src/share/vm/memory/defNewGeneration.cpp

Thu, 29 Nov 2012 11:23:15 -0800

author
johnc
date
Thu, 29 Nov 2012 11:23:15 -0800
changeset 4301
c24f778e9401
parent 4299
f34d701e952e
child 4452
a30e7b564541
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "memory/defNewGeneration.inline.hpp"
    30 #include "memory/gcLocker.inline.hpp"
    31 #include "memory/genCollectedHeap.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/genRemSet.hpp"
    34 #include "memory/generationSpec.hpp"
    35 #include "memory/iterator.hpp"
    36 #include "memory/referencePolicy.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/instanceRefKlass.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/java.hpp"
    41 #include "runtime/thread.inline.hpp"
    42 #include "utilities/copy.hpp"
    43 #include "utilities/stack.inline.hpp"
    45 //
    46 // DefNewGeneration functions.
    48 // Methods of protected closure types.
    50 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    51   assert(g->level() == 0, "Optimized for youngest gen.");
    52 }
    53 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
    54   assert(false, "Do not call.");
    55 }
    56 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    57   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    58 }
    60 DefNewGeneration::KeepAliveClosure::
    61 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    62   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    63   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    64   _rs = (CardTableRS*)rs;
    65 }
    67 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    68 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    71 DefNewGeneration::FastKeepAliveClosure::
    72 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    73   DefNewGeneration::KeepAliveClosure(cl) {
    74   _boundary = g->reserved().end();
    75 }
    77 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    78 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    80 DefNewGeneration::EvacuateFollowersClosure::
    81 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    82                          ScanClosure* cur, ScanClosure* older) :
    83   _gch(gch), _level(level),
    84   _scan_cur_or_nonheap(cur), _scan_older(older)
    85 {}
    87 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    88   do {
    89     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    90                                        _scan_older);
    91   } while (!_gch->no_allocs_since_save_marks(_level));
    92 }
    94 DefNewGeneration::FastEvacuateFollowersClosure::
    95 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    96                              DefNewGeneration* gen,
    97                              FastScanClosure* cur, FastScanClosure* older) :
    98   _gch(gch), _level(level), _gen(gen),
    99   _scan_cur_or_nonheap(cur), _scan_older(older)
   100 {}
   102 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   103   do {
   104     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   105                                        _scan_older);
   106   } while (!_gch->no_allocs_since_save_marks(_level));
   107   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   108 }
   110 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   111     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   112 {
   113   assert(_g->level() == 0, "Optimized for youngest generation");
   114   _boundary = _g->reserved().end();
   115 }
   117 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   118 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   120 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   121     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   122 {
   123   assert(_g->level() == 0, "Optimized for youngest generation");
   124   _boundary = _g->reserved().end();
   125 }
   127 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   128 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   130 void KlassScanClosure::do_klass(Klass* klass) {
   131 #ifndef PRODUCT
   132   if (TraceScavenge) {
   133     ResourceMark rm;
   134     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   135                            klass,
   136                            klass->external_name(),
   137                            klass->has_modified_oops() ? "true" : "false");
   138   }
   139 #endif
   141   // If the klass has not been dirtied we know that there's
   142   // no references into  the young gen and we can skip it.
   143   if (klass->has_modified_oops()) {
   144     if (_accumulate_modified_oops) {
   145       klass->accumulate_modified_oops();
   146     }
   148     // Clear this state since we're going to scavenge all the metadata.
   149     klass->clear_modified_oops();
   151     // Tell the closure which Klass is being scanned so that it can be dirtied
   152     // if oops are left pointing into the young gen.
