src/share/vm/utilities/globalDefinitions.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1746
2a1472c30599
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // This file holds all globally used constants & types, class (forward)
    26 // declarations and a few frequently used utility functions.
    28 //----------------------------------------------------------------------------------------------------
    29 // Constants
    31 const int LogBytesPerShort   = 1;
    32 const int LogBytesPerInt     = 2;
    33 #ifdef _LP64
    34 const int LogBytesPerWord    = 3;
    35 #else
    36 const int LogBytesPerWord    = 2;
    37 #endif
    38 const int LogBytesPerLong    = 3;
    40 const int BytesPerShort      = 1 << LogBytesPerShort;
    41 const int BytesPerInt        = 1 << LogBytesPerInt;
    42 const int BytesPerWord       = 1 << LogBytesPerWord;
    43 const int BytesPerLong       = 1 << LogBytesPerLong;
    45 const int LogBitsPerByte     = 3;
    46 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    47 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    48 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    49 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    51 const int BitsPerByte        = 1 << LogBitsPerByte;
    52 const int BitsPerShort       = 1 << LogBitsPerShort;
    53 const int BitsPerInt         = 1 << LogBitsPerInt;
    54 const int BitsPerWord        = 1 << LogBitsPerWord;
    55 const int BitsPerLong        = 1 << LogBitsPerLong;
    57 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    58 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    60 const int WordsPerLong       = 2;       // Number of stack entries for longs
    62 const int oopSize            = sizeof(char*); // Full-width oop
    63 extern int heapOopSize;                       // Oop within a java object
    64 const int wordSize           = sizeof(char*);
    65 const int longSize           = sizeof(jlong);
    66 const int jintSize           = sizeof(jint);
    67 const int size_tSize         = sizeof(size_t);
    69 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    71 extern int LogBytesPerHeapOop;                // Oop within a java object
    72 extern int LogBitsPerHeapOop;
    73 extern int BytesPerHeapOop;
    74 extern int BitsPerHeapOop;
    76 const int BitsPerJavaInteger = 32;
    77 const int BitsPerJavaLong    = 64;
    78 const int BitsPerSize_t      = size_tSize * BitsPerByte;
    80 // Size of a char[] needed to represent a jint as a string in decimal.
    81 const int jintAsStringSize = 12;
    83 // In fact this should be
    84 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
    85 // see os::set_memory_serialize_page()
    86 #ifdef _LP64
    87 const int SerializePageShiftCount = 4;
    88 #else
    89 const int SerializePageShiftCount = 3;
    90 #endif
    92 // An opaque struct of heap-word width, so that HeapWord* can be a generic
    93 // pointer into the heap.  We require that object sizes be measured in
    94 // units of heap words, so that that
    95 //   HeapWord* hw;
    96 //   hw += oop(hw)->foo();
    97 // works, where foo is a method (like size or scavenge) that returns the
    98 // object size.
    99 class HeapWord {
   100   friend class VMStructs;
   101  private:
   102   char* i;
   103 #ifndef PRODUCT
   104  public:
   105   char* value() { return i; }
   106 #endif
   107 };
   109 // HeapWordSize must be 2^LogHeapWordSize.
   110 const int HeapWordSize        = sizeof(HeapWord);
   111 #ifdef _LP64
   112 const int LogHeapWordSize     = 3;
   113 #else
   114 const int LogHeapWordSize     = 2;
   115 #endif
   116 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   117 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   119 // The larger HeapWordSize for 64bit requires larger heaps
   120 // for the same application running in 64bit.  See bug 4967770.
   121 // The minimum alignment to a heap word size is done.  Other
   122 // parts of the memory system may required additional alignment
   123 // and are responsible for those alignments.
   124 #ifdef _LP64
   125 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   126 #else
   127 #define ScaleForWordSize(x) (x)
   128 #endif
   130 // The minimum number of native machine words necessary to contain "byte_size"
   131 // bytes.
