src/share/vm/opto/gcm.cpp

Wed, 03 Jun 2015 14:22:57 +0200

author
roland
date
Wed, 03 Jun 2015 14:22:57 +0200
changeset 7859
c1c199dde5c9
parent 7598
ddce0b7cee93
child 7994
04ff2f6cd0eb
child 8068
c1091733abe6
permissions
-rw-r--r--

8077504: Unsafe load can loose control dependency and cause crash
Summary: Node::depends_only_on_test() should return false for Unsafe loads
Reviewed-by: kvn, adinn

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/c2compiler.hpp"
    30 #include "opto/callnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/phaseX.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "runtime/deoptimization.hpp"
    38 #if defined AD_MD_HPP
    39 # include AD_MD_HPP
    40 #elif defined TARGET_ARCH_MODEL_x86_32
    41 # include "adfiles/ad_x86_32.hpp"
    42 #elif defined TARGET_ARCH_MODEL_x86_64
    43 # include "adfiles/ad_x86_64.hpp"
    44 #elif defined TARGET_ARCH_MODEL_sparc
    45 # include "adfiles/ad_sparc.hpp"
    46 #elif defined TARGET_ARCH_MODEL_zero
    47 # include "adfiles/ad_zero.hpp"
    48 #elif defined TARGET_ARCH_MODEL_ppc_64
    49 # include "adfiles/ad_ppc_64.hpp"
    50 #endif
    53 // Portions of code courtesy of Clifford Click
    55 // Optimization - Graph Style
    57 // To avoid float value underflow
    58 #define MIN_BLOCK_FREQUENCY 1.e-35f
    60 //----------------------------schedule_node_into_block-------------------------
    61 // Insert node n into block b. Look for projections of n and make sure they
    62 // are in b also.
    63 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
    64   // Set basic block of n, Add n to b,
    65   map_node_to_block(n, b);
    66   b->add_inst(n);
    68   // After Matching, nearly any old Node may have projections trailing it.
    69   // These are usually machine-dependent flags.  In any case, they might
    70   // float to another block below this one.  Move them up.
    71   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    72     Node*  use  = n->fast_out(i);
    73     if (use->is_Proj()) {
    74       Block* buse = get_block_for_node(use);
    75       if (buse != b) {              // In wrong block?
    76         if (buse != NULL) {
    77           buse->find_remove(use);   // Remove from wrong block
    78         }
    79         map_node_to_block(use, b);
    80         b->add_inst(use);
    81       }
    82     }
    83   }
    84 }
    86 //----------------------------replace_block_proj_ctrl-------------------------
    87 // Nodes that have is_block_proj() nodes as their control need to use
    88 // the appropriate Region for their actual block as their control since
    89 // the projection will be in a predecessor block.
    90 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
    91   const Node *in0 = n->in(0);
    92   assert(in0 != NULL, "Only control-dependent");
    93   const Node *p = in0->is_block_proj();
    94   if (p != NULL && p != n) {    // Control from a block projection?
    95     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
    96     // Find trailing Region
    97     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
    98     uint j = 0;
    99     if (pb->_num_succs != 1) {  // More then 1 successor?
   100       // Search for successor
   101       uint max = pb->number_of_nodes();
   102       assert( max > 1, "" );
   103       uint start = max - pb->_num_succs;
   104       // Find which output path belongs to projection
   105       for (j = start; j < max; j++) {
   106         if( pb->get_node(j) == in0 )
   107           break;
   108       }
   109       assert( j < max, "must find" );
   110       // Change control to match head of successor basic block
   111       j -= start;
   112     }
   113     n->set_req(0, pb->_succs[j]->head());
   114   }
   115 }
   118 //------------------------------schedule_pinned_nodes--------------------------
   119 // Set the basic block for Nodes pinned into blocks
   120 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
   121   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
   122   GrowableArray <Node *> spstack(C->unique() + 8);
   123   spstack.push(_root);
   124   while (spstack.is_nonempty()) {
   125     Node* node = spstack.pop();
   126     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
   127       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
   128         assert(node->in(0), "pinned Node must have Control");
   129         // Before setting block replace block_proj control edge
   130         replace_block_proj_ctrl(node);
   131         Node* input = node->in(0);
   132         while (!input->is_block_start()) {
   133           input = input->in(0);
   134         }
   135         Block* block = get_block_for_node(input); // Basic block of controlling input
   136         schedule_node_into_block(node, block);
   137       }
   139       // process all inputs that are non NULL
   140       for (int i = node->req() - 1; i >= 0; --i) {
   141         if (node->in(i) != NULL) {
   142           spstack.push(node->in(i));
   143         }
   144       }
   145     }
   146   }
   147 }
   149 #ifdef ASSERT
   150 // Assert that new input b2 is dominated by all previous inputs.
   151 // Check this by by seeing that it is dominated by b1, the deepest
   152 // input observed until b2.
   153 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
   154   if (b1 == NULL)  return;
   155   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
   156   Block* tmp = b2;
   157   while (tmp != b1 && tmp != NULL) {
   158     tmp = tmp->_idom;
   159   }
   160   if (tmp != b1) {
   161     // Detected an unschedulable graph.  Print some nice stuff and die.
   162     tty->print_cr("!!! Unschedulable graph !!!");
   163     for (uint j=0; j<n->len(); j++) { // For all inputs
   164       Node* inn = n->in(j); // Get input
   165       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
   166       Block* inb = cfg->get_block_for_node(inn);
   167       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
   168                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
   169       inn->dump();
   170     }
   171     tty->print("Failing node: ");
   172     n->dump();
   173     assert(false, "unscheduable graph");
   174   }
   175 }
   176 #endif
   178 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
   179   // Find the last input dominated by all other inputs.
   180   Block* deepb           = NULL;        // Deepest block so far
   181   int    deepb_dom_depth = 0;
   182   for (uint k = 0; k < n->len(); k++) { // For all inputs
   183     Node* inn = n->in(k);               // Get input
   184     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
   185     Block* inb = cfg->get_block_for_node(inn);
   186     assert(inb != NULL, "must already have scheduled this input");
   187     if (deepb_dom_depth < (int) inb->_dom_depth) {
   188       // The new inb must be dominated by the previous deepb.
   189       // The various inputs must be linearly ordered in the dom
   190       // tree, or else there will not be a unique deepest block.
   191       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
   192       deepb = inb;                      // Save deepest block
   193       deepb_dom_depth = deepb->_dom_depth;
   194     }
   195   }
   196   assert(deepb != NULL, "must be at least one input to n");
   197   return deepb;
   198 }
   201 //------------------------------schedule_early---------------------------------
   202 // Find the earliest Block any instruction can be placed in.  Some instructions
   203 // are pinned into Blocks.  Unpinned instructions can appear in last block in
   204 // which all their inputs occur.
   205 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
   206   // Allocate stack with enough space to avoid frequent realloc
   207   Node_Stack nstack(roots.Size() + 8);
   208   // _root will be processed among C->top() inputs
   209   roots.push(C->top());
   210   visited.set(C->top()->_idx);
   212   while (roots.size() != 0) {
   213     // Use local variables nstack_top_n & nstack_top_i to cache values
   214     // on stack's top.
   215     Node* parent_node = roots.pop();
   216     uint  input_index = 0;
   218     while (true) {
   219       if (input_index == 0) {
   220         // Fixup some control.  Constants without control get attached
   221         // to root and nodes that use is_block_proj() nodes should be attached
   222         // to the region that starts their block.
   223         const Node* control_input = parent_node->in(0);
   224         if (control_input != NULL) {
   225           replace_block_proj_ctrl(parent_node);
   226         } else {
   227           // Is a constant with NO inputs?
   228           if (parent_node->req() == 1) {
   229             parent_node->set_req(0, _root);
   230           }
   231         }
   232       }
   234       // First, visit all inputs and force them to get a block.  If an
   235       // input is already in a block we quit following inputs (to avoid
   236       // cycles). Instead we put that Node on a worklist to be handled
   237       // later (since IT'S inputs may not have a block yet).
   239       // Assume all n's inputs will be processed
   240       bool done = true;
   242       while (input_index < parent_node->len()) {
   243         Node* in = parent_node->in(input_index++);
   244         if (in == NULL) {
   245           continue;
   246         }
   248         int is_visited = visited.test_set(in->_idx);
   249         if (!has_block(in)) {
   250           if (is_visited) {
   251             return false;
   252           }
   253           // Save parent node and next input's index.
   254           nstack.push(parent_node, input_index);
   255           // Process current input now.
   256           parent_node = in;
   257           input_index = 0;
   258           // Not all n's inputs processed.
   259           done = false;
   260           break;
   261         } else if (!is_visited) {
   262           // Visit this guy later, using worklist
   263           roots.push(in);
   264         }
   265       }
   267       if (done) {
   268         // All of n's inputs have been processed, complete post-processing.