   153     _scavenge_closure->set_scanned_klass(klass);
   155     klass->oops_do(_scavenge_closure);
   157     _scavenge_closure->set_scanned_klass(NULL);
   158   }
   159 }
   161 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   162   _g(g)
   163 {
   164   assert(_g->level() == 0, "Optimized for youngest generation");
   165   _boundary = _g->reserved().end();
   166 }
   168 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   169 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   171 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   172 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   174 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   175                                    KlassRemSet* klass_rem_set)
   176     : _scavenge_closure(scavenge_closure),
   177       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   180 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   181                                    size_t initial_size,
   182                                    int level,
   183                                    const char* policy)
   184   : Generation(rs, initial_size, level),
   185     _promo_failure_drain_in_progress(false),
   186     _should_allocate_from_space(false)
   187 {
   188   MemRegion cmr((HeapWord*)_virtual_space.low(),
   189                 (HeapWord*)_virtual_space.high());
   190   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   192   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   193     _eden_space = new ConcEdenSpace(this);
   194   } else {
   195     _eden_space = new EdenSpace(this);
   196   }
   197   _from_space = new ContiguousSpace();
   198   _to_space   = new ContiguousSpace();
   200   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   201     vm_exit_during_initialization("Could not allocate a new gen space");
   203   // Compute the maximum eden and survivor space sizes. These sizes
   204   // are computed assuming the entire reserved space is committed.
   205   // These values are exported as performance counters.
   206   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   207   uintx size = _virtual_space.reserved_size();
   208   _max_survivor_size = compute_survivor_size(size, alignment);
   209   _max_eden_size = size - (2*_max_survivor_size);
   211   // allocate the performance counters
   213   // Generation counters -- generation 0, 3 subspaces
   214   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   215   _gc_counters = new CollectorCounters(policy, 0);
   217   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   218                                       _gen_counters);
   219   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   220                                       _gen_counters);
   221   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   222                                     _gen_counters);
   224   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   225   update_counters();
   226   _next_gen = NULL;
   227   _tenuring_threshold = MaxTenuringThreshold;
   228   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   229 }
   231 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   232                                                 bool clear_space,
   233                                                 bool mangle_space) {
   234   uintx alignment =
   235     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   237   // If the spaces are being cleared (only done at heap initialization
   238   // currently), the survivor spaces need not be empty.
   239   // Otherwise, no care is taken for used areas in the survivor spaces
   240   // so check.
   241   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   242     "Initialization of the survivor spaces assumes these are empty");
   244   // Compute sizes
   245   uintx size = _virtual_space.committed_size();
   246   uintx survivor_size = compute_survivor_size(size, alignment);
   247   uintx eden_size = size - (2*survivor_size);
   248   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   250   if (eden_size < minimum_eden_size) {
   251     // May happen due to 64Kb rounding, if so adjust eden size back up
   252     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   253     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   254     uintx unaligned_survivor_size =
   255       align_size_down(maximum_survivor_size, alignment);
   256     survivor_size = MAX2(unaligned_survivor_size, alignment);
   257     eden_size = size - (2*survivor_size);
   258     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   259     assert(eden_size >= minimum_eden_size, "just checking");
   260   }
   262   char *eden_start = _virtual_space.low();
   263   char *from_start = eden_start + eden_size;
   264   char *to_start   = from_start + survivor_size;
   265   char *to_end     = to_start   + survivor_size;
   267   assert(to_end == _virtual_space.high(), "just checking");
   268   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   269   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   270   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   272   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   273   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   274   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   276   // A minimum eden size implies that there is a part of eden that
   277   // is being used and that affects the initialization of any
   278   // newly formed eden.
   279   bool live_in_eden = minimum_eden_size > 0;
   281   // If not clearing the spaces, do some checking to verify that
   282   // the space are already mangled.
   283   if (!clear_space) {
   284     // Must check mangling before the spaces are reshaped.  Otherwise,
   285     // the bottom or end of one space may have moved into another
   286     // a failure of the check may not correctly indicate which space
   287     // is not properly mangled.
   288     if (ZapUnusedHeapArea) {
   289       HeapWord* limit = (HeapWord*) _virtual_space.high();
   290       eden()->check_mangled_unused_area(limit);
   291       from()->check_mangled_unused_area(limit);
   292         to()->check_mangled_unused_area(limit);
   293     }
   294   }
   296   // Reset the spaces for their new regions.
   297   eden()->initialize(edenMR,
   298                      clear_space && !live_in_eden,
   299                      SpaceDecorator::Mangle);
   300   // If clear_space and live_in_eden, we will not have cleared any
   301   // portion of eden above its top. This can cause newly
   302   // expanded space not to be mangled if using ZapUnusedHeapArea.
