src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1876
a8127dc669ba
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   256 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   257   assert(collector() != NULL, "no collector");
   258   collector()->ref_processor_init();
   259 }
   261 void CMSCollector::ref_processor_init() {
   262   if (_ref_processor == NULL) {
   263     // Allocate and initialize a reference processor
   264     _ref_processor = ReferenceProcessor::create_ref_processor(
   265         _span,                               // span
   266         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   267         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   268         &_is_alive_closure,
   269         ParallelGCThreads,
   270         ParallelRefProcEnabled);
   271     // Initialize the _ref_processor field of CMSGen
   272     _cmsGen->set_ref_processor(_ref_processor);
   274     // Allocate a dummy ref processor for perm gen.
   275     ReferenceProcessor* rp2 = new ReferenceProcessor();
   276     if (rp2 == NULL) {
   277       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   278     }
   279     _permGen->set_ref_processor(rp2);
   280   }
   281 }
   283 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   284   GenCollectedHeap* gch = GenCollectedHeap::heap();
   285   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   286     "Wrong type of heap");
   287   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   288     gch->gen_policy()->size_policy();
   289   assert(sp->is_gc_cms_adaptive_size_policy(),
   290     "Wrong type of size policy");
   291   return sp;
   292 }
   294 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   295   CMSGCAdaptivePolicyCounters* results =
   296     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   297   assert(
   298     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   299     "Wrong gc policy counter kind");
   300   return results;
   301 }
   304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   306   const char* gen_name = "old";
   308   // Generation Counters - generation 1, 1 subspace
   309   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   311   _space_counters = new GSpaceCounters(gen_name, 0,
   312                                        _virtual_space.reserved_size(),
   313                                        this, _gen_counters);
   314 }
   316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   317   _cms_gen(cms_gen)
   318 {
   319   assert(alpha <= 100, "bad value");
   320   _saved_alpha = alpha;
   322   // Initialize the alphas to the bootstrap value of 100.
   323   _gc0_alpha = _cms_alpha = 100;
   325   _cms_begin_time.update();
   326   _cms_end_time.update();
   328   _gc0_duration = 0.0;
   329   _gc0_period = 0.0;
   330   _gc0_promoted = 0;
   332   _cms_duration = 0.0;
   333   _cms_period = 0.0;
   334   _cms_allocated = 0;
   336   _cms_used_at_gc0_begin = 0;
   337   _cms_used_at_gc0_end = 0;
   338   _allow_duty_cycle_reduction = false;
   339   _valid_bits = 0;
   340   _icms_duty_cycle = CMSIncrementalDutyCycle;
   341 }
   343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
   344   // TBD: CR 6909490
   345   return 1.0;
   346 }
   348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
   349 }
   351 // If promotion failure handling is on use
   352 // the padded average size of the promotion for each
   353 // young generation collection.
   354 double CMSStats::time_until_cms_gen_full() const {
   355   size_t cms_free = _cms_gen->cmsSpace()->free();
   356   GenCollectedHeap* gch = GenCollectedHeap::heap();
   357   size_t expected_promotion = gch->get_gen(0)->capacity();
   358   if (HandlePromotionFailure) {
   359     expected_promotion = MIN2(
   360         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   361         expected_promotion);
   362   }
   363   if (cms_free > expected_promotion) {
   364     // Start a cms collection if there isn't enough space to promote
   365     // for the next minor collection.  Use the padded average as
   366     // a safety factor.
   367     cms_free -= expected_promotion;
   369     // Adjust by the safety factor.
   370     double cms_free_dbl = (double)cms_free;
   371     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
   372     // Apply a further correction factor which tries to adjust
   373     // for recent occurance of concurrent mode failures.
   374     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
   375     cms_free_dbl = cms_free_dbl * cms_adjustment;
   377     if (PrintGCDetails && Verbose) {
   378       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   379         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   380         cms_free, expected_promotion);
   381       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   382         cms_free_dbl, cms_consumption_rate() + 1.0);
   383     }
   384     // Add 1 in case the consumption rate goes to zero.
   385     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   386   }
   387   return 0.0;
   388 }
   390 // Compare the duration of the cms collection to the
   391 // time remaining before the cms generation is empty.
   392 // Note that the time from the start of the cms collection
   393 // to the start of the cms sweep (less than the total
   394 // duration of the cms collection) can be used.  This
   395 // has been tried and some applications experienced
   396 // promotion failures early in execution.  This was
   397 // possibly because the averages were not accurate
   398 // enough at the beginning.
   399 double CMSStats::time_until_cms_start() const {
   400   // We add "gc0_period" to the "work" calculation
   401   // below because this query is done (mostly) at the
   402   // end of a scavenge, so we need to conservatively
   403   // account for that much possible delay
   404   // in the query so as to avoid concurrent mode failures
   405   // due to starting the collection just a wee bit too
   406   // late.
   407   double work = cms_duration() + gc0_period();
   408   double deadline = time_until_cms_gen_full();
   409   // If a concurrent mode failure occurred recently, we want to be
   410   // more conservative and halve our expected time_until_cms_gen_full()
   411   if (work > deadline) {
   412     if (Verbose && PrintGCDetails) {
   413       gclog_or_tty->print(
   414         " CMSCollector: collect because of anticipated promotion "
   415         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   416         gc0_period(), time_until_cms_gen_full());
   417     }
   418     return 0.0;
   419   }
   420   return work - deadline;
   421 }
   423 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   424 // amount of change to prevent wild oscillation.
   425 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   426                                               unsigned int new_duty_cycle) {
   427   assert(old_duty_cycle <= 100, "bad input value");
   428   assert(new_duty_cycle <= 100, "bad input value");
   430   // Note:  use subtraction with caution since it may underflow (values are
   431   // unsigned).  Addition is safe since we're in the range 0-100.
   432   unsigned int damped_duty_cycle = new_duty_cycle;
   433   if (new_duty_cycle < old_duty_cycle) {
   434     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   435     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   436       damped_duty_cycle = old_duty_cycle - largest_delta;
   437     }
   438   } else if (new_duty_cycle > old_duty_cycle) {
   439     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   440     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   441       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   442     }
   443   }
   444   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   446   if (CMSTraceIncrementalPacing) {
   447     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   448                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   449   }
   450   return damped_duty_cycle;
   451 }
   453 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   454   assert(CMSIncrementalPacing && valid(),
   455          "should be handled in icms_update_duty_cycle()");
   457   double cms_time_so_far = cms_timer().seconds();
   458   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   459   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   461   // Avoid division by 0.
   462   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   463   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   465   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   466   if (new_duty_cycle > _icms_duty_cycle) {
   467     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   468     if (new_duty_cycle > 2) {
   469       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   470                                                 new_duty_cycle);
   471     }
   472   } else if (_allow_duty_cycle_reduction) {
   473     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   474     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   475     // Respect the minimum duty cycle.
