src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1829
1316cec51b4d
child 2190
4805b9f4779e
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class G1CollectedHeap;
    26 class CMTask;
    27 typedef GenericTaskQueue<oop>            CMTaskQueue;
    28 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    30 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    31 // class, with one bit per (1<<_shifter) HeapWords.
    33 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    34  protected:
    35   HeapWord* _bmStartWord;      // base address of range covered by map
    36   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    37   const int _shifter;          // map to char or bit
    38   VirtualSpace _virtual_space; // underlying the bit map
    39   BitMap    _bm;               // the bit map itself
    41  public:
    42   // constructor
    43   CMBitMapRO(ReservedSpace rs, int shifter);
    45   enum { do_yield = true };
    47   // inquiries
    48   HeapWord* startWord()   const { return _bmStartWord; }
    49   size_t    sizeInWords() const { return _bmWordSize;  }
    50   // the following is one past the last word in space
    51   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    53   // read marks
    55   bool isMarked(HeapWord* addr) const {
    56     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    57            "outside underlying space?");
    58     return _bm.at(heapWordToOffset(addr));
    59   }
    61   // iteration
    62   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    63   bool iterate(BitMapClosure* cl, MemRegion mr);
    65   // Return the address corresponding to the next marked bit at or after
    66   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    67   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    68   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    69                                      HeapWord* limit = NULL) const;
    70   // Return the address corresponding to the next unmarked bit at or after
    71   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    72   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    73   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    74                                        HeapWord* limit = NULL) const;
    76   // conversion utilities
    77   // XXX Fix these so that offsets are size_t's...
    78   HeapWord* offsetToHeapWord(size_t offset) const {
    79     return _bmStartWord + (offset << _shifter);
    80   }
    81   size_t heapWordToOffset(HeapWord* addr) const {
    82     return pointer_delta(addr, _bmStartWord) >> _shifter;
    83   }
    84   int heapWordDiffToOffsetDiff(size_t diff) const;
    85   HeapWord* nextWord(HeapWord* addr) {
    86     return offsetToHeapWord(heapWordToOffset(addr) + 1);
    87   }
    89   void mostly_disjoint_range_union(BitMap*   from_bitmap,
    90                                    size_t    from_start_index,
    91                                    HeapWord* to_start_word,
    92                                    size_t    word_num);
    94   // debugging
    95   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
    96 };
    98 class CMBitMap : public CMBitMapRO {
   100  public:
   101   // constructor
   102   CMBitMap(ReservedSpace rs, int shifter) :
   103     CMBitMapRO(rs, shifter) {}
   105   // write marks
   106   void mark(HeapWord* addr) {
   107     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   108            "outside underlying space?");
   109     _bm.at_put(heapWordToOffset(addr), true);
   110   }
   111   void clear(HeapWord* addr) {
   112     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   113            "outside underlying space?");
   114     _bm.at_put(heapWordToOffset(addr), false);
   115   }
   116   bool parMark(HeapWord* addr) {
   117     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   118            "outside underlying space?");
   119     return _bm.par_at_put(heapWordToOffset(addr), true);
   120   }
   121   bool parClear(HeapWord* addr) {
   122     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   123            "outside underlying space?");
   124     return _bm.par_at_put(heapWordToOffset(addr), false);
   125   }
   126   void markRange(MemRegion mr);
   127   void clearAll();
   128   void clearRange(MemRegion mr);
   130   // Starting at the bit corresponding to "addr" (inclusive), find the next
   131   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   132   // the end of this run (stopping at "end_addr").  Return the MemRegion
   133   // covering from the start of the region corresponding to the first bit
   134   // of the run to the end of the region corresponding to the last bit of
   135   // the run.  If there is no "1" bit at or after "addr", return an empty
   136   // MemRegion.
   137   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   138 };
   140 // Represents a marking stack used by the CM collector.
   141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   142 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   143   ConcurrentMark* _cm;
   144   oop*   _base;      // bottom of stack
   145   jint   _index;     // one more than last occupied index
   146   jint   _capacity;  // max #elements
   147   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   148   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   150   bool   _overflow;
   151   DEBUG_ONLY(bool _drain_in_progress;)
   152   DEBUG_ONLY(bool _drain_in_progress_yields;)
   154  public:
   155   CMMarkStack(ConcurrentMark* cm);
   156   ~CMMarkStack();
   158   void allocate(size_t size);
   160   oop pop() {
   161     if (!isEmpty()) {
   162       return _base[--_index] ;
   163     }
   164     return NULL;
   165   }
   167   // If overflow happens, don't do the push, and record the overflow.
   168   // *Requires* that "ptr" is already marked.
   169   void push(oop ptr) {
   170     if (isFull()) {
   171       // Record overflow.
   172       _overflow = true;
   173       return;
   174     } else {
   175       _base[_index++] = ptr;
   176       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   177     }
   178   }
   179   // Non-block impl.  Note: concurrency is allowed only with other
   180   // "par_push" operations, not with "pop" or "drain".  We would need
   181   // parallel versions of them if such concurrency was desired.
   182   void par_push(oop ptr);
   184   // Pushes the first "n" elements of "ptr_arr" on the stack.
   185   // Non-block impl.  Note: concurrency is allowed only with other
   186   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   187   void par_adjoin_arr(oop* ptr_arr, int n);
   189   // Pushes the first "n" elements of "ptr_arr" on the stack.
   190   // Locking impl: concurrency is allowed only with
   191   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   192   // locking strategy.
   193   void par_push_arr(oop* ptr_arr, int n);
   195   // If returns false, the array was empty.  Otherwise, removes up to "max"
   196   // elements from the stack, and transfers them to "ptr_arr" in an
   197   // unspecified order.  The actual number transferred is given in "n" ("n
   198   // == 0" is deliberately redundant with the return value.)  Locking impl:
   199   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   200   // operations, which use the same locking strategy.
   201   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   203   // Drain the mark stack, applying the given closure to all fields of
   204   // objects on the stack.  (That is, continue until the stack is empty,
   205   // even if closure applications add entries to the stack.)  The "bm"
   206   // argument, if non-null, may be used to verify that only marked objects
   207   // are on the mark stack.  If "yield_after" is "true", then the
   208   // concurrent marker performing the drain offers to yield after
   209   // processing each object.  If a yield occurs, stops the drain operation
   210   // and returns false.  Otherwise, returns true.
   211   template<class OopClosureClass>
   212   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   214   bool isEmpty()    { return _index == 0; }
   215   bool isFull()     { return _index == _capacity; }
   216   int maxElems()    { return _capacity; }
   218   bool overflow() { return _overflow; }
   219   void clear_overflow() { _overflow = false; }
   221   int  size() { return _index; }
   223   void setEmpty()   { _index = 0; clear_overflow(); }
   225   // Record the current size; a subsequent "oops_do" will iterate only over
   226   // indices valid at the time of this call.
   227   void set_oops_do_bound(jint bound = -1) {
   228     if (bound == -1) {
   229       _oops_do_bound = _index;
   230     } else {
   231       _oops_do_bound = bound;
   232     }
   233   }
   234   jint oops_do_bound() { return _oops_do_bound; }
   235   // iterate over the oops in the mark stack, up to the bound recorded via
   236   // the call above.
   237   void oops_do(OopClosure* f);
   238 };
   240 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   241   MemRegion* _base;
   242   jint _capacity;
   243   jint _index;
   244   jint _oops_do_bound;
   245   bool _overflow;
   246 public:
   247   CMRegionStack();
   248   ~CMRegionStack();
   249   void allocate(size_t size);
   251   // This is lock-free; assumes that it will only be called in parallel
   252   // with other "push" operations (no pops).
   253   void push(MemRegion mr);
   255 #if 0
   256   // This is currently not used. See the comment in the .cpp file.
   258   // Lock-free; assumes that it will only be called in parallel
   259   // with other "pop" operations (no pushes).
   260   MemRegion pop();
   261 #endif // 0
   263   // These two are the implementations that use a lock. They can be
   264   // called concurrently with each other but they should not be called
   265   // concurrently with the lock-free versions (push() / pop()).
   266   void push_with_lock(MemRegion mr);
   267   MemRegion pop_with_lock();
   269   bool isEmpty()    { return _index == 0; }
   270   bool isFull()     { return _index == _capacity; }
   272   bool overflow() { return _overflow; }
   273   void clear_overflow() { _overflow = false; }
   275   int  size() { return _index; }
   277   // It iterates over the entries in the region stack and it
   278   // invalidates (i.e. assigns MemRegion()) the ones that point to
   279   // regions in the collection set.
   280   bool invalidate_entries_into_cset();
   282   // This gives an upper bound up to which the iteration in
   283   // invalidate_entries_into_cset() will reach. This prevents
   284   // newly-added entries to be unnecessarily scanned.
   285   void set_oops_do_bound() {
   286     _oops_do_bound = _index;
   287   }
   289   void setEmpty()   { _index = 0; clear_overflow(); }
   290 };
   292 // this will enable a variety of different statistics per GC task
   293 #define _MARKING_STATS_       0
   294 // this will enable the higher verbose levels
   295 #define _MARKING_VERBOSE_     0
   297 #if _MARKING_STATS_
   298 #define statsOnly(statement)  \
   299 do {                          \
   300   statement ;                 \
   301 } while (0)
   302 #else // _MARKING_STATS_
   303 #define statsOnly(statement)  \
   304 do {                          \
   305 } while (0)
   306 #endif // _MARKING_STATS_
   308 typedef enum {
   309   no_verbose  = 0,   // verbose turned off
   310   stats_verbose,     // only prints stats at the end of marking
   311   low_verbose,       // low verbose, mostly per region and per major event
   312   medium_verbose,    // a bit more detailed than low
   313   high_verbose       // per object verbose
   314 } CMVerboseLevel;
   317 class ConcurrentMarkThread;
   319 class ConcurrentMark: public CHeapObj {
   320   friend class ConcurrentMarkThread;
   321   friend class CMTask;
   322   friend class CMBitMapClosure;
   323   friend class CSMarkOopClosure;
   324   friend class CMGlobalObjectClosure;
   325   friend class CMRemarkTask;
   326   friend class CMConcurrentMarkingTask;
   327   friend class G1ParNoteEndTask;
   328   friend class CalcLiveObjectsClosure;
   330 protected:
   331   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   332   G1CollectedHeap*      _g1h;        // the heap.
   333   size_t                _parallel_marking_threads; // the number of marking
   334                                                    // threads we'll use
   335   double                _sleep_factor; // how much we have to sleep, with
   336                                        // respect to the work we just did, to
   337                                        // meet the marking overhead goal
   338   double                _marking_task_overhead; // marking target overhead for
   339                                                 // a single task
   341   // same as the two above, but for the cleanup task
   342   double                _cleanup_sleep_factor;
   343   double                _cleanup_task_overhead;
   345   // Stuff related to age cohort processing.
   346   struct ParCleanupThreadState {
   347     char _pre[64];
   348     UncleanRegionList list;
   349     char _post[64];
   350   };
   351   ParCleanupThreadState** _par_cleanup_thread_state;
   353   // CMS marking support structures
   354   CMBitMap                _markBitMap1;
   355   CMBitMap                _markBitMap2;
   356   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   357   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   358   bool                    _at_least_one_mark_complete;
   360   BitMap                  _region_bm;
   361   BitMap                  _card_bm;
   363   // Heap bounds
   364   HeapWord*               _heap_start;
   365   HeapWord*               _heap_end;
   367   // For gray objects
   368   CMMarkStack             _markStack; // Grey objects behind global finger.
   369   CMRegionStack           _regionStack; // Grey regions behind global finger.
   370   HeapWord* volatile      _finger;  // the global finger, region aligned,
   371                                     // always points to the end of the
   372                                     // last claimed region
   374   // marking tasks
   375   size_t                  _max_task_num; // maximum task number
   376   size_t                  _active_tasks; // task num currently active
   377   CMTask**                _tasks;        // task queue array (max_task_num len)
   378   CMTaskQueueSet*         _task_queues;  // task queue set
   379   ParallelTaskTerminator  _terminator;   // for termination
   381   // Two sync barriers that are used to synchronise tasks when an
   382   // overflow occurs. The algorithm is the following. All tasks enter
   383   // the first one to ensure that they have all stopped manipulating
   384   // the global data structures. After they exit it, they re-initialise
   385   // their data structures and task 0 re-initialises the global data
   386   // structures. Then, they enter the second sync barrier. This
   387   // ensure, that no task starts doing work before all data
   388   // structures (local and global) have been re-initialised. When they
   389   // exit it, they are free to start working again.
   390   WorkGangBarrierSync     _first_overflow_barrier_sync;
   391   WorkGangBarrierSync     _second_overflow_barrier_sync;
   394   // this is set by any task, when an overflow on the global data
   395   // structures is detected.
   396   volatile bool           _has_overflown;
   397   // true: marking is concurrent, false: we're in remark
   398   volatile bool           _concurrent;
   399   // set at the end of a Full GC so that marking aborts
   400   volatile bool           _has_aborted;
   401   // used when remark aborts due to an overflow to indicate that
   402   // another concurrent marking phase should start
   403   volatile bool           _restart_for_overflow;
   405   // This is true from the very start of concurrent marking until the
   406   // point when all the tasks complete their work. It is really used
   407   // to determine the points between the end of concurrent marking and
   408   // time of remark.
   409   volatile bool           _concurrent_marking_in_progress;
   411   // verbose level
   412   CMVerboseLevel          _verbose_level;
   414   // These two fields are used to implement the optimisation that
   415   // avoids pushing objects on the global/region stack if there are
   416   // no collection set regions above the lowest finger.
   418   // This is the lowest finger (among the global and local fingers),
   419   // which is calculated before a new collection set is chosen.
   420   HeapWord* _min_finger;
   421   // If this flag is true, objects/regions that are marked below the
   422   // finger should be pushed on the stack(s). If this is flag is
   423   // false, it is safe not to push them on the stack(s).
   424   bool      _should_gray_objects;
   426   // All of these times are in ms.
   427   NumberSeq _init_times;
   428   NumberSeq _remark_times;
   429   NumberSeq   _remark_mark_times;
   430   NumberSeq   _remark_weak_ref_times;
   431   NumberSeq _cleanup_times;
   432   double    _total_counting_time;
   433   double    _total_rs_scrub_time;
   435   double*   _accum_task_vtime;   // accumulated task vtime
   437   WorkGang* _parallel_workers;
   439   void weakRefsWork(bool clear_all_soft_refs);
   441   void swapMarkBitMaps();
   443   // It resets the global marking data structures, as well as the
   444   // task local ones; should be called during initial mark.
   445   void reset();
   446   // It resets all the marking data structures.
   447   void clear_marking_state();
   449   // It should be called to indicate which phase we're in (concurrent
   450   // mark or remark) and how many threads are currently active.
   451   void set_phase(size_t active_tasks, bool concurrent);
   452   // We do this after we're done with marking so that the marking data
   453   // structures are initialised to a sensible and predictable state.
   454   void set_non_marking_state();
   456   // prints all gathered CM-related statistics
   457   void print_stats();
   459   // accessor methods
   460   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   461   double sleep_factor()             { return _sleep_factor; }
   462   double marking_task_overhead()    { return _marking_task_overhead;}
   463   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   464   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   466   HeapWord*               finger()        { return _finger;   }
   467   bool                    concurrent()    { return _concurrent; }
   468   size_t                  active_tasks()  { return _active_tasks; }
   469   ParallelTaskTerminator* terminator()    { return &_terminator; }
   471   // It claims the next available region to be scanned by a marking
   472   // task. It might return NULL if the next region is empty or we have
   473   // run out of regions. In the latter case, out_of_regions()
   474   // determines whether we've really run out of regions or the task
   475   // should call claim_region() again.  This might seem a bit
   476   // awkward. Originally, the code was written so that claim_region()
   477   // either successfully returned with a non-empty region or there
   478   // were no more regions to be claimed. The problem with this was
   479   // that, in certain circumstances, it iterated over large chunks of
   480   // the heap finding only empty regions and, while it was working, it
   481   // was preventing the calling task to call its regular clock
   482   // method. So, this way, each task will spend very little time in
   483   // claim_region() and is allowed to call the regular clock method
   484   // frequently.
   485   HeapRegion* claim_region(int task);
   487   // It determines whether we've run out of regions to scan.
   488   bool        out_of_regions() { return _finger == _heap_end; }
   490   // Returns the task with the given id
   491   CMTask* task(int id) {
   492     assert(0 <= id && id < (int) _active_tasks,
   493            "task id not within active bounds");
   494     return _tasks[id];
   495   }
   497   // Returns the task queue with the given id
   498   CMTaskQueue* task_queue(int id) {
   499     assert(0 <= id && id < (int) _active_tasks,
   500            "task queue id not within active bounds");
   501     return (CMTaskQueue*) _task_queues->queue(id);
   502   }
   504   // Returns the task queue set
   505   CMTaskQueueSet* task_queues()  { return _task_queues; }
   507   // Access / manipulation of the overflow flag which is set to
   508   // indicate that the global stack or region stack has overflown
   509   bool has_overflown()           { return _has_overflown; }
   510   void set_has_overflown()       { _has_overflown = true; }
   511   void clear_has_overflown()     { _has_overflown = false; }
   513   bool has_aborted()             { return _has_aborted; }
   514   bool restart_for_overflow()    { return _restart_for_overflow; }
   516   // Methods to enter the two overflow sync barriers
   517   void enter_first_sync_barrier(int task_num);
   518   void enter_second_sync_barrier(int task_num);
   520 public:
   521   // Manipulation of the global mark stack.
   522   // Notice that the first mark_stack_push is CAS-based, whereas the
   523   // two below are Mutex-based. This is OK since the first one is only
   524   // called during evacuation pauses and doesn't compete with the
   525   // other two (which are called by the marking tasks during
   526   // concurrent marking or remark).
   527   bool mark_stack_push(oop p) {
   528     _markStack.par_push(p);
   529     if (_markStack.overflow()) {
   530       set_has_overflown();
   531       return false;
   532     }
   533     return true;
   534   }
   535   bool mark_stack_push(oop* arr, int n) {
   536     _markStack.par_push_arr(arr, n);
   537     if (_markStack.overflow()) {
   538       set_has_overflown();
   539       return false;
   540     }
   541     return true;
   542   }
   543   void mark_stack_pop(oop* arr, int max, int* n) {
   544     _markStack.par_pop_arr(arr, max, n);
   545   }
   546   size_t mark_stack_size()              { return _markStack.size(); }
   547   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   548   bool mark_stack_overflow()            { return _markStack.overflow(); }
   549   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   551   // Manipulation of the region stack
   552   bool region_stack_push(MemRegion mr) {
   553     // Currently we only call the lock-free version during evacuation
   554     // pauses.
   555     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   557     _regionStack.push(mr);
   558     if (_regionStack.overflow()) {
   559       set_has_overflown();
   560       return false;
   561     }
   562     return true;
   563   }
   564 #if 0
   565   // Currently this is not used. See the comment in the .cpp file.
   566   MemRegion region_stack_pop() { return _regionStack.pop(); }
   567 #endif // 0
   569   bool region_stack_push_with_lock(MemRegion mr) {
   570     // Currently we only call the lock-based version during either
   571     // concurrent marking or remark.
   572     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   573            "if we are at a safepoint it should be the remark safepoint");
   575     _regionStack.push_with_lock(mr);
   576     if (_regionStack.overflow()) {
   577       set_has_overflown();
   578       return false;
   579     }
   580     return true;
   581   }
   582   MemRegion region_stack_pop_with_lock() {
   583     // Currently we only call the lock-based version during either
   584     // concurrent marking or remark.
   585     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   586            "if we are at a safepoint it should be the remark safepoint");
   588     return _regionStack.pop_with_lock();
   589   }
   591   int region_stack_size()               { return _regionStack.size(); }
   592   bool region_stack_overflow()          { return _regionStack.overflow(); }
   593   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   595   bool concurrent_marking_in_progress() {
   596     return _concurrent_marking_in_progress;
   597   }
   598   void set_concurrent_marking_in_progress() {
   599     _concurrent_marking_in_progress = true;
   600   }
   601   void clear_concurrent_marking_in_progress() {
   602     _concurrent_marking_in_progress = false;
   603   }
   605   void update_accum_task_vtime(int i, double vtime) {
   606     _accum_task_vtime[i] += vtime;
   607   }
   609   double all_task_accum_vtime() {
   610     double ret = 0.0;
   611     for (int i = 0; i < (int)_max_task_num; ++i)
   612       ret += _accum_task_vtime[i];
   613     return ret;
   614   }
   616   // Attempts to steal an object from the task queues of other tasks
   617   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   618     return _task_queues->steal(task_num, hash_seed, obj);
   619   }
   621   // It grays an object by first marking it. Then, if it's behind the
   622   // global finger, it also pushes it on the global stack.
   623   void deal_with_reference(oop obj);
   625   ConcurrentMark(ReservedSpace rs, int max_regions);
   626   ~ConcurrentMark();
   627   ConcurrentMarkThread* cmThread() { return _cmThread; }
   629   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   630   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   632   // The following three are interaction between CM and
   633   // G1CollectedHeap
   635   // This notifies CM that a root during initial-mark needs to be
   636   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   637   // future, we can experiment with pushing it on the stack and we can
   638   // do this without changing G1CollectedHeap.
   639   void grayRoot(oop p);
   640   // It's used during evacuation pauses to gray a region, if
   641   // necessary, and it's MT-safe. It assumes that the caller has
   642   // marked any objects on that region. If _should_gray_objects is
   643   // true and we're still doing concurrent marking, the region is
   644   // pushed on the region stack, if it is located below the global
   645   // finger, otherwise we do nothing.
   646   void grayRegionIfNecessary(MemRegion mr);
   647   // It's used during evacuation pauses to mark and, if necessary,
   648   // gray a single object and it's MT-safe. It assumes the caller did
   649   // not mark the object. If _should_gray_objects is true and we're
   650   // still doing concurrent marking, the objects is pushed on the
   651   // global stack, if it is located below the global finger, otherwise
   652   // we do nothing.
   653   void markAndGrayObjectIfNecessary(oop p);
   655   // It iterates over the heap and for each object it comes across it
   656   // will dump the contents of its reference fields, as well as
   657   // liveness information for the object and its referents. The dump
   658   // will be written to a file with the following name:
   659   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
   660   // whether the prev (use_prev_marking == true) or next
   661   // (use_prev_marking == false) marking information will be used to
   662   // determine the liveness of each object / referent. If all is true,
   663   // all objects in the heap will be dumped, otherwise only the live
   664   // ones. In the dump the following symbols / abbreviations are used:
   665   //   M : an explicitly live object (its bitmap bit is set)
   666   //   > : an implicitly live object (over tams)
   667   //   O : an object outside the G1 heap (typically: in the perm gen)
   668   //   NOT : a reference field whose referent is not live
   669   //   AND MARKED : indicates that an object is both explicitly and
   670   //   implicitly live (it should be one or the other, not both)
   671   void print_reachable(const char* str,
   672                        bool use_prev_marking, bool all) PRODUCT_RETURN;
   674   // Clear the next marking bitmap (will be called concurrently).
   675   void clearNextBitmap();
   677   // main CMS steps and related support
   678   void checkpointRootsInitial();
   680   // These two do the work that needs to be done before and after the
   681   // initial root checkpoint. Since this checkpoint can be done at two
   682   // different points (i.e. an explicit pause or piggy-backed on a
   683   // young collection), then it's nice to be able to easily share the
   684   // pre/post code. It might be the case that we can put everything in
   685   // the post method. TP
   686   void checkpointRootsInitialPre();
   687   void checkpointRootsInitialPost();
   689   // Do concurrent phase of marking, to a tentative transitive closure.
   690   void markFromRoots();
   692   // Process all unprocessed SATB buffers. It is called at the
   693   // beginning of an evacuation pause.
   694   void drainAllSATBBuffers();
   696   void checkpointRootsFinal(bool clear_all_soft_refs);
   697   void checkpointRootsFinalWork();
   698   void calcDesiredRegions();
   699   void cleanup();
   700   void completeCleanup();
   702   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   703   // this carefully!
   704   void markPrev(oop p);
   705   void clear(oop p);
   706   // Clears marks for all objects in the given range, for both prev and
   707   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   708   // this carefully!
   709   void clearRangeBothMaps(MemRegion mr);
   711   // Record the current top of the mark and region stacks; a
   712   // subsequent oops_do() on the mark stack and
   713   // invalidate_entries_into_cset() on the region stack will iterate
   714   // only over indices valid at the time of this call.
   715   void set_oops_do_bound() {
   716     _markStack.set_oops_do_bound();
   717     _regionStack.set_oops_do_bound();
   718   }
   719   // Iterate over the oops in the mark stack and all local queues. It
   720   // also calls invalidate_entries_into_cset() on the region stack.
   721   void oops_do(OopClosure* f);
   722   // It is called at the end of an evacuation pause during marking so
   723   // that CM is notified of where the new end of the heap is. It
   724   // doesn't do anything if concurrent_marking_in_progress() is false,
   725   // unless the force parameter is true.
   726   void update_g1_committed(bool force = false);
   728   void complete_marking_in_collection_set();
   730   // It indicates that a new collection set is being chosen.
   731   void newCSet();
   732   // It registers a collection set heap region with CM. This is used
   733   // to determine whether any heap regions are located above the finger.
   734   void registerCSetRegion(HeapRegion* hr);
   736   // Registers the maximum region-end associated with a set of
   737   // regions with CM. Again this is used to determine whether any
   738   // heap regions are located above the finger.
   739   void register_collection_set_finger(HeapWord* max_finger) {
   740     // max_finger is the highest heap region end of the regions currently
   741     // contained in the collection set. If this value is larger than
   742     // _min_finger then we need to gray objects.
   743     // This routine is like registerCSetRegion but for an entire
   744     // collection of regions.
   745     if (max_finger > _min_finger)
   746       _should_gray_objects = true;
   747   }
   749   // Returns "true" if at least one mark has been completed.
   750   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   752   bool isMarked(oop p) const {
   753     assert(p != NULL && p->is_oop(), "expected an oop");
   754     HeapWord* addr = (HeapWord*)p;
   755     assert(addr >= _nextMarkBitMap->startWord() ||
   756            addr < _nextMarkBitMap->endWord(), "in a region");
   758     return _nextMarkBitMap->isMarked(addr);
   759   }
   761   inline bool not_yet_marked(oop p) const;
   763   // XXX Debug code
   764   bool containing_card_is_marked(void* p);
   765   bool containing_cards_are_marked(void* start, void* last);
   767   bool isPrevMarked(oop p) const {
   768     assert(p != NULL && p->is_oop(), "expected an oop");
   769     HeapWord* addr = (HeapWord*)p;
   770     assert(addr >= _prevMarkBitMap->startWord() ||
   771            addr < _prevMarkBitMap->endWord(), "in a region");
   773     return _prevMarkBitMap->isMarked(addr);
   774   }
   776   inline bool do_yield_check(int worker_i = 0);
   777   inline bool should_yield();
   779   // Called to abort the marking cycle after a Full GC takes palce.
   780   void abort();
   782   // This prints the global/local fingers. It is used for debugging.
   783   NOT_PRODUCT(void print_finger();)
   785   void print_summary_info();
   787   void print_worker_threads_on(outputStream* st) const;
   789   // The following indicate whether a given verbose level has been
   790   // set. Notice that anything above stats is conditional to
   791   // _MARKING_VERBOSE_ having been set to 1
   792   bool verbose_stats()
   793     { return _verbose_level >= stats_verbose; }
   794   bool verbose_low()
   795     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   796   bool verbose_medium()
   797     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   798   bool verbose_high()
   799     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   800 };
   802 // A class representing a marking task.
   803 class CMTask : public TerminatorTerminator {
   804 private:
   805   enum PrivateConstants {
   806     // the regular clock call is called once the scanned words reaches
   807     // this limit
   808     words_scanned_period          = 12*1024,
   809     // the regular clock call is called once the number of visited
   810     // references reaches this limit
   811     refs_reached_period           = 384,
   812     // initial value for the hash seed, used in the work stealing code
   813     init_hash_seed                = 17,
   814     // how many entries will be transferred between global stack and
   815     // local queues
   816     global_stack_transfer_size    = 16
   817   };
   819   int                         _task_id;
   820   G1CollectedHeap*            _g1h;
   821   ConcurrentMark*             _cm;
   822   CMBitMap*                   _nextMarkBitMap;
   823   // the task queue of this task
   824   CMTaskQueue*                _task_queue;
   825 private:
   826   // the task queue set---needed for stealing
   827   CMTaskQueueSet*             _task_queues;
   828   // indicates whether the task has been claimed---this is only  for
   829   // debugging purposes
   830   bool                        _claimed;
   832   // number of calls to this task
   833   int                         _calls;
   835   // when the virtual timer reaches this time, the marking step should
   836   // exit
   837   double                      _time_target_ms;
   838   // the start time of the current marking step
   839   double                      _start_time_ms;
   841   // the oop closure used for iterations over oops
   842   OopClosure*                 _oop_closure;
   844   // the region this task is scanning, NULL if we're not scanning any
   845   HeapRegion*                 _curr_region;
   846   // the local finger of this task, NULL if we're not scanning a region
   847   HeapWord*                   _finger;
   848   // limit of the region this task is scanning, NULL if we're not scanning one
   849   HeapWord*                   _region_limit;
   851   // This is used only when we scan regions popped from the region
   852   // stack. It records what the last object on such a region we
   853   // scanned was. It is used to ensure that, if we abort region
   854   // iteration, we do not rescan the first part of the region. This
   855   // should be NULL when we're not scanning a region from the region
   856   // stack.
   857   HeapWord*                   _region_finger;
   859   // the number of words this task has scanned
   860   size_t                      _words_scanned;
   861   // When _words_scanned reaches this limit, the regular clock is
   862   // called. Notice that this might be decreased under certain
   863   // circumstances (i.e. when we believe that we did an expensive
   864   // operation).
   865   size_t                      _words_scanned_limit;
   866   // the initial value of _words_scanned_limit (i.e. what it was
   867   // before it was decreased).
   868   size_t                      _real_words_scanned_limit;
   870   // the number of references this task has visited
   871   size_t                      _refs_reached;
   872   // When _refs_reached reaches this limit, the regular clock is
   873   // called. Notice this this might be decreased under certain
   874   // circumstances (i.e. when we believe that we did an expensive
   875   // operation).
   876   size_t                      _refs_reached_limit;
   877   // the initial value of _refs_reached_limit (i.e. what it was before
   878   // it was decreased).
   879   size_t                      _real_refs_reached_limit;
   881   // used by the work stealing stuff
   882   int                         _hash_seed;
   883   // if this is true, then the task has aborted for some reason
   884   bool                        _has_aborted;
   885   // set when the task aborts because it has met its time quota
   886   bool                        _has_aborted_timed_out;
   887   // true when we're draining SATB buffers; this avoids the task
   888   // aborting due to SATB buffers being available (as we're already
   889   // dealing with them)
   890   bool                        _draining_satb_buffers;
   892   // number sequence of past step times
   893   NumberSeq                   _step_times_ms;
   894   // elapsed time of this task
   895   double                      _elapsed_time_ms;
   896   // termination time of this task
   897   double                      _termination_time_ms;
   898   // when this task got into the termination protocol
   899   double                      _termination_start_time_ms;
   901   // true when the task is during a concurrent phase, false when it is
   902   // in the remark phase (so, in the latter case, we do not have to
   903   // check all the things that we have to check during the concurrent
   904   // phase, i.e. SATB buffer availability...)
   905   bool                        _concurrent;
   907   TruncatedSeq                _marking_step_diffs_ms;
   909   // LOTS of statistics related with this task
   910 #if _MARKING_STATS_
   911   NumberSeq                   _all_clock_intervals_ms;
   912   double                      _interval_start_time_ms;
   914   int                         _aborted;
   915   int                         _aborted_overflow;
   916   int                         _aborted_cm_aborted;
   917   int                         _aborted_yield;
   918   int                         _aborted_timed_out;
   919   int                         _aborted_satb;
   920   int                         _aborted_termination;
   922   int                         _steal_attempts;
   923   int                         _steals;
   925   int                         _clock_due_to_marking;
   926   int                         _clock_due_to_scanning;
   928   int                         _local_pushes;
   929   int                         _local_pops;
   930   int                         _local_max_size;
   931   int                         _objs_scanned;
   933   int                         _global_pushes;
   934   int                         _global_pops;
   935   int                         _global_max_size;
   937   int                         _global_transfers_to;
   938   int                         _global_transfers_from;
   940   int                         _region_stack_pops;
   942   int                         _regions_claimed;
   943   int                         _objs_found_on_bitmap;
   945   int                         _satb_buffers_processed;
   946 #endif // _MARKING_STATS_
   948   // it updates the local fields after this task has claimed
   949   // a new region to scan
   950   void setup_for_region(HeapRegion* hr);
   951   // it brings up-to-date the limit of the region
   952   void update_region_limit();
   953   // it resets the local fields after a task has finished scanning a
   954   // region
   955   void giveup_current_region();
   957   // called when either the words scanned or the refs visited limit
   958   // has been reached
   959   void reached_limit();
   960   // recalculates the words scanned and refs visited limits
   961   void recalculate_limits();
   962   // decreases the words scanned and refs visited limits when we reach
   963   // an expensive operation
   964   void decrease_limits();
   965   // it checks whether the words scanned or refs visited reached their
   966   // respective limit and calls reached_limit() if they have
   967   void check_limits() {
   968     if (_words_scanned >= _words_scanned_limit ||
   969         _refs_reached >= _refs_reached_limit)
   970       reached_limit();
   971   }
   972   // this is supposed to be called regularly during a marking step as
   973   // it checks a bunch of conditions that might cause the marking step
   974   // to abort
   975   void regular_clock_call();
   976   bool concurrent() { return _concurrent; }
   978 public:
   979   // It resets the task; it should be called right at the beginning of
   980   // a marking phase.
   981   void reset(CMBitMap* _nextMarkBitMap);
   982   // it clears all the fields that correspond to a claimed region.
   983   void clear_region_fields();
   985   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
   987   // The main method of this class which performs a marking step
   988   // trying not to exceed the given duration. However, it might exit
   989   // prematurely, according to some conditions (i.e. SATB buffers are
   990   // available for processing).
   991   void do_marking_step(double target_ms);
   993   // These two calls start and stop the timer
   994   void record_start_time() {
   995     _elapsed_time_ms = os::elapsedTime() * 1000.0;
   996   }
   997   void record_end_time() {
   998     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
   999   }
  1001   // returns the task ID
  1002   int task_id() { return _task_id; }
  1004   // From TerminatorTerminator. It determines whether this task should
  1005   // exit the termination protocol after it's entered it.
  1006   virtual bool should_exit_termination();
  1008   HeapWord* finger()            { return _finger; }
  1010   bool has_aborted()            { return _has_aborted; }
  1011   void set_has_aborted()        { _has_aborted = true; }
  1012   void clear_has_aborted()      { _has_aborted = false; }
  1013   bool claimed() { return _claimed; }
  1015   void set_oop_closure(OopClosure* oop_closure) {
  1016     _oop_closure = oop_closure;
  1019   // It grays the object by marking it and, if necessary, pushing it
  1020   // on the local queue
  1021   void deal_with_reference(oop obj);
  1023   // It scans an object and visits its children.
  1024   void scan_object(oop obj) {
  1025     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  1027     if (_cm->verbose_high())
  1028       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
  1029                              _task_id, (void*) obj);
  1031     size_t obj_size = obj->size();
  1032     _words_scanned += obj_size;
  1034     obj->oop_iterate(_oop_closure);
  1035     statsOnly( ++_objs_scanned );
  1036     check_limits();
  1039   // It pushes an object on the local queue.
  1040   void push(oop obj);
  1042   // These two move entries to/from the global stack.
  1043   void move_entries_to_global_stack();
  1044   void get_entries_from_global_stack();
  1046   // It pops and scans objects from the local queue. If partially is
  1047   // true, then it stops when the queue size is of a given limit. If
  1048   // partially is false, then it stops when the queue is empty.
  1049   void drain_local_queue(bool partially);
  1050   // It moves entries from the global stack to the local queue and
  1051   // drains the local queue. If partially is true, then it stops when
  1052   // both the global stack and the local queue reach a given size. If
  1053   // partially if false, it tries to empty them totally.
  1054   void drain_global_stack(bool partially);
  1055   // It keeps picking SATB buffers and processing them until no SATB
  1056   // buffers are available.
  1057   void drain_satb_buffers();
  1058   // It keeps popping regions from the region stack and processing
  1059   // them until the region stack is empty.
  1060   void drain_region_stack(BitMapClosure* closure);
  1062   // moves the local finger to a new location
  1063   inline void move_finger_to(HeapWord* new_finger) {
  1064     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1065     _finger = new_finger;
  1068   // moves the region finger to a new location
  1069   inline void move_region_finger_to(HeapWord* new_finger) {
  1070     assert(new_finger < _cm->finger(), "invariant");
  1071     _region_finger = new_finger;
  1074   CMTask(int task_num, ConcurrentMark *cm,
  1075          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1077   // it prints statistics associated with this task
  1078   void print_stats();
  1080 #if _MARKING_STATS_
  1081   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1082 #endif // _MARKING_STATS_
  1083 };

mercurial