   132 inline size_t heap_word_size(size_t byte_size) {
   133   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   134 }
   137 const size_t K                  = 1024;
   138 const size_t M                  = K*K;
   139 const size_t G                  = M*K;
   140 const size_t HWperKB            = K / sizeof(HeapWord);
   142 const size_t LOG_K              = 10;
   143 const size_t LOG_M              = 2 * LOG_K;
   144 const size_t LOG_G              = 2 * LOG_M;
   146 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   147 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   149 // Constants for converting from a base unit to milli-base units.  For
   150 // example from seconds to milliseconds and microseconds
   152 const int MILLIUNITS    = 1000;         // milli units per base unit
   153 const int MICROUNITS    = 1000000;      // micro units per base unit
   154 const int NANOUNITS     = 1000000000;   // nano units per base unit
   156 inline const char* proper_unit_for_byte_size(size_t s) {
   157   if (s >= 10*M) {
   158     return "M";
   159   } else if (s >= 10*K) {
   160     return "K";
   161   } else {
   162     return "B";
   163   }
   164 }
   166 inline size_t byte_size_in_proper_unit(size_t s) {
   167   if (s >= 10*M) {
   168     return s/M;
   169   } else if (s >= 10*K) {
   170     return s/K;
   171   } else {
   172     return s;
   173   }
   174 }
   177 //----------------------------------------------------------------------------------------------------
   178 // VM type definitions
   180 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   181 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   183 typedef intptr_t  intx;
   184 typedef uintptr_t uintx;
   186 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   187 const intx  max_intx  = (uintx)min_intx - 1;
   188 const uintx max_uintx = (uintx)-1;
   190 // Table of values:
   191 //      sizeof intx         4               8
   192 // min_intx             0x80000000      0x8000000000000000
   193 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   194 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   196 typedef unsigned int uint;   NEEDS_CLEANUP
   199 //----------------------------------------------------------------------------------------------------
   200 // Java type definitions
   202 // All kinds of 'plain' byte addresses
   203 typedef   signed char s_char;
   204 typedef unsigned char u_char;
   205 typedef u_char*       address;
   206 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   207                                     // except for some implementations of a C++
   208                                     // linkage pointer to function. Should never
   209                                     // need one of those to be placed in this
   210                                     // type anyway.
   212 //  Utility functions to "portably" (?) bit twiddle pointers
   213 //  Where portable means keep ANSI C++ compilers quiet
   215 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   216 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   218 //  Utility functions to "portably" make cast to/from function pointers.
   220 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   221 inline address_word  castable_address(address x)              { return address_word(x) ; }
   222 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   224 // Pointer subtraction.
   225 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   226 // the range we might need to find differences from one end of the heap
   227 // to the other.
   228 // A typical use might be:
   229 //     if (pointer_delta(end(), top()) >= size) {
   230 //       // enough room for an object of size
   231 //       ...
   232 // and then additions like
   233 //       ... top() + size ...
   234 // are safe because we know that top() is at least size below end().
   235 inline size_t pointer_delta(const void* left,
   236                             const void* right,
   237                             size_t element_size) {
   238   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   239 }
   240 // A version specialized for HeapWord*'s.
   241 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   242   return pointer_delta(left, right, sizeof(HeapWord));
   243 }
   245 //
   246 // ANSI C++ does not allow casting from one pointer type to a function pointer
   247 // directly without at best a warning. This macro accomplishes it silently
   248 // In every case that is present at this point the value be cast is a pointer
   249 // to a C linkage function. In somecase the type used for the cast reflects
   250 // that linkage and a picky compiler would not complain. In other cases because
   251 // there is no convenient place to place a typedef with extern C linkage (i.e
   252 // a platform dependent header file) it doesn't. At this point no compiler seems
   253 // picky enough to catch these instances (which are few). It is possible that
   254 // using templates could fix these for all cases. This use of templates is likely
   255 // so far from the middle of the road that it is likely to be problematic in
   256 // many C++ compilers.
   257 //
   258 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   259 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   261 // Unsigned byte types for os and stream.hpp
   263 // Unsigned one, two, four and eigth byte quantities used for describing
   264 // the .class file format. See JVM book chapter 4.
   266 typedef jubyte  u1;
   267 typedef jushort u2;
   268 typedef juint   u4;
   269 typedef julong  u8;
   271 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   272 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   273 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   274 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   276 //----------------------------------------------------------------------------------------------------
   277 // JVM spec restrictions
   279 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   282 //----------------------------------------------------------------------------------------------------
   283 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   284 //
   285 // Determines whether on-the-fly class replacement and frame popping are enabled.
   287 #define HOTSWAP
   289 //----------------------------------------------------------------------------------------------------
   290 // Object alignment, in units of HeapWords.