   303   // We explicitly do such mangling here.
   304   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   305     eden()->mangle_unused_area();
   306   }
   307   from()->initialize(fromMR, clear_space, mangle_space);
   308   to()->initialize(toMR, clear_space, mangle_space);
   310   // Set next compaction spaces.
   311   eden()->set_next_compaction_space(from());
   312   // The to-space is normally empty before a compaction so need
   313   // not be considered.  The exception is during promotion
   314   // failure handling when to-space can contain live objects.
   315   from()->set_next_compaction_space(NULL);
   316 }
   318 void DefNewGeneration::swap_spaces() {
   319   ContiguousSpace* s = from();
   320   _from_space        = to();
   321   _to_space          = s;
   322   eden()->set_next_compaction_space(from());
   323   // The to-space is normally empty before a compaction so need
   324   // not be considered.  The exception is during promotion
   325   // failure handling when to-space can contain live objects.
   326   from()->set_next_compaction_space(NULL);
   328   if (UsePerfData) {
   329     CSpaceCounters* c = _from_counters;
   330     _from_counters = _to_counters;
   331     _to_counters = c;
   332   }
   333 }
   335 bool DefNewGeneration::expand(size_t bytes) {
   336   MutexLocker x(ExpandHeap_lock);
   337   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   338   bool success = _virtual_space.expand_by(bytes);
   339   if (success && ZapUnusedHeapArea) {
   340     // Mangle newly committed space immediately because it
   341     // can be done here more simply that after the new
   342     // spaces have been computed.
   343     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   344     MemRegion mangle_region(prev_high, new_high);
   345     SpaceMangler::mangle_region(mangle_region);
   346   }
   348   // Do not attempt an expand-to-the reserve size.  The
   349   // request should properly observe the maximum size of
   350   // the generation so an expand-to-reserve should be
   351   // unnecessary.  Also a second call to expand-to-reserve
   352   // value potentially can cause an undue expansion.
   353   // For example if the first expand fail for unknown reasons,
   354   // but the second succeeds and expands the heap to its maximum
   355   // value.
   356   if (GC_locker::is_active()) {
   357     if (PrintGC && Verbose) {
   358       gclog_or_tty->print_cr("Garbage collection disabled, "
   359         "expanded heap instead");
   360     }
   361   }
   363   return success;
   364 }
   367 void DefNewGeneration::compute_new_size() {
   368   // This is called after a gc that includes the following generation
   369   // (which is required to exist.)  So from-space will normally be empty.
   370   // Note that we check both spaces, since if scavenge failed they revert roles.
   371   // If not we bail out (otherwise we would have to relocate the objects)
   372   if (!from()->is_empty() || !to()->is_empty()) {
   373     return;
   374   }
   376   int next_level = level() + 1;
   377   GenCollectedHeap* gch = GenCollectedHeap::heap();
   378   assert(next_level < gch->_n_gens,
   379          "DefNewGeneration cannot be an oldest gen");
   381   Generation* next_gen = gch->_gens[next_level];
   382   size_t old_size = next_gen->capacity();
   383   size_t new_size_before = _virtual_space.committed_size();
   384   size_t min_new_size = spec()->init_size();
   385   size_t max_new_size = reserved().byte_size();
   386   assert(min_new_size <= new_size_before &&
   387          new_size_before <= max_new_size,
   388          "just checking");
   389   // All space sizes must be multiples of Generation::GenGrain.
   390   size_t alignment = Generation::GenGrain;
   392   // Compute desired new generation size based on NewRatio and
   393   // NewSizeThreadIncrease
   394   size_t desired_new_size = old_size/NewRatio;
   395   int threads_count = Threads::number_of_non_daemon_threads();
   396   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   397   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   399   // Adjust new generation size
   400   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   401   assert(desired_new_size <= max_new_size, "just checking");
   403   bool changed = false;
   404   if (desired_new_size > new_size_before) {
   405     size_t change = desired_new_size - new_size_before;
   406     assert(change % alignment == 0, "just checking");
   407     if (expand(change)) {
   408        changed = true;
   409     }
   410     // If the heap failed to expand to the desired size,
   411     // "changed" will be false.  If the expansion failed
   412     // (and at this point it was expected to succeed),
   413     // ignore the failure (leaving "changed" as false).
