src/share/vm/opto/loopnode.cpp

Wed, 03 Jun 2015 14:22:57 +0200

author
roland
date
Wed, 03 Jun 2015 14:22:57 +0200
changeset 7859
c1c199dde5c9
parent 7590
0a5d68482373
child 7994
04ff2f6cd0eb
child 8068
c1091733abe6
permissions
-rw-r--r--

8077504: Unsafe load can loose control dependency and cause crash
Summary: Node::depends_only_on_test() should return false for Unsafe loads
Reviewed-by: kvn, adinn

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if (n->in(0) && !n->is_expensive()) {
    92     early = n->in(0);
    93     if (!early->is_CFG()) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for (; i < n->req(); i++) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if (c_d > e_d) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if (c_d == e_d &&    // Same depth?
   111                early != cin) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while (1) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if (n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d)
   121           break;                // early is deeper; keep him
   122         if (n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   if (n->is_expensive()) {
   136     assert(n->in(0), "should have control input");
   137     early = get_early_ctrl_for_expensive(n, early);
   138   }
   140   return early;
   141 }
   143 //------------------------------get_early_ctrl_for_expensive---------------------------------
   144 // Move node up the dominator tree as high as legal while still beneficial
   145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
   146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
   147   assert(OptimizeExpensiveOps, "optimization off?");
   149   Node* ctl = n->in(0);
   150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
   151   uint min_dom_depth = dom_depth(earliest);
   152 #ifdef ASSERT
   153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
   154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
   155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
   156   }
   157 #endif
   158   if (dom_depth(ctl) < min_dom_depth) {
   159     return earliest;
   160   }
   162   while (1) {
   163     Node *next = ctl;
   164     // Moving the node out of a loop on the projection of a If
   165     // confuses loop predication. So once we hit a Loop in a If branch
   166     // that doesn't branch to an UNC, we stop. The code that process
   167     // expensive nodes will notice the loop and skip over it to try to
   168     // move the node further up.
   169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
   170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   171         break;
   172       }
   173       next = idom(ctl->in(1)->in(0));
   174     } else if (ctl->is_Proj()) {
   175       // We only move it up along a projection if the projection is
   176       // the single control projection for its parent: same code path,
   177       // if it's a If with UNC or fallthrough of a call.
   178       Node* parent_ctl = ctl->in(0);
   179       if (parent_ctl == NULL) {
   180         break;
   181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
   182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
   183       } else if (parent_ctl->is_If()) {
   184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   185           break;
   186         }
   187         assert(idom(ctl) == parent_ctl, "strange");
   188         next = idom(parent_ctl);
   189       } else if (ctl->is_CatchProj()) {
   190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
   191           break;
   192         }
   193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
   194         next = parent_ctl->in(0)->in(0)->in(0);
   195       } else {
   196         // Check if parent control has a single projection (this
   197         // control is the only possible successor of the parent
   198         // control). If so, we can try to move the node above the
   199         // parent control.
   200         int nb_ctl_proj = 0;
   201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
   202           Node *p = parent_ctl->fast_out(i);
   203           if (p->is_Proj() && p->is_CFG()) {
   204             nb_ctl_proj++;
   205             if (nb_ctl_proj > 1) {
   206               break;
   207             }
   208           }
   209         }
   211         if (nb_ctl_proj > 1) {
   212           break;
   213         }
   214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
   215         assert(idom(ctl) == parent_ctl, "strange");
   216         next = idom(parent_ctl);
   217       }
   218     } else {
   219       next = idom(ctl);
   220     }
   221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
   222       break;
   223     }
   224     ctl = next;
   225   }
   227   if (ctl != n->in(0)) {
   228     _igvn.hash_delete(n);
   229     n->set_req(0, ctl);
   230     _igvn.hash_insert(n);
   231   }
   233   return ctl;
   234 }
   237 //------------------------------set_early_ctrl---------------------------------
   238 // Set earliest legal control
   239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   240   Node *early = get_early_ctrl(n);
   242   // Record earliest legal location
   243   set_ctrl(n, early);
   244 }
   246 //------------------------------set_subtree_ctrl-------------------------------
   247 // set missing _ctrl entries on new nodes
   248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   249   // Already set?  Get out.
   250   if( _nodes[n->_idx] ) return;
   251   // Recursively set _nodes array to indicate where the Node goes
   252   uint i;
   253   for( i = 0; i < n->req(); ++i ) {
   254     Node *m = n->in(i);
   255     if( m && m != C->root() )
   256       set_subtree_ctrl( m );
   257   }
   259   // Fixup self
   260   set_early_ctrl( n );
   261 }
   263 //------------------------------is_counted_loop--------------------------------
   264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   265   PhaseGVN *gvn = &_igvn;
   267   // Counted loop head must be a good RegionNode with only 3 not NULL
   268   // control input edges: Self, Entry, LoopBack.
   269   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
   270     return false;
   271   }
   272   Node *init_control = x->in(LoopNode::EntryControl);
   273   Node *back_control = x->in(LoopNode::LoopBackControl);
   274   if (init_control == NULL || back_control == NULL)    // Partially dead
   275     return false;
   276   // Must also check for TOP when looking for a dead loop
   277   if (init_control->is_top() || back_control->is_top())
   278     return false;
   280   // Allow funny placement of Safepoint
   281   if (back_control->Opcode() == Op_SafePoint)
   282     back_control = back_control->in(TypeFunc::Control);
   284   // Controlling test for loop
   285   Node *iftrue = back_control;
   286   uint iftrue_op = iftrue->Opcode();
   287   if (iftrue_op != Op_IfTrue &&
   288       iftrue_op != Op_IfFalse)
   289     // I have a weird back-control.  Probably the loop-exit test is in
   290     // the middle of the loop and I am looking at some trailing control-flow
   291     // merge point.  To fix this I would have to partially peel the loop.
   292     return false; // Obscure back-control
   294   // Get boolean guarding loop-back test
   295   Node *iff = iftrue->in(0);
   296   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   297     return false;
   298   BoolNode *test = iff->in(1)->as_Bool();
   299   BoolTest::mask bt = test->_test._test;
   300   float cl_prob = iff->as_If()->_prob;
   301   if (iftrue_op == Op_IfFalse) {
   302     bt = BoolTest(bt).negate();
   303     cl_prob = 1.0 - cl_prob;
   304   }
   305   // Get backedge compare
   306   Node *cmp = test->in(1);
   307   int cmp_op = cmp->Opcode();
   308   if (cmp_op != Op_CmpI)
   309     return false;                // Avoid pointer & float compares
   311   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   312   Node *incr  = cmp->in(1);
   313   Node *limit = cmp->in(2);
   315   // ---------
   316   // need 'loop()' test to tell if limit is loop invariant
   317   // ---------
   319   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   320     Node *tmp = incr;            // Then reverse order into the CmpI
   321     incr = limit;
   322     limit = tmp;
   323     bt = BoolTest(bt).commute(); // And commute the exit test
   324   }
   325   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   326     return false;
   327   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   328     return false;
   330   Node* phi_incr = NULL;
   331   // Trip-counter increment must be commutative & associative.
   332   if (incr->is_Phi()) {
   333     if (incr->as_Phi()->region() != x || incr->req() != 3)
   334       return false; // Not simple trip counter expression
   335     phi_incr = incr;
   336     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   337     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   338       return false;
   339   }
   341   Node* trunc1 = NULL;
   342   Node* trunc2 = NULL;
   343   const TypeInt* iv_trunc_t = NULL;
   344   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   345     return false; // Funny increment opcode
   346   }
   347   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   349   // Get merge point
   350   Node *xphi = incr->in(1);
   351   Node *stride = incr->in(2);
   352   if (!stride->is_Con()) {     // Oops, swap these
   353     if (!xphi->is_Con())       // Is the other guy a constant?
   354       return false;             // Nope, unknown stride, bail out
   355     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   356     xphi = stride;
   357     stride = tmp;
   358   }
   359   // Stride must be constant
   360   int stride_con = stride->get_int();
   361   if (stride_con == 0)
   362     return false; // missed some peephole opt
   364   if (!xphi->is_Phi())
   365     return false; // Too much math on the trip counter
   366   if (phi_incr != NULL && phi_incr != xphi)
   367     return false;
   368   PhiNode *phi = xphi->as_Phi();
   370   // Phi must be of loop header; backedge must wrap to increment
   371   if (phi->region() != x)
   372     return false;
   373   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   374       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   375     return false;
   376   }
   377   Node *init_trip = phi->in(LoopNode::EntryControl);
   379   // If iv trunc type is smaller than int, check for possible wrap.
   380   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   381     assert(trunc1 != NULL, "must have found some truncation");
   383     // Get a better type for the phi (filtered thru if's)
   384     const TypeInt* phi_ft = filtered_type(phi);
   386     // Can iv take on a value that will wrap?
   387     //
   388     // Ensure iv's limit is not within "stride" of the wrap value.
   389     //
   390     // Example for "short" type
   391     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   392     //    If the stride is +10, then the last value of the induction
   393     //    variable before the increment (phi_ft->_hi) must be
   394     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   395     //    ensure no truncation occurs after the increment.
   397     if (stride_con > 0) {
   398       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   399           iv_trunc_t->_lo > phi_ft->_lo) {
   400         return false;  // truncation may occur
   401       }
   402     } else if (stride_con < 0) {
   403       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   404           iv_trunc_t->_hi < phi_ft->_hi) {
   405         return false;  // truncation may occur
   406       }
   407     }
   408     // No possibility of wrap so truncation can be discarded
   409     // Promote iv type to Int
   410   } else {
   411     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   412   }
   414   // If the condition is inverted and we will be rolling
   415   // through MININT to MAXINT, then bail out.
   416   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   417       // Odd stride
   418       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   419       // Count down loop rolls through MAXINT
   420       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   421       // Count up loop rolls through MININT
   422       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   423     return false; // Bail out
   424   }
   426   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   427   const TypeInt* limit_t = gvn->type(limit)->is_int();
   429   if (stride_con > 0) {
   430     jlong init_p = (jlong)init_t->_lo + stride_con;
   431     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
   432       return false; // cyclic loop or this loop trips only once
   433   } else {
   434     jlong init_p = (jlong)init_t->_hi + stride_con;
   435     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
   436       return false; // cyclic loop or this loop trips only once
   437   }
   439   if (phi_incr != NULL) {
   440     // check if there is a possiblity of IV overflowing after the first increment
   441     if (stride_con > 0) {
   442       if (init_t->_hi > max_jint - stride_con) {
   443         return false;
   444       }
   445     } else {
   446       if (init_t->_lo < min_jint - stride_con) {
   447         return false;
   448       }
   449     }
   450   }
   452   // =================================================
   453   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   454   //
   455   assert(x->Opcode() == Op_Loop, "regular loops only");
   456   C->print_method(PHASE_BEFORE_CLOOPS, 3);
   458   Node *hook = new (C) Node(6);
   460   if (LoopLimitCheck) {
   462   // ===================================================
   463   // Generate loop limit check to avoid integer overflow
   464   // in cases like next (cyclic loops):
   465   //
   466   // for (i=0; i <= max_jint; i++) {}
   467   // for (i=0; i <  max_jint; i+=2) {}
   468   //
   469   //
   470   // Limit check predicate depends on the loop test:
   471   //
   472   // for(;i != limit; i++)       --> limit <= (max_jint)
   473   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   474   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   475   //
   477   // Check if limit is excluded to do more precise int overflow check.
   478   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   479   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   481   // If compare points directly to the phi we need to adjust
   482   // the compare so that it points to the incr. Limit have
   483   // to be adjusted to keep trip count the same and the
   484   // adjusted limit should be checked for int overflow.
   485   if (phi_incr != NULL) {
   486     stride_m  += stride_con;
   487   }
   489   if (limit->is_Con()) {
   490     int limit_con = limit->get_int();
   491     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   492         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   493       // Bailout: it could be integer overflow.
   494       return false;
   495     }
   496   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   497              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   498       // Limit's type may satisfy the condition, for example,
   499       // when it is an array length.
   500   } else {
   501     // Generate loop's limit check.
   502     // Loop limit check predicate should be near the loop.
   503     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   504     if (!limit_check_proj) {
   505       // The limit check predicate is not generated if this method trapped here before.
   506 #ifdef ASSERT
   507       if (TraceLoopLimitCheck) {
   508         tty->print("missing loop limit check:");
   509         loop->dump_head();
   510         x->dump(1);
   511       }
   512 #endif
   513       return false;
   514     }
   516     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   517     Node* cmp_limit;
   518     Node* bol;
   520     if (stride_con > 0) {
   521       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   522       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
   523     } else {
   524       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   525       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
   526     }
   527     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   528     bol = _igvn.register_new_node_with_optimizer(bol);
   529     set_subtree_ctrl(bol);
   531     // Replace condition in original predicate but preserve Opaque node
   532     // so that previous predicates could be found.
   533     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   534            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   535     Node* opq = check_iff->in(1)->in(1);
   536     _igvn.hash_delete(opq);
   537     opq->set_req(1, bol);
   538     // Update ctrl.
   539     set_ctrl(opq, check_iff->in(0));
   540     set_ctrl(check_iff->in(1), check_iff->in(0));
   542 #ifndef PRODUCT
   543     // report that the loop predication has been actually performed
   544     // for this loop
   545     if (TraceLoopLimitCheck) {
   546       tty->print_cr("Counted Loop Limit Check generated:");
   547       debug_only( bol->dump(2); )
   548     }
   549 #endif
   550   }
   552   if (phi_incr != NULL) {
   553     // If compare points directly to the phi we need to adjust
   554     // the compare so that it points to the incr. Limit have
   555     // to be adjusted to keep trip count the same and we
   556     // should avoid int overflow.
   557     //
   558     //   i = init; do {} while(i++ < limit);
   559     // is converted to
   560     //   i = init; do {} while(++i < limit+1);
   561     //
   562     limit = gvn->transform(new (C) AddINode(limit, stride));
   563   }
   565   // Now we need to canonicalize loop condition.
   566   if (bt == BoolTest::ne) {
   567     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   568     // 'ne' can be replaced with 'lt' only when init < limit.
   569     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   570       bt = BoolTest::lt;
   571     // 'ne' can be replaced with 'gt' only when init > limit.
   572     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   573       bt = BoolTest::gt;
   574   }
   576   if (incl_limit) {
   577     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   578     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   579     //
   580     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   581     limit = gvn->transform(new (C) AddINode(limit, one));
   582     if (bt == BoolTest::le)
   583       bt = BoolTest::lt;
   584     else if (bt == BoolTest::ge)
   585       bt = BoolTest::gt;
   586     else
   587       ShouldNotReachHere();
   588   }
   589   set_subtree_ctrl( limit );
   591   } else { // LoopLimitCheck
   593   // If compare points to incr, we are ok.  Otherwise the compare
   594   // can directly point to the phi; in this case adjust the compare so that
   595   // it points to the incr by adjusting the limit.
   596   if (cmp->in(1) == phi || cmp->in(2) == phi)
   597     limit = gvn->transform(new (C) AddINode(limit,stride));
   599   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   600   // Final value for iterator should be: trip_count * stride + init_trip.
