src/share/vm/opto/node.hpp

Wed, 07 Sep 2011 09:35:52 +0200

author
roland
date
Wed, 07 Sep 2011 09:35:52 +0200
changeset 3109
c2d3caa64b3e
parent 3051
11211f7cb5a0
child 3138
f6f3bb0ee072
permissions
-rw-r--r--

7086394: c2/arm: enable UseFPUForSpilling
Summary: ARM has instructions to move data directly between the fpu and integer registers.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class Block_Array;
    46 class BoolNode;
    47 class BoxLockNode;
    48 class CMoveNode;
    49 class CallDynamicJavaNode;
    50 class CallJavaNode;
    51 class CallLeafNode;
    52 class CallNode;
    53 class CallRuntimeNode;
    54 class CallStaticJavaNode;
    55 class CatchNode;
    56 class CatchProjNode;
    57 class CheckCastPPNode;
    58 class ClearArrayNode;
    59 class CmpNode;
    60 class CodeBuffer;
    61 class ConstraintCastNode;
    62 class ConNode;
    63 class CountedLoopNode;
    64 class CountedLoopEndNode;
    65 class DecodeNNode;
    66 class EncodePNode;
    67 class FastLockNode;
    68 class FastUnlockNode;
    69 class IfNode;
    70 class IfFalseNode;
    71 class IfTrueNode;
    72 class InitializeNode;
    73 class JVMState;
    74 class JumpNode;
    75 class JumpProjNode;
    76 class LoadNode;
    77 class LoadStoreNode;
    78 class LockNode;
    79 class LoopNode;
    80 class MachBranchNode;
    81 class MachCallDynamicJavaNode;
    82 class MachCallJavaNode;
    83 class MachCallLeafNode;
    84 class MachCallNode;
    85 class MachCallRuntimeNode;
    86 class MachCallStaticJavaNode;
    87 class MachConstantBaseNode;
    88 class MachConstantNode;
    89 class MachGotoNode;
    90 class MachIfNode;
    91 class MachNode;
    92 class MachNullCheckNode;
    93 class MachProjNode;
    94 class MachReturnNode;
    95 class MachSafePointNode;
    96 class MachSpillCopyNode;
    97 class MachTempNode;
    98 class Matcher;
    99 class MemBarNode;
   100 class MemNode;
   101 class MergeMemNode;
   102 class MultiNode;
   103 class MultiBranchNode;
   104 class NeverBranchNode;
   105 class Node;
   106 class Node_Array;
   107 class Node_List;
   108 class Node_Stack;
   109 class NullCheckNode;
   110 class OopMap;
   111 class ParmNode;
   112 class PCTableNode;
   113 class PhaseCCP;
   114 class PhaseGVN;
   115 class PhaseIterGVN;
   116 class PhaseRegAlloc;
   117 class PhaseTransform;
   118 class PhaseValues;
   119 class PhiNode;
   120 class Pipeline;
   121 class ProjNode;
   122 class RegMask;
   123 class RegionNode;
   124 class RootNode;
   125 class SafePointNode;
   126 class SafePointScalarObjectNode;
   127 class StartNode;
   128 class State;
   129 class StoreNode;
   130 class SubNode;
   131 class Type;
   132 class TypeNode;
   133 class UnlockNode;
   134 class VectorNode;
   135 class VectorLoadNode;
   136 class VectorStoreNode;
   137 class VectorSet;
   138 typedef void (*NFunc)(Node&,void*);
   139 extern "C" {
   140   typedef int (*C_sort_func_t)(const void *, const void *);
   141 }
   143 // The type of all node counts and indexes.
   144 // It must hold at least 16 bits, but must also be fast to load and store.
   145 // This type, if less than 32 bits, could limit the number of possible nodes.
   146 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   147 typedef unsigned int node_idx_t;
   150 #ifndef OPTO_DU_ITERATOR_ASSERT
   151 #ifdef ASSERT
   152 #define OPTO_DU_ITERATOR_ASSERT 1
   153 #else
   154 #define OPTO_DU_ITERATOR_ASSERT 0
   155 #endif
   156 #endif //OPTO_DU_ITERATOR_ASSERT
   158 #if OPTO_DU_ITERATOR_ASSERT
   159 class DUIterator;
   160 class DUIterator_Fast;
   161 class DUIterator_Last;
   162 #else
   163 typedef uint   DUIterator;
   164 typedef Node** DUIterator_Fast;
   165 typedef Node** DUIterator_Last;
   166 #endif
   168 // Node Sentinel
   169 #define NodeSentinel (Node*)-1
   171 // Unknown count frequency
   172 #define COUNT_UNKNOWN (-1.0f)
   174 //------------------------------Node-------------------------------------------
   175 // Nodes define actions in the program.  They create values, which have types.
   176 // They are both vertices in a directed graph and program primitives.  Nodes
   177 // are labeled; the label is the "opcode", the primitive function in the lambda
   178 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   179 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   180 // the Node's function.  These inputs also define a Type equation for the Node.
   181 // Solving these Type equations amounts to doing dataflow analysis.
   182 // Control and data are uniformly represented in the graph.  Finally, Nodes
   183 // have a unique dense integer index which is used to index into side arrays
   184 // whenever I have phase-specific information.
   186 class Node {
   187   // Lots of restrictions on cloning Nodes
   188   Node(const Node&);            // not defined; linker error to use these
   189   Node &operator=(const Node &rhs);
   191 public:
   192   friend class Compile;
   193   #if OPTO_DU_ITERATOR_ASSERT
   194   friend class DUIterator_Common;
   195   friend class DUIterator;
   196   friend class DUIterator_Fast;
   197   friend class DUIterator_Last;
   198   #endif
   200   // Because Nodes come and go, I define an Arena of Node structures to pull
   201   // from.  This should allow fast access to node creation & deletion.  This
   202   // field is a local cache of a value defined in some "program fragment" for
   203   // which these Nodes are just a part of.
   205   // New Operator that takes a Compile pointer, this will eventually
   206   // be the "new" New operator.
   207   inline void* operator new( size_t x, Compile* C) {
   208     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   209 #ifdef ASSERT
   210     n->_in = (Node**)n; // magic cookie for assertion check
   211 #endif
   212     n->_out = (Node**)C;
   213     return (void*)n;
   214   }
   216   // New Operator that takes a Compile pointer, this will eventually
   217   // be the "new" New operator.
   218   inline void* operator new( size_t x, Compile* C, int y) {
   219     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
   220     n->_in = (Node**)(((char*)n) + x);
   221 #ifdef ASSERT
   222     n->_in[y-1] = n; // magic cookie for assertion check
   223 #endif
   224     n->_out = (Node**)C;
   225     return (void*)n;
   226   }
   228   // Delete is a NOP
   229   void operator delete( void *ptr ) {}
   230   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   231   void destruct();
   233   // Create a new Node.  Required is the number is of inputs required for
   234   // semantic correctness.
