src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1822
0bfd3fb24150
child 2314
f95d63e2154a
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // This class keeps statistical information and computes the
    26 // optimal free space for both the young and old generation
    27 // based on current application characteristics (based on gc cost
    28 // and application footprint).
    29 //
    30 // It also computes an optimal tenuring threshold between the young
    31 // and old generations, so as to equalize the cost of collections
    32 // of those generations, as well as optimial survivor space sizes
    33 // for the young generation.
    34 //
    35 // While this class is specifically intended for a generational system
    36 // consisting of a young gen (containing an Eden and two semi-spaces)
    37 // and a tenured gen, as well as a perm gen for reflective data, it
    38 // makes NO references to specific generations.
    39 //
    40 // 05/02/2003 Update
    41 // The 1.5 policy makes use of data gathered for the costs of GC on
    42 // specific generations.  That data does reference specific
    43 // generation.  Also diagnostics specific to generations have
    44 // been added.
    46 // Forward decls
    47 class elapsedTimer;
    48 class GenerationSizer;
    50 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
    51  friend class PSGCAdaptivePolicyCounters;
    52  private:
    53   // These values are used to record decisions made during the
    54   // policy.  For example, if the young generation was decreased
    55   // to decrease the GC cost of minor collections the value
    56   // decrease_young_gen_for_throughput_true is used.
    58   // Last calculated sizes, in bytes, and aligned
    59   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
    61   // Time statistics
    62   AdaptivePaddedAverage* _avg_major_pause;
    64   // Footprint statistics
    65   AdaptiveWeightedAverage* _avg_base_footprint;
    67   // Statistical data gathered for GC
    68   GCStats _gc_stats;
    70   size_t _survivor_size_limit;   // Limit in bytes of survivor size
    71   const double _collection_cost_margin_fraction;
    73   // Variable for estimating the major and minor pause times.
    74   // These variables represent linear least-squares fits of
    75   // the data.
    76   //   major pause time vs. old gen size
    77   LinearLeastSquareFit* _major_pause_old_estimator;
    78   //   major pause time vs. young gen size
    79   LinearLeastSquareFit* _major_pause_young_estimator;
    82   // These record the most recent collection times.  They
    83   // are available as an alternative to using the averages
    84   // for making ergonomic decisions.
    85   double _latest_major_mutator_interval_seconds;
    87   const size_t _intra_generation_alignment; // alignment for eden, survivors
    89   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
    91   // The amount of live data in the heap at the last full GC, used
    92   // as a baseline to help us determine when we need to perform the
    93   // next full GC.
    94   size_t _live_at_last_full_gc;
    96   // decrease/increase the old generation for minor pause time
    97   int _change_old_gen_for_min_pauses;
    99   // increase/decrease the young generation for major pause time
   100   int _change_young_gen_for_maj_pauses;
   103   // Flag indicating that the adaptive policy is ready to use
   104   bool _old_gen_policy_is_ready;
   106   // Changing the generation sizing depends on the data that is
   107   // gathered about the effects of changes on the pause times and
   108   // throughput.  These variable count the number of data points
   109   // gathered.  The policy may use these counters as a threshhold
   110   // for reliable data.
   111   julong _young_gen_change_for_major_pause_count;
   113   // To facilitate faster growth at start up, supplement the normal
   114   // growth percentage for the young gen eden and the
   115   // old gen space for promotion with these value which decay
   116   // with increasing collections.
   117   uint _young_gen_size_increment_supplement;
   118   uint _old_gen_size_increment_supplement;
   120   // The number of bytes absorbed from eden into the old gen by moving the
   121   // boundary over live data.
   122   size_t _bytes_absorbed_from_eden;
   124  private:
   126   // Accessors
   127   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
   128   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
   130   // Change the young generation size to achieve a minor GC pause time goal
   131   void adjust_for_minor_pause_time(bool is_full_gc,
   132                                    size_t* desired_promo_size_ptr,
   133                                    size_t* desired_eden_size_ptr);
   134   // Change the generation sizes to achieve a GC pause time goal
   135   // Returned sizes are not necessarily aligned.
   136   void adjust_for_pause_time(bool is_full_gc,
   137                          size_t* desired_promo_size_ptr,
   138                          size_t* desired_eden_size_ptr);
   139   // Change the generation sizes to achieve an application throughput goal
   140   // Returned sizes are not necessarily aligned.
   141   void adjust_for_throughput(bool is_full_gc,
   142                              size_t* desired_promo_size_ptr,
   143                              size_t* desired_eden_size_ptr);
   144   // Change the generation sizes to achieve minimum footprint
   145   // Returned sizes are not aligned.
   146   size_t adjust_promo_for_footprint(size_t desired_promo_size,
   147                                     size_t desired_total);
   148   size_t adjust_eden_for_footprint(size_t desired_promo_size,
   149                                    size_t desired_total);
   151   // Size in bytes for an increment or decrement of eden.
   152   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
   153   virtual size_t eden_decrement(size_t cur_eden);
   154   size_t eden_decrement_aligned_down(size_t cur_eden);
   155   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
   157   // Size in bytes for an increment or decrement of the promotion area
   158   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
   159   virtual size_t promo_decrement(size_t cur_promo);
   160   size_t promo_decrement_aligned_down(size_t cur_promo);
   161   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
   163   // Decay the supplemental growth additive.
   164   void decay_supplemental_growth(bool is_full_gc);
   166   // Returns a change that has been scaled down.  Result
   167   // is not aligned.  (If useful, move to some shared
   168   // location.)
   169   size_t scale_down(size_t change, double part, double total);
   171  protected:
   172   // Time accessors
   174   // Footprint accessors
   175   size_t live_space() const {
   176     return (size_t)(avg_base_footprint()->average() +
   177                     avg_young_live()->average() +
   178                     avg_old_live()->average());
   179   }
   180   size_t free_space() const {
   181     return _eden_size + _promo_size;
   182   }
   184   void set_promo_size(size_t new_size) {
   185     _promo_size = new_size;
   186   }
   187   void set_survivor_size(size_t new_size) {
   188     _survivor_size = new_size;
   189   }
   191   // Update estimators
   192   void update_minor_pause_old_estimator(double minor_pause_in_ms);
   194   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
   196  public:
   197   // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
   198   size_t eden_increment_aligned_up(size_t cur_eden);
   199   size_t eden_increment_aligned_down(size_t cur_eden);
   200   size_t promo_increment_aligned_up(size_t cur_promo);
   201   size_t promo_increment_aligned_down(size_t cur_promo);
   203   virtual size_t eden_increment(size_t cur_eden);
   204   virtual size_t promo_increment(size_t cur_promo);
   206   // Accessors for use by performance counters
   207   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
   208     return _gc_stats.avg_promoted();
   209   }
   210   AdaptiveWeightedAverage* avg_base_footprint() const {
   211     return _avg_base_footprint;
   212   }
   214   // Input arguments are initial free space sizes for young and old
   215   // generations, the initial survivor space size, the
   216   // alignment values and the pause & throughput goals.
   217   //
   218   // NEEDS_CLEANUP this is a singleton object
   219   PSAdaptiveSizePolicy(size_t init_eden_size,
   220                        size_t init_promo_size,
   221                        size_t init_survivor_size,
   222                        size_t intra_generation_alignment,
   223                        double gc_pause_goal_sec,
   224                        double gc_minor_pause_goal_sec,
   225                        uint gc_time_ratio);
   227   // Methods indicating events of interest to the adaptive size policy,
   228   // called by GC algorithms. It is the responsibility of users of this
   229   // policy to call these methods at the correct times!
   230   void major_collection_begin();
   231   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
   233   //
   234   void tenured_allocation(size_t size) {
   235     _avg_pretenured->sample(size);
   236   }
   238   // Accessors
   239   // NEEDS_CLEANUP   should use sizes.hpp
   241   size_t calculated_old_free_size_in_bytes() const {
   242     return (size_t)(_promo_size + avg_promoted()->padded_average());
   243   }
   245   size_t average_old_live_in_bytes() const {
   246     return (size_t) avg_old_live()->average();
   247   }
   249   size_t average_promoted_in_bytes() const {
   250     return (size_t)avg_promoted()->average();
   251   }
   253   size_t padded_average_promoted_in_bytes() const {
   254     return (size_t)avg_promoted()->padded_average();
   255   }
   257   int change_young_gen_for_maj_pauses() {
   258     return _change_young_gen_for_maj_pauses;
   259   }
   260   void set_change_young_gen_for_maj_pauses(int v) {
   261     _change_young_gen_for_maj_pauses = v;
   262   }
   264   int change_old_gen_for_min_pauses() {
   265     return _change_old_gen_for_min_pauses;
   266   }
   267   void set_change_old_gen_for_min_pauses(int v) {
   268     _change_old_gen_for_min_pauses = v;
   269   }
   271   // Return true if the old generation size was changed
   272   // to try to reach a pause time goal.
   273   bool old_gen_changed_for_pauses() {
   274     bool result = _change_old_gen_for_maj_pauses != 0 ||
   275                   _change_old_gen_for_min_pauses != 0;
   276     return result;
   277   }
   279   // Return true if the young generation size was changed
   280   // to try to reach a pause time goal.
   281   bool young_gen_changed_for_pauses() {
   282     bool result = _change_young_gen_for_min_pauses != 0 ||
   283                   _change_young_gen_for_maj_pauses != 0;
   284     return result;
   285   }
   286   // end flags for pause goal
   288   // Return true if the old generation size was changed
   289   // to try to reach a throughput goal.
   290   bool old_gen_changed_for_throughput() {
   291     bool result = _change_old_gen_for_throughput != 0;
   292     return result;
   293   }
   295   // Return true if the young generation size was changed
   296   // to try to reach a throughput goal.
   297   bool young_gen_changed_for_throughput() {
   298     bool result = _change_young_gen_for_throughput != 0;
   299     return result;
   300   }
   302   int decrease_for_footprint() { return _decrease_for_footprint; }
   305   // Accessors for estimators.  The slope of the linear fit is
   306   // currently all that is used for making decisions.
   308   LinearLeastSquareFit* major_pause_old_estimator() {
   309     return _major_pause_old_estimator;
   310   }
   312   LinearLeastSquareFit* major_pause_young_estimator() {
   313     return _major_pause_young_estimator;
   314   }
   317   virtual void clear_generation_free_space_flags();
   319   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
   320   float major_pause_young_slope() {
   321     return _major_pause_young_estimator->slope();
   322   }
   323   float major_collection_slope() { return _major_collection_estimator->slope();}
   325   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
   327   // Given the amount of live data in the heap, should we
   328   // perform a Full GC?
   329   bool should_full_GC(size_t live_in_old_gen);
   331   // Calculates optimial free space sizes for both the old and young
   332   // generations.  Stores results in _eden_size and _promo_size.
   333   // Takes current used space in all generations as input, as well
   334   // as an indication if a full gc has just been performed, for use
   335   // in deciding if an OOM error should be thrown.
   336   void compute_generation_free_space(size_t young_live,
   337                                      size_t eden_live,
   338                                      size_t old_live,
   339                                      size_t perm_live,
   340                                      size_t cur_eden,  // current eden in bytes
   341                                      size_t max_old_gen_size,
   342                                      size_t max_eden_size,
   343                                      bool   is_full_gc,
   344                                      GCCause::Cause gc_cause,
   345                                      CollectorPolicy* collector_policy);
   347   // Calculates new survivor space size;  returns a new tenuring threshold
   348   // value. Stores new survivor size in _survivor_size.
   349   int compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
   350                                                 int    tenuring_threshold,
   351                                                 size_t survivor_limit);
   353   // Return the maximum size of a survivor space if the young generation were of
   354   // size gen_size.
   355   size_t max_survivor_size(size_t gen_size) {
   356     // Never allow the target survivor size to grow more than MinSurvivorRatio
   357     // of the young generation size.  We cannot grow into a two semi-space
   358     // system, with Eden zero sized.  Even if the survivor space grows, from()
   359     // might grow by moving the bottom boundary "down" -- so from space will
   360     // remain almost full anyway (top() will be near end(), but there will be a
   361     // large filler object at the bottom).
   362     const size_t sz = gen_size / MinSurvivorRatio;
   363     const size_t alignment = _intra_generation_alignment;
   364     return sz > alignment ? align_size_down(sz, alignment) : alignment;
   365   }
   367   size_t live_at_last_full_gc() {
   368     return _live_at_last_full_gc;
   369   }
   371   size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
   372   void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
   374   void set_bytes_absorbed_from_eden(size_t val) {
   375     _bytes_absorbed_from_eden = val;
   376   }
   378   // Update averages that are always used (even
   379   // if adaptive sizing is turned off).
   380   void update_averages(bool is_survivor_overflow,
   381                        size_t survived,
   382                        size_t promoted);
   384   // Printing support
   385   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
   386 };

mercurial