src/share/vm/gc_implementation/g1/heapRegion.cpp

Thu, 23 Oct 2014 12:02:08 -0700

author
asaha
date
Thu, 23 Oct 2014 12:02:08 -0700
changeset 7476
c2844108a708
parent 7256
0fcaab91d485
child 7366
e8bf410d5e23
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
    32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/shared/liveRange.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/iterator.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "runtime/orderAccess.inline.hpp"
    41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    43 int    HeapRegion::LogOfHRGrainBytes = 0;
    44 int    HeapRegion::LogOfHRGrainWords = 0;
    45 size_t HeapRegion::GrainBytes        = 0;
    46 size_t HeapRegion::GrainWords        = 0;
    47 size_t HeapRegion::CardsPerRegion    = 0;
    49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    50                                  HeapRegion* hr, ExtendedOopClosure* cl,
    51                                  CardTableModRefBS::PrecisionStyle precision,
    52                                  FilterKind fk) :
    53   DirtyCardToOopClosure(hr, cl, precision, NULL),
    54   _hr(hr), _fk(fk), _g1(g1) { }
    56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    57                                                    OopClosure* oc) :
    58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    60 template<class ClosureType>
    61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    62                                HeapRegion* hr,
    63                                HeapWord* cur, HeapWord* top) {
    64   oop cur_oop = oop(cur);
    65   size_t oop_size = hr->block_size(cur);
    66   HeapWord* next_obj = cur + oop_size;
    67   while (next_obj < top) {
    68     // Keep filtering the remembered set.
    69     if (!g1h->is_obj_dead(cur_oop, hr)) {
    70       // Bottom lies entirely below top, so we can call the
    71       // non-memRegion version of oop_iterate below.
    72       cur_oop->oop_iterate(cl);
    73     }
    74     cur = next_obj;
    75     cur_oop = oop(cur);
    76     oop_size = hr->block_size(cur);
    77     next_obj = cur + oop_size;
    78   }
    79   return cur;
    80 }
    82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    83                                       HeapWord* bottom,
    84                                       HeapWord* top) {
    85   G1CollectedHeap* g1h = _g1;
    86   size_t oop_size;
    87   ExtendedOopClosure* cl2 = NULL;
    89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
    90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
    92   switch (_fk) {
    93   case NoFilterKind:          cl2 = _cl; break;
    94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    96   default:                    ShouldNotReachHere();
    97   }
    99   // Start filtering what we add to the remembered set. If the object is
   100   // not considered dead, either because it is marked (in the mark bitmap)
   101   // or it was allocated after marking finished, then we add it. Otherwise
   102   // we can safely ignore the object.
   103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   105   } else {
   106     oop_size = _hr->block_size(bottom);
   107   }
   109   bottom += oop_size;
   111   if (bottom < top) {
   112     // We replicate the loop below for several kinds of possible filters.
   113     switch (_fk) {
   114     case NoFilterKind:
   115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
   116       break;
   118     case IntoCSFilterKind: {
   119       FilterIntoCSClosure filt(this, g1h, _cl);
   120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   121       break;
   122     }
   124     case OutOfRegionFilterKind: {
   125       FilterOutOfRegionClosure filt(_hr, _cl);
   126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   127       break;
   128     }
   130     default:
   131       ShouldNotReachHere();
   132     }
   134     // Last object. Need to do dead-obj filtering here too.
   135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   136       oop(bottom)->oop_iterate(cl2, mr);
   137     }
   138   }
   139 }
   141 size_t HeapRegion::max_region_size() {
   142   return HeapRegionBounds::max_size();
   143 }
   145 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   146   uintx region_size = G1HeapRegionSize;
   147   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   148     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   149     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
   150                        (uintx) HeapRegionBounds::min_size());
   151   }
   153   int region_size_log = log2_long((jlong) region_size);
   154   // Recalculate the region size to make sure it's a power of
   155   // 2. This means that region_size is the largest power of 2 that's
   156   // <= what we've calculated so far.
   157   region_size = ((uintx)1 << region_size_log);
   159   // Now make sure that we don't go over or under our limits.