   235   Node( uint required );
   237   // Create a new Node with given input edges.
   238   // This version requires use of the "edge-count" new.
   239   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   240   Node( Node *n0 );
   241   Node( Node *n0, Node *n1 );
   242   Node( Node *n0, Node *n1, Node *n2 );
   243   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   244   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   245   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   246   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   247             Node *n4, Node *n5, Node *n6 );
   249   // Clone an inherited Node given only the base Node type.
   250   Node* clone() const;
   252   // Clone a Node, immediately supplying one or two new edges.
   253   // The first and second arguments, if non-null, replace in(1) and in(2),
   254   // respectively.
   255   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   256     Node* nn = clone();
   257     if (in1 != NULL)  nn->set_req(1, in1);
   258     if (in2 != NULL)  nn->set_req(2, in2);
   259     return nn;
   260   }
   262 private:
   263   // Shared setup for the above constructors.
   264   // Handles all interactions with Compile::current.
   265   // Puts initial values in all Node fields except _idx.
   266   // Returns the initial value for _idx, which cannot
   267   // be initialized by assignment.
   268   inline int Init(int req, Compile* C);
   270 //----------------- input edge handling
   271 protected:
   272   friend class PhaseCFG;        // Access to address of _in array elements
   273   Node **_in;                   // Array of use-def references to Nodes
   274   Node **_out;                  // Array of def-use references to Nodes
   276   // Input edges are split into two categories.  Required edges are required
   277   // for semantic correctness; order is important and NULLs are allowed.
   278   // Precedence edges are used to help determine execution order and are
   279   // added, e.g., for scheduling purposes.  They are unordered and not
   280   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   281   // are required, from _cnt to _max-1 are precedence edges.
   282   node_idx_t _cnt;              // Total number of required Node inputs.
   284   node_idx_t _max;              // Actual length of input array.
   286   // Output edges are an unordered list of def-use edges which exactly
   287   // correspond to required input edges which point from other nodes
   288   // to this one.  Thus the count of the output edges is the number of
   289   // users of this node.
   290   node_idx_t _outcnt;           // Total number of Node outputs.
   292   node_idx_t _outmax;           // Actual length of output array.
   294   // Grow the actual input array to the next larger power-of-2 bigger than len.
   295   void grow( uint len );
   296   // Grow the output array to the next larger power-of-2 bigger than len.
   297   void out_grow( uint len );
   299  public:
   300   // Each Node is assigned a unique small/dense number.  This number is used
   301   // to index into auxiliary arrays of data and bitvectors.
   302   // It is declared const to defend against inadvertant assignment,
   303   // since it is used by clients as a naked field.
   304   const node_idx_t _idx;
   306   // Get the (read-only) number of input edges
   307   uint req() const { return _cnt; }
   308   uint len() const { return _max; }
   309   // Get the (read-only) number of output edges
   310   uint outcnt() const { return _outcnt; }
   312 #if OPTO_DU_ITERATOR_ASSERT
   313   // Iterate over the out-edges of this node.  Deletions are illegal.
   314   inline DUIterator outs() const;
   315   // Use this when the out array might have changed to suppress asserts.
   316   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   317   // Does the node have an out at this position?  (Used for iteration.)
   318   inline bool has_out(DUIterator& i) const;
   319   inline Node*    out(DUIterator& i) const;
   320   // Iterate over the out-edges of this node.  All changes are illegal.
   321   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   322   inline Node*    fast_out(DUIterator_Fast& i) const;
   323   // Iterate over the out-edges of this node, deleting one at a time.
   324   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   325   inline Node*    last_out(DUIterator_Last& i) const;
   326   // The inline bodies of all these methods are after the iterator definitions.
   327 #else
   328   // Iterate over the out-edges of this node.  Deletions are illegal.
   329   // This iteration uses integral indexes, to decouple from array reallocations.
   330   DUIterator outs() const  { return 0; }
   331   // Use this when the out array might have changed to suppress asserts.
   332   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   334   // Reference to the i'th output Node.  Error if out of bounds.
   335   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   336   // Does the node have an out at this position?  (Used for iteration.)
   337   bool has_out(DUIterator i) const { return i < _outcnt; }
   339   // Iterate over the out-edges of this node.  All changes are illegal.
   340   // This iteration uses a pointer internal to the out array.
   341   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   342     Node** out = _out;
   343     // Assign a limit pointer to the reference argument:
   344     max = out + (ptrdiff_t)_outcnt;
   345     // Return the base pointer:
   346     return out;
   347   }
   348   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   349   // Iterate over the out-edges of this node, deleting one at a time.
   350   // This iteration uses a pointer internal to the out array.
   351   DUIterator_Last last_outs(DUIterator_Last& min) const {
   352     Node** out = _out;
   353     // Assign a limit pointer to the reference argument:
   354     min = out;
   355     // Return the pointer to the start of the iteration:
   356     return out + (ptrdiff_t)_outcnt - 1;
   357   }
   358   Node*    last_out(DUIterator_Last i) const  { return *i; }
   359 #endif
   361   // Reference to the i'th input Node.  Error if out of bounds.
   362   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
   363   // Reference to the i'th output Node.  Error if out of bounds.
   364   // Use this accessor sparingly.  We are going trying to use iterators instead.
   365   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   366   // Return the unique out edge.
   367   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   368   // Delete out edge at position 'i' by moving last out edge to position 'i'
   369   void  raw_del_out(uint i) {
   370     assert(i < _outcnt,"oob");
   371     assert(_outcnt > 0,"oob");
   372     #if OPTO_DU_ITERATOR_ASSERT
   373     // Record that a change happened here.
   374     debug_only(_last_del = _out[i]; ++_del_tick);
   375     #endif
   376     _out[i] = _out[--_outcnt];
   377     // Smash the old edge so it can't be used accidentally.
   378     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   379   }
   381 #ifdef ASSERT
   382   bool is_dead() const;
   383 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   384 #endif
   386   // Set a required input edge, also updates corresponding output edge
   387   void add_req( Node *n ); // Append a NEW required input
   388   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   389   void del_req( uint idx ); // Delete required edge & compact
   390   void ins_req( uint i, Node *n ); // Insert a NEW required input
   391   void set_req( uint i, Node *n ) {
   392     assert( is_not_dead(n), "can not use dead node");
   393     assert( i < _cnt, "oob");
   394     assert( !VerifyHashTableKeys || _hash_lock == 0,
   395             "remove node from hash table before modifying it");
   396     Node** p = &_in[i];    // cache this._in, across the del_out call
   397     if (*p != NULL)  (*p)->del_out((Node *)this);
   398     (*p) = n;
   399     if (n != NULL)      n->add_out((Node *)this);
   400   }
   401   // Light version of set_req() to init inputs after node creation.