   270         // Some instructions are pinned into a block.  These include Region,
   271         // Phi, Start, Return, and other control-dependent instructions and
   272         // any projections which depend on them.
   273         if (!parent_node->pinned()) {
   274           // Set earliest legal block.
   275           Block* earliest_block = find_deepest_input(parent_node, this);
   276           map_node_to_block(parent_node, earliest_block);
   277         } else {
   278           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
   279         }
   281         if (nstack.is_empty()) {
   282           // Finished all nodes on stack.
   283           // Process next node on the worklist 'roots'.
   284           break;
   285         }
   286         // Get saved parent node and next input's index.
   287         parent_node = nstack.node();
   288         input_index = nstack.index();
   289         nstack.pop();
   290       }
   291     }
   292   }
   293   return true;
   294 }
   296 //------------------------------dom_lca----------------------------------------
   297 // Find least common ancestor in dominator tree
   298 // LCA is a current notion of LCA, to be raised above 'this'.
   299 // As a convenient boundary condition, return 'this' if LCA is NULL.
   300 // Find the LCA of those two nodes.
   301 Block* Block::dom_lca(Block* LCA) {
   302   if (LCA == NULL || LCA == this)  return this;
   304   Block* anc = this;
   305   while (anc->_dom_depth > LCA->_dom_depth)
   306     anc = anc->_idom;           // Walk up till anc is as high as LCA
   308   while (LCA->_dom_depth > anc->_dom_depth)
   309     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
   311   while (LCA != anc) {          // Walk both up till they are the same
   312     LCA = LCA->_idom;
   313     anc = anc->_idom;
   314   }
   316   return LCA;
   317 }
   319 //--------------------------raise_LCA_above_use--------------------------------
   320 // We are placing a definition, and have been given a def->use edge.
   321 // The definition must dominate the use, so move the LCA upward in the
   322 // dominator tree to dominate the use.  If the use is a phi, adjust
   323 // the LCA only with the phi input paths which actually use this def.
   324 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
   325   Block* buse = cfg->get_block_for_node(use);
   326   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
   327   if (!use->is_Phi())  return buse->dom_lca(LCA);
   328   uint pmax = use->req();       // Number of Phi inputs
   329   // Why does not this loop just break after finding the matching input to
   330   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
   331   // chains.  Means I cannot distinguish, from the def-use direction, which
   332   // of many use-defs lead from the same use to the same def.  That is, this
   333   // Phi might have several uses of the same def.  Each use appears in a
   334   // different predecessor block.  But when I enter here, I cannot distinguish
   335   // which use-def edge I should find the predecessor block for.  So I find
   336   // them all.  Means I do a little extra work if a Phi uses the same value
   337   // more than once.
   338   for (uint j=1; j<pmax; j++) { // For all inputs
   339     if (use->in(j) == def) {    // Found matching input?
   340       Block* pred = cfg->get_block_for_node(buse->pred(j));
   341       LCA = pred->dom_lca(LCA);
   342     }
   343   }
   344   return LCA;
   345 }
   347 //----------------------------raise_LCA_above_marks----------------------------
   348 // Return a new LCA that dominates LCA and any of its marked predecessors.
   349 // Search all my parents up to 'early' (exclusive), looking for predecessors
   350 // which are marked with the given index.  Return the LCA (in the dom tree)
   351 // of all marked blocks.  If there are none marked, return the original
   352 // LCA.
   353 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
   354   Block_List worklist;
   355   worklist.push(LCA);
   356   while (worklist.size() > 0) {
   357     Block* mid = worklist.pop();
   358     if (mid == early)  continue;  // stop searching here
   360     // Test and set the visited bit.
   361     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
   363     // Don't process the current LCA, otherwise the search may terminate early
   364     if (mid != LCA && mid->raise_LCA_mark() == mark) {
   365       // Raise the LCA.
   366       LCA = mid->dom_lca(LCA);
   367       if (LCA == early)  break;   // stop searching everywhere
   368       assert(early->dominates(LCA), "early is high enough");
   369       // Resume searching at that point, skipping intermediate levels.
   370       worklist.push(LCA);
   371       if (LCA == mid)
   372         continue; // Don't mark as visited to avoid early termination.
   373     } else {
   374       // Keep searching through this block's predecessors.
   375       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
   376         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
   377         worklist.push(mid_parent);
   378       }
   379     }
   380     mid->set_raise_LCA_visited(mark);
   381   }
   382   return LCA;
   383 }
   385 //--------------------------memory_early_block--------------------------------
   386 // This is a variation of find_deepest_input, the heart of schedule_early.
   387 // Find the "early" block for a load, if we considered only memory and
   388 // address inputs, that is, if other data inputs were ignored.
   389 //
   390 // Because a subset of edges are considered, the resulting block will
   391 // be earlier (at a shallower dom_depth) than the true schedule_early
   392 // point of the node. We compute this earlier block as a more permissive
   393 // site for anti-dependency insertion, but only if subsume_loads is enabled.
   394 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
   395   Node* base;
   396   Node* index;
   397   Node* store = load->in(MemNode::Memory);
   398   load->as_Mach()->memory_inputs(base, index);
   400   assert(base != NodeSentinel && index != NodeSentinel,
   401          "unexpected base/index inputs");
   403   Node* mem_inputs[4];
   404   int mem_inputs_length = 0;
   405   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
   406   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
   407   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
   409   // In the comparision below, add one to account for the control input,
   410   // which may be null, but always takes up a spot in the in array.
   411   if (mem_inputs_length + 1 < (int) load->req()) {
   412     // This "load" has more inputs than just the memory, base and index inputs.
   413     // For purposes of checking anti-dependences, we need to start
   414     // from the early block of only the address portion of the instruction,
   415     // and ignore other blocks that may have factored into the wider
   416     // schedule_early calculation.
   417     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
   419     Block* deepb           = NULL;        // Deepest block so far
   420     int    deepb_dom_depth = 0;
   421     for (int i = 0; i < mem_inputs_length; i++) {
   422       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
   423       if (deepb_dom_depth < (int) inb->_dom_depth) {
   424         // The new inb must be dominated by the previous deepb.
   425         // The various inputs must be linearly ordered in the dom
   426         // tree, or else there will not be a unique deepest block.
   427         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
   428         deepb = inb;                      // Save deepest block
   429         deepb_dom_depth = deepb->_dom_depth;
   430       }
   431     }
   432     early = deepb;
   433   }
   435   return early;
   436 }
   438 //--------------------------insert_anti_dependences---------------------------
   439 // A load may need to witness memory that nearby stores can overwrite.
   440 // For each nearby store, either insert an "anti-dependence" edge
   441 // from the load to the store, or else move LCA upward to force the
   442 // load to (eventually) be scheduled in a block above the store.
   443 //
   444 // Do not add edges to stores on distinct control-flow paths;
   445 // only add edges to stores which might interfere.
   446 //
   447 // Return the (updated) LCA.  There will not be any possibly interfering
   448 // store between the load's "early block" and the updated LCA.
   449 // Any stores in the updated LCA will have new precedence edges
   450 // back to the load.  The caller is expected to schedule the load
   451 // in the LCA, in which case the precedence edges will make LCM
   452 // preserve anti-dependences.  The caller may also hoist the load
   453 // above the LCA, if it is not the early block.
   454 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
   455   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
   456   assert(LCA != NULL, "");
   457   DEBUG_ONLY(Block* LCA_orig = LCA);
   459   // Compute the alias index.  Loads and stores with different alias indices
   460   // do not need anti-dependence edges.
   461   uint load_alias_idx = C->get_alias_index(load->adr_type());
   462 #ifdef ASSERT
   463   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
   464       (PrintOpto || VerifyAliases ||
   465        PrintMiscellaneous && (WizardMode || Verbose))) {
   466     // Load nodes should not consume all of memory.
   467     // Reporting a bottom type indicates a bug in adlc.
   468     // If some particular type of node validly consumes all of memory,
   469     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
   470     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
   471     load->dump(2);
   472     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
   473   }
   474 #endif
   475   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
   476          "String compare is only known 'load' that does not conflict with any stores");
   477   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
   478          "String equals is a 'load' that does not conflict with any stores");
   479   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
   480          "String indexOf is a 'load' that does not conflict with any stores");
   481   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
   482          "Arrays equals is a 'load' that do not conflict with any stores");
   484   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
   485     // It is impossible to spoil this load by putting stores before it,
   486     // because we know that the stores will never update the value
   487     // which 'load' must witness.
   488     return LCA;
   489   }
   491   node_idx_t load_index = load->_idx;
   493   // Note the earliest legal placement of 'load', as determined by
   494   // by the unique point in the dom tree where all memory effects
   495   // and other inputs are first available.  (Computed by schedule_early.)
   496   // For normal loads, 'early' is the shallowest place (dom graph wise)
   497   // to look for anti-deps between this load and any store.
   498   Block* early = get_block_for_node(load);
   500   // If we are subsuming loads, compute an "early" block that only considers
   501   // memory or address inputs. This block may be different than the
   502   // schedule_early block in that it could be at an even shallower depth in the
   503   // dominator tree, and allow for a broader discovery of anti-dependences.
   504   if (C->subsume_loads()) {
   505     early = memory_early_block(load, early, this);
   506   }
   508   ResourceArea *area = Thread::current()->resource_area();
   509   Node_List worklist_mem(area);     // prior memory state to store
   510   Node_List worklist_store(area);   // possible-def to explore
   511   Node_List worklist_visited(area); // visited mergemem nodes
   512   Node_List non_early_stores(area); // all relevant stores outside of early
   513   bool must_raise_LCA = false;
   515 #ifdef TRACK_PHI_INPUTS
   516   // %%% This extra checking fails because MergeMem nodes are not GVNed.
   517   // Provide "phi_inputs" to check if every input to a PhiNode is from the
   518   // original memory state.  This indicates a PhiNode for which should not
   519   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
   520   // may be overly conservative.
   521   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
   522   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
   523 #endif
   525   // 'load' uses some memory state; look for users of the same state.
   526   // Recurse through MergeMem nodes to the stores that use them.
   528   // Each of these stores is a possible definition of memory
   529   // that 'load' needs to use.  We need to force 'load'
   530   // to occur before each such store.  When the store is in
   531   // the same block as 'load', we insert an anti-dependence
   532   // edge load->store.
   534   // The relevant stores "nearby" the load consist of a tree rooted
   535   // at initial_mem, with internal nodes of type MergeMem.
   536   // Therefore, the branches visited by the worklist are of this form:
   537   //    initial_mem -> (MergeMem ->)* store
   538   // The anti-dependence constraints apply only to the fringe of this tree.
   540   Node* initial_mem = load->in(MemNode::Memory);
   541   worklist_store.push(initial_mem);
   542   worklist_visited.push(initial_mem);
   543   worklist_mem.push(NULL);
   544   while (worklist_store.size() > 0) {
   545     // Examine a nearby store to see if it might interfere with our load.
   546     Node* mem   = worklist_mem.pop();
   547     Node* store = worklist_store.pop();
   548     uint op = store->Opcode();
   550     // MergeMems do not directly have anti-deps.
   551     // Treat them as internal nodes in a forward tree of memory states,
   552     // the leaves of which are each a 'possible-def'.
   553     if (store == initial_mem    // root (exclusive) of tree we are searching
   554         || op == Op_MergeMem    // internal node of tree we are searching
   555         ) {
   556       mem = store;   // It's not a possibly interfering store.
   557       if (store == initial_mem)
   558         initial_mem = NULL;  // only process initial memory once
   560       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
   561         store = mem->fast_out(i);
   562         if (store->is_MergeMem()) {
   563           // Be sure we don't get into combinatorial problems.
   564           // (Allow phis to be repeated; they can merge two relevant states.)
   565           uint j = worklist_visited.size();
   566           for (; j > 0; j--) {
   567             if (worklist_visited.at(j-1) == store)  break;
   568           }
   569           if (j > 0)  continue; // already on work list; do not repeat
   570           worklist_visited.push(store);
   571         }
   572         worklist_mem.push(mem);
   573         worklist_store.push(store);
   574       }
   575       continue;
   576     }
   578     if (op == Op_MachProj || op == Op_Catch)   continue;
   579     if (store->needs_anti_dependence_check())  continue;  // not really a store
   581     // Compute the alias index.  Loads and stores with different alias
   582     // indices do not need anti-dependence edges.  Wide MemBar's are
   583     // anti-dependent on everything (except immutable memories).
   584     const TypePtr* adr_type = store->adr_type();
   585     if (!C->can_alias(adr_type, load_alias_idx))  continue;
   587     // Most slow-path runtime calls do NOT modify Java memory, but
   588     // they can block and so write Raw memory.
   589     if (store->is_Mach()) {
   590       MachNode* mstore = store->as_Mach();
   591       if (load_alias_idx != Compile::AliasIdxRaw) {
   592         // Check for call into the runtime using the Java calling
   593         // convention (and from there into a wrapper); it has no
   594         // _method.  Can't do this optimization for Native calls because
   595         // they CAN write to Java memory.
   596         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
   597           assert(mstore->is_MachSafePoint(), "");
   598           MachSafePointNode* ms = (MachSafePointNode*) mstore;
   599           assert(ms->is_MachCallJava(), "");
   600           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
   601           if (mcj->_method == NULL) {
   602             // These runtime calls do not write to Java visible memory
   603             // (other than Raw) and so do not require anti-dependence edges.
   604             continue;
   605           }
   606         }
   607         // Same for SafePoints: they read/write Raw but only read otherwise.
   608         // This is basically a workaround for SafePoints only defining control
   609         // instead of control + memory.
   610         if (mstore->ideal_Opcode() == Op_SafePoint)
   611           continue;
   612       } else {
   613         // Some raw memory, such as the load of "top" at an allocation,
   614         // can be control dependent on the previous safepoint. See
   615         // comments in GraphKit::allocate_heap() about control input.
   616         // Inserting an anti-dep between such a safepoint and a use
   617         // creates a cycle, and will cause a subsequent failure in
   618         // local scheduling.  (BugId 4919904)
   619         // (%%% How can a control input be a safepoint and not a projection??)
   620         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
   621           continue;
   622       }
   623     }
   625     // Identify a block that the current load must be above,
   626     // or else observe that 'store' is all the way up in the
   627     // earliest legal block for 'load'.  In the latter case,
   628     // immediately insert an anti-dependence edge.
   629     Block* store_block = get_block_for_node(store);
   630     assert(store_block != NULL, "unused killing projections skipped above");
   632     if (store->is_Phi()) {
   633       // 'load' uses memory which is one (or more) of the Phi's inputs.
   634       // It must be scheduled not before the Phi, but rather before
   635       // each of the relevant Phi inputs.
   636       //
   637       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
   638       // we mark each corresponding predecessor block and do a combined
   639       // hoisting operation later (raise_LCA_above_marks).
   640       //
   641       // Do not assert(store_block != early, "Phi merging memory after access")
   642       // PhiNode may be at start of block 'early' with backedge to 'early'
   643       DEBUG_ONLY(bool found_match = false);
   644       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
   645         if (store->in(j) == mem) {   // Found matching input?
   646           DEBUG_ONLY(found_match = true);
   647           Block* pred_block = get_block_for_node(store_block->pred(j));
   648           if (pred_block != early) {
   649             // If any predecessor of the Phi matches the load's "early block",
   650             // we do not need a precedence edge between the Phi and 'load'
   651             // since the load will be forced into a block preceding the Phi.
   652             pred_block->set_raise_LCA_mark(load_index);
   653             assert(!LCA_orig->dominates(pred_block) ||
   654                    early->dominates(pred_block), "early is high enough");
   655             must_raise_LCA = true;
   656           } else {
   657             // anti-dependent upon PHI pinned below 'early', no edge needed
   658             LCA = early;             // but can not schedule below 'early'
   659           }
   660         }
   661       }
   662       assert(found_match, "no worklist bug");
   663 #ifdef TRACK_PHI_INPUTS
   664 #ifdef ASSERT
   665       // This assert asks about correct handling of PhiNodes, which may not
   666       // have all input edges directly from 'mem'. See BugId 4621264
   667       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
   668       // Increment by exactly one even if there are multiple copies of 'mem'
   669       // coming into the phi, because we will run this block several times
   670       // if there are several copies of 'mem'.  (That's how DU iterators work.)
   671       phi_inputs.at_put(store->_idx, num_mem_inputs);
   672       assert(PhiNode::Input + num_mem_inputs < store->req(),
   673              "Expect at least one phi input will not be from original memory state");
   674 #endif //ASSERT
   675 #endif //TRACK_PHI_INPUTS
   676     } else if (store_block != early) {
   677       // 'store' is between the current LCA and earliest possible block.
   678       // Label its block, and decide later on how to raise the LCA
   679       // to include the effect on LCA of this store.
   680       // If this store's block gets chosen as the raised LCA, we
   681       // will find him on the non_early_stores list and stick him
   682       // with a precedence edge.
   683       // (But, don't bother if LCA is already raised all the way.)
   684       if (LCA != early) {
   685         store_block->set_raise_LCA_mark(load_index);
   686         must_raise_LCA = true;
   687         non_early_stores.push(store);
   688       }
   689     } else {
   690       // Found a possibly-interfering store in the load's 'early' block.
   691       // This means 'load' cannot sink at all in the dominator tree.
   692       // Add an anti-dep edge, and squeeze 'load' into the highest block.
   693       assert(store != load->in(0), "dependence cycle found");
   694       if (verify) {
   695         assert(store->find_edge(load) != -1, "missing precedence edge");
   696       } else {
   697         store->add_prec(load);
   698       }
   699       LCA = early;
   700       // This turns off the process of gathering non_early_stores.
   701     }
   702   }
   703   // (Worklist is now empty; all nearby stores have been visited.)
   705   // Finished if 'load' must be scheduled in its 'early' block.
   706   // If we found any stores there, they have already been given
   707   // precedence edges.
   708   if (LCA == early)  return LCA;
   710   // We get here only if there are no possibly-interfering stores
   711   // in the load's 'early' block.  Move LCA up above all predecessors
   712   // which contain stores we have noted.
   713   //
   714   // The raised LCA block can be a home to such interfering stores,
   715   // but its predecessors must not contain any such stores.
   716   //
   717   // The raised LCA will be a lower bound for placing the load,
   718   // preventing the load from sinking past any block containing
   719   // a store that may invalidate the memory state required by 'load'.
   720   if (must_raise_LCA)
   721     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
   722   if (LCA == early)  return LCA;
   724   // Insert anti-dependence edges from 'load' to each store
   725   // in the non-early LCA block.
   726   // Mine the non_early_stores list for such stores.
   727   if (LCA->raise_LCA_mark() == load_index) {
   728     while (non_early_stores.size() > 0) {
   729       Node* store = non_early_stores.pop();
   730       Block* store_block = get_block_for_node(store);
   731       if (store_block == LCA) {
   732         // add anti_dependence from store to load in its own block
   733         assert(store != load->in(0), "dependence cycle found");
   734         if (verify) {
   735           assert(store->find_edge(load) != -1, "missing precedence edge");
   736         } else {
   737           store->add_prec(load);
   738         }
   739       } else {
   740         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
   741         // Any other stores we found must be either inside the new LCA
   742         // or else outside the original LCA.  In the latter case, they
   743         // did not interfere with any use of 'load'.
   744         assert(LCA->dominates(store_block)
   745                || !LCA_orig->dominates(store_block), "no stray stores");
   746       }
   747     }
   748   }
   750   // Return the highest block containing stores; any stores
   751   // within that block have been given anti-dependence edges.
   752   return LCA;
   753 }
   755 // This class is used to iterate backwards over the nodes in the graph.
   757 class Node_Backward_Iterator {
   759 private:
   760   Node_Backward_Iterator();
   762 public:
   763   // Constructor for the iterator
   764   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
   766   // Postincrement operator to iterate over the nodes
   767   Node *next();
   769 private:
   770   VectorSet   &_visited;
   771   Node_List   &_stack;
   772   PhaseCFG &_cfg;
   773 };
   775 // Constructor for the Node_Backward_Iterator
   776 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
   777   : _visited(visited), _stack(stack), _cfg(cfg) {
   778   // The stack should contain exactly the root
   779   stack.clear();
   780   stack.push(root);
   782   // Clear the visited bits
   783   visited.Clear();
   784 }
   786 // Iterator for the Node_Backward_Iterator
   787 Node *Node_Backward_Iterator::next() {
   789   // If the _stack is empty, then just return NULL: finished.
   790   if ( !_stack.size() )
   791     return NULL;
   793   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
   794   // made stateless, so I do not need to record the index 'i' on my _stack.
   795   // Instead I visit all users each time, scanning for unvisited users.
   796   // I visit unvisited not-anti-dependence users first, then anti-dependent
   797   // children next.
   798   Node *self = _stack.pop();
   800   // I cycle here when I am entering a deeper level of recursion.
   801   // The key variable 'self' was set prior to jumping here.
   802   while( 1 ) {
   804     _visited.set(self->_idx);
   806     // Now schedule all uses as late as possible.
   807     const Node* src = self->is_Proj() ? self->in(0) : self;
   808     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
   810     // Schedule all nodes in a post-order visit
   811     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
   813     // Scan for unvisited nodes
   814     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
   815       // For all uses, schedule late
   816       Node* n = self->fast_out(i); // Use
   818       // Skip already visited children
   819       if ( _visited.test(n->_idx) )
   820         continue;
   822       // do not traverse backward control edges
   823       Node *use = n->is_Proj() ? n->in(0) : n;
   824       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
   826       if ( use_rpo < src_rpo )
   827         continue;
   829       // Phi nodes always precede uses in a basic block
   830       if ( use_rpo == src_rpo && use->is_Phi() )
   831         continue;
   833       unvisited = n;      // Found unvisited
   835       // Check for possible-anti-dependent
   836       if( !n->needs_anti_dependence_check() )
   837         break;            // Not visited, not anti-dep; schedule it NOW
   838     }
   840     // Did I find an unvisited not-anti-dependent Node?
   841     if ( !unvisited )
   842       break;                  // All done with children; post-visit 'self'
   844     // Visit the unvisited Node.  Contains the obvious push to
   845     // indicate I'm entering a deeper level of recursion.  I push the
   846     // old state onto the _stack and set a new state and loop (recurse).
   847     _stack.push(self);
   848     self = unvisited;
   849   } // End recursion loop
   851   return self;
   852 }
   854 //------------------------------ComputeLatenciesBackwards----------------------
   855 // Compute the latency of all the instructions.
   856 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
   857 #ifndef PRODUCT
   858   if (trace_opto_pipelining())
   859     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
   860 #endif
   862   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
   863   Node *n;
   865   // Walk over all the nodes from last to first
   866   while (n = iter.next()) {
   867     // Set the latency for the definitions of this instruction
   868     partial_latency_of_defs(n);
   869   }
   870 } // end ComputeLatenciesBackwards
   872 //------------------------------partial_latency_of_defs------------------------
   873 // Compute the latency impact of this node on all defs.  This computes
   874 // a number that increases as we approach the beginning of the routine.
   875 void PhaseCFG::partial_latency_of_defs(Node *n) {
   876   // Set the latency for this instruction
   877 #ifndef PRODUCT
   878   if (trace_opto_pipelining()) {
   879     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
   880     dump();
   881   }
   882 #endif
   884   if (n->is_Proj()) {
   885     n = n->in(0);
   886   }
   888   if (n->is_Root()) {
   889     return;
   890   }
   892   uint nlen = n->len();
   893   uint use_latency = get_latency_for_node(n);
   894   uint use_pre_order = get_block_for_node(n)->_pre_order;
   896   for (uint j = 0; j < nlen; j++) {
   897     Node *def = n->in(j);
   899     if (!def || def == n) {
   900       continue;
   901     }
   903     // Walk backwards thru projections
   904     if (def->is_Proj()) {
   905       def = def->in(0);
   906     }
   908 #ifndef PRODUCT
   909     if (trace_opto_pipelining()) {
   910       tty->print("#    in(%2d): ", j);
   911       def->dump();
   912     }
   913 #endif
   915     // If the defining block is not known, assume it is ok
   916     Block *def_block = get_block_for_node(def);
   917     uint def_pre_order = def_block ? def_block->_pre_order : 0;
   919     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
   920       continue;
   921     }
   923     uint delta_latency = n->latency(j);
   924     uint current_latency = delta_latency + use_latency;
   926     if (get_latency_for_node(def) < current_latency) {
   927       set_latency_for_node(def, current_latency);
   928     }
   930 #ifndef PRODUCT
   931     if (trace_opto_pipelining()) {
   932       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
   933     }
   934 #endif
   935   }
   936 }
   938 //------------------------------latency_from_use-------------------------------
   939 // Compute the latency of a specific use
   940 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
   941   // If self-reference, return no latency
   942   if (use == n || use->is_Root()) {
   943     return 0;
   944   }
   946   uint def_pre_order = get_block_for_node(def)->_pre_order;
   947   uint latency = 0;
   949   // If the use is not a projection, then it is simple...
   950   if (!use->is_Proj()) {
   951 #ifndef PRODUCT
   952     if (trace_opto_pipelining()) {
   953       tty->print("#    out(): ");
   954       use->dump();
   955     }
   956 #endif
   958     uint use_pre_order = get_block_for_node(use)->_pre_order;
   960     if (use_pre_order < def_pre_order)
   961       return 0;
   963     if (use_pre_order == def_pre_order && use->is_Phi())
   964       return 0;
   966     uint nlen = use->len();
   967     uint nl = get_latency_for_node(use);
   969     for ( uint j=0; j<nlen; j++ ) {
   970       if (use->in(j) == n) {
   971         // Change this if we want local latencies
   972         uint ul = use->latency(j);
   973         uint  l = ul + nl;
   974         if (latency < l) latency = l;
   975 #ifndef PRODUCT
   976         if (trace_opto_pipelining()) {
   977           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
   978                         nl, j, ul, l, latency);
   979         }
   980 #endif
   981       }
   982     }
   983   } else {
   984     // This is a projection, just grab the latency of the use(s)
   985     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
   986       uint l = latency_from_use(use, def, use->fast_out(j));
   987       if (latency < l) latency = l;
   988     }
   989   }
   991   return latency;
   992 }
   994 //------------------------------latency_from_uses------------------------------
   995 // Compute the latency of this instruction relative to all of it's uses.
   996 // This computes a number that increases as we approach the beginning of the
   997 // routine.
   998 void PhaseCFG::latency_from_uses(Node *n) {
   999   // Set the latency for this instruction
  1000 #ifndef PRODUCT
  1001   if (trace_opto_pipelining()) {
  1002     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
  1003     dump();
  1005 #endif
  1006   uint latency=0;
  1007   const Node *def = n->is_Proj() ? n->in(0): n;
  1009   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1010     uint l = latency_from_use(n, def, n->fast_out(i));
  1012     if (latency < l) latency = l;
  1015   set_latency_for_node(n, latency);
  1018 //------------------------------hoist_to_cheaper_block-------------------------
  1019 // Pick a block for node self, between early and LCA, that is a cheaper
  1020 // alternative to LCA.
  1021 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
  1022   const double delta = 1+PROB_UNLIKELY_MAG(4);
  1023   Block* least       = LCA;
  1024   double least_freq  = least->_freq;
  1025   uint target        = get_latency_for_node(self);
  1026   uint start_latency = get_latency_for_node(LCA->head());
  1027   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
  1028   bool in_latency    = (target <= start_latency);
  1029   const Block* root_block = get_block_for_node(_root);
  1031   // Turn off latency scheduling if scheduling is just plain off
  1032   if (!C->do_scheduling())
  1033     in_latency = true;
  1035   // Do not hoist (to cover latency) instructions which target a
  1036   // single register.  Hoisting stretches the live range of the
  1037   // single register and may force spilling.
  1038   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1039   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
  1040     in_latency = true;
  1042 #ifndef PRODUCT
  1043   if (trace_opto_pipelining()) {
  1044     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
  1045     self->dump();
  1046     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1047       LCA->_pre_order,
  1048       LCA->head()->_idx,
  1049       start_latency,
  1050       LCA->get_node(LCA->end_idx())->_idx,
  1051       end_latency,
  1052       least_freq);
  1054 #endif
  1056   int cand_cnt = 0;  // number of candidates tried
  1058   // Walk up the dominator tree from LCA (Lowest common ancestor) to
  1059   // the earliest legal location.  Capture the least execution frequency.
  1060   while (LCA != early) {
  1061     LCA = LCA->_idom;         // Follow up the dominator tree
  1063     if (LCA == NULL) {
  1064       // Bailout without retry
  1065       C->record_method_not_compilable("late schedule failed: LCA == NULL");
  1066       return least;
  1069     // Don't hoist machine instructions to the root basic block
  1070     if (mach && LCA == root_block)
  1071       break;
  1073     uint start_lat = get_latency_for_node(LCA->head());
  1074     uint end_idx   = LCA->end_idx();
  1075     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
  1076     double LCA_freq = LCA->_freq;
  1077 #ifndef PRODUCT
  1078     if (trace_opto_pipelining()) {
  1079       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
  1080         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
  1082 #endif
  1083     cand_cnt++;
  1084     if (LCA_freq < least_freq              || // Better Frequency
  1085         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
  1086          (!StressGCM                    &&    // Otherwise, choose with latency
  1087           !in_latency                   &&    // No block containing latency
  1088           LCA_freq < least_freq * delta &&    // No worse frequency
  1089           target >= end_lat             &&    // within latency range
  1090           !self->is_iteratively_computed() )  // But don't hoist IV increments
  1091              // because they may end up above other uses of their phi forcing
  1092              // their result register to be different from their input.
  1093        ) {
  1094       least = LCA;            // Found cheaper block
  1095       least_freq = LCA_freq;
  1096       start_latency = start_lat;
  1097       end_latency = end_lat;
  1098       if (target <= start_lat)
  1099         in_latency = true;
  1103 #ifndef PRODUCT
  1104   if (trace_opto_pipelining()) {
  1105     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
  1106       least->_pre_order, start_latency, least_freq);
  1108 #endif
  1110   // See if the latency needs to be updated
  1111   if (target < end_latency) {
  1112 #ifndef PRODUCT
  1113     if (trace_opto_pipelining()) {
  1114       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
  1116 #endif
  1117     set_latency_for_node(self, end_latency);
  1118     partial_latency_of_defs(self);
  1121   return least;
  1125 //------------------------------schedule_late-----------------------------------
  1126 // Now schedule all codes as LATE as possible.  This is the LCA in the
  1127 // dominator tree of all USES of a value.  Pick the block with the least
  1128 // loop nesting depth that is lowest in the dominator tree.
  1129 extern const char must_clone[];
  1130 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
  1131 #ifndef PRODUCT
  1132   if (trace_opto_pipelining())
  1133     tty->print("\n#---- schedule_late ----\n");
  1134 #endif
  1136   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
  1137   Node *self;
  1139   // Walk over all the nodes from last to first
  1140   while (self = iter.next()) {
  1141     Block* early = get_block_for_node(self); // Earliest legal placement
  1143     if (self->is_top()) {
  1144       // Top node goes in bb #2 with other constants.
  1145       // It must be special-cased, because it has no out edges.
  1146       early->add_inst(self);
  1147       continue;
  1150     // No uses, just terminate
  1151     if (self->outcnt() == 0) {
  1152       assert(self->is_MachProj(), "sanity");
  1153       continue;                   // Must be a dead machine projection
  1156     // If node is pinned in the block, then no scheduling can be done.
  1157     if( self->pinned() )          // Pinned in block?
  1158       continue;
  1160     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  1161     if (mach) {
  1162       switch (mach->ideal_Opcode()) {
  1163       case Op_CreateEx:
  1164         // Don't move exception creation
  1165         early->add_inst(self);
  1166         continue;
  1167         break;
  1168       case Op_CheckCastPP:
  1169         // Don't move CheckCastPP nodes away from their input, if the input
  1170         // is a rawptr (5071820).
  1171         Node *def = self->in(1);
  1172         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
  1173           early->add_inst(self);
  1174 #ifdef ASSERT
  1175           _raw_oops.push(def);
  1176 #endif
  1177           continue;
  1179         break;
  1183     // Gather LCA of all uses
  1184     Block *LCA = NULL;
  1186       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
  1187         // For all uses, find LCA
  1188         Node* use = self->fast_out(i);
  1189         LCA = raise_LCA_above_use(LCA, use, self, this);
  1191     }  // (Hide defs of imax, i from rest of block.)
  1193     // Place temps in the block of their use.  This isn't a
  1194     // requirement for correctness but it reduces useless
  1195     // interference between temps and other nodes.
  1196     if (mach != NULL && mach->is_MachTemp()) {
  1197       map_node_to_block(self, LCA);
  1198       LCA->add_inst(self);
  1199       continue;
  1202     // Check if 'self' could be anti-dependent on memory
  1203     if (self->needs_anti_dependence_check()) {
  1204       // Hoist LCA above possible-defs and insert anti-dependences to
  1205       // defs in new LCA block.
  1206       LCA = insert_anti_dependences(LCA, self);
  1209     if (early->_dom_depth > LCA->_dom_depth) {
  1210       // Somehow the LCA has moved above the earliest legal point.
  1211       // (One way this can happen is via memory_early_block.)
  1212       if (C->subsume_loads() == true && !C->failing()) {
  1213         // Retry with subsume_loads == false
  1214         // If this is the first failure, the sentinel string will "stick"
  1215         // to the Compile object, and the C2Compiler will see it and retry.
  1216         C->record_failure(C2Compiler::retry_no_subsuming_loads());
  1217       } else {
  1218         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
  1219         C->record_method_not_compilable("late schedule failed: incorrect graph");
  1221       return;
  1224     // If there is no opportunity to hoist, then we're done.
  1225     // In stress mode, try to hoist even the single operations.
  1226     bool try_to_hoist = StressGCM || (LCA != early);
  1228     // Must clone guys stay next to use; no hoisting allowed.
  1229     // Also cannot hoist guys that alter memory or are otherwise not
  1230     // allocatable (hoisting can make a value live longer, leading to
  1231     // anti and output dependency problems which are normally resolved
  1232     // by the register allocator giving everyone a different register).
  1233     if (mach != NULL && must_clone[mach->ideal_Opcode()])
  1234       try_to_hoist = false;
  1236     Block* late = NULL;
  1237     if (try_to_hoist) {
  1238       // Now find the block with the least execution frequency.
  1239       // Start at the latest schedule and work up to the earliest schedule
  1240       // in the dominator tree.  Thus the Node will dominate all its uses.
  1241       late = hoist_to_cheaper_block(LCA, early, self);
  1242     } else {
  1243       // Just use the LCA of the uses.
  1244       late = LCA;
  1247     // Put the node into target block
  1248     schedule_node_into_block(self, late);
  1250 #ifdef ASSERT
  1251     if (self->needs_anti_dependence_check()) {
  1252       // since precedence edges are only inserted when we're sure they
  1253       // are needed make sure that after placement in a block we don't
  1254       // need any new precedence edges.
  1255       verify_anti_dependences(late, self);
  1257 #endif
  1258   } // Loop until all nodes have been visited
  1260 } // end ScheduleLate
  1262 //------------------------------GlobalCodeMotion-------------------------------
  1263 void PhaseCFG::global_code_motion() {
  1264   ResourceMark rm;
  1266 #ifndef PRODUCT
  1267   if (trace_opto_pipelining()) {
  1268     tty->print("\n---- Start GlobalCodeMotion ----\n");
  1270 #endif
  1272   // Initialize the node to block mapping for things on the proj_list
  1273   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
  1274     unmap_node_from_block(_matcher.get_projection(i));
  1277   // Set the basic block for Nodes pinned into blocks
  1278   Arena* arena = Thread::current()->resource_area();
  1279   VectorSet visited(arena);
  1280   schedule_pinned_nodes(visited);
  1282   // Find the earliest Block any instruction can be placed in.  Some
  1283   // instructions are pinned into Blocks.  Unpinned instructions can
  1284   // appear in last block in which all their inputs occur.
  1285   visited.Clear();
  1286   Node_List stack(arena);
  1287   // Pre-grow the list
  1288   stack.map((C->unique() >> 1) + 16, NULL);
  1289   if (!schedule_early(visited, stack)) {
  1290     // Bailout without retry
  1291     C->record_method_not_compilable("early schedule failed");
  1292     return;
  1295   // Build Def-Use edges.
  1296   // Compute the latency information (via backwards walk) for all the
  1297   // instructions in the graph
  1298   _node_latency = new GrowableArray<uint>(); // resource_area allocation
  1300   if (C->do_scheduling()) {
  1301     compute_latencies_backwards(visited, stack);
  1304   // Now schedule all codes as LATE as possible.  This is the LCA in the
  1305   // dominator tree of all USES of a value.  Pick the block with the least
  1306   // loop nesting depth that is lowest in the dominator tree.
  1307   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  1308   schedule_late(visited, stack);
  1309   if (C->failing()) {
  1310     // schedule_late fails only when graph is incorrect.
  1311     assert(!VerifyGraphEdges, "verification should have failed");
  1312     return;
  1315 #ifndef PRODUCT
  1316   if (trace_opto_pipelining()) {
  1317     tty->print("\n---- Detect implicit null checks ----\n");
  1319 #endif
  1321   // Detect implicit-null-check opportunities.  Basically, find NULL checks
  1322   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  1323   // I can generate a memory op if there is not one nearby.
  1324   if (C->is_method_compilation()) {
  1325     // By reversing the loop direction we get a very minor gain on mpegaudio.
  1326     // Feel free to revert to a forward loop for clarity.
  1327     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
  1328     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
  1329       Node* proj = _matcher._null_check_tests[i];
  1330       Node* val  = _matcher._null_check_tests[i + 1];
  1331       Block* block = get_block_for_node(proj);
  1332       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
  1333       // The implicit_null_check will only perform the transformation
  1334       // if the null branch is truly uncommon, *and* it leads to an
  1335       // uncommon trap.  Combined with the too_many_traps guards
  1336       // above, this prevents SEGV storms reported in 6366351,
  1337       // by recompiling offending methods without this optimization.
  1341 #ifndef PRODUCT
  1342   if (trace_opto_pipelining()) {
  1343     tty->print("\n---- Start Local Scheduling ----\n");
  1345 #endif
  1347   // Schedule locally.  Right now a simple topological sort.
  1348   // Later, do a real latency aware scheduler.
  1349   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
  1350   visited.Clear();
  1351   for (uint i = 0; i < number_of_blocks(); i++) {
  1352     Block* block = get_block(i);
  1353     if (!schedule_local(block, ready_cnt, visited)) {
  1354       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  1355         C->record_method_not_compilable("local schedule failed");
  1357       return;
  1361   // If we inserted any instructions between a Call and his CatchNode,
  1362   // clone the instructions on all paths below the Catch.
  1363   for (uint i = 0; i < number_of_blocks(); i++) {
  1364     Block* block = get_block(i);
  1365     call_catch_cleanup(block);
  1368 #ifndef PRODUCT
  1369   if (trace_opto_pipelining()) {
  1370     tty->print("\n---- After GlobalCodeMotion ----\n");
  1371     for (uint i = 0; i < number_of_blocks(); i++) {
  1372       Block* block = get_block(i);
  1373       block->dump();
  1376 #endif
  1377   // Dead.
  1378   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
  1381 bool PhaseCFG::do_global_code_motion() {
  1383   build_dominator_tree();
  1384   if (C->failing()) {
  1385     return false;
  1388   NOT_PRODUCT( C->verify_graph_edges(); )
  1390   estimate_block_frequency();
  1392   global_code_motion();
  1394   if (C->failing()) {
  1395     return false;
  1398   return true;
  1401 //------------------------------Estimate_Block_Frequency-----------------------
  1402 // Estimate block frequencies based on IfNode probabilities.
  1403 void PhaseCFG::estimate_block_frequency() {
  1405   // Force conditional branches leading to uncommon traps to be unlikely,
  1406   // not because we get to the uncommon_trap with less relative frequency,
  1407   // but because an uncommon_trap typically causes a deopt, so we only get
  1408   // there once.
  1409   if (C->do_freq_based_layout()) {
  1410     Block_List worklist;
  1411     Block* root_blk = get_block(0);
  1412     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1413       Block *pb = get_block_for_node(root_blk->pred(i));
  1414       if (pb->has_uncommon_code()) {
  1415         worklist.push(pb);
  1418     while (worklist.size() > 0) {
  1419       Block* uct = worklist.pop();
  1420       if (uct == get_root_block()) {
  1421         continue;
  1423       for (uint i = 1; i < uct->num_preds(); i++) {
  1424         Block *pb = get_block_for_node(uct->pred(i));
  1425         if (pb->_num_succs == 1) {
  1426           worklist.push(pb);
  1427         } else if (pb->num_fall_throughs() == 2) {
  1428           pb->update_uncommon_branch(uct);
  1434   // Create the loop tree and calculate loop depth.
  1435   _root_loop = create_loop_tree();
  1436   _root_loop->compute_loop_depth(0);
  1438   // Compute block frequency of each block, relative to a single loop entry.
  1439   _root_loop->compute_freq();
  1441   // Adjust all frequencies to be relative to a single method entry
  1442   _root_loop->_freq = 1.0;
  1443   _root_loop->scale_freq();
  1445   // Save outmost loop frequency for LRG frequency threshold
  1446   _outer_loop_frequency = _root_loop->outer_loop_freq();
  1448   // force paths ending at uncommon traps to be infrequent
  1449   if (!C->do_freq_based_layout()) {
  1450     Block_List worklist;
  1451     Block* root_blk = get_block(0);
  1452     for (uint i = 1; i < root_blk->num_preds(); i++) {
  1453       Block *pb = get_block_for_node(root_blk->pred(i));
  1454       if (pb->has_uncommon_code()) {
  1455         worklist.push(pb);
  1458     while (worklist.size() > 0) {
  1459       Block* uct = worklist.pop();
  1460       uct->_freq = PROB_MIN;
  1461       for (uint i = 1; i < uct->num_preds(); i++) {
  1462         Block *pb = get_block_for_node(uct->pred(i));
  1463         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
  1464           worklist.push(pb);
  1470 #ifdef ASSERT
  1471   for (uint i = 0; i < number_of_blocks(); i++) {
  1472     Block* b = get_block(i);
  1473     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
  1475 #endif
  1477 #ifndef PRODUCT
  1478   if (PrintCFGBlockFreq) {
  1479     tty->print_cr("CFG Block Frequencies");
  1480     _root_loop->dump_tree();
  1481     if (Verbose) {
  1482       tty->print_cr("PhaseCFG dump");
  1483       dump();
  1484       tty->print_cr("Node dump");
  1485       _root->dump(99999);
  1488 #endif
  1491 //----------------------------create_loop_tree--------------------------------
  1492 // Create a loop tree from the CFG
  1493 CFGLoop* PhaseCFG::create_loop_tree() {
  1495 #ifdef ASSERT
  1496   assert(get_block(0) == get_root_block(), "first block should be root block");
  1497   for (uint i = 0; i < number_of_blocks(); i++) {
  1498     Block* block = get_block(i);
  1499     // Check that _loop field are clear...we could clear them if not.
  1500     assert(block->_loop == NULL, "clear _loop expected");
  1501     // Sanity check that the RPO numbering is reflected in the _blocks array.
  1502     // It doesn't have to be for the loop tree to be built, but if it is not,
  1503     // then the blocks have been reordered since dom graph building...which
  1504     // may question the RPO numbering
  1505     assert(block->_rpo == i, "unexpected reverse post order number");
  1507 #endif
  1509   int idct = 0;
  1510   CFGLoop* root_loop = new CFGLoop(idct++);
  1512   Block_List worklist;
  1514   // Assign blocks to loops
  1515   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
  1516     Block* block = get_block(i);
  1518     if (block->head()->is_Loop()) {
  1519       Block* loop_head = block;
  1520       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1521       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
  1522       Block* tail = get_block_for_node(tail_n);
  1524       // Defensively filter out Loop nodes for non-single-entry loops.
  1525       // For all reasonable loops, the head occurs before the tail in RPO.
  1526       if (i <= tail->_rpo) {
  1528         // The tail and (recursive) predecessors of the tail
  1529         // are made members of a new loop.
  1531         assert(worklist.size() == 0, "nonempty worklist");
  1532         CFGLoop* nloop = new CFGLoop(idct++);
  1533         assert(loop_head->_loop == NULL, "just checking");
  1534         loop_head->_loop = nloop;
  1535         // Add to nloop so push_pred() will skip over inner loops
  1536         nloop->add_member(loop_head);
  1537         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
  1539         while (worklist.size() > 0) {
  1540           Block* member = worklist.pop();
  1541           if (member != loop_head) {
  1542             for (uint j = 1; j < member->num_preds(); j++) {
  1543               nloop->push_pred(member, j, worklist, this);
  1551   // Create a member list for each loop consisting
  1552   // of both blocks and (immediate child) loops.
  1553   for (uint i = 0; i < number_of_blocks(); i++) {
  1554     Block* block = get_block(i);
  1555     CFGLoop* lp = block->_loop;
  1556     if (lp == NULL) {
  1557       // Not assigned to a loop. Add it to the method's pseudo loop.
  1558       block->_loop = root_loop;
  1559       lp = root_loop;
  1561     if (lp == root_loop || block != lp->head()) { // loop heads are already members
  1562       lp->add_member(block);
  1564     if (lp != root_loop) {
  1565       if (lp->parent() == NULL) {
  1566         // Not a nested loop. Make it a child of the method's pseudo loop.
  1567         root_loop->add_nested_loop(lp);
  1569       if (block == lp->head()) {
  1570         // Add nested loop to member list of parent loop.
  1571         lp->parent()->add_member(lp);
  1576   return root_loop;
  1579 //------------------------------push_pred--------------------------------------
  1580 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
  1581   Node* pred_n = blk->pred(i);
  1582   Block* pred = cfg->get_block_for_node(pred_n);
  1583   CFGLoop *pred_loop = pred->_loop;
  1584   if (pred_loop == NULL) {
  1585     // Filter out blocks for non-single-entry loops.
  1586     // For all reasonable loops, the head occurs before the tail in RPO.
  1587     if (pred->_rpo > head()->_rpo) {
  1588       pred->_loop = this;
  1589       worklist.push(pred);
  1591   } else if (pred_loop != this) {
  1592     // Nested loop.
  1593     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
  1594       pred_loop = pred_loop->_parent;
  1596     // Make pred's loop be a child
  1597     if (pred_loop->_parent == NULL) {
  1598       add_nested_loop(pred_loop);
  1599       // Continue with loop entry predecessor.
  1600       Block* pred_head = pred_loop->head();
  1601       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
  1602       assert(pred_head != head(), "loop head in only one loop");
  1603       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
  1604     } else {
  1605       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
  1610 //------------------------------add_nested_loop--------------------------------
  1611 // Make cl a child of the current loop in the loop tree.
  1612 void CFGLoop::add_nested_loop(CFGLoop* cl) {
  1613   assert(_parent == NULL, "no parent yet");
  1614   assert(cl != this, "not my own parent");
  1615   cl->_parent = this;
  1616   CFGLoop* ch = _child;
  1617   if (ch == NULL) {
  1618     _child = cl;
  1619   } else {
  1620     while (ch->_sibling != NULL) { ch = ch->_sibling; }
  1621     ch->_sibling = cl;
  1625 //------------------------------compute_loop_depth-----------------------------
  1626 // Store the loop depth in each CFGLoop object.
  1627 // Recursively walk the children to do the same for them.
  1628 void CFGLoop::compute_loop_depth(int depth) {
  1629   _depth = depth;
  1630   CFGLoop* ch = _child;
  1631   while (ch != NULL) {
  1632     ch->compute_loop_depth(depth + 1);
  1633     ch = ch->_sibling;
  1637 //------------------------------compute_freq-----------------------------------
  1638 // Compute the frequency of each block and loop, relative to a single entry
  1639 // into the dominating loop head.
  1640 void CFGLoop::compute_freq() {
  1641   // Bottom up traversal of loop tree (visit inner loops first.)
  1642   // Set loop head frequency to 1.0, then transitively
  1643   // compute frequency for all successors in the loop,
  1644   // as well as for each exit edge.  Inner loops are
  1645   // treated as single blocks with loop exit targets
  1646   // as the successor blocks.
  1648   // Nested loops first
  1649   CFGLoop* ch = _child;
  1650   while (ch != NULL) {
  1651     ch->compute_freq();
  1652     ch = ch->_sibling;
  1654   assert (_members.length() > 0, "no empty loops");
  1655   Block* hd = head();
  1656   hd->_freq = 1.0f;
  1657   for (int i = 0; i < _members.length(); i++) {
  1658     CFGElement* s = _members.at(i);
  1659     float freq = s->_freq;
  1660     if (s->is_block()) {
  1661       Block* b = s->as_Block();
  1662       for (uint j = 0; j < b->_num_succs; j++) {
  1663         Block* sb = b->_succs[j];
  1664         update_succ_freq(sb, freq * b->succ_prob(j));
  1666     } else {
  1667       CFGLoop* lp = s->as_CFGLoop();
  1668       assert(lp->_parent == this, "immediate child");
  1669       for (int k = 0; k < lp->_exits.length(); k++) {
  1670         Block* eb = lp->_exits.at(k).get_target();
  1671         float prob = lp->_exits.at(k).get_prob();
  1672         update_succ_freq(eb, freq * prob);
  1677   // For all loops other than the outer, "method" loop,
  1678   // sum and normalize the exit probability. The "method" loop
  1679   // should keep the initial exit probability of 1, so that
  1680   // inner blocks do not get erroneously scaled.
  1681   if (_depth != 0) {
  1682     // Total the exit probabilities for this loop.
  1683     float exits_sum = 0.0f;
  1684     for (int i = 0; i < _exits.length(); i++) {
  1685       exits_sum += _exits.at(i).get_prob();
  1688     // Normalize the exit probabilities. Until now, the
  1689     // probabilities estimate the possibility of exit per
  1690     // a single loop iteration; afterward, they estimate
  1691     // the probability of exit per loop entry.
  1692     for (int i = 0; i < _exits.length(); i++) {
  1693       Block* et = _exits.at(i).get_target();
  1694       float new_prob = 0.0f;
  1695       if (_exits.at(i).get_prob() > 0.0f) {
  1696         new_prob = _exits.at(i).get_prob() / exits_sum;
  1698       BlockProbPair bpp(et, new_prob);
  1699       _exits.at_put(i, bpp);
  1702     // Save the total, but guard against unreasonable probability,
  1703     // as the value is used to estimate the loop trip count.
  1704     // An infinite trip count would blur relative block
  1705     // frequencies.
  1706     if (exits_sum > 1.0f) exits_sum = 1.0;
  1707     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
  1708     _exit_prob = exits_sum;
  1712 //------------------------------succ_prob-------------------------------------
  1713 // Determine the probability of reaching successor 'i' from the receiver block.
  1714 float Block::succ_prob(uint i) {
  1715   int eidx = end_idx();
  1716   Node *n = get_node(eidx);  // Get ending Node
  1718   int op = n->Opcode();
  1719   if (n->is_Mach()) {
  1720     if (n->is_MachNullCheck()) {
  1721       // Can only reach here if called after lcm. The original Op_If is gone,
  1722       // so we attempt to infer the probability from one or both of the
  1723       // successor blocks.
  1724       assert(_num_succs == 2, "expecting 2 successors of a null check");
  1725       // If either successor has only one predecessor, then the
  1726       // probability estimate can be derived using the
  1727       // relative frequency of the successor and this block.
  1728       if (_succs[i]->num_preds() == 2) {
  1729         return _succs[i]->_freq / _freq;
  1730       } else if (_succs[1-i]->num_preds() == 2) {
  1731         return 1 - (_succs[1-i]->_freq / _freq);
  1732       } else {
  1733         // Estimate using both successor frequencies
  1734         float freq = _succs[i]->_freq;
  1735         return freq / (freq + _succs[1-i]->_freq);
  1738     op = n->as_Mach()->ideal_Opcode();
  1742   // Switch on branch type
  1743   switch( op ) {
  1744   case Op_CountedLoopEnd:
  1745   case Op_If: {
  1746     assert (i < 2, "just checking");
  1747     // Conditionals pass on only part of their frequency
  1748     float prob  = n->as_MachIf()->_prob;
  1749     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
  1750     // If succ[i] is the FALSE branch, invert path info
  1751     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
  1752       return 1.0f - prob; // not taken
  1753     } else {
  1754       return prob; // taken
  1758   case Op_Jump:
  1759     // Divide the frequency between all successors evenly
  1760     return 1.0f/_num_succs;
  1762   case Op_Catch: {
  1763     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1764     if (ci->_con == CatchProjNode::fall_through_index) {
  1765       // Fall-thru path gets the lion's share.
  1766       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
  1767     } else {
  1768       // Presume exceptional paths are equally unlikely
  1769       return PROB_UNLIKELY_MAG(5);
  1773   case Op_Root:
  1774   case Op_Goto:
  1775     // Pass frequency straight thru to target
  1776     return 1.0f;
  1778   case Op_NeverBranch:
  1779     return 0.0f;
  1781   case Op_TailCall:
  1782   case Op_TailJump:
  1783   case Op_Return:
  1784   case Op_Halt:
  1785   case Op_Rethrow:
  1786     // Do not push out freq to root block
  1787     return 0.0f;
  1789   default:
  1790     ShouldNotReachHere();
  1793   return 0.0f;
  1796 //------------------------------num_fall_throughs-----------------------------
  1797 // Return the number of fall-through candidates for a block
  1798 int Block::num_fall_throughs() {
  1799   int eidx = end_idx();
  1800   Node *n = get_node(eidx);  // Get ending Node
  1802   int op = n->Opcode();
  1803   if (n->is_Mach()) {
  1804     if (n->is_MachNullCheck()) {
  1805       // In theory, either side can fall-thru, for simplicity sake,
  1806       // let's say only the false branch can now.
  1807       return 1;
  1809     op = n->as_Mach()->ideal_Opcode();
  1812   // Switch on branch type
  1813   switch( op ) {
  1814   case Op_CountedLoopEnd:
  1815   case Op_If:
  1816     return 2;
  1818   case Op_Root:
  1819   case Op_Goto:
  1820     return 1;
  1822   case Op_Catch: {
  1823     for (uint i = 0; i < _num_succs; i++) {
  1824       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1825       if (ci->_con == CatchProjNode::fall_through_index) {
  1826         return 1;
  1829     return 0;
  1832   case Op_Jump:
  1833   case Op_NeverBranch:
  1834   case Op_TailCall:
  1835   case Op_TailJump:
  1836   case Op_Return:
  1837   case Op_Halt:
  1838   case Op_Rethrow:
  1839     return 0;
  1841   default:
  1842     ShouldNotReachHere();
  1845   return 0;
  1848 //------------------------------succ_fall_through-----------------------------
  1849 // Return true if a specific successor could be fall-through target.
  1850 bool Block::succ_fall_through(uint i) {
  1851   int eidx = end_idx();
  1852   Node *n = get_node(eidx);  // Get ending Node
  1854   int op = n->Opcode();
  1855   if (n->is_Mach()) {
  1856     if (n->is_MachNullCheck()) {
  1857       // In theory, either side can fall-thru, for simplicity sake,
  1858       // let's say only the false branch can now.
  1859       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
  1861     op = n->as_Mach()->ideal_Opcode();
  1864   // Switch on branch type
  1865   switch( op ) {
  1866   case Op_CountedLoopEnd:
  1867   case Op_If:
  1868   case Op_Root:
  1869   case Op_Goto:
  1870     return true;
  1872   case Op_Catch: {
  1873     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
  1874     return ci->_con == CatchProjNode::fall_through_index;
  1877   case Op_Jump:
  1878   case Op_NeverBranch:
  1879   case Op_TailCall:
  1880   case Op_TailJump:
  1881   case Op_Return:
  1882   case Op_Halt:
  1883   case Op_Rethrow:
  1884     return false;
  1886   default:
  1887     ShouldNotReachHere();
  1890   return false;
  1893 //------------------------------update_uncommon_branch------------------------
  1894 // Update the probability of a two-branch to be uncommon
  1895 void Block::update_uncommon_branch(Block* ub) {
  1896   int eidx = end_idx();
  1897   Node *n = get_node(eidx);  // Get ending Node
  1899   int op = n->as_Mach()->ideal_Opcode();
  1901   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
  1902   assert(num_fall_throughs() == 2, "must be a two way branch block");
  1904   // Which successor is ub?
  1905   uint s;
  1906   for (s = 0; s <_num_succs; s++) {
  1907     if (_succs[s] == ub) break;
  1909   assert(s < 2, "uncommon successor must be found");
  1911   // If ub is the true path, make the proability small, else
  1912   // ub is the false path, and make the probability large
  1913   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
  1915   // Get existing probability
  1916   float p = n->as_MachIf()->_prob;
  1918   if (invert) p = 1.0 - p;
  1919   if (p > PROB_MIN) {
  1920     p = PROB_MIN;
  1922   if (invert) p = 1.0 - p;
  1924   n->as_MachIf()->_prob = p;
  1927 //------------------------------update_succ_freq-------------------------------
  1928 // Update the appropriate frequency associated with block 'b', a successor of
  1929 // a block in this loop.
  1930 void CFGLoop::update_succ_freq(Block* b, float freq) {
  1931   if (b->_loop == this) {
  1932     if (b == head()) {
  1933       // back branch within the loop
  1934       // Do nothing now, the loop carried frequency will be
  1935       // adjust later in scale_freq().
  1936     } else {
  1937       // simple branch within the loop
  1938       b->_freq += freq;
  1940   } else if (!in_loop_nest(b)) {
  1941     // branch is exit from this loop
  1942     BlockProbPair bpp(b, freq);
  1943     _exits.append(bpp);
  1944   } else {
  1945     // branch into nested loop
  1946     CFGLoop* ch = b->_loop;
  1947     ch->_freq += freq;
  1951 //------------------------------in_loop_nest-----------------------------------
  1952 // Determine if block b is in the receiver's loop nest.
  1953 bool CFGLoop::in_loop_nest(Block* b) {
  1954   int depth = _depth;
  1955   CFGLoop* b_loop = b->_loop;
  1956   int b_depth = b_loop->_depth;
  1957   if (depth == b_depth) {
  1958     return true;
  1960   while (b_depth > depth) {
  1961     b_loop = b_loop->_parent;
  1962     b_depth = b_loop->_depth;
  1964   return b_loop == this;
  1967 //------------------------------scale_freq-------------------------------------
  1968 // Scale frequency of loops and blocks by trip counts from outer loops
  1969 // Do a top down traversal of loop tree (visit outer loops first.)
  1970 void CFGLoop::scale_freq() {
  1971   float loop_freq = _freq * trip_count();
  1972   _freq = loop_freq;
  1973   for (int i = 0; i < _members.length(); i++) {
  1974     CFGElement* s = _members.at(i);
  1975     float block_freq = s->_freq * loop_freq;
  1976     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
  1977       block_freq = MIN_BLOCK_FREQUENCY;
  1978     s->_freq = block_freq;
  1980   CFGLoop* ch = _child;
  1981   while (ch != NULL) {
  1982     ch->scale_freq();
  1983     ch = ch->_sibling;
  1987 // Frequency of outer loop
  1988 float CFGLoop::outer_loop_freq() const {
  1989   if (_child != NULL) {
  1990     return _child->_freq;
  1992   return _freq;
  1995 #ifndef PRODUCT
  1996 //------------------------------dump_tree--------------------------------------
  1997 void CFGLoop::dump_tree() const {
  1998   dump();
  1999   if (_child != NULL)   _child->dump_tree();
  2000   if (_sibling != NULL) _sibling->dump_tree();
  2003 //------------------------------dump-------------------------------------------
  2004 void CFGLoop::dump() const {
  2005   for (int i = 0; i < _depth; i++) tty->print("   ");
  2006   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
  2007              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  2008   for (int i = 0; i < _depth; i++) tty->print("   ");
  2009   tty->print("         members:");
  2010   int k = 0;
  2011   for (int i = 0; i < _members.length(); i++) {
  2012     if (k++ >= 6) {
  2013       tty->print("\n              ");
  2014       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  2015       k = 0;
  2017     CFGElement *s = _members.at(i);
  2018     if (s->is_block()) {
  2019       Block *b = s->as_Block();
  2020       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
  2021     } else {
  2022       CFGLoop* lp = s->as_CFGLoop();
  2023       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
  2026   tty->print("\n");
  2027   for (int i = 0; i < _depth; i++) tty->print("   ");
  2028   tty->print("         exits:  ");
  2029   k = 0;
  2030   for (int i = 0; i < _exits.length(); i++) {
  2031     if (k++ >= 7) {
  2032       tty->print("\n              ");
  2033       for (int j = 0; j < _depth+1; j++) tty->print("   ");
  2034       k = 0;
  2036     Block *blk = _exits.at(i).get_target();
  2037     float prob = _exits.at(i).get_prob();
  2038     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  2040   tty->print("\n");
  2042 #endif

mercurial