src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Thu, 01 Sep 2011 16:18:17 +0200

author
stefank
date
Thu, 01 Sep 2011 16:18:17 +0200
changeset 3115
c2bf0120ee5d
parent 2888
78542e2b5e35
child 3175
4dfb2df418f2
permissions
-rw-r--r--

7085906: Replace the permgen allocated sentinelRef with a self-looped end
Summary: Remove the sentinelRef and let the last Reference in a discovered chain point back to itself.
Reviewed-by: ysr, jmasa

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
    34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    35 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    38 #include "gc_implementation/shared/isGCActiveMark.hpp"
    39 #include "gc_implementation/shared/spaceDecorator.hpp"
    40 #include "gc_interface/gcCause.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/referencePolicy.hpp"
    43 #include "memory/referenceProcessor.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/fprofiler.hpp"
    47 #include "runtime/safepoint.hpp"
    48 #include "runtime/vmThread.hpp"
    49 #include "services/management.hpp"
    50 #include "services/memoryService.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/stack.inline.hpp"
    54 elapsedTimer        PSMarkSweep::_accumulated_time;
    55 unsigned int        PSMarkSweep::_total_invocations = 0;
    56 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    57 CollectorCounters*  PSMarkSweep::_counters = NULL;
    59 void PSMarkSweep::initialize() {
    60   MemRegion mr = Universe::heap()->reserved_region();
    61   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
    62   _counters = new CollectorCounters("PSMarkSweep", 1);
    63 }
    65 // This method contains all heap specific policy for invoking mark sweep.
    66 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    67 // the heap. It will do nothing further. If we need to bail out for policy
    68 // reasons, scavenge before full gc, or any other specialized behavior, it
    69 // needs to be added here.
    70 //
    71 // Note that this method should only be called from the vm_thread while
    72 // at a safepoint!
    73 //
    74 // Note that the all_soft_refs_clear flag in the collector policy
    75 // may be true because this method can be called without intervening
    76 // activity.  For example when the heap space is tight and full measure
    77 // are being taken to free space.
    79 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    80   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    81   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    82   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    84   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    85   GCCause::Cause gc_cause = heap->gc_cause();
    86   PSAdaptiveSizePolicy* policy = heap->size_policy();
    87   IsGCActiveMark mark;
    89   if (ScavengeBeforeFullGC) {
    90     PSScavenge::invoke_no_policy();
    91   }
    93   const bool clear_all_soft_refs =
    94     heap->collector_policy()->should_clear_all_soft_refs();
    96   int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
    97   IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    98   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
    99 }
   101 // This method contains no policy. You should probably
   102 // be calling invoke() instead.
   103 void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
   104   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
   105   assert(ref_processor() != NULL, "Sanity");
   107   if (GC_locker::check_active_before_gc()) {
   108     return;
   109   }
   111   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   112   GCCause::Cause gc_cause = heap->gc_cause();
   113   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   114   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
   116   // The scope of casr should end after code that can change
   117   // CollectorPolicy::_should_clear_all_soft_refs.
   118   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
   120   PSYoungGen* young_gen = heap->young_gen();
   121   PSOldGen* old_gen = heap->old_gen();
   122   PSPermGen* perm_gen = heap->perm_gen();
   124   // Increment the invocation count
   125   heap->increment_total_collections(true /* full */);
   127   // Save information needed to minimize mangling
   128   heap->record_gen_tops_before_GC();
   130   // We need to track unique mark sweep invocations as well.
   131   _total_invocations++;
   133   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   135   if (PrintHeapAtGC) {
   136     Universe::print_heap_before_gc();
   137   }
   139   // Fill in TLABs
   140   heap->accumulate_statistics_all_tlabs();
   141   heap->ensure_parsability(true);  // retire TLABs
   143   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   144     HandleMark hm;  // Discard invalid handles created during verification
   145     gclog_or_tty->print(" VerifyBeforeGC:");
   146     Universe::verify(true);
   147   }
   149   // Verify object start arrays
   150   if (VerifyObjectStartArray &&
   151       VerifyBeforeGC) {
   152     old_gen->verify_object_start_array();
   153     perm_gen->verify_object_start_array();
   154   }
   156   heap->pre_full_gc_dump();
   158   // Filled in below to track the state of the young gen after the collection.