   402   void init_req( uint i, Node *n ) {
   403     assert( i == 0 && this == n ||
   404             is_not_dead(n), "can not use dead node");
   405     assert( i < _cnt, "oob");
   406     assert( !VerifyHashTableKeys || _hash_lock == 0,
   407             "remove node from hash table before modifying it");
   408     assert( _in[i] == NULL, "sanity");
   409     _in[i] = n;
   410     if (n != NULL)      n->add_out((Node *)this);
   411   }
   412   // Find first occurrence of n among my edges:
   413   int find_edge(Node* n);
   414   int replace_edge(Node* old, Node* neww);
   415   // NULL out all inputs to eliminate incoming Def-Use edges.
   416   // Return the number of edges between 'n' and 'this'
   417   int  disconnect_inputs(Node *n);
   419   // Quickly, return true if and only if I am Compile::current()->top().
   420   bool is_top() const {
   421     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   422     return (_out == NULL);
   423   }
   424   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   425   void setup_is_top();
   427   // Strip away casting.  (It is depth-limited.)
   428   Node* uncast() const;
   430 private:
   431   static Node* uncast_helper(const Node* n);
   433   // Add an output edge to the end of the list
   434   void add_out( Node *n ) {
   435     if (is_top())  return;
   436     if( _outcnt == _outmax ) out_grow(_outcnt);
   437     _out[_outcnt++] = n;
   438   }
   439   // Delete an output edge
   440   void del_out( Node *n ) {
   441     if (is_top())  return;
   442     Node** outp = &_out[_outcnt];
   443     // Find and remove n
   444     do {
   445       assert(outp > _out, "Missing Def-Use edge");
   446     } while (*--outp != n);
   447     *outp = _out[--_outcnt];
   448     // Smash the old edge so it can't be used accidentally.
   449     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   450     // Record that a change happened here.
   451     #if OPTO_DU_ITERATOR_ASSERT
   452     debug_only(_last_del = n; ++_del_tick);
   453     #endif
   454   }
   456 public:
   457   // Globally replace this node by a given new node, updating all uses.
   458   void replace_by(Node* new_node);
   459   // Globally replace this node by a given new node, updating all uses
   460   // and cutting input edges of old node.
   461   void subsume_by(Node* new_node) {
   462     replace_by(new_node);
   463     disconnect_inputs(NULL);
   464   }
   465   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   466   // Find the one non-null required input.  RegionNode only
   467   Node *nonnull_req() const;
   468   // Add or remove precedence edges
   469   void add_prec( Node *n );
   470   void rm_prec( uint i );
   471   void set_prec( uint i, Node *n ) {
   472     assert( is_not_dead(n), "can not use dead node");
   473     assert( i >= _cnt, "not a precedence edge");
   474     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   475     _in[i] = n;
   476     if (n != NULL) n->add_out((Node *)this);
   477   }
   478   // Set this node's index, used by cisc_version to replace current node
   479   void set_idx(uint new_idx) {
   480     const node_idx_t* ref = &_idx;
   481     *(node_idx_t*)ref = new_idx;
   482   }
   483   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   484   void swap_edges(uint i1, uint i2) {
   485     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   486     // Def-Use info is unchanged
   487     Node* n1 = in(i1);
   488     Node* n2 = in(i2);
   489     _in[i1] = n2;
   490     _in[i2] = n1;
   491     // If this node is in the hash table, make sure it doesn't need a rehash.
   492     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   493   }
   495   // Iterators over input Nodes for a Node X are written as:
   496   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   497   // NOTE: Required edges can contain embedded NULL pointers.
   499 //----------------- Other Node Properties
   501   // Generate class id for some ideal nodes to avoid virtual query
   502   // methods is_<Node>().
   503   // Class id is the set of bits corresponded to the node class and all its
   504   // super classes so that queries for super classes are also valid.
   505   // Subclasses of the same super class have different assigned bit
   506   // (the third parameter in the macro DEFINE_CLASS_ID).
   507   // Classes with deeper hierarchy are declared first.
   508   // Classes with the same hierarchy depth are sorted by usage frequency.
   509   //
   510   // The query method masks the bits to cut off bits of subclasses
   511   // and then compare the result with the class id
   512   // (see the macro DEFINE_CLASS_QUERY below).
   513   //
   514   //  Class_MachCall=30, ClassMask_MachCall=31
   515   // 12               8               4               0
   516   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   517   //                                  |   |   |   |
   518   //                                  |   |   |   Bit_Mach=2
   519   //                                  |   |   Bit_MachReturn=4
   520   //                                  |   Bit_MachSafePoint=8
   521   //                                  Bit_MachCall=16
   522   //
   523   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   524   // 12               8               4               0
   525   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   526   //                              |   |   |
   527   //                              |   |   Bit_Region=8
   528   //                              |   Bit_Loop=16
   529   //                              Bit_CountedLoop=32
   531   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   532   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   533   Class_##cl = Class_##supcl + Bit_##cl , \
   534   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   536   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   537   // so that it's values fits into 16 bits.
   538   enum NodeClasses {
   539     Bit_Node   = 0x0000,
   540     Class_Node = 0x0000,
   541     ClassMask_Node = 0xFFFF,
   543     DEFINE_CLASS_ID(Multi, Node, 0)
   544       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   545         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   546           DEFINE_CLASS_ID(CallJava,         Call, 0)
   547             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   548             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   549           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   550             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   551           DEFINE_CLASS_ID(Allocate,         Call, 2)
   552             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   553           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   554             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   555             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   556       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   557         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   558           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   559           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   560         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   561           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   562         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   563       DEFINE_CLASS_ID(Start,       Multi, 2)
   564       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   565         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
   567     DEFINE_CLASS_ID(Mach,  Node, 1)
   568       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   569         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   570           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   571             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   572               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   573               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   574             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   575               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   576       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   577         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   578         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   579         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   580       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   581       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   582       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   583       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   585     DEFINE_CLASS_ID(Type,  Node, 2)
   586       DEFINE_CLASS_ID(Phi,   Type, 0)
   587       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   588       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   589       DEFINE_CLASS_ID(CMove, Type, 3)
   590       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   591       DEFINE_CLASS_ID(DecodeN, Type, 5)
   592       DEFINE_CLASS_ID(EncodeP, Type, 6)
   594     DEFINE_CLASS_ID(Proj,  Node, 3)
   595       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   596       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   597       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   598       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   599       DEFINE_CLASS_ID(Parm,      Proj, 4)
   600       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   602     DEFINE_CLASS_ID(Mem,   Node, 4)
   603       DEFINE_CLASS_ID(Load,  Mem, 0)
   604         DEFINE_CLASS_ID(VectorLoad,  Load, 0)
   605       DEFINE_CLASS_ID(Store, Mem, 1)
   606         DEFINE_CLASS_ID(VectorStore, Store, 0)
   607       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   609     DEFINE_CLASS_ID(Region, Node, 5)
   610       DEFINE_CLASS_ID(Loop, Region, 0)
   611         DEFINE_CLASS_ID(Root,        Loop, 0)
   612         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   614     DEFINE_CLASS_ID(Sub,   Node, 6)
   615       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   616         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   617         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   619     DEFINE_CLASS_ID(MergeMem, Node, 7)
   620     DEFINE_CLASS_ID(Bool,     Node, 8)
   621     DEFINE_CLASS_ID(AddP,     Node, 9)
   622     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   623     DEFINE_CLASS_ID(Add,      Node, 11)
   624     DEFINE_CLASS_ID(Vector,   Node, 12)
   625     DEFINE_CLASS_ID(ClearArray, Node, 13)
   627     _max_classes  = ClassMask_ClearArray
   628   };
   629   #undef DEFINE_CLASS_ID
   631   // Flags are sorted by usage frequency.