   160   if (region_size < HeapRegionBounds::min_size()) {
   161     region_size = HeapRegionBounds::min_size();
   162   } else if (region_size > HeapRegionBounds::max_size()) {
   163     region_size = HeapRegionBounds::max_size();
   164   }
   166   // And recalculate the log.
   167   region_size_log = log2_long((jlong) region_size);
   169   // Now, set up the globals.
   170   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   171   LogOfHRGrainBytes = region_size_log;
   173   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   174   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   176   guarantee(GrainBytes == 0, "we should only set it once");
   177   // The cast to int is safe, given that we've bounded region_size by
   178   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   179   GrainBytes = (size_t)region_size;
   181   guarantee(GrainWords == 0, "we should only set it once");
   182   GrainWords = GrainBytes >> LogHeapWordSize;
   183   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   185   guarantee(CardsPerRegion == 0, "we should only set it once");
   186   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   187 }
   189 void HeapRegion::reset_after_compaction() {
   190   G1OffsetTableContigSpace::reset_after_compaction();
   191   // After a compaction the mark bitmap is invalid, so we must
   192   // treat all objects as being inside the unmarked area.
   193   zero_marked_bytes();
   194   init_top_at_mark_start();
   195 }
   197 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   198   assert(_humongous_start_region == NULL,
   199          "we should have already filtered out humongous regions");
   200   assert(_end == _orig_end,
   201          "we should have already filtered out humongous regions");
   203   _in_collection_set = false;
   205   set_allocation_context(AllocationContext::system());
   206   set_young_index_in_cset(-1);
   207   uninstall_surv_rate_group();
   208   set_free();
   209   reset_pre_dummy_top();
   211   if (!par) {
   212     // If this is parallel, this will be done later.
   213     HeapRegionRemSet* hrrs = rem_set();
   214     if (locked) {
   215       hrrs->clear_locked();
   216     } else {
   217       hrrs->clear();
   218     }
   219     _claimed = InitialClaimValue;
   220   }
   221   zero_marked_bytes();
   223   _offsets.resize(HeapRegion::GrainWords);
   224   init_top_at_mark_start();
   225   if (clear_space) clear(SpaceDecorator::Mangle);
   226 }
   228 void HeapRegion::par_clear() {
   229   assert(used() == 0, "the region should have been already cleared");
   230   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   231   HeapRegionRemSet* hrrs = rem_set();
   232   hrrs->clear();
   233   CardTableModRefBS* ct_bs =
   234                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   235   ct_bs->clear(MemRegion(bottom(), end()));
   236 }
   238 void HeapRegion::calc_gc_efficiency() {
   239   // GC efficiency is the ratio of how much space would be
   240   // reclaimed over how long we predict it would take to reclaim it.
   241   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   242   G1CollectorPolicy* g1p = g1h->g1_policy();
   244   // Retrieve a prediction of the elapsed time for this region for
   245   // a mixed gc because the region will only be evacuated during a
   246   // mixed gc.
   247   double region_elapsed_time_ms =
   248     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   249   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   250 }
   252 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   253   assert(!isHumongous(), "sanity / pre-condition");
   254   assert(end() == _orig_end,
   255          "Should be normal before the humongous object allocation");
   256   assert(top() == bottom(), "should be empty");
   257   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   259   _type.set_starts_humongous();
   260   _humongous_start_region = this;
   262   set_end(new_end);
   263   _offsets.set_for_starts_humongous(new_top);
   264 }
   266 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   267   assert(!isHumongous(), "sanity / pre-condition");
   268   assert(end() == _orig_end,
   269          "Should be normal before the humongous object allocation");
   270   assert(top() == bottom(), "should be empty");
   271   assert(first_hr->startsHumongous(), "pre-condition");
   273   _type.set_continues_humongous();
   274   _humongous_start_region = first_hr;
   275 }
   277 void HeapRegion::clear_humongous() {
   278   assert(isHumongous(), "pre-condition");
   280   if (startsHumongous()) {
   281     assert(top() <= end(), "pre-condition");
   282     set_end(_orig_end);
   283     if (top() > end()) {
   284       // at least one "continues humongous" region after it
   285       set_top(end());
   286     }
   287   } else {
   288     // continues humongous
   289     assert(end() == _orig_end, "sanity");
   290   }
   292   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   293   _humongous_start_region = NULL;
   294 }
   296 bool HeapRegion::claimHeapRegion(jint claimValue) {
   297   jint current = _claimed;
   298   if (current != claimValue) {
   299     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   300     if (res == current) {
   301       return true;
   302     }
   303   }
   304   return false;
   305 }
   307 HeapRegion::HeapRegion(uint hrm_index,
   308                        G1BlockOffsetSharedArray* sharedOffsetArray,
   309                        MemRegion mr) :
   310     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   311     _hrm_index(hrm_index),
   312     _allocation_context(AllocationContext::system()),
   313     _humongous_start_region(NULL),
   314     _in_collection_set(false),
   315     _next_in_special_set(NULL), _orig_end(NULL),
   316     _claimed(InitialClaimValue), _evacuation_failed(false),
   317     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   318     _next_young_region(NULL),
   319     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
   320 #ifdef ASSERT
   321     _containing_set(NULL),
   322 #endif // ASSERT
   323      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   324     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   325     _predicted_bytes_to_copy(0)
   326 {
   327   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   328   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   330   initialize(mr);
   331 }
   333 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   334   assert(_rem_set->is_empty(), "Remembered set must be empty");
   336   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
   338   _orig_end = mr.end();
   339   hr_clear(false /*par*/, false /*clear_space*/);
   340   set_top(bottom());
   341   record_top_and_timestamp();
   342 }
   344 CompactibleSpace* HeapRegion::next_compaction_space() const {
   345   return G1CollectedHeap::heap()->next_compaction_region(this);
   346 }
   348 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   349                                                     bool during_conc_mark) {
   350   // We always recreate the prev marking info and we'll explicitly
   351   // mark all objects we find to be self-forwarded on the prev
   352   // bitmap. So all objects need to be below PTAMS.
   353   _prev_marked_bytes = 0;
   355   if (during_initial_mark) {
   356     // During initial-mark, we'll also explicitly mark all objects
   357     // we find to be self-forwarded on the next bitmap. So all
   358     // objects need to be below NTAMS.
   359     _next_top_at_mark_start = top();
   360     _next_marked_bytes = 0;
   361   } else if (during_conc_mark) {
   362     // During concurrent mark, all objects in the CSet (including
   363     // the ones we find to be self-forwarded) are implicitly live.
   364     // So all objects need to be above NTAMS.
   365     _next_top_at_mark_start = bottom();
   366     _next_marked_bytes = 0;
   367   }
   368 }
   370 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   371                                                   bool during_conc_mark,
   372                                                   size_t marked_bytes) {
   373   assert(0 <= marked_bytes && marked_bytes <= used(),
   374          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   375                  marked_bytes, used()));
   376   _prev_top_at_mark_start = top();
   377   _prev_marked_bytes = marked_bytes;
   378 }
   380 HeapWord*
   381 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   382                                                  ObjectClosure* cl) {
   383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   384   // We used to use "block_start_careful" here.  But we're actually happy
   385   // to update the BOT while we do this...
   386   HeapWord* cur = block_start(mr.start());
   387   mr = mr.intersection(used_region());
   388   if (mr.is_empty()) return NULL;
   389   // Otherwise, find the obj that extends onto mr.start().
   391   assert(cur <= mr.start()
   392          && (oop(cur)->klass_or_null() == NULL ||
   393              cur + oop(cur)->size() > mr.start()),
   394          "postcondition of block_start");
   395   oop obj;
   396   while (cur < mr.end()) {
   397     obj = oop(cur);
   398     if (obj->klass_or_null() == NULL) {
   399       // Ran into an unparseable point.
   400       return cur;
   401     } else if (!g1h->is_obj_dead(obj)) {
   402       cl->do_object(obj);
   403     }
   404     if (cl->abort()) return cur;
   405     // The check above must occur before the operation below, since an
   406     // abort might invalidate the "size" operation.
   407     cur += block_size(cur);
   408   }
   409   return NULL;
   410 }
   412 HeapWord*
   413 HeapRegion::
   414 oops_on_card_seq_iterate_careful(MemRegion mr,
   415                                  FilterOutOfRegionClosure* cl,
   416                                  bool filter_young,
   417                                  jbyte* card_ptr) {
   418   // Currently, we should only have to clean the card if filter_young
   419   // is true and vice versa.
   420   if (filter_young) {
   421     assert(card_ptr != NULL, "pre-condition");
   422   } else {
   423     assert(card_ptr == NULL, "pre-condition");
   424   }
   425   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   427   // If we're within a stop-world GC, then we might look at a card in a
   428   // GC alloc region that extends onto a GC LAB, which may not be
   429   // parseable.  Stop such at the "saved_mark" of the region.
   430   if (g1h->is_gc_active()) {
   431     mr = mr.intersection(used_region_at_save_marks());
   432   } else {
   433     mr = mr.intersection(used_region());
   434   }
   435   if (mr.is_empty()) return NULL;
   436   // Otherwise, find the obj that extends onto mr.start().
   438   // The intersection of the incoming mr (for the card) and the
   439   // allocated part of the region is non-empty. This implies that
   440   // we have actually allocated into this region. The code in
   441   // G1CollectedHeap.cpp that allocates a new region sets the
   442   // is_young tag on the region before allocating. Thus we
   443   // safely know if this region is young.
   444   if (is_young() && filter_young) {
   445     return NULL;
   446   }
   448   assert(!is_young(), "check value of filter_young");
   450   // We can only clean the card here, after we make the decision that
   451   // the card is not young. And we only clean the card if we have been
   452   // asked to (i.e., card_ptr != NULL).
   453   if (card_ptr != NULL) {
   454     *card_ptr = CardTableModRefBS::clean_card_val();
   455     // We must complete this write before we do any of the reads below.
   456     OrderAccess::storeload();
   457   }
   459   // Cache the boundaries of the memory region in some const locals
   460   HeapWord* const start = mr.start();
   461   HeapWord* const end = mr.end();
   463   // We used to use "block_start_careful" here.  But we're actually happy
   464   // to update the BOT while we do this...
   465   HeapWord* cur = block_start(start);
   466   assert(cur <= start, "Postcondition");
   468   oop obj;
   470   HeapWord* next = cur;
   471   while (next <= start) {
   472     cur = next;
   473     obj = oop(cur);
   474     if (obj->klass_or_null() == NULL) {
   475       // Ran into an unparseable point.
   476       return cur;
   477     }
   478     // Otherwise...
   479     next = cur + block_size(cur);
   480   }
   482   // If we finish the above loop...We have a parseable object that
   483   // begins on or before the start of the memory region, and ends
   484   // inside or spans the entire region.
   486   assert(obj == oop(cur), "sanity");
   487   assert(cur <= start, "Loop postcondition");
   488   assert(obj->klass_or_null() != NULL, "Loop postcondition");
   489   assert((cur + block_size(cur)) > start, "Loop postcondition");
   491   if (!g1h->is_obj_dead(obj)) {
   492     obj->oop_iterate(cl, mr);
   493   }
   495   while (cur < end) {
   496     obj = oop(cur);
   497     if (obj->klass_or_null() == NULL) {
   498       // Ran into an unparseable point.
   499       return cur;
   500     };
   502     // Otherwise:
   503     next = cur + block_size(cur);
   505     if (!g1h->is_obj_dead(obj)) {
   506       if (next < end || !obj->is_objArray()) {
   507         // This object either does not span the MemRegion
   508         // boundary, or if it does it's not an array.
   509         // Apply closure to whole object.
   510         obj->oop_iterate(cl);
   511       } else {
   512         // This obj is an array that spans the boundary.
   513         // Stop at the boundary.
   514         obj->oop_iterate(cl, mr);
   515       }
   516     }
   517     cur = next;
   518   }
   519   return NULL;
   520 }
   522 // Code roots support
   524 void HeapRegion::add_strong_code_root(nmethod* nm) {
   525   HeapRegionRemSet* hrrs = rem_set();
   526   hrrs->add_strong_code_root(nm);
   527 }
   529 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
   530   assert_locked_or_safepoint(CodeCache_lock);
   531   HeapRegionRemSet* hrrs = rem_set();
   532   hrrs->add_strong_code_root_locked(nm);
   533 }
   535 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   536   HeapRegionRemSet* hrrs = rem_set();
   537   hrrs->remove_strong_code_root(nm);
   538 }
   540 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   541   HeapRegionRemSet* hrrs = rem_set();
   542   hrrs->strong_code_roots_do(blk);
   543 }
   545 class VerifyStrongCodeRootOopClosure: public OopClosure {
   546   const HeapRegion* _hr;
   547   nmethod* _nm;
   548   bool _failures;
   549   bool _has_oops_in_region;
   551   template <class T> void do_oop_work(T* p) {
   552     T heap_oop = oopDesc::load_heap_oop(p);
   553     if (!oopDesc::is_null(heap_oop)) {
   554       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   556       // Note: not all the oops embedded in the nmethod are in the
   557       // current region. We only look at those which are.
   558       if (_hr->is_in(obj)) {
   559         // Object is in the region. Check that its less than top
   560         if (_hr->top() <= (HeapWord*)obj) {
   561           // Object is above top
   562           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   563                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   564                                  "top "PTR_FORMAT,
   565                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   566           _failures = true;
   567           return;
   568         }
   569         // Nmethod has at least one oop in the current region
   570         _has_oops_in_region = true;
   571       }
   572     }
   573   }
   575 public:
   576   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   577     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   579   void do_oop(narrowOop* p) { do_oop_work(p); }
   580   void do_oop(oop* p)       { do_oop_work(p); }
   582   bool failures()           { return _failures; }
   583   bool has_oops_in_region() { return _has_oops_in_region; }
   584 };
   586 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   587   const HeapRegion* _hr;
   588   bool _failures;
   589 public:
   590   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   591     _hr(hr), _failures(false) {}
   593   void do_code_blob(CodeBlob* cb) {
   594     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   595     if (nm != NULL) {
   596       // Verify that the nemthod is live
   597       if (!nm->is_alive()) {
   598         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   599                                PTR_FORMAT" in its strong code roots",
   600                                _hr->bottom(), _hr->end(), nm);
   601         _failures = true;
   602       } else {
   603         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   604         nm->oops_do(&oop_cl);
   605         if (!oop_cl.has_oops_in_region()) {
   606           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   607                                  PTR_FORMAT" in its strong code roots "
   608                                  "with no pointers into region",
   609                                  _hr->bottom(), _hr->end(), nm);
   610           _failures = true;
   611         } else if (oop_cl.failures()) {
   612           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   613                                  "failures for nmethod "PTR_FORMAT,
   614                                  _hr->bottom(), _hr->end(), nm);
   615           _failures = true;
   616         }
   617       }
   618     }
   619   }
   621   bool failures()       { return _failures; }
   622 };
   624 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   625   if (!G1VerifyHeapRegionCodeRoots) {
   626     // We're not verifying code roots.
   627     return;
   628   }
   629   if (vo == VerifyOption_G1UseMarkWord) {
   630     // Marking verification during a full GC is performed after class
   631     // unloading, code cache unloading, etc so the strong code roots
   632     // attached to each heap region are in an inconsistent state. They won't
   633     // be consistent until the strong code roots are rebuilt after the
   634     // actual GC. Skip verifying the strong code roots in this particular
   635     // time.
   636     assert(VerifyDuringGC, "only way to get here");
   637     return;
   638   }
   640   HeapRegionRemSet* hrrs = rem_set();
   641   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   643   // if this region is empty then there should be no entries
   644   // on its strong code root list
   645   if (is_empty()) {
   646     if (strong_code_roots_length > 0) {
   647       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   648                              "but has "SIZE_FORMAT" code root entries",
   649                              bottom(), end(), strong_code_roots_length);
   650       *failures = true;
   651     }
   652     return;
   653   }
   655   if (continuesHumongous()) {
   656     if (strong_code_roots_length > 0) {
   657       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   658                              "region but has "SIZE_FORMAT" code root entries",
   659                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   660       *failures = true;
   661     }
   662     return;
   663   }
   665   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   666   strong_code_roots_do(&cb_cl);
   668   if (cb_cl.failures()) {
   669     *failures = true;
   670   }
   671 }
   673 void HeapRegion::print() const { print_on(gclog_or_tty); }
   674 void HeapRegion::print_on(outputStream* st) const {
   675   st->print("AC%4u", allocation_context());
   676   st->print(" %2s", get_short_type_str());
   677   if (in_collection_set())
   678     st->print(" CS");
   679   else
   680     st->print("   ");
   681   st->print(" TS %5d", _gc_time_stamp);
   682   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   683             prev_top_at_mark_start(), next_top_at_mark_start());
   684   G1OffsetTableContigSpace::print_on(st);
   685 }
   687 class VerifyLiveClosure: public OopClosure {
   688 private:
   689   G1CollectedHeap* _g1h;
   690   CardTableModRefBS* _bs;
   691   oop _containing_obj;
   692   bool _failures;
   693   int _n_failures;
   694   VerifyOption _vo;
   695 public:
   696   // _vo == UsePrevMarking -> use "prev" marking information,
   697   // _vo == UseNextMarking -> use "next" marking information,
   698   // _vo == UseMarkWord    -> use mark word from object header.
   699   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   700     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   701     _failures(false), _n_failures(0), _vo(vo)
   702   {
   703     BarrierSet* bs = _g1h->barrier_set();
   704     if (bs->is_a(BarrierSet::CardTableModRef))
   705       _bs = (CardTableModRefBS*)bs;
   706   }
   708   void set_containing_obj(oop obj) {
   709     _containing_obj = obj;
   710   }
   712   bool failures() { return _failures; }
   713   int n_failures() { return _n_failures; }
   715   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   716   virtual void do_oop(      oop* p) { do_oop_work(p); }
   718   void print_object(outputStream* out, oop obj) {
   719 #ifdef PRODUCT
   720     Klass* k = obj->klass();
   721     const char* class_name = InstanceKlass::cast(k)->external_name();
   722     out->print_cr("class name %s", class_name);
   723 #else // PRODUCT
   724     obj->print_on(out);
   725 #endif // PRODUCT
   726   }
   728   template <class T>
   729   void do_oop_work(T* p) {
   730     assert(_containing_obj != NULL, "Precondition");
   731     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   732            "Precondition");
   733     T heap_oop = oopDesc::load_heap_oop(p);
   734     if (!oopDesc::is_null(heap_oop)) {
   735       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   736       bool failed = false;
   737       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   738         MutexLockerEx x(ParGCRareEvent_lock,
   739                         Mutex::_no_safepoint_check_flag);
   741         if (!_failures) {
   742           gclog_or_tty->cr();
   743           gclog_or_tty->print_cr("----------");
   744         }
   745         if (!_g1h->is_in_closed_subset(obj)) {
   746           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   747           gclog_or_tty->print_cr("Field "PTR_FORMAT
   748                                  " of live obj "PTR_FORMAT" in region "
   749                                  "["PTR_FORMAT", "PTR_FORMAT")",
   750                                  p, (void*) _containing_obj,
   751                                  from->bottom(), from->end());
   752           print_object(gclog_or_tty, _containing_obj);
   753           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   754                                  (void*) obj);
   755         } else {
   756           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   757           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   758           gclog_or_tty->print_cr("Field "PTR_FORMAT
   759                                  " of live obj "PTR_FORMAT" in region "
   760                                  "["PTR_FORMAT", "PTR_FORMAT")",
   761                                  p, (void*) _containing_obj,
   762                                  from->bottom(), from->end());
   763           print_object(gclog_or_tty, _containing_obj);
   764           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   765                                  "["PTR_FORMAT", "PTR_FORMAT")",
   766                                  (void*) obj, to->bottom(), to->end());
   767           print_object(gclog_or_tty, obj);
   768         }
   769         gclog_or_tty->print_cr("----------");
   770         gclog_or_tty->flush();
   771         _failures = true;
   772         failed = true;
   773         _n_failures++;
   774       }
   776       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   777         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   778         HeapRegion* to   = _g1h->heap_region_containing(obj);
   779         if (from != NULL && to != NULL &&
   780             from != to &&
   781             !to->isHumongous()) {
   782           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   783           jbyte cv_field = *_bs->byte_for_const(p);
   784           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   786           bool is_bad = !(from->is_young()
   787                           || to->rem_set()->contains_reference(p)
   788                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   789                               (_containing_obj->is_objArray() ?
   790                                   cv_field == dirty
   791                                : cv_obj == dirty || cv_field == dirty));
   792           if (is_bad) {
   793             MutexLockerEx x(ParGCRareEvent_lock,
   794                             Mutex::_no_safepoint_check_flag);
   796             if (!_failures) {
   797               gclog_or_tty->cr();
   798               gclog_or_tty->print_cr("----------");
   799             }
   800             gclog_or_tty->print_cr("Missing rem set entry:");
   801             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   802                                    "of obj "PTR_FORMAT", "
   803                                    "in region "HR_FORMAT,
   804                                    p, (void*) _containing_obj,
   805                                    HR_FORMAT_PARAMS(from));
   806             _containing_obj->print_on(gclog_or_tty);
   807             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   808                                    "in region "HR_FORMAT,
   809                                    (void*) obj,
   810                                    HR_FORMAT_PARAMS(to));
   811             obj->print_on(gclog_or_tty);
   812             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   813                           cv_obj, cv_field);
   814             gclog_or_tty->print_cr("----------");
   815             gclog_or_tty->flush();
   816             _failures = true;
   817             if (!failed) _n_failures++;
   818           }
   819         }
   820       }
   821     }
   822   }
   823 };
   825 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   826 // We would need a mechanism to make that code skip dead objects.
   828 void HeapRegion::verify(VerifyOption vo,
   829                         bool* failures) const {
   830   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   831   *failures = false;
   832   HeapWord* p = bottom();
   833   HeapWord* prev_p = NULL;
   834   VerifyLiveClosure vl_cl(g1, vo);
   835   bool is_humongous = isHumongous();
   836   bool do_bot_verify = !is_young();
   837   size_t object_num = 0;
   838   while (p < top()) {
   839     oop obj = oop(p);
   840     size_t obj_size = block_size(p);
   841     object_num += 1;
   843     if (is_humongous != g1->isHumongous(obj_size) &&
   844         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
   845       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   846                              SIZE_FORMAT" words) in a %shumongous region",
   847                              p, g1->isHumongous(obj_size) ? "" : "non-",
   848                              obj_size, is_humongous ? "" : "non-");
   849        *failures = true;
   850        return;
   851     }
   853     // If it returns false, verify_for_object() will output the
   854     // appropriate message.
   855     if (do_bot_verify &&
   856         !g1->is_obj_dead(obj, this) &&
   857         !_offsets.verify_for_object(p, obj_size)) {
   858       *failures = true;
   859       return;
   860     }
   862     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   863       if (obj->is_oop()) {
   864         Klass* klass = obj->klass();
   865         bool is_metaspace_object = Metaspace::contains(klass) ||
   866                                    (vo == VerifyOption_G1UsePrevMarking &&
   867                                    ClassLoaderDataGraph::unload_list_contains(klass));
   868         if (!is_metaspace_object) {
   869           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   870                                  "not metadata", klass, (void *)obj);
   871           *failures = true;
   872           return;
   873         } else if (!klass->is_klass()) {
   874           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   875                                  "not a klass", klass, (void *)obj);
   876           *failures = true;
   877           return;
   878         } else {
   879           vl_cl.set_containing_obj(obj);
   880           obj->oop_iterate_no_header(&vl_cl);
   881           if (vl_cl.failures()) {
   882             *failures = true;
   883           }
   884           if (G1MaxVerifyFailures >= 0 &&
   885               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   886             return;
   887           }
   888         }
   889       } else {
   890         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   891         *failures = true;
   892         return;
   893       }
   894     }
   895     prev_p = p;
   896     p += obj_size;
   897   }
   899   if (p != top()) {
   900     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   901                            "does not match top "PTR_FORMAT, p, top());
   902     *failures = true;
   903     return;
   904   }
   906   HeapWord* the_end = end();
   907   assert(p == top(), "it should still hold");
   908   // Do some extra BOT consistency checking for addresses in the
   909   // range [top, end). BOT look-ups in this range should yield
   910   // top. No point in doing that if top == end (there's nothing there).
   911   if (p < the_end) {
   912     // Look up top
   913     HeapWord* addr_1 = p;
   914     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   915     if (b_start_1 != p) {
   916       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   917                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   918                              addr_1, b_start_1, p);
   919       *failures = true;
   920       return;
   921     }
   923     // Look up top + 1
   924     HeapWord* addr_2 = p + 1;
   925     if (addr_2 < the_end) {
   926       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   927       if (b_start_2 != p) {
   928         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   929                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   930                                addr_2, b_start_2, p);
   931         *failures = true;
   932         return;
   933       }
   934     }
   936     // Look up an address between top and end
   937     size_t diff = pointer_delta(the_end, p) / 2;
   938     HeapWord* addr_3 = p + diff;
   939     if (addr_3 < the_end) {
   940       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   941       if (b_start_3 != p) {
   942         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   943                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   944                                addr_3, b_start_3, p);
   945         *failures = true;
   946         return;
   947       }
   948     }
   950     // Loook up end - 1
   951     HeapWord* addr_4 = the_end - 1;
   952     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   953     if (b_start_4 != p) {
   954       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   955                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   956                              addr_4, b_start_4, p);
   957       *failures = true;
   958       return;
   959     }
   960   }
   962   if (is_humongous && object_num > 1) {
   963     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   964                            "but has "SIZE_FORMAT", objects",
   965                            bottom(), end(), object_num);
   966     *failures = true;
   967     return;
   968   }
   970   verify_strong_code_roots(vo, failures);
   971 }
   973 void HeapRegion::verify() const {
   974   bool dummy = false;
   975   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   976 }
   978 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   979 // away eventually.
   981 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   982   set_top(bottom());
   983   set_saved_mark_word(bottom());
   984   CompactibleSpace::clear(mangle_space);
   985   reset_bot();
   986 }
   988 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   989   Space::set_bottom(new_bottom);
   990   _offsets.set_bottom(new_bottom);
   991 }
   993 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   994   Space::set_end(new_end);
   995   _offsets.resize(new_end - bottom());
   996 }
   998 void G1OffsetTableContigSpace::print() const {
   999   print_short();
  1000   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1001                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1002                 bottom(), top(), _offsets.threshold(), end());
  1005 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1006   return _offsets.initialize_threshold();
  1009 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1010                                                     HeapWord* end) {
  1011   _offsets.alloc_block(start, end);
  1012   return _offsets.threshold();
  1015 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1016   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1017   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1018   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1019     return top();
  1020   else
  1021     return Space::saved_mark_word();
  1024 void G1OffsetTableContigSpace::record_top_and_timestamp() {
  1025   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1026   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1028   if (_gc_time_stamp < curr_gc_time_stamp) {
  1029     // The order of these is important, as another thread might be
  1030     // about to start scanning this region. If it does so after
  1031     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1032     // will be false, and it will pick up top() as the high water mark
  1033     // of region. If it does so after _gc_time_stamp = ..., then it
  1034     // will pick up the right saved_mark_word() as the high water mark
  1035     // of the region. Either way, the behaviour will be correct.
  1036     Space::set_saved_mark_word(top());
  1037     OrderAccess::storestore();
  1038     _gc_time_stamp = curr_gc_time_stamp;
  1039     // No need to do another barrier to flush the writes above. If
  1040     // this is called in parallel with other threads trying to
  1041     // allocate into the region, the caller should call this while
  1042     // holding a lock and when the lock is released the writes will be
  1043     // flushed.
  1047 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  1048   object_iterate(blk);
  1051 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  1052   HeapWord* p = bottom();
  1053   while (p < top()) {
  1054     if (block_is_obj(p)) {
  1055       blk->do_object(oop(p));
  1057     p += block_size(p);
  1061 #define block_is_always_obj(q) true
  1062 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  1063   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
  1065 #undef block_is_always_obj
  1067 G1OffsetTableContigSpace::
  1068 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1069                          MemRegion mr) :
  1070   _offsets(sharedOffsetArray, mr),
  1071   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1072   _gc_time_stamp(0)
  1074   _offsets.set_space(this);
  1077 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  1078   CompactibleSpace::initialize(mr, clear_space, mangle_space);
  1079   _top = bottom();
  1080   reset_bot();

mercurial