   159   bool eden_empty;
   160   bool survivors_empty;
   161   bool young_gen_empty;
   163   {
   164     HandleMark hm;
   165     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
   166     // This is useful for debugging but don't change the output the
   167     // the customer sees.
   168     const char* gc_cause_str = "Full GC";
   169     if (is_system_gc && PrintGCDetails) {
   170       gc_cause_str = "Full GC (System)";
   171     }
   172     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   173     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   174     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
   175     TraceCollectorStats tcs(counters());
   176     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
   178     if (TraceGen1Time) accumulated_time()->start();
   180     // Let the size policy know we're starting
   181     size_policy->major_collection_begin();
   183     // When collecting the permanent generation methodOops may be moving,
   184     // so we either have to flush all bcp data or convert it into bci.
   185     CodeCache::gc_prologue();
   186     Threads::gc_prologue();
   187     BiasedLocking::preserve_marks();
   189     // Capture heap size before collection for printing.
   190     size_t prev_used = heap->used();
   192     // Capture perm gen size before collection for sizing.
   193     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
   195     // For PrintGCDetails
   196     size_t old_gen_prev_used = old_gen->used_in_bytes();
   197     size_t young_gen_prev_used = young_gen->used_in_bytes();
   199     allocate_stacks();
   201     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   202     COMPILER2_PRESENT(DerivedPointerTable::clear());
   204     ref_processor()->enable_discovery();
   205     ref_processor()->setup_policy(clear_all_softrefs);
   207     mark_sweep_phase1(clear_all_softrefs);
   209     mark_sweep_phase2();
   211     // Don't add any more derived pointers during phase3
   212     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   213     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   215     mark_sweep_phase3();
   217     mark_sweep_phase4();
   219     restore_marks();
   221     deallocate_stacks();
   223     if (ZapUnusedHeapArea) {
   224       // Do a complete mangle (top to end) because the usage for
   225       // scratch does not maintain a top pointer.
   226       young_gen->to_space()->mangle_unused_area_complete();
   227     }
   229     eden_empty = young_gen->eden_space()->is_empty();
   230     if (!eden_empty) {
   231       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   232     }
   234     // Update heap occupancy information which is used as
   235     // input to soft ref clearing policy at the next gc.
   236     Universe::update_heap_info_at_gc();
   238     survivors_empty = young_gen->from_space()->is_empty() &&
   239                       young_gen->to_space()->is_empty();
   240     young_gen_empty = eden_empty && survivors_empty;
   242     BarrierSet* bs = heap->barrier_set();
   243     if (bs->is_a(BarrierSet::ModRef)) {
   244       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   245       MemRegion old_mr = heap->old_gen()->reserved();
   246       MemRegion perm_mr = heap->perm_gen()->reserved();
   247       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
   249       if (young_gen_empty) {
   250         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
   251       } else {
   252         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
   253       }
   254     }
   256     BiasedLocking::restore_marks();
   257     Threads::gc_epilogue();
   258     CodeCache::gc_epilogue();
   259     JvmtiExport::gc_epilogue();
   261     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   263     ref_processor()->enqueue_discovered_references(NULL);
   265     // Update time of last GC
   266     reset_millis_since_last_gc();
   268     // Let the size policy know we're done
   269     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   271     if (UseAdaptiveSizePolicy) {
   273       if (PrintAdaptiveSizePolicy) {
   274         gclog_or_tty->print("AdaptiveSizeStart: ");
   275         gclog_or_tty->stamp();
   276         gclog_or_tty->print_cr(" collection: %d ",
   277                        heap->total_collections());
   278         if (Verbose) {
   279           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   280             " perm_gen_capacity: %d ",
   281             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   282             perm_gen->capacity_in_bytes());
   283         }
   284       }
   286       // Don't check if the size_policy is ready here.  Let
   287       // the size_policy check that internally.