   632   enum NodeFlags {
   633     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   634     Flag_rematerialize       = Flag_is_Copy << 1,
   635     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   636     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   637     Flag_is_Con              = Flag_is_macro << 1,
   638     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   639     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   640     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   641     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   642     _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination
   643   };
   645 private:
   646   jushort _class_id;
   647   jushort _flags;
   649 protected:
   650   // These methods should be called from constructors only.
   651   void init_class_id(jushort c) {
   652     assert(c <= _max_classes, "invalid node class");
   653     _class_id = c; // cast out const
   654   }
   655   void init_flags(jushort fl) {
   656     assert(fl <= _max_flags, "invalid node flag");
   657     _flags |= fl;
   658   }
   659   void clear_flag(jushort fl) {
   660     assert(fl <= _max_flags, "invalid node flag");
   661     _flags &= ~fl;
   662   }
   664 public:
   665   const jushort class_id() const { return _class_id; }
   667   const jushort flags() const { return _flags; }
   669   // Return a dense integer opcode number
   670   virtual int Opcode() const;
   672   // Virtual inherited Node size
   673   virtual uint size_of() const;
   675   // Other interesting Node properties
   676   #define DEFINE_CLASS_QUERY(type)                           \
   677   bool is_##type() const {                                   \
   678     return ((_class_id & ClassMask_##type) == Class_##type); \
   679   }                                                          \
   680   type##Node *as_##type() const {                            \
   681     assert(is_##type(), "invalid node class");               \
   682     return (type##Node*)this;                                \
   683   }                                                          \
   684   type##Node* isa_##type() const {                           \
   685     return (is_##type()) ? as_##type() : NULL;               \
   686   }
   688   DEFINE_CLASS_QUERY(AbstractLock)
   689   DEFINE_CLASS_QUERY(Add)
   690   DEFINE_CLASS_QUERY(AddP)
   691   DEFINE_CLASS_QUERY(Allocate)
   692   DEFINE_CLASS_QUERY(AllocateArray)
   693   DEFINE_CLASS_QUERY(Bool)
   694   DEFINE_CLASS_QUERY(BoxLock)
   695   DEFINE_CLASS_QUERY(Call)
   696   DEFINE_CLASS_QUERY(CallDynamicJava)
   697   DEFINE_CLASS_QUERY(CallJava)
   698   DEFINE_CLASS_QUERY(CallLeaf)
   699   DEFINE_CLASS_QUERY(CallRuntime)
   700   DEFINE_CLASS_QUERY(CallStaticJava)
   701   DEFINE_CLASS_QUERY(Catch)
   702   DEFINE_CLASS_QUERY(CatchProj)
   703   DEFINE_CLASS_QUERY(CheckCastPP)
   704   DEFINE_CLASS_QUERY(ConstraintCast)
   705   DEFINE_CLASS_QUERY(ClearArray)
   706   DEFINE_CLASS_QUERY(CMove)
   707   DEFINE_CLASS_QUERY(Cmp)
   708   DEFINE_CLASS_QUERY(CountedLoop)
   709   DEFINE_CLASS_QUERY(CountedLoopEnd)
   710   DEFINE_CLASS_QUERY(DecodeN)
   711   DEFINE_CLASS_QUERY(EncodeP)
   712   DEFINE_CLASS_QUERY(FastLock)
   713   DEFINE_CLASS_QUERY(FastUnlock)
   714   DEFINE_CLASS_QUERY(If)
   715   DEFINE_CLASS_QUERY(IfFalse)
   716   DEFINE_CLASS_QUERY(IfTrue)
   717   DEFINE_CLASS_QUERY(Initialize)
   718   DEFINE_CLASS_QUERY(Jump)
   719   DEFINE_CLASS_QUERY(JumpProj)
   720   DEFINE_CLASS_QUERY(Load)
   721   DEFINE_CLASS_QUERY(LoadStore)
   722   DEFINE_CLASS_QUERY(Lock)
   723   DEFINE_CLASS_QUERY(Loop)
   724   DEFINE_CLASS_QUERY(Mach)
   725   DEFINE_CLASS_QUERY(MachBranch)
   726   DEFINE_CLASS_QUERY(MachCall)
   727   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   728   DEFINE_CLASS_QUERY(MachCallJava)
   729   DEFINE_CLASS_QUERY(MachCallLeaf)
   730   DEFINE_CLASS_QUERY(MachCallRuntime)
   731   DEFINE_CLASS_QUERY(MachCallStaticJava)
   732   DEFINE_CLASS_QUERY(MachConstantBase)
   733   DEFINE_CLASS_QUERY(MachConstant)
   734   DEFINE_CLASS_QUERY(MachGoto)
   735   DEFINE_CLASS_QUERY(MachIf)
   736   DEFINE_CLASS_QUERY(MachNullCheck)
   737   DEFINE_CLASS_QUERY(MachProj)
   738   DEFINE_CLASS_QUERY(MachReturn)
   739   DEFINE_CLASS_QUERY(MachSafePoint)
   740   DEFINE_CLASS_QUERY(MachSpillCopy)
   741   DEFINE_CLASS_QUERY(MachTemp)
   742   DEFINE_CLASS_QUERY(Mem)
   743   DEFINE_CLASS_QUERY(MemBar)
   744   DEFINE_CLASS_QUERY(MergeMem)
   745   DEFINE_CLASS_QUERY(Multi)
   746   DEFINE_CLASS_QUERY(MultiBranch)
   747   DEFINE_CLASS_QUERY(Parm)
   748   DEFINE_CLASS_QUERY(PCTable)
   749   DEFINE_CLASS_QUERY(Phi)
   750   DEFINE_CLASS_QUERY(Proj)
   751   DEFINE_CLASS_QUERY(Region)
   752   DEFINE_CLASS_QUERY(Root)
   753   DEFINE_CLASS_QUERY(SafePoint)
   754   DEFINE_CLASS_QUERY(SafePointScalarObject)
   755   DEFINE_CLASS_QUERY(Start)
   756   DEFINE_CLASS_QUERY(Store)
   757   DEFINE_CLASS_QUERY(Sub)
   758   DEFINE_CLASS_QUERY(Type)
   759   DEFINE_CLASS_QUERY(Vector)
   760   DEFINE_CLASS_QUERY(VectorLoad)
   761   DEFINE_CLASS_QUERY(VectorStore)
   762   DEFINE_CLASS_QUERY(Unlock)
   764   #undef DEFINE_CLASS_QUERY
   766   // duplicate of is_MachSpillCopy()
   767   bool is_SpillCopy () const {
   768     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   769   }
   771   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   772   // The data node which is safe to leave in dead loop during IGVN optimization.