   476     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   477     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   478   }
   480   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   481     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   482   }
   484   _allow_duty_cycle_reduction = false;
   485   return _icms_duty_cycle;
   486 }
   488 #ifndef PRODUCT
   489 void CMSStats::print_on(outputStream *st) const {
   490   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   491   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   492                gc0_duration(), gc0_period(), gc0_promoted());
   493   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   494             cms_duration(), cms_duration_per_mb(),
   495             cms_period(), cms_allocated());
   496   st->print(",cms_since_beg=%g,cms_since_end=%g",
   497             cms_time_since_begin(), cms_time_since_end());
   498   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   499             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   500   if (CMSIncrementalMode) {
   501     st->print(",dc=%d", icms_duty_cycle());
   502   }
   504   if (valid()) {
   505     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   506               promotion_rate(), cms_allocation_rate());
   507     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   508               cms_consumption_rate(), time_until_cms_gen_full());
   509   }
   510   st->print(" ");
   511 }
   512 #endif // #ifndef PRODUCT
   514 CMSCollector::CollectorState CMSCollector::_collectorState =
   515                              CMSCollector::Idling;
   516 bool CMSCollector::_foregroundGCIsActive = false;
   517 bool CMSCollector::_foregroundGCShouldWait = false;
   519 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   520                            ConcurrentMarkSweepGeneration* permGen,
   521                            CardTableRS*                   ct,
   522                            ConcurrentMarkSweepPolicy*     cp):
   523   _cmsGen(cmsGen),
   524   _permGen(permGen),
   525   _ct(ct),
   526   _ref_processor(NULL),    // will be set later
   527   _conc_workers(NULL),     // may be set later
   528   _abort_preclean(false),
   529   _start_sampling(false),
   530   _between_prologue_and_epilogue(false),
   531   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   532   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   533   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   534                  -1 /* lock-free */, "No_lock" /* dummy */),
   535   _modUnionClosure(&_modUnionTable),
   536   _modUnionClosurePar(&_modUnionTable),
   537   // Adjust my span to cover old (cms) gen and perm gen
   538   _span(cmsGen->reserved()._union(permGen->reserved())),
   539   // Construct the is_alive_closure with _span & markBitMap
   540   _is_alive_closure(_span, &_markBitMap),
   541   _restart_addr(NULL),
   542   _overflow_list(NULL),
   543   _preserved_oop_stack(NULL),
   544   _preserved_mark_stack(NULL),
   545   _stats(cmsGen),
   546   _eden_chunk_array(NULL),     // may be set in ctor body
   547   _eden_chunk_capacity(0),     // -- ditto --
   548   _eden_chunk_index(0),        // -- ditto --
   549   _survivor_plab_array(NULL),  // -- ditto --
   550   _survivor_chunk_array(NULL), // -- ditto --
   551   _survivor_chunk_capacity(0), // -- ditto --
   552   _survivor_chunk_index(0),    // -- ditto --
   553   _ser_pmc_preclean_ovflw(0),
   554   _ser_kac_preclean_ovflw(0),
   555   _ser_pmc_remark_ovflw(0),
   556   _par_pmc_remark_ovflw(0),
   557   _ser_kac_ovflw(0),
   558   _par_kac_ovflw(0),
   559 #ifndef PRODUCT
   560   _num_par_pushes(0),
   561 #endif
   562   _collection_count_start(0),
   563   _verifying(false),
   564   _icms_start_limit(NULL),
   565   _icms_stop_limit(NULL),
   566   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   567   _completed_initialization(false),
   568   _collector_policy(cp),
   569   _should_unload_classes(false),
   570   _concurrent_cycles_since_last_unload(0),
   571   _roots_scanning_options(0),
   572   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   573   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   574 {
   575   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   576     ExplicitGCInvokesConcurrent = true;
   577   }
   578   // Now expand the span and allocate the collection support structures
   579   // (MUT, marking bit map etc.) to cover both generations subject to
   580   // collection.
   582   // First check that _permGen is adjacent to _cmsGen and above it.
   583   assert(   _cmsGen->reserved().word_size()  > 0
   584          && _permGen->reserved().word_size() > 0,
   585          "generations should not be of zero size");
   586   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   587          "_cmsGen and _permGen should not overlap");
   588   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   589          "_cmsGen->end() different from _permGen->start()");
   591   // For use by dirty card to oop closures.
   592   _cmsGen->cmsSpace()->set_collector(this);
   593   _permGen->cmsSpace()->set_collector(this);
   595   // Allocate MUT and marking bit map
   596   {
   597     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   598     if (!_markBitMap.allocate(_span)) {
   599       warning("Failed to allocate CMS Bit Map");
   600       return;
   601     }
   602     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   603   }
   604   {
   605     _modUnionTable.allocate(_span);
   606     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   607   }
   609   if (!_markStack.allocate(MarkStackSize)) {
   610     warning("Failed to allocate CMS Marking Stack");
   611     return;
   612   }
   613   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   614     warning("Failed to allocate CMS Revisit Stack");
   615     return;
   616   }
   618   // Support for multi-threaded concurrent phases
   619   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   620     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
   621       // just for now
   622       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
   623     }
   624     if (ConcGCThreads > 1) {
   625       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   626                                  ConcGCThreads, true);
   627       if (_conc_workers == NULL) {
   628         warning("GC/CMS: _conc_workers allocation failure: "
   629               "forcing -CMSConcurrentMTEnabled");
   630         CMSConcurrentMTEnabled = false;
   631       }
   632     } else {
   633       CMSConcurrentMTEnabled = false;
   634     }
   635   }
   636   if (!CMSConcurrentMTEnabled) {
   637     ConcGCThreads = 0;
   638   } else {
   639     // Turn off CMSCleanOnEnter optimization temporarily for
   640     // the MT case where it's not fixed yet; see 6178663.
   641     CMSCleanOnEnter = false;
   642   }
   643   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
   644          "Inconsistency");
   646   // Parallel task queues; these are shared for the
   647   // concurrent and stop-world phases of CMS, but
   648   // are not shared with parallel scavenge (ParNew).
   649   {
   650     uint i;
   651     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
   653     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   654          || ParallelRefProcEnabled)
   655         && num_queues > 0) {
   656       _task_queues = new OopTaskQueueSet(num_queues);
   657       if (_task_queues == NULL) {
   658         warning("task_queues allocation failure.");
   659         return;
   660       }
   661       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   662       if (_hash_seed == NULL) {
   663         warning("_hash_seed array allocation failure");
   664         return;
   665       }
   667       // XXX use a global constant instead of 64!
   668       typedef struct OopTaskQueuePadded {
   669         OopTaskQueue work_queue;
   670         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   671       } OopTaskQueuePadded;
   673       for (i = 0; i < num_queues; i++) {
   674         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   675         if (q_padded == NULL) {
   676           warning("work_queue allocation failure.");
   677           return;
   678         }
   679         _task_queues->register_queue(i, &q_padded->work_queue);
   680       }
   681       for (i = 0; i < num_queues; i++) {
   682         _task_queues->queue(i)->initialize();
   683         _hash_seed[i] = 17;  // copied from ParNew
   684       }
   685     }
   686   }
   688   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   689   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   691   // Clip CMSBootstrapOccupancy between 0 and 100.
   692   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   693                          /(double)100;
   695   _full_gcs_since_conc_gc = 0;
   697   // Now tell CMS generations the identity of their collector
   698   ConcurrentMarkSweepGeneration::set_collector(this);
   700   // Create & start a CMS thread for this CMS collector
   701   _cmsThread = ConcurrentMarkSweepThread::start(this);
   702   assert(cmsThread() != NULL, "CMS Thread should have been created");
   703   assert(cmsThread()->collector() == this,
   704          "CMS Thread should refer to this gen");
   705   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   707   // Support for parallelizing young gen rescan
   708   GenCollectedHeap* gch = GenCollectedHeap::heap();
   709   _young_gen = gch->prev_gen(_cmsGen);
   710   if (gch->supports_inline_contig_alloc()) {
   711     _top_addr = gch->top_addr();
   712     _end_addr = gch->end_addr();
   713     assert(_young_gen != NULL, "no _young_gen");
   714     _eden_chunk_index = 0;
   715     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   716     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   717     if (_eden_chunk_array == NULL) {
   718       _eden_chunk_capacity = 0;
   719       warning("GC/CMS: _eden_chunk_array allocation failure");
   720     }
   721   }
   722   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   724   // Support for parallelizing survivor space rescan
   725   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   726     const size_t max_plab_samples =
   727       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
   729     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   730     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   731     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   732     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   733         || _cursor == NULL) {
   734       warning("Failed to allocate survivor plab/chunk array");
   735       if (_survivor_plab_array  != NULL) {
   736         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   737         _survivor_plab_array = NULL;
   738       }
   739       if (_survivor_chunk_array != NULL) {
   740         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   741         _survivor_chunk_array = NULL;
   742       }
   743       if (_cursor != NULL) {
   744         FREE_C_HEAP_ARRAY(size_t, _cursor);
   745         _cursor = NULL;
   746       }
   747     } else {
   748       _survivor_chunk_capacity = 2*max_plab_samples;
   749       for (uint i = 0; i < ParallelGCThreads; i++) {
   750         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   751         if (vec == NULL) {
   752           warning("Failed to allocate survivor plab array");
   753           for (int j = i; j > 0; j--) {
   754             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   755           }
   756           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   757           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   758           _survivor_plab_array = NULL;
   759           _survivor_chunk_array = NULL;
   760           _survivor_chunk_capacity = 0;
   761           break;
   762         } else {
   763           ChunkArray* cur =
   764             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   765                                                         max_plab_samples);
   766           assert(cur->end() == 0, "Should be 0");
   767           assert(cur->array() == vec, "Should be vec");
   768           assert(cur->capacity() == max_plab_samples, "Error");
   769         }
   770       }
   771     }
   772   }
   773   assert(   (   _survivor_plab_array  != NULL
   774              && _survivor_chunk_array != NULL)
   775          || (   _survivor_chunk_capacity == 0
   776              && _survivor_chunk_index == 0),
   777          "Error");
   779   // Choose what strong roots should be scanned depending on verification options
   780   // and perm gen collection mode.
   781   if (!CMSClassUnloadingEnabled) {
   782     // If class unloading is disabled we want to include all classes into the root set.
   783     add_root_scanning_option(SharedHeap::SO_AllClasses);
   784   } else {
   785     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   786   }
   788   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   789   _gc_counters = new CollectorCounters("CMS", 1);
   790   _completed_initialization = true;
   791   _inter_sweep_timer.start();  // start of time
   792 #ifdef SPARC
   793   // Issue a stern warning, but allow use for experimentation and debugging.
   794   if (VM_Version::is_sun4v() && UseMemSetInBOT) {
   795     assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
   796     warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
   797             " on sun4v; please understand that you are using at your own risk!");
   798   }
   799 #endif
   800 }
   802 const char* ConcurrentMarkSweepGeneration::name() const {
   803   return "concurrent mark-sweep generation";
   804 }
   805 void ConcurrentMarkSweepGeneration::update_counters() {
   806   if (UsePerfData) {
   807     _space_counters->update_all();
   808     _gen_counters->update_all();
   809   }
   810 }
   812 // this is an optimized version of update_counters(). it takes the
   813 // used value as a parameter rather than computing it.
   814 //
   815 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   816   if (UsePerfData) {
   817     _space_counters->update_used(used);
   818     _space_counters->update_capacity();
   819     _gen_counters->update_all();
   820   }
   821 }
   823 void ConcurrentMarkSweepGeneration::print() const {
   824   Generation::print();
   825   cmsSpace()->print();
   826 }
   828 #ifndef PRODUCT
   829 void ConcurrentMarkSweepGeneration::print_statistics() {
   830   cmsSpace()->printFLCensus(0);
   831 }
   832 #endif
   834 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   835   GenCollectedHeap* gch = GenCollectedHeap::heap();
   836   if (PrintGCDetails) {
   837     if (Verbose) {
   838       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   839         level(), short_name(), s, used(), capacity());
   840     } else {
   841       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   842         level(), short_name(), s, used() / K, capacity() / K);
   843     }
   844   }
   845   if (Verbose) {
   846     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   847               gch->used(), gch->capacity());
   848   } else {
   849     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   850               gch->used() / K, gch->capacity() / K);
   851   }
   852 }
   854 size_t
   855 ConcurrentMarkSweepGeneration::contiguous_available() const {
   856   // dld proposes an improvement in precision here. If the committed
   857   // part of the space ends in a free block we should add that to
   858   // uncommitted size in the calculation below. Will make this
   859   // change later, staying with the approximation below for the
   860   // time being. -- ysr.
   861   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   862 }
   864 size_t
   865 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   866   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   867 }
   869 size_t ConcurrentMarkSweepGeneration::max_available() const {
   870   return free() + _virtual_space.uncommitted_size();
   871 }
   873 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   874     size_t max_promotion_in_bytes,
   875     bool younger_handles_promotion_failure) const {
   877   // This is the most conservative test.  Full promotion is
   878   // guaranteed if this is used. The multiplicative factor is to
   879   // account for the worst case "dilatation".