   414   }
   415   if (desired_new_size < new_size_before && eden()->is_empty()) {
   416     // bail out of shrinking if objects in eden
   417     size_t change = new_size_before - desired_new_size;
   418     assert(change % alignment == 0, "just checking");
   419     _virtual_space.shrink_by(change);
   420     changed = true;
   421   }
   422   if (changed) {
   423     // The spaces have already been mangled at this point but
   424     // may not have been cleared (set top = bottom) and should be.
   425     // Mangling was done when the heap was being expanded.
   426     compute_space_boundaries(eden()->used(),
   427                              SpaceDecorator::Clear,
   428                              SpaceDecorator::DontMangle);
   429     MemRegion cmr((HeapWord*)_virtual_space.low(),
   430                   (HeapWord*)_virtual_space.high());
   431     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   432     if (Verbose && PrintGC) {
   433       size_t new_size_after  = _virtual_space.committed_size();
   434       size_t eden_size_after = eden()->capacity();
   435       size_t survivor_size_after = from()->capacity();
   436       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   437         SIZE_FORMAT "K [eden="
   438         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   439         new_size_before/K, new_size_after/K,
   440         eden_size_after/K, survivor_size_after/K);
   441       if (WizardMode) {
   442         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   443           thread_increase_size/K, threads_count);
   444       }
   445       gclog_or_tty->cr();
   446     }
   447   }
   448 }
   450 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   451   // $$$ This may be wrong in case of "scavenge failure"?
   452   eden()->object_iterate(cl);
   453 }
   455 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   456   assert(false, "NYI -- are you sure you want to call this?");
   457 }
   460 size_t DefNewGeneration::capacity() const {
   461   return eden()->capacity()
   462        + from()->capacity();  // to() is only used during scavenge
   463 }
   466 size_t DefNewGeneration::used() const {
   467   return eden()->used()
   468        + from()->used();      // to() is only used during scavenge
   469 }
   472 size_t DefNewGeneration::free() const {
   473   return eden()->free()
   474        + from()->free();      // to() is only used during scavenge
   475 }
   477 size_t DefNewGeneration::max_capacity() const {
   478   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   479   const size_t reserved_bytes = reserved().byte_size();
   480   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   481 }
   483 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   484   return eden()->free();
   485 }
   487 size_t DefNewGeneration::capacity_before_gc() const {
   488   return eden()->capacity();
   489 }
   491 size_t DefNewGeneration::contiguous_available() const {
   492   return eden()->free();
   493 }
   496 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   497 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   499 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   500   eden()->object_iterate(blk);
   501   from()->object_iterate(blk);
   502 }
   505 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   506                                      bool usedOnly) {
   507   blk->do_space(eden());
   508   blk->do_space(from());
   509   blk->do_space(to());
   510 }
   512 // The last collection bailed out, we are running out of heap space,
   513 // so we try to allocate the from-space, too.
   514 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   515   HeapWord* result = NULL;
   516   if (Verbose && PrintGCDetails) {
   517     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   518                         "  will_fail: %s"
   519                         "  heap_lock: %s"
   520                         "  free: " SIZE_FORMAT,
   521                         size,
   522                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   523                           "true" : "false",
   524                         Heap_lock->is_locked() ? "locked" : "unlocked",
   525                         from()->free());
   526   }
   527   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   528     if (Heap_lock->owned_by_self() ||
   529         (SafepointSynchronize::is_at_safepoint() &&
   530          Thread::current()->is_VM_thread())) {
   531       // If the Heap_lock is not locked by this thread, this will be called
   532       // again later with the Heap_lock held.
   533       result = from()->allocate(size);
   534     } else if (PrintGC && Verbose) {
   535       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   536     }
   537   } else if (PrintGC && Verbose) {
   538     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   539   }
   540   if (PrintGC && Verbose) {
   541     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   542   }
   543   return result;
   544 }
   546 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   547                                                 bool   is_tlab,
   548                                                 bool   parallel) {
   549   // We don't attempt to expand the young generation (but perhaps we should.)