   773   bool is_dead_loop_safe() const {
   774     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   775            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   776             (!is_Proj() || !in(0)->is_Allocate()));
   777   }
   779   // is_Copy() returns copied edge index (0 or 1)
   780   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   782   virtual bool is_CFG() const { return false; }
   784   // If this node is control-dependent on a test, can it be
   785   // rerouted to a dominating equivalent test?  This is usually
   786   // true of non-CFG nodes, but can be false for operations which
   787   // depend for their correct sequencing on more than one test.
   788   // (In that case, hoisting to a dominating test may silently
   789   // skip some other important test.)
   790   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   792   // When building basic blocks, I need to have a notion of block beginning
   793   // Nodes, next block selector Nodes (block enders), and next block
   794   // projections.  These calls need to work on their machine equivalents.  The
   795   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   796   bool is_block_start() const {
   797     if ( is_Region() )
   798       return this == (const Node*)in(0);
   799     else
   800       return is_Start();
   801   }
   803   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   804   // Goto and Return.  This call also returns the block ending Node.
   805   virtual const Node *is_block_proj() const;
   807   // The node is a "macro" node which needs to be expanded before matching
   808   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   810 //----------------- Optimization
   812   // Get the worst-case Type output for this Node.
   813   virtual const class Type *bottom_type() const;
   815   // If we find a better type for a node, try to record it permanently.
   816   // Return true if this node actually changed.
   817   // Be sure to do the hash_delete game in the "rehash" variant.
   818   void raise_bottom_type(const Type* new_type);
   820   // Get the address type with which this node uses and/or defs memory,
   821   // or NULL if none.  The address type is conservatively wide.
   822   // Returns non-null for calls, membars, loads, stores, etc.
   823   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   824   virtual const class TypePtr *adr_type() const { return NULL; }
   826   // Return an existing node which computes the same function as this node.
   827   // The optimistic combined algorithm requires this to return a Node which
   828   // is a small number of steps away (e.g., one of my inputs).
   829   virtual Node *Identity( PhaseTransform *phase );
   831   // Return the set of values this Node can take on at runtime.
   832   virtual const Type *Value( PhaseTransform *phase ) const;
   834   // Return a node which is more "ideal" than the current node.
   835   // The invariants on this call are subtle.  If in doubt, read the
   836   // treatise in node.cpp above the default implemention AND TEST WITH
   837   // +VerifyIterativeGVN!
   838   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   840   // Some nodes have specific Ideal subgraph transformations only if they are
   841   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   842   // for the transformations to happen.
   843   bool has_special_unique_user() const;
   845   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   846   Node* find_exact_control(Node* ctrl);
   848   // Check if 'this' node dominates or equal to 'sub'.
   849   bool dominates(Node* sub, Node_List &nlist);
   851 protected:
   852   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   853 public:
   855   // Idealize graph, using DU info.  Done after constant propagation
   856   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   858   // See if there is valid pipeline info
   859   static  const Pipeline *pipeline_class();
   860   virtual const Pipeline *pipeline() const;
   862   // Compute the latency from the def to this instruction of the ith input node
   863   uint latency(uint i);
   865   // Hash & compare functions, for pessimistic value numbering
   867   // If the hash function returns the special sentinel value NO_HASH,
   868   // the node is guaranteed never to compare equal to any other node.
   869   // If we accidentally generate a hash with value NO_HASH the node
   870   // won't go into the table and we'll lose a little optimization.
   871   enum { NO_HASH = 0 };
   872   virtual uint hash() const;
   873   virtual uint cmp( const Node &n ) const;
   875   // Operation appears to be iteratively computed (such as an induction variable)
   876   // It is possible for this operation to return false for a loop-varying
   877   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   878   bool is_iteratively_computed();
   880   // Determine if a node is Counted loop induction variable.
   881   // The method is defined in loopnode.cpp.
   882   const Node* is_loop_iv() const;
   884   // Return a node with opcode "opc" and same inputs as "this" if one can
   885   // be found; Otherwise return NULL;
   886   Node* find_similar(int opc);
   888   // Return the unique control out if only one. Null if none or more than one.
   889   Node* unique_ctrl_out();
   891 //----------------- Code Generation
   893   // Ideal register class for Matching.  Zero means unmatched instruction
   894   // (these are cloned instead of converted to machine nodes).
   895   virtual uint ideal_reg() const;
   897   static const uint NotAMachineReg;   // must be > max. machine register
   899   // Do we Match on this edge index or not?  Generally false for Control
   900   // and true for everything else.  Weird for calls & returns.
   901   virtual uint match_edge(uint idx) const;
   903   // Register class output is returned in
   904   virtual const RegMask &out_RegMask() const;
   905   // Register class input is expected in
   906   virtual const RegMask &in_RegMask(uint) const;
   907   // Should we clone rather than spill this instruction?
   908   bool rematerialize() const;
   910   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   911   virtual JVMState* jvms() const;
   913   // Print as assembly
   914   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   915   // Emit bytes starting at parameter 'ptr'
   916   // Bump 'ptr' by the number of output bytes
   917   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   918   // Size of instruction in bytes
   919   virtual uint size(PhaseRegAlloc *ra_) const;
   921   // Convenience function to extract an integer constant from a node.
   922   // If it is not an integer constant (either Con, CastII, or Mach),
   923   // return value_if_unknown.
   924   jint find_int_con(jint value_if_unknown) const {
   925     const TypeInt* t = find_int_type();
   926     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   927   }
   928   // Return the constant, knowing it is an integer constant already
   929   jint get_int() const {
   930     const TypeInt* t = find_int_type();
   931     guarantee(t != NULL, "must be con");
   932     return t->get_con();
   933   }
   934   // Here's where the work is done.  Can produce non-constant int types too.