   880   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   881   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   882     adjusted_max_promo_bytes = (double)max_uintx;
   883   }
   884   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   886   if (younger_handles_promotion_failure && !result) {
   887     // Full promotion is not guaranteed because fragmentation
   888     // of the cms generation can prevent the full promotion.
   889     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   891     if (!result) {
   892       // With promotion failure handling the test for the ability
   893       // to support the promotion does not have to be guaranteed.
   894       // Use an average of the amount promoted.
   895       result = max_available() >= (size_t)
   896         gc_stats()->avg_promoted()->padded_average();
   897       if (PrintGC && Verbose && result) {
   898         gclog_or_tty->print_cr(
   899           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   900           " max_available: " SIZE_FORMAT
   901           " avg_promoted: " SIZE_FORMAT,
   902           max_available(), (size_t)
   903           gc_stats()->avg_promoted()->padded_average());
   904       }
   905     } else {
   906       if (PrintGC && Verbose) {
   907         gclog_or_tty->print_cr(
   908           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   909           " max_available: " SIZE_FORMAT
   910           " adj_max_promo_bytes: " SIZE_FORMAT,
   911           max_available(), (size_t)adjusted_max_promo_bytes);
   912       }
   913     }
   914   } else {
   915     if (PrintGC && Verbose) {
   916       gclog_or_tty->print_cr(
   917         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   918         " contiguous_available: " SIZE_FORMAT
   919         " adj_max_promo_bytes: " SIZE_FORMAT,
   920         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   921     }
   922   }
   923   return result;
   924 }
   926 // At a promotion failure dump information on block layout in heap
   927 // (cms old generation).
   928 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
   929   if (CMSDumpAtPromotionFailure) {
   930     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
   931   }
   932 }
   934 CompactibleSpace*
   935 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   936   return _cmsSpace;
   937 }
   939 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   940   // Clear the promotion information.  These pointers can be adjusted
   941   // along with all the other pointers into the heap but
   942   // compaction is expected to be a rare event with
   943   // a heap using cms so don't do it without seeing the need.
   944   if (ParallelGCThreads > 0) {
   945     for (uint i = 0; i < ParallelGCThreads; i++) {
   946       _par_gc_thread_states[i]->promo.reset();
   947     }
   948   }
   949 }
   951 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   952   blk->do_space(_cmsSpace);
   953 }
   955 void ConcurrentMarkSweepGeneration::compute_new_size() {
   956   assert_locked_or_safepoint(Heap_lock);
   958   // If incremental collection failed, we just want to expand
   959   // to the limit.
   960   if (incremental_collection_failed()) {
   961     clear_incremental_collection_failed();
   962     grow_to_reserved();
   963     return;
   964   }
   966   size_t expand_bytes = 0;
   967   double free_percentage = ((double) free()) / capacity();
   968   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   969   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   971   // compute expansion delta needed for reaching desired free percentage
   972   if (free_percentage < desired_free_percentage) {
   973     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   974     assert(desired_capacity >= capacity(), "invalid expansion size");
   975     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   976   }
   977   if (expand_bytes > 0) {
   978     if (PrintGCDetails && Verbose) {
   979       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   980       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   981       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   982       gclog_or_tty->print_cr("  Desired free fraction %f",
   983         desired_free_percentage);
   984       gclog_or_tty->print_cr("  Maximum free fraction %f",
   985         maximum_free_percentage);
   986       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   987       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   988         desired_capacity/1000);
   989       int prev_level = level() - 1;
   990       if (prev_level >= 0) {
   991         size_t prev_size = 0;
   992         GenCollectedHeap* gch = GenCollectedHeap::heap();
   993         Generation* prev_gen = gch->_gens[prev_level];
   994         prev_size = prev_gen->capacity();
   995           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   996                                  prev_size/1000);
   997       }
   998       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   999         unsafe_max_alloc_nogc()/1000);
  1000       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
  1001         contiguous_available()/1000);
  1002       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
  1003         expand_bytes);
  1005     // safe if expansion fails
  1006     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
  1007     if (PrintGCDetails && Verbose) {
  1008       gclog_or_tty->print_cr("  Expanded free fraction %f",
  1009         ((double) free()) / capacity());
  1014 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
  1015   return cmsSpace()->freelistLock();
  1018 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
  1019                                                   bool   tlab) {
  1020   CMSSynchronousYieldRequest yr;
  1021   MutexLockerEx x(freelistLock(),
  1022                   Mutex::_no_safepoint_check_flag);
  1023   return have_lock_and_allocate(size, tlab);
  1026 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
  1027                                                   bool   tlab) {
  1028   assert_lock_strong(freelistLock());
  1029   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
  1030   HeapWord* res = cmsSpace()->allocate(adjustedSize);
  1031   // Allocate the object live (grey) if the background collector has
  1032   // started marking. This is necessary because the marker may
  1033   // have passed this address and consequently this object will
  1034   // not otherwise be greyed and would be incorrectly swept up.
  1035   // Note that if this object contains references, the writing
  1036   // of those references will dirty the card containing this object
  1037   // allowing the object to be blackened (and its references scanned)
  1038   // either during a preclean phase or at the final checkpoint.
  1039   if (res != NULL) {
  1040     collector()->direct_allocated(res, adjustedSize);
  1041     _direct_allocated_words += adjustedSize;
  1042     // allocation counters
  1043     NOT_PRODUCT(
  1044       _numObjectsAllocated++;
  1045       _numWordsAllocated += (int)adjustedSize;
  1048   return res;
  1051 // In the case of direct allocation by mutators in a generation that
  1052 // is being concurrently collected, the object must be allocated
  1053 // live (grey) if the background collector has started marking.
  1054 // This is necessary because the marker may
  1055 // have passed this address and consequently this object will
  1056 // not otherwise be greyed and would be incorrectly swept up.
  1057 // Note that if this object contains references, the writing
  1058 // of those references will dirty the card containing this object
  1059 // allowing the object to be blackened (and its references scanned)
  1060 // either during a preclean phase or at the final checkpoint.
  1061 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1062   assert(_markBitMap.covers(start, size), "Out of bounds");
  1063   if (_collectorState >= Marking) {
  1064     MutexLockerEx y(_markBitMap.lock(),
  1065                     Mutex::_no_safepoint_check_flag);
  1066     // [see comments preceding SweepClosure::do_blk() below for details]
  1067     // 1. need to mark the object as live so it isn't collected
  1068     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1069     // 3. need to mark the end of the object so sweeper can skip over it
  1070     //    if it's uninitialized when the sweeper reaches it.
  1071     _markBitMap.mark(start);          // object is live
  1072     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1073     _markBitMap.mark(start + size - 1);
  1074                                       // mark end of object
  1076   // check that oop looks uninitialized
  1077   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1080 void CMSCollector::promoted(bool par, HeapWord* start,
  1081                             bool is_obj_array, size_t obj_size) {
  1082   assert(_markBitMap.covers(start), "Out of bounds");
  1083   // See comment in direct_allocated() about when objects should
  1084   // be allocated live.
  1085   if (_collectorState >= Marking) {
  1086     // we already hold the marking bit map lock, taken in
  1087     // the prologue
  1088     if (par) {
  1089       _markBitMap.par_mark(start);
  1090     } else {
  1091       _markBitMap.mark(start);
  1093     // We don't need to mark the object as uninitialized (as
  1094     // in direct_allocated above) because this is being done with the
  1095     // world stopped and the object will be initialized by the
  1096     // time the sweeper gets to look at it.
  1097     assert(SafepointSynchronize::is_at_safepoint(),
  1098            "expect promotion only at safepoints");
  1100     if (_collectorState < Sweeping) {
  1101       // Mark the appropriate cards in the modUnionTable, so that
  1102       // this object gets scanned before the sweep. If this is
  1103       // not done, CMS generation references in the object might
  1104       // not get marked.
  1105       // For the case of arrays, which are otherwise precisely
  1106       // marked, we need to dirty the entire array, not just its head.
  1107       if (is_obj_array) {
  1108         // The [par_]mark_range() method expects mr.end() below to
  1109         // be aligned to the granularity of a bit's representation
  1110         // in the heap. In the case of the MUT below, that's a
  1111         // card size.
  1112         MemRegion mr(start,
  1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1114                         CardTableModRefBS::card_size /* bytes */));
  1115         if (par) {
  1116           _modUnionTable.par_mark_range(mr);
  1117         } else {
  1118           _modUnionTable.mark_range(mr);
  1120       } else {  // not an obj array; we can just mark the head
  1121         if (par) {
  1122           _modUnionTable.par_mark(start);
  1123         } else {
  1124           _modUnionTable.mark(start);
  1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1133   size_t delta = pointer_delta(addr, space->bottom());
  1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1137 void CMSCollector::icms_update_allocation_limits()
  1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1143   if (CMSTraceIncrementalPacing) {
  1144     stats().print();
  1147   assert(duty_cycle <= 100, "invalid duty cycle");
  1148   if (duty_cycle != 0) {
  1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1150     // then compute the offset from the endpoints of the space.
  1151     size_t free_words = eden->free() / HeapWordSize;
  1152     double free_words_dbl = (double)free_words;
  1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1156     _icms_start_limit = eden->top() + offset_words;
  1157     _icms_stop_limit = eden->end() - offset_words;
  1159     // The limits may be adjusted (shifted to the right) by
  1160     // CMSIncrementalOffset, to allow the application more mutator time after a
  1161     // young gen gc (when all mutators were stopped) and before CMS starts and
  1162     // takes away one or more cpus.
  1163     if (CMSIncrementalOffset != 0) {
  1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1165       size_t adjustment = (size_t)adjustment_dbl;
  1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1168         _icms_start_limit += adjustment;
  1169         _icms_stop_limit = tmp_stop;
  1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1174     _icms_start_limit = _icms_stop_limit = eden->end();
  1177   // Install the new start limit.
  1178   eden->set_soft_end(_icms_start_limit);
  1180   if (CMSTraceIncrementalMode) {
  1181     gclog_or_tty->print(" icms alloc limits:  "
  1182                            PTR_FORMAT "," PTR_FORMAT
  1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1184                            _icms_start_limit, _icms_stop_limit,
  1185                            percent_of_space(eden, _icms_start_limit),
  1186                            percent_of_space(eden, _icms_stop_limit));
  1187     if (Verbose) {
  1188       gclog_or_tty->print("eden:  ");
  1189       eden->print_on(gclog_or_tty);
  1194 // Any changes here should try to maintain the invariant
  1195 // that if this method is called with _icms_start_limit
  1196 // and _icms_stop_limit both NULL, then it should return NULL
  1197 // and not notify the icms thread.
  1198 HeapWord*
  1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1200                                        size_t word_size)
  1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1203   // nop.
  1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1205     if (top <= _icms_start_limit) {
  1206       if (CMSTraceIncrementalMode) {
  1207         space->print_on(gclog_or_tty);
  1208         gclog_or_tty->stamp();
  1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1210                                ", new limit=" PTR_FORMAT
  1211                                " (" SIZE_FORMAT "%%)",
  1212                                top, _icms_stop_limit,
  1213                                percent_of_space(space, _icms_stop_limit));
  1215       ConcurrentMarkSweepThread::start_icms();
  1216       assert(top < _icms_stop_limit, "Tautology");
  1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1218         return _icms_stop_limit;
  1221       // The allocation will cross both the _start and _stop limits, so do the
  1222       // stop notification also and return end().
  1223       if (CMSTraceIncrementalMode) {
  1224         space->print_on(gclog_or_tty);
  1225         gclog_or_tty->stamp();
  1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1227                                ", new limit=" PTR_FORMAT
  1228                                " (" SIZE_FORMAT "%%)",
  1229                                top, space->end(),
  1230                                percent_of_space(space, space->end()));
  1232       ConcurrentMarkSweepThread::stop_icms();
  1233       return space->end();
  1236     if (top <= _icms_stop_limit) {
  1237       if (CMSTraceIncrementalMode) {
  1238         space->print_on(gclog_or_tty);
  1239         gclog_or_tty->stamp();
  1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1241                                ", new limit=" PTR_FORMAT
  1242                                " (" SIZE_FORMAT "%%)",
  1243                                top, space->end(),
  1244                                percent_of_space(space, space->end()));
  1246       ConcurrentMarkSweepThread::stop_icms();
  1247       return space->end();
  1250     if (CMSTraceIncrementalMode) {
  1251       space->print_on(gclog_or_tty);
  1252       gclog_or_tty->stamp();
  1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1254                              ", new limit=" PTR_FORMAT,
  1255                              top, NULL);
  1259   return NULL;
  1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1264   // allocate, copy and if necessary update promoinfo --
  1265   // delegate to underlying space.
  1266   assert_lock_strong(freelistLock());
  1268 #ifndef PRODUCT
  1269   if (Universe::heap()->promotion_should_fail()) {
  1270     return NULL;
  1272 #endif  // #ifndef PRODUCT
  1274   oop res = _cmsSpace->promote(obj, obj_size);
  1275   if (res == NULL) {
  1276     // expand and retry
  1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1279       CMSExpansionCause::_satisfy_promotion);
  1280     // Since there's currently no next generation, we don't try to promote
  1281     // into a more senior generation.
  1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1283                                "is made to pass on a possibly failing "
  1284                                "promotion to next generation");
  1285     res = _cmsSpace->promote(obj, obj_size);
  1287   if (res != NULL) {
  1288     // See comment in allocate() about when objects should
  1289     // be allocated live.
  1290     assert(obj->is_oop(), "Will dereference klass pointer below");
  1291     collector()->promoted(false,           // Not parallel
  1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1293     // promotion counters
  1294     NOT_PRODUCT(
  1295       _numObjectsPromoted++;
  1296       _numWordsPromoted +=
  1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1300   return res;
  1304 HeapWord*
  1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1306                                              HeapWord* top,
  1307                                              size_t word_sz)
  1309   return collector()->allocation_limit_reached(space, top, word_sz);
  1312 // Things to support parallel young-gen collection.
  1313 oop
  1314 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1315                                            oop old, markOop m,
  1316                                            size_t word_sz) {
  1317 #ifndef PRODUCT
  1318   if (Universe::heap()->promotion_should_fail()) {
  1319     return NULL;
  1321 #endif  // #ifndef PRODUCT
  1323   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1324   PromotionInfo* promoInfo = &ps->promo;
  1325   // if we are tracking promotions, then first ensure space for
  1326   // promotion (including spooling space for saving header if necessary).
  1327   // then allocate and copy, then track promoted info if needed.
  1328   // When tracking (see PromotionInfo::track()), the mark word may
  1329   // be displaced and in this case restoration of the mark word
  1330   // occurs in the (oop_since_save_marks_)iterate phase.
  1331   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1332     // Out of space for allocating spooling buffers;
  1333     // try expanding and allocating spooling buffers.
  1334     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1335       return NULL;
  1338   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1339   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1340   if (obj_ptr == NULL) {
  1341      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1342      if (obj_ptr == NULL) {
  1343        return NULL;
  1346   oop obj = oop(obj_ptr);
  1347   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1348   // Otherwise, copy the object.  Here we must be careful to insert the
  1349   // klass pointer last, since this marks the block as an allocated object.
  1350   // Except with compressed oops it's the mark word.
  1351   HeapWord* old_ptr = (HeapWord*)old;
  1352   if (word_sz > (size_t)oopDesc::header_size()) {
  1353     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1354                                  obj_ptr + oopDesc::header_size(),
  1355                                  word_sz - oopDesc::header_size());
  1358   if (UseCompressedOops) {
  1359     // Copy gap missed by (aligned) header size calculation above
  1360     obj->set_klass_gap(old->klass_gap());
  1363   // Restore the mark word copied above.
  1364   obj->set_mark(m);
  1366   // Now we can track the promoted object, if necessary.  We take care
  1367   // to delay the transition from uninitialized to full object
  1368   // (i.e., insertion of klass pointer) until after, so that it
  1369   // atomically becomes a promoted object.
  1370   if (promoInfo->tracking()) {
  1371     promoInfo->track((PromotedObject*)obj, old->klass());
  1374   // Finally, install the klass pointer (this should be volatile).
  1375   obj->set_klass(old->klass());
  1377   assert(old->is_oop(), "Will dereference klass ptr below");
  1378   collector()->promoted(true,          // parallel
  1379                         obj_ptr, old->is_objArray(), word_sz);
  1381   NOT_PRODUCT(
  1382     Atomic::inc(&_numObjectsPromoted);
  1383     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1384                 &_numWordsPromoted);
  1387   return obj;
  1390 void
  1391 ConcurrentMarkSweepGeneration::
  1392 par_promote_alloc_undo(int thread_num,
  1393                        HeapWord* obj, size_t word_sz) {
  1394   // CMS does not support promotion undo.
  1395   ShouldNotReachHere();
  1398 void
  1399 ConcurrentMarkSweepGeneration::
  1400 par_promote_alloc_done(int thread_num) {
  1401   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1402   ps->lab.retire(thread_num);
  1405 void
  1406 ConcurrentMarkSweepGeneration::
  1407 par_oop_since_save_marks_iterate_done(int thread_num) {
  1408   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1409   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1410   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1413 // XXXPERM
  1414 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1415                                                    size_t size,
  1416                                                    bool   tlab)
  1418   // We allow a STW collection only if a full
  1419   // collection was requested.
  1420   return full || should_allocate(size, tlab); // FIX ME !!!
  1421   // This and promotion failure handling are connected at the
  1422   // hip and should be fixed by untying them.
  1425 bool CMSCollector::shouldConcurrentCollect() {
  1426   if (_full_gc_requested) {
  1427     if (Verbose && PrintGCDetails) {
  1428       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1429                              " gc request (or gc_locker)");
  1431     return true;
  1434   // For debugging purposes, change the type of collection.
  1435   // If the rotation is not on the concurrent collection
  1436   // type, don't start a concurrent collection.
  1437   NOT_PRODUCT(
  1438     if (RotateCMSCollectionTypes &&
  1439         (_cmsGen->debug_collection_type() !=
  1440           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1441       assert(_cmsGen->debug_collection_type() !=
  1442         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1443         "Bad cms collection type");
  1444       return false;
  1448   FreelistLocker x(this);
  1449   // ------------------------------------------------------------------
  1450   // Print out lots of information which affects the initiation of
  1451   // a collection.
  1452   if (PrintCMSInitiationStatistics && stats().valid()) {
  1453     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1454     gclog_or_tty->stamp();
  1455     gclog_or_tty->print_cr("");
  1456     stats().print_on(gclog_or_tty);
  1457     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1458       stats().time_until_cms_gen_full());
  1459     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1460     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1461                            _cmsGen->contiguous_available());
  1462     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1463     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1464     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1465     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1466     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1468   // ------------------------------------------------------------------
  1470   // If the estimated time to complete a cms collection (cms_duration())
  1471   // is less than the estimated time remaining until the cms generation
  1472   // is full, start a collection.
  1473   if (!UseCMSInitiatingOccupancyOnly) {
  1474     if (stats().valid()) {
  1475       if (stats().time_until_cms_start() == 0.0) {
  1476         return true;
  1478     } else {
  1479       // We want to conservatively collect somewhat early in order
  1480       // to try and "bootstrap" our CMS/promotion statistics;
  1481       // this branch will not fire after the first successful CMS
  1482       // collection because the stats should then be valid.
  1483       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1484         if (Verbose && PrintGCDetails) {
  1485           gclog_or_tty->print_cr(
  1486             " CMSCollector: collect for bootstrapping statistics:"
  1487             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1488             _bootstrap_occupancy);
  1490         return true;
  1495   // Otherwise, we start a collection cycle if either the perm gen or
  1496   // old gen want a collection cycle started. Each may use
  1497   // an appropriate criterion for making this decision.
  1498   // XXX We need to make sure that the gen expansion
  1499   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1500   if (_cmsGen->should_concurrent_collect()) {
  1501     if (Verbose && PrintGCDetails) {
  1502       gclog_or_tty->print_cr("CMS old gen initiated");
  1504     return true;
  1507   // We start a collection if we believe an incremental collection may fail;
  1508   // this is not likely to be productive in practice because it's probably too
  1509   // late anyway.
  1510   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1511   assert(gch->collector_policy()->is_two_generation_policy(),
  1512          "You may want to check the correctness of the following");
  1513   if (gch->incremental_collection_will_fail()) {
  1514     if (PrintGCDetails && Verbose) {
  1515       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1517     return true;
  1520   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1521     bool res = update_should_unload_classes();
  1522     if (res) {
  1523       if (Verbose && PrintGCDetails) {
  1524         gclog_or_tty->print_cr("CMS perm gen initiated");
  1526       return true;
  1529   return false;
  1532 // Clear _expansion_cause fields of constituent generations
  1533 void CMSCollector::clear_expansion_cause() {
  1534   _cmsGen->clear_expansion_cause();
  1535   _permGen->clear_expansion_cause();
  1538 // We should be conservative in starting a collection cycle.  To
  1539 // start too eagerly runs the risk of collecting too often in the
  1540 // extreme.  To collect too rarely falls back on full collections,
  1541 // which works, even if not optimum in terms of concurrent work.
  1542 // As a work around for too eagerly collecting, use the flag
  1543 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1544 // giving the user an easily understandable way of controlling the
  1545 // collections.
  1546 // We want to start a new collection cycle if any of the following
  1547 // conditions hold:
  1548 // . our current occupancy exceeds the configured initiating occupancy
  1549 //   for this generation, or
  1550 // . we recently needed to expand this space and have not, since that
  1551 //   expansion, done a collection of this generation, or
  1552 // . the underlying space believes that it may be a good idea to initiate
  1553 //   a concurrent collection (this may be based on criteria such as the
  1554 //   following: the space uses linear allocation and linear allocation is
  1555 //   going to fail, or there is believed to be excessive fragmentation in
  1556 //   the generation, etc... or ...
  1557 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1558 //   the case of the old generation, not the perm generation; see CR 6543076):
  1559 //   we may be approaching a point at which allocation requests may fail because
  1560 //   we will be out of sufficient free space given allocation rate estimates.]
  1561 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1563   assert_lock_strong(freelistLock());
  1564   if (occupancy() > initiating_occupancy()) {
  1565     if (PrintGCDetails && Verbose) {
  1566       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1567         short_name(), occupancy(), initiating_occupancy());
  1569     return true;
  1571   if (UseCMSInitiatingOccupancyOnly) {
  1572     return false;
  1574   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1575     if (PrintGCDetails && Verbose) {
  1576       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1577         short_name());
  1579     return true;
  1581   if (_cmsSpace->should_concurrent_collect()) {
  1582     if (PrintGCDetails && Verbose) {
  1583       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1584         short_name());
  1586     return true;
  1588   return false;
  1591 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1592                                             bool   clear_all_soft_refs,
  1593                                             size_t size,
  1594                                             bool   tlab)
  1596   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1599 void CMSCollector::collect(bool   full,
  1600                            bool   clear_all_soft_refs,
  1601                            size_t size,
  1602                            bool   tlab)
  1604   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1605     // For debugging purposes skip the collection if the state
  1606     // is not currently idle
  1607     if (TraceCMSState) {
  1608       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1609         Thread::current(), full, _collectorState);
  1611     return;
  1614   // The following "if" branch is present for defensive reasons.
  1615   // In the current uses of this interface, it can be replaced with:
  1616   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1617   // But I am not placing that assert here to allow future
  1618   // generality in invoking this interface.
  1619   if (GC_locker::is_active()) {
  1620     // A consistency test for GC_locker
  1621     assert(GC_locker::needs_gc(), "Should have been set already");
  1622     // Skip this foreground collection, instead
  1623     // expanding the heap if necessary.
  1624     // Need the free list locks for the call to free() in compute_new_size()
  1625     compute_new_size();
  1626     return;
  1628   acquire_control_and_collect(full, clear_all_soft_refs);
  1629   _full_gcs_since_conc_gc++;
  1633 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1634   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1635   unsigned int gc_count = gch->total_full_collections();
  1636   if (gc_count == full_gc_count) {
  1637     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1638     _full_gc_requested = true;
  1639     CGC_lock->notify();   // nudge CMS thread
  1644 // The foreground and background collectors need to coordinate in order
  1645 // to make sure that they do not mutually interfere with CMS collections.
  1646 // When a background collection is active,
  1647 // the foreground collector may need to take over (preempt) and
  1648 // synchronously complete an ongoing collection. Depending on the
  1649 // frequency of the background collections and the heap usage
  1650 // of the application, this preemption can be seldom or frequent.
  1651 // There are only certain
  1652 // points in the background collection that the "collection-baton"
  1653 // can be passed to the foreground collector.
  1654 //
  1655 // The foreground collector will wait for the baton before
  1656 // starting any part of the collection.  The foreground collector
  1657 // will only wait at one location.
  1658 //
  1659 // The background collector will yield the baton before starting a new
  1660 // phase of the collection (e.g., before initial marking, marking from roots,
  1661 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1662 // of the loop which switches the phases. The background collector does some
  1663 // of the phases (initial mark, final re-mark) with the world stopped.
  1664 // Because of locking involved in stopping the world,
  1665 // the foreground collector should not block waiting for the background
  1666 // collector when it is doing a stop-the-world phase.  The background
  1667 // collector will yield the baton at an additional point just before
  1668 // it enters a stop-the-world phase.  Once the world is stopped, the
  1669 // background collector checks the phase of the collection.  If the
  1670 // phase has not changed, it proceeds with the collection.  If the
  1671 // phase has changed, it skips that phase of the collection.  See
  1672 // the comments on the use of the Heap_lock in collect_in_background().
  1673 //
  1674 // Variable used in baton passing.
  1675 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1676 //      it wants the baton.  The foreground clears it when it has finished
  1677 //      the collection.
  1678 //   _foregroundGCShouldWait - Set to true by the background collector
  1679 //        when it is running.  The foreground collector waits while
  1680 //      _foregroundGCShouldWait is true.
  1681 //  CGC_lock - monitor used to protect access to the above variables
  1682 //      and to notify the foreground and background collectors.
  1683 //  _collectorState - current state of the CMS collection.
  1684 //
  1685 // The foreground collector
  1686 //   acquires the CGC_lock
  1687 //   sets _foregroundGCIsActive
  1688 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1689 //     various locks acquired in preparation for the collection
  1690 //     are released so as not to block the background collector
  1691 //     that is in the midst of a collection
  1692 //   proceeds with the collection
  1693 //   clears _foregroundGCIsActive
  1694 //   returns
  1695 //
  1696 // The background collector in a loop iterating on the phases of the
  1697 //      collection
  1698 //   acquires the CGC_lock
  1699 //   sets _foregroundGCShouldWait
  1700 //   if _foregroundGCIsActive is set
  1701 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1702 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1703 //     and exits the loop.
  1704 //   otherwise
  1705 //     proceed with that phase of the collection
  1706 //     if the phase is a stop-the-world phase,
  1707 //       yield the baton once more just before enqueueing
  1708 //       the stop-world CMS operation (executed by the VM thread).
  1709 //   returns after all phases of the collection are done
  1710 //
  1712 void CMSCollector::acquire_control_and_collect(bool full,
  1713         bool clear_all_soft_refs) {
  1714   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1715   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1716          "shouldn't try to acquire control from self!");
  1718   // Start the protocol for acquiring control of the
  1719   // collection from the background collector (aka CMS thread).
  1720   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1721          "VM thread should have CMS token");
  1722   // Remember the possibly interrupted state of an ongoing
  1723   // concurrent collection
  1724   CollectorState first_state = _collectorState;
  1726   // Signal to a possibly ongoing concurrent collection that
  1727   // we want to do a foreground collection.
  1728   _foregroundGCIsActive = true;
  1730   // Disable incremental mode during a foreground collection.
  1731   ICMSDisabler icms_disabler;
  1733   // release locks and wait for a notify from the background collector
  1734   // releasing the locks in only necessary for phases which
  1735   // do yields to improve the granularity of the collection.
  1736   assert_lock_strong(bitMapLock());
  1737   // We need to lock the Free list lock for the space that we are
  1738   // currently collecting.
  1739   assert(haveFreelistLocks(), "Must be holding free list locks");
  1740   bitMapLock()->unlock();
  1741   releaseFreelistLocks();
  1743     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1744     if (_foregroundGCShouldWait) {
  1745       // We are going to be waiting for action for the CMS thread;
  1746       // it had better not be gone (for instance at shutdown)!
  1747       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1748              "CMS thread must be running");
  1749       // Wait here until the background collector gives us the go-ahead
  1750       ConcurrentMarkSweepThread::clear_CMS_flag(
  1751         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1752       // Get a possibly blocked CMS thread going:
  1753       //   Note that we set _foregroundGCIsActive true above,
  1754       //   without protection of the CGC_lock.
  1755       CGC_lock->notify();
  1756       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1757              "Possible deadlock");
  1758       while (_foregroundGCShouldWait) {
  1759         // wait for notification
  1760         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1761         // Possibility of delay/starvation here, since CMS token does
  1762         // not know to give priority to VM thread? Actually, i think
  1763         // there wouldn't be any delay/starvation, but the proof of
  1764         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1766       ConcurrentMarkSweepThread::set_CMS_flag(
  1767         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1770   // The CMS_token is already held.  Get back the other locks.
  1771   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1772          "VM thread should have CMS token");
  1773   getFreelistLocks();
  1774   bitMapLock()->lock_without_safepoint_check();
  1775   if (TraceCMSState) {
  1776     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1777       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1778     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1781   // Check if we need to do a compaction, or if not, whether
  1782   // we need to start the mark-sweep from scratch.
  1783   bool should_compact    = false;
  1784   bool should_start_over = false;
  1785   decide_foreground_collection_type(clear_all_soft_refs,
  1786     &should_compact, &should_start_over);
  1788 NOT_PRODUCT(
  1789   if (RotateCMSCollectionTypes) {
  1790     if (_cmsGen->debug_collection_type() ==
  1791         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1792       should_compact = true;
  1793     } else if (_cmsGen->debug_collection_type() ==
  1794                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1795       should_compact = false;
  1800   if (PrintGCDetails && first_state > Idling) {
  1801     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1802     if (GCCause::is_user_requested_gc(cause) ||
  1803         GCCause::is_serviceability_requested_gc(cause)) {
  1804       gclog_or_tty->print(" (concurrent mode interrupted)");
  1805     } else {
  1806       gclog_or_tty->print(" (concurrent mode failure)");
  1810   if (should_compact) {
  1811     // If the collection is being acquired from the background
  1812     // collector, there may be references on the discovered
  1813     // references lists that have NULL referents (being those
  1814     // that were concurrently cleared by a mutator) or
  1815     // that are no longer active (having been enqueued concurrently
  1816     // by the mutator).
  1817     // Scrub the list of those references because Mark-Sweep-Compact
  1818     // code assumes referents are not NULL and that all discovered
  1819     // Reference objects are active.
  1820     ref_processor()->clean_up_discovered_references();
  1822     do_compaction_work(clear_all_soft_refs);
  1824     // Has the GC time limit been exceeded?
  1825     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
  1826     size_t max_eden_size = young_gen->max_capacity() -
  1827                            young_gen->to()->capacity() -
  1828                            young_gen->from()->capacity();
  1829     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1830     GCCause::Cause gc_cause = gch->gc_cause();
  1831     size_policy()->check_gc_overhead_limit(_young_gen->used(),
  1832                                            young_gen->eden()->used(),
  1833                                            _cmsGen->max_capacity(),
  1834                                            max_eden_size,
  1835                                            full,
  1836                                            gc_cause,
  1837                                            gch->collector_policy());
  1838   } else {
  1839     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1840       should_start_over);
  1842   // Reset the expansion cause, now that we just completed
  1843   // a collection cycle.
  1844   clear_expansion_cause();
  1845   _foregroundGCIsActive = false;
  1846   return;
  1849 // Resize the perm generation and the tenured generation
  1850 // after obtaining the free list locks for the
  1851 // two generations.
  1852 void CMSCollector::compute_new_size() {
  1853   assert_locked_or_safepoint(Heap_lock);
  1854   FreelistLocker z(this);
  1855   _permGen->compute_new_size();
  1856   _cmsGen->compute_new_size();
  1859 // A work method used by foreground collection to determine
  1860 // what type of collection (compacting or not, continuing or fresh)
  1861 // it should do.
  1862 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1863 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1864 // and do away with the flags after a suitable period.
  1865 void CMSCollector::decide_foreground_collection_type(
  1866   bool clear_all_soft_refs, bool* should_compact,
  1867   bool* should_start_over) {
  1868   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1869   // flag is set, and we have either requested a System.gc() or
  1870   // the number of full gc's since the last concurrent cycle
  1871   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1872   // or if an incremental collection has failed
  1873   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1874   assert(gch->collector