   550   return allocate(size, is_tlab);
   551 }
   554 void DefNewGeneration::collect(bool   full,
   555                                bool   clear_all_soft_refs,
   556                                size_t size,
   557                                bool   is_tlab) {
   558   assert(full || size > 0, "otherwise we don't want to collect");
   559   GenCollectedHeap* gch = GenCollectedHeap::heap();
   560   _next_gen = gch->next_gen(this);
   561   assert(_next_gen != NULL,
   562     "This must be the youngest gen, and not the only gen");
   564   // If the next generation is too full to accomodate promotion
   565   // from this generation, pass on collection; let the next generation
   566   // do it.
   567   if (!collection_attempt_is_safe()) {
   568     if (Verbose && PrintGCDetails) {
   569       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   570     }
   571     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   572     return;
   573   }
   574   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   576   init_assuming_no_promotion_failure();
   578   TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
   579   // Capture heap used before collection (for printing).
   580   size_t gch_prev_used = gch->used();
   582   SpecializationStats::clear();
   584   // These can be shared for all code paths
   585   IsAliveClosure is_alive(this);
   586   ScanWeakRefClosure scan_weak_ref(this);
   588   age_table()->clear();
   589   to()->clear(SpaceDecorator::Mangle);
   591   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   593   assert(gch->no_allocs_since_save_marks(0),
   594          "save marks have not been newly set.");
   596   // Not very pretty.
   597   CollectorPolicy* cp = gch->collector_policy();
   599   FastScanClosure fsc_with_no_gc_barrier(this, false);
   600   FastScanClosure fsc_with_gc_barrier(this, true);
   602   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   603                                       gch->rem_set()->klass_rem_set());
   605   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   606   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   607                                                   &fsc_with_no_gc_barrier,
   608                                                   &fsc_with_gc_barrier);
   610   assert(gch->no_allocs_since_save_marks(0),
   611          "save marks have not been newly set.");
   613   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   615   gch->gen_process_strong_roots(_level,
   616                                 true,  // Process younger gens, if any,
   617                                        // as strong roots.
   618                                 true,  // activate StrongRootsScope
   619                                 true,  // is scavenging
   620                                 SharedHeap::ScanningOption(so),
   621                                 &fsc_with_no_gc_barrier,
   622                                 true,   // walk *all* scavengable nmethods
   623                                 &fsc_with_gc_barrier,
   624                                 &klass_scan_closure);
   626   // "evacuate followers".
   627   evacuate_followers.do_void();
   629   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   630   ReferenceProcessor* rp = ref_processor();
   631   rp->setup_policy(clear_all_soft_refs);
   632   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   633                                     NULL);
   634   if (!promotion_failed()) {
   635     // Swap the survivor spaces.
   636     eden()->clear(SpaceDecorator::Mangle);
   637     from()->clear(SpaceDecorator::Mangle);
   638     if (ZapUnusedHeapArea) {
   639       // This is now done here because of the piece-meal mangling which
   640       // can check for valid mangling at intermediate points in the
   641       // collection(s).  When a minor collection fails to collect
   642       // sufficient space resizing of the young generation can occur
   643       // an redistribute the spaces in the young generation.  Mangle
   644       // here so that unzapped regions don't get distributed to
   645       // other spaces.
   646       to()->mangle_unused_area();
   647     }
   648     swap_spaces();
   650     assert(to()->is_empty(), "to space should be empty now");
   652     // Set the desired survivor size to half the real survivor space
   653     _tenuring_threshold =
   654       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   656     // A successful scavenge should restart the GC time limit count which is
   657     // for full GC's.
   658     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   659     size_policy->reset_gc_overhead_limit_count();
   660     if (PrintGC && !PrintGCDetails) {
   661       gch->print_heap_change(gch_prev_used);
   662     }
   663     assert(!gch->incremental_collection_failed(), "Should be clear");
   664   } else {
   665     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   666     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   668     remove_forwarding_pointers();
   669     if (PrintGCDetails) {
   670       gclog_or_tty->print(" (promotion failed) ");
   671     }
   672     // Add to-space to the list of space to compact
   673     // when a promotion failure has occurred.  In that
   674     // case there can be live objects in to-space
   675     // as a result of a partial evacuation of eden
   676     // and from-space.