   935   const TypeInt* find_int_type() const;
   937   // Same thing for long (and intptr_t, via type.hpp):
   938   jlong get_long() const {
   939     const TypeLong* t = find_long_type();
   940     guarantee(t != NULL, "must be con");
   941     return t->get_con();
   942   }
   943   jlong find_long_con(jint value_if_unknown) const {
   944     const TypeLong* t = find_long_type();
   945     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   946   }
   947   const TypeLong* find_long_type() const;
   949   // These guys are called by code generated by ADLC:
   950   intptr_t get_ptr() const;
   951   intptr_t get_narrowcon() const;
   952   jdouble getd() const;
   953   jfloat getf() const;
   955   // Nodes which are pinned into basic blocks
   956   virtual bool pinned() const { return false; }
   958   // Nodes which use memory without consuming it, hence need antidependences
   959   // More specifically, needs_anti_dependence_check returns true iff the node
   960   // (a) does a load, and (b) does not perform a store (except perhaps to a
   961   // stack slot or some other unaliased location).
   962   bool needs_anti_dependence_check() const;
   964   // Return which operand this instruction may cisc-spill. In other words,
   965   // return operand position that can convert from reg to memory access
   966   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   967   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   969 //----------------- Graph walking
   970 public:
   971   // Walk and apply member functions recursively.
   972   // Supplied (this) pointer is root.
   973   void walk(NFunc pre, NFunc post, void *env);
   974   static void nop(Node &, void*); // Dummy empty function
   975   static void packregion( Node &n, void* );
   976 private:
   977   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   979 //----------------- Printing, etc
   980 public:
   981 #ifndef PRODUCT
   982   Node* find(int idx) const;         // Search the graph for the given idx.
   983   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   984   void dump() const;                 // Print this node,
   985   void dump(int depth) const;        // Print this node, recursively to depth d
   986   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
   987   virtual void dump_req() const;     // Print required-edge info
   988   virtual void dump_prec() const;    // Print precedence-edge info
   989   virtual void dump_out() const;     // Print the output edge info
   990   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
   991   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
   992   void verify() const;               // Check Def-Use info for my subgraph
   993   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
   995   // This call defines a class-unique string used to identify class instances
   996   virtual const char *Name() const;
   998   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
   999   // RegMask Print Functions
  1000   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1001   void dump_out_regmask() { out_RegMask().dump(); }
  1002   static int _in_dump_cnt;
  1003   static bool in_dump() { return _in_dump_cnt > 0; }
  1004   void fast_dump() const {
  1005     tty->print("%4d: %-17s", _idx, Name());
  1006     for (uint i = 0; i < len(); i++)
  1007       if (in(i))
  1008         tty->print(" %4d", in(i)->_idx);
  1009       else
  1010         tty->print(" NULL");
  1011     tty->print("\n");
  1013 #endif
  1014 #ifdef ASSERT
  1015   void verify_construction();
  1016   bool verify_jvms(const JVMState* jvms) const;
  1017   int  _debug_idx;                     // Unique value assigned to every node.
  1018   int   debug_idx() const              { return _debug_idx; }
  1019   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1021   Node* _debug_orig;                   // Original version of this, if any.
  1022   Node*  debug_orig() const            { return _debug_orig; }
  1023   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1025   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1026   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1027   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1029   static void init_NodeProperty();
  1031   #if OPTO_DU_ITERATOR_ASSERT
  1032   const Node* _last_del;               // The last deleted node.
  1033   uint        _del_tick;               // Bumped when a deletion happens..
  1034   #endif
  1035 #endif
  1036 };
  1038 //-----------------------------------------------------------------------------
  1039 // Iterators over DU info, and associated Node functions.
  1041 #if OPTO_DU_ITERATOR_ASSERT
  1043 // Common code for assertion checking on DU iterators.
  1044 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1045 #ifdef ASSERT
  1046  protected:
  1047   bool         _vdui;               // cached value of VerifyDUIterators
  1048   const Node*  _node;               // the node containing the _out array
  1049   uint         _outcnt;             // cached node->_outcnt
  1050   uint         _del_tick;           // cached node->_del_tick
  1051   Node*        _last;               // last value produced by the iterator
  1053   void sample(const Node* node);    // used by c'tor to set up for verifies
  1054   void verify(const Node* node, bool at_end_ok = false);
  1055   void verify_resync();
  1056   void reset(const DUIterator_Common& that);
  1058 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1059   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1060 #else
  1061   #define I_VDUI_ONLY(i,x) { }
  1062 #endif //ASSERT
  1063 };
  1065 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1067 // Default DU iterator.  Allows appends onto the out array.
  1068 // Allows deletion from the out array only at the current point.
  1069 // Usage:
  1070 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1071 //    Node* y = x->out(i);
  1072 //    ...
  1073 //  }
  1074 // Compiles in product mode to a unsigned integer index, which indexes
  1075 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1076 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1077 // before continuing the loop.  You must delete only the last-produced
  1078 // edge.  You must delete only a single copy of the last-produced edge,
  1079 // or else you must delete all copies at once (the first time the edge
  1080 // is produced by the iterator).
  1081 class DUIterator : public DUIterator_Common {
  1082   friend class Node;
  1084   // This is the index which provides the product-mode behavior.
  1085   // Whatever the product-mode version of the system does to the
  1086   // DUI index is done to this index.  All other fields in
  1087   // this class are used only for assertion checking.
  1088   uint         _idx;
  1090   #ifdef ASSERT
  1091   uint         _refresh_tick;    // Records the refresh activity.
  1093   void sample(const Node* node); // Initialize _refresh_tick etc.
  1094   void verify(const Node* node, bool at_end_ok = false);
  1095   void verify_increment();       // Verify an increment operation.
  1096   void verify_resync();          // Verify that we can back up over a deletion.
  1097   void verify_finish();          // Verify that the loop terminated properly.
  1098   void refresh();                // Resample verification info.
  1099   void reset(const DUIterator& that);  // Resample after assignment.
  1100   #endif
  1102   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1103     { _idx = 0;                         debug_only(sample(node)); }
  1105  public:
  1106   // initialize to garbage; clear _vdui to disable asserts
  1107   DUIterator()
  1108     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1110   void operator++(int dummy_to_specify_postfix_op)
  1111     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1113   void operator--()
  1114     { VDUI_ONLY(verify_resync());       --_idx; }
  1116   ~DUIterator()
  1117     { VDUI_ONLY(verify_finish()); }
  1119   void operator=(const DUIterator& that)
  1120     { _idx = that._idx;                 debug_only(reset(that)); }
  1121 };
  1123 DUIterator Node::outs() const
  1124   { return DUIterator(this, 0); }
  1125 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1126   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1127 bool Node::has_out(DUIterator& i) const
  1128   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1129 Node*    Node::out(DUIterator& i) const
  1130   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1133 // Faster DU iterator.  Disallows insertions into the out array.