   288       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   289           ((gc_cause != GCCause::_java_lang_system_gc) ||
   290             UseAdaptiveSizePolicyWithSystemGC)) {
   291         // Calculate optimal free space amounts
   292         assert(young_gen->max_size() >
   293           young_gen->from_space()->capacity_in_bytes() +
   294           young_gen->to_space()->capacity_in_bytes(),
   295           "Sizes of space in young gen are out-of-bounds");
   296         size_t max_eden_size = young_gen->max_size() -
   297           young_gen->from_space()->capacity_in_bytes() -
   298           young_gen->to_space()->capacity_in_bytes();
   299         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   300                                  young_gen->eden_space()->used_in_bytes(),
   301                                  old_gen->used_in_bytes(),
   302                                  perm_gen->used_in_bytes(),
   303                                  young_gen->eden_space()->capacity_in_bytes(),
   304                                  old_gen->max_gen_size(),
   305                                  max_eden_size,
   306                                  true /* full gc*/,
   307                                  gc_cause,
   308                                  heap->collector_policy());
   310         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   312         // Don't resize the young generation at an major collection.  A
   313         // desired young generation size may have been calculated but
   314         // resizing the young generation complicates the code because the
   315         // resizing of the old generation may have moved the boundary
   316         // between the young generation and the old generation.  Let the
   317         // young generation resizing happen at the minor collections.
   318       }
   319       if (PrintAdaptiveSizePolicy) {
   320         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   321                        heap->total_collections());
   322       }
   323     }
   325     if (UsePerfData) {
   326       heap->gc_policy_counters()->update_counters();
   327       heap->gc_policy_counters()->update_old_capacity(
   328         old_gen->capacity_in_bytes());
   329       heap->gc_policy_counters()->update_young_capacity(
   330         young_gen->capacity_in_bytes());
   331     }
   333     heap->resize_all_tlabs();
   335     // We collected the perm gen, so we'll resize it here.
   336     perm_gen->compute_new_size(perm_gen_prev_used);
   338     if (TraceGen1Time) accumulated_time()->stop();
   340     if (PrintGC) {
   341       if (PrintGCDetails) {
   342         // Don't print a GC timestamp here.  This is after the GC so
   343         // would be confusing.
   344         young_gen->print_used_change(young_gen_prev_used);
   345         old_gen->print_used_change(old_gen_prev_used);
   346       }
   347       heap->print_heap_change(prev_used);
   348       // Do perm gen after heap becase prev_used does
   349       // not include the perm gen (done this way in the other
   350       // collectors).
   351       if (PrintGCDetails) {
   352         perm_gen->print_used_change(perm_gen_prev_used);
   353       }
   354     }
   356     // Track memory usage and detect low memory
   357     MemoryService::track_memory_usage();
   358     heap->update_counters();
   359   }
   361   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   362     HandleMark hm;  // Discard invalid handles created during verification
   363     gclog_or_tty->print(" VerifyAfterGC:");
   364     Universe::verify(false);
   365   }
   367   // Re-verify object start arrays
   368   if (VerifyObjectStartArray &&
   369       VerifyAfterGC) {
   370     old_gen->verify_object_start_array();
   371     perm_gen->verify_object_start_array();
   372   }
   374   if (ZapUnusedHeapArea) {
   375     old_gen->object_space()->check_mangled_unused_area_complete();
   376     perm_gen->object_space()->check_mangled_unused_area_complete();
   377   }
   379   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   381   if (PrintHeapAtGC) {
   382     Universe::print_heap_after_gc();
   383   }
   385   heap->post_full_gc_dump();
   387 #ifdef TRACESPINNING
   388   ParallelTaskTerminator::print_termination_counts();
   389 #endif
   390 }
   392 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   393                                              PSYoungGen* young_gen,
   394                                              PSOldGen* old_gen) {
   395   MutableSpace* const eden_space = young_gen->eden_space();
   396   assert(!eden_space->is_empty(), "eden must be non-empty");
   397   assert(young_gen->virtual_space()->alignment() ==
   398          old_gen->virtual_space()->alignment(), "alignments do not match");
   400   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   401     return false;
   402   }
   404   // Both generations must be completely committed.
   405   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   406     return false;
   407   }
   408   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   409     return false;
   410   }
   412   // Figure out how much to take from eden.  Include the average amount promoted
   413   // in the total; otherwise the next young gen GC will simply bail out to a
   414   // full GC.
   415   const size_t alignment = old_gen->virtual_space()->alignment();
   416   const size_t eden_used = eden_space->used_in_bytes();
   417   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   418   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   419   const size_t eden_capacity = eden_space->capacity_in_bytes();
   421   if (absorb_size >= eden_capacity) {
   422     return false; // Must leave some space in eden.
   423   }
   425   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   426   if (new_young_size < young_gen->min_gen_size()) {
   427     return false; // Respect young gen minimum size.
   428   }
   430   if (TraceAdaptiveGCBoundary && Verbose) {
   431     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   432                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   433                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   434                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   435                         absorb_size / K,
   436                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   437                         young_gen->from_space()->used_in_bytes() / K,
   438                         young_gen->to_space()->used_in_bytes() / K,
   439                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   440   }
   442   // Fill the unused part of the old gen.
   443   MutableSpace* const old_space = old_gen->object_space();
   444   HeapWord* const unused_start = old_space->top();
   445   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   447   if (unused_words > 0) {
   448     if (unused_words < CollectedHeap::min_fill_size()) {
   449       return false;  // If the old gen cannot be filled, must give up.
   450     }
   451     CollectedHeap::fill_with_objects(unused_start, unused_words);
   452   }
   454   // Take the live data from eden and set both top and end in the old gen to
   455   // eden top.  (Need to set end because reset_after_change() mangles the region
   456   // from end to virtual_space->high() in debug builds).
   457   HeapWord* const new_top = eden_space->top();
   458   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   459                                         absorb_size);
   460   young_gen->reset_after_change();
   461   old_space->set_top(new_top);
   462   old_space->set_end(new_top);
   463   old_gen->reset_after_change();
   465   // Update the object start array for the filler object and the data from eden.
   466   ObjectStartArray* const start_array = old_gen->start_array();
   467   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   468     start_array->allocate_block(p);
   469   }
   471   // Could update the promoted average here, but it is not typically updated at
   472   // full GCs and the value to use is unclear.  Something like
   473   //
   474   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   476   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   477   return true;
   478 }
   480 void PSMarkSweep::allocate_stacks() {
   481   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   482   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   484   PSYoungGen* young_gen = heap->young_gen();
   486   MutableSpace* to_space = young_gen->to_space();
   487   _preserved_marks = (PreservedMark*)to_space->top();
   488   _preserved_count = 0;
   490   // We want to calculate the size in bytes first.
   491   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   492   // Now divide by the size of a PreservedMark
   493   _preserved_count_max /= sizeof(PreservedMark);
   494 }
   497 void PSMarkSweep::deallocate_stacks() {
   498   _preserved_mark_stack.clear(true);
   499   _preserved_oop_stack.clear(true);
   500   _marking_stack.clear();
   501   _objarray_stack.clear(true);
   502   _revisit_klass_stack.clear(true);
   503   _revisit_mdo_stack.clear(true);
   504 }
   506 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   507   // Recursively traverse all live objects and mark them
   508   EventMark m("1 mark object");
   509   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
   510   trace(" 1");
   512   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   513   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   515   // General strong roots.
   516   {
   517     ParallelScavengeHeap::ParStrongRootsScope psrs;
   518     Universe::oops_do(mark_and_push_closure());
   519     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   520     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
   521     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
   522     ObjectSynchronizer::oops_do(mark_and_push_closure());
   523     FlatProfiler::oops_do(mark_and_push_closure());
   524     Management::oops_do(mark_and_push_closure());
   525     JvmtiExport::oops_do(mark_and_push_closure());
   526     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   527     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   528     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   529   }
   531   // Flush marking stack.
   532   follow_stack();
   534   // Process reference objects found during marking
   535   {
   536     ref_processor()->setup_policy(clear_all_softrefs);
   537     ref_processor()->process_discovered_references(
   538       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
   539   }
   541   // Follow system dictionary roots and unload classes
   542   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   544   // Follow code cache roots
   545   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
   546                           purged_class);
   547   follow_stack(); // Flush marking stack
   549   // Update subklass/sibling/implementor links of live klasses
   550   follow_weak_klass_links();
   551   assert(_marking_stack.is_empty(), "just drained");
   553   // Visit memoized mdo's and clear unmarked weak refs
   554   follow_mdo_weak_refs();
   555   assert(_marking_stack.is_empty(), "just drained");
   557   // Visit interned string tables and delete unmarked oops
   558   StringTable::unlink(is_alive_closure());
   559   // Clean up unreferenced symbols in symbol table.
   560   SymbolTable::unlink();
   562   assert(_marking_stack.is_empty(), "stack should be empty by now");
   563 }
   566 void PSMarkSweep::mark_sweep_phase2() {
   567   EventMark m("2 compute new addresses");
   568   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
   569   trace("2");
   571   // Now all live objects are marked, compute the new object addresses.
   573   // It is imperative that we traverse perm_gen LAST. If dead space is
   574   // allowed a range of dead object may get overwritten by a dead int
   575   // array. If perm_gen is not traversed last a klassOop may get
   576   // overwritten. This is fine since it is dead, but if the class has dead
   577   // instances we have to skip them, and in order to find their size we
   578   // need the klassOop!
   579   //
   580   // It is not required that we traverse spaces in the same order in
   581   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   582   // tracking expects us to do so. See comment under phase4.
   584   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   585   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   587   PSOldGen* old_gen = heap->old_gen();
   588   PSPermGen* perm_gen = heap->perm_gen();
   590   // Begin compacting into the old gen
   591   PSMarkSweepDecorator::set_destination_decorator_tenured();
   593   // This will also compact the young gen spaces.
   594   old_gen->precompact();
   596   // Compact the perm gen into the perm gen
   597   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
   599   perm_gen->precompact();
   600 }
   602 // This should be moved to the shared markSweep code!
   603 class PSAlwaysTrueClosure: public BoolObjectClosure {
   604 public:
   605   void do_object(oop p) { ShouldNotReachHere(); }
   606   bool do_object_b(oop p) { return true; }
   607 };
   608 static PSAlwaysTrueClosure always_true;
   610 void PSMarkSweep::mark_sweep_phase3() {
   611   // Adjust the pointers to reflect the new locations
   612   EventMark m("3 adjust pointers");
   613   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
   614   trace("3");
   616   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   617   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   619   PSYoungGen* young_gen = heap->young_gen();
   620   PSOldGen* old_gen = heap->old_gen();
   621   PSPermGen* perm_gen = heap->perm_gen();
   623   // General strong roots.
   624   Universe::oops_do(adjust_root_pointer_closure());
   625   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
   626   Threads::oops_do(adjust_root_pointer_closure(), NULL);
   627   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
   628   FlatProfiler::oops_do(adjust_root_pointer_closure());
   629   Management::oops_do(adjust_root_pointer_closure());
   630   JvmtiExport::oops_do(adjust_root_pointer_closure());
   631   // SO_AllClasses
   632   SystemDictionary::oops_do(adjust_root_pointer_closure());
   633   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
   635   // Now adjust pointers in remaining weak roots.  (All of which should
   636   // have been cleared if they pointed to non-surviving objects.)
   637   // Global (weak) JNI handles
   638   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
   640   CodeCache::oops_do(adjust_pointer_closure());
   641   StringTable::oops_do(adjust_root_pointer_closure());
   642   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
   643   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
   645   adjust_marks();
   647   young_gen->adjust_pointers();
   648   old_gen->adjust_pointers();
   649   perm_gen->adjust_pointers();
   650 }
   652 void PSMarkSweep::mark_sweep_phase4() {
   653   EventMark m("4 compact heap");
   654   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
   655   trace("4");
   657   // All pointers are now adjusted, move objects accordingly
   659   // It is imperative that we traverse perm_gen first in phase4. All
   660   // classes must be allocated earlier than their instances, and traversing
   661   // perm_gen first makes sure that all klassOops have moved to their new
   662   // location before any instance does a dispatch through it's klass!
   663   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   664   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   666   PSYoungGen* young_gen = heap->young_gen();
   667   PSOldGen* old_gen = heap->old_gen();
   668   PSPermGen* perm_gen = heap->perm_gen();
   670   perm_gen->compact();
   671   old_gen->compact();
   672   young_gen->compact();
   673 }
   675 jlong PSMarkSweep::millis_since_last_gc() {
   676   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
   677   // XXX See note in genCollectedHeap::millis_since_last_gc().
   678   if (ret_val < 0) {
   679     NOT_PRODUCT(warning("time warp: %d", ret_val);)
   680     return 0;
   681   }
   682   return ret_val;
   683 }
   685 void PSMarkSweep::reset_millis_since_last_gc() {
   686   _time_of_last_gc = os::javaTimeMillis();
   687 }

mercurial