src/share/vm/opto/node.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1535
f96a1a986f7b
child 2314
f95d63e2154a
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 class AbstractLockNode;
    31 class AddNode;
    32 class AddPNode;
    33 class AliasInfo;
    34 class AllocateArrayNode;
    35 class AllocateNode;
    36 class Block;
    37 class Block_Array;
    38 class BoolNode;
    39 class BoxLockNode;
    40 class CMoveNode;
    41 class CallDynamicJavaNode;
    42 class CallJavaNode;
    43 class CallLeafNode;
    44 class CallNode;
    45 class CallRuntimeNode;
    46 class CallStaticJavaNode;
    47 class CatchNode;
    48 class CatchProjNode;
    49 class CheckCastPPNode;
    50 class ClearArrayNode;
    51 class CmpNode;
    52 class CodeBuffer;
    53 class ConstraintCastNode;
    54 class ConNode;
    55 class CountedLoopNode;
    56 class CountedLoopEndNode;
    57 class DecodeNNode;
    58 class EncodePNode;
    59 class FastLockNode;
    60 class FastUnlockNode;
    61 class IfNode;
    62 class InitializeNode;
    63 class JVMState;
    64 class JumpNode;
    65 class JumpProjNode;
    66 class LoadNode;
    67 class LoadStoreNode;
    68 class LockNode;
    69 class LoopNode;
    70 class MachCallDynamicJavaNode;
    71 class MachCallJavaNode;
    72 class MachCallLeafNode;
    73 class MachCallNode;
    74 class MachCallRuntimeNode;
    75 class MachCallStaticJavaNode;
    76 class MachIfNode;
    77 class MachNode;
    78 class MachNullCheckNode;
    79 class MachReturnNode;
    80 class MachSafePointNode;
    81 class MachSpillCopyNode;
    82 class MachTempNode;
    83 class Matcher;
    84 class MemBarNode;
    85 class MemNode;
    86 class MergeMemNode;
    87 class MulNode;
    88 class MultiNode;
    89 class MultiBranchNode;
    90 class NeverBranchNode;
    91 class Node;
    92 class Node_Array;
    93 class Node_List;
    94 class Node_Stack;
    95 class NullCheckNode;
    96 class OopMap;
    97 class ParmNode;
    98 class PCTableNode;
    99 class PhaseCCP;
   100 class PhaseGVN;
   101 class PhaseIterGVN;
   102 class PhaseRegAlloc;
   103 class PhaseTransform;
   104 class PhaseValues;
   105 class PhiNode;
   106 class Pipeline;
   107 class ProjNode;
   108 class RegMask;
   109 class RegionNode;
   110 class RootNode;
   111 class SafePointNode;
   112 class SafePointScalarObjectNode;
   113 class StartNode;
   114 class State;
   115 class StoreNode;
   116 class SubNode;
   117 class Type;
   118 class TypeNode;
   119 class UnlockNode;
   120 class VectorSet;
   121 class IfTrueNode;
   122 class IfFalseNode;
   123 typedef void (*NFunc)(Node&,void*);
   124 extern "C" {
   125   typedef int (*C_sort_func_t)(const void *, const void *);
   126 }
   128 // The type of all node counts and indexes.
   129 // It must hold at least 16 bits, but must also be fast to load and store.
   130 // This type, if less than 32 bits, could limit the number of possible nodes.
   131 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   132 typedef unsigned int node_idx_t;
   135 #ifndef OPTO_DU_ITERATOR_ASSERT
   136 #ifdef ASSERT
   137 #define OPTO_DU_ITERATOR_ASSERT 1
   138 #else
   139 #define OPTO_DU_ITERATOR_ASSERT 0
   140 #endif
   141 #endif //OPTO_DU_ITERATOR_ASSERT
   143 #if OPTO_DU_ITERATOR_ASSERT
   144 class DUIterator;
   145 class DUIterator_Fast;
   146 class DUIterator_Last;
   147 #else
   148 typedef uint   DUIterator;
   149 typedef Node** DUIterator_Fast;
   150 typedef Node** DUIterator_Last;
   151 #endif
   153 // Node Sentinel
   154 #define NodeSentinel (Node*)-1
   156 // Unknown count frequency
   157 #define COUNT_UNKNOWN (-1.0f)
   159 //------------------------------Node-------------------------------------------
   160 // Nodes define actions in the program.  They create values, which have types.
   161 // They are both vertices in a directed graph and program primitives.  Nodes
   162 // are labeled; the label is the "opcode", the primitive function in the lambda
   163 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   164 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   165 // the Node's function.  These inputs also define a Type equation for the Node.
   166 // Solving these Type equations amounts to doing dataflow analysis.
   167 // Control and data are uniformly represented in the graph.  Finally, Nodes
   168 // have a unique dense integer index which is used to index into side arrays
   169 // whenever I have phase-specific information.
   171 class Node {
   172   // Lots of restrictions on cloning Nodes
   173   Node(const Node&);            // not defined; linker error to use these
   174   Node &operator=(const Node &rhs);
   176 public:
   177   friend class Compile;
   178   #if OPTO_DU_ITERATOR_ASSERT
   179   friend class DUIterator_Common;
   180   friend class DUIterator;
   181   friend class DUIterator_Fast;
   182   friend class DUIterator_Last;
   183   #endif
   185   // Because Nodes come and go, I define an Arena of Node structures to pull
   186   // from.  This should allow fast access to node creation & deletion.  This
   187   // field is a local cache of a value defined in some "program fragment" for
   188   // which these Nodes are just a part of.
   190   // New Operator that takes a Compile pointer, this will eventually
   191   // be the "new" New operator.
   192   inline void* operator new( size_t x, Compile* C) {
   193     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   194 #ifdef ASSERT
   195     n->_in = (Node**)n; // magic cookie for assertion check
   196 #endif
   197     n->_out = (Node**)C;
   198     return (void*)n;
   199   }
   201   // New Operator that takes a Compile pointer, this will eventually
   202   // be the "new" New operator.
   203   inline void* operator new( size_t x, Compile* C, int y) {
   204     Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
   205     n->_in = (Node**)(((char*)n) + x);
   206 #ifdef ASSERT
   207     n->_in[y-1] = n; // magic cookie for assertion check
   208 #endif
   209     n->_out = (Node**)C;
   210     return (void*)n;
   211   }
   213   // Delete is a NOP
   214   void operator delete( void *ptr ) {}
   215   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   216   void destruct();
   218   // Create a new Node.  Required is the number is of inputs required for
   219   // semantic correctness.
   220   Node( uint required );
   222   // Create a new Node with given input edges.
   223   // This version requires use of the "edge-count" new.