  1134 // Allows deletion from the out array only at the current point.
  1135 // Usage:
  1136 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1137 //    Node* y = x->fast_out(i);
  1138 //    ...
  1139 //  }
  1140 // Compiles in product mode to raw Node** pointer arithmetic, with
  1141 // no reloading of pointers from the original node x.  If you delete,
  1142 // you must perform "--i; --imax" just before continuing the loop.
  1143 // If you delete multiple copies of the same edge, you must decrement
  1144 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1145 class DUIterator_Fast : public DUIterator_Common {
  1146   friend class Node;
  1147   friend class DUIterator_Last;
  1149   // This is the pointer which provides the product-mode behavior.
  1150   // Whatever the product-mode version of the system does to the
  1151   // DUI pointer is done to this pointer.  All other fields in
  1152   // this class are used only for assertion checking.
  1153   Node**       _outp;
  1155   #ifdef ASSERT
  1156   void verify(const Node* node, bool at_end_ok = false);
  1157   void verify_limit();
  1158   void verify_resync();
  1159   void verify_relimit(uint n);
  1160   void reset(const DUIterator_Fast& that);
  1161   #endif
  1163   // Note:  offset must be signed, since -1 is sometimes passed
  1164   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1165     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1167  public:
  1168   // initialize to garbage; clear _vdui to disable asserts
  1169   DUIterator_Fast()
  1170     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1172   void operator++(int dummy_to_specify_postfix_op)
  1173     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1175   void operator--()
  1176     { VDUI_ONLY(verify_resync());       --_outp; }
  1178   void operator-=(uint n)   // applied to the limit only
  1179     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1181   bool operator<(DUIterator_Fast& limit) {
  1182     I_VDUI_ONLY(*this, this->verify(_node, true));
  1183     I_VDUI_ONLY(limit, limit.verify_limit());
  1184     return _outp < limit._outp;
  1187   void operator=(const DUIterator_Fast& that)
  1188     { _outp = that._outp;               debug_only(reset(that)); }
  1189 };
  1191 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1192   // Assign a limit pointer to the reference argument:
  1193   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1194   // Return the base pointer:
  1195   return DUIterator_Fast(this, 0);
  1197 Node* Node::fast_out(DUIterator_Fast& i) const {
  1198   I_VDUI_ONLY(i, i.verify(this));
  1199   return debug_only(i._last=) *i._outp;
  1203 // Faster DU iterator.  Requires each successive edge to be removed.
  1204 // Does not allow insertion of any edges.
  1205 // Usage:
  1206 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1207 //    Node* y = x->last_out(i);
  1208 //    ...
  1209 //  }
  1210 // Compiles in product mode to raw Node** pointer arithmetic, with
  1211 // no reloading of pointers from the original node x.
  1212 class DUIterator_Last : private DUIterator_Fast {
  1213   friend class Node;
  1215   #ifdef ASSERT
  1216   void verify(const Node* node, bool at_end_ok = false);
  1217   void verify_limit();
  1218   void verify_step(uint num_edges);
  1219   #endif
  1221   // Note:  offset must be signed, since -1 is sometimes passed
  1222   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1223     : DUIterator_Fast(node, offset) { }
  1225   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1226   void operator<(int)                              {} // do not use
  1228  public:
  1229   DUIterator_Last() { }
  1230   // initialize to garbage
  1232   void operator--()
  1233     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1235   void operator-=(uint n)
  1236     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1238   bool operator>=(DUIterator_Last& limit) {
  1239     I_VDUI_ONLY(*this, this->verify(_node, true));
  1240     I_VDUI_ONLY(limit, limit.verify_limit());
  1241     return _outp >= limit._outp;
  1244   void operator=(const DUIterator_Last& that)
  1245     { DUIterator_Fast::operator=(that); }
  1246 };
  1248 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1249   // Assign a limit pointer to the reference argument:
  1250   imin = DUIterator_Last(this, 0);
  1251   // Return the initial pointer:
  1252   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1254 Node* Node::last_out(DUIterator_Last& i) const {
  1255   I_VDUI_ONLY(i, i.verify(this));
  1256   return debug_only(i._last=) *i._outp;
  1259 #endif //OPTO_DU_ITERATOR_ASSERT
  1261 #undef I_VDUI_ONLY
  1262 #undef VDUI_ONLY
  1264 // An Iterator that truly follows the iterator pattern.  Doesn't
  1265 // support deletion but could be made to.
  1266 //
  1267 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1268 //     Node* m = i.get();
  1269 //
  1270 class SimpleDUIterator : public StackObj {
  1271  private:
  1272   Node* node;
  1273   DUIterator_Fast i;
  1274   DUIterator_Fast imax;
  1275  public:
  1276   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1277   bool has_next() { return i < imax; }
  1278   void next() { i++; }
  1279   Node* get() { return node->fast_out(i); }
  1280 };
  1283 //-----------------------------------------------------------------------------
  1284 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1285 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1286 // Note that the constructor just zeros things, and since I use Arena
  1287 // allocation I do not need a destructor to reclaim storage.
  1288 class Node_Array : public ResourceObj {
  1289 protected:
  1290   Arena *_a;                    // Arena to allocate in
  1291   uint   _max;
  1292   Node **_nodes;
  1293   void   grow( uint i );        // Grow array node to fit
  1294 public:
  1295   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1296     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1297     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1298       _nodes[i] = NULL;
  1302   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1303   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1304   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1305   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1306   Node **adr() { return _nodes; }
  1307   // Extend the mapping: index i maps to Node *n.