   677     swap_spaces();   // For uniformity wrt ParNewGeneration.
   678     from()->set_next_compaction_space(to());
   679     gch->set_incremental_collection_failed();
   681     // Inform the next generation that a promotion failure occurred.
   682     _next_gen->promotion_failure_occurred();
   684     // Reset the PromotionFailureALot counters.
   685     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   686   }
   687   // set new iteration safe limit for the survivor spaces
   688   from()->set_concurrent_iteration_safe_limit(from()->top());
   689   to()->set_concurrent_iteration_safe_limit(to()->top());
   690   SpecializationStats::print();
   692   // We need to use a monotonically non-deccreasing time in ms
   693   // or we will see time-warp warnings and os::javaTimeMillis()
   694   // does not guarantee monotonicity.
   695   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   696   update_time_of_last_gc(now);
   697 }
   699 class RemoveForwardPointerClosure: public ObjectClosure {
   700 public:
   701   void do_object(oop obj) {
   702     obj->init_mark();
   703   }
   704 };
   706 void DefNewGeneration::init_assuming_no_promotion_failure() {
   707   _promotion_failed = false;
   708   from()->set_next_compaction_space(NULL);
   709 }
   711 void DefNewGeneration::remove_forwarding_pointers() {
   712   RemoveForwardPointerClosure rspc;
   713   eden()->object_iterate(&rspc);
   714   from()->object_iterate(&rspc);
   716   // Now restore saved marks, if any.
   717   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   718          "should be the same");
   719   while (!_objs_with_preserved_marks.is_empty()) {
   720     oop obj   = _objs_with_preserved_marks.pop();
   721     markOop m = _preserved_marks_of_objs.pop();
   722     obj->set_mark(m);
   723   }
   724   _objs_with_preserved_marks.clear(true);
   725   _preserved_marks_of_objs.clear(true);
   726 }
   728 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   729   assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
   730          "Oversaving!");
   731   _objs_with_preserved_marks.push(obj);
   732   _preserved_marks_of_objs.push(m);
   733 }
   735 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   736   if (m->must_be_preserved_for_promotion_failure(obj)) {
   737     preserve_mark(obj, m);
   738   }
   739 }
   741 void DefNewGeneration::handle_promotion_failure(oop old) {
   742   if (PrintPromotionFailure && !_promotion_failed) {
   743     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   744                         old->size());
   745   }
   746   _promotion_failed = true;
   747   preserve_mark_if_necessary(old, old->mark());
   748   // forward to self
   749   old->forward_to(old);
   751   _promo_failure_scan_stack.push(old);
   753   if (!_promo_failure_drain_in_progress) {
   754     // prevent recursion in copy_to_survivor_space()
   755     _promo_failure_drain_in_progress = true;
   756     drain_promo_failure_scan_stack();
   757     _promo_failure_drain_in_progress = false;
   758   }
   759 }
   761 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   762   assert(is_in_reserved(old) && !old->is_forwarded(),
   763          "shouldn't be scavenging this oop");
   764   size_t s = old->size();
   765   oop obj = NULL;
   767   // Try allocating obj in to-space (unless too old)
   768   if (old->age() < tenuring_threshold()) {
   769     obj = (oop) to()->allocate(s);
   770   }
   772   // Otherwise try allocating obj tenured
   773   if (obj == NULL) {
   774     obj = _next_gen->promote(old, s);
   775     if (obj == NULL) {
   776       handle_promotion_failure(old);
   777       return old;
   778     }
   779   } else {
   780     // Prefetch beyond obj
   781     const intx interval = PrefetchCopyIntervalInBytes;
   782     Prefetch::write(obj, interval);
   784     // Copy obj
   785     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   787     // Increment age if obj still in new generation
   788     obj->incr_age();
   789     age_table()->add(obj, s);
   790   }
   792   // Done, insert forward pointer to obj in this header
   793   old->forward_to(obj);
   795   return obj;
   796 }
   798 void DefNewGeneration::drain_promo_failure_scan_stack() {
   799   while (!_promo_failure_scan_stack.is_empty()) {
   800      oop obj = _promo_failure_scan_stack.pop();
   801      obj->oop_iterate(_promo_failure_scan_stack_closure);
   802   }
   803 }
   805 void DefNewGeneration::save_marks() {
   806   eden()->set_saved_mark();
   807   to()->set_saved_mark();
   808   from()->set_saved_mark();
   809 }
   812 void DefNewGeneration::reset_saved_marks() {
   813   eden()->reset_saved_mark();
   814   to()->reset_saved_mark();
   815   from()->reset_saved_mark();
   816 }
   819 bool DefNewGeneration::no_allocs_since_save_marks() {
   820   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   821   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   822   return to()->saved_mark_at_top();
   823 }
   825 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   826                                                                 \
   827 void DefNewGeneration::                                         \
   828 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   829   cl->set_generation(this);                                     \
   830   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   831   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   832   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   833   cl->reset_generation();                                       \
   834   save_marks();                                                 \
   835 }
   837 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   839 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   841 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   842                                          size_t max_alloc_words) {
   843   if (requestor == this || _promotion_failed) return;
   844   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   846   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   847   if (to_space->top() > to_space->bottom()) {
   848     trace("to_space not empty when contribute_scratch called");
   849   }
   850   */
   852   ContiguousSpace* to_space = to();
   853   assert(to_space->end() >= to_space->top(), "pointers out of order");
   854   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   855   if (free_words >= MinFreeScratchWords) {
   856     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   857     sb->num_words = free_words;
   858     sb->next = list;
   859     list = sb;
   860   }
   861 }
   863 void DefNewGeneration::reset_scratch() {
   864   // If contributing scratch in to_space, mangle all of
   865   // to_space if ZapUnusedHeapArea.  This is needed because
   866   // top is not maintained while using to-space as scratch.
   867   if (ZapUnusedHeapArea) {
   868     to()->mangle_unused_area_complete();
   869   }
   870 }
   872 bool DefNewGeneration::collection_attempt_is_safe() {
   873   if (!to()->is_empty()) {
   874     if (Verbose && PrintGCDetails) {
   875       gclog_or_tty->print(" :: to is not empty :: ");
   876     }
   877     return false;
   878   }
   879   if (_next_gen == NULL) {
   880     GenCollectedHeap* gch = GenCollectedHeap::heap();
   881     _next_gen = gch->next_gen(this);
   882     assert(_next_gen != NULL,
   883            "This must be the youngest gen, and not the only gen");
   884   }
   885   return _next_gen->promotion_attempt_is_safe(used());
   886 }
   888 void DefNewGeneration::gc_epilogue(bool full) {
   889   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   891   assert(!GC_locker::is_active(), "We should not be executing here");
   892   // Check if the heap is approaching full after a collection has
   893   // been done.  Generally the young generation is empty at
   894   // a minimum at the end of a collection.  If it is not, then
   895   // the heap is approaching full.
   896   GenCollectedHeap* gch = GenCollectedHeap::heap();
   897   if (full) {
   898     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   899     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   900       if (Verbose && PrintGCDetails) {
   901         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   902                             GCCause::to_string(gch->gc_cause()));
   903       }
   904       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   905       set_should_allocate_from_space(); // we seem to be running out of space
   906     } else {
   907       if (Verbose && PrintGCDetails) {
   908         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   909                             GCCause::to_string(gch->gc_cause()));
   910       }
   911       gch->clear_incremental_collection_failed(); // We just did a full collection
   912       clear_should_allocate_from_space(); // if set
   913     }
   914   } else {
   915 #ifdef ASSERT
   916     // It is possible that incremental_collection_failed() == true
   917     // here, because an attempted scavenge did not succeed. The policy
   918     // is normally expected to cause a full collection which should
   919     // clear that condition, so we should not be here twice in a row
   920     // with incremental_collection_failed() == true without having done
   921     // a full collection in between.
   922     if (!seen_incremental_collection_failed &&
   923         gch->incremental_collection_failed()) {
   924       if (Verbose && PrintGCDetails) {
   925         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   926                             GCCause::to_string(gch->gc_cause()));
   927       }
   928       seen_incremental_collection_failed = true;
   929     } else if (seen_incremental_collection_failed) {
   930       if (Verbose && PrintGCDetails) {
   931         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   932                             GCCause::to_string(gch->gc_cause()));
   933       }
   934       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   935              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   936              !gch->incremental_collection_failed(),
   937              "Twice in a row");
   938       seen_incremental_collection_failed = false;
   939     }
   940 #endif // ASSERT
   941   }
   943   if (ZapUnusedHeapArea) {
   944     eden()->check_mangled_unused_area_complete();
   945     from()->check_mangled_unused_area_complete();
   946     to()->check_mangled_unused_area_complete();
   947   }
   949   if (!CleanChunkPoolAsync) {
   950     Chunk::clean_chunk_pool();
   951   }
   953   // update the generation and space performance counters
   954   update_counters();
   955   gch->collector_policy()->counters()->update_counters();
   956 }
   958 void DefNewGeneration::record_spaces_top() {
   959   assert(ZapUnusedHeapArea, "Not mangling unused space");
   960   eden()->set_top_for_allocations();
   961   to()->set_top_for_allocations();
   962   from()->set_top_for_allocations();
   963 }
   966 void DefNewGeneration::update_counters() {
   967   if (UsePerfData) {
   968     _eden_counters->update_all();
   969     _from_counters->update_all();
   970     _to_counters->update_all();
   971     _gen_counters->update_all();
   972   }
   973 }
   975 void DefNewGeneration::verify() {
   976   eden()->verify();
   977   from()->verify();
   978     to()->verify();
   979 }
   981 void DefNewGeneration::print_on(outputStream* st) const {
   982   Generation::print_on(st);
   983   st->print("  eden");
   984   eden()->print_on(st);
   985   st->print("  from");
   986   from()->print_on(st);
   987   st->print("  to  ");
   988   to()->print_on(st);
   989 }
   992 const char* DefNewGeneration::name() const {
   993   return "def new generation";
   994 }
   996 // Moved from inline file as they are not called inline
   997 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
   998   return eden();
   999 }
  1001 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1002                                      bool is_tlab) {
  1003   // This is the slow-path allocation for the DefNewGeneration.
  1004   // Most allocations are fast-path in compiled code.
  1005   // We try to allocate from the eden.  If that works, we are happy.
  1006   // Note that since DefNewGeneration supports lock-free allocation, we
  1007   // have to use it here, as well.
  1008   HeapWord* result = eden()->par_allocate(word_size);
  1009   if (result != NULL) {
  1010     return result;
  1012   do {
  1013     HeapWord* old_limit = eden()->soft_end();
  1014     if (old_limit < eden()->end()) {
  1015       // Tell the next generation we reached a limit.
  1016       HeapWord* new_limit =
  1017         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1018       if (new_limit != NULL) {
  1019         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1020       } else {
  1021         assert(eden()->soft_end() == eden()->end(),
  1022                "invalid state after allocation_limit_reached returned null");
  1024     } else {
  1025       // The allocation failed and the soft limit is equal to the hard limit,
  1026       // there are no reasons to do an attempt to allocate
  1027       assert(old_limit == eden()->end(), "sanity check");
  1028       break;
  1030     // Try to allocate until succeeded or the soft limit can't be adjusted
  1031     result = eden()->par_allocate(word_size);
  1032   } while (result == NULL);
  1034   // If the eden is full and the last collection bailed out, we are running
  1035   // out of heap space, and we try to allocate the from-space, too.
  1036   // allocate_from_space can't be inlined because that would introduce a
  1037   // circular dependency at compile time.
  1038   if (result == NULL) {
  1039     result = allocate_from_space(word_size);
  1041   return result;
  1044 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1045                                          bool is_tlab) {
  1046   return eden()->par_allocate(word_size);
  1049 void DefNewGeneration::gc_prologue(bool full) {
  1050   // Ensure that _end and _soft_end are the same in eden space.
  1051   eden()->set_soft_end(eden()->end());
  1054 size_t DefNewGeneration::tlab_capacity() const {
  1055   return eden()->capacity();
  1058 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1059   return unsafe_max_alloc_nogc();

mercurial