   601   Node *one_p = gvn->intcon( 1);
   602   Node *one_m = gvn->intcon(-1);
   604   Node *trip_count = NULL;
   605   switch( bt ) {
   606   case BoolTest::eq:
   607     ShouldNotReachHere();
   608   case BoolTest::ne:            // Ahh, the case we desire
   609     if (stride_con == 1)
   610       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
   611     else if (stride_con == -1)
   612       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
   613     else
   614       ShouldNotReachHere();
   615     set_subtree_ctrl(trip_count);
   616     //_loop.map(trip_count->_idx,loop(limit));
   617     break;
   618   case BoolTest::le:            // Maybe convert to '<' case
   619     limit = gvn->transform(new (C) AddINode(limit,one_p));
   620     set_subtree_ctrl( limit );
   621     hook->init_req(4, limit);
   623     bt = BoolTest::lt;
   624     // Make the new limit be in the same loop nest as the old limit
   625     //_loop.map(limit->_idx,limit_loop);
   626     // Fall into next case
   627   case BoolTest::lt: {          // Maybe convert to '!=' case
   628     if (stride_con < 0) // Count down loop rolls through MAXINT
   629       ShouldNotReachHere();
   630     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   631     set_subtree_ctrl( range );
   632     hook->init_req(0, range);
   634     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   635     set_subtree_ctrl( bias );
   636     hook->init_req(1, bias);
   638     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
   639     set_subtree_ctrl( bias1 );
   640     hook->init_req(2, bias1);
   642     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   643     set_subtree_ctrl( trip_count );
   644     hook->init_req(3, trip_count);
   645     break;
   646   }
   648   case BoolTest::ge:            // Maybe convert to '>' case
   649     limit = gvn->transform(new (C) AddINode(limit,one_m));
   650     set_subtree_ctrl( limit );
   651     hook->init_req(4 ,limit);
   653     bt = BoolTest::gt;
   654     // Make the new limit be in the same loop nest as the old limit
   655     //_loop.map(limit->_idx,limit_loop);
   656     // Fall into next case
   657   case BoolTest::gt: {          // Maybe convert to '!=' case
   658     if (stride_con > 0) // count up loop rolls through MININT
   659       ShouldNotReachHere();
   660     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   661     set_subtree_ctrl( range );
   662     hook->init_req(0, range);
   664     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   665     set_subtree_ctrl( bias );
   666     hook->init_req(1, bias);
   668     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
   669     set_subtree_ctrl( bias1 );
   670     hook->init_req(2, bias1);
   672     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   673     set_subtree_ctrl( trip_count );
   674     hook->init_req(3, trip_count);
   675     break;
   676   }
   677   } // switch( bt )
   679   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
   680   set_subtree_ctrl( span );
   681   hook->init_req(5, span);
   683   limit = gvn->transform(new (C) AddINode(span,init_trip));
   684   set_subtree_ctrl( limit );
   686   } // LoopLimitCheck
   688   // Check for SafePoint on backedge and remove
   689   Node *sfpt = x->in(LoopNode::LoopBackControl);
   690   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   691     lazy_replace( sfpt, iftrue );
   692     if (loop->_safepts != NULL) {
   693       loop->_safepts->yank(sfpt);
   694     }
   695     loop->_tail = iftrue;
   696   }
   698   // Build a canonical trip test.
   699   // Clone code, as old values may be in use.
   700   incr = incr->clone();
   701   incr->set_req(1,phi);
   702   incr->set_req(2,stride);
   703   incr = _igvn.register_new_node_with_optimizer(incr);
   704   set_early_ctrl( incr );
   705   _igvn.hash_delete(phi);
   706   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   708   // If phi type is more restrictive than Int, raise to
   709   // Int to prevent (almost) infinite recursion in igvn
   710   // which can only handle integer types for constants or minint..maxint.
   711   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   712     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   713     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   714     nphi = _igvn.register_new_node_with_optimizer(nphi);
   715     set_ctrl(nphi, get_ctrl(phi));
   716     _igvn.replace_node(phi, nphi);
   717     phi = nphi->as_Phi();
   718   }
   719   cmp = cmp->clone();
   720   cmp->set_req(1,incr);
   721   cmp->set_req(2,limit);
   722   cmp = _igvn.register_new_node_with_optimizer(cmp);
   723   set_ctrl(cmp, iff->in(0));
   725   test = test->clone()->as_Bool();
   726   (*(BoolTest*)&test->_test)._test = bt;
   727   test->set_req(1,cmp);
   728   _igvn.register_new_node_with_optimizer(test);
   729   set_ctrl(test, iff->in(0));
   731   // Replace the old IfNode with a new LoopEndNode
   732   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   733   IfNode *le = lex->as_If();
   734   uint dd = dom_depth(iff);
   735   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   736   set_loop(le, loop);
   738   // Get the loop-exit control
   739   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   741   // Need to swap loop-exit and loop-back control?
   742   if (iftrue_op == Op_IfFalse) {
   743     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
   744     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
   746     loop->_tail = back_control = ift2;
   747     set_loop(ift2, loop);
   748     set_loop(iff2, get_loop(iffalse));
   750     // Lazy update of 'get_ctrl' mechanism.
   751     lazy_replace_proj( iffalse, iff2 );
   752     lazy_replace_proj( iftrue,  ift2 );
   754     // Swap names
   755     iffalse = iff2;
   756     iftrue  = ift2;
   757   } else {
   758     _igvn.hash_delete(iffalse);
   759     _igvn.hash_delete(iftrue);
   760     iffalse->set_req_X( 0, le, &_igvn );
   761     iftrue ->set_req_X( 0, le, &_igvn );
   762   }
   764   set_idom(iftrue,  le, dd+1);
   765   set_idom(iffalse, le, dd+1);
   766   assert(iff->outcnt() == 0, "should be dead now");
   767   lazy_replace( iff, le ); // fix 'get_ctrl'
   769   // Now setup a new CountedLoopNode to replace the existing LoopNode
   770   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
   771   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   772   // The following assert is approximately true, and defines the intention
   773   // of can_be_counted_loop.  It fails, however, because phase->type
   774   // is not yet initialized for this loop and its parts.
   775   //assert(l->can_be_counted_loop(this), "sanity");
   776   _igvn.register_new_node_with_optimizer(l);
   777   set_loop(l, loop);
   778   loop->_head = l;
   779   // Fix all data nodes placed at the old loop head.
   780   // Uses the lazy-update mechanism of 'get_ctrl'.
   781   lazy_replace( x, l );
   782   set_idom(l, init_control, dom_depth(x));
   784   // Check for immediately preceding SafePoint and remove
   785   Node *sfpt2 = le->in(0);
   786   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
   787     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   788     if (loop->_safepts != NULL) {
   789       loop->_safepts->yank(sfpt2);
   790     }
   791   }
   793   // Free up intermediate goo
   794   _igvn.remove_dead_node(hook);
   796 #ifdef ASSERT
   797   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   798   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   799 #endif
   800 #ifndef PRODUCT
   801   if (TraceLoopOpts) {
   802     tty->print("Counted      ");
   803     loop->dump_head();
   804   }
   805 #endif
   807   C->print_method(PHASE_AFTER_CLOOPS, 3);
   809   return true;
   810 }
   812 //----------------------exact_limit-------------------------------------------
   813 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   814   assert(loop->_head->is_CountedLoop(), "");
   815   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   816   assert(cl->is_valid_counted_loop(), "");
   818   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   819       cl->limit()->Opcode() == Op_LoopLimit) {
   820     // Old code has exact limit (it could be incorrect in case of int overflow).
   821     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   822     return cl->limit();
   823   }
   824   Node *limit = NULL;
   825 #ifdef ASSERT
   826   BoolTest::mask bt = cl->loopexit()->test_trip();
   827   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   828 #endif
   829   if (cl->has_exact_trip_count()) {
   830     // Simple case: loop has constant boundaries.
   831     // Use jlongs to avoid integer overflow.
   832     int stride_con = cl->stride_con();
   833     jlong  init_con = cl->init_trip()->get_int();
   834     jlong limit_con = cl->limit()->get_int();
   835     julong trip_cnt = cl->trip_count();
   836     jlong final_con = init_con + trip_cnt*stride_con;
   837     int final_int = (int)final_con;
   838     // The final value should be in integer range since the loop
   839     // is counted and the limit was checked for overflow.
   840     assert(final_con == (jlong)final_int, "final value should be integer");
   841     limit = _igvn.intcon(final_int);
   842   } else {
   843     // Create new LoopLimit node to get exact limit (final iv value).
   844     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   845     register_new_node(limit, cl->in(LoopNode::EntryControl));
   846   }
   847   assert(limit != NULL, "sanity");
   848   return limit;
   849 }
   851 //------------------------------Ideal------------------------------------------
   852 // Return a node which is more "ideal" than the current node.
   853 // Attempt to convert into a counted-loop.
   854 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   855   if (!can_be_counted_loop(phase)) {
   856     phase->C->set_major_progress();
   857   }
   858   return RegionNode::Ideal(phase, can_reshape);
   859 }
   862 //=============================================================================
   863 //------------------------------Ideal------------------------------------------
   864 // Return a node which is more "ideal" than the current node.
   865 // Attempt to convert into a counted-loop.
   866 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   867   return RegionNode::Ideal(phase, can_reshape);
   868 }
   870 //------------------------------dump_spec--------------------------------------
   871 // Dump special per-node info
   872 #ifndef PRODUCT
   873 void CountedLoopNode::dump_spec(outputStream *st) const {
   874   LoopNode::dump_spec(st);
   875   if (stride_is_con()) {
   876     st->print("stride: %d ",stride_con());
   877   }
   878   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   879   if (is_main_loop()) st->print("main of N%d", _idx);
   880   if (is_post_loop()) st->print("post of N%d", _main_idx);
   881 }
   882 #endif
   884 //=============================================================================
   885 int CountedLoopEndNode::stride_con() const {
   886   return stride()->bottom_type()->is_int()->get_con();
   887 }
   889 //=============================================================================
   890 //------------------------------Value-----------------------------------------
   891 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   892   const Type* init_t   = phase->type(in(Init));
   893   const Type* limit_t  = phase->type(in(Limit));
   894   const Type* stride_t = phase->type(in(Stride));
   895   // Either input is TOP ==> the result is TOP
   896   if (init_t   == Type::TOP) return Type::TOP;
   897   if (limit_t  == Type::TOP) return Type::TOP;
   898   if (stride_t == Type::TOP) return Type::TOP;
   900   int stride_con = stride_t->is_int()->get_con();
   901   if (stride_con == 1)
   902     return NULL;  // Identity
   904   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   905     // Use jlongs to avoid integer overflow.
   906     jlong init_con   =  init_t->is_int()->get_con();
   907     jlong limit_con  = limit_t->is_int()->get_con();
   908     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   909     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
   910     jlong final_con  = init_con + stride_con*trip_count;
   911     int final_int = (int)final_con;
   912     // The final value should be in integer range since the loop
   913     // is counted and the limit was checked for overflow.
   914     assert(final_con == (jlong)final_int, "final value should be integer");
   915     return TypeInt::make(final_int);
   916   }
   918   return bottom_type(); // TypeInt::INT
   919 }
   921 //------------------------------Ideal------------------------------------------
   922 // Return a node which is more "ideal" than the current node.
   923 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   924   if (phase->type(in(Init))   == Type::TOP ||
   925       phase->type(in(Limit))  == Type::TOP ||
   926       phase->type(in(Stride)) == Type::TOP)
   927     return NULL;  // Dead
   929   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   930   if (stride_con == 1)
   931     return NULL;  // Identity
   933   if (in(Init)->is_Con() && in(Limit)->is_Con())
   934     return NULL;  // Value
   936   // Delay following optimizations until all loop optimizations
   937   // done to keep Ideal graph simple.
   938   if (!can_reshape || phase->C->major_progress())
   939     return NULL;
   941   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   942   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   943   int stride_p;
   944   jlong lim, ini;
   945   julong max;
   946   if (stride_con > 0) {
   947     stride_p = stride_con;
   948     lim = limit_t->_hi;
   949     ini = init_t->_lo;
   950     max = (julong)max_jint;
   951   } else {
   952     stride_p = -stride_con;
   953     lim = init_t->_hi;
   954     ini = limit_t->_lo;
   955     max = (julong)min_jint;
   956   }
   957   julong range = lim - ini + stride_p;
   958   if (range <= max) {
   959     // Convert to integer expression if it is not overflow.
   960     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   961     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
   962     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
   963     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
   964     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
   965     return new (phase->C) AddINode(span, in(Init)); // exact limit
   966   }
   968   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   969       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   970     // Convert to long expression to avoid integer overflow
   971     // and let igvn optimizer convert this division.
   972     //
   973     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
   974     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
   975     Node* stride   = phase->longcon(stride_con);
   976     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   978     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
   979     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
   980     Node *span;
   981     if (stride_con > 0 && is_power_of_2(stride_p)) {
   982       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   983       // and avoid generating rounding for division. Zero trip guard should
   984       // guarantee that init < limit but sometimes the guard is missing and
   985       // we can get situation when init > limit. Note, for the empty loop
   986       // optimization zero trip guard is generated explicitly which leaves
   987       // only RCE predicate where exact limit is used and the predicate
   988       // will simply fail forcing recompilation.
   989       Node* neg_stride   = phase->longcon(-stride_con);
   990       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
   991     } else {
   992       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
   993       span = phase->transform(new (phase->C) MulLNode(trip, stride));
   994     }
   995     // Convert back to int
   996     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
   997     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
   998   }
  1000   return NULL;    // No progress
  1003 //------------------------------Identity---------------------------------------
  1004 // If stride == 1 return limit node.
  1005 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
  1006   int stride_con = phase->type(in(Stride))->is_int()->get_con();
  1007   if (stride_con == 1 || stride_con == -1)
  1008     return in(Limit);
  1009   return this;
  1012 //=============================================================================
  1013 //----------------------match_incr_with_optional_truncation--------------------
  1014 // Match increment with optional truncation:
  1015 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
  1016 // Return NULL for failure. Success returns the increment node.
  1017 Node* CountedLoopNode::match_incr_with_optional_truncation(
  1018                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
  1019   // Quick cutouts:
  1020   if (expr == NULL || expr->req() != 3)  return NULL;
  1022   Node *t1 = NULL;
  1023   Node *t2 = NULL;
  1024   const TypeInt* trunc_t = TypeInt::INT;
  1025   Node* n1 = expr;
  1026   int   n1op = n1->Opcode();
  1028   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
  1029   if (n1op == Op_AndI &&
  1030       n1->in(2)->is_Con() &&
  1031       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
  1032     // %%% This check should match any mask of 2**K-1.
  1033     t1 = n1;
  1034     n1 = t1->in(1);
  1035     n1op = n1->Opcode();
  1036     trunc_t = TypeInt::CHAR;
  1037   } else if (n1op == Op_RShiftI &&
  1038              n1->in(1) != NULL &&
  1039              n1->in(1)->Opcode() == Op_LShiftI &&
  1040              n1->in(2) == n1->in(1)->in(2) &&
  1041              n1->in(2)->is_Con()) {
  1042     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
  1043     // %%% This check should match any shift in [1..31].
  1044     if (shift == 16 || shift == 8) {
  1045       t1 = n1;
  1046       t2 = t1->in(1);
  1047       n1 = t2->in(1);
  1048       n1op = n1->Opcode();
  1049       if (shift == 16) {
  1050         trunc_t = TypeInt::SHORT;
  1051       } else if (shift == 8) {
  1052         trunc_t = TypeInt::BYTE;
  1057   // If (maybe after stripping) it is an AddI, we won:
  1058   if (n1op == Op_AddI) {
  1059     *trunc1 = t1;
  1060     *trunc2 = t2;
  1061     *trunc_type = trunc_t;
  1062     return n1;
  1065   // failed
  1066   return NULL;
  1070 //------------------------------filtered_type--------------------------------
  1071 // Return a type based on condition control flow
  1072 // A successful return will be a type that is restricted due
  1073 // to a series of dominating if-tests, such as:
  1074 //    if (i < 10) {
  1075 //       if (i > 0) {
  1076 //          here: "i" type is [1..10)
  1077 //       }
  1078 //    }
  1079 // or a control flow merge
  1080 //    if (i < 10) {
  1081 //       do {
  1082 //          phi( , ) -- at top of loop type is [min_int..10)
  1083 //         i = ?
  1084 //       } while ( i < 10)
  1085 //
  1086 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
  1087   assert(n && n->bottom_type()->is_int(), "must be int");
  1088   const TypeInt* filtered_t = NULL;
  1089   if (!n->is_Phi()) {
  1090     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
  1091     filtered_t = filtered_type_from_dominators(n, n_ctrl);
  1093   } else {
  1094     Node* phi    = n->as_Phi();
  1095     Node* region = phi->in(0);
  1096     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
  1097     if (region && region != C->top()) {
  1098       for (uint i = 1; i < phi->req(); i++) {
  1099         Node* val   = phi->in(i);
  1100         Node* use_c = region->in(i);
  1101         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
  1102         if (val_t != NULL) {
  1103           if (filtered_t == NULL) {
  1104             filtered_t = val_t;
  1105           } else {
  1106             filtered_t = filtered_t->meet(val_t)->is_int();
  1112   const TypeInt* n_t = _igvn.type(n)->is_int();
  1113   if (filtered_t != NULL) {
  1114     n_t = n_t->join(filtered_t)->is_int();
  1116   return n_t;
  1120 //------------------------------filtered_type_from_dominators--------------------------------
  1121 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1122 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1123   if (val->is_Con()) {
  1124      return val->bottom_type()->is_int();
  1126   uint if_limit = 10; // Max number of dominating if's visited
  1127   const TypeInt* rtn_t = NULL;
  1129   if (use_ctrl && use_ctrl != C->top()) {
  1130     Node* val_ctrl = get_ctrl(val);
  1131     uint val_dom_depth = dom_depth(val_ctrl);
  1132     Node* pred = use_ctrl;
  1133     uint if_cnt = 0;
  1134     while (if_cnt < if_limit) {
  1135       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1136         if_cnt++;
  1137         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1138         if (if_t != NULL) {
  1139           if (rtn_t == NULL) {
  1140             rtn_t = if_t;
  1141           } else {
  1142             rtn_t = rtn_t->join(if_t)->is_int();
  1146       pred = idom(pred);
  1147       if (pred == NULL || pred == C->top()) {
  1148         break;
  1150       // Stop if going beyond definition block of val
  1151       if (dom_depth(pred) < val_dom_depth) {
  1152         break;
  1156   return rtn_t;
  1160 //------------------------------dump_spec--------------------------------------
  1161 // Dump special per-node info
  1162 #ifndef PRODUCT
  1163 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1164   if( in(TestValue)->is_Bool() ) {
  1165     BoolTest bt( test_trip()); // Added this for g++.
  1167     st->print("[");
  1168     bt.dump_on(st);
  1169     st->print("]");
  1171   st->print(" ");
  1172   IfNode::dump_spec(st);
  1174 #endif
  1176 //=============================================================================
  1177 //------------------------------is_member--------------------------------------
  1178 // Is 'l' a member of 'this'?
  1179 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1180   while( l->_nest > _nest ) l = l->_parent;
  1181   return l == this;
  1184 //------------------------------set_nest---------------------------------------
  1185 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1186 int IdealLoopTree::set_nest( uint depth ) {
  1187   _nest = depth;
  1188   int bits = _has_call;
  1189   if( _child ) bits |= _child->set_nest(depth+1);
  1190   if( bits ) _has_call = 1;
  1191   if( _next  ) bits |= _next ->set_nest(depth  );
  1192   return bits;
  1195 //------------------------------split_fall_in----------------------------------
  1196 // Split out multiple fall-in edges from the loop header.  Move them to a
  1197 // private RegionNode before the loop.  This becomes the loop landing pad.
  1198 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1199   PhaseIterGVN &igvn = phase->_igvn;
  1200   uint i;
  1202   // Make a new RegionNode to be the landing pad.
  1203   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
  1204   phase->set_loop(landing_pad,_parent);
  1205   // Gather all the fall-in control paths into the landing pad
  1206   uint icnt = fall_in_cnt;
  1207   uint oreq = _head->req();
  1208   for( i = oreq-1; i>0; i-- )
  1209     if( !phase->is_member( this, _head->in(i) ) )
  1210       landing_pad->set_req(icnt--,_head->in(i));
  1212   // Peel off PhiNode edges as well
  1213   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1214     Node *oj = _head->fast_out(j);
  1215     if( oj->is_Phi() ) {
  1216       PhiNode* old_phi = oj->as_Phi();
  1217       assert( old_phi->region() == _head, "" );
  1218       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1219       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1220       uint icnt = fall_in_cnt;
  1221       for( i = oreq-1; i>0; i-- ) {
  1222         if( !phase->is_member( this, _head->in(i) ) ) {
  1223           p->init_req(icnt--, old_phi->in(i));
  1224           // Go ahead and clean out old edges from old phi
  1225           old_phi->del_req(i);
  1228       // Search for CSE's here, because ZKM.jar does a lot of
  1229       // loop hackery and we need to be a little incremental
  1230       // with the CSE to avoid O(N^2) node blow-up.
  1231       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1232       if( p2 ) {                // Found CSE
  1233         p->destruct();          // Recover useless new node
  1234         p = p2;                 // Use old node
  1235       } else {
  1236         igvn.register_new_node_with_optimizer(p, old_phi);
  1238       // Make old Phi refer to new Phi.
  1239       old_phi->add_req(p);
  1240       // Check for the special case of making the old phi useless and
  1241       // disappear it.  In JavaGrande I have a case where this useless
  1242       // Phi is the loop limit and prevents recognizing a CountedLoop
  1243       // which in turn prevents removing an empty loop.
  1244       Node *id_old_phi = old_phi->Identity( &igvn );
  1245       if( id_old_phi != old_phi ) { // Found a simple identity?
  1246         // Note that I cannot call 'replace_node' here, because
  1247         // that will yank the edge from old_phi to the Region and
  1248         // I'm mid-iteration over the Region's uses.
  1249         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1250           Node* use = old_phi->last_out(i);
  1251           igvn.rehash_node_delayed(use);
  1252           uint uses_found = 0;
  1253           for (uint j = 0; j < use->len(); j++) {
  1254             if (use->in(j) == old_phi) {
  1255               if (j < use->req()) use->set_req (j, id_old_phi);
  1256               else                use->set_prec(j, id_old_phi);
  1257               uses_found++;
  1260           i -= uses_found;    // we deleted 1 or more copies of this edge
  1263       igvn._worklist.push(old_phi);
  1266   // Finally clean out the fall-in edges from the RegionNode
  1267   for( i = oreq-1; i>0; i-- ) {
  1268     if( !phase->is_member( this, _head->in(i) ) ) {
  1269       _head->del_req(i);
  1272   // Transform landing pad
  1273   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1274   // Insert landing pad into the header
  1275   _head->add_req(landing_pad);
  1278 //------------------------------split_outer_loop-------------------------------
  1279 // Split out the outermost loop from this shared header.
  1280 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1281   PhaseIterGVN &igvn = phase->_igvn;
  1283   // Find index of outermost loop; it should also be my tail.
  1284   uint outer_idx = 1;
  1285   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1287   // Make a LoopNode for the outermost loop.
  1288   Node *ctl = _head->in(LoopNode::EntryControl);
  1289   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
  1290   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1291   phase->set_created_loop_node();
  1293   // Outermost loop falls into '_head' loop
  1294   _head->set_req(LoopNode::EntryControl, outer);
  1295   _head->del_req(outer_idx);
  1296   // Split all the Phis up between '_head' loop and 'outer' loop.
  1297   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1298     Node *out = _head->fast_out(j);
  1299     if( out->is_Phi() ) {
  1300       PhiNode *old_phi = out->as_Phi();
  1301       assert( old_phi->region() == _head, "" );
  1302       Node *phi = PhiNode::make_blank(outer, old_phi);
  1303       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1304       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1305       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1306       // Make old Phi point to new Phi on the fall-in path
  1307       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
  1308       old_phi->del_req(outer_idx);
  1312   // Use the new loop head instead of the old shared one
  1313   _head = outer;
  1314   phase->set_loop(_head, this);
  1317 //------------------------------fix_parent-------------------------------------
  1318 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1319   loop->_parent = parent;
  1320   if( loop->_child ) fix_parent( loop->_child, loop   );
  1321   if( loop->_next  ) fix_parent( loop->_next , parent );
  1324 //------------------------------estimate_path_freq-----------------------------
  1325 static float estimate_path_freq( Node *n ) {
  1326   // Try to extract some path frequency info
  1327   IfNode *iff;
  1328   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1329     uint nop = n->Opcode();
  1330     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1331       n = n->in(0);
  1332       continue;
  1334     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1335       // Assume call does not always throw exceptions: means the call-site
  1336       // count is also the frequency of the fall-through path.
  1337       assert( n->is_CatchProj(), "" );
  1338       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1339         return 0.0f;            // Assume call exception path is rare
  1340       Node *call = n->in(0)->in(0)->in(0);
  1341       assert( call->is_Call(), "expect a call here" );
  1342       const JVMState *jvms = ((CallNode*)call)->jvms();
  1343       ciMethodData* methodData = jvms->method()->method_data();
  1344       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1345       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1346       if ((data == NULL) || !data->is_CounterData()) {
  1347         // no call profile available, try call's control input
  1348         n = n->in(0);
  1349         continue;
  1351       return data->as_CounterData()->count()/FreqCountInvocations;
  1353     // See if there's a gating IF test
  1354     Node *n_c = n->in(0);
  1355     if( !n_c->is_If() ) break;       // No estimate available
  1356     iff = n_c->as_If();
  1357     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1358       // Compute how much count comes on this path
  1359       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1360     // Have no count info.  Skip dull uncommon-trap like branches.
  1361     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1362         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1363       break;
  1364     // Skip through never-taken branch; look for a real loop exit.
  1365     n = iff->in(0);
  1367   return 0.0f;                  // No estimate available
  1370 //------------------------------merge_many_backedges---------------------------
  1371 // Merge all the backedges from the shared header into a private Region.
  1372 // Feed that region as the one backedge to this loop.
  1373 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1374   uint i;
  1376   // Scan for the top 2 hottest backedges
  1377   float hotcnt = 0.0f;
  1378   float warmcnt = 0.0f;
  1379   uint hot_idx = 0;
  1380   // Loop starts at 2 because slot 1 is the fall-in path
  1381   for( i = 2; i < _head->req(); i++ ) {
  1382     float cnt = estimate_path_freq(_head->in(i));
  1383     if( cnt > hotcnt ) {       // Grab hottest path
  1384       warmcnt = hotcnt;
  1385       hotcnt = cnt;
  1386       hot_idx = i;
  1387     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1388       warmcnt = cnt;
  1392   // See if the hottest backedge is worthy of being an inner loop
  1393   // by being much hotter than the next hottest backedge.
  1394   if( hotcnt <= 0.0001 ||
  1395       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1397   // Peel out the backedges into a private merge point; peel
  1398   // them all except optionally hot_idx.
  1399   PhaseIterGVN &igvn = phase->_igvn;
  1401   Node *hot_tail = NULL;
  1402   // Make a Region for the merge point
  1403   Node *r = new (phase->C) RegionNode(1);
  1404   for( i = 2; i < _head->req(); i++ ) {
  1405     if( i != hot_idx )
  1406       r->add_req( _head->in(i) );
  1407     else hot_tail = _head->in(i);
  1409   igvn.register_new_node_with_optimizer(r, _head);
  1410   // Plug region into end of loop _head, followed by hot_tail
  1411   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1412   _head->set_req(2, r);
  1413   if( hot_idx ) _head->add_req(hot_tail);
  1415   // Split all the Phis up between '_head' loop and the Region 'r'
  1416   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1417     Node *out = _head->fast_out(j);
  1418     if( out->is_Phi() ) {
  1419       PhiNode* n = out->as_Phi();
  1420       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1421       Node *hot_phi = NULL;
  1422       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
  1423       // Check all inputs for the ones to peel out
  1424       uint j = 1;
  1425       for( uint i = 2; i < n->req(); i++ ) {
  1426         if( i != hot_idx )
  1427           phi->set_req( j++, n->in(i) );
  1428         else hot_phi = n->in(i);
  1430       // Register the phi but do not transform until whole place transforms
  1431       igvn.register_new_node_with_optimizer(phi, n);
  1432       // Add the merge phi to the old Phi
  1433       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1434       n->set_req(2, phi);
  1435       if( hot_idx ) n->add_req(hot_phi);
  1440   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1441   // of self loop tree.  Turn self into a loop headed by _head and with
  1442   // tail being the new merge point.
  1443   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1444   phase->set_loop(_tail,ilt);   // Adjust tail
  1445   _tail = r;                    // Self's tail is new merge point
  1446   phase->set_loop(r,this);
  1447   ilt->_child = _child;         // New guy has my children
  1448   _child = ilt;                 // Self has new guy as only child
  1449   ilt->_parent = this;          // new guy has self for parent
  1450   ilt->_nest = _nest;           // Same nesting depth (for now)
  1452   // Starting with 'ilt', look for child loop trees using the same shared
  1453   // header.  Flatten these out; they will no longer be loops in the end.
  1454   IdealLoopTree **pilt = &_child;
  1455   while( ilt ) {
  1456     if( ilt->_head == _head ) {
  1457       uint i;
  1458       for( i = 2; i < _head->req(); i++ )
  1459         if( _head->in(i) == ilt->_tail )
  1460           break;                // Still a loop
  1461       if( i == _head->req() ) { // No longer a loop
  1462         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1463         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1464         IdealLoopTree **cp = &ilt->_child;
  1465         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1466         *cp = ilt->_next;       // Hang next list at end of child list
  1467         *pilt = ilt->_child;    // Move child up to replace ilt
  1468         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1469         ilt = ilt->_child;      // Repeat using new ilt
  1470         continue;               // do not advance over ilt->_child
  1472       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1473       phase->set_loop(_head,ilt);
  1475     pilt = &ilt->_child;        // Advance to next
  1476     ilt = *pilt;
  1479   if( _child ) fix_parent( _child, this );
  1482 //------------------------------beautify_loops---------------------------------
  1483 // Split shared headers and insert loop landing pads.
  1484 // Insert a LoopNode to replace the RegionNode.
  1485 // Return TRUE if loop tree is structurally changed.
  1486 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1487   bool result = false;
  1488   // Cache parts in locals for easy
  1489   PhaseIterGVN &igvn = phase->_igvn;
  1491   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1493   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1494   int fall_in_cnt = 0;
  1495   for( uint i = 1; i < _head->req(); i++ )
  1496     if( !phase->is_member( this, _head->in(i) ) )
  1497       fall_in_cnt++;
  1498   assert( fall_in_cnt, "at least 1 fall-in path" );
  1499   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1500     split_fall_in( phase, fall_in_cnt );
  1502   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1503   // the left.
  1504   fall_in_cnt = 1;
  1505   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1506     fall_in_cnt++;
  1507   if( fall_in_cnt > 1 ) {
  1508     // Since I am just swapping inputs I do not need to update def-use info
  1509     Node *tmp = _head->in(1);
  1510     _head->set_req( 1, _head->in(fall_in_cnt) );
  1511     _head->set_req( fall_in_cnt, tmp );
  1512     // Swap also all Phis
  1513     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1514       Node* phi = _head->fast_out(i);
  1515       if( phi->is_Phi() ) {
  1516         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1517         tmp = phi->in(1);
  1518         phi->set_req( 1, phi->in(fall_in_cnt) );
  1519         phi->set_req( fall_in_cnt, tmp );
  1523   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1524   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1526   // If I am a shared header (multiple backedges), peel off the many
  1527   // backedges into a private merge point and use the merge point as
  1528   // the one true backedge.
  1529   if( _head->req() > 3 ) {
  1530     // Merge the many backedges into a single backedge but leave
  1531     // the hottest backedge as separate edge for the following peel.
  1532     merge_many_backedges( phase );
  1533     result = true;
  1536   // If I have one hot backedge, peel off myself loop.
  1537   // I better be the outermost loop.
  1538   if (_head->req() > 3 && !_irreducible) {
  1539     split_outer_loop( phase );
  1540     result = true;
  1542   } else if (!_head->is_Loop() && !_irreducible) {
  1543     // Make a new LoopNode to replace the old loop head
  1544     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
  1545     l = igvn.register_new_node_with_optimizer(l, _head);
  1546     phase->set_created_loop_node();
  1547     // Go ahead and replace _head
  1548     phase->_igvn.replace_node( _head, l );
  1549     _head = l;
  1550     phase->set_loop(_head, this);
  1553   // Now recursively beautify nested loops
  1554   if( _child ) result |= _child->beautify_loops( phase );
  1555   if( _next  ) result |= _next ->beautify_loops( phase );
  1556   return result;
  1559 //------------------------------allpaths_check_safepts----------------------------
  1560 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1561 // encountered.  Helper for check_safepts.
  1562 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1563   assert(stack.size() == 0, "empty stack");
  1564   stack.push(_tail);
  1565   visited.Clear();
  1566   visited.set(_tail->_idx);
  1567   while (stack.size() > 0) {
  1568     Node* n = stack.pop();
  1569     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1570       // Terminate this path
  1571     } else if (n->Opcode() == Op_SafePoint) {
  1572       if (_phase->get_loop(n) != this) {
  1573         if (_required_safept == NULL) _required_safept = new Node_List();
  1574         _required_safept->push(n);  // save the one closest to the tail
  1576       // Terminate this path
  1577     } else {
  1578       uint start = n->is_Region() ? 1 : 0;
  1579       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1580       for (uint i = start; i < end; i++) {
  1581         Node* in = n->in(i);
  1582         assert(in->is_CFG(), "must be");
  1583         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1584           stack.push(in);
  1591 //------------------------------check_safepts----------------------------
  1592 // Given dominators, try to find loops with calls that must always be
  1593 // executed (call dominates loop tail).  These loops do not need non-call
  1594 // safepoints (ncsfpt).
  1595 //
  1596 // A complication is that a safepoint in a inner loop may be needed
  1597 // by an outer loop. In the following, the inner loop sees it has a
  1598 // call (block 3) on every path from the head (block 2) to the
  1599 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1600 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1601 //
  1602 //          entry  0
  1603 //                 |
  1604 //                 v
  1605 // outer 1,2    +->1
  1606 //              |  |
  1607 //              |  v
  1608 //              |  2<---+  ncsfpt in 2
  1609 //              |_/|\   |
  1610 //                 | v  |
  1611 // inner 2,3      /  3  |  call in 3
  1612 //               /   |  |
  1613 //              v    +--+
  1614 //        exit  4
  1615 //
  1616 //
  1617 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1618 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1619 // is first looked for in the lists for the outer loops of the current loop.
  1620 //
  1621 // The insights into the problem:
  1622 //  A) counted loops are okay
  1623 //  B) innermost loops are okay (only an inner loop can delete
  1624 //     a ncsfpt needed by an outer loop)
  1625 //  C) a loop is immune from an inner loop deleting a safepoint
  1626 //     if the loop has a call on the idom-path
  1627 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1628 //     idom-path that is not in a nested loop
  1629 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1630 //     loop needs to be prevented from deletion by an inner loop
  1631 //
  1632 // There are two analyses:
  1633 //  1) The first, and cheaper one, scans the loop body from
  1634 //     tail to head following the idom (immediate dominator)
  1635 //     chain, looking for the cases (C,D,E) above.
  1636 //     Since inner loops are scanned before outer loops, there is summary
  1637 //     information about inner loops.  Inner loops can be skipped over
  1638 //     when the tail of an inner loop is encountered.
  1639 //
  1640 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1641 //     the idom path (which is rare), scans all predecessor control paths
  1642 //     from the tail to the head, terminating a path when a call or sfpt
  1643 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1644 //
  1645 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1646   // Bottom up traversal
  1647   IdealLoopTree* ch = _child;
  1648   if (_child) _child->check_safepts(visited, stack);
  1649   if (_next)  _next ->check_safepts(visited, stack);
  1651   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1652     bool  has_call         = false; // call on dom-path
  1653     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1654     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1655     // Scan the dom-path nodes from tail to head
  1656     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1657       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1658         has_call = true;
  1659         _has_sfpt = 1;          // Then no need for a safept!
  1660         break;
  1661       } else if (n->Opcode() == Op_SafePoint) {
  1662         if (_phase->get_loop(n) == this) {
  1663           has_local_ncsfpt = true;
  1664           break;
  1666         if (nonlocal_ncsfpt == NULL) {
  1667           nonlocal_ncsfpt = n; // save the one closest to the tail
  1669       } else {
  1670         IdealLoopTree* nlpt = _phase->get_loop(n);
  1671         if (this != nlpt) {
  1672           // If at an inner loop tail, see if the inner loop has already
  1673           // recorded seeing a call on the dom-path (and stop.)  If not,
  1674           // jump to the head of the inner loop.
  1675           assert(is_member(nlpt), "nested loop");
  1676           Node* tail = nlpt->_tail;
  1677           if (tail->in(0)->is_If()) tail = tail->in(0);
  1678           if (n == tail) {
  1679             // If inner loop has call on dom-path, so does outer loop
  1680             if (nlpt->_has_sfpt) {
  1681               has_call = true;
  1682               _has_sfpt = 1;
  1683               break;
  1685             // Skip to head of inner loop
  1686             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1687             n = nlpt->_head;
  1692     // Record safept's that this loop needs preserved when an
  1693     // inner loop attempts to delete it's safepoints.
  1694     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1695       if (nonlocal_ncsfpt != NULL) {
  1696         if (_required_safept == NULL) _required_safept = new Node_List();
  1697         _required_safept->push(nonlocal_ncsfpt);
  1698       } else {
  1699         // Failed to find a suitable safept on the dom-path.  Now use
  1700         // an all paths walk from tail to head, looking for safepoints to preserve.
  1701         allpaths_check_safepts(visited, stack);
  1707 //---------------------------is_deleteable_safept----------------------------
  1708 // Is safept not required by an outer loop?
  1709 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1710   assert(sfpt->Opcode() == Op_SafePoint, "");
  1711   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1712   while (lp != NULL) {
  1713     Node_List* sfpts = lp->_required_safept;
  1714     if (sfpts != NULL) {
  1715       for (uint i = 0; i < sfpts->size(); i++) {
  1716         if (sfpt == sfpts->at(i))
  1717           return false;
  1720     lp = lp->_parent;
  1722   return true;
  1725 //---------------------------replace_parallel_iv-------------------------------
  1726 // Replace parallel induction variable (parallel to trip counter)
  1727 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1728   assert(loop->_head->is_CountedLoop(), "");
  1729   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1730   if (!cl->is_valid_counted_loop())
  1731     return;         // skip malformed counted loop
  1732   Node *incr = cl->incr();
  1733   if (incr == NULL)
  1734     return;         // Dead loop?
  1735   Node *init = cl->init_trip();
  1736   Node *phi  = cl->phi();
  1737   int stride_con = cl->stride_con();
  1739   // Visit all children, looking for Phis
  1740   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1741     Node *out = cl->out(i);
  1742     // Look for other phis (secondary IVs). Skip dead ones
  1743     if (!out->is_Phi() || out == phi || !has_node(out))
  1744       continue;
  1745     PhiNode* phi2 = out->as_Phi();
  1746     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1747     // Look for induction variables of the form:  X += constant
  1748     if (phi2->region() != loop->_head ||
  1749         incr2->req() != 3 ||
  1750         incr2->in(1) != phi2 ||
  1751         incr2 == incr ||
  1752         incr2->Opcode() != Op_AddI ||
  1753         !incr2->in(2)->is_Con())
  1754       continue;
  1756     // Check for parallel induction variable (parallel to trip counter)
  1757     // via an affine function.  In particular, count-down loops with
  1758     // count-up array indices are common. We only RCE references off
  1759     // the trip-counter, so we need to convert all these to trip-counter
  1760     // expressions.
  1761     Node *init2 = phi2->in( LoopNode::EntryControl );
  1762     int stride_con2 = incr2->in(2)->get_int();
  1764     // The general case here gets a little tricky.  We want to find the
  1765     // GCD of all possible parallel IV's and make a new IV using this
  1766     // GCD for the loop.  Then all possible IVs are simple multiples of
  1767     // the GCD.  In practice, this will cover very few extra loops.
  1768     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1769     // where +/-1 is the common case, but other integer multiples are
  1770     // also easy to handle.
  1771     int ratio_con = stride_con2/stride_con;
  1773     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1774 #ifndef PRODUCT
  1775       if (TraceLoopOpts) {
  1776         tty->print("Parallel IV: %d ", phi2->_idx);
  1777         loop->dump_head();
  1779 #endif
  1780       // Convert to using the trip counter.  The parallel induction
  1781       // variable differs from the trip counter by a loop-invariant
  1782       // amount, the difference between their respective initial values.
  1783       // It is scaled by the 'ratio_con'.
  1784       Node* ratio = _igvn.intcon(ratio_con);
  1785       set_ctrl(ratio, C->root());
  1786       Node* ratio_init = new (C) MulINode(init, ratio);
  1787       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1788       set_early_ctrl(ratio_init);
  1789       Node* diff = new (C) SubINode(init2, ratio_init);
  1790       _igvn.register_new_node_with_optimizer(diff, init2);
  1791       set_early_ctrl(diff);
  1792       Node* ratio_idx = new (C) MulINode(phi, ratio);
  1793       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1794       set_ctrl(ratio_idx, cl);
  1795       Node* add = new (C) AddINode(ratio_idx, diff);
  1796       _igvn.register_new_node_with_optimizer(add);
  1797       set_ctrl(add, cl);
  1798       _igvn.replace_node( phi2, add );
  1799       // Sometimes an induction variable is unused
  1800       if (add->outcnt() == 0) {
  1801         _igvn.remove_dead_node(add);
  1803       --i; // deleted this phi; rescan starting with next position
  1804       continue;
  1809 //------------------------------counted_loop-----------------------------------
  1810 // Convert to counted loops where possible
  1811 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1813   // For grins, set the inner-loop flag here
  1814   if (!_child) {
  1815     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1818   if (_head->is_CountedLoop() ||
  1819       phase->is_counted_loop(_head, this)) {
  1820     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1822     // Look for safepoints to remove.
  1823     Node_List* sfpts = _safepts;
  1824     if (sfpts != NULL) {
  1825       for (uint i = 0; i < sfpts->size(); i++) {
  1826         Node* n = sfpts->at(i);
  1827         assert(phase->get_loop(n) == this, "");
  1828         if (phase->is_deleteable_safept(n)) {
  1829           phase->lazy_replace(n, n->in(TypeFunc::Control));
  1834     // Look for induction variables
  1835     phase->replace_parallel_iv(this);
  1837   } else if (_parent != NULL && !_irreducible) {
  1838     // Not a counted loop.
  1839     // Look for a safepoint on the idom-path.
  1840     Node* sfpt = tail();
  1841     for (; sfpt != _head; sfpt = phase->idom(sfpt)) {
  1842       if (sfpt->Opcode() == Op_SafePoint && phase->get_loop(sfpt) == this)
  1843         break; // Found one
  1845     // Delete other safepoints in this loop.
  1846     Node_List* sfpts = _safepts;
  1847     if (sfpts != NULL && sfpt != _head && sfpt->Opcode() == Op_SafePoint) {
  1848       for (uint i = 0; i < sfpts->size(); i++) {
  1849         Node* n = sfpts->at(i);
  1850         assert(phase->get_loop(n) == this, "");
  1851         if (n != sfpt && phase->is_deleteable_safept(n)) {
  1852           phase->lazy_replace(n, n->in(TypeFunc::Control));
  1858   // Recursively
  1859   if (_child) _child->counted_loop( phase );
  1860   if (_next)  _next ->counted_loop( phase );
  1863 #ifndef PRODUCT
  1864 //------------------------------dump_head--------------------------------------
  1865 // Dump 1 liner for loop header info
  1866 void IdealLoopTree::dump_head( ) const {
  1867   for (uint i=0; i<_nest; i++)
  1868     tty->print("  ");
  1869   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1870   if (_irreducible) tty->print(" IRREDUCIBLE");
  1871   Node* entry = _head->in(LoopNode::EntryControl);
  1872   if (LoopLimitCheck) {
  1873     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1874     if (predicate != NULL ) {
  1875       tty->print(" limit_check");
  1876       entry = entry->in(0)->in(0);
  1879   if (UseLoopPredicate) {
  1880     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1881     if (entry != NULL) {
  1882       tty->print(" predicated");
  1885   if (_head->is_CountedLoop()) {
  1886     CountedLoopNode *cl = _head->as_CountedLoop();
  1887     tty->print(" counted");
  1889     Node* init_n = cl->init_trip();
  1890     if (init_n  != NULL &&  init_n->is_Con())
  1891       tty->print(" [%d,", cl->init_trip()->get_int());
  1892     else
  1893       tty->print(" [int,");
  1894     Node* limit_n = cl->limit();
  1895     if (limit_n  != NULL &&  limit_n->is_Con())
  1896       tty->print("%d),", cl->limit()->get_int());
  1897     else
  1898       tty->print("int),");
  1899     int stride_con  = cl->stride_con();
  1900     if (stride_con > 0) tty->print("+");
  1901     tty->print("%d", stride_con);
  1903     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
  1905     if (cl->is_pre_loop ()) tty->print(" pre" );
  1906     if (cl->is_main_loop()) tty->print(" main");
  1907     if (cl->is_post_loop()) tty->print(" post");
  1909   tty->cr();
  1912 //------------------------------dump-------------------------------------------
  1913 // Dump loops by loop tree
  1914 void IdealLoopTree::dump( ) const {
  1915   dump_head();
  1916   if (_child) _child->dump();
  1917   if (_next)  _next ->dump();
  1920 #endif
  1922 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1923   if (loop == root) {
  1924     if (loop->_child != NULL) {
  1925       log->begin_head("loop_tree");
  1926       log->end_head();
  1927       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1928       log->tail("loop_tree");
  1929       assert(loop->_next == NULL, "what?");
  1931   } else {
  1932     Node* head = loop->_head;
  1933     log->begin_head("loop");
  1934     log->print(" idx='%d' ", head->_idx);
  1935     if (loop->_irreducible) log->print("irreducible='1' ");
  1936     if (head->is_Loop()) {
  1937       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1938       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1940     if (head->is_CountedLoop()) {
  1941       CountedLoopNode* cl = head->as_CountedLoop();
  1942       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1943       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1944       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1946     log->end_head();
  1947     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1948     log->tail("loop");
  1949     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1953 //---------------------collect_potentially_useful_predicates-----------------------
  1954 // Helper function to collect potentially useful predicates to prevent them from
  1955 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1956 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1957                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1958   if (loop->_child) { // child
  1959     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1962   // self (only loops that we can apply loop predication may use their predicates)
  1963   if (loop->_head->is_Loop() &&
  1964       !loop->_irreducible    &&
  1965       !loop->tail()->is_top()) {
  1966     LoopNode* lpn = loop->_head->as_Loop();
  1967     Node* entry = lpn->in(LoopNode::EntryControl);
  1968     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1969     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1970       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1971       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1972       entry = entry->in(0)->in(0);
  1974     predicate_proj = find_predicate(entry); // Predicate
  1975     if (predicate_proj != NULL ) {
  1976       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1980   if (loop->_next) { // sibling
  1981     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1985 //------------------------eliminate_useless_predicates-----------------------------
  1986 // Eliminate all inserted predicates if they could not be used by loop predication.
  1987 // Note: it will also eliminates loop limits check predicate since it also uses
  1988 // Opaque1 node (see Parse::add_predicate()).
  1989 void PhaseIdealLoop::eliminate_useless_predicates() {
  1990   if (C->predicate_count() == 0)
  1991     return; // no predicate left
  1993   Unique_Node_List useful_predicates; // to store useful predicates
  1994   if (C->has_loops()) {
  1995     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1998   for (int i = C->predicate_count(); i > 0; i--) {
  1999      Node * n = C->predicate_opaque1_node(i-1);
  2000      assert(n->Opcode() == Op_Opaque1, "must be");
  2001      if (!useful_predicates.member(n)) { // not in the useful list
  2002        _igvn.replace_node(n, n->in(1));
  2007 //------------------------process_expensive_nodes-----------------------------
  2008 // Expensive nodes have their control input set to prevent the GVN
  2009 // from commoning them and as a result forcing the resulting node to
  2010 // be in a more frequent path. Use CFG information here, to change the
  2011 // control inputs so that some expensive nodes can be commoned while
  2012 // not executed more frequently.
  2013 bool PhaseIdealLoop::process_expensive_nodes() {
  2014   assert(OptimizeExpensiveOps, "optimization off?");
  2016   // Sort nodes to bring similar nodes together
  2017   C->sort_expensive_nodes();
  2019   bool progress = false;
  2021   for (int i = 0; i < C->expensive_count(); ) {
  2022     Node* n = C->expensive_node(i);
  2023     int start = i;
  2024     // Find nodes similar to n
  2025     i++;
  2026     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
  2027     int end = i;
  2028     // And compare them two by two
  2029     for (int j = start; j < end; j++) {
  2030       Node* n1 = C->expensive_node(j);
  2031       if (is_node_unreachable(n1)) {
  2032         continue;
  2034       for (int k = j+1; k < end; k++) {
  2035         Node* n2 = C->expensive_node(k);
  2036         if (is_node_unreachable(n2)) {
  2037           continue;
  2040         assert(n1 != n2, "should be pair of nodes");
  2042         Node* c1 = n1->in(0);
  2043         Node* c2 = n2->in(0);
  2045         Node* parent_c1 = c1;
  2046         Node* parent_c2 = c2;
  2048         // The call to get_early_ctrl_for_expensive() moves the
  2049         // expensive nodes up but stops at loops that are in a if
  2050         // branch. See whether we can exit the loop and move above the
  2051         // If.
  2052         if (c1->is_Loop()) {
  2053           parent_c1 = c1->in(1);
  2055         if (c2->is_Loop()) {
  2056           parent_c2 = c2->in(1);
  2059         if (parent_c1 == parent_c2) {
  2060           _igvn._worklist.push(n1);
  2061           _igvn._worklist.push(n2);
  2062           continue;
  2065         // Look for identical expensive node up the dominator chain.
  2066         if (is_dominator(c1, c2)) {
  2067           c2 = c1;
  2068         } else if (is_dominator(c2, c1)) {
  2069           c1 = c2;
  2070         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
  2071                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
  2072           // Both branches have the same expensive node so move it up
  2073           // before the if.
  2074           c1 = c2 = idom(parent_c1->in(0));
  2076         // Do the actual moves
  2077         if (n1->in(0) != c1) {
  2078           _igvn.hash_delete(n1);
  2079           n1->set_req(0, c1);
  2080           _igvn.hash_insert(n1);
  2081           _igvn._worklist.push(n1);
  2082           progress = true;
  2084         if (n2->in(0) != c2) {
  2085           _igvn.hash_delete(n2);
  2086           n2->set_req(0, c2);
  2087           _igvn.hash_insert(n2);
  2088           _igvn._worklist.push(n2);
  2089           progress = true;
  2095   return progress;
  2099 //=============================================================================
  2100 //----------------------------build_and_optimize-------------------------------
  2101 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  2102 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  2103 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  2104   ResourceMark rm;
  2106   int old_progress = C->major_progress();
  2107   uint orig_worklist_size = _igvn._worklist.size();
  2109   // Reset major-progress flag for the driver's heuristics
  2110   C->clear_major_progress();
  2112 #ifndef PRODUCT
  2113   // Capture for later assert
  2114   uint unique = C->unique();
  2115   _loop_invokes++;
  2116   _loop_work += unique;
  2117 #endif
  2119   // True if the method has at least 1 irreducible loop
  2120   _has_irreducible_loops = false;
  2122   _created_loop_node = false;
  2124   Arena *a = Thread::current()->resource_area();
  2125   VectorSet visited(a);
  2126   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  2127   _nodes.map(C->unique(), NULL);
  2128   memset(_nodes.adr(), 0, wordSize * C->unique());
  2130   // Pre-build the top-level outermost loop tree entry
  2131   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  2132   // Do not need a safepoint at the top level
  2133   _ltree_root->_has_sfpt = 1;
  2135   // Initialize Dominators.
  2136   // Checked in clone_loop_predicate() during beautify_loops().
  2137   _idom_size = 0;
  2138   _idom      = NULL;
  2139   _dom_depth = NULL;
  2140   _dom_stk   = NULL;
  2142   // Empty pre-order array
  2143   allocate_preorders();
  2145   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  2146   // IdealLoopTree entries.  Data nodes are NOT walked.
  2147   build_loop_tree();
  2148   // Check for bailout, and return
  2149   if (C->failing()) {
  2150     return;
  2153   // No loops after all
  2154   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  2156   // There should always be an outer loop containing the Root and Return nodes.
  2157   // If not, we have a degenerate empty program.  Bail out in this case.
  2158   if (!has_node(C->root())) {
  2159     if (!_verify_only) {
  2160       C->clear_major_progress();
  2161       C->record_method_not_compilable("empty program detected during loop optimization");
  2163     return;
  2166   // Nothing to do, so get out
  2167   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
  2168   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
  2169   if (stop_early && !do_expensive_nodes) {
  2170     _igvn.optimize();           // Cleanup NeverBranches
  2171     return;
  2174   // Set loop nesting depth
  2175   _ltree_root->set_nest( 0 );
  2177   // Split shared headers and insert loop landing pads.
  2178   // Do not bother doing this on the Root loop of course.
  2179   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  2180     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
  2181     if( _ltree_root->_child->beautify_loops( this ) ) {
  2182       // Re-build loop tree!
  2183       _ltree_root->_child = NULL;
  2184       _nodes.clear();
  2185       reallocate_preorders();
  2186       build_loop_tree();
  2187       // Check for bailout, and return
  2188       if (C->failing()) {
  2189         return;
  2191       // Reset loop nesting depth
  2192       _ltree_root->set_nest( 0 );
  2194       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
  2198   // Build Dominators for elision of NULL checks & loop finding.
  2199   // Since nodes do not have a slot for immediate dominator, make
  2200   // a persistent side array for that info indexed on node->_idx.
  2201   _idom_size = C->unique();
  2202   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  2203   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  2204   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  2205   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  2207   Dominators();
  2209   if (!_verify_only) {
  2210     // As a side effect, Dominators removed any unreachable CFG paths
  2211     // into RegionNodes.  It doesn't do this test against Root, so
  2212     // we do it here.
  2213     for( uint i = 1; i < C->root()->req(); i++ ) {
  2214       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  2215         _igvn.delete_input_of(C->root(), i);
  2216         i--;                      // Rerun same iteration on compressed edges
  2220     // Given dominators, try to find inner loops with calls that must
  2221     // always be executed (call dominates loop tail).  These loops do
  2222     // not need a separate safepoint.
  2223     Node_List cisstack(a);
  2224     _ltree_root->check_safepts(visited, cisstack);
  2227   // Walk the DATA nodes and place into loops.  Find earliest control
  2228   // node.  For CFG nodes, the _nodes array starts out and remains
  2229   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2230   // _nodes array holds the earliest legal controlling CFG node.
  2232   // Allocate stack with enough space to avoid frequent realloc
  2233   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2234   Node_Stack nstack( a, stack_size );
  2236   visited.Clear();
  2237   Node_List worklist(a);
  2238   // Don't need C->root() on worklist since
  2239   // it will be processed among C->top() inputs
  2240   worklist.push( C->top() );
  2241   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2242   build_loop_early( visited, worklist, nstack );
  2244   // Given early legal placement, try finding counted loops.  This placement
  2245   // is good enough to discover most loop invariants.
  2246   if( !_verify_me && !_verify_only )
  2247     _ltree_root->counted_loop( this );
  2249   // Find latest loop placement.  Find ideal loop placement.
  2250   visited.Clear();
  2251   init_dom_lca_tags();
  2252   // Need C->root() on worklist when processing outs
  2253   worklist.push( C->root() );
  2254   NOT_PRODUCT( C->verify_graph_edges(); )
  2255   worklist.push( C->top() );
  2256   build_loop_late( visited, worklist, nstack );
  2258   if (_verify_only) {
  2259     // restore major progress flag
  2260     for (int i = 0; i < old_progress; i++)
  2261       C->set_major_progress();
  2262     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2263     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2264     return;
  2267   // clear out the dead code after build_loop_late
  2268   while (_deadlist.size()) {
  2269     _igvn.remove_globally_dead_node(_deadlist.pop());
  2272   if (stop_early) {
  2273     assert(do_expensive_nodes, "why are we here?");
  2274     if (process_expensive_nodes()) {
  2275       // If we made some progress when processing expensive nodes then
  2276       // the IGVN may modify the graph in a way that will allow us to
  2277       // make some more progress: we need to try processing expensive
  2278       // nodes again.
  2279       C->set_major_progress();
  2281     _igvn.optimize();
  2282     return;
  2285   // Some parser-inserted loop predicates could never be used by loop
  2286   // predication or they were moved away from loop during some optimizations.
  2287   // For example, peeling. Eliminate them before next loop optimizations.
  2288   if (UseLoopPredicate || LoopLimitCheck) {
  2289     eliminate_useless_predicates();
  2292 #ifndef PRODUCT
  2293   C->verify_graph_edges();
  2294   if (_verify_me) {             // Nested verify pass?
  2295     // Check to see if the verify mode is broken
  2296     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2297     return;
  2299   if(VerifyLoopOptimizations) verify();
  2300   if(TraceLoopOpts && C->has_loops()) {
  2301     _ltree_root->dump();
  2303 #endif
  2305   if (skip_loop_opts) {
  2306     // Cleanup any modified bits
  2307     _igvn.optimize();
  2309     if (C->log() != NULL) {
  2310       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2312     return;
  2315   if (ReassociateInvariants) {
  2316     // Reassociate invariants and prep for split_thru_phi
  2317     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2318       IdealLoopTree* lpt = iter.current();
  2319       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2321       lpt->reassociate_invariants(this);
  2323       // Because RCE opportunities can be masked by split_thru_phi,
  2324       // look for RCE candidates and inhibit split_thru_phi
  2325       // on just their loop-phi's for this pass of loop opts
  2326       if (SplitIfBlocks && do_split_ifs) {
  2327         if (lpt->policy_range_check(this)) {
  2328           lpt->_rce_candidate = 1; // = true
  2334   // Check for aggressive application of split-if and other transforms
  2335   // that require basic-block info (like cloning through Phi's)
  2336   if( SplitIfBlocks && do_split_ifs ) {
  2337     visited.Clear();
  2338     split_if_with_blocks( visited, nstack );
  2339     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2342   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
  2343     C->set_major_progress();
  2346   // Perform loop predication before iteration splitting
  2347   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2348     _ltree_root->_child->loop_predication(this);
  2351   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2352     if (do_intrinsify_fill()) {
  2353       C->set_major_progress();
  2357   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2358   // range checks or one-shot null checks.
  2360   // If split-if's didn't hack the graph too bad (no CFG changes)
  2361   // then do loop opts.
  2362   if (C->has_loops() && !C->major_progress()) {
  2363     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2364     _ltree_root->_child->iteration_split( this, worklist );
  2365     // No verify after peeling!  GCM has hoisted code out of the loop.
  2366     // After peeling, the hoisted code could sink inside the peeled area.
  2367     // The peeling code does not try to recompute the best location for
  2368     // all the code before the peeled area, so the verify pass will always
  2369     // complain about it.
  2371   // Do verify graph edges in any case
  2372   NOT_PRODUCT( C->verify_graph_edges(); );
  2374   if (!do_split_ifs) {
  2375     // We saw major progress in Split-If to get here.  We forced a
  2376     // pass with unrolling and not split-if, however more split-if's
  2377     // might make progress.  If the unrolling didn't make progress
  2378     // then the major-progress flag got cleared and we won't try
  2379     // another round of Split-If.  In particular the ever-common
  2380     // instance-of/check-cast pattern requires at least 2 rounds of
  2381     // Split-If to clear out.
  2382     C->set_major_progress();
  2385   // Repeat loop optimizations if new loops were seen
  2386   if (created_loop_node()) {
  2387     C->set_major_progress();
  2390   // Keep loop predicates and perform optimizations with them
  2391   // until no more loop optimizations could be done.
  2392   // After that switch predicates off and do more loop optimizations.
  2393   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2394      C->cleanup_loop_predicates(_igvn);
  2395 #ifndef PRODUCT
  2396      if (TraceLoopOpts) {
  2397        tty->print_cr("PredicatesOff");
  2399 #endif
  2400      C->set_major_progress();
  2403   // Convert scalar to superword operations at the end of all loop opts.
  2404   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2405     // SuperWord transform
  2406     SuperWord sw(this);
  2407     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2408       IdealLoopTree* lpt = iter.current();
  2409       if (lpt->is_counted()) {
  2410         sw.transform_loop(lpt);
  2415   // Cleanup any modified bits
  2416   _igvn.optimize();
  2418   // disable assert until issue with split_flow_path is resolved (6742111)
  2419   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2420   //        "shouldn't introduce irreducible loops");
  2422   if (C->log() != NULL) {
  2423     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2427 #ifndef PRODUCT
  2428 //------------------------------print_statistics-------------------------------
  2429 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2430 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2431 void PhaseIdealLoop::print_statistics() {
  2432   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2435 //------------------------------verify-----------------------------------------
  2436 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2437 static int fail;                // debug only, so its multi-thread dont care
  2438 void PhaseIdealLoop::verify() const {
  2439   int old_progress = C->major_progress();
  2440   ResourceMark rm;
  2441   PhaseIdealLoop loop_verify( _igvn, this );
  2442   VectorSet visited(Thread::current()->resource_area());
  2444   fail = 0;
  2445   verify_compare( C->root(), &loop_verify, visited );
  2446   assert( fail == 0, "verify loops failed" );
  2447   // Verify loop structure is the same
  2448   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2449   // Reset major-progress.  It was cleared by creating a verify version of
  2450   // PhaseIdealLoop.
  2451   for( int i=0; i<old_progress; i++ )
  2452     C->set_major_progress();
  2455 //------------------------------verify_compare---------------------------------
  2456 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2457 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2458   if( !n ) return;
  2459   if( visited.test_set( n->_idx ) ) return;
  2460   if( !_nodes[n->_idx] ) {      // Unreachable
  2461     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2462     return;
  2465   uint i;
  2466   for( i = 0; i < n->req(); i++ )
  2467     verify_compare( n->in(i), loop_verify, visited );
  2469   // Check the '_nodes' block/loop structure
  2470   i = n->_idx;
  2471   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2472     if( _nodes[i] != loop_verify->_nodes[i] &&
  2473         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2474       tty->print("Mismatched control setting for: ");
  2475       n->dump();
  2476       if( fail++ > 10 ) return;
  2477       Node *c = get_ctrl_no_update(n);
  2478       tty->print("We have it as: ");
  2479       if( c->in(0) ) c->dump();
  2480         else tty->print_cr("N%d",c->_idx);
  2481       tty->print("Verify thinks: ");
  2482       if( loop_verify->has_ctrl(n) )
  2483         loop_verify->get_ctrl_no_update(n)->dump();
  2484       else
  2485         loop_verify->get_loop_idx(n)->dump();
  2486       tty->cr();
  2488   } else {                    // We have a loop
  2489     IdealLoopTree *us = get_loop_idx(n);
  2490     if( loop_verify->has_ctrl(n) ) {
  2491       tty->print("Mismatched loop setting for: ");
  2492       n->dump();
  2493       if( fail++ > 10 ) return;
  2494       tty->print("We have it as: ");
  2495       us->dump();
  2496       tty->print("Verify thinks: ");
  2497       loop_verify->get_ctrl_no_update(n)->dump();
  2498       tty->cr();
  2499     } else if (!C->major_progress()) {
  2500       // Loop selection can be messed up if we did a major progress
  2501       // operation, like split-if.  Do not verify in that case.
  2502       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2503       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2504         tty->print("Unequals loops for: ");
  2505         n->dump();
  2506         if( fail++ > 10 ) return;
  2507         tty->print("We have it as: ");
  2508         us->dump();
  2509         tty->print("Verify thinks: ");
  2510         them->dump();
  2511         tty->cr();
  2516   // Check for immediate dominators being equal
  2517   if( i >= _idom_size ) {
  2518     if( !n->is_CFG() ) return;
  2519     tty->print("CFG Node with no idom: ");
  2520     n->dump();
  2521     return;
  2523   if( !n->is_CFG() ) return;
  2524   if( n == C->root() ) return; // No IDOM here
  2526   assert(n->_idx == i, "sanity");
  2527   Node *id = idom_no_update(n);
  2528   if( id != loop_verify->idom_no_update(n) ) {
  2529     tty->print("Unequals idoms for: ");
  2530     n->dump();
  2531     if( fail++ > 10 ) return;
  2532     tty->print("We have it as: ");
  2533     id->dump();
  2534     tty->print("Verify thinks: ");
  2535     loop_verify->idom_no_update(n)->dump();
  2536     tty->cr();
  2541 //------------------------------verify_tree------------------------------------
  2542 // Verify that tree structures match.  Because the CFG can change, siblings
  2543 // within the loop tree can be reordered.  We attempt to deal with that by
  2544 // reordering the verify's loop tree if possible.
  2545 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2546   assert( _parent == parent, "Badly formed loop tree" );
  2548   // Siblings not in same order?  Attempt to re-order.
  2549   if( _head != loop->_head ) {
  2550     // Find _next pointer to update
  2551     IdealLoopTree **pp = &loop->_parent->_child;
  2552     while( *pp != loop )
  2553       pp = &((*pp)->_next);
  2554     // Find proper sibling to be next
  2555     IdealLoopTree **nn = &loop->_next;
  2556     while( (*nn) && (*nn)->_head != _head )
  2557       nn = &((*nn)->_next);
  2559     // Check for no match.
  2560     if( !(*nn) ) {
  2561       // Annoyingly, irreducible loops can pick different headers
  2562       // after a major_progress operation, so the rest of the loop
  2563       // tree cannot be matched.
  2564       if (_irreducible && Compile::current()->major_progress())  return;
  2565       assert( 0, "failed to match loop tree" );
  2568     // Move (*nn) to (*pp)
  2569     IdealLoopTree *hit = *nn;
  2570     *nn = hit->_next;
  2571     hit->_next = loop;
  2572     *pp = loop;
  2573     loop = hit;
  2574     // Now try again to verify
  2577   assert( _head  == loop->_head , "mismatched loop head" );
  2578   Node *tail = _tail;           // Inline a non-updating version of
  2579   while( !tail->in(0) )         // the 'tail()' call.
  2580     tail = tail->in(1);
  2581   assert( tail == loop->_tail, "mismatched loop tail" );
  2583   // Counted loops that are guarded should be able to find their guards
  2584   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2585     CountedLoopNode *cl = _head->as_CountedLoop();
  2586     Node *init = cl->init_trip();
  2587     Node *ctrl = cl->in(LoopNode::EntryControl);
  2588     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2589     Node *iff  = ctrl->in(0);
  2590     assert( iff->Opcode() == Op_If, "" );
  2591     Node *bol  = iff->in(1);
  2592     assert( bol->Opcode() == Op_Bool, "" );
  2593     Node *cmp  = bol->in(1);
  2594     assert( cmp->Opcode() == Op_CmpI, "" );
  2595     Node *add  = cmp->in(1);
  2596     Node *opaq;
  2597     if( add->Opcode() == Op_Opaque1 ) {
  2598       opaq = add;
  2599     } else {
  2600       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2601       assert( add == init, "" );
  2602       opaq = cmp->in(2);
  2604     assert( opaq->Opcode() == Op_Opaque1, "" );
  2608   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2609   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2610   // Innermost loops need to verify loop bodies,
  2611   // but only if no 'major_progress'
  2612   int fail = 0;
  2613   if (!Compile::current()->major_progress() && _child == NULL) {
  2614     for( uint i = 0; i < _body.size(); i++ ) {
  2615       Node *n = _body.at(i);
  2616       if (n->outcnt() == 0)  continue; // Ignore dead
  2617       uint j;
  2618       for( j = 0; j < loop->_body.size(); j++ )
  2619         if( loop->_body.at(j) == n )
  2620           break;
  2621       if( j == loop->_body.size() ) { // Not found in loop body
  2622         // Last ditch effort to avoid assertion: Its possible that we
  2623         // have some users (so outcnt not zero) but are still dead.
  2624         // Try to find from root.
  2625         if (Compile::current()->root()->find(n->_idx)) {
  2626           fail++;
  2627           tty->print("We have that verify does not: ");
  2628           n->dump();
  2632     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2633       Node *n = loop->_body.at(i2);
  2634       if (n->outcnt() == 0)  continue; // Ignore dead
  2635       uint j;
  2636       for( j = 0; j < _body.size(); j++ )
  2637         if( _body.at(j) == n )
  2638           break;
  2639       if( j == _body.size() ) { // Not found in loop body
  2640         // Last ditch effort to avoid assertion: Its possible that we
  2641         // have some users (so outcnt not zero) but are still dead.
  2642         // Try to find from root.
  2643         if (Compile::current()->root()->find(n->_idx)) {
  2644           fail++;
  2645           tty->print("Verify has that we do not: ");
  2646           n->dump();
  2650     assert( !fail, "loop body mismatch" );
  2654 #endif
  2656 //------------------------------set_idom---------------------------------------
  2657 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2658   uint idx = d->_idx;
  2659   if (idx >= _idom_size) {
  2660     uint newsize = _idom_size<<1;
  2661     while( idx >= newsize ) {
  2662       newsize <<= 1;
  2664     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2665     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2666     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2667     _idom_size = newsize;
  2669   _idom[idx] = n;
  2670   _dom_depth[idx] = dom_depth;
  2673 //------------------------------recompute_dom_depth---------------------------------------
  2674 // The dominator tree is constructed with only parent pointers.
  2675 // This recomputes the depth in the tree by first tagging all
  2676 // nodes as "no depth yet" marker.  The next pass then runs up
  2677 // the dom tree from each node marked "no depth yet", and computes
  2678 // the depth on the way back down.
  2679 void PhaseIdealLoop::recompute_dom_depth() {
  2680   uint no_depth_marker = C->unique();
  2681   uint i;
  2682   // Initialize depth to "no depth yet"
  2683   for (i = 0; i < _idom_size; i++) {
  2684     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2685      _dom_depth[i] = no_depth_marker;
  2688   if (_dom_stk == NULL) {
  2689     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2690     if (init_size < 10) init_size = 10;
  2691     _dom_stk = new GrowableArray<uint>(init_size);
  2693   // Compute new depth for each node.
  2694   for (i = 0; i < _idom_size; i++) {
  2695     uint j = i;
  2696     // Run up the dom tree to find a node with a depth
  2697     while (_dom_depth[j] == no_depth_marker) {
  2698       _dom_stk->push(j);
  2699       j = _idom[j]->_idx;
  2701     // Compute the depth on the way back down this tree branch
  2702     uint dd = _dom_depth[j] + 1;
  2703     while (_dom_stk->length() > 0) {
  2704       uint j = _dom_stk->pop();
  2705       _dom_depth[j] = dd;
  2706       dd++;
  2711 //------------------------------sort-------------------------------------------
  2712 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2713 // loop tree, not the root.
  2714 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2715   if( !innermost ) return loop; // New innermost loop
  2717   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2718   assert( loop_preorder, "not yet post-walked loop" );
  2719   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2720   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2722   // Insert at start of list
  2723   while( l ) {                  // Insertion sort based on pre-order
  2724     if( l == loop ) return innermost; // Already on list!
  2725     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2726     assert( l_preorder, "not yet post-walked l" );
  2727     // Check header pre-order number to figure proper nesting
  2728     if( loop_preorder > l_preorder )
  2729       break;                    // End of insertion
  2730     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2731     // Since I split shared headers, you'd think this could not happen.
  2732     // BUT: I must first do the preorder numbering before I can discover I
  2733     // have shared headers, so the split headers all get the same preorder
  2734     // number as the RegionNode they split from.
  2735     if( loop_preorder == l_preorder &&
  2736         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2737       break;                    // Also check for shared headers (same pre#)
  2738     pp = &l->_parent;           // Chain up list
  2739     l = *pp;
  2741   // Link into list
  2742   // Point predecessor to me
  2743   *pp = loop;
  2744   // Point me to successor
  2745   IdealLoopTree *p = loop->_parent;
  2746   loop->_parent = l;            // Point me to successor
  2747   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2748   return innermost;
  2751 //------------------------------build_loop_tree--------------------------------
  2752 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2753 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2754 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2755 // tightest enclosing IdealLoopTree for post-walked.
  2756 //
  2757 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2758 // a loop backedge with that doesn't have any work on the backedge.  This
  2759 // helps me construct nested loops with shared headers better.
  2760 //
  2761 // Once I've done the forward recursion, I do the post-work.  For each child
  2762 // I check to see if there is a backedge.  Backedges define a loop!  I
  2763 // insert an IdealLoopTree at the target of the backedge.
  2764 //
  2765 // During the post-work I also check to see if I have several children
  2766 // belonging to different loops.  If so, then this Node is a decision point
  2767 // where control flow can choose to change loop nests.  It is at this
  2768 // decision point where I can figure out how loops are nested.  At this
  2769 // time I can properly order the different loop nests from my children.
  2770 // Note that there may not be any backedges at the decision point!
  2771 //
  2772 // Since the decision point can be far removed from the backedges, I can't
  2773 // order my loops at the time I discover them.  Thus at the decision point
  2774 // I need to inspect loop header pre-order numbers to properly nest my
  2775 // loops.  This means I need to sort my childrens' loops by pre-order.
  2776 // The sort is of size number-of-control-children, which generally limits
  2777 // it to size 2 (i.e., I just choose between my 2 target loops).
  2778 void PhaseIdealLoop::build_loop_tree() {
  2779   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2780   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2781   Node *n = C->root();
  2782   bltstack.push(n);
  2783   int pre_order = 1;
  2784   int stack_size;
  2786   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2787     n = bltstack.top(); // Leave node on stack
  2788     if ( !is_visited(n) ) {
  2789       // ---- Pre-pass Work ----
  2790       // Pre-walked but not post-walked nodes need a pre_order number.
  2792       set_preorder_visited( n, pre_order ); // set as visited
  2794       // ---- Scan over children ----
  2795       // Scan first over control projections that lead to loop headers.
  2796       // This helps us find inner-to-outer loops with shared headers better.
  2798       // Scan children's children for loop headers.
  2799       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2800         Node* m = n->raw_out(i);       // Child
  2801         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2802           // Scan over children's children to find loop
  2803           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2804             Node* l = m->fast_out(j);
  2805             if( is_visited(l) &&       // Been visited?
  2806                 !is_postvisited(l) &&  // But not post-visited
  2807                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2808               // Found!  Scan the DFS down this path before doing other paths
  2809               bltstack.push(m);
  2810               break;
  2815       pre_order++;
  2817     else if ( !is_postvisited(n) ) {
  2818       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2819       // such as com.sun.rsasign.am::a.
  2820       // For non-recursive version, first, process current children.
  2821       // On next iteration, check if additional children were added.
  2822       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2823         Node* u = n->raw_out(k);
  2824         if ( u->is_CFG() && !is_visited(u) ) {
  2825           bltstack.push(u);
  2828       if ( bltstack.length() == stack_size ) {
  2829         // There were no additional children, post visit node now
  2830         (void)bltstack.pop(); // Remove node from stack
  2831         pre_order = build_loop_tree_impl( n, pre_order );
  2832         // Check for bailout
  2833         if (C->failing()) {
  2834           return;
  2836         // Check to grow _preorders[] array for the case when
  2837         // build_loop_tree_impl() adds new nodes.
  2838         check_grow_preorders();
  2841     else {
  2842       (void)bltstack.pop(); // Remove post-visited node from stack
  2847 //------------------------------build_loop_tree_impl---------------------------
  2848 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2849   // ---- Post-pass Work ----
  2850   // Pre-walked but not post-walked nodes need a pre_order number.
  2852   // Tightest enclosing loop for this Node
  2853   IdealLoopTree *innermost = NULL;
  2855   // For all children, see if any edge is a backedge.  If so, make a loop
  2856   // for it.  Then find the tightest enclosing loop for the self Node.
  2857   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2858     Node* m = n->fast_out(i);   // Child
  2859     if( n == m ) continue;      // Ignore control self-cycles
  2860     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2862     IdealLoopTree *l;           // Child's loop
  2863     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2864       // Found a backedge
  2865       assert( get_preorder(m) < pre_order, "should be backedge" );
  2866       // Check for the RootNode, which is already a LoopNode and is allowed
  2867       // to have multiple "backedges".
  2868       if( m == C->root()) {     // Found the root?
  2869         l = _ltree_root;        // Root is the outermost LoopNode
  2870       } else {                  // Else found a nested loop
  2871         // Insert a LoopNode to mark this loop.
  2872         l = new IdealLoopTree(this, m, n);
  2873       } // End of Else found a nested loop
  2874       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2875         set_loop(m, l);         // Set loop header to loop now
  2877     } else {                    // Else not a nested loop
  2878       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2879       l = get_loop(m);          // Get previously determined loop
  2880       // If successor is header of a loop (nest), move up-loop till it
  2881       // is a member of some outer enclosing loop.  Since there are no
  2882       // shared headers (I've split them already) I only need to go up
  2883       // at most 1 level.
  2884       while( l && l->_head == m ) // Successor heads loop?
  2885         l = l->_parent;         // Move up 1 for me
  2886       // If this loop is not properly parented, then this loop
  2887       // has no exit path out, i.e. its an infinite loop.
  2888       if( !l ) {
  2889         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2890         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2891         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2892         // many backedges as well.
  2894         // Here I set the loop to be the root loop.  I could have, after
  2895         // inserting a bogus loop exit, restarted the recursion and found my
  2896         // new loop exit.  This would make the infinite loop a first-class
  2897         // loop and it would then get properly optimized.  What's the use of
  2898         // optimizing an infinite loop?
  2899         l = _ltree_root;        // Oops, found infinite loop
  2901         if (!_verify_only) {
  2902           // Insert the NeverBranch between 'm' and it's control user.
  2903           NeverBranchNode *iff = new (C) NeverBranchNode( m );
  2904           _igvn.register_new_node_with_optimizer(iff);
  2905           set_loop(iff, l);
  2906           Node *if_t = new (C) CProjNode( iff, 0 );
  2907           _igvn.register_new_node_with_optimizer(if_t);
  2908           set_loop(if_t, l);
  2910           Node* cfg = NULL;       // Find the One True Control User of m
  2911           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2912             Node* x = m->fast_out(j);
  2913             if (x->is_CFG() && x != m && x != iff)
  2914               { cfg = x; break; }
  2916           assert(cfg != NULL, "must find the control user of m");
  2917           uint k = 0;             // Probably cfg->in(0)
  2918           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2919           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2921           // Now create the never-taken loop exit
  2922           Node *if_f = new (C) CProjNode( iff, 1 );
  2923           _igvn.register_new_node_with_optimizer(if_f);
  2924           set_loop(if_f, l);
  2925           // Find frame ptr for Halt.  Relies on the optimizer
  2926           // V-N'ing.  Easier and quicker than searching through
  2927           // the program structure.
  2928           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
  2929           _igvn.register_new_node_with_optimizer(frame);
  2930           // Halt & Catch Fire
  2931           Node *halt = new (C) HaltNode( if_f, frame );
  2932           _igvn.register_new_node_with_optimizer(halt);
  2933           set_loop(halt, l);
  2934           C->root()->add_req(halt);
  2936         set_loop(C->root(), _ltree_root);
  2939     // Weeny check for irreducible.  This child was already visited (this
  2940     // IS the post-work phase).  Is this child's loop header post-visited
  2941     // as well?  If so, then I found another entry into the loop.
  2942     if (!_verify_only) {
  2943       while( is_postvisited(l->_head) ) {
  2944         // found irreducible
  2945         l->_irreducible = 1; // = true
  2946         l = l->_parent;
  2947         _has_irreducible_loops = true;
  2948         // Check for bad CFG here to prevent crash, and bailout of compile
  2949         if (l == NULL) {
  2950           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2951           return pre_order;
  2954       C->set_has_irreducible_loop(_has_irreducible_loops);
  2957     // This Node might be a decision point for loops.  It is only if
  2958     // it's children belong to several different loops.  The sort call
  2959     // does a trivial amount of work if there is only 1 child or all
  2960     // children belong to the same loop.  If however, the children
  2961     // belong to different loops, the sort call will properly set the
  2962     // _parent pointers to show how the loops nest.
  2963     //
  2964     // In any case, it returns the tightest enclosing loop.
  2965     innermost = sort( l, innermost );
  2968   // Def-use info will have some dead stuff; dead stuff will have no
  2969   // loop decided on.
  2971   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2972   if( innermost && innermost->_head == n ) {
  2973     assert( get_loop(n) == innermost, "" );
  2974     IdealLoopTree *p = innermost->_parent;
  2975     IdealLoopTree *l = innermost;
  2976     while( p && l->_head == n ) {
  2977       l->_next = p->_child;     // Put self on parents 'next child'
  2978       p->_child = l;            // Make self as first child of parent
  2979       l = p;                    // Now walk up the parent chain
  2980       p = l->_parent;
  2982   } else {
  2983     // Note that it is possible for a LoopNode to reach here, if the
  2984     // backedge has been made unreachable (hence the LoopNode no longer
  2985     // denotes a Loop, and will eventually be removed).
  2987     // Record tightest enclosing loop for self.  Mark as post-visited.
  2988     set_loop(n, innermost);
  2989     // Also record has_call flag early on
  2990     if( innermost ) {
  2991       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2992         // Do not count uncommon calls
  2993         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2994           Node *iff = n->in(0)->in(0);
  2995           // No any calls for vectorized loops.
  2996           if( UseSuperWord || !iff->is_If() ||
  2997               (n->in(0)->Opcode() == Op_IfFalse &&
  2998                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2999               (iff->as_If()->_prob >= 0.01) )
  3000             innermost->_has_call = 1;
  3002       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  3003         // Disable loop optimizations if the loop has a scalar replaceable
  3004         // allocation. This disabling may cause a potential performance lost
  3005         // if the allocation is not eliminated for some reason.
  3006         innermost->_allow_optimizations = false;
  3007         innermost->_has_call = 1; // = true
  3008       } else if (n->Opcode() == Op_SafePoint) {
  3009         // Record all safepoints in this loop.
  3010         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
  3011         innermost->_safepts->push(n);
  3016   // Flag as post-visited now
  3017   set_postvisited(n);
  3018   return pre_order;
  3022 //------------------------------build_loop_early-------------------------------
  3023 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3024 // First pass computes the earliest controlling node possible.  This is the
  3025 // controlling input with the deepest dominating depth.
  3026 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3027   while (worklist.size() != 0) {
  3028     // Use local variables nstack_top_n & nstack_top_i to cache values
  3029     // on nstack's top.
  3030     Node *nstack_top_n = worklist.pop();
  3031     uint  nstack_top_i = 0;
  3032 //while_nstack_nonempty:
  3033     while (true) {
  3034       // Get parent node and next input's index from stack's top.
  3035       Node  *n = nstack_top_n;
  3036       uint   i = nstack_top_i;
  3037       uint cnt = n->req(); // Count of inputs
  3038       if (i == 0) {        // Pre-process the node.
  3039         if( has_node(n) &&            // Have either loop or control already?
  3040             !has_ctrl(n) ) {          // Have loop picked out already?
  3041           // During "merge_many_backedges" we fold up several nested loops
  3042           // into a single loop.  This makes the members of the original
  3043           // loop bodies pointing to dead loops; they need to move up
  3044           // to the new UNION'd larger loop.  I set the _head field of these
  3045           // dead loops to NULL and the _parent field points to the owning
  3046           // loop.  Shades of UNION-FIND algorithm.
  3047           IdealLoopTree *ilt;
  3048           while( !(ilt = get_loop(n))->_head ) {
  3049             // Normally I would use a set_loop here.  But in this one special
  3050             // case, it is legal (and expected) to change what loop a Node
  3051             // belongs to.
  3052             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  3054           // Remove safepoints ONLY if I've already seen I don't need one.
  3055           // (the old code here would yank a 2nd safepoint after seeing a
  3056           // first one, even though the 1st did not dominate in the loop body
  3057           // and thus could be avoided indefinitely)
  3058           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  3059               is_deleteable_safept(n)) {
  3060             Node *in = n->in(TypeFunc::Control);
  3061             lazy_replace(n,in);       // Pull safepoint now
  3062             if (ilt->_safepts != NULL) {
  3063               ilt->_safepts->yank(n);
  3065             // Carry on with the recursion "as if" we are walking
  3066             // only the control input
  3067             if( !visited.test_set( in->_idx ) ) {
  3068               worklist.push(in);      // Visit this guy later, using worklist
  3070             // Get next node from nstack:
  3071             // - skip n's inputs processing by setting i > cnt;
  3072             // - we also will not call set_early_ctrl(n) since
  3073             //   has_node(n) == true (see the condition above).
  3074             i = cnt + 1;
  3077       } // if (i == 0)
  3079       // Visit all inputs
  3080       bool done = true;       // Assume all n's inputs will be processed
  3081       while (i < cnt) {
  3082         Node *in = n->in(i);
  3083         ++i;
  3084         if (in == NULL) continue;
  3085         if (in->pinned() && !in->is_CFG())
  3086           set_ctrl(in, in->in(0));
  3087         int is_visited = visited.test_set( in->_idx );
  3088         if (!has_node(in)) {  // No controlling input yet?
  3089           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  3090           assert( !is_visited, "visit only once" );
  3091           nstack.push(n, i);  // Save parent node and next input's index.
  3092           nstack_top_n = in;  // Process current input now.
  3093           nstack_top_i = 0;
  3094           done = false;       // Not all n's inputs processed.
  3095           break; // continue while_nstack_nonempty;
  3096         } else if (!is_visited) {
  3097           // This guy has a location picked out for him, but has not yet
  3098           // been visited.  Happens to all CFG nodes, for instance.
  3099           // Visit him using the worklist instead of recursion, to break
  3100           // cycles.  Since he has a location already we do not need to
  3101           // find his location before proceeding with the current Node.
  3102           worklist.push(in);  // Visit this guy later, using worklist
  3105       if (done) {
  3106         // All of n's inputs have been processed, complete post-processing.
  3108         // Compute earliest point this Node can go.
  3109         // CFG, Phi, pinned nodes already know their controlling input.
  3110         if (!has_node(n)) {
  3111           // Record earliest legal location
  3112           set_early_ctrl( n );
  3114         if (nstack.is_empty()) {
  3115           // Finished all nodes on stack.
  3116           // Process next node on the worklist.
  3117           break;
  3119         // Get saved parent node and next input's index.
  3120         nstack_top_n = nstack.node();
  3121         nstack_top_i = nstack.index();
  3122         nstack.pop();
  3124     } // while (true)
  3128 //------------------------------dom_lca_internal--------------------------------
  3129 // Pair-wise LCA
  3130 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  3131   if( !n1 ) return n2;          // Handle NULL original LCA
  3132   assert( n1->is_CFG(), "" );
  3133   assert( n2->is_CFG(), "" );
  3134   // find LCA of all uses
  3135   uint d1 = dom_depth(n1);
  3136   uint d2 = dom_depth(n2);
  3137   while (n1 != n2) {
  3138     if (d1 > d2) {
  3139       n1 =      idom(n1);
  3140       d1 = dom_depth(n1);
  3141     } else if (d1 < d2) {
  3142       n2 =      idom(n2);
  3143       d2 = dom_depth(n2);
  3144     } else {
  3145       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3146       // of the tree might have the same depth.  These sections have
  3147       // to be searched more carefully.
  3149       // Scan up all the n1's with equal depth, looking for n2.
  3150       Node *t1 = idom(n1);
  3151       while (dom_depth(t1) == d1) {
  3152         if (t1 == n2)  return n2;
  3153         t1 = idom(t1);
  3155       // Scan up all the n2's with equal depth, looking for n1.
  3156       Node *t2 = idom(n2);
  3157       while (dom_depth(t2) == d2) {
  3158         if (t2 == n1)  return n1;
  3159         t2 = idom(t2);
  3161       // Move up to a new dominator-depth value as well as up the dom-tree.
  3162       n1 = t1;
  3163       n2 = t2;
  3164       d1 = dom_depth(n1);
  3165       d2 = dom_depth(n2);
  3168   return n1;
  3171 //------------------------------compute_idom-----------------------------------
  3172 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  3173 // IDOMs are correct.
  3174 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  3175   assert( region->is_Region(), "" );
  3176   Node *LCA = NULL;
  3177   for( uint i = 1; i < region->req(); i++ ) {
  3178     if( region->in(i) != C->top() )
  3179       LCA = dom_lca( LCA, region->in(i) );
  3181   return LCA;
  3184 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  3185   bool had_error = false;
  3186 #ifdef ASSERT
  3187   if (early != C->root()) {
  3188     // Make sure that there's a dominance path from LCA to early
  3189     Node* d = LCA;
  3190     while (d != early) {
  3191       if (d == C->root()) {
  3192         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
  3193         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
  3194         had_error = true;
  3195         break;
  3197       d = idom(d);
  3200 #endif
  3201   return had_error;
  3205 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  3206   // Compute LCA over list of uses
  3207   bool had_error = false;
  3208   Node *LCA = NULL;
  3209   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  3210     Node* c = n->fast_out(i);
  3211     if (_nodes[c->_idx] == NULL)
  3212       continue;                 // Skip the occasional dead node
  3213     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  3214       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  3215         if( c->in(j) == n ) {   // Found matching input?
  3216           Node *use = c->in(0)->in(j);
  3217           if (_verify_only && use->is_top()) continue;
  3218           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3219           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3222     } else {
  3223       // For CFG data-users, use is in the block just prior
  3224       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  3225       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3226       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3229   assert(!had_error, "bad dominance");
  3230   return LCA;
  3233 //------------------------------get_late_ctrl----------------------------------
  3234 // Compute latest legal control.
  3235 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  3236   assert(early != NULL, "early control should not be NULL");
  3238   Node* LCA = compute_lca_of_uses(n, early);
  3239 #ifdef ASSERT
  3240   if (LCA == C->root() && LCA != early) {
  3241     // def doesn't dominate uses so print some useful debugging output
  3242     compute_lca_of_uses(n, early, true);
  3244 #endif
  3246   // if this is a load, check for anti-dependent stores
  3247   // We use a conservative algorithm to identify potential interfering
  3248   // instructions and for rescheduling the load.  The users of the memory
  3249   // input of this load are examined.  Any use which is not a load and is
  3250   // dominated by early is considered a potentially interfering store.
  3251   // This can produce false positives.
  3252   if (n->is_Load() && LCA != early) {
  3253     Node_List worklist;
  3255     Node *mem = n->in(MemNode::Memory);
  3256     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3257       Node* s = mem->fast_out(i);
  3258       worklist.push(s);
  3260     while(worklist.size() != 0 && LCA != early) {
  3261       Node* s = worklist.pop();
  3262       if (s->is_Load()) {
  3263         continue;
  3264       } else if (s->is_MergeMem()) {
  3265         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3266           Node* s1 = s->fast_out(i);
  3267           worklist.push(s1);
  3269       } else {
  3270         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3271         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3272         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3273           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3279   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3280   return LCA;
  3283 // true if CFG node d dominates CFG node n
  3284 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3285   if (d == n)
  3286     return true;
  3287   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3288   uint dd = dom_depth(d);
  3289   while (dom_depth(n) >= dd) {
  3290     if (n == d)
  3291       return true;
  3292     n = idom(n);
  3294   return false;
  3297 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3298 // Pair-wise LCA with tags.
  3299 // Tag each index with the node 'tag' currently being processed
  3300 // before advancing up the dominator chain using idom().
  3301 // Later calls that find a match to 'tag' know that this path has already
  3302 // been considered in the current LCA (which is input 'n1' by convention).
  3303 // Since get_late_ctrl() is only called once for each node, the tag array
  3304 // does not need to be cleared between calls to get_late_ctrl().
  3305 // Algorithm trades a larger constant factor for better asymptotic behavior
  3306 //
  3307 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3308   uint d1 = dom_depth(n1);
  3309   uint d2 = dom_depth(n2);
  3311   do {
  3312     if (d1 > d2) {
  3313       // current lca is deeper than n2
  3314       _dom_lca_tags.map(n1->_idx, tag);
  3315       n1 =      idom(n1);
  3316       d1 = dom_depth(n1);
  3317     } else if (d1 < d2) {
  3318       // n2 is deeper than current lca
  3319       Node *memo = _dom_lca_tags[n2->_idx];
  3320       if( memo == tag ) {
  3321         return n1;    // Return the current LCA
  3323       _dom_lca_tags.map(n2->_idx, tag);
  3324       n2 =      idom(n2);
  3325       d2 = dom_depth(n2);
  3326     } else {
  3327       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3328       // of the tree might have the same depth.  These sections have
  3329       // to be searched more carefully.
  3331       // Scan up all the n1's with equal depth, looking for n2.
  3332       _dom_lca_tags.map(n1->_idx, tag);
  3333       Node *t1 = idom(n1);
  3334       while (dom_depth(t1) == d1) {
  3335         if (t1 == n2)  return n2;
  3336         _dom_lca_tags.map(t1->_idx, tag);
  3337         t1 = idom(t1);
  3339       // Scan up all the n2's with equal depth, looking for n1.
  3340       _dom_lca_tags.map(n2->_idx, tag);
  3341       Node *t2 = idom(n2);
  3342       while (dom_depth(t2) == d2) {
  3343         if (t2 == n1)  return n1;
  3344         _dom_lca_tags.map(t2->_idx, tag);
  3345         t2 = idom(t2);
  3347       // Move up to a new dominator-depth value as well as up the dom-tree.
  3348       n1 = t1;
  3349       n2 = t2;
  3350       d1 = dom_depth(n1);
  3351       d2 = dom_depth(n2);
  3353   } while (n1 != n2);
  3354   return n1;
  3357 //------------------------------init_dom_lca_tags------------------------------
  3358 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3359 // Intended use does not involve any growth for the array, so it could
  3360 // be of fixed size.
  3361 void PhaseIdealLoop::init_dom_lca_tags() {
  3362   uint limit = C->unique() + 1;
  3363   _dom_lca_tags.map( limit, NULL );
  3364 #ifdef ASSERT
  3365   for( uint i = 0; i < limit; ++i ) {
  3366     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3368 #endif // ASSERT
  3371 //------------------------------clear_dom_lca_tags------------------------------
  3372 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3373 // Intended use does not involve any growth for the array, so it could
  3374 // be of fixed size.
  3375 void PhaseIdealLoop::clear_dom_lca_tags() {
  3376   uint limit = C->unique() + 1;
  3377   _dom_lca_tags.map( limit, NULL );
  3378   _dom_lca_tags.clear();
  3379 #ifdef ASSERT
  3380   for( uint i = 0; i < limit; ++i ) {
  3381     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3383 #endif // ASSERT
  3386 //------------------------------build_loop_late--------------------------------
  3387 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3388 // Second pass finds latest legal placement, and ideal loop placement.
  3389 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3390   while (worklist.size() != 0) {
  3391     Node *n = worklist.pop();
  3392     // Only visit once
  3393     if (visited.test_set(n->_idx)) continue;
  3394     uint cnt = n->outcnt();
  3395     uint   i = 0;
  3396     while (true) {
  3397       assert( _nodes[n->_idx], "no dead nodes" );
  3398       // Visit all children
  3399       if (i < cnt) {
  3400         Node* use = n->raw_out(i);
  3401         ++i;
  3402         // Check for dead uses.  Aggressively prune such junk.  It might be
  3403         // dead in the global sense, but still have local uses so I cannot
  3404         // easily call 'remove_dead_node'.
  3405         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3406           // Due to cycles, we might not hit the same fixed point in the verify
  3407           // pass as we do in the regular pass.  Instead, visit such phis as
  3408           // simple uses of the loop head.
  3409           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3410             if( !visited.test(use->_idx) )
  3411               worklist.push(use);
  3412           } else if( !visited.test_set(use->_idx) ) {
  3413             nstack.push(n, i); // Save parent and next use's index.
  3414             n   = use;         // Process all children of current use.
  3415             cnt = use->outcnt();
  3416             i   = 0;
  3418         } else {
  3419           // Do not visit around the backedge of loops via data edges.
  3420           // push dead code onto a worklist
  3421           _deadlist.push(use);
  3423       } else {
  3424         // All of n's children have been processed, complete post-processing.
  3425         build_loop_late_post(n);
  3426         if (nstack.is_empty()) {
  3427           // Finished all nodes on stack.
  3428           // Process next node on the worklist.
  3429           break;
  3431         // Get saved parent node and next use's index. Visit the rest of uses.
  3432         n   = nstack.node();
  3433         cnt = n->outcnt();
  3434         i   = nstack.index();
  3435         nstack.pop();
  3441 //------------------------------build_loop_late_post---------------------------
  3442 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3443 // Second pass finds latest legal placement, and ideal loop placement.
  3444 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3446   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3447     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3450 #ifdef ASSERT
  3451   if (_verify_only && !n->is_CFG()) {
  3452     // Check def-use domination.
  3453     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
  3455 #endif
  3457   // CFG and pinned nodes already handled
  3458   if( n->in(0) ) {
  3459     if( n->in(0)->is_top() ) return; // Dead?
  3461     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3462     // _must_ be pinned (they have to observe their control edge of course).
  3463     // Unlike Stores (which modify an unallocable resource, the memory
  3464     // state), Mods/Loads can float around.  So free them up.
  3465     bool pinned = true;
  3466     switch( n->Opcode() ) {
  3467     case Op_DivI:
  3468     case Op_DivF:
  3469     case Op_DivD:
  3470     case Op_ModI:
  3471     case Op_ModF:
  3472     case Op_ModD:
  3473     case Op_LoadB:              // Same with Loads; they can sink
  3474     case Op_LoadUB:             // during loop optimizations.
  3475     case Op_LoadUS:
  3476     case Op_LoadD:
  3477     case Op_LoadF:
  3478     case Op_LoadI:
  3479     case Op_LoadKlass:
  3480     case Op_LoadNKlass:
  3481     case Op_LoadL:
  3482     case Op_LoadS:
  3483     case Op_LoadP:
  3484     case Op_LoadN:
  3485     case Op_LoadRange:
  3486     case Op_LoadD_unaligned:
  3487     case Op_LoadL_unaligned:
  3488     case Op_StrComp:            // Does a bunch of load-like effects
  3489     case Op_StrEquals:
  3490     case Op_StrIndexOf:
  3491     case Op_AryEq:
  3492       pinned = false;
  3494     if( pinned ) {
  3495       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3496       if( !chosen_loop->_child )       // Inner loop?
  3497         chosen_loop->_body.push(n); // Collect inner loops
  3498       return;
  3500   } else {                      // No slot zero
  3501     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3502       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3503       return;
  3505     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3508   // Do I have a "safe range" I can select over?
  3509   Node *early = get_ctrl(n);// Early location already computed
  3511   // Compute latest point this Node can go
  3512   Node *LCA = get_late_ctrl( n, early );
  3513   // LCA is NULL due to uses being dead
  3514   if( LCA == NULL ) {
  3515 #ifdef ASSERT
  3516     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3517       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3519 #endif
  3520     _nodes.map(n->_idx, 0);     // This node is useless
  3521     _deadlist.push(n);
  3522     return;
  3524   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3526   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3527   Node *least = legal;          // Best legal position so far
  3528   while( early != legal ) {     // While not at earliest legal
  3529 #ifdef ASSERT
  3530     if (legal->is_Start() && !early->is_Root()) {
  3531       // Bad graph. Print idom path and fail.
  3532       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
  3533       assert(false, "Bad graph detected in build_loop_late");
  3535 #endif
  3536     // Find least loop nesting depth
  3537     legal = idom(legal);        // Bump up the IDOM tree
  3538     // Check for lower nesting depth
  3539     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3540       least = legal;
  3542   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3544   // Try not to place code on a loop entry projection
  3545   // which can inhibit range check elimination.
  3546   if (least != early) {
  3547     Node* ctrl_out = least->unique_ctrl_out();
  3548     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3549         least == ctrl_out->in(LoopNode::EntryControl)) {
  3550       Node* least_dom = idom(least);
  3551       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3552         least = least_dom;
  3557 #ifdef ASSERT
  3558   // If verifying, verify that 'verify_me' has a legal location
  3559   // and choose it as our location.
  3560   if( _verify_me ) {
  3561     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3562     Node *legal = LCA;
  3563     while( early != legal ) {   // While not at earliest legal
  3564       if( legal == v_ctrl ) break;  // Check for prior good location
  3565       legal = idom(legal)      ;// Bump up the IDOM tree
  3567     // Check for prior good location
  3568     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3570 #endif
  3572   // Assign discovered "here or above" point
  3573   least = find_non_split_ctrl(least);
  3574   set_ctrl(n, least);
  3576   // Collect inner loop bodies
  3577   IdealLoopTree *chosen_loop = get_loop(least);
  3578   if( !chosen_loop->_child )   // Inner loop?
  3579     chosen_loop->_body.push(n);// Collect inner loops
  3582 #ifdef ASSERT
  3583 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
  3584   tty->print_cr("%s", msg);
  3585   tty->print("n: "); n->dump();
  3586   tty->print("early(n): "); early->dump();
  3587   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
  3588       n->in(0) != early && !n->in(0)->is_Root()) {
  3589     tty->print("n->in(0): "); n->in(0)->dump();
  3591   for (uint i = 1; i < n->req(); i++) {
  3592     Node* in1 = n->in(i);
  3593     if (in1 != NULL && in1 != n && !in1->is_top()) {
  3594       tty->print("n->in(%d): ", i); in1->dump();
  3595       Node* in1_early = get_ctrl(in1);
  3596       tty->print("early(n->in(%d)): ", i); in1_early->dump();
  3597       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
  3598           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
  3599         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
  3601       for (uint j = 1; j < in1->req(); j++) {
  3602         Node* in2 = in1->in(j);
  3603         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
  3604           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
  3605           Node* in2_early = get_ctrl(in2);
  3606           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
  3607           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
  3608               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
  3609             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
  3615   tty->cr();
  3616   tty->print("LCA(n): "); LCA->dump();
  3617   for (uint i = 0; i < n->outcnt(); i++) {
  3618     Node* u1 = n->raw_out(i);
  3619     if (u1 == n)
  3620       continue;
  3621     tty->print("n->out(%d): ", i); u1->dump();
  3622     if (u1->is_CFG()) {
  3623       for (uint j = 0; j < u1->outcnt(); j++) {
  3624         Node* u2 = u1->raw_out(j);
  3625         if (u2 != u1 && u2 != n && u2->is_CFG()) {
  3626           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3629     } else {
  3630       Node* u1_later = get_ctrl(u1);
  3631       tty->print("later(n->out(%d)): ", i); u1_later->dump();
  3632       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
  3633           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
  3634         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
  3636       for (uint j = 0; j < u1->outcnt(); j++) {
  3637         Node* u2 = u1->raw_out(j);
  3638         if (u2 == n || u2 == u1)
  3639           continue;
  3640         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3641         if (!u2->is_CFG()) {
  3642           Node* u2_later = get_ctrl(u2);
  3643           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
  3644           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
  3645               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
  3646             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
  3652   tty->cr();
  3653   int ct = 0;
  3654   Node *dbg_legal = LCA;
  3655   while(!dbg_legal->is_Start() && ct < 100) {
  3656     tty->print("idom[%d] ",ct); dbg_legal->dump();
  3657     ct++;
  3658     dbg_legal = idom(dbg_legal);
  3660   tty->cr();
  3662 #endif
  3664 #ifndef PRODUCT
  3665 //------------------------------dump-------------------------------------------
  3666 void PhaseIdealLoop::dump( ) const {
  3667   ResourceMark rm;
  3668   Arena* arena = Thread::current()->resource_area();
  3669   Node_Stack stack(arena, C->unique() >> 2);
  3670   Node_List rpo_list;
  3671   VectorSet visited(arena);
  3672   visited.set(C->top()->_idx);
  3673   rpo( C->root(), stack, visited, rpo_list );
  3674   // Dump root loop indexed by last element in PO order
  3675   dump( _ltree_root, rpo_list.size(), rpo_list );
  3678 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3679   loop->dump_head();
  3681   // Now scan for CFG nodes in the same loop
  3682   for( uint j=idx; j > 0;  j-- ) {
  3683     Node *n = rpo_list[j-1];
  3684     if( !_nodes[n->_idx] )      // Skip dead nodes
  3685       continue;
  3686     if( get_loop(n) != loop ) { // Wrong loop nest
  3687       if( get_loop(n)->_head == n &&    // Found nested loop?
  3688           get_loop(n)->_parent == loop )
  3689         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3690       continue;
  3693     // Dump controlling node
  3694     for( uint x = 0; x < loop->_nest; x++ )
  3695       tty->print("  ");
  3696     tty->print("C");
  3697     if( n == C->root() ) {
  3698       n->dump();
  3699     } else {
  3700       Node* cached_idom   = idom_no_update(n);
  3701       Node *computed_idom = n->in(0);
  3702       if( n->is_Region() ) {
  3703         computed_idom = compute_idom(n);
  3704         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3705         // any MultiBranch ctrl node), so apply a similar transform to
  3706         // the cached idom returned from idom_no_update.
  3707         cached_idom = find_non_split_ctrl(cached_idom);
  3709       tty->print(" ID:%d",computed_idom->_idx);
  3710       n->dump();
  3711       if( cached_idom != computed_idom ) {
  3712         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3713                       computed_idom->_idx, cached_idom->_idx);
  3716     // Dump nodes it controls
  3717     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3718       // (k < C->unique() && get_ctrl(find(k)) == n)
  3719       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3720         Node *m = C->root()->find(k);
  3721         if( m && m->outcnt() > 0 ) {
  3722           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3723             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3724                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3726           for( uint j = 0; j < loop->_nest; j++ )
  3727             tty->print("  ");
  3728           tty->print(" ");
  3729           m->dump();
  3736 // Collect a R-P-O for the whole CFG.
  3737 // Result list is in post-order (scan backwards for RPO)
  3738 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3739   stk.push(start, 0);
  3740   visited.set(start->_idx);
  3742   while (stk.is_nonempty()) {
  3743     Node* m   = stk.node();
  3744     uint  idx = stk.index();
  3745     if (idx < m->outcnt()) {
  3746       stk.set_index(idx + 1);
  3747       Node* n = m->raw_out(idx);
  3748       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3749         stk.push(n, 0);
  3751     } else {
  3752       rpo_list.push(m);
  3753       stk.pop();
  3757 #endif
  3760 //=============================================================================
  3761 //------------------------------LoopTreeIterator-----------------------------------
  3763 // Advance to next loop tree using a preorder, left-to-right traversal.
  3764 void LoopTreeIterator::next() {
  3765   assert(!done(), "must not be done.");
  3766   if (_curnt->_child != NULL) {
  3767     _curnt = _curnt->_child;
  3768   } else if (_curnt->_next != NULL) {
  3769     _curnt = _curnt->_next;
  3770   } else {
  3771     while (_curnt != _root && _curnt->_next == NULL) {
  3772       _curnt = _curnt->_parent;
  3774     if (_curnt == _root) {
  3775       _curnt = NULL;
  3776       assert(done(), "must be done.");
  3777     } else {
  3778       assert(_curnt->_next != NULL, "must be more to do");
  3779       _curnt = _curnt->_next;

mercurial