  1308   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1309   void insert( uint i, Node *n );
  1310   void remove( uint i );        // Remove, preserving order
  1311   void sort( C_sort_func_t func);
  1312   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1313   void clear();                 // Set all entries to NULL, keep storage
  1314   uint Size() const { return _max; }
  1315   void dump() const;
  1316 };
  1318 class Node_List : public Node_Array {
  1319   uint _cnt;
  1320 public:
  1321   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1322   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1323   bool contains(Node* n) {
  1324     for (uint e = 0; e < size(); e++) {
  1325       if (at(e) == n) return true;
  1327     return false;
  1329   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1330   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1331   void push( Node *b ) { map(_cnt++,b); }
  1332   void yank( Node *n );         // Find and remove
  1333   Node *pop() { return _nodes[--_cnt]; }
  1334   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1335   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1336   uint size() const { return _cnt; }
  1337   void dump() const;
  1338 };
  1340 //------------------------------Unique_Node_List-------------------------------
  1341 class Unique_Node_List : public Node_List {
  1342   VectorSet _in_worklist;
  1343   uint _clock_index;            // Index in list where to pop from next
  1344 public:
  1345   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1346   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1348   void remove( Node *n );
  1349   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1350   VectorSet &member_set(){ return _in_worklist; }
  1352   void push( Node *b ) {
  1353     if( !_in_worklist.test_set(b->_idx) )
  1354       Node_List::push(b);
  1356   Node *pop() {
  1357     if( _clock_index >= size() ) _clock_index = 0;
  1358     Node *b = at(_clock_index);
  1359     map( _clock_index, Node_List::pop());
  1360     if (size() != 0) _clock_index++; // Always start from 0
  1361     _in_worklist >>= b->_idx;
  1362     return b;
  1364   Node *remove( uint i ) {
  1365     Node *b = Node_List::at(i);
  1366     _in_worklist >>= b->_idx;
  1367     map(i,Node_List::pop());
  1368     return b;
  1370   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1371   void  clear() {
  1372     _in_worklist.Clear();        // Discards storage but grows automatically
  1373     Node_List::clear();
  1374     _clock_index = 0;
  1377   // Used after parsing to remove useless nodes before Iterative GVN
  1378   void remove_useless_nodes(VectorSet &useful);
  1380 #ifndef PRODUCT
  1381   void print_set() const { _in_worklist.print(); }
  1382 #endif
  1383 };
  1385 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1386 inline void Compile::record_for_igvn(Node* n) {
  1387   _for_igvn->push(n);
  1390 //------------------------------Node_Stack-------------------------------------
  1391 class Node_Stack {
  1392 protected:
  1393   struct INode {
  1394     Node *node; // Processed node
  1395     uint  indx; // Index of next node's child
  1396   };
  1397   INode *_inode_top; // tos, stack grows up
  1398   INode *_inode_max; // End of _inodes == _inodes + _max
  1399   INode *_inodes;    // Array storage for the stack
  1400   Arena *_a;         // Arena to allocate in
  1401   void grow();
  1402 public:
  1403   Node_Stack(int size) {
  1404     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1405     _a = Thread::current()->resource_area();
  1406     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1407     _inode_max = _inodes + max;
  1408     _inode_top = _inodes - 1; // stack is empty
  1411   Node_Stack(Arena *a, int size) : _a(a) {
  1412     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1413     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1414     _inode_max = _inodes + max;
  1415     _inode_top = _inodes - 1; // stack is empty
  1418   void pop() {
  1419     assert(_inode_top >= _inodes, "node stack underflow");
  1420     --_inode_top;
  1422   void push(Node *n, uint i) {
  1423     ++_inode_top;
  1424     if (_inode_top >= _inode_max) grow();
  1425     INode *top = _inode_top; // optimization
  1426     top->node = n;
  1427     top->indx = i;
  1429   Node *node() const {
  1430     return _inode_top->node;
  1432   Node* node_at(uint i) const {
  1433     assert(_inodes + i <= _inode_top, "in range");
  1434     return _inodes[i].node;
  1436   uint index() const {
  1437     return _inode_top->indx;
  1439   uint index_at(uint i) const {
  1440     assert(_inodes + i <= _inode_top, "in range");
  1441     return _inodes[i].indx;
  1443   void set_node(Node *n) {
  1444     _inode_top->node = n;
  1446   void set_index(uint i) {
  1447     _inode_top->indx = i;
  1449   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1450   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1451   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1452   bool is_empty() const { return (_inode_top < _inodes); }
  1453   void clear() { _inode_top = _inodes - 1; } // retain storage
  1455   // Node_Stack is used to map nodes.
  1456   Node* find(uint idx) const;
  1457 };
  1460 //-----------------------------Node_Notes--------------------------------------
  1461 // Debugging or profiling annotations loosely and sparsely associated
  1462 // with some nodes.  See Compile::node_notes_at for the accessor.
  1463 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1464   JVMState* _jvms;
  1466 public:
  1467   Node_Notes(JVMState* jvms = NULL) {
  1468     _jvms = jvms;
  1471   JVMState* jvms()            { return _jvms; }
  1472   void  set_jvms(JVMState* x) {        _jvms = x; }
  1474   // True if there is nothing here.
  1475   bool is_clear() {
  1476     return (_jvms == NULL);
  1479   // Make there be nothing here.
  1480   void clear() {
  1481     _jvms = NULL;
  1484   // Make a new, clean node notes.
  1485   static Node_Notes* make(Compile* C) {
  1486     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1487     nn->clear();
  1488     return nn;
  1491   Node_Notes* clone(Compile* C) {
  1492     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1493     (*nn) = (*this);
  1494     return nn;
  1497   // Absorb any information from source.
  1498   bool update_from(Node_Notes* source) {
  1499     bool changed = false;
  1500     if (source != NULL) {
  1501       if (source->jvms() != NULL) {
  1502         set_jvms(source->jvms());
  1503         changed = true;
  1506     return changed;
  1508 };
  1510 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1511 inline Node_Notes*
  1512 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1513                            int idx, bool can_grow) {
  1514   assert(idx >= 0, "oob");
  1515   int block_idx = (idx >> _log2_node_notes_block_size);
  1516   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1517   if (grow_by >= 0) {
  1518     if (!can_grow)  return NULL;
  1519     grow_node_notes(arr, grow_by + 1);
  1521   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1522   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1525 inline bool
  1526 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1527   if (value == NULL || value->is_clear())
  1528     return false;  // nothing to write => write nothing
  1529   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1530   assert(loc != NULL, "");
  1531   return loc->update_from(value);
  1535 //------------------------------TypeNode---------------------------------------
  1536 // Node with a Type constant.
  1537 class TypeNode : public Node {
  1538 protected:
  1539   virtual uint hash() const;    // Check the type
  1540   virtual uint cmp( const Node &n ) const;
  1541   virtual uint size_of() const; // Size is bigger
  1542   const Type* const _type;
  1543 public:
  1544   void set_type(const Type* t) {
  1545     assert(t != NULL, "sanity");
  1546     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1547     *(const Type**)&_type = t;   // cast away const-ness
  1548     // If this node is in the hash table, make sure it doesn't need a rehash.
  1549     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1551   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1552   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1553     init_class_id(Class_Type);
  1555   virtual const Type *Value( PhaseTransform *phase ) const;
  1556   virtual const Type *bottom_type() const;
  1557   virtual       uint  ideal_reg() const;
  1558 #ifndef PRODUCT
  1559   virtual void dump_spec(outputStream *st) const;
  1560 #endif
  1561 };
  1563 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial