalStorage::thread();
  1094 //////////////////////////////////////////////////////////////////////////////
  1095 // initial thread
  1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1098 bool os::Linux::is_initial_thread(void) {
  1099   char dummy;
  1100   // If called before init complete, thread stack bottom will be null.
  1101   // Can be called if fatal error occurs before initialization.
  1102   if (initial_thread_stack_bottom() == NULL) return false;
  1103   assert(initial_thread_stack_bottom() != NULL &&
  1104          initial_thread_stack_size()   != 0,
  1105          "os::init did not locate initial thread's stack region");
  1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1108        return true;
  1109   else return false;
  1112 // Find the virtual memory area that contains addr
  1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1114   FILE *fp = fopen("/proc/self/maps", "r");
  1115   if (fp) {
  1116     address low, high;
  1117     while (!feof(fp)) {
  1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1119         if (low <= addr && addr < high) {
  1120            if (vma_low)  *vma_low  = low;
  1121            if (vma_high) *vma_high = high;
  1122            fclose (fp);
  1123            return true;
  1126       for (;;) {
  1127         int ch = fgetc(fp);
  1128         if (ch == EOF || ch == (int)'\n') break;
  1131     fclose(fp);
  1133   return false;
  1136 // Locate initial thread stack. This special handling of initial thread stack
  1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1138 // bogus value for initial thread.
  1139 void os::Linux::capture_initial_stack(size_t max_size) {
  1140   // stack size is the easy part, get it from RLIMIT_STACK
  1141   size_t stack_size;
  1142   struct rlimit rlim;
  1143   getrlimit(RLIMIT_STACK, &rlim);
  1144   stack_size = rlim.rlim_cur;
  1146   // 6308388: a bug in ld.so will relocate its own .data section to the
  1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1148   //   so we won't install guard page on ld.so's data section.
  1149   stack_size -= 2 * page_size();
  1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1152   //   7.1, in both cases we will get 2G in return value.
  1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1156   //   in case other parts in glibc still assumes 2M max stack size.
  1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1158 #ifndef IA64
  1159   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1160 #else
  1161   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1162   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1163 #endif
  1165   // Try to figure out where the stack base (top) is. This is harder.
  1166   //
  1167   // When an application is started, glibc saves the initial stack pointer in
  1168   // a global variable "__libc_stack_end", which is then used by system
  1169   // libraries. __libc_stack_end should be pretty close to stack top. The
  1170   // variable is available since the very early days. However, because it is
  1171   // a private interface, it could disappear in the future.
  1172   //
  1173   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1174   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1175   // stack top. Note that /proc may not exist if VM is running as a chroot
  1176   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1177   // /proc/<pid>/stat could change in the future (though unlikely).
  1178   //
  1179   // We try __libc_stack_end first. If that doesn't work, look for
  1180   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1181   // as a hint, which should work well in most cases.
  1183   uintptr_t stack_start;
  1185   // try __libc_stack_end first
  1186   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1187   if (p && *p) {
  1188     stack_start = *p;
  1189   } else {
  1190     // see if we can get the start_stack field from /proc/self/stat
  1191     FILE *fp;
  1192     int pid;
  1193     char state;
  1194     int ppid;
  1195     int pgrp;
  1196     int session;
  1197     int nr;
  1198     int tpgrp;
  1199     unsigned long flags;
  1200     unsigned long minflt;
  1201     unsigned long cminflt;
  1202     unsigned long majflt;
  1203     unsigned long cmajflt;
  1204     unsigned long utime;
  1205     unsigned long stime;
  1206     long cutime;
  1207     long cstime;
  1208     long prio;
  1209     long nice;
  1210     long junk;
  1211     long it_real;
  1212     uintptr_t start;
  1213     uintptr_t vsize;
  1214     intptr_t rss;
  1215     uintptr_t rsslim;
  1216     uintptr_t scodes;
  1217     uintptr_t ecode;
  1218     int i;
  1220     // Figure what the primordial thread stack base is. Code is inspired
  1221     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1222     // followed by command name surrounded by parentheses, state, etc.
  1223     char stat[2048];
  1224     int statlen;
  1226     fp = fopen("/proc/self/stat", "r");
  1227     if (fp) {
  1228       statlen = fread(stat, 1, 2047, fp);
  1229       stat[statlen] = '\0';
  1230       fclose(fp);
  1232       // Skip pid and the command string. Note that we could be dealing with
  1233       // weird command names, e.g. user could decide to rename java launcher
  1234       // to "java 1.4.2 :)", then the stat file would look like
  1235       //                1234 (java 1.4.2 :)) R ... ...
  1236       // We don't really need to know the command string, just find the last
  1237       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1238       char * s = strrchr(stat, ')');
  1240       i = 0;
  1241       if (s) {
  1242         // Skip blank chars
  1243         do s++; while (isspace(*s));
  1245 #define _UFM UINTX_FORMAT
  1246 #define _DFM INTX_FORMAT
  1248         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1249         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1250         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1251              &state,          /* 3  %c  */
  1252              &ppid,           /* 4  %d  */
  1253              &pgrp,           /* 5  %d  */
  1254              &session,        /* 6  %d  */
  1255              &nr,             /* 7  %d  */
  1256              &tpgrp,          /* 8  %d  */
  1257              &flags,          /* 9  %lu  */
  1258              &minflt,         /* 10 %lu  */
  1259              &cminflt,        /* 11 %lu  */
  1260              &majflt,         /* 12 %lu  */
  1261              &cmajflt,        /* 13 %lu  */
  1262              &utime,          /* 14 %lu  */
  1263              &stime,          /* 15 %lu  */
  1264              &cutime,         /* 16 %ld  */
  1265              &cstime,         /* 17 %ld  */
  1266              &prio,           /* 18 %ld  */
  1267              &nice,           /* 19 %ld  */
  1268              &junk,           /* 20 %ld  */
  1269              &it_real,        /* 21 %ld  */
  1270              &start,          /* 22 UINTX_FORMAT */
  1271              &vsize,          /* 23 UINTX_FORMAT */
  1272              &rss,            /* 24 INTX_FORMAT  */
  1273              &rsslim,         /* 25 UINTX_FORMAT */
  1274              &scodes,         /* 26 UINTX_FORMAT */
  1275              &ecode,          /* 27 UINTX_FORMAT */
  1276              &stack_start);   /* 28 UINTX_FORMAT */
  1279 #undef _UFM
  1280 #undef _DFM
  1282       if (i != 28 - 2) {
  1283          assert(false, "Bad conversion from /proc/self/stat");
  1284          // product mode - assume we are the initial thread, good luck in the
  1285          // embedded case.
  1286          warning("Can't detect initial thread stack location - bad conversion");
  1287          stack_start = (uintptr_t) &rlim;
  1289     } else {
  1290       // For some reason we can't open /proc/self/stat (for example, running on
  1291       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1292       // most cases, so don't abort:
  1293       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1294       stack_start = (uintptr_t) &rlim;
  1298   // Now we have a pointer (stack_start) very close to the stack top, the
  1299   // next thing to do is to figure out the exact location of stack top. We
  1300   // can find out the virtual memory area that contains stack_start by
  1301   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1302   // and its upper limit is the real stack top. (again, this would fail if
  1303   // running inside chroot, because /proc may not exist.)
  1305   uintptr_t stack_top;
  1306   address low, high;
  1307   if (find_vma((address)stack_start, &low, &high)) {
  1308     // success, "high" is the true stack top. (ignore "low", because initial
  1309     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1310     stack_top = (uintptr_t)high;
  1311   } else {
  1312     // failed, likely because /proc/self/maps does not exist
  1313     warning("Can't detect initial thread stack location - find_vma failed");
  1314     // best effort: stack_start is normally within a few pages below the real
  1315     // stack top, use it as stack top, and reduce stack size so we won't put
  1316     // guard page outside stack.
  1317     stack_top = stack_start;
  1318     stack_size -= 16 * page_size();
  1321   // stack_top could be partially down the page so align it
  1322   stack_top = align_size_up(stack_top, page_size());
  1324   if (max_size && stack_size > max_size) {
  1325      _initial_thread_stack_size = max_size;
  1326   } else {
  1327      _initial_thread_stack_size = stack_size;
  1330   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1331   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1334 ////////////////////////////////////////////////////////////////////////////////
  1335 // time support
  1337 // Time since start-up in seconds to a fine granularity.
  1338 // Used by VMSelfDestructTimer and the MemProfiler.
  1339 double os::elapsedTime() {
  1341   return (double)(os::elapsed_counter()) * 0.000001;
  1344 jlong os::elapsed_counter() {
  1345   timeval time;
  1346   int status = gettimeofday(&time, NULL);
  1347   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1350 jlong os::elapsed_frequency() {
  1351   return (1000 * 1000);
  1354 // For now, we say that linux does not support vtime.  I have no idea
  1355 // whether it can actually be made to (DLD, 9/13/05).
  1357 bool os::supports_vtime() { return false; }
  1358 bool os::enable_vtime()   { return false; }
  1359 bool os::vtime_enabled()  { return false; }
  1360 double os::elapsedVTime() {
  1361   // better than nothing, but not much
  1362   return elapsedTime();
  1365 jlong os::javaTimeMillis() {
  1366   timeval time;
  1367   int status = gettimeofday(&time, NULL);
  1368   assert(status != -1, "linux error");
  1369   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1372 #ifndef CLOCK_MONOTONIC
  1373 #define CLOCK_MONOTONIC (1)
  1374 #endif
  1376 void os::Linux::clock_init() {
  1377   // we do dlopen's in this particular order due to bug in linux
  1378   // dynamical loader (see 6348968) leading to crash on exit
  1379   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1380   if (handle == NULL) {
  1381     handle = dlopen("librt.so", RTLD_LAZY);
  1384   if (handle) {
  1385     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1386            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1387     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1388            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1389     if (clock_getres_func && clock_gettime_func) {
  1390       // See if monotonic clock is supported by the kernel. Note that some
  1391       // early implementations simply return kernel jiffies (updated every
  1392       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1393       // for nano time (though the monotonic property is still nice to have).
  1394       // It's fixed in newer kernels, however clock_getres() still returns
  1395       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1396       // resolution for now. Hopefully as people move to new kernels, this
  1397       // won't be a problem.
  1398       struct timespec res;
  1399       struct timespec tp;
  1400       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1401           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1402         // yes, monotonic clock is supported
  1403         _clock_gettime = clock_gettime_func;
  1404       } else {
  1405         // close librt if there is no monotonic clock
  1406         dlclose(handle);
  1412 #ifndef SYS_clock_getres
  1414 #if defined(IA32) || defined(AMD64)
  1415 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1416 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1417 #else
  1418 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1419 #define sys_clock_getres(x,y)  -1
  1420 #endif
  1422 #else
  1423 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1424 #endif
  1426 void os::Linux::fast_thread_clock_init() {
  1427   if (!UseLinuxPosixThreadCPUClocks) {
  1428     return;
  1430   clockid_t clockid;
  1431   struct timespec tp;
  1432   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1433       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1435   // Switch to using fast clocks for thread cpu time if
  1436   // the sys_clock_getres() returns 0 error code.
  1437   // Note, that some kernels may support the current thread
  1438   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1439   // returned by the pthread_getcpuclockid().
  1440   // If the fast Posix clocks are supported then the sys_clock_getres()
  1441   // must return at least tp.tv_sec == 0 which means a resolution
  1442   // better than 1 sec. This is extra check for reliability.
  1444   if(pthread_getcpuclockid_func &&
  1445      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1446      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1448     _supports_fast_thread_cpu_time = true;
  1449     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1453 jlong os::javaTimeNanos() {
  1454   if (Linux::supports_monotonic_clock()) {
  1455     struct timespec tp;
  1456     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1457     assert(status == 0, "gettime error");
  1458     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1459     return result;
  1460   } else {
  1461     timeval time;
  1462     int status = gettimeofday(&time, NULL);
  1463     assert(status != -1, "linux error");
  1464     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1465     return 1000 * usecs;
  1469 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1470   if (Linux::supports_monotonic_clock()) {
  1471     info_ptr->max_value = ALL_64_BITS;
  1473     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1474     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1475     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1476   } else {
  1477     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1478     info_ptr->max_value = ALL_64_BITS;
  1480     // gettimeofday is a real time clock so it skips
  1481     info_ptr->may_skip_backward = true;
  1482     info_ptr->may_skip_forward = true;
  1485   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1488 // Return the real, user, and system times in seconds from an
  1489 // arbitrary fixed point in the past.
  1490 bool os::getTimesSecs(double* process_real_time,
  1491                       double* process_user_time,
  1492                       double* process_system_time) {
  1493   struct tms ticks;
  1494   clock_t real_ticks = times(&ticks);
  1496   if (real_ticks == (clock_t) (-1)) {
  1497     return false;
  1498   } else {
  1499     double ticks_per_second = (double) clock_tics_per_sec;
  1500     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1501     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1502     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1504     return true;
  1509 char * os::local_time_string(char *buf, size_t buflen) {
  1510   struct tm t;
  1511   time_t long_time;
  1512   time(&long_time);
  1513   localtime_r(&long_time, &t);
  1514   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1515                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1516                t.tm_hour, t.tm_min, t.tm_sec);
  1517   return buf;
  1520 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1521   return localtime_r(clock, res);
  1524 ////////////////////////////////////////////////////////////////////////////////
  1525 // runtime exit support
  1527 // Note: os::shutdown() might be called very early during initialization, or
  1528 // called from signal handler. Before adding something to os::shutdown(), make
  1529 // sure it is async-safe and can handle partially initialized VM.
  1530 void os::shutdown() {
  1532   // allow PerfMemory to attempt cleanup of any persistent resources
  1533   perfMemory_exit();
  1535   // needs to remove object in file system
  1536   AttachListener::abort();
  1538   // flush buffered output, finish log files
  1539   ostream_abort();
  1541   // Check for abort hook
  1542   abort_hook_t abort_hook = Arguments::abort_hook();
  1543   if (abort_hook != NULL) {
  1544     abort_hook();
  1549 // Note: os::abort() might be called very early during initialization, or
  1550 // called from signal handler. Before adding something to os::abort(), make
  1551 // sure it is async-safe and can handle partially initialized VM.
  1552 void os::abort(bool dump_core) {
  1553   os::shutdown();
  1554   if (dump_core) {
  1555 #ifndef PRODUCT
  1556     fdStream out(defaultStream::output_fd());
  1557     out.print_raw("Current thread is ");
  1558     char buf[16];
  1559     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1560     out.print_raw_cr(buf);
  1561     out.print_raw_cr("Dumping core ...");
  1562 #endif
  1563     ::abort(); // dump core
  1566   ::exit(1);
  1569 // Die immediately, no exit hook, no abort hook, no cleanup.
  1570 void os::die() {
  1571   // _exit() on LinuxThreads only kills current thread
  1572   ::abort();
  1575 // unused on linux for now.
  1576 void os::set_error_file(const char *logfile) {}
  1579 // This method is a copy of JDK's sysGetLastErrorString
  1580 // from src/solaris/hpi/src/system_md.c
  1582 size_t os::lasterror(char *buf, size_t len) {
  1584   if (errno == 0)  return 0;
  1586   const char *s = ::strerror(errno);
  1587   size_t n = ::strlen(s);
  1588   if (n >= len) {
  1589     n = len - 1;
  1591   ::strncpy(buf, s, n);
  1592   buf[n] = '\0';
  1593   return n;
  1596 intx os::current_thread_id() { return (intx)pthread_self(); }
  1597 int os::current_process_id() {
  1599   // Under the old linux thread library, linux gives each thread
  1600   // its own process id. Because of this each thread will return
  1601   // a different pid if this method were to return the result
  1602   // of getpid(2). Linux provides no api that returns the pid
  1603   // of the launcher thread for the vm. This implementation
  1604   // returns a unique pid, the pid of the launcher thread
  1605   // that starts the vm 'process'.
  1607   // Under the NPTL, getpid() returns the same pid as the
  1608   // launcher thread rather than a unique pid per thread.
  1609   // Use gettid() if you want the old pre NPTL behaviour.
  1611   // if you are looking for the result of a call to getpid() that
  1612   // returns a unique pid for the calling thread, then look at the
  1613   // OSThread::thread_id() method in osThread_linux.hpp file
  1615   return (int)(_initial_pid ? _initial_pid : getpid());
  1618 // DLL functions
  1620 const char* os::dll_file_extension() { return ".so"; }
  1622 // This must be hard coded because it's the system's temporary
  1623 // directory not the java application's temp directory, ala java.io.tmpdir.
  1624 const char* os::get_temp_directory() { return "/tmp"; }
  1626 static bool file_exists(const char* filename) {
  1627   struct stat statbuf;
  1628   if (filename == NULL || strlen(filename) == 0) {
  1629     return false;
  1631   return os::stat(filename, &statbuf) == 0;
  1634 void os::dll_build_name(char* buffer, size_t buflen,
  1635                         const char* pname, const char* fname) {
  1636   // Copied from libhpi
  1637   const size_t pnamelen = pname ? strlen(pname) : 0;
  1639   // Quietly truncate on buffer overflow.  Should be an error.
  1640   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1641       *buffer = '\0';
  1642       return;
  1645   if (pnamelen == 0) {
  1646     snprintf(buffer, buflen, "lib%s.so", fname);
  1647   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1648     int n;
  1649     char** pelements = split_path(pname, &n);
  1650     for (int i = 0 ; i < n ; i++) {
  1651       // Really shouldn't be NULL, but check can't hurt
  1652       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1653         continue; // skip the empty path values
  1655       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1656       if (file_exists(buffer)) {
  1657         break;
  1660     // release the storage
  1661     for (int i = 0 ; i < n ; i++) {
  1662       if (pelements[i] != NULL) {
  1663         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1666     if (pelements != NULL) {
  1667       FREE_C_HEAP_ARRAY(char*, pelements);
  1669   } else {
  1670     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1674 const char* os::get_current_directory(char *buf, int buflen) {
  1675   return getcwd(buf, buflen);
  1678 // check if addr is inside libjvm[_g].so
  1679 bool os::address_is_in_vm(address addr) {
  1680   static address libjvm_base_addr;
  1681   Dl_info dlinfo;
  1683   if (libjvm_base_addr == NULL) {
  1684     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1685     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1686     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1689   if (dladdr((void *)addr, &dlinfo)) {
  1690     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1693   return false;
  1696 bool os::dll_address_to_function_name(address addr, char *buf,
  1697                                       int buflen, int *offset) {
  1698   Dl_info dlinfo;
  1700   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1701     if (buf != NULL) {
  1702       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1703         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1706     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1707     return true;
  1708   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1709     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1710        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1711        return true;
  1715   if (buf != NULL) buf[0] = '\0';
  1716   if (offset != NULL) *offset = -1;
  1717   return false;
  1720 struct _address_to_library_name {
  1721   address addr;          // input : memory address
  1722   size_t  buflen;        //         size of fname
  1723   char*   fname;         // output: library name
  1724   address base;          //         library base addr
  1725 };
  1727 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1728                                             size_t size, void *data) {
  1729   int i;
  1730   bool found = false;
  1731   address libbase = NULL;
  1732   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1734   // iterate through all loadable segments
  1735   for (i = 0; i < info->dlpi_phnum; i++) {
  1736     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1737     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1738       // base address of a library is the lowest address of its loaded
  1739       // segments.
  1740       if (libbase == NULL || libbase > segbase) {
  1741         libbase = segbase;
  1743       // see if 'addr' is within current segment
  1744       if (segbase <= d->addr &&
  1745           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1746         found = true;
  1751   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1752   // so dll_address_to_library_name() can fall through to use dladdr() which
  1753   // can figure out executable name from argv[0].
  1754   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1755     d->base = libbase;
  1756     if (d->fname) {
  1757       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1759     return 1;
  1761   return 0;
  1764 bool os::dll_address_to_library_name(address addr, char* buf,
  1765                                      int buflen, int* offset) {
  1766   Dl_info dlinfo;
  1767   struct _address_to_library_name data;
  1769   // There is a bug in old glibc dladdr() implementation that it could resolve
  1770   // to wrong library name if the .so file has a base address != NULL. Here
  1771   // we iterate through the program headers of all loaded libraries to find
  1772   // out which library 'addr' really belongs to. This workaround can be
  1773   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1774   data.addr = addr;
  1775   data.fname = buf;
  1776   data.buflen = buflen;
  1777   data.base = NULL;
  1778   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1780   if (rslt) {
  1781      // buf already contains library name
  1782      if (offset) *offset = addr - data.base;
  1783      return true;
  1784   } else if (dladdr((void*)addr, &dlinfo)){
  1785      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1786      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1787      return true;
  1788   } else {
  1789      if (buf) buf[0] = '\0';
  1790      if (offset) *offset = -1;
  1791      return false;
  1795   // Loads .dll/.so and
  1796   // in case of error it checks if .dll/.so was built for the
  1797   // same architecture as Hotspot is running on
  1799 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1801   void * result= ::dlopen(filename, RTLD_LAZY);
  1802   if (result != NULL) {
  1803     // Successful loading
  1804     return result;
  1807   Elf32_Ehdr elf_head;
  1809   // Read system error message into ebuf
  1810   // It may or may not be overwritten below
  1811   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1812   ebuf[ebuflen-1]='\0';
  1813   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1814   char* diag_msg_buf=ebuf+strlen(ebuf);
  1816   if (diag_msg_max_length==0) {
  1817     // No more space in ebuf for additional diagnostics message
  1818     return NULL;
  1822   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1824   if (file_descriptor < 0) {
  1825     // Can't open library, report dlerror() message
  1826     return NULL;
  1829   bool failed_to_read_elf_head=
  1830     (sizeof(elf_head)!=
  1831         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1833   ::close(file_descriptor);
  1834   if (failed_to_read_elf_head) {
  1835     // file i/o error - report dlerror() msg
  1836     return NULL;
  1839   typedef struct {
  1840     Elf32_Half  code;         // Actual value as defined in elf.h
  1841     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1842     char        elf_class;    // 32 or 64 bit
  1843     char        endianess;    // MSB or LSB
  1844     char*       name;         // String representation
  1845   } arch_t;
  1847   #ifndef EM_486
  1848   #define EM_486          6               /* Intel 80486 */
  1849   #endif
  1851   static const arch_t arch_array[]={
  1852     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1853     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1854     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1855     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1856     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1857     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1858     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1859     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1860     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1861     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1862     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1863     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1864     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1865     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1866     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1867     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1868   };
  1870   #if  (defined IA32)
  1871     static  Elf32_Half running_arch_code=EM_386;
  1872   #elif   (defined AMD64)
  1873     static  Elf32_Half running_arch_code=EM_X86_64;
  1874   #elif  (defined IA64)
  1875     static  Elf32_Half running_arch_code=EM_IA_64;
  1876   #elif  (defined __sparc) && (defined _LP64)
  1877     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1878   #elif  (defined __sparc) && (!defined _LP64)
  1879     static  Elf32_Half running_arch_code=EM_SPARC;
  1880   #elif  (defined __powerpc64__)
  1881     static  Elf32_Half running_arch_code=EM_PPC64;
  1882   #elif  (defined __powerpc__)
  1883     static  Elf32_Half running_arch_code=EM_PPC;
  1884   #elif  (defined ARM)
  1885     static  Elf32_Half running_arch_code=EM_ARM;
  1886   #elif  (defined S390)
  1887     static  Elf32_Half running_arch_code=EM_S390;
  1888   #elif  (defined ALPHA)
  1889     static  Elf32_Half running_arch_code=EM_ALPHA;
  1890   #elif  (defined MIPSEL)
  1891     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1892   #elif  (defined PARISC)
  1893     static  Elf32_Half running_arch_code=EM_PARISC;
  1894   #elif  (defined MIPS)
  1895     static  Elf32_Half running_arch_code=EM_MIPS;
  1896   #elif  (defined M68K)
  1897     static  Elf32_Half running_arch_code=EM_68K;
  1898   #else
  1899     #error Method os::dll_load requires that one of following is defined:\
  1900          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1901   #endif
  1903   // Identify compatability class for VM's architecture and library's architecture
  1904   // Obtain string descriptions for architectures
  1906   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1907   int running_arch_index=-1;
  1909   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1910     if (running_arch_code == arch_array[i].code) {
  1911       running_arch_index    = i;
  1913     if (lib_arch.code == arch_array[i].code) {
  1914       lib_arch.compat_class = arch_array[i].compat_class;
  1915       lib_arch.name         = arch_array[i].name;
  1919   assert(running_arch_index != -1,
  1920     "Didn't find running architecture code (running_arch_code) in arch_array");
  1921   if (running_arch_index == -1) {
  1922     // Even though running architecture detection failed
  1923     // we may still continue with reporting dlerror() message
  1924     return NULL;
  1927   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1928     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1929     return NULL;
  1932 #ifndef S390
  1933   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1934     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1935     return NULL;
  1937 #endif // !S390
  1939   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1940     if ( lib_arch.name!=NULL ) {
  1941       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1942         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1943         lib_arch.name, arch_array[running_arch_index].name);
  1944     } else {
  1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1946       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1947         lib_arch.code,
  1948         arch_array[running_arch_index].name);
  1952   return NULL;
  1955 /*
  1956  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1957  * chances are you might want to run the generated bits against glibc-2.0
  1958  * libdl.so, so always use locking for any version of glibc.
  1959  */
  1960 void* os::dll_lookup(void* handle, const char* name) {
  1961   pthread_mutex_lock(&dl_mutex);
  1962   void* res = dlsym(handle, name);
  1963   pthread_mutex_unlock(&dl_mutex);
  1964   return res;
  1968 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1969   int fd = ::open(filename, O_RDONLY);
  1970   if (fd == -1) {
  1971      return false;
  1974   char buf[32];
  1975   int bytes;
  1976   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1977     st->print_raw(buf, bytes);
  1980   ::close(fd);
  1982   return true;
  1985 void os::print_dll_info(outputStream *st) {
  1986    st->print_cr("Dynamic libraries:");
  1988    char fname[32];
  1989    pid_t pid = os::Linux::gettid();
  1991    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1993    if (!_print_ascii_file(fname, st)) {
  1994      st->print("Can not get library information for pid = %d\n", pid);
  1999 void os::print_os_info(outputStream* st) {
  2000   st->print("OS:");
  2002   // Try to identify popular distros.
  2003   // Most Linux distributions have /etc/XXX-release file, which contains
  2004   // the OS version string. Some have more than one /etc/XXX-release file
  2005   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2006   // so the order is important.
  2007   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2008       !_print_ascii_file("/etc/sun-release", st) &&
  2009       !_print_ascii_file("/etc/redhat-release", st) &&
  2010       !_print_ascii_file("/etc/SuSE-release", st) &&
  2011       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2012       !_print_ascii_file("/etc/gentoo-release", st) &&
  2013       !_print_ascii_file("/etc/debian_version", st) &&
  2014       !_print_ascii_file("/etc/ltib-release", st) &&
  2015       !_print_ascii_file("/etc/angstrom-version", st)) {
  2016       st->print("Linux");
  2018   st->cr();
  2020   // kernel
  2021   st->print("uname:");
  2022   struct utsname name;
  2023   uname(&name);
  2024   st->print(name.sysname); st->print(" ");
  2025   st->print(name.release); st->print(" ");
  2026   st->print(name.version); st->print(" ");
  2027   st->print(name.machine);
  2028   st->cr();
  2030   // Print warning if unsafe chroot environment detected
  2031   if (unsafe_chroot_detected) {
  2032     st->print("WARNING!! ");
  2033     st->print_cr(unstable_chroot_error);
  2036   // libc, pthread
  2037   st->print("libc:");
  2038   st->print(os::Linux::glibc_version()); st->print(" ");
  2039   st->print(os::Linux::libpthread_version()); st->print(" ");
  2040   if (os::Linux::is_LinuxThreads()) {
  2041      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2043   st->cr();
  2045   // rlimit
  2046   st->print("rlimit:");
  2047   struct rlimit rlim;
  2049   st->print(" STACK ");
  2050   getrlimit(RLIMIT_STACK, &rlim);
  2051   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2052   else st->print("%uk", rlim.rlim_cur >> 10);
  2054   st->print(", CORE ");
  2055   getrlimit(RLIMIT_CORE, &rlim);
  2056   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2057   else st->print("%uk", rlim.rlim_cur >> 10);
  2059   st->print(", NPROC ");
  2060   getrlimit(RLIMIT_NPROC, &rlim);
  2061   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2062   else st->print("%d", rlim.rlim_cur);
  2064   st->print(", NOFILE ");
  2065   getrlimit(RLIMIT_NOFILE, &rlim);
  2066   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2067   else st->print("%d", rlim.rlim_cur);
  2069   st->print(", AS ");
  2070   getrlimit(RLIMIT_AS, &rlim);
  2071   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2072   else st->print("%uk", rlim.rlim_cur >> 10);
  2073   st->cr();
  2075   // load average
  2076   st->print("load average:");
  2077   double loadavg[3];
  2078   os::loadavg(loadavg, 3);
  2079   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2080   st->cr();
  2082   // meminfo
  2083   st->print("\n/proc/meminfo:\n");
  2084   _print_ascii_file("/proc/meminfo", st);
  2085   st->cr();
  2088 void os::print_memory_info(outputStream* st) {
  2090   st->print("Memory:");
  2091   st->print(" %dk page", os::vm_page_size()>>10);
  2093   // values in struct sysinfo are "unsigned long"
  2094   struct sysinfo si;
  2095   sysinfo(&si);
  2097   st->print(", physical " UINT64_FORMAT "k",
  2098             os::physical_memory() >> 10);
  2099   st->print("(" UINT64_FORMAT "k free)",
  2100             os::available_memory() >> 10);
  2101   st->print(", swap " UINT64_FORMAT "k",
  2102             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2103   st->print("(" UINT64_FORMAT "k free)",
  2104             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2105   st->cr();
  2108 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2109 // but they're the same for all the linux arch that we support
  2110 // and they're the same for solaris but there's no common place to put this.
  2111 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2112                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2113                           "ILL_COPROC", "ILL_BADSTK" };
  2115 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2116                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2117                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2119 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2121 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2123 void os::print_siginfo(outputStream* st, void* siginfo) {
  2124   st->print("siginfo:");
  2126   const int buflen = 100;
  2127   char buf[buflen];
  2128   siginfo_t *si = (siginfo_t*)siginfo;
  2129   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2130   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2131     st->print("si_errno=%s", buf);
  2132   } else {
  2133     st->print("si_errno=%d", si->si_errno);
  2135   const int c = si->si_code;
  2136   assert(c > 0, "unexpected si_code");
  2137   switch (si->si_signo) {
  2138   case SIGILL:
  2139     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2140     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2141     break;
  2142   case SIGFPE:
  2143     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2144     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2145     break;
  2146   case SIGSEGV:
  2147     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2148     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2149     break;
  2150   case SIGBUS:
  2151     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2152     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2153     break;
  2154   default:
  2155     st->print(", si_code=%d", si->si_code);
  2156     // no si_addr
  2159   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2160       UseSharedSpaces) {
  2161     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2162     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2163       st->print("\n\nError accessing class data sharing archive."   \
  2164                 " Mapped file inaccessible during execution, "      \
  2165                 " possible disk/network problem.");
  2168   st->cr();
  2172 static void print_signal_handler(outputStream* st, int sig,
  2173                                  char* buf, size_t buflen);
  2175 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2176   st->print_cr("Signal Handlers:");
  2177   print_signal_handler(st, SIGSEGV, buf, buflen);
  2178   print_signal_handler(st, SIGBUS , buf, buflen);
  2179   print_signal_handler(st, SIGFPE , buf, buflen);
  2180   print_signal_handler(st, SIGPIPE, buf, buflen);
  2181   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2182   print_signal_handler(st, SIGILL , buf, buflen);
  2183   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2184   print_signal_handler(st, SR_signum, buf, buflen);
  2185   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2186   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2187   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2188   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2191 static char saved_jvm_path[MAXPATHLEN] = {0};
  2193 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2194 void os::jvm_path(char *buf, jint buflen) {
  2195   // Error checking.
  2196   if (buflen < MAXPATHLEN) {
  2197     assert(false, "must use a large-enough buffer");
  2198     buf[0] = '\0';
  2199     return;
  2201   // Lazy resolve the path to current module.
  2202   if (saved_jvm_path[0] != 0) {
  2203     strcpy(buf, saved_jvm_path);
  2204     return;
  2207   char dli_fname[MAXPATHLEN];
  2208   bool ret = dll_address_to_library_name(
  2209                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2210                 dli_fname, sizeof(dli_fname), NULL);
  2211   assert(ret != 0, "cannot locate libjvm");
  2212   char *rp = realpath(dli_fname, buf);
  2213   if (rp == NULL)
  2214     return;
  2216   if (Arguments::created_by_gamma_launcher()) {
  2217     // Support for the gamma launcher.  Typical value for buf is
  2218     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2219     // the right place in the string, then assume we are installed in a JDK and
  2220     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2221     // up the path so it looks like libjvm.so is installed there (append a
  2222     // fake suffix hotspot/libjvm.so).
  2223     const char *p = buf + strlen(buf) - 1;
  2224     for (int count = 0; p > buf && count < 5; ++count) {
  2225       for (--p; p > buf && *p != '/'; --p)
  2226         /* empty */ ;
  2229     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2230       // Look for JAVA_HOME in the environment.
  2231       char* java_home_var = ::getenv("JAVA_HOME");
  2232       if (java_home_var != NULL && java_home_var[0] != 0) {
  2233         char* jrelib_p;
  2234         int len;
  2236         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2237         p = strrchr(buf, '/');
  2238         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2239         p = strstr(p, "_g") ? "_g" : "";
  2241         rp = realpath(java_home_var, buf);
  2242         if (rp == NULL)
  2243           return;
  2245         // determine if this is a legacy image or modules image
  2246         // modules image doesn't have "jre" subdirectory
  2247         len = strlen(buf);
  2248         jrelib_p = buf + len;
  2249         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2250         if (0 != access(buf, F_OK)) {
  2251           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2254         if (0 == access(buf, F_OK)) {
  2255           // Use current module name "libjvm[_g].so" instead of
  2256           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2257           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2258           len = strlen(buf);
  2259           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2260         } else {
  2261           // Go back to path of .so
  2262           rp = realpath(dli_fname, buf);
  2263           if (rp == NULL)
  2264             return;
  2270   strcpy(saved_jvm_path, buf);
  2273 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2274   // no prefix required, not even "_"
  2277 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2278   // no suffix required
  2281 ////////////////////////////////////////////////////////////////////////////////
  2282 // sun.misc.Signal support
  2284 static volatile jint sigint_count = 0;
  2286 static void
  2287 UserHandler(int sig, void *siginfo, void *context) {
  2288   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2289   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2290   // don't want to flood the manager thread with sem_post requests.
  2291   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2292       return;
  2294   // Ctrl-C is pressed during error reporting, likely because the error
  2295   // handler fails to abort. Let VM die immediately.
  2296   if (sig == SIGINT && is_error_reported()) {
  2297      os::die();
  2300   os::signal_notify(sig);
  2303 void* os::user_handler() {
  2304   return CAST_FROM_FN_PTR(void*, UserHandler);
  2307 extern "C" {
  2308   typedef void (*sa_handler_t)(int);
  2309   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2312 void* os::signal(int signal_number, void* handler) {
  2313   struct sigaction sigAct, oldSigAct;
  2315   sigfillset(&(sigAct.sa_mask));
  2316   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2317   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2319   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2320     // -1 means registration failed
  2321     return (void *)-1;
  2324   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2327 void os::signal_raise(int signal_number) {
  2328   ::raise(signal_number);
  2331 /*
  2332  * The following code is moved from os.cpp for making this
  2333  * code platform specific, which it is by its very nature.
  2334  */
  2336 // Will be modified when max signal is changed to be dynamic
  2337 int os::sigexitnum_pd() {
  2338   return NSIG;
  2341 // a counter for each possible signal value
  2342 static volatile jint pending_signals[NSIG+1] = { 0 };
  2344 // Linux(POSIX) specific hand shaking semaphore.
  2345 static sem_t sig_sem;
  2347 void os::signal_init_pd() {
  2348   // Initialize signal structures
  2349   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2351   // Initialize signal semaphore
  2352   ::sem_init(&sig_sem, 0, 0);
  2355 void os::signal_notify(int sig) {
  2356   Atomic::inc(&pending_signals[sig]);
  2357   ::sem_post(&sig_sem);
  2360 static int check_pending_signals(bool wait) {
  2361   Atomic::store(0, &sigint_count);
  2362   for (;;) {
  2363     for (int i = 0; i < NSIG + 1; i++) {
  2364       jint n = pending_signals[i];
  2365       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2366         return i;
  2369     if (!wait) {
  2370       return -1;
  2372     JavaThread *thread = JavaThread::current();
  2373     ThreadBlockInVM tbivm(thread);
  2375     bool threadIsSuspended;
  2376     do {
  2377       thread->set_suspend_equivalent();
  2378       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2379       ::sem_wait(&sig_sem);
  2381       // were we externally suspended while we were waiting?
  2382       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2383       if (threadIsSuspended) {
  2384         //
  2385         // The semaphore has been incremented, but while we were waiting
  2386         // another thread suspended us. We don't want to continue running
  2387         // while suspended because that would surprise the thread that
  2388         // suspended us.
  2389         //
  2390         ::sem_post(&sig_sem);
  2392         thread->java_suspend_self();
  2394     } while (threadIsSuspended);
  2398 int os::signal_lookup() {
  2399   return check_pending_signals(false);
  2402 int os::signal_wait() {
  2403   return check_pending_signals(true);
  2406 ////////////////////////////////////////////////////////////////////////////////
  2407 // Virtual Memory
  2409 int os::vm_page_size() {
  2410   // Seems redundant as all get out
  2411   assert(os::Linux::page_size() != -1, "must call os::init");
  2412   return os::Linux::page_size();
  2415 // Solaris allocates memory by pages.
  2416 int os::vm_allocation_granularity() {
  2417   assert(os::Linux::page_size() != -1, "must call os::init");
  2418   return os::Linux::page_size();
  2421 // Rationale behind this function:
  2422 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2423 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2424 //  samples for JITted code. Here we create private executable mapping over the code cache
  2425 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2426 //  info for the reporting script by storing timestamp and location of symbol
  2427 void linux_wrap_code(char* base, size_t size) {
  2428   static volatile jint cnt = 0;
  2430   if (!UseOprofile) {
  2431     return;
  2434   char buf[PATH_MAX+1];
  2435   int num = Atomic::add(1, &cnt);
  2437   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2438            os::get_temp_directory(), os::current_process_id(), num);
  2439   unlink(buf);
  2441   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2443   if (fd != -1) {
  2444     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2445     if (rv != (off_t)-1) {
  2446       if (::write(fd, "", 1) == 1) {
  2447         mmap(base, size,
  2448              PROT_READ|PROT_WRITE|PROT_EXEC,
  2449              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2452     ::close(fd);
  2453     unlink(buf);
  2457 // NOTE: Linux kernel does not really reserve the pages for us.
  2458 //       All it does is to check if there are enough free pages
  2459 //       left at the time of mmap(). This could be a potential
  2460 //       problem.
  2461 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2462   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2463   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2464                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2465   return res != (uintptr_t) MAP_FAILED;
  2468 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2469 #ifndef MAP_HUGETLB
  2470 #define MAP_HUGETLB 0x40000
  2471 #endif
  2473 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2474 #ifndef MADV_HUGEPAGE
  2475 #define MADV_HUGEPAGE 14
  2476 #endif
  2478 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2479                        bool exec) {
  2480   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2481     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2482     uintptr_t res =
  2483       (uintptr_t) ::mmap(addr, size, prot,
  2484                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2485                          -1, 0);
  2486     return res != (uintptr_t) MAP_FAILED;
  2489   return commit_memory(addr, size, exec);
  2492 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2493   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2494     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2495     // be supported or the memory may already be backed by huge pages.
  2496     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2500 void os::free_memory(char *addr, size_t bytes) {
  2501   ::madvise(addr, bytes, MADV_DONTNEED);
  2504 void os::numa_make_global(char *addr, size_t bytes) {
  2505   Linux::numa_interleave_memory(addr, bytes);
  2508 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2509   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2512 bool os::numa_topology_changed()   { return false; }
  2514 size_t os::numa_get_groups_num() {
  2515   int max_node = Linux::numa_max_node();
  2516   return max_node > 0 ? max_node + 1 : 1;
  2519 int os::numa_get_group_id() {
  2520   int cpu_id = Linux::sched_getcpu();
  2521   if (cpu_id != -1) {
  2522     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2523     if (lgrp_id != -1) {
  2524       return lgrp_id;
  2527   return 0;
  2530 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2531   for (size_t i = 0; i < size; i++) {
  2532     ids[i] = i;
  2534   return size;
  2537 bool os::get_page_info(char *start, page_info* info) {
  2538   return false;
  2541 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2542   return end;
  2545 // Something to do with the numa-aware allocator needs these symbols
  2546 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2547 extern "C" JNIEXPORT void numa_error(char *where) { }
  2548 extern "C" JNIEXPORT int fork1() { return fork(); }
  2551 // If we are running with libnuma version > 2, then we should
  2552 // be trying to use symbols with versions 1.1
  2553 // If we are running with earlier version, which did not have symbol versions,
  2554 // we should use the base version.
  2555 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2556   void *f = dlvsym(handle, name, "libnuma_1.1");
  2557   if (f == NULL) {
  2558     f = dlsym(handle, name);
  2560   return f;
  2563 bool os::Linux::libnuma_init() {
  2564   // sched_getcpu() should be in libc.
  2565   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2566                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2568   if (sched_getcpu() != -1) { // Does it work?
  2569     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2570     if (handle != NULL) {
  2571       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2572                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2573       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2574                                        libnuma_dlsym(handle, "numa_max_node")));
  2575       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2576                                         libnuma_dlsym(handle, "numa_available")));
  2577       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2578                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2579       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2580                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2583       if (numa_available() != -1) {
  2584         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2585         // Create a cpu -> node mapping
  2586         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2587         rebuild_cpu_to_node_map();
  2588         return true;
  2592   return false;
  2595 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2596 // The table is later used in get_node_by_cpu().
  2597 void os::Linux::rebuild_cpu_to_node_map() {
  2598   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2599                               // in libnuma (possible values are starting from 16,
  2600                               // and continuing up with every other power of 2, but less
  2601                               // than the maximum number of CPUs supported by kernel), and
  2602                               // is a subject to change (in libnuma version 2 the requirements
  2603                               // are more reasonable) we'll just hardcode the number they use
  2604                               // in the library.
  2605   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2607   size_t cpu_num = os::active_processor_count();
  2608   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2609   size_t cpu_map_valid_size =
  2610     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2612   cpu_to_node()->clear();
  2613   cpu_to_node()->at_grow(cpu_num - 1);
  2614   size_t node_num = numa_get_groups_num();
  2616   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2617   for (size_t i = 0; i < node_num; i++) {
  2618     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2619       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2620         if (cpu_map[j] != 0) {
  2621           for (size_t k = 0; k < BitsPerCLong; k++) {
  2622             if (cpu_map[j] & (1UL << k)) {
  2623               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2630   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2633 int os::Linux::get_node_by_cpu(int cpu_id) {
  2634   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2635     return cpu_to_node()->at(cpu_id);
  2637   return -1;
  2640 GrowableArray<int>* os::Linux::_cpu_to_node;
  2641 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2642 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2643 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2644 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2645 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2646 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2647 unsigned long* os::Linux::_numa_all_nodes;
  2649 bool os::uncommit_memory(char* addr, size_t size) {
  2650   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2651                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2652   return res  != (uintptr_t) MAP_FAILED;
  2655 // Linux uses a growable mapping for the stack, and if the mapping for
  2656 // the stack guard pages is not removed when we detach a thread the
  2657 // stack cannot grow beyond the pages where the stack guard was
  2658 // mapped.  If at some point later in the process the stack expands to
  2659 // that point, the Linux kernel cannot expand the stack any further
  2660 // because the guard pages are in the way, and a segfault occurs.
  2661 //
  2662 // However, it's essential not to split the stack region by unmapping
  2663 // a region (leaving a hole) that's already part of the stack mapping,
  2664 // so if the stack mapping has already grown beyond the guard pages at
  2665 // the time we create them, we have to truncate the stack mapping.
  2666 // So, we need to know the extent of the stack mapping when
  2667 // create_stack_guard_pages() is called.
  2669 // Find the bounds of the stack mapping.  Return true for success.
  2670 //
  2671 // We only need this for stacks that are growable: at the time of
  2672 // writing thread stacks don't use growable mappings (i.e. those
  2673 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2674 // only applies to the main thread.
  2676 static
  2677 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2679   char buf[128];
  2680   int fd, sz;
  2682   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2683     return false;
  2686   const char kw[] = "[stack]";
  2687   const int kwlen = sizeof(kw)-1;
  2689   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2690   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2691      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2692         // Extract addresses
  2693         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2694            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2695            if (sp >= *bottom && sp <= *top) {
  2696               ::close(fd);
  2697               return true;
  2703  ::close(fd);
  2704   return false;
  2708 // If the (growable) stack mapping already extends beyond the point
  2709 // where we're going to put our guard pages, truncate the mapping at
  2710 // that point by munmap()ping it.  This ensures that when we later
  2711 // munmap() the guard pages we don't leave a hole in the stack
  2712 // mapping. This only affects the main/initial thread, but guard
  2713 // against future OS changes
  2714 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2715   uintptr_t stack_extent, stack_base;
  2716   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2717   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2718       assert(os::Linux::is_initial_thread(),
  2719            "growable stack in non-initial thread");
  2720     if (stack_extent < (uintptr_t)addr)
  2721       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2724   return os::commit_memory(addr, size);
  2727 // If this is a growable mapping, remove the guard pages entirely by
  2728 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2729 // affects the main/initial thread, but guard against future OS changes
  2730 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2731   uintptr_t stack_extent, stack_base;
  2732   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2733   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2734       assert(os::Linux::is_initial_thread(),
  2735            "growable stack in non-initial thread");
  2737     return ::munmap(addr, size) == 0;
  2740   return os::uncommit_memory(addr, size);
  2743 static address _highest_vm_reserved_address = NULL;
  2745 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2746 // at 'requested_addr'. If there are existing memory mappings at the same
  2747 // location, however, they will be overwritten. If 'fixed' is false,
  2748 // 'requested_addr' is only treated as a hint, the return value may or
  2749 // may not start from the requested address. Unlike Linux mmap(), this
  2750 // function returns NULL to indicate failure.
  2751 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2752   char * addr;
  2753   int flags;
  2755   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2756   if (fixed) {
  2757     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2758     flags |= MAP_FIXED;
  2761   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2762   // to PROT_EXEC if executable when we commit the page.
  2763   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2764                        flags, -1, 0);
  2766   if (addr != MAP_FAILED) {
  2767     // anon_mmap() should only get called during VM initialization,
  2768     // don't need lock (actually we can skip locking even it can be called
  2769     // from multiple threads, because _highest_vm_reserved_address is just a
  2770     // hint about the upper limit of non-stack memory regions.)
  2771     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2772       _highest_vm_reserved_address = (address)addr + bytes;
  2776   return addr == MAP_FAILED ? NULL : addr;
  2779 // Don't update _highest_vm_reserved_address, because there might be memory
  2780 // regions above addr + size. If so, releasing a memory region only creates
  2781 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2782 //
  2783 static int anon_munmap(char * addr, size_t size) {
  2784   return ::munmap(addr, size) == 0;
  2787 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2788                          size_t alignment_hint) {
  2789   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2792 bool os::release_memory(char* addr, size_t size) {
  2793   return anon_munmap(addr, size);
  2796 static address highest_vm_reserved_address() {
  2797   return _highest_vm_reserved_address;
  2800 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2801   // Linux wants the mprotect address argument to be page aligned.
  2802   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2804   // According to SUSv3, mprotect() should only be used with mappings
  2805   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2806   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2807   // protection of malloc'ed or statically allocated memory). Check the
  2808   // caller if you hit this assert.
  2809   assert(addr == bottom, "sanity check");
  2811   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2812   return ::mprotect(bottom, size, prot) == 0;
  2815 // Set protections specified
  2816 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2817                         bool is_committed) {
  2818   unsigned int p = 0;
  2819   switch (prot) {
  2820   case MEM_PROT_NONE: p = PROT_NONE; break;
  2821   case MEM_PROT_READ: p = PROT_READ; break;
  2822   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2823   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2824   default:
  2825     ShouldNotReachHere();
  2827   // is_committed is unused.
  2828   return linux_mprotect(addr, bytes, p);
  2831 bool os::guard_memory(char* addr, size_t size) {
  2832   return linux_mprotect(addr, size, PROT_NONE);
  2835 bool os::unguard_memory(char* addr, size_t size) {
  2836   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2839 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2840   bool result = false;
  2841   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2842                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2843                   -1, 0);
  2845   if (p != (void *) -1) {
  2846     // We don't know if this really is a huge page or not.
  2847     FILE *fp = fopen("/proc/self/maps", "r");
  2848     if (fp) {
  2849       while (!feof(fp)) {
  2850         char chars[257];
  2851         long x = 0;
  2852         if (fgets(chars, sizeof(chars), fp)) {
  2853           if (sscanf(chars, "%lx-%*lx", &x) == 1
  2854               && x == (long)p) {
  2855             if (strstr (chars, "hugepage")) {
  2856               result = true;
  2857               break;
  2862       fclose(fp);
  2864     munmap (p, page_size);
  2865     if (result)
  2866       return true;
  2869   if (warn) {
  2870     warning("HugeTLBFS is not supported by the operating system.");
  2873   return result;
  2876 /*
  2877 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2879 * From the coredump_filter documentation:
  2881 * - (bit 0) anonymous private memory
  2882 * - (bit 1) anonymous shared memory
  2883 * - (bit 2) file-backed private memory
  2884 * - (bit 3) file-backed shared memory
  2885 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2886 *           effective only if the bit 2 is cleared)
  2887 * - (bit 5) hugetlb private memory
  2888 * - (bit 6) hugetlb shared memory
  2889 */
  2890 static void set_coredump_filter(void) {
  2891   FILE *f;
  2892   long cdm;
  2894   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2895     return;
  2898   if (fscanf(f, "%lx", &cdm) != 1) {
  2899     fclose(f);
  2900     return;
  2903   rewind(f);
  2905   if ((cdm & LARGEPAGES_BIT) == 0) {
  2906     cdm |= LARGEPAGES_BIT;
  2907     fprintf(f, "%#lx", cdm);
  2910   fclose(f);
  2913 // Large page support
  2915 static size_t _large_page_size = 0;
  2917 bool os::large_page_init() {
  2918   if (!UseLargePages) {
  2919     UseHugeTLBFS = false;
  2920     UseSHM = false;
  2921     return false;
  2924   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  2925     // Our user has not expressed a preference, so we'll try both.
  2926     UseHugeTLBFS = UseSHM = true;
  2929   if (LargePageSizeInBytes) {
  2930     _large_page_size = LargePageSizeInBytes;
  2931   } else {
  2932     // large_page_size on Linux is used to round up heap size. x86 uses either
  2933     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2934     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2935     // page as large as 256M.
  2936     //
  2937     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2938     // for a line with the following format:
  2939     //    Hugepagesize:     2048 kB
  2940     //
  2941     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2942     // format has been changed), we'll use the largest page size supported by
  2943     // the processor.
  2945 #ifndef ZERO
  2946     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  2947                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  2948 #endif // ZERO
  2950     FILE *fp = fopen("/proc/meminfo", "r");
  2951     if (fp) {
  2952       while (!feof(fp)) {
  2953         int x = 0;
  2954         char buf[16];
  2955         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2956           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2957             _large_page_size = x * K;
  2958             break;
  2960         } else {
  2961           // skip to next line
  2962           for (;;) {
  2963             int ch = fgetc(fp);
  2964             if (ch == EOF || ch == (int)'\n') break;
  2968       fclose(fp);
  2972   // print a warning if any large page related flag is specified on command line
  2973   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  2975   const size_t default_page_size = (size_t)Linux::page_size();
  2976   if (_large_page_size > default_page_size) {
  2977     _page_sizes[0] = _large_page_size;
  2978     _page_sizes[1] = default_page_size;
  2979     _page_sizes[2] = 0;
  2982   UseHugeTLBFS = UseHugeTLBFS &&
  2983                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  2985   if (UseHugeTLBFS)
  2986     UseSHM = false;
  2988   UseLargePages = UseHugeTLBFS || UseSHM;
  2990   set_coredump_filter();
  2992   // Large page support is available on 2.6 or newer kernel, some vendors
  2993   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2994   // We optimistically assume the support is available. If later it turns out
  2995   // not true, VM will automatically switch to use regular page size.
  2996   return true;
  2999 #ifndef SHM_HUGETLB
  3000 #define SHM_HUGETLB 04000
  3001 #endif
  3003 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3004   // "exec" is passed in but not used.  Creating the shared image for
  3005   // the code cache doesn't have an SHM_X executable permission to check.
  3006   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3008   key_t key = IPC_PRIVATE;
  3009   char *addr;
  3011   bool warn_on_failure = UseLargePages &&
  3012                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3013                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3014                         );
  3015   char msg[128];
  3017   // Create a large shared memory region to attach to based on size.
  3018   // Currently, size is the total size of the heap
  3019   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3020   if (shmid == -1) {
  3021      // Possible reasons for shmget failure:
  3022      // 1. shmmax is too small for Java heap.
  3023      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3024      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3025      // 2. not enough large page memory.
  3026      //    > check available large pages: cat /proc/meminfo
  3027      //    > increase amount of large pages:
  3028      //          echo new_value > /proc/sys/vm/nr_hugepages
  3029      //      Note 1: different Linux may use different name for this property,
  3030      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3031      //      Note 2: it's possible there's enough physical memory available but
  3032      //            they are so fragmented after a long run that they can't
  3033      //            coalesce into large pages. Try to reserve large pages when
  3034      //            the system is still "fresh".
  3035      if (warn_on_failure) {
  3036        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3037        warning(msg);
  3039      return NULL;
  3042   // attach to the region
  3043   addr = (char*)shmat(shmid, req_addr, 0);
  3044   int err = errno;
  3046   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3047   // will be deleted when it's detached by shmdt() or when the process
  3048   // terminates. If shmat() is not successful this will remove the shared
  3049   // segment immediately.
  3050   shmctl(shmid, IPC_RMID, NULL);
  3052   if ((intptr_t)addr == -1) {
  3053      if (warn_on_failure) {
  3054        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3055        warning(msg);
  3057      return NULL;
  3060   return addr;
  3063 bool os::release_memory_special(char* base, size_t bytes) {
  3064   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3065   int rslt = shmdt(base);
  3066   return rslt == 0;
  3069 size_t os::large_page_size() {
  3070   return _large_page_size;
  3073 // HugeTLBFS allows application to commit large page memory on demand;
  3074 // with SysV SHM the entire memory region must be allocated as shared
  3075 // memory.
  3076 bool os::can_commit_large_page_memory() {
  3077   return UseHugeTLBFS;
  3080 bool os::can_execute_large_page_memory() {
  3081   return UseHugeTLBFS;
  3084 // Reserve memory at an arbitrary address, only if that area is
  3085 // available (and not reserved for something else).
  3087 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3088   const int max_tries = 10;
  3089   char* base[max_tries];
  3090   size_t size[max_tries];
  3091   const size_t gap = 0x000000;
  3093   // Assert only that the size is a multiple of the page size, since
  3094   // that's all that mmap requires, and since that's all we really know
  3095   // about at this low abstraction level.  If we need higher alignment,
  3096   // we can either pass an alignment to this method or verify alignment
  3097   // in one of the methods further up the call chain.  See bug 5044738.
  3098   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3100   // Repeatedly allocate blocks until the block is allocated at the
  3101   // right spot. Give up after max_tries. Note that reserve_memory() will
  3102   // automatically update _highest_vm_reserved_address if the call is
  3103   // successful. The variable tracks the highest memory address every reserved
  3104   // by JVM. It is used to detect heap-stack collision if running with
  3105   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3106   // space than needed, it could confuse the collision detecting code. To
  3107   // solve the problem, save current _highest_vm_reserved_address and
  3108   // calculate the correct value before return.
  3109   address old_highest = _highest_vm_reserved_address;
  3111   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3112   // if kernel honors the hint then we can return immediately.
  3113   char * addr = anon_mmap(requested_addr, bytes, false);
  3114   if (addr == requested_addr) {
  3115      return requested_addr;
  3118   if (addr != NULL) {
  3119      // mmap() is successful but it fails to reserve at the requested address
  3120      anon_munmap(addr, bytes);
  3123   int i;
  3124   for (i = 0; i < max_tries; ++i) {
  3125     base[i] = reserve_memory(bytes);
  3127     if (base[i] != NULL) {
  3128       // Is this the block we wanted?
  3129       if (base[i] == requested_addr) {
  3130         size[i] = bytes;
  3131         break;
  3134       // Does this overlap the block we wanted? Give back the overlapped
  3135       // parts and try again.
  3137       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3138       if (top_overlap >= 0 && top_overlap < bytes) {
  3139         unmap_memory(base[i], top_overlap);
  3140         base[i] += top_overlap;
  3141         size[i] = bytes - top_overlap;
  3142       } else {
  3143         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3144         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3145           unmap_memory(requested_addr, bottom_overlap);
  3146           size[i] = bytes - bottom_overlap;
  3147         } else {
  3148           size[i] = bytes;
  3154   // Give back the unused reserved pieces.
  3156   for (int j = 0; j < i; ++j) {
  3157     if (base[j] != NULL) {
  3158       unmap_memory(base[j], size[j]);
  3162   if (i < max_tries) {
  3163     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3164     return requested_addr;
  3165   } else {
  3166     _highest_vm_reserved_address = old_highest;
  3167     return NULL;
  3171 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3172   return ::read(fd, buf, nBytes);
  3175 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3176 // Solaris uses poll(), linux uses park().
  3177 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3178 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3179 // SIGSEGV, see 4355769.
  3181 const int NANOSECS_PER_MILLISECS = 1000000;
  3183 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3184   assert(thread == Thread::current(),  "thread consistency check");
  3186   ParkEvent * const slp = thread->_SleepEvent ;
  3187   slp->reset() ;
  3188   OrderAccess::fence() ;
  3190   if (interruptible) {
  3191     jlong prevtime = javaTimeNanos();
  3193     for (;;) {
  3194       if (os::is_interrupted(thread, true)) {
  3195         return OS_INTRPT;
  3198       jlong newtime = javaTimeNanos();
  3200       if (newtime - prevtime < 0) {
  3201         // time moving backwards, should only happen if no monotonic clock
  3202         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3203         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3204       } else {
  3205         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3208       if(millis <= 0) {
  3209         return OS_OK;
  3212       prevtime = newtime;
  3215         assert(thread->is_Java_thread(), "sanity check");
  3216         JavaThread *jt = (JavaThread *) thread;
  3217         ThreadBlockInVM tbivm(jt);
  3218         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3220         jt->set_suspend_equivalent();
  3221         // cleared by handle_special_suspend_equivalent_condition() or
  3222         // java_suspend_self() via check_and_wait_while_suspended()
  3224         slp->park(millis);
  3226         // were we externally suspended while we were waiting?
  3227         jt->check_and_wait_while_suspended();
  3230   } else {
  3231     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3232     jlong prevtime = javaTimeNanos();
  3234     for (;;) {
  3235       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3236       // the 1st iteration ...
  3237       jlong newtime = javaTimeNanos();
  3239       if (newtime - prevtime < 0) {
  3240         // time moving backwards, should only happen if no monotonic clock
  3241         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3242         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3243       } else {
  3244         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3247       if(millis <= 0) break ;
  3249       prevtime = newtime;
  3250       slp->park(millis);
  3252     return OS_OK ;
  3256 int os::naked_sleep() {
  3257   // %% make the sleep time an integer flag. for now use 1 millisec.
  3258   return os::sleep(Thread::current(), 1, false);
  3261 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3262 void os::infinite_sleep() {
  3263   while (true) {    // sleep forever ...
  3264     ::sleep(100);   // ... 100 seconds at a time
  3268 // Used to convert frequent JVM_Yield() to nops
  3269 bool os::dont_yield() {
  3270   return DontYieldALot;
  3273 void os::yield() {
  3274   sched_yield();
  3277 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3279 void os::yield_all(int attempts) {
  3280   // Yields to all threads, including threads with lower priorities
  3281   // Threads on Linux are all with same priority. The Solaris style
  3282   // os::yield_all() with nanosleep(1ms) is not necessary.
  3283   sched_yield();
  3286 // Called from the tight loops to possibly influence time-sharing heuristics
  3287 void os::loop_breaker(int attempts) {
  3288   os::yield_all(attempts);
  3291 ////////////////////////////////////////////////////////////////////////////////
  3292 // thread priority support
  3294 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3295 // only supports dynamic priority, static priority must be zero. For real-time
  3296 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3297 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3298 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3299 // of 5 runs - Sep 2005).
  3300 //
  3301 // The following code actually changes the niceness of kernel-thread/LWP. It
  3302 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3303 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3304 // threads. It has always been the case, but could change in the future. For
  3305 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3306 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3308 int os::java_to_os_priority[MaxPriority + 1] = {
  3309   19,              // 0 Entry should never be used
  3311    4,              // 1 MinPriority
  3312    3,              // 2
  3313    2,              // 3
  3315    1,              // 4
  3316    0,              // 5 NormPriority
  3317   -1,              // 6
  3319   -2,              // 7
  3320   -3,              // 8
  3321   -4,              // 9 NearMaxPriority
  3323   -5               // 10 MaxPriority
  3324 };
  3326 static int prio_init() {
  3327   if (ThreadPriorityPolicy == 1) {
  3328     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3329     // if effective uid is not root. Perhaps, a more elegant way of doing
  3330     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3331     if (geteuid() != 0) {
  3332       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3333         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3335       ThreadPriorityPolicy = 0;
  3338   return 0;
  3341 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3342   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3344   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3345   return (ret == 0) ? OS_OK : OS_ERR;
  3348 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3349   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3350     *priority_ptr = java_to_os_priority[NormPriority];
  3351     return OS_OK;
  3354   errno = 0;
  3355   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3356   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3359 // Hint to the underlying OS that a task switch would not be good.
  3360 // Void return because it's a hint and can fail.
  3361 void os::hint_no_preempt() {}
  3363 ////////////////////////////////////////////////////////////////////////////////
  3364 // suspend/resume support
  3366 //  the low-level signal-based suspend/resume support is a remnant from the
  3367 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3368 //  within hotspot. Now there is a single use-case for this:
  3369 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3370 //      that runs in the watcher thread.
  3371 //  The remaining code is greatly simplified from the more general suspension
  3372 //  code that used to be used.
  3373 //
  3374 //  The protocol is quite simple:
  3375 //  - suspend:
  3376 //      - sends a signal to the target thread
  3377 //      - polls the suspend state of the osthread using a yield loop
  3378 //      - target thread signal handler (SR_handler) sets suspend state
  3379 //        and blocks in sigsuspend until continued
  3380 //  - resume:
  3381 //      - sets target osthread state to continue
  3382 //      - sends signal to end the sigsuspend loop in the SR_handler
  3383 //
  3384 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3385 //
  3387 static void resume_clear_context(OSThread *osthread) {
  3388   osthread->set_ucontext(NULL);
  3389   osthread->set_siginfo(NULL);
  3391   // notify the suspend action is completed, we have now resumed
  3392   osthread->sr.clear_suspended();
  3395 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3396   osthread->set_ucontext(context);
  3397   osthread->set_siginfo(siginfo);
  3400 //
  3401 // Handler function invoked when a thread's execution is suspended or
  3402 // resumed. We have to be careful that only async-safe functions are
  3403 // called here (Note: most pthread functions are not async safe and
  3404 // should be avoided.)
  3405 //
  3406 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3407 // interface point of view, but sigwait() prevents the signal hander
  3408 // from being run. libpthread would get very confused by not having
  3409 // its signal handlers run and prevents sigwait()'s use with the
  3410 // mutex granting granting signal.
  3411 //
  3412 // Currently only ever called on the VMThread
  3413 //
  3414 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3415   // Save and restore errno to avoid confusing native code with EINTR
  3416   // after sigsuspend.
  3417   int old_errno = errno;
  3419   Thread* thread = Thread::current();
  3420   OSThread* osthread = thread->osthread();
  3421   assert(thread->is_VM_thread(), "Must be VMThread");
  3422   // read current suspend action
  3423   int action = osthread->sr.suspend_action();
  3424   if (action == SR_SUSPEND) {
  3425     suspend_save_context(osthread, siginfo, context);
  3427     // Notify the suspend action is about to be completed. do_suspend()
  3428     // waits until SR_SUSPENDED is set and then returns. We will wait
  3429     // here for a resume signal and that completes the suspend-other
  3430     // action. do_suspend/do_resume is always called as a pair from
  3431     // the same thread - so there are no races
  3433     // notify the caller
  3434     osthread->sr.set_suspended();
  3436     sigset_t suspend_set;  // signals for sigsuspend()
  3438     // get current set of blocked signals and unblock resume signal
  3439     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3440     sigdelset(&suspend_set, SR_signum);
  3442     // wait here until we are resumed
  3443     do {
  3444       sigsuspend(&suspend_set);
  3445       // ignore all returns until we get a resume signal
  3446     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3448     resume_clear_context(osthread);
  3450   } else {
  3451     assert(action == SR_CONTINUE, "unexpected sr action");
  3452     // nothing special to do - just leave the handler
  3455   errno = old_errno;
  3459 static int SR_initialize() {
  3460   struct sigaction act;
  3461   char *s;
  3462   /* Get signal number to use for suspend/resume */
  3463   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3464     int sig = ::strtol(s, 0, 10);
  3465     if (sig > 0 || sig < _NSIG) {
  3466         SR_signum = sig;
  3470   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3471         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3473   sigemptyset(&SR_sigset);
  3474   sigaddset(&SR_sigset, SR_signum);
  3476   /* Set up signal handler for suspend/resume */
  3477   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3478   act.sa_handler = (void (*)(int)) SR_handler;
  3480   // SR_signum is blocked by default.
  3481   // 4528190 - We also need to block pthread restart signal (32 on all
  3482   // supported Linux platforms). Note that LinuxThreads need to block
  3483   // this signal for all threads to work properly. So we don't have
  3484   // to use hard-coded signal number when setting up the mask.
  3485   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3487   if (sigaction(SR_signum, &act, 0) == -1) {
  3488     return -1;
  3491   // Save signal flag
  3492   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3493   return 0;
  3496 static int SR_finalize() {
  3497   return 0;
  3501 // returns true on success and false on error - really an error is fatal
  3502 // but this seems the normal response to library errors
  3503 static bool do_suspend(OSThread* osthread) {
  3504   // mark as suspended and send signal
  3505   osthread->sr.set_suspend_action(SR_SUSPEND);
  3506   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3507   assert_status(status == 0, status, "pthread_kill");
  3509   // check status and wait until notified of suspension
  3510   if (status == 0) {
  3511     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3512       os::yield_all(i);
  3514     osthread->sr.set_suspend_action(SR_NONE);
  3515     return true;
  3517   else {
  3518     osthread->sr.set_suspend_action(SR_NONE);
  3519     return false;
  3523 static void do_resume(OSThread* osthread) {
  3524   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3525   osthread->sr.set_suspend_action(SR_CONTINUE);
  3527   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3528   assert_status(status == 0, status, "pthread_kill");
  3529   // check status and wait unit notified of resumption
  3530   if (status == 0) {
  3531     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3532       os::yield_all(i);
  3535   osthread->sr.set_suspend_action(SR_NONE);
  3538 ////////////////////////////////////////////////////////////////////////////////
  3539 // interrupt support
  3541 void os::interrupt(Thread* thread) {
  3542   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3543     "possibility of dangling Thread pointer");
  3545   OSThread* osthread = thread->osthread();
  3547   if (!osthread->interrupted()) {
  3548     osthread->set_interrupted(true);
  3549     // More than one thread can get here with the same value of osthread,
  3550     // resulting in multiple notifications.  We do, however, want the store
  3551     // to interrupted() to be visible to other threads before we execute unpark().
  3552     OrderAccess::fence();
  3553     ParkEvent * const slp = thread->_SleepEvent ;
  3554     if (slp != NULL) slp->unpark() ;
  3557   // For JSR166. Unpark even if interrupt status already was set
  3558   if (thread->is_Java_thread())
  3559     ((JavaThread*)thread)->parker()->unpark();
  3561   ParkEvent * ev = thread->_ParkEvent ;
  3562   if (ev != NULL) ev->unpark() ;
  3566 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3567   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3568     "possibility of dangling Thread pointer");
  3570   OSThread* osthread = thread->osthread();
  3572   bool interrupted = osthread->interrupted();
  3574   if (interrupted && clear_interrupted) {
  3575     osthread->set_interrupted(false);
  3576     // consider thread->_SleepEvent->reset() ... optional optimization
  3579   return interrupted;
  3582 ///////////////////////////////////////////////////////////////////////////////////
  3583 // signal handling (except suspend/resume)
  3585 // This routine may be used by user applications as a "hook" to catch signals.
  3586 // The user-defined signal handler must pass unrecognized signals to this
  3587 // routine, and if it returns true (non-zero), then the signal handler must
  3588 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3589 // routine will never retun false (zero), but instead will execute a VM panic
  3590 // routine kill the process.
  3591 //
  3592 // If this routine returns false, it is OK to call it again.  This allows
  3593 // the user-defined signal handler to perform checks either before or after
  3594 // the VM performs its own checks.  Naturally, the user code would be making
  3595 // a serious error if it tried to handle an exception (such as a null check
  3596 // or breakpoint) that the VM was generating for its own correct operation.
  3597 //
  3598 // This routine may recognize any of the following kinds of signals:
  3599 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3600 // It should be consulted by handlers for any of those signals.
  3601 //
  3602 // The caller of this routine must pass in the three arguments supplied
  3603 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3604 // field of the structure passed to sigaction().  This routine assumes that
  3605 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3606 //
  3607 // Note that the VM will print warnings if it detects conflicting signal
  3608 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3609 //
  3610 extern "C" JNIEXPORT int
  3611 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3612                         void* ucontext, int abort_if_unrecognized);
  3614 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3615   assert(info != NULL && uc != NULL, "it must be old kernel");
  3616   JVM_handle_linux_signal(sig, info, uc, true);
  3620 // This boolean allows users to forward their own non-matching signals
  3621 // to JVM_handle_linux_signal, harmlessly.
  3622 bool os::Linux::signal_handlers_are_installed = false;
  3624 // For signal-chaining
  3625 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3626 unsigned int os::Linux::sigs = 0;
  3627 bool os::Linux::libjsig_is_loaded = false;
  3628 typedef struct sigaction *(*get_signal_t)(int);
  3629 get_signal_t os::Linux::get_signal_action = NULL;
  3631 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3632   struct sigaction *actp = NULL;
  3634   if (libjsig_is_loaded) {
  3635     // Retrieve the old signal handler from libjsig
  3636     actp = (*get_signal_action)(sig);
  3638   if (actp == NULL) {
  3639     // Retrieve the preinstalled signal handler from jvm
  3640     actp = get_preinstalled_handler(sig);
  3643   return actp;
  3646 static bool call_chained_handler(struct sigaction *actp, int sig,
  3647                                  siginfo_t *siginfo, void *context) {
  3648   // Call the old signal handler
  3649   if (actp->sa_handler == SIG_DFL) {
  3650     // It's more reasonable to let jvm treat it as an unexpected exception
  3651     // instead of taking the default action.
  3652     return false;
  3653   } else if (actp->sa_handler != SIG_IGN) {
  3654     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3655       // automaticlly block the signal
  3656       sigaddset(&(actp->sa_mask), sig);
  3659     sa_handler_t hand;
  3660     sa_sigaction_t sa;
  3661     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3662     // retrieve the chained handler
  3663     if (siginfo_flag_set) {
  3664       sa = actp->sa_sigaction;
  3665     } else {
  3666       hand = actp->sa_handler;
  3669     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3670       actp->sa_handler = SIG_DFL;
  3673     // try to honor the signal mask
  3674     sigset_t oset;
  3675     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3677     // call into the chained handler
  3678     if (siginfo_flag_set) {
  3679       (*sa)(sig, siginfo, context);
  3680     } else {
  3681       (*hand)(sig);
  3684     // restore the signal mask
  3685     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3687   // Tell jvm's signal handler the signal is taken care of.
  3688   return true;
  3691 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3692   bool chained = false;
  3693   // signal-chaining
  3694   if (UseSignalChaining) {
  3695     struct sigaction *actp = get_chained_signal_action(sig);
  3696     if (actp != NULL) {
  3697       chained = call_chained_handler(actp, sig, siginfo, context);
  3700   return chained;
  3703 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3704   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3705     return &sigact[sig];
  3707   return NULL;
  3710 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3711   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3712   sigact[sig] = oldAct;
  3713   sigs |= (unsigned int)1 << sig;
  3716 // for diagnostic
  3717 int os::Linux::sigflags[MAXSIGNUM];
  3719 int os::Linux::get_our_sigflags(int sig) {
  3720   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3721   return sigflags[sig];
  3724 void os::Linux::set_our_sigflags(int sig, int flags) {
  3725   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3726   sigflags[sig] = flags;
  3729 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3730   // Check for overwrite.
  3731   struct sigaction oldAct;
  3732   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3734   void* oldhand = oldAct.sa_sigaction
  3735                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3736                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3737   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3738       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3739       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3740     if (AllowUserSignalHandlers || !set_installed) {
  3741       // Do not overwrite; user takes responsibility to forward to us.
  3742       return;
  3743     } else if (UseSignalChaining) {
  3744       // save the old handler in jvm
  3745       save_preinstalled_handler(sig, oldAct);
  3746       // libjsig also interposes the sigaction() call below and saves the
  3747       // old sigaction on it own.
  3748     } else {
  3749       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3750                     "%#lx for signal %d.", (long)oldhand, sig));
  3754   struct sigaction sigAct;
  3755   sigfillset(&(sigAct.sa_mask));
  3756   sigAct.sa_handler = SIG_DFL;
  3757   if (!set_installed) {
  3758     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3759   } else {
  3760     sigAct.sa_sigaction = signalHandler;
  3761     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3763   // Save flags, which are set by ours
  3764   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3765   sigflags[sig] = sigAct.sa_flags;
  3767   int ret = sigaction(sig, &sigAct, &oldAct);
  3768   assert(ret == 0, "check");
  3770   void* oldhand2  = oldAct.sa_sigaction
  3771                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3772                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3773   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3776 // install signal handlers for signals that HotSpot needs to
  3777 // handle in order to support Java-level exception handling.
  3779 void os::Linux::install_signal_handlers() {
  3780   if (!signal_handlers_are_installed) {
  3781     signal_handlers_are_installed = true;
  3783     // signal-chaining
  3784     typedef void (*signal_setting_t)();
  3785     signal_setting_t begin_signal_setting = NULL;
  3786     signal_setting_t end_signal_setting = NULL;
  3787     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3788                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3789     if (begin_signal_setting != NULL) {
  3790       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3791                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3792       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3793                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3794       libjsig_is_loaded = true;
  3795       assert(UseSignalChaining, "should enable signal-chaining");
  3797     if (libjsig_is_loaded) {
  3798       // Tell libjsig jvm is setting signal handlers
  3799       (*begin_signal_setting)();
  3802     set_signal_handler(SIGSEGV, true);
  3803     set_signal_handler(SIGPIPE, true);
  3804     set_signal_handler(SIGBUS, true);
  3805     set_signal_handler(SIGILL, true);
  3806     set_signal_handler(SIGFPE, true);
  3807     set_signal_handler(SIGXFSZ, true);
  3809     if (libjsig_is_loaded) {
  3810       // Tell libjsig jvm finishes setting signal handlers
  3811       (*end_signal_setting)();
  3814     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3815     // and if UserSignalHandler is installed all bets are off
  3816     if (CheckJNICalls) {
  3817       if (libjsig_is_loaded) {
  3818         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3819         check_signals = false;
  3821       if (AllowUserSignalHandlers) {
  3822         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3823         check_signals = false;
  3829 // This is the fastest way to get thread cpu time on Linux.
  3830 // Returns cpu time (user+sys) for any thread, not only for current.
  3831 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3832 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3833 // For reference, please, see IEEE Std 1003.1-2004:
  3834 //   http://www.unix.org/single_unix_specification
  3836 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3837   struct timespec tp;
  3838   int rc = os::Linux::clock_gettime(clockid, &tp);
  3839   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3841   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3844 /////
  3845 // glibc on Linux platform uses non-documented flag
  3846 // to indicate, that some special sort of signal
  3847 // trampoline is used.
  3848 // We will never set this flag, and we should
  3849 // ignore this flag in our diagnostic
  3850 #ifdef SIGNIFICANT_SIGNAL_MASK
  3851 #undef SIGNIFICANT_SIGNAL_MASK
  3852 #endif
  3853 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3855 static const char* get_signal_handler_name(address handler,
  3856                                            char* buf, int buflen) {
  3857   int offset;
  3858   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3859   if (found) {
  3860     // skip directory names
  3861     const char *p1, *p2;
  3862     p1 = buf;
  3863     size_t len = strlen(os::file_separator());
  3864     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3865     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3866   } else {
  3867     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3869   return buf;
  3872 static void print_signal_handler(outputStream* st, int sig,
  3873                                  char* buf, size_t buflen) {
  3874   struct sigaction sa;
  3876   sigaction(sig, NULL, &sa);
  3878   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3879   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3881   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3883   address handler = (sa.sa_flags & SA_SIGINFO)
  3884     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3885     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3887   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3888     st->print("SIG_DFL");
  3889   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3890     st->print("SIG_IGN");
  3891   } else {
  3892     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3895   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3897   address rh = VMError::get_resetted_sighandler(sig);
  3898   // May be, handler was resetted by VMError?
  3899   if(rh != NULL) {
  3900     handler = rh;
  3901     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3904   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3906   // Check: is it our handler?
  3907   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3908      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3909     // It is our signal handler
  3910     // check for flags, reset system-used one!
  3911     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3912       st->print(
  3913                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3914                 os::Linux::get_our_sigflags(sig));
  3917   st->cr();
  3921 #define DO_SIGNAL_CHECK(sig) \
  3922   if (!sigismember(&check_signal_done, sig)) \
  3923     os::Linux::check_signal_handler(sig)
  3925 // This method is a periodic task to check for misbehaving JNI applications
  3926 // under CheckJNI, we can add any periodic checks here
  3928 void os::run_periodic_checks() {
  3930   if (check_signals == false) return;
  3932   // SEGV and BUS if overridden could potentially prevent
  3933   // generation of hs*.log in the event of a crash, debugging
  3934   // such a case can be very challenging, so we absolutely
  3935   // check the following for a good measure:
  3936   DO_SIGNAL_CHECK(SIGSEGV);
  3937   DO_SIGNAL_CHECK(SIGILL);
  3938   DO_SIGNAL_CHECK(SIGFPE);
  3939   DO_SIGNAL_CHECK(SIGBUS);
  3940   DO_SIGNAL_CHECK(SIGPIPE);
  3941   DO_SIGNAL_CHECK(SIGXFSZ);
  3944   // ReduceSignalUsage allows the user to override these handlers
  3945   // see comments at the very top and jvm_solaris.h
  3946   if (!ReduceSignalUsage) {
  3947     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3948     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3949     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3950     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3953   DO_SIGNAL_CHECK(SR_signum);
  3954   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3957 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3959 static os_sigaction_t os_sigaction = NULL;
  3961 void os::Linux::check_signal_handler(int sig) {
  3962   char buf[O_BUFLEN];
  3963   address jvmHandler = NULL;
  3966   struct sigaction act;
  3967   if (os_sigaction == NULL) {
  3968     // only trust the default sigaction, in case it has been interposed
  3969     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3970     if (os_sigaction == NULL) return;
  3973   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3976   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3978   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3979     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3980     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3983   switch(sig) {
  3984   case SIGSEGV:
  3985   case SIGBUS:
  3986   case SIGFPE:
  3987   case SIGPIPE:
  3988   case SIGILL:
  3989   case SIGXFSZ:
  3990     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3991     break;
  3993   case SHUTDOWN1_SIGNAL:
  3994   case SHUTDOWN2_SIGNAL:
  3995   case SHUTDOWN3_SIGNAL:
  3996   case BREAK_SIGNAL:
  3997     jvmHandler = (address)user_handler();
  3998     break;
  4000   case INTERRUPT_SIGNAL:
  4001     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4002     break;
  4004   default:
  4005     if (sig == SR_signum) {
  4006       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4007     } else {
  4008       return;
  4010     break;
  4013   if (thisHandler != jvmHandler) {
  4014     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4015     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4016     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4017     // No need to check this sig any longer
  4018     sigaddset(&check_signal_done, sig);
  4019   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4020     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4021     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4022     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4023     // No need to check this sig any longer
  4024     sigaddset(&check_signal_done, sig);
  4027   // Dump all the signal
  4028   if (sigismember(&check_signal_done, sig)) {
  4029     print_signal_handlers(tty, buf, O_BUFLEN);
  4033 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4035 extern bool signal_name(int signo, char* buf, size_t len);
  4037 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4038   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4039     // signal
  4040     if (!signal_name(exception_code, buf, size)) {
  4041       jio_snprintf(buf, size, "SIG%d", exception_code);
  4043     return buf;
  4044   } else {
  4045     return NULL;
  4049 // this is called _before_ the most of global arguments have been parsed
  4050 void os::init(void) {
  4051   char dummy;   /* used to get a guess on initial stack address */
  4052 //  first_hrtime = gethrtime();
  4054   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4055   // is different than the pid of the java launcher thread.
  4056   // So, on Linux, the launcher thread pid is passed to the VM
  4057   // via the sun.java.launcher.pid property.
  4058   // Use this property instead of getpid() if it was correctly passed.
  4059   // See bug 6351349.
  4060   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4062   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4064   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4066   init_random(1234567);
  4068   ThreadCritical::initialize();
  4070   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4071   if (Linux::page_size() == -1) {
  4072     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4073                   strerror(errno)));
  4075   init_page_sizes((size_t) Linux::page_size());
  4077   Linux::initialize_system_info();
  4079   // main_thread points to the aboriginal thread
  4080   Linux::_main_thread = pthread_self();
  4082   Linux::clock_init();
  4083   initial_time_count = os::elapsed_counter();
  4084   pthread_mutex_init(&dl_mutex, NULL);
  4087 // To install functions for atexit system call
  4088 extern "C" {
  4089   static void perfMemory_exit_helper() {
  4090     perfMemory_exit();
  4094 // this is called _after_ the global arguments have been parsed
  4095 jint os::init_2(void)
  4097   Linux::fast_thread_clock_init();
  4099   // Allocate a single page and mark it as readable for safepoint polling
  4100   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4101   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4103   os::set_polling_page( polling_page );
  4105 #ifndef PRODUCT
  4106   if(Verbose && PrintMiscellaneous)
  4107     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4108 #endif
  4110   if (!UseMembar) {
  4111     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4112     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4113     os::set_memory_serialize_page( mem_serialize_page );
  4115 #ifndef PRODUCT
  4116     if(Verbose && PrintMiscellaneous)
  4117       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4118 #endif
  4121   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  4123   // initialize suspend/resume support - must do this before signal_sets_init()
  4124   if (SR_initialize() != 0) {
  4125     perror("SR_initialize failed");
  4126     return JNI_ERR;
  4129   Linux::signal_sets_init();
  4130   Linux::install_signal_handlers();
  4132   // Check minimum allowable stack size for thread creation and to initialize
  4133   // the java system classes, including StackOverflowError - depends on page
  4134   // size.  Add a page for compiler2 recursion in main thread.
  4135   // Add in 2*BytesPerWord times page size to account for VM stack during
  4136   // class initialization depending on 32 or 64 bit VM.
  4137   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4138             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4139                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4141   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4142   if (threadStackSizeInBytes != 0 &&
  4143       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4144         tty->print_cr("\nThe stack size specified is too small, "
  4145                       "Specify at least %dk",
  4146                       os::Linux::min_stack_allowed/ K);
  4147         return JNI_ERR;
  4150   // Make the stack size a multiple of the page size so that
  4151   // the yellow/red zones can be guarded.
  4152   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4153         vm_page_size()));
  4155   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4157   Linux::libpthread_init();
  4158   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4159      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4160           Linux::glibc_version(), Linux::libpthread_version(),
  4161           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4164   if (UseNUMA) {
  4165     if (!Linux::libnuma_init()) {
  4166       UseNUMA = false;
  4167     } else {
  4168       if ((Linux::numa_max_node() < 1)) {
  4169         // There's only one node(they start from 0), disable NUMA.
  4170         UseNUMA = false;
  4173     // With SHM large pages we cannot uncommit a page, so there's not way
  4174     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4175     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4176     // disable adaptive resizing.
  4177     if (UseNUMA && UseLargePages && UseSHM) {
  4178       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4179         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4180           UseLargePages = false;
  4181         } else {
  4182           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4183           UseAdaptiveSizePolicy = false;
  4184           UseAdaptiveNUMAChunkSizing = false;
  4186       } else {
  4187         UseNUMA = false;
  4190     if (!UseNUMA && ForceNUMA) {
  4191       UseNUMA = true;
  4195   if (MaxFDLimit) {
  4196     // set the number of file descriptors to max. print out error
  4197     // if getrlimit/setrlimit fails but continue regardless.
  4198     struct rlimit nbr_files;
  4199     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4200     if (status != 0) {
  4201       if (PrintMiscellaneous && (Verbose || WizardMode))
  4202         perror("os::init_2 getrlimit failed");
  4203     } else {
  4204       nbr_files.rlim_cur = nbr_files.rlim_max;
  4205       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4206       if (status != 0) {
  4207         if (PrintMiscellaneous && (Verbose || WizardMode))
  4208           perror("os::init_2 setrlimit failed");
  4213   // Initialize lock used to serialize thread creation (see os::create_thread)
  4214   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4216   // at-exit methods are called in the reverse order of their registration.
  4217   // atexit functions are called on return from main or as a result of a
  4218   // call to exit(3C). There can be only 32 of these functions registered
  4219   // and atexit() does not set errno.
  4221   if (PerfAllowAtExitRegistration) {
  4222     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4223     // atexit functions can be delayed until process exit time, which
  4224     // can be problematic for embedded VM situations. Embedded VMs should
  4225     // call DestroyJavaVM() to assure that VM resources are released.
  4227     // note: perfMemory_exit_helper atexit function may be removed in
  4228     // the future if the appropriate cleanup code can be added to the
  4229     // VM_Exit VMOperation's doit method.
  4230     if (atexit(perfMemory_exit_helper) != 0) {
  4231       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4235   // initialize thread priority policy
  4236   prio_init();
  4238   return JNI_OK;
  4241 // this is called at the end of vm_initialization
  4242 void os::init_3(void) { }
  4244 // Mark the polling page as unreadable
  4245 void os::make_polling_page_unreadable(void) {
  4246   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4247     fatal("Could not disable polling page");
  4248 };
  4250 // Mark the polling page as readable
  4251 void os::make_polling_page_readable(void) {
  4252   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4253     fatal("Could not enable polling page");
  4255 };
  4257 int os::active_processor_count() {
  4258   // Linux doesn't yet have a (official) notion of processor sets,
  4259   // so just return the number of online processors.
  4260   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4261   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4262   return online_cpus;
  4265 bool os::distribute_processes(uint length, uint* distribution) {
  4266   // Not yet implemented.
  4267   return false;
  4270 bool os::bind_to_processor(uint processor_id) {
  4271   // Not yet implemented.
  4272   return false;
  4275 ///
  4277 // Suspends the target using the signal mechanism and then grabs the PC before
  4278 // resuming the target. Used by the flat-profiler only
  4279 ExtendedPC os::get_thread_pc(Thread* thread) {
  4280   // Make sure that it is called by the watcher for the VMThread
  4281   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4282   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4284   ExtendedPC epc;
  4286   OSThread* osthread = thread->osthread();
  4287   if (do_suspend(osthread)) {
  4288     if (osthread->ucontext() != NULL) {
  4289       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4290     } else {
  4291       // NULL context is unexpected, double-check this is the VMThread
  4292       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4294     do_resume(osthread);
  4296   // failure means pthread_kill failed for some reason - arguably this is
  4297   // a fatal problem, but such problems are ignored elsewhere
  4299   return epc;
  4302 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4304    if (is_NPTL()) {
  4305       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4306    } else {
  4307 #ifndef IA64
  4308       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4309       // word back to default 64bit precision if condvar is signaled. Java
  4310       // wants 53bit precision.  Save and restore current value.
  4311       int fpu = get_fpu_control_word();
  4312 #endif // IA64
  4313       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4314 #ifndef IA64
  4315       set_fpu_control_word(fpu);
  4316 #endif // IA64
  4317       return status;
  4321 ////////////////////////////////////////////////////////////////////////////////
  4322 // debug support
  4324 static address same_page(address x, address y) {
  4325   int page_bits = -os::vm_page_size();
  4326   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4327     return x;
  4328   else if (x > y)
  4329     return (address)(intptr_t(y) | ~page_bits) + 1;
  4330   else
  4331     return (address)(intptr_t(y) & page_bits);
  4334 bool os::find(address addr, outputStream* st) {
  4335   Dl_info dlinfo;
  4336   memset(&dlinfo, 0, sizeof(dlinfo));
  4337   if (dladdr(addr, &dlinfo)) {
  4338     st->print(PTR_FORMAT ": ", addr);
  4339     if (dlinfo.dli_sname != NULL) {
  4340       st->print("%s+%#x", dlinfo.dli_sname,
  4341                  addr - (intptr_t)dlinfo.dli_saddr);
  4342     } else if (dlinfo.dli_fname) {
  4343       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4344     } else {
  4345       st->print("<absolute address>");
  4347     if (dlinfo.dli_fname) {
  4348       st->print(" in %s", dlinfo.dli_fname);
  4350     if (dlinfo.dli_fbase) {
  4351       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4353     st->cr();
  4355     if (Verbose) {
  4356       // decode some bytes around the PC
  4357       address begin = same_page(addr-40, addr);
  4358       address end   = same_page(addr+40, addr);
  4359       address       lowest = (address) dlinfo.dli_sname;
  4360       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4361       if (begin < lowest)  begin = lowest;
  4362       Dl_info dlinfo2;
  4363       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4364           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4365         end = (address) dlinfo2.dli_saddr;
  4366       Disassembler::decode(begin, end, st);
  4368     return true;
  4370   return false;
  4373 ////////////////////////////////////////////////////////////////////////////////
  4374 // misc
  4376 // This does not do anything on Linux. This is basically a hook for being
  4377 // able to use structured exception handling (thread-local exception filters)
  4378 // on, e.g., Win32.
  4379 void
  4380 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4381                          JavaCallArguments* args, Thread* thread) {
  4382   f(value, method, args, thread);
  4385 void os::print_statistics() {
  4388 int os::message_box(const char* title, const char* message) {
  4389   int i;
  4390   fdStream err(defaultStream::error_fd());
  4391   for (i = 0; i < 78; i++) err.print_raw("=");
  4392   err.cr();
  4393   err.print_raw_cr(title);
  4394   for (i = 0; i < 78; i++) err.print_raw("-");
  4395   err.cr();
  4396   err.print_raw_cr(message);
  4397   for (i = 0; i < 78; i++) err.print_raw("=");
  4398   err.cr();
  4400   char buf[16];
  4401   // Prevent process from exiting upon "read error" without consuming all CPU
  4402   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4404   return buf[0] == 'y' || buf[0] == 'Y';
  4407 int os::stat(const char *path, struct stat *sbuf) {
  4408   char pathbuf[MAX_PATH];
  4409   if (strlen(path) > MAX_PATH - 1) {
  4410     errno = ENAMETOOLONG;
  4411     return -1;
  4413   os::native_path(strcpy(pathbuf, path));
  4414   return ::stat(pathbuf, sbuf);
  4417 bool os::check_heap(bool force) {
  4418   return true;
  4421 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4422   return ::vsnprintf(buf, count, format, args);
  4425 // Is a (classpath) directory empty?
  4426 bool os::dir_is_empty(const char* path) {
  4427   DIR *dir = NULL;
  4428   struct dirent *ptr;
  4430   dir = opendir(path);
  4431   if (dir == NULL) return true;
  4433   /* Scan the directory */
  4434   bool result = true;
  4435   char buf[sizeof(struct dirent) + MAX_PATH];
  4436   while (result && (ptr = ::readdir(dir)) != NULL) {
  4437     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4438       result = false;
  4441   closedir(dir);
  4442   return result;
  4445 // This code originates from JDK's sysOpen and open64_w
  4446 // from src/solaris/hpi/src/system_md.c
  4448 #ifndef O_DELETE
  4449 #define O_DELETE 0x10000
  4450 #endif
  4452 // Open a file. Unlink the file immediately after open returns
  4453 // if the specified oflag has the O_DELETE flag set.
  4454 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4456 int os::open(const char *path, int oflag, int mode) {
  4458   if (strlen(path) > MAX_PATH - 1) {
  4459     errno = ENAMETOOLONG;
  4460     return -1;
  4462   int fd;
  4463   int o_delete = (oflag & O_DELETE);
  4464   oflag = oflag & ~O_DELETE;
  4466   fd = ::open64(path, oflag, mode);
  4467   if (fd == -1) return -1;
  4469   //If the open succeeded, the file might still be a directory
  4471     struct stat64 buf64;
  4472     int ret = ::fstat64(fd, &buf64);
  4473     int st_mode = buf64.st_mode;
  4475     if (ret != -1) {
  4476       if ((st_mode & S_IFMT) == S_IFDIR) {
  4477         errno = EISDIR;
  4478         ::close(fd);
  4479         return -1;
  4481     } else {
  4482       ::close(fd);
  4483       return -1;
  4487     /*
  4488      * All file descriptors that are opened in the JVM and not
  4489      * specifically destined for a subprocess should have the
  4490      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4491      * party native code might fork and exec without closing all
  4492      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4493      * UNIXProcess.c), and this in turn might:
  4495      * - cause end-of-file to fail to be detected on some file
  4496      *   descriptors, resulting in mysterious hangs, or
  4498      * - might cause an fopen in the subprocess to fail on a system
  4499      *   suffering from bug 1085341.
  4501      * (Yes, the default setting of the close-on-exec flag is a Unix
  4502      * design flaw)
  4504      * See:
  4505      * 1085341: 32-bit stdio routines should support file descriptors >255
  4506      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4507      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4508      */
  4509 #ifdef FD_CLOEXEC
  4511         int flags = ::fcntl(fd, F_GETFD);
  4512         if (flags != -1)
  4513             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4515 #endif
  4517   if (o_delete != 0) {
  4518     ::unlink(path);
  4520   return fd;
  4524 // create binary file, rewriting existing file if required
  4525 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4526   int oflags = O_WRONLY | O_CREAT;
  4527   if (!rewrite_existing) {
  4528     oflags |= O_EXCL;
  4530   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4533 // return current position of file pointer
  4534 jlong os::current_file_offset(int fd) {
  4535   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4538 // move file pointer to the specified offset
  4539 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4540   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4543 // This code originates from JDK's sysAvailable
  4544 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4546 int os::available(int fd, jlong *bytes) {
  4547   jlong cur, end;
  4548   int mode;
  4549   struct stat64 buf64;
  4551   if (::fstat64(fd, &buf64) >= 0) {
  4552     mode = buf64.st_mode;
  4553     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4554       /*
  4555       * XXX: is the following call interruptible? If so, this might
  4556       * need to go through the INTERRUPT_IO() wrapper as for other
  4557       * blocking, interruptible calls in this file.
  4558       */
  4559       int n;
  4560       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4561         *bytes = n;
  4562         return 1;
  4566   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4567     return 0;
  4568   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4569     return 0;
  4570   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4571     return 0;
  4573   *bytes = end - cur;
  4574   return 1;
  4577 int os::socket_available(int fd, jint *pbytes) {
  4578   // Linux doc says EINTR not returned, unlike Solaris
  4579   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4581   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4582   // is expected to return 0 on failure and 1 on success to the jdk.
  4583   return (ret < 0) ? 0 : 1;
  4586 // Map a block of memory.
  4587 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4588                      char *addr, size_t bytes, bool read_only,
  4589                      bool allow_exec) {
  4590   int prot;
  4591   int flags;
  4593   if (read_only) {
  4594     prot = PROT_READ;
  4595     flags = MAP_SHARED;
  4596   } else {
  4597     prot = PROT_READ | PROT_WRITE;
  4598     flags = MAP_PRIVATE;
  4601   if (allow_exec) {
  4602     prot |= PROT_EXEC;
  4605   if (addr != NULL) {
  4606     flags |= MAP_FIXED;
  4609   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4610                                      fd, file_offset);
  4611   if (mapped_address == MAP_FAILED) {
  4612     return NULL;
  4614   return mapped_address;
  4618 // Remap a block of memory.
  4619 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4620                        char *addr, size_t bytes, bool read_only,
  4621                        bool allow_exec) {
  4622   // same as map_memory() on this OS
  4623   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4624                         allow_exec);
  4628 // Unmap a block of memory.
  4629 bool os::unmap_memory(char* addr, size_t bytes) {
  4630   return munmap(addr, bytes) == 0;
  4633 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4635 static clockid_t thread_cpu_clockid(Thread* thread) {
  4636   pthread_t tid = thread->osthread()->pthread_id();
  4637   clockid_t clockid;
  4639   // Get thread clockid
  4640   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4641   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4642   return clockid;
  4645 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4646 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4647 // of a thread.
  4648 //
  4649 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4650 // the fast estimate available on the platform.
  4652 jlong os::current_thread_cpu_time() {
  4653   if (os::Linux::supports_fast_thread_cpu_time()) {
  4654     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4655   } else {
  4656     // return user + sys since the cost is the same
  4657     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4661 jlong os::thread_cpu_time(Thread* thread) {
  4662   // consistent with what current_thread_cpu_time() returns
  4663   if (os::Linux::supports_fast_thread_cpu_time()) {
  4664     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4665   } else {
  4666     return slow_thread_cpu_time(thread, true /* user + sys */);
  4670 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4671   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4672     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4673   } else {
  4674     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4678 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4679   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4680     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4681   } else {
  4682     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4686 //
  4687 //  -1 on error.
  4688 //
  4690 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4691   static bool proc_pid_cpu_avail = true;
  4692   static bool proc_task_unchecked = true;
  4693   static const char *proc_stat_path = "/proc/%d/stat";
  4694   pid_t  tid = thread->osthread()->thread_id();
  4695   int i;
  4696   char *s;
  4697   char stat[2048];
  4698   int statlen;
  4699   char proc_name[64];
  4700   int count;
  4701   long sys_time, user_time;
  4702   char string[64];
  4703   char cdummy;
  4704   int idummy;
  4705   long ldummy;
  4706   FILE *fp;
  4708   // We first try accessing /proc/<pid>/cpu since this is faster to
  4709   // process.  If this file is not present (linux kernels 2.5 and above)
  4710   // then we open /proc/<pid>/stat.
  4711   if ( proc_pid_cpu_avail ) {
  4712     sprintf(proc_name, "/proc/%d/cpu", tid);
  4713     fp =  fopen(proc_name, "r");
  4714     if ( fp != NULL ) {
  4715       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4716       fclose(fp);
  4717       if ( count != 3 ) return -1;
  4719       if (user_sys_cpu_time) {
  4720         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4721       } else {
  4722         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4725     else proc_pid_cpu_avail = false;
  4728   // The /proc/<tid>/stat aggregates per-process usage on
  4729   // new Linux kernels 2.6+ where NPTL is supported.
  4730   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4731   // See bug 6328462.
  4732   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4733   // and possibly in some other cases, so we check its availability.
  4734   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4735     // This is executed only once
  4736     proc_task_unchecked = false;
  4737     fp = fopen("/proc/self/task", "r");
  4738     if (fp != NULL) {
  4739       proc_stat_path = "/proc/self/task/%d/stat";
  4740       fclose(fp);
  4744   sprintf(proc_name, proc_stat_path, tid);
  4745   fp = fopen(proc_name, "r");
  4746   if ( fp == NULL ) return -1;
  4747   statlen = fread(stat, 1, 2047, fp);
  4748   stat[statlen] = '\0';
  4749   fclose(fp);
  4751   // Skip pid and the command string. Note that we could be dealing with
  4752   // weird command names, e.g. user could decide to rename java launcher
  4753   // to "java 1.4.2 :)", then the stat file would look like
  4754   //                1234 (java 1.4.2 :)) R ... ...
  4755   // We don't really need to know the command string, just find the last
  4756   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4757   s = strrchr(stat, ')');
  4758   i = 0;
  4759   if (s == NULL ) return -1;
  4761   // Skip blank chars
  4762   do s++; while (isspace(*s));
  4764   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4765                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4766                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4767                  &user_time, &sys_time);
  4768   if ( count != 13 ) return -1;
  4769   if (user_sys_cpu_time) {
  4770     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4771   } else {
  4772     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4776 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4777   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4778   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4779   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4780   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4783 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4784   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4785   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4786   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4787   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4790 bool os::is_thread_cpu_time_supported() {
  4791   return true;
  4794 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4795 // Linux doesn't yet have a (official) notion of processor sets,
  4796 // so just return the system wide load average.
  4797 int os::loadavg(double loadavg[], int nelem) {
  4798   return ::getloadavg(loadavg, nelem);
  4801 void os::pause() {
  4802   char filename[MAX_PATH];
  4803   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4804     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4805   } else {
  4806     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4809   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4810   if (fd != -1) {
  4811     struct stat buf;
  4812     ::close(fd);
  4813     while (::stat(filename, &buf) == 0) {
  4814       (void)::poll(NULL, 0, 100);
  4816   } else {
  4817     jio_fprintf(stderr,
  4818       "Could not open pause file '%s', continuing immediately.\n", filename);
  4823 // Refer to the comments in os_solaris.cpp park-unpark.
  4824 //
  4825 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4826 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4827 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4828 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4829 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4830 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4831 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4832 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4833 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4834 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4835 // of libpthread avoids the problem, but isn't practical.
  4836 //
  4837 // Possible remedies:
  4838 //
  4839 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4840 //      This is palliative and probabilistic, however.  If the thread is preempted
  4841 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4842 //      than the minimum period may have passed, and the abstime may be stale (in the
  4843 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4844 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4845 //
  4846 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4847 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4848 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4849 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4850 //      thread.
  4851 //
  4852 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4853 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4854 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4855 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4856 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4857 //      timers in a graceful fashion.
  4858 //
  4859 // 4.   When the abstime value is in the past it appears that control returns
  4860 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4861 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4862 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4863 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4864 //      It may be possible to avoid reinitialization by checking the return
  4865 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4866 //      condvar we must establish the invariant that cond_signal() is only called
  4867 //      within critical sections protected by the adjunct mutex.  This prevents
  4868 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4869 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4870 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4871 //
  4872 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4873 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4874 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4875 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4876 //
  4877 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4878 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4879 // and only enabling the work-around for vulnerable environments.
  4881 // utility to compute the abstime argument to timedwait:
  4882 // millis is the relative timeout time
  4883 // abstime will be the absolute timeout time
  4884 // TODO: replace compute_abstime() with unpackTime()
  4886 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4887   if (millis < 0)  millis = 0;
  4888   struct timeval now;
  4889   int status = gettimeofday(&now, NULL);
  4890   assert(status == 0, "gettimeofday");
  4891   jlong seconds = millis / 1000;
  4892   millis %= 1000;
  4893   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4894     seconds = 50000000;
  4896   abstime->tv_sec = now.tv_sec  + seconds;
  4897   long       usec = now.tv_usec + millis * 1000;
  4898   if (usec >= 1000000) {
  4899     abstime->tv_sec += 1;
  4900     usec -= 1000000;
  4902   abstime->tv_nsec = usec * 1000;
  4903   return abstime;
  4907 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4908 // Conceptually TryPark() should be equivalent to park(0).
  4910 int os::PlatformEvent::TryPark() {
  4911   for (;;) {
  4912     const int v = _Event ;
  4913     guarantee ((v == 0) || (v == 1), "invariant") ;
  4914     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4918 void os::PlatformEvent::park() {       // AKA "down()"
  4919   // Invariant: Only the thread associated with the Event/PlatformEvent
  4920   // may call park().
  4921   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4922   int v ;
  4923   for (;;) {
  4924       v = _Event ;
  4925       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4927   guarantee (v >= 0, "invariant") ;
  4928   if (v == 0) {
  4929      // Do this the hard way by blocking ...
  4930      int status = pthread_mutex_lock(_mutex);
  4931      assert_status(status == 0, status, "mutex_lock");
  4932      guarantee (_nParked == 0, "invariant") ;
  4933      ++ _nParked ;
  4934      while (_Event < 0) {
  4935         status = pthread_cond_wait(_cond, _mutex);
  4936         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4937         // Treat this the same as if the wait was interrupted
  4938         if (status == ETIME) { status = EINTR; }
  4939         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4941      -- _nParked ;
  4943     // In theory we could move the ST of 0 into _Event past the unlock(),
  4944     // but then we'd need a MEMBAR after the ST.
  4945     _Event = 0 ;
  4946      status = pthread_mutex_unlock(_mutex);
  4947      assert_status(status == 0, status, "mutex_unlock");
  4949   guarantee (_Event >= 0, "invariant") ;
  4952 int os::PlatformEvent::park(jlong millis) {
  4953   guarantee (_nParked == 0, "invariant") ;
  4955   int v ;
  4956   for (;;) {
  4957       v = _Event ;
  4958       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4960   guarantee (v >= 0, "invariant") ;
  4961   if (v != 0) return OS_OK ;
  4963   // We do this the hard way, by blocking the thread.
  4964   // Consider enforcing a minimum timeout value.
  4965   struct timespec abst;
  4966   compute_abstime(&abst, millis);
  4968   int ret = OS_TIMEOUT;
  4969   int status = pthread_mutex_lock(_mutex);
  4970   assert_status(status == 0, status, "mutex_lock");
  4971   guarantee (_nParked == 0, "invariant") ;
  4972   ++_nParked ;
  4974   // Object.wait(timo) will return because of
  4975   // (a) notification
  4976   // (b) timeout
  4977   // (c) thread.interrupt
  4978   //
  4979   // Thread.interrupt and object.notify{All} both call Event::set.
  4980   // That is, we treat thread.interrupt as a special case of notification.
  4981   // The underlying Solaris implementation, cond_timedwait, admits
  4982   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4983   // JVM from making those visible to Java code.  As such, we must
  4984   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4985   //
  4986   // TODO: properly differentiate simultaneous notify+interrupt.
  4987   // In that case, we should propagate the notify to another waiter.
  4989   while (_Event < 0) {
  4990     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4991     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4992       pthread_cond_destroy (_cond);
  4993       pthread_cond_init (_cond, NULL) ;
  4995     assert_status(status == 0 || status == EINTR ||
  4996                   status == ETIME || status == ETIMEDOUT,
  4997                   status, "cond_timedwait");
  4998     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4999     if (status == ETIME || status == ETIMEDOUT) break ;
  5000     // We consume and ignore EINTR and spurious wakeups.
  5002   --_nParked ;
  5003   if (_Event >= 0) {
  5004      ret = OS_OK;
  5006   _Event = 0 ;
  5007   status = pthread_mutex_unlock(_mutex);
  5008   assert_status(status == 0, status, "mutex_unlock");
  5009   assert (_nParked == 0, "invariant") ;
  5010   return ret;
  5013 void os::PlatformEvent::unpark() {
  5014   int v, AnyWaiters ;
  5015   for (;;) {
  5016       v = _Event ;
  5017       if (v > 0) {
  5018          // The LD of _Event could have reordered or be satisfied
  5019          // by a read-aside from this processor's write buffer.
  5020          // To avoid problems execute a barrier and then
  5021          // ratify the value.
  5022          OrderAccess::fence() ;
  5023          if (_Event == v) return ;
  5024          continue ;
  5026       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5028   if (v < 0) {
  5029      // Wait for the thread associated with the event to vacate
  5030      int status = pthread_mutex_lock(_mutex);
  5031      assert_status(status == 0, status, "mutex_lock");
  5032      AnyWaiters = _nParked ;
  5033      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5034      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5035         AnyWaiters = 0 ;
  5036         pthread_cond_signal (_cond);
  5038      status = pthread_mutex_unlock(_mutex);
  5039      assert_status(status == 0, status, "mutex_unlock");
  5040      if (AnyWaiters != 0) {
  5041         status = pthread_cond_signal(_cond);
  5042         assert_status(status == 0, status, "cond_signal");
  5046   // Note that we signal() _after dropping the lock for "immortal" Events.
  5047   // This is safe and avoids a common class of  futile wakeups.  In rare
  5048   // circumstances this can cause a thread to return prematurely from
  5049   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5050   // simply re-test the condition and re-park itself.
  5054 // JSR166
  5055 // -------------------------------------------------------
  5057 /*
  5058  * The solaris and linux implementations of park/unpark are fairly
  5059  * conservative for now, but can be improved. They currently use a
  5060  * mutex/condvar pair, plus a a count.
  5061  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5062  * sets count to 1 and signals condvar.  Only one thread ever waits
  5063  * on the condvar. Contention seen when trying to park implies that someone
  5064  * is unparking you, so don't wait. And spurious returns are fine, so there
  5065  * is no need to track notifications.
  5066  */
  5069 #define NANOSECS_PER_SEC 1000000000
  5070 #define NANOSECS_PER_MILLISEC 1000000
  5071 #define MAX_SECS 100000000
  5072 /*
  5073  * This code is common to linux and solaris and will be moved to a
  5074  * common place in dolphin.
  5076  * The passed in time value is either a relative time in nanoseconds
  5077  * or an absolute time in milliseconds. Either way it has to be unpacked
  5078  * into suitable seconds and nanoseconds components and stored in the
  5079  * given timespec structure.
  5080  * Given time is a 64-bit value and the time_t used in the timespec is only
  5081  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5082  * overflow if times way in the future are given. Further on Solaris versions
  5083  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5084  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5085  * As it will be 28 years before "now + 100000000" will overflow we can
  5086  * ignore overflow and just impose a hard-limit on seconds using the value
  5087  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5088  * years from "now".
  5089  */
  5091 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5092   assert (time > 0, "convertTime");
  5094   struct timeval now;
  5095   int status = gettimeofday(&now, NULL);
  5096   assert(status == 0, "gettimeofday");
  5098   time_t max_secs = now.tv_sec + MAX_SECS;
  5100   if (isAbsolute) {
  5101     jlong secs = time / 1000;
  5102     if (secs > max_secs) {
  5103       absTime->tv_sec = max_secs;
  5105     else {
  5106       absTime->tv_sec = secs;
  5108     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5110   else {
  5111     jlong secs = time / NANOSECS_PER_SEC;
  5112     if (secs >= MAX_SECS) {
  5113       absTime->tv_sec = max_secs;
  5114       absTime->tv_nsec = 0;
  5116     else {
  5117       absTime->tv_sec = now.tv_sec + secs;
  5118       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5119       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5120         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5121         ++absTime->tv_sec; // note: this must be <= max_secs
  5125   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5126   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5127   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5128   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5131 void Parker::park(bool isAbsolute, jlong time) {
  5132   // Optional fast-path check:
  5133   // Return immediately if a permit is available.
  5134   if (_counter > 0) {
  5135       _counter = 0 ;
  5136       OrderAccess::fence();
  5137       return ;
  5140   Thread* thread = Thread::current();
  5141   assert(thread->is_Java_thread(), "Must be JavaThread");
  5142   JavaThread *jt = (JavaThread *)thread;
  5144   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5145   // Check interrupt before trying to wait
  5146   if (Thread::is_interrupted(thread, false)) {
  5147     return;
  5150   // Next, demultiplex/decode time arguments
  5151   timespec absTime;
  5152   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5153     return;
  5155   if (time > 0) {
  5156     unpackTime(&absTime, isAbsolute, time);
  5160   // Enter safepoint region
  5161   // Beware of deadlocks such as 6317397.
  5162   // The per-thread Parker:: mutex is a classic leaf-lock.
  5163   // In particular a thread must never block on the Threads_lock while
  5164   // holding the Parker:: mutex.  If safepoints are pending both the
  5165   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5166   ThreadBlockInVM tbivm(jt);
  5168   // Don't wait if cannot get lock since interference arises from
  5169   // unblocking.  Also. check interrupt before trying wait
  5170   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5171     return;
  5174   int status ;
  5175   if (_counter > 0)  { // no wait needed
  5176     _counter = 0;
  5177     status = pthread_mutex_unlock(_mutex);
  5178     assert (status == 0, "invariant") ;
  5179     OrderAccess::fence();
  5180     return;
  5183 #ifdef ASSERT
  5184   // Don't catch signals while blocked; let the running threads have the signals.
  5185   // (This allows a debugger to break into the running thread.)
  5186   sigset_t oldsigs;
  5187   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5188   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5189 #endif
  5191   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5192   jt->set_suspend_equivalent();
  5193   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5195   if (time == 0) {
  5196     status = pthread_cond_wait (_cond, _mutex) ;
  5197   } else {
  5198     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5199     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5200       pthread_cond_destroy (_cond) ;
  5201       pthread_cond_init    (_cond, NULL);
  5204   assert_status(status == 0 || status == EINTR ||
  5205                 status == ETIME || status == ETIMEDOUT,
  5206                 status, "cond_timedwait");
  5208 #ifdef ASSERT
  5209   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5210 #endif
  5212   _counter = 0 ;
  5213   status = pthread_mutex_unlock(_mutex) ;
  5214   assert_status(status == 0, status, "invariant") ;
  5215   // If externally suspended while waiting, re-suspend
  5216   if (jt->handle_special_suspend_equivalent_condition()) {
  5217     jt->java_suspend_self();
  5220   OrderAccess::fence();
  5223 void Parker::unpark() {
  5224   int s, status ;
  5225   status = pthread_mutex_lock(_mutex);
  5226   assert (status == 0, "invariant") ;
  5227   s = _counter;
  5228   _counter = 1;
  5229   if (s < 1) {
  5230      if (WorkAroundNPTLTimedWaitHang) {
  5231         status = pthread_cond_signal (_cond) ;
  5232         assert (status == 0, "invariant") ;
  5233         status = pthread_mutex_unlock(_mutex);
  5234         assert (status == 0, "invariant") ;
  5235      } else {
  5236         status = pthread_mutex_unlock(_mutex);
  5237         assert (status == 0, "invariant") ;
  5238         status = pthread_cond_signal (_cond) ;
  5239         assert (status == 0, "invariant") ;
  5241   } else {
  5242     pthread_mutex_unlock(_mutex);
  5243     assert (status == 0, "invariant") ;
  5248 extern char** environ;
  5250 #ifndef __NR_fork
  5251 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5252 #endif
  5254 #ifndef __NR_execve
  5255 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5256 #endif
  5258 // Run the specified command in a separate process. Return its exit value,
  5259 // or -1 on failure (e.g. can't fork a new process).
  5260 // Unlike system(), this function can be called from signal handler. It
  5261 // doesn't block SIGINT et al.
  5262 int os::fork_and_exec(char* cmd) {
  5263   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5265   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5266   // pthread_atfork handlers and reset pthread library. All we need is a
  5267   // separate process to execve. Make a direct syscall to fork process.
  5268   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5269   // the best...
  5270   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5271               IA64_ONLY(fork();)
  5273   if (pid < 0) {
  5274     // fork failed
  5275     return -1;
  5277   } else if (pid == 0) {
  5278     // child process
  5280     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5281     // first to kill every thread on the thread list. Because this list is
  5282     // not reset by fork() (see notes above), execve() will instead kill
  5283     // every thread in the parent process. We know this is the only thread
  5284     // in the new process, so make a system call directly.
  5285     // IA64 should use normal execve() from glibc to match the glibc fork()
  5286     // above.
  5287     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5288     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5290     // execve failed
  5291     _exit(-1);
  5293   } else  {
  5294     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5295     // care about the actual exit code, for now.
  5297     int status;
  5299     // Wait for the child process to exit.  This returns immediately if
  5300     // the child has already exited. */
  5301     while (waitpid(pid, &status, 0) < 0) {
  5302         switch (errno) {
  5303         case ECHILD: return 0;
  5304         case EINTR: break;
  5305         default: return -1;
  5309     if (WIFEXITED(status)) {
  5310        // The child exited normally; get its exit code.
  5311        return WEXITSTATUS(status);
  5312     } else if (WIFSIGNALED(status)) {
  5313        // The child exited because of a signal
  5314        // The best value to return is 0x80 + signal number,
  5315        // because that is what all Unix shells do, and because
  5316        // it allows callers to distinguish between process exit and
  5317        // process death by signal.
  5318        return 0x80 + WTERMSIG(status);
  5319     } else {
  5320        // Unknown exit code; pass it through
  5321        return status;
  5326 // is_headless_jre()
  5327 //
  5328 // Test for the existence of libmawt in motif21 or xawt directories
  5329 // in order to report if we are running in a headless jre
  5330 //
  5331 bool os::is_headless_jre() {
  5332     struct stat statbuf;
  5333     char buf[MAXPATHLEN];
  5334     char libmawtpath[MAXPATHLEN];
  5335     const char *xawtstr  = "/xawt/libmawt.so";
  5336     const char *motifstr = "/motif21/libmawt.so";
  5337     char *p;
  5339     // Get path to libjvm.so
  5340     os::jvm_path(buf, sizeof(buf));
  5342     // Get rid of libjvm.so
  5343     p = strrchr(buf, '/');
  5344     if (p == NULL) return false;
  5345     else *p = '\0';
  5347     // Get rid of client or server
  5348     p = strrchr(buf, '/');
  5349     if (p == NULL) return false;
  5350     else *p = '\0';
  5352     // check xawt/libmawt.so
  5353     strcpy(libmawtpath, buf);
  5354     strcat(libmawtpath, xawtstr);
  5355     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5357     // check motif21/libmawt.so
  5358     strcpy(libmawtpath, buf);
  5359     strcat(libmawtpath, motifstr);
  5360     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5362     return true;

mercurial