   224   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   225   Node( Node *n0 );
   226   Node( Node *n0, Node *n1 );
   227   Node( Node *n0, Node *n1, Node *n2 );
   228   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   229   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   230   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   231   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   232             Node *n4, Node *n5, Node *n6 );
   234   // Clone an inherited Node given only the base Node type.
   235   Node* clone() const;
   237   // Clone a Node, immediately supplying one or two new edges.
   238   // The first and second arguments, if non-null, replace in(1) and in(2),
   239   // respectively.
   240   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   241     Node* nn = clone();
   242     if (in1 != NULL)  nn->set_req(1, in1);
   243     if (in2 != NULL)  nn->set_req(2, in2);
   244     return nn;
   245   }
   247 private:
   248   // Shared setup for the above constructors.
   249   // Handles all interactions with Compile::current.
   250   // Puts initial values in all Node fields except _idx.
   251   // Returns the initial value for _idx, which cannot
   252   // be initialized by assignment.
   253   inline int Init(int req, Compile* C);
   255 //----------------- input edge handling
   256 protected:
   257   friend class PhaseCFG;        // Access to address of _in array elements
   258   Node **_in;                   // Array of use-def references to Nodes
   259   Node **_out;                  // Array of def-use references to Nodes
   261   // Input edges are split into two categories.  Required edges are required
   262   // for semantic correctness; order is important and NULLs are allowed.
   263   // Precedence edges are used to help determine execution order and are
   264   // added, e.g., for scheduling purposes.  They are unordered and not
   265   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   266   // are required, from _cnt to _max-1 are precedence edges.
   267   node_idx_t _cnt;              // Total number of required Node inputs.
   269   node_idx_t _max;              // Actual length of input array.
   271   // Output edges are an unordered list of def-use edges which exactly
   272   // correspond to required input edges which point from other nodes
   273   // to this one.  Thus the count of the output edges is the number of
   274   // users of this node.
   275   node_idx_t _outcnt;           // Total number of Node outputs.
   277   node_idx_t _outmax;           // Actual length of output array.
   279   // Grow the actual input array to the next larger power-of-2 bigger than len.
   280   void grow( uint len );
   281   // Grow the output array to the next larger power-of-2 bigger than len.
   282   void out_grow( uint len );
   284  public:
   285   // Each Node is assigned a unique small/dense number.  This number is used
   286   // to index into auxiliary arrays of data and bitvectors.
   287   // It is declared const to defend against inadvertant assignment,
   288   // since it is used by clients as a naked field.
   289   const node_idx_t _idx;
   291   // Get the (read-only) number of input edges
   292   uint req() const { return _cnt; }
   293   uint len() const { return _max; }
   294   // Get the (read-only) number of output edges
   295   uint outcnt() const { return _outcnt; }
   297 #if OPTO_DU_ITERATOR_ASSERT
   298   // Iterate over the out-edges of this node.  Deletions are illegal.
   299   inline DUIterator outs() const;
   300   // Use this when the out array might have changed to suppress asserts.
   301   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   302   // Does the node have an out at this position?  (Used for iteration.)
   303   inline bool has_out(DUIterator& i) const;
   304   inline Node*    out(DUIterator& i) const;
   305   // Iterate over the out-edges of this node.  All changes are illegal.
   306   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   307   inline Node*    fast_out(DUIterator_Fast& i) const;
   308   // Iterate over the out-edges of this node, deleting one at a time.
   309   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   310   inline Node*    last_out(DUIterator_Last& i) const;
   311   // The inline bodies of all these methods are after the iterator definitions.
   312 #else
   313   // Iterate over the out-edges of this node.  Deletions are illegal.
   314   // This iteration uses integral indexes, to decouple from array reallocations.
   315   DUIterator outs() const  { return 0; }
   316   // Use this when the out array might have changed to suppress asserts.
   317   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   319   // Reference to the i'th output Node.  Error if out of bounds.
   320   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   321   // Does the node have an out at this position?  (Used for iteration.)
   322   bool has_out(DUIterator i) const { return i < _outcnt; }
   324   // Iterate over the out-edges of this node.  All changes are illegal.
   325   // This iteration uses a pointer internal to the out array.
   326   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   327     Node** out = _out;
   328     // Assign a limit pointer to the reference argument:
   329     max = out + (ptrdiff_t)_outcnt;
   330     // Return the base pointer:
   331     return out;
   332   }
   333   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   334   // Iterate over the out-edges of this node, deleting one at a time.
   335   // This iteration uses a pointer internal to the out array.
   336   DUIterator_Last last_outs(DUIterator_Last& min) const {
   337     Node** out = _out;
   338     // Assign a limit pointer to the reference argument:
   339     min = out;
   340     // Return the pointer to the start of the iteration:
   341     return out + (ptrdiff_t)_outcnt - 1;
   342   }
   343   Node*    last_out(DUIterator_Last i) const  { return *i; }
   344 #endif
   346   // Reference to the i'th input Node.  Error if out of bounds.
   347   Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
   348   // Reference to the i'th output Node.  Error if out of bounds.
   349   // Use this accessor sparingly.  We are going trying to use iterators instead.
   350   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   351   // Return the unique out edge.
   352   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   353   // Delete out edge at position 'i' by moving last out edge to position 'i'
   354   void  raw_del_out(uint i) {
   355     assert(i < _outcnt,"oob");
   356     assert(_outcnt > 0,"oob");
   357     #if OPTO_DU_ITERATOR_ASSERT
   358     // Record that a change happened here.
   359     debug_only(_last_del = _out[i]; ++_del_tick);
   360     #endif
   361     _out[i] = _out[--_outcnt];
   362     // Smash the old edge so it can't be used accidentally.
   363     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   364   }
   366 #ifdef ASSERT
   367   bool is_dead() const;
   368 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   369 #endif
   371   // Set a required input edge, also updates corresponding output edge
   372   void add_req( Node *n ); // Append a NEW required input
   373   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   374   void del_req( uint idx ); // Delete required edge & compact
   375   void ins_req( uint i, Node *n ); // Insert a NEW required input
   376   void set_req( uint i, Node *n ) {
   377     assert( is_not_dead(n), "can not use dead node");
   378     assert( i < _cnt, "oob");
   379     assert( !VerifyHashTableKeys || _hash_lock == 0,
   380             "remove node from hash table before modifying it");
   381     Node** p = &_in[i];    // cache this._in, across the del_out call
   382     if (*p != NULL)  (*p)->del_out((Node *)this);
   383     (*p) = n;
   384     if (n != NULL)      n->add_out((Node *)this);
   385   }
   386   // Light version of set_req() to init inputs after node creation.
   387   void init_req( uint i, Node *n ) {
   388     assert( i == 0 && this == n ||
   389             is_not_dead(n), "can not use dead node");
   390     assert( i < _cnt, "oob");
   391     assert( !VerifyHashTableKeys || _hash_lock == 0,
   392             "remove node from hash table before modifying it");
   393     assert( _in[i] == NULL, "sanity");
   394     _in[i] = n;
   395     if (n != NULL)      n->add_out((Node *)this);
   396   }
   397   // Find first occurrence of n among my edges:
   398   int find_edge(Node* n);
   399   int replace_edge(Node* old, Node* neww);
   400   // NULL out all inputs to eliminate incoming Def-Use edges.
   401   // Return the number of edges between 'n' and 'this'
   402   int  disconnect_inputs(Node *n);
   404   // Quickly, return true if and only if I am Compile::current()->top().
   405   bool is_top() const {
   406     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   407     return (_out == NULL);
   408   }
   409   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   410   void setup_is_top();
   412   // Strip away casting.  (It is depth-limited.)
   413   Node* uncast() const;
   415 private:
   416   static Node* uncast_helper(const Node* n);
   418   // Add an output edge to the end of the list
   419   void add_out( Node *n ) {
   420     if (is_top())  return;
   421     if( _outcnt == _outmax ) out_grow(_outcnt);
   422     _out[_outcnt++] = n;
   423   }
   424   // Delete an output edge
   425   void del_out( Node *n ) {
   426     if (is_top())  return;
   427     Node** outp = &_out[_outcnt];
   428     // Find and remove n
   429     do {
   430       assert(outp > _out, "Missing Def-Use edge");
   431     } while (*--outp != n);
   432     *outp = _out[--_outcnt];
   433     // Smash the old edge so it can't be used accidentally.
   434     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   435     // Record that a change happened here.
   436     #if OPTO_DU_ITERATOR_ASSERT
   437     debug_only(_last_del = n; ++_del_tick);
   438     #endif
   439   }
   441 public:
   442   // Globally replace this node by a given new node, updating all uses.
   443   void replace_by(Node* new_node);
   444   // Globally replace this node by a given new node, updating all uses
   445   // and cutting input edges of old node.
   446   void subsume_by(Node* new_node) {
   447     replace_by(new_node);
   448     disconnect_inputs(NULL);
   449   }
   450   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   451   // Find the one non-null required input.  RegionNode only
   452   Node *nonnull_req() const;
   453   // Add or remove precedence edges
   454   void add_prec( Node *n );
   455   void rm_prec( uint i );
   456   void set_prec( uint i, Node *n ) {
   457     assert( is_not_dead(n), "can not use dead node");
   458     assert( i >= _cnt, "not a precedence edge");
   459     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   460     _in[i] = n;
   461     if (n != NULL) n->add_out((Node *)this);
   462   }
   463   // Set this node's index, used by cisc_version to replace current node
   464   void set_idx(uint new_idx) {
   465     const node_idx_t* ref = &_idx;
   466     *(node_idx_t*)ref = new_idx;
   467   }
   468   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   469   void swap_edges(uint i1, uint i2) {
   470     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   471     // Def-Use info is unchanged
   472     Node* n1 = in(i1);
   473     Node* n2 = in(i2);
   474     _in[i1] = n2;
   475     _in[i2] = n1;
   476     // If this node is in the hash table, make sure it doesn't need a rehash.
   477     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   478   }
   480   // Iterators over input Nodes for a Node X are written as:
   481   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   482   // NOTE: Required edges can contain embedded NULL pointers.
   484 //----------------- Other Node Properties
   486   // Generate class id for some ideal nodes to avoid virtual query
   487   // methods is_<Node>().
   488   // Class id is the set of bits corresponded to the node class and all its
   489   // super classes so that queries for super classes are also valid.
   490   // Subclasses of the same super class have different assigned bit
   491   // (the third parameter in the macro DEFINE_CLASS_ID).
   492   // Classes with deeper hierarchy are declared first.
   493   // Classes with the same hierarchy depth are sorted by usage frequency.
   494   //
   495   // The query method masks the bits to cut off bits of subclasses
   496   // and then compare the result with the class id
   497   // (see the macro DEFINE_CLASS_QUERY below).
   498   //
   499   //  Class_MachCall=30, ClassMask_MachCall=31
   500   // 12               8               4               0
   501   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   502   //                                  |   |   |   |
   503   //                                  |   |   |   Bit_Mach=2
   504   //                                  |   |   Bit_MachReturn=4
   505   //                                  |   Bit_MachSafePoint=8
   506   //                                  Bit_MachCall=16
   507   //
   508   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   509   // 12               8               4               0
   510   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   511   //                              |   |   |
   512   //                              |   |   Bit_Region=8
   513   //                              |   Bit_Loop=16
   514   //                              Bit_CountedLoop=32
   516   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   517   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   518   Class_##cl = Class_##supcl + Bit_##cl , \
   519   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   521   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   522   // so that it's values fits into 16 bits.
   523   enum NodeClasses {
   524     Bit_Node   = 0x0000,
   525     Class_Node = 0x0000,
   526     ClassMask_Node = 0xFFFF,
   528     DEFINE_CLASS_ID(Multi, Node, 0)
   529       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   530         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   531           DEFINE_CLASS_ID(CallJava,         Call, 0)
   532             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   533             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   534           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   535             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   536           DEFINE_CLASS_ID(Allocate,         Call, 2)
   537             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   538           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   539             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   540             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   541       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   542         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   543           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   544           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   545         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   546           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   547         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   548       DEFINE_CLASS_ID(Start,       Multi, 2)
   549       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   550         DEFINE_CLASS_ID(Initialize,    MemBar, 0)
   552     DEFINE_CLASS_ID(Mach,  Node, 1)
   553       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   554         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   555           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   556             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   557               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   558               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   559             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   560               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   561       DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
   562       DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
   563       DEFINE_CLASS_ID(MachIf,        Mach, 3)
   564       DEFINE_CLASS_ID(MachTemp,      Mach, 4)
   566     DEFINE_CLASS_ID(Proj,  Node, 2)
   567       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   568       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   569       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   570       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   571       DEFINE_CLASS_ID(Parm,      Proj, 4)
   573     DEFINE_CLASS_ID(Region, Node, 3)
   574       DEFINE_CLASS_ID(Loop, Region, 0)
   575         DEFINE_CLASS_ID(Root,        Loop, 0)
   576         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   578     DEFINE_CLASS_ID(Sub,   Node, 4)
   579       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   580         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   581         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   583     DEFINE_CLASS_ID(Type,  Node, 5)
   584       DEFINE_CLASS_ID(Phi,   Type, 0)
   585       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   586       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   587       DEFINE_CLASS_ID(CMove, Type, 3)
   588       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   589       DEFINE_CLASS_ID(DecodeN, Type, 5)
   590       DEFINE_CLASS_ID(EncodeP, Type, 6)
   592     DEFINE_CLASS_ID(Mem,   Node, 6)
   593       DEFINE_CLASS_ID(Load,  Mem, 0)
   594       DEFINE_CLASS_ID(Store, Mem, 1)
   595       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   597     DEFINE_CLASS_ID(MergeMem, Node, 7)
   598     DEFINE_CLASS_ID(Bool,     Node, 8)
   599     DEFINE_CLASS_ID(AddP,     Node, 9)
   600     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   601     DEFINE_CLASS_ID(Add,      Node, 11)
   602     DEFINE_CLASS_ID(Mul,      Node, 12)
   603     DEFINE_CLASS_ID(ClearArray, Node, 13)
   605     _max_classes  = ClassMask_ClearArray
   606   };
   607   #undef DEFINE_CLASS_ID
   609   // Flags are sorted by usage frequency.
   610   enum NodeFlags {
   611     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   612     Flag_is_Call             = Flag_is_Copy << 1,
   613     Flag_rematerialize       = Flag_is_Call << 1,
   614     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   615     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   616     Flag_is_Con              = Flag_is_macro << 1,
   617     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   618     Flag_is_Branch           = Flag_is_cisc_alternate << 1,
   619     Flag_is_block_start      = Flag_is_Branch << 1,
   620     Flag_is_Goto             = Flag_is_block_start << 1,
   621     Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
   622     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   623     Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
   624     Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
   625     Flag_is_Vector           = Flag_is_pc_relative << 1,
   626     _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
   627   };
   629 private:
   630   jushort _class_id;
   631   jushort _flags;
   633 protected:
   634   // These methods should be called from constructors only.
   635   void init_class_id(jushort c) {
   636     assert(c <= _max_classes, "invalid node class");
   637     _class_id = c; // cast out const
   638   }
   639   void init_flags(jushort fl) {
   640     assert(fl <= _max_flags, "invalid node flag");
   641     _flags |= fl;
   642   }
   643   void clear_flag(jushort fl) {
   644     assert(fl <= _max_flags, "invalid node flag");
   645     _flags &= ~fl;
   646   }
   648 public:
   649   const jushort class_id() const { return _class_id; }
   651   const jushort flags() const { return _flags; }
   653   // Return a dense integer opcode number
   654   virtual int Opcode() const;
   656   // Virtual inherited Node size
   657   virtual uint size_of() const;
   659   // Other interesting Node properties
   661   // Special case: is_Call() returns true for both CallNode and MachCallNode.
   662   bool is_Call() const {
   663     return (_flags & Flag_is_Call) != 0;
   664   }
   666   CallNode* isa_Call() const {
   667     return is_Call() ? as_Call() : NULL;
   668   }
   670   CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
   671     assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
   672     return (CallNode*)this;
   673   }
   675   #define DEFINE_CLASS_QUERY(type)                           \
   676   bool is_##type() const {                                   \
   677     return ((_class_id & ClassMask_##type) == Class_##type); \
   678   }                                                          \
   679   type##Node *as_##type() const {                            \
   680     assert(is_##type(), "invalid node class");               \
   681     return (type##Node*)this;                                \
   682   }                                                          \
   683   type##Node* isa_##type() const {                           \
   684     return (is_##type()) ? as_##type() : NULL;               \
   685   }
   687   DEFINE_CLASS_QUERY(AbstractLock)
   688   DEFINE_CLASS_QUERY(Add)
   689   DEFINE_CLASS_QUERY(AddP)
   690   DEFINE_CLASS_QUERY(Allocate)
   691   DEFINE_CLASS_QUERY(AllocateArray)
   692   DEFINE_CLASS_QUERY(Bool)
   693   DEFINE_CLASS_QUERY(BoxLock)
   694   DEFINE_CLASS_QUERY(CallDynamicJava)
   695   DEFINE_CLASS_QUERY(CallJava)
   696   DEFINE_CLASS_QUERY(CallLeaf)
   697   DEFINE_CLASS_QUERY(CallRuntime)
   698   DEFINE_CLASS_QUERY(CallStaticJava)
   699   DEFINE_CLASS_QUERY(Catch)
   700   DEFINE_CLASS_QUERY(CatchProj)
   701   DEFINE_CLASS_QUERY(CheckCastPP)
   702   DEFINE_CLASS_QUERY(ConstraintCast)
   703   DEFINE_CLASS_QUERY(ClearArray)
   704   DEFINE_CLASS_QUERY(CMove)
   705   DEFINE_CLASS_QUERY(Cmp)
   706   DEFINE_CLASS_QUERY(CountedLoop)
   707   DEFINE_CLASS_QUERY(CountedLoopEnd)
   708   DEFINE_CLASS_QUERY(DecodeN)
   709   DEFINE_CLASS_QUERY(EncodeP)
   710   DEFINE_CLASS_QUERY(FastLock)
   711   DEFINE_CLASS_QUERY(FastUnlock)
   712   DEFINE_CLASS_QUERY(If)
   713   DEFINE_CLASS_QUERY(IfFalse)
   714   DEFINE_CLASS_QUERY(IfTrue)
   715   DEFINE_CLASS_QUERY(Initialize)
   716   DEFINE_CLASS_QUERY(Jump)
   717   DEFINE_CLASS_QUERY(JumpProj)
   718   DEFINE_CLASS_QUERY(Load)
   719   DEFINE_CLASS_QUERY(LoadStore)
   720   DEFINE_CLASS_QUERY(Lock)
   721   DEFINE_CLASS_QUERY(Loop)
   722   DEFINE_CLASS_QUERY(Mach)
   723   DEFINE_CLASS_QUERY(MachCall)
   724   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   725   DEFINE_CLASS_QUERY(MachCallJava)
   726   DEFINE_CLASS_QUERY(MachCallLeaf)
   727   DEFINE_CLASS_QUERY(MachCallRuntime)
   728   DEFINE_CLASS_QUERY(MachCallStaticJava)
   729   DEFINE_CLASS_QUERY(MachIf)
   730   DEFINE_CLASS_QUERY(MachNullCheck)
   731   DEFINE_CLASS_QUERY(MachReturn)
   732   DEFINE_CLASS_QUERY(MachSafePoint)
   733   DEFINE_CLASS_QUERY(MachSpillCopy)
   734   DEFINE_CLASS_QUERY(MachTemp)
   735   DEFINE_CLASS_QUERY(Mem)
   736   DEFINE_CLASS_QUERY(MemBar)
   737   DEFINE_CLASS_QUERY(MergeMem)
   738   DEFINE_CLASS_QUERY(Mul)
   739   DEFINE_CLASS_QUERY(Multi)
   740   DEFINE_CLASS_QUERY(MultiBranch)
   741   DEFINE_CLASS_QUERY(Parm)
   742   DEFINE_CLASS_QUERY(PCTable)
   743   DEFINE_CLASS_QUERY(Phi)
   744   DEFINE_CLASS_QUERY(Proj)
   745   DEFINE_CLASS_QUERY(Region)
   746   DEFINE_CLASS_QUERY(Root)
   747   DEFINE_CLASS_QUERY(SafePoint)
   748   DEFINE_CLASS_QUERY(SafePointScalarObject)
   749   DEFINE_CLASS_QUERY(Start)
   750   DEFINE_CLASS_QUERY(Store)
   751   DEFINE_CLASS_QUERY(Sub)
   752   DEFINE_CLASS_QUERY(Type)
   753   DEFINE_CLASS_QUERY(Unlock)
   755   #undef DEFINE_CLASS_QUERY
   757   // duplicate of is_MachSpillCopy()
   758   bool is_SpillCopy () const {
   759     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   760   }
   762   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   763   bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
   764   // The data node which is safe to leave in dead loop during IGVN optimization.
   765   bool is_dead_loop_safe() const {
   766     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   767            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   768             (!is_Proj() || !in(0)->is_Allocate()));
   769   }
   771   // is_Copy() returns copied edge index (0 or 1)
   772   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   774   virtual bool is_CFG() const { return false; }
   776   // If this node is control-dependent on a test, can it be
   777   // rerouted to a dominating equivalent test?  This is usually
   778   // true of non-CFG nodes, but can be false for operations which
   779   // depend for their correct sequencing on more than one test.
   780   // (In that case, hoisting to a dominating test may silently
   781   // skip some other important test.)
   782   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   784   // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
   785   bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
   787   // When building basic blocks, I need to have a notion of block beginning
   788   // Nodes, next block selector Nodes (block enders), and next block
   789   // projections.  These calls need to work on their machine equivalents.  The
   790   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   791   bool is_block_start() const {
   792     if ( is_Region() )
   793       return this == (const Node*)in(0);
   794     else
   795       return (_flags & Flag_is_block_start) != 0;
   796   }
   798   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   799   // Goto and Return.  This call also returns the block ending Node.
   800   virtual const Node *is_block_proj() const;
   802   // The node is a "macro" node which needs to be expanded before matching
   803   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   805   // Value is a vector of primitive values
   806   bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
   808 //----------------- Optimization
   810   // Get the worst-case Type output for this Node.
   811   virtual const class Type *bottom_type() const;
   813   // If we find a better type for a node, try to record it permanently.
   814   // Return true if this node actually changed.
   815   // Be sure to do the hash_delete game in the "rehash" variant.
   816   void raise_bottom_type(const Type* new_type);
   818   // Get the address type with which this node uses and/or defs memory,
   819   // or NULL if none.  The address type is conservatively wide.
   820   // Returns non-null for calls, membars, loads, stores, etc.
   821   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   822   virtual const class TypePtr *adr_type() const { return NULL; }
   824   // Return an existing node which computes the same function as this node.
   825   // The optimistic combined algorithm requires this to return a Node which
   826   // is a small number of steps away (e.g., one of my inputs).
   827   virtual Node *Identity( PhaseTransform *phase );
   829   // Return the set of values this Node can take on at runtime.
   830   virtual const Type *Value( PhaseTransform *phase ) const;
   832   // Return a node which is more "ideal" than the current node.
   833   // The invariants on this call are subtle.  If in doubt, read the
   834   // treatise in node.cpp above the default implemention AND TEST WITH
   835   // +VerifyIterativeGVN!
   836   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   838   // Some nodes have specific Ideal subgraph transformations only if they are
   839   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   840   // for the transformations to happen.
   841   bool has_special_unique_user() const;
   843   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   844   Node* find_exact_control(Node* ctrl);
   846   // Check if 'this' node dominates or equal to 'sub'.
   847   bool dominates(Node* sub, Node_List &nlist);
   849 protected:
   850   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   851 public:
   853   // Idealize graph, using DU info.  Done after constant propagation
   854   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   856   // See if there is valid pipeline info
   857   static  const Pipeline *pipeline_class();
   858   virtual const Pipeline *pipeline() const;
   860   // Compute the latency from the def to this instruction of the ith input node
   861   uint latency(uint i);
   863   // Hash & compare functions, for pessimistic value numbering
   865   // If the hash function returns the special sentinel value NO_HASH,
   866   // the node is guaranteed never to compare equal to any other node.
   867   // If we accidentally generate a hash with value NO_HASH the node
   868   // won't go into the table and we'll lose a little optimization.
   869   enum { NO_HASH = 0 };
   870   virtual uint hash() const;
   871   virtual uint cmp( const Node &n ) const;
   873   // Operation appears to be iteratively computed (such as an induction variable)
   874   // It is possible for this operation to return false for a loop-varying
   875   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   876   bool is_iteratively_computed();
   878   // Determine if a node is Counted loop induction variable.
   879   // The method is defined in loopnode.cpp.
   880   const Node* is_loop_iv() const;
   882   // Return a node with opcode "opc" and same inputs as "this" if one can
   883   // be found; Otherwise return NULL;
   884   Node* find_similar(int opc);
   886   // Return the unique control out if only one. Null if none or more than one.
   887   Node* unique_ctrl_out();
   889 //----------------- Code Generation
   891   // Ideal register class for Matching.  Zero means unmatched instruction
   892   // (these are cloned instead of converted to machine nodes).
   893   virtual uint ideal_reg() const;
   895   static const uint NotAMachineReg;   // must be > max. machine register
   897   // Do we Match on this edge index or not?  Generally false for Control
   898   // and true for everything else.  Weird for calls & returns.
   899   virtual uint match_edge(uint idx) const;
   901   // Register class output is returned in
   902   virtual const RegMask &out_RegMask() const;
   903   // Register class input is expected in
   904   virtual const RegMask &in_RegMask(uint) const;
   905   // Should we clone rather than spill this instruction?
   906   bool rematerialize() const;
   908   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   909   virtual JVMState* jvms() const;
   911   // Print as assembly
   912   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   913   // Emit bytes starting at parameter 'ptr'
   914   // Bump 'ptr' by the number of output bytes
   915   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   916   // Size of instruction in bytes
   917   virtual uint size(PhaseRegAlloc *ra_) const;
   919   // Convenience function to extract an integer constant from a node.
   920   // If it is not an integer constant (either Con, CastII, or Mach),
   921   // return value_if_unknown.
   922   jint find_int_con(jint value_if_unknown) const {
   923     const TypeInt* t = find_int_type();
   924     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   925   }
   926   // Return the constant, knowing it is an integer constant already
   927   jint get_int() const {
   928     const TypeInt* t = find_int_type();
   929     guarantee(t != NULL, "must be con");
   930     return t->get_con();
   931   }
   932   // Here's where the work is done.  Can produce non-constant int types too.
   933   const TypeInt* find_int_type() const;
   935   // Same thing for long (and intptr_t, via type.hpp):
   936   jlong get_long() const {
   937     const TypeLong* t = find_long_type();
   938     guarantee(t != NULL, "must be con");
   939     return t->get_con();
   940   }
   941   jlong find_long_con(jint value_if_unknown) const {
   942     const TypeLong* t = find_long_type();
   943     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   944   }
   945   const TypeLong* find_long_type() const;
   947   // These guys are called by code generated by ADLC:
   948   intptr_t get_ptr() const;
   949   intptr_t get_narrowcon() const;
   950   jdouble getd() const;
   951   jfloat getf() const;
   953   // Nodes which are pinned into basic blocks
   954   virtual bool pinned() const { return false; }
   956   // Nodes which use memory without consuming it, hence need antidependences
   957   // More specifically, needs_anti_dependence_check returns true iff the node
   958   // (a) does a load, and (b) does not perform a store (except perhaps to a
   959   // stack slot or some other unaliased location).
   960   bool needs_anti_dependence_check() const;
   962   // Return which operand this instruction may cisc-spill. In other words,
   963   // return operand position that can convert from reg to memory access
   964   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   965   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   967 //----------------- Graph walking
   968 public:
   969   // Walk and apply member functions recursively.
   970   // Supplied (this) pointer is root.
   971   void walk(NFunc pre, NFunc post, void *env);
   972   static void nop(Node &, void*); // Dummy empty function
   973   static void packregion( Node &n, void* );
   974 private:
   975   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   977 //----------------- Printing, etc
   978 public:
   979 #ifndef PRODUCT
   980   Node* find(int idx) const;         // Search the graph for the given idx.
   981   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
   982   void dump() const;                 // Print this node,
   983   void dump(int depth) const;        // Print this node, recursively to depth d
   984   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
   985   virtual void dump_req() const;     // Print required-edge info
   986   virtual void dump_prec() const;    // Print precedence-edge info
   987   virtual void dump_out() const;     // Print the output edge info
   988   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
   989   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
   990   void verify() const;               // Check Def-Use info for my subgraph
   991   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
   993   // This call defines a class-unique string used to identify class instances
   994   virtual const char *Name() const;
   996   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
   997   // RegMask Print Functions
   998   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
   999   void dump_out_regmask() { out_RegMask().dump(); }
  1000   static int _in_dump_cnt;
  1001   static bool in_dump() { return _in_dump_cnt > 0; }
  1002   void fast_dump() const {
  1003     tty->print("%4d: %-17s", _idx, Name());
  1004     for (uint i = 0; i < len(); i++)
  1005       if (in(i))
  1006         tty->print(" %4d", in(i)->_idx);
  1007       else
  1008         tty->print(" NULL");
  1009     tty->print("\n");
  1011 #endif
  1012 #ifdef ASSERT
  1013   void verify_construction();
  1014   bool verify_jvms(const JVMState* jvms) const;
  1015   int  _debug_idx;                     // Unique value assigned to every node.
  1016   int   debug_idx() const              { return _debug_idx; }
  1017   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1019   Node* _debug_orig;                   // Original version of this, if any.
  1020   Node*  debug_orig() const            { return _debug_orig; }
  1021   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1023   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1024   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1025   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1027   static void init_NodeProperty();
  1029   #if OPTO_DU_ITERATOR_ASSERT
  1030   const Node* _last_del;               // The last deleted node.
  1031   uint        _del_tick;               // Bumped when a deletion happens..
  1032   #endif
  1033 #endif
  1034 };
  1036 //-----------------------------------------------------------------------------
  1037 // Iterators over DU info, and associated Node functions.
  1039 #if OPTO_DU_ITERATOR_ASSERT
  1041 // Common code for assertion checking on DU iterators.
  1042 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1043 #ifdef ASSERT
  1044  protected:
  1045   bool         _vdui;               // cached value of VerifyDUIterators
  1046   const Node*  _node;               // the node containing the _out array
  1047   uint         _outcnt;             // cached node->_outcnt
  1048   uint         _del_tick;           // cached node->_del_tick
  1049   Node*        _last;               // last value produced by the iterator
  1051   void sample(const Node* node);    // used by c'tor to set up for verifies
  1052   void verify(const Node* node, bool at_end_ok = false);
  1053   void verify_resync();
  1054   void reset(const DUIterator_Common& that);
  1056 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1057   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1058 #else
  1059   #define I_VDUI_ONLY(i,x) { }
  1060 #endif //ASSERT
  1061 };
  1063 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1065 // Default DU iterator.  Allows appends onto the out array.
  1066 // Allows deletion from the out array only at the current point.
  1067 // Usage:
  1068 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1069 //    Node* y = x->out(i);
  1070 //    ...
  1071 //  }
  1072 // Compiles in product mode to a unsigned integer index, which indexes
  1073 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1074 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1075 // before continuing the loop.  You must delete only the last-produced
  1076 // edge.  You must delete only a single copy of the last-produced edge,
  1077 // or else you must delete all copies at once (the first time the edge
  1078 // is produced by the iterator).
  1079 class DUIterator : public DUIterator_Common {
  1080   friend class Node;
  1082   // This is the index which provides the product-mode behavior.
  1083   // Whatever the product-mode version of the system does to the
  1084   // DUI index is done to this index.  All other fields in
  1085   // this class are used only for assertion checking.
  1086   uint         _idx;
  1088   #ifdef ASSERT
  1089   uint         _refresh_tick;    // Records the refresh activity.
  1091   void sample(const Node* node); // Initialize _refresh_tick etc.
  1092   void verify(const Node* node, bool at_end_ok = false);
  1093   void verify_increment();       // Verify an increment operation.
  1094   void verify_resync();          // Verify that we can back up over a deletion.
  1095   void verify_finish();          // Verify that the loop terminated properly.
  1096   void refresh();                // Resample verification info.
  1097   void reset(const DUIterator& that);  // Resample after assignment.
  1098   #endif
  1100   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1101     { _idx = 0;                         debug_only(sample(node)); }
  1103  public:
  1104   // initialize to garbage; clear _vdui to disable asserts
  1105   DUIterator()
  1106     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1108   void operator++(int dummy_to_specify_postfix_op)
  1109     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1111   void operator--()
  1112     { VDUI_ONLY(verify_resync());       --_idx; }
  1114   ~DUIterator()
  1115     { VDUI_ONLY(verify_finish()); }
  1117   void operator=(const DUIterator& that)
  1118     { _idx = that._idx;                 debug_only(reset(that)); }
  1119 };
  1121 DUIterator Node::outs() const
  1122   { return DUIterator(this, 0); }
  1123 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1124   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1125 bool Node::has_out(DUIterator& i) const
  1126   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1127 Node*    Node::out(DUIterator& i) const
  1128   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1131 // Faster DU iterator.  Disallows insertions into the out array.
  1132 // Allows deletion from the out array only at the current point.
  1133 // Usage:
  1134 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1135 //    Node* y = x->fast_out(i);
  1136 //    ...
  1137 //  }
  1138 // Compiles in product mode to raw Node** pointer arithmetic, with
  1139 // no reloading of pointers from the original node x.  If you delete,
  1140 // you must perform "--i; --imax" just before continuing the loop.
  1141 // If you delete multiple copies of the same edge, you must decrement
  1142 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1143 class DUIterator_Fast : public DUIterator_Common {
  1144   friend class Node;
  1145   friend class DUIterator_Last;
  1147   // This is the pointer which provides the product-mode behavior.
  1148   // Whatever the product-mode version of the system does to the
  1149   // DUI pointer is done to this pointer.  All other fields in
  1150   // this class are used only for assertion checking.
  1151   Node**       _outp;
  1153   #ifdef ASSERT
  1154   void verify(const Node* node, bool at_end_ok = false);
  1155   void verify_limit();
  1156   void verify_resync();
  1157   void verify_relimit(uint n);
  1158   void reset(const DUIterator_Fast& that);
  1159   #endif
  1161   // Note:  offset must be signed, since -1 is sometimes passed
  1162   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1163     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1165  public:
  1166   // initialize to garbage; clear _vdui to disable asserts
  1167   DUIterator_Fast()
  1168     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1170   void operator++(int dummy_to_specify_postfix_op)
  1171     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1173   void operator--()
  1174     { VDUI_ONLY(verify_resync());       --_outp; }
  1176   void operator-=(uint n)   // applied to the limit only
  1177     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1179   bool operator<(DUIterator_Fast& limit) {
  1180     I_VDUI_ONLY(*this, this->verify(_node, true));
  1181     I_VDUI_ONLY(limit, limit.verify_limit());
  1182     return _outp < limit._outp;
  1185   void operator=(const DUIterator_Fast& that)
  1186     { _outp = that._outp;               debug_only(reset(that)); }
  1187 };
  1189 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1190   // Assign a limit pointer to the reference argument:
  1191   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1192   // Return the base pointer:
  1193   return DUIterator_Fast(this, 0);
  1195 Node* Node::fast_out(DUIterator_Fast& i) const {
  1196   I_VDUI_ONLY(i, i.verify(this));
  1197   return debug_only(i._last=) *i._outp;
  1201 // Faster DU iterator.  Requires each successive edge to be removed.
  1202 // Does not allow insertion of any edges.
  1203 // Usage:
  1204 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1205 //    Node* y = x->last_out(i);
  1206 //    ...
  1207 //  }
  1208 // Compiles in product mode to raw Node** pointer arithmetic, with
  1209 // no reloading of pointers from the original node x.
  1210 class DUIterator_Last : private DUIterator_Fast {
  1211   friend class Node;
  1213   #ifdef ASSERT
  1214   void verify(const Node* node, bool at_end_ok = false);
  1215   void verify_limit();
  1216   void verify_step(uint num_edges);
  1217   #endif
  1219   // Note:  offset must be signed, since -1 is sometimes passed
  1220   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1221     : DUIterator_Fast(node, offset) { }
  1223   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1224   void operator<(int)                              {} // do not use
  1226  public:
  1227   DUIterator_Last() { }
  1228   // initialize to garbage
  1230   void operator--()
  1231     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1233   void operator-=(uint n)
  1234     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1236   bool operator>=(DUIterator_Last& limit) {
  1237     I_VDUI_ONLY(*this, this->verify(_node, true));
  1238     I_VDUI_ONLY(limit, limit.verify_limit());
  1239     return _outp >= limit._outp;
  1242   void operator=(const DUIterator_Last& that)
  1243     { DUIterator_Fast::operator=(that); }
  1244 };
  1246 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1247   // Assign a limit pointer to the reference argument:
  1248   imin = DUIterator_Last(this, 0);
  1249   // Return the initial pointer:
  1250   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1252 Node* Node::last_out(DUIterator_Last& i) const {
  1253   I_VDUI_ONLY(i, i.verify(this));
  1254   return debug_only(i._last=) *i._outp;
  1257 #endif //OPTO_DU_ITERATOR_ASSERT
  1259 #undef I_VDUI_ONLY
  1260 #undef VDUI_ONLY
  1262 // An Iterator that truly follows the iterator pattern.  Doesn't
  1263 // support deletion but could be made to.
  1264 //
  1265 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1266 //     Node* m = i.get();
  1267 //
  1268 class SimpleDUIterator : public StackObj {
  1269  private:
  1270   Node* node;
  1271   DUIterator_Fast i;
  1272   DUIterator_Fast imax;
  1273  public:
  1274   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1275   bool has_next() { return i < imax; }
  1276   void next() { i++; }
  1277   Node* get() { return node->fast_out(i); }
  1278 };
  1281 //-----------------------------------------------------------------------------
  1282 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1283 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1284 // Note that the constructor just zeros things, and since I use Arena
  1285 // allocation I do not need a destructor to reclaim storage.
  1286 class Node_Array : public ResourceObj {
  1287 protected:
  1288   Arena *_a;                    // Arena to allocate in
  1289   uint   _max;
  1290   Node **_nodes;
  1291   void   grow( uint i );        // Grow array node to fit
  1292 public:
  1293   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1294     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1295     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1296       _nodes[i] = NULL;
  1300   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1301   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1302   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1303   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1304   Node **adr() { return _nodes; }
  1305   // Extend the mapping: index i maps to Node *n.
  1306   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1307   void insert( uint i, Node *n );
  1308   void remove( uint i );        // Remove, preserving order
  1309   void sort( C_sort_func_t func);
  1310   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1311   void clear();                 // Set all entries to NULL, keep storage
  1312   uint Size() const { return _max; }
  1313   void dump() const;
  1314 };
  1316 class Node_List : public Node_Array {
  1317   uint _cnt;
  1318 public:
  1319   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1320   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1321   bool contains(Node* n) {
  1322     for (uint e = 0; e < size(); e++) {
  1323       if (at(e) == n) return true;
  1325     return false;
  1327   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1328   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1329   void push( Node *b ) { map(_cnt++,b); }
  1330   void yank( Node *n );         // Find and remove
  1331   Node *pop() { return _nodes[--_cnt]; }
  1332   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1333   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1334   uint size() const { return _cnt; }
  1335   void dump() const;
  1336 };
  1338 //------------------------------Unique_Node_List-------------------------------
  1339 class Unique_Node_List : public Node_List {
  1340   VectorSet _in_worklist;
  1341   uint _clock_index;            // Index in list where to pop from next
  1342 public:
  1343   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1344   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1346   void remove( Node *n );
  1347   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1348   VectorSet &member_set(){ return _in_worklist; }
  1350   void push( Node *b ) {
  1351     if( !_in_worklist.test_set(b->_idx) )
  1352       Node_List::push(b);
  1354   Node *pop() {
  1355     if( _clock_index >= size() ) _clock_index = 0;
  1356     Node *b = at(_clock_index);
  1357     map( _clock_index, Node_List::pop());
  1358     if (size() != 0) _clock_index++; // Always start from 0
  1359     _in_worklist >>= b->_idx;
  1360     return b;
  1362   Node *remove( uint i ) {
  1363     Node *b = Node_List::at(i);
  1364     _in_worklist >>= b->_idx;
  1365     map(i,Node_List::pop());
  1366     return b;
  1368   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1369   void  clear() {
  1370     _in_worklist.Clear();        // Discards storage but grows automatically
  1371     Node_List::clear();
  1372     _clock_index = 0;
  1375   // Used after parsing to remove useless nodes before Iterative GVN
  1376   void remove_useless_nodes(VectorSet &useful);
  1378 #ifndef PRODUCT
  1379   void print_set() const { _in_worklist.print(); }
  1380 #endif
  1381 };
  1383 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1384 inline void Compile::record_for_igvn(Node* n) {
  1385   _for_igvn->push(n);
  1388 //------------------------------Node_Stack-------------------------------------
  1389 class Node_Stack {
  1390 protected:
  1391   struct INode {
  1392     Node *node; // Processed node
  1393     uint  indx; // Index of next node's child
  1394   };
  1395   INode *_inode_top; // tos, stack grows up
  1396   INode *_inode_max; // End of _inodes == _inodes + _max
  1397   INode *_inodes;    // Array storage for the stack
  1398   Arena *_a;         // Arena to allocate in
  1399   void grow();
  1400 public:
  1401   Node_Stack(int size) {
  1402     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1403     _a = Thread::current()->resource_area();
  1404     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1405     _inode_max = _inodes + max;
  1406     _inode_top = _inodes - 1; // stack is empty
  1409   Node_Stack(Arena *a, int size) : _a(a) {
  1410     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1411     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1412     _inode_max = _inodes + max;
  1413     _inode_top = _inodes - 1; // stack is empty
  1416   void pop() {
  1417     assert(_inode_top >= _inodes, "node stack underflow");
  1418     --_inode_top;
  1420   void push(Node *n, uint i) {
  1421     ++_inode_top;
  1422     if (_inode_top >= _inode_max) grow();
  1423     INode *top = _inode_top; // optimization
  1424     top->node = n;
  1425     top->indx = i;
  1427   Node *node() const {
  1428     return _inode_top->node;
  1430   Node* node_at(uint i) const {
  1431     assert(_inodes + i <= _inode_top, "in range");
  1432     return _inodes[i].node;
  1434   uint index() const {
  1435     return _inode_top->indx;
  1437   uint index_at(uint i) const {
  1438     assert(_inodes + i <= _inode_top, "in range");
  1439     return _inodes[i].indx;
  1441   void set_node(Node *n) {
  1442     _inode_top->node = n;
  1444   void set_index(uint i) {
  1445     _inode_top->indx = i;
  1447   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1448   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1449   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1450   bool is_empty() const { return (_inode_top < _inodes); }
  1451   void clear() { _inode_top = _inodes - 1; } // retain storage
  1452 };
  1455 //-----------------------------Node_Notes--------------------------------------
  1456 // Debugging or profiling annotations loosely and sparsely associated
  1457 // with some nodes.  See Compile::node_notes_at for the accessor.
  1458 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1459   JVMState* _jvms;
  1461 public:
  1462   Node_Notes(JVMState* jvms = NULL) {
  1463     _jvms = jvms;
  1466   JVMState* jvms()            { return _jvms; }
  1467   void  set_jvms(JVMState* x) {        _jvms = x; }
  1469   // True if there is nothing here.
  1470   bool is_clear() {
  1471     return (_jvms == NULL);
  1474   // Make there be nothing here.
  1475   void clear() {
  1476     _jvms = NULL;
  1479   // Make a new, clean node notes.
  1480   static Node_Notes* make(Compile* C) {
  1481     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1482     nn->clear();
  1483     return nn;
  1486   Node_Notes* clone(Compile* C) {
  1487     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1488     (*nn) = (*this);
  1489     return nn;
  1492   // Absorb any information from source.
  1493   bool update_from(Node_Notes* source) {
  1494     bool changed = false;
  1495     if (source != NULL) {
  1496       if (source->jvms() != NULL) {
  1497         set_jvms(source->jvms());
  1498         changed = true;
  1501     return changed;
  1503 };
  1505 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1506 inline Node_Notes*
  1507 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1508                            int idx, bool can_grow) {
  1509   assert(idx >= 0, "oob");
  1510   int block_idx = (idx >> _log2_node_notes_block_size);
  1511   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1512   if (grow_by >= 0) {
  1513     if (!can_grow)  return NULL;
  1514     grow_node_notes(arr, grow_by + 1);
  1516   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1517   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1520 inline bool
  1521 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1522   if (value == NULL || value->is_clear())
  1523     return false;  // nothing to write => write nothing
  1524   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1525   assert(loc != NULL, "");
  1526   return loc->update_from(value);
  1530 //------------------------------TypeNode---------------------------------------
  1531 // Node with a Type constant.
  1532 class TypeNode : public Node {
  1533 protected:
  1534   virtual uint hash() const;    // Check the type
  1535   virtual uint cmp( const Node &n ) const;
  1536   virtual uint size_of() const; // Size is bigger
  1537   const Type* const _type;
  1538 public:
  1539   void set_type(const Type* t) {
  1540     assert(t != NULL, "sanity");
  1541     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1542     *(const Type**)&_type = t;   // cast away const-ness
  1543     // If this node is in the hash table, make sure it doesn't need a rehash.
  1544     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1546   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1547   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1548     init_class_id(Class_Type);
  1550   virtual const Type *Value( PhaseTransform *phase ) const;
  1551   virtual const Type *bottom_type() const;
  1552   virtual       uint  ideal_reg() const;
  1553 #ifndef PRODUCT
  1554   virtual void dump_spec(outputStream *st) const;
  1555 #endif
  1556 };

mercurial