   291 //
   292 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   293 // reference fields can be naturally aligned.
   295 const int MinObjAlignment            = HeapWordsPerLong;
   296 const int MinObjAlignmentInBytes     = MinObjAlignment * HeapWordSize;
   297 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
   299 const int LogMinObjAlignment         = LogHeapWordsPerLong;
   300 const int LogMinObjAlignmentInBytes  = LogMinObjAlignment + LogHeapWordSize;
   302 // Machine dependent stuff
   304 #include "incls/_globalDefinitions_pd.hpp.incl"
   306 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   307 // Note: this value must be a power of 2
   309 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   311 // Signed variants of alignment helpers.  There are two versions of each, a macro
   312 // for use in places like enum definitions that require compile-time constant
   313 // expressions and a function for all other places so as to get type checking.
   315 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   317 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   318   return align_size_up_(size, alignment);
   319 }
   321 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   323 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   324   return align_size_down_(size, alignment);
   325 }
   327 // Align objects by rounding up their size, in HeapWord units.
   329 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   331 inline intptr_t align_object_size(intptr_t size) {
   332   return align_size_up(size, MinObjAlignment);
   333 }
   335 // Pad out certain offsets to jlong alignment, in HeapWord units.
   337 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
   339 inline intptr_t align_object_offset(intptr_t offset) {
   340   return align_size_up(offset, HeapWordsPerLong);
   341 }
   343 inline bool is_object_aligned(intptr_t offset) {
   344   return offset == align_object_offset(offset);
   345 }
   348 //----------------------------------------------------------------------------------------------------
   349 // Utility macros for compilers
   350 // used to silence compiler warnings
   352 #define Unused_Variable(var) var
   355 //----------------------------------------------------------------------------------------------------
   356 // Miscellaneous
   358 // 6302670 Eliminate Hotspot __fabsf dependency
   359 // All fabs() callers should call this function instead, which will implicitly
   360 // convert the operand to double, avoiding a dependency on __fabsf which
   361 // doesn't exist in early versions of Solaris 8.
   362 inline double fabsd(double value) {
   363   return fabs(value);
   364 }
   366 inline jint low (jlong value)                    { return jint(value); }
   367 inline jint high(jlong value)                    { return jint(value >> 32); }
   369 // the fancy casts are a hopefully portable way
   370 // to do unsigned 32 to 64 bit type conversion
   371 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   372                                                    *value |= (jlong)(julong)(juint)low; }
   374 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   375                                                    *value |= (jlong)high       << 32; }
   377 inline jlong jlong_from(jint h, jint l) {
   378   jlong result = 0; // initialization to avoid warning
   379   set_high(&result, h);
   380   set_low(&result,  l);
   381   return result;
   382 }
   384 union jlong_accessor {
   385   jint  words[2];
   386   jlong long_value;
   387 };
   389 void basic_types_init(); // cannot define here; uses assert
   392 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   393 enum BasicType {
   394   T_BOOLEAN  =  4,
   395   T_CHAR     =  5,
   396   T_FLOAT    =  6,
   397   T_DOUBLE   =  7,
   398   T_BYTE     =  8,
   399   T_SHORT    =  9,
   400   T_INT      = 10,
   401   T_LONG     = 11,
   402   T_OBJECT   = 12,
   403   T_ARRAY    = 13,
   404   T_VOID     = 14,
   405   T_ADDRESS  = 15,
   406   T_NARROWOOP= 16,
   407   T_CONFLICT = 17, // for stack value type with conflicting contents
   408   T_ILLEGAL  = 99
   409 };
   411 inline bool is_java_primitive(BasicType t) {
   412   return T_BOOLEAN <= t && t <= T_LONG;
   413 }
   415 inline bool is_subword_type(BasicType t) {
   416   // these guys are processed exactly like T_INT in calling sequences:
   417   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   418 }
   420 inline bool is_signed_subword_type(BasicType t) {
   421   return (t == T_BYTE || t == T_SHORT);
   422 }
   424 // Convert a char from a classfile signature to a BasicType
   425 inline BasicType char2type(char c) {
   426   switch( c ) {
   427   case 'B': return T_BYTE;
   428   case 'C': return T_CHAR;
   429   case 'D': return T_DOUBLE;
   430   case 'F': return T_FLOAT;
   431   case 'I': return T_INT;
   432   case 'J': return T_LONG;
   433   case 'S': return T_SHORT;
   434   case 'Z': return T_BOOLEAN;
   435   case 'V': return T_VOID;
   436   case 'L': return T_OBJECT;
   437   case '[': return T_ARRAY;
   438   }
   439   return T_ILLEGAL;
   440 }
   442 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   443 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   444 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   445 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   446 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   447 extern BasicType name2type(const char* name);
   449 // Auxilary math routines
   450 // least common multiple
   451 extern size_t lcm(size_t a, size_t b);
   454 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   455 enum BasicTypeSize {
   456   T_BOOLEAN_size = 1,
   457   T_CHAR_size    = 1,
   458   T_FLOAT_size   = 1,
   459   T_DOUBLE_size  = 2,
   460   T_BYTE_size    = 1,
   461   T_SHORT_size   = 1,
   462   T_INT_size     = 1,
   463   T_LONG_size    = 2,
   464   T_OBJECT_size  = 1,
   465   T_ARRAY_size   = 1,
   466   T_NARROWOOP_size = 1,
   467   T_VOID_size    = 0
   468 };
   471 // maps a BasicType to its instance field storage type:
   472 // all sub-word integral types are widened to T_INT
   473 extern BasicType type2field[T_CONFLICT+1];
   474 extern BasicType type2wfield[T_CONFLICT+1];
   477 // size in bytes
   478 enum ArrayElementSize {
   479   T_BOOLEAN_aelem_bytes = 1,
   480   T_CHAR_aelem_bytes    = 2,
   481   T_FLOAT_aelem_bytes   = 4,
   482   T_DOUBLE_aelem_bytes  = 8,
   483   T_BYTE_aelem_bytes    = 1,
   484   T_SHORT_aelem_bytes   = 2,
   485   T_INT_aelem_bytes     = 4,
   486   T_LONG_aelem_bytes    = 8,
   487 #ifdef _LP64
   488   T_OBJECT_aelem_bytes  = 8,
   489   T_ARRAY_aelem_bytes   = 8,
   490 #else
   491   T_OBJECT_aelem_bytes  = 4,
   492   T_ARRAY_aelem_bytes   = 4,
   493 #endif
   494   T_NARROWOOP_aelem_bytes = 4,
   495   T_VOID_aelem_bytes    = 0
   496 };
   498 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   499 #ifdef ASSERT
   500 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   501 #else
   502 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
   503 #endif
   506 // JavaValue serves as a container for arbitrary Java values.
   508 class JavaValue {
   510  public:
   511   typedef union JavaCallValue {
   512     jfloat   f;
   513     jdouble  d;
   514     jint     i;
   515     jlong    l;
   516     jobject  h;
   517   } JavaCallValue;
   519  private:
   520   BasicType _type;
   521   JavaCallValue _value;
   523  public:
   524   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   526   JavaValue(jfloat value) {
   527     _type    = T_FLOAT;
   528     _value.f = value;
   529   }
   531   JavaValue(jdouble value) {
   532     _type    = T_DOUBLE;
   533     _value.d = value;
   534   }
   536  jfloat get_jfloat() const { return _value.f; }
   537  jdouble get_jdouble() const { return _value.d; }
   538  jint get_jint() const { return _value.i; }
   539  jlong get_jlong() const { return _value.l; }
   540  jobject get_jobject() const { return _value.h; }
   541  JavaCallValue* get_value_addr() { return &_value; }
   542  BasicType get_type() const { return _type; }
   544  void set_jfloat(jfloat f) { _value.f = f;}
   545  void set_jdouble(jdouble d) { _value.d = d;}
   546  void set_jint(jint i) { _value.i = i;}
   547  void set_jlong(jlong l) { _value.l = l;}
   548  void set_jobject(jobject h) { _value.h = h;}
   549  void set_type(BasicType t) { _type = t; }
   551  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   552  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   553  jchar get_jchar() const { return (jchar) (_value.i);}
   554  jshort get_jshort() const { return (jshort) (_value.i);}
   556 };
   559 #define STACK_BIAS      0
   560 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   561 // in order to extend the reach of the stack pointer.
   562 #if defined(SPARC) && defined(_LP64)
   563 #undef STACK_BIAS
   564 #define STACK_BIAS      0x7ff
   565 #endif
   568 // TosState describes the top-of-stack state before and after the execution of
   569 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   570 // registers. The TosState corresponds to the 'machine represention' of this cached
   571 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   572 // as well as a 5th state in case the top-of-stack value is actually on the top
   573 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   574 // state when it comes to machine representation but is used separately for (oop)
   575 // type specific operations (e.g. verification code).
   577 enum TosState {         // describes the tos cache contents
   578   btos = 0,             // byte, bool tos cached
   579   ctos = 1,             // char tos cached
   580   stos = 2,             // short tos cached
   581   itos = 3,             // int tos cached
   582   ltos = 4,             // long tos cached
   583   ftos = 5,             // float tos cached
   584   dtos = 6,             // double tos cached
   585   atos = 7,             // object cached
   586   vtos = 8,             // tos not cached
   587   number_of_states,
   588   ilgl                  // illegal state: should not occur
   589 };
   592 inline TosState as_TosState(BasicType type) {
   593   switch (type) {
   594     case T_BYTE   : return btos;
   595     case T_BOOLEAN: return btos; // FIXME: Add ztos
   596     case T_CHAR   : return ctos;
   597     case T_SHORT  : return stos;
   598     case T_INT    : return itos;
   599     case T_LONG   : return ltos;
   600     case T_FLOAT  : return ftos;
   601     case T_DOUBLE : return dtos;
   602     case T_VOID   : return vtos;
   603     case T_ARRAY  : // fall through
   604     case T_OBJECT : return atos;
   605   }
   606   return ilgl;
   607 }
   609 inline BasicType as_BasicType(TosState state) {
   610   switch (state) {
   611     //case ztos: return T_BOOLEAN;//FIXME
   612     case btos : return T_BYTE;
   613     case ctos : return T_CHAR;
   614     case stos : return T_SHORT;
   615     case itos : return T_INT;
   616     case ltos : return T_LONG;
   617     case ftos : return T_FLOAT;
   618     case dtos : return T_DOUBLE;
   619     case atos : return T_OBJECT;
   620     case vtos : return T_VOID;
   621   }
   622   return T_ILLEGAL;
   623 }
   626 // Helper function to convert BasicType info into TosState
   627 // Note: Cannot define here as it uses global constant at the time being.
   628 TosState as_TosState(BasicType type);
   631 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   633 enum ReferenceType {
   634  REF_NONE,      // Regular class
   635  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   636  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   637  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   638  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   639  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   640 };
   643 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   644 // information is needed by the safepoint code.
   645 //
   646 // There are 4 essential states:
   647 //
   648 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   649 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   650 //  _thread_in_vm       : Executing in the vm
   651 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   652 //
   653 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   654 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   655 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   656 //
   657 // Given a state, the xxx_trans state can always be found by adding 1.
   658 //
   659 enum JavaThreadState {
   660   _thread_uninitialized     =  0, // should never happen (missing initialization)
   661   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   662   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   663   _thread_in_native         =  4, // running in native code
   664   _thread_in_native_trans   =  5, // corresponding transition state
   665   _thread_in_vm             =  6, // running in VM
   666   _thread_in_vm_trans       =  7, // corresponding transition state
   667   _thread_in_Java           =  8, // running in Java or in stub code
   668   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   669   _thread_blocked           = 10, // blocked in vm
   670   _thread_blocked_trans     = 11, // corresponding transition state
   671   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   672 };
   675 // Handy constants for deciding which compiler mode to use.
   676 enum MethodCompilation {
   677   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   678   InvalidOSREntryBci = -2
   679 };
   681 // Enumeration to distinguish tiers of compilation
   682 enum CompLevel {
   683   CompLevel_none              = 0,
   684   CompLevel_fast_compile      = 1,
   685   CompLevel_full_optimization = 2,
   687   CompLevel_highest_tier      = CompLevel_full_optimization,
   688 #ifdef TIERED
   689   CompLevel_initial_compile   = CompLevel_fast_compile
   690 #else
   691   CompLevel_initial_compile   = CompLevel_full_optimization
   692 #endif // TIERED
   693 };
   695 inline bool is_tier1_compile(int comp_level) {
   696   return comp_level == CompLevel_fast_compile;
   697 }
   698 inline bool is_tier2_compile(int comp_level) {
   699   return comp_level == CompLevel_full_optimization;
   700 }
   701 inline bool is_highest_tier_compile(int comp_level) {
   702   return comp_level == CompLevel_highest_tier;
   703 }
   705 //----------------------------------------------------------------------------------------------------
   706 // 'Forward' declarations of frequently used classes
   707 // (in order to reduce interface dependencies & reduce
   708 // number of unnecessary compilations after changes)
   710 class symbolTable;
   711 class ClassFileStream;
   713 class Event;
   715 class Thread;
   716 class  VMThread;
   717 class  JavaThread;
   718 class Threads;
   720 class VM_Operation;
   721 class VMOperationQueue;
   723 class CodeBlob;
   724 class  nmethod;
   725 class  OSRAdapter;
   726 class  I2CAdapter;
   727 class  C2IAdapter;
   728 class CompiledIC;
   729 class relocInfo;
   730 class ScopeDesc;
   731 class PcDesc;
   733 class Recompiler;
   734 class Recompilee;
   735 class RecompilationPolicy;
   736 class RFrame;
   737 class  CompiledRFrame;
   738 class  InterpretedRFrame;
   740 class frame;
   742 class vframe;
   743 class   javaVFrame;
   744 class     interpretedVFrame;
   745 class     compiledVFrame;
   746 class     deoptimizedVFrame;
   747 class   externalVFrame;
   748 class     entryVFrame;
   750 class RegisterMap;
   752 class Mutex;
   753 class Monitor;
   754 class BasicLock;
   755 class BasicObjectLock;
   757 class PeriodicTask;
   759 class JavaCallWrapper;
   761 class   oopDesc;
   763 class NativeCall;
   765 class zone;
   767 class StubQueue;
   769 class outputStream;
   771 class ResourceArea;
   773 class DebugInformationRecorder;
   774 class ScopeValue;
   775 class CompressedStream;
   776 class   DebugInfoReadStream;
   777 class   DebugInfoWriteStream;
   778 class LocationValue;
   779 class ConstantValue;
   780 class IllegalValue;
   782 class PrivilegedElement;
   783 class MonitorArray;
   785 class MonitorInfo;
   787 class OffsetClosure;
   788 class OopMapCache;
   789 class InterpreterOopMap;
   790 class OopMapCacheEntry;
   791 class OSThread;
   793 typedef int (*OSThreadStartFunc)(void*);
   795 class Space;
   797 class JavaValue;
   798 class methodHandle;
   799 class JavaCallArguments;
   801 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   803 extern void basic_fatal(const char* msg);
   806 //----------------------------------------------------------------------------------------------------
   807 // Special constants for debugging
   809 const jint     badInt           = -3;                       // generic "bad int" value
   810 const long     badAddressVal    = -2;                       // generic "bad address" value
   811 const long     badOopVal        = -1;                       // generic "bad oop" value
   812 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   813 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   814 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   815 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   816 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   817 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   818 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   819 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   820 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   823 // (These must be implemented as #defines because C++ compilers are
   824 // not obligated to inline non-integral constants!)
   825 #define       badAddress        ((address)::badAddressVal)
   826 #define       badOop            ((oop)::badOopVal)
   827 #define       badHeapWord       (::badHeapWordVal)
   828 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   830 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   831 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   833 //----------------------------------------------------------------------------------------------------
   834 // Utility functions for bitfield manipulations
   836 const intptr_t AllBits    = ~0; // all bits set in a word
   837 const intptr_t NoBits     =  0; // no bits set in a word
   838 const jlong    NoLongBits =  0; // no bits set in a long
   839 const intptr_t OneBit     =  1; // only right_most bit set in a word
   841 // get a word with the n.th or the right-most or left-most n bits set
   842 // (note: #define used only so that they can be used in enum constant definitions)
   843 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   844 #define right_n_bits(n)   (nth_bit(n) - 1)
   845 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   847 // bit-operations using a mask m
   848 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   849 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   850 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   851 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   852 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   854 // bit-operations using the n.th bit
   855 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   856 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   857 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   859 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   860 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   861   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   862 }
   865 //----------------------------------------------------------------------------------------------------
   866 // Utility functions for integers
   868 // Avoid use of global min/max macros which may cause unwanted double
   869 // evaluation of arguments.
   870 #ifdef max
   871 #undef max
   872 #endif
   874 #ifdef min
   875 #undef min
   876 #endif
   878 #define max(a,b) Do_not_use_max_use_MAX2_instead
   879 #define min(a,b) Do_not_use_min_use_MIN2_instead
   881 // It is necessary to use templates here. Having normal overloaded
   882 // functions does not work because it is necessary to provide both 32-
   883 // and 64-bit overloaded functions, which does not work, and having
   884 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   885 // will be even more error-prone than macros.
   886 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   887 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   888 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   889 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   890 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   891 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   893 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   895 // true if x is a power of 2, false otherwise
   896 inline bool is_power_of_2(intptr_t x) {
   897   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   898 }
   900 // long version of is_power_of_2
   901 inline bool is_power_of_2_long(jlong x) {
   902   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   903 }
   905 //* largest i such that 2^i <= x
   906 //  A negative value of 'x' will return '31'
   907 inline int log2_intptr(intptr_t x) {
   908   int i = -1;
   909   uintptr_t p =  1;
   910   while (p != 0 && p <= (uintptr_t)x) {
   911     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   912     i++; p *= 2;
   913   }
   914   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   915   // (if p = 0 then overflow occurred and i = 31)
   916   return i;
   917 }
   919 //* largest i such that 2^i <= x
   920 //  A negative value of 'x' will return '63'
   921 inline int log2_long(jlong x) {
   922   int i = -1;
   923   julong p =  1;
   924   while (p != 0 && p <= (julong)x) {
   925     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   926     i++; p *= 2;
   927   }
   928   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   929   // (if p = 0 then overflow occurred and i = 63)
   930   return i;
   931 }
   933 //* the argument must be exactly a power of 2
   934 inline int exact_log2(intptr_t x) {
   935   #ifdef ASSERT
   936     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
   937   #endif
   938   return log2_intptr(x);
   939 }
   941 //* the argument must be exactly a power of 2
   942 inline int exact_log2_long(jlong x) {
   943   #ifdef ASSERT
   944     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
   945   #endif
   946   return log2_long(x);
   947 }
   950 // returns integer round-up to the nearest multiple of s (s must be a power of two)
   951 inline intptr_t round_to(intptr_t x, uintx s) {
   952   #ifdef ASSERT
   953     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   954   #endif
   955   const uintx m = s - 1;
   956   return mask_bits(x + m, ~m);
   957 }
   959 // returns integer round-down to the nearest multiple of s (s must be a power of two)
   960 inline intptr_t round_down(intptr_t x, uintx s) {
   961   #ifdef ASSERT
   962     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   963   #endif
   964   const uintx m = s - 1;
   965   return mask_bits(x, ~m);
   966 }
   969 inline bool is_odd (intx x) { return x & 1;      }
   970 inline bool is_even(intx x) { return !is_odd(x); }
   972 // "to" should be greater than "from."
   973 inline intx byte_size(void* from, void* to) {
   974   return (address)to - (address)from;
   975 }
   977 //----------------------------------------------------------------------------------------------------
   978 // Avoid non-portable casts with these routines (DEPRECATED)
   980 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
   981 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
   983 // Given sequence of four bytes, build into a 32-bit word
   984 // following the conventions used in class files.
   985 // On the 386, this could be realized with a simple address cast.
   986 //
   988 // This routine takes eight bytes:
   989 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
   990   return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
   991        |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
   992        |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
   993        |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
   994        |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
   995        |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
   996        |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
   997        |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
   998 }
  1000 // This routine takes four bytes:
  1001 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1002   return  ( u4(c1) << 24 )  &  0xff000000
  1003        |  ( u4(c2) << 16 )  &  0x00ff0000
  1004        |  ( u4(c3) <<  8 )  &  0x0000ff00
  1005        |  ( u4(c4) <<  0 )  &  0x000000ff;
  1008 // And this one works if the four bytes are contiguous in memory:
  1009 inline u4 build_u4_from( u1* p ) {
  1010   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1013 // Ditto for two-byte ints:
  1014 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1015   return  u2(( u2(c1) <<  8 )  &  0xff00
  1016           |  ( u2(c2) <<  0 )  &  0x00ff);
  1019 // And this one works if the two bytes are contiguous in memory:
  1020 inline u2 build_u2_from( u1* p ) {
  1021   return  build_u2_from( p[0], p[1] );
  1024 // Ditto for floats:
  1025 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1026   u4 u = build_u4_from( c1, c2, c3, c4 );
  1027   return  *(jfloat*)&u;
  1030 inline jfloat build_float_from( u1* p ) {
  1031   u4 u = build_u4_from( p );
  1032   return  *(jfloat*)&u;
  1036 // now (64-bit) longs
  1038 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1039   return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
  1040        |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
  1041        |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
  1042        |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
  1043        |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
  1044        |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
  1045        |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
  1046        |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
  1049 inline jlong build_long_from( u1* p ) {
  1050   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1054 // Doubles, too!
  1055 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1056   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1057   return  *(jdouble*)&u;
  1060 inline jdouble build_double_from( u1* p ) {
  1061   jlong u = build_long_from( p );
  1062   return  *(jdouble*)&u;
  1066 // Portable routines to go the other way:
  1068 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1069   c1 = u1(x >> 8);
  1070   c2 = u1(x);
  1073 inline void explode_short_to( u2 x, u1* p ) {
  1074   explode_short_to( x, p[0], p[1]);
  1077 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1078   c1 = u1(x >> 24);
  1079   c2 = u1(x >> 16);
  1080   c3 = u1(x >>  8);
  1081   c4 = u1(x);
  1084 inline void explode_int_to( u4 x, u1* p ) {
  1085   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1089 // Pack and extract shorts to/from ints:
  1091 inline int extract_low_short_from_int(jint x) {
  1092   return x & 0xffff;
  1095 inline int extract_high_short_from_int(jint x) {
  1096   return (x >> 16) & 0xffff;
  1099 inline int build_int_from_shorts( jushort low, jushort high ) {
  1100   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1103 // Printf-style formatters for fixed- and variable-width types as pointers and
  1104 // integers.
  1105 //
  1106 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1107 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
  1108 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
  1109 // (in ILP32).
  1111 // Format 32-bit quantities.
  1112 #define INT32_FORMAT  "%d"
  1113 #define UINT32_FORMAT "%u"
  1114 #define INT32_FORMAT_W(width)   "%" #width "d"
  1115 #define UINT32_FORMAT_W(width)  "%" #width "u"
  1117 #define PTR32_FORMAT  "0x%08x"
  1119 // Format 64-bit quantities.
  1120 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
  1121 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
  1122 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
  1124 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
  1125 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
  1127 // Format macros that allow the field width to be specified.  The width must be
  1128 // a string literal (e.g., "8") or a macro that evaluates to one.
  1129 #ifdef _LP64
  1130 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
  1131 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
  1132 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
  1133 #else
  1134 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
  1135 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
  1136 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
  1137 #endif // _LP64
  1139 // Format pointers and size_t (or size_t-like integer types) which change size
  1140 // between 32- and 64-bit. The pointer format theoretically should be "%p",
  1141 // however, it has different output on different platforms. On Windows, the data
  1142 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
  1143 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
  1144 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
  1145 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
  1146 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
  1147 // using "%x".
  1148 #ifdef  _LP64
  1149 #define PTR_FORMAT    PTR64_FORMAT
  1150 #define UINTX_FORMAT  UINT64_FORMAT
  1151 #define INTX_FORMAT   INT64_FORMAT
  1152 #define SIZE_FORMAT   UINT64_FORMAT
  1153 #define SSIZE_FORMAT  INT64_FORMAT
  1154 #else   // !_LP64
  1155 #define PTR_FORMAT    PTR32_FORMAT
  1156 #define UINTX_FORMAT  UINT32_FORMAT
  1157 #define INTX_FORMAT   INT32_FORMAT
  1158 #define SIZE_FORMAT   UINT32_FORMAT
  1159 #define SSIZE_FORMAT  INT32_FORMAT
  1160 #endif  // _LP64
  1162 #define INTPTR_FORMAT PTR_FORMAT
  1164 // Enable zap-a-lot if in debug version.
  1166 # ifdef ASSERT
  1167 # ifdef COMPILER2
  1168 #   define ENABLE_ZAP_DEAD_LOCALS
  1169 #endif /* COMPILER2 */
  1170 # endif /* ASSERT */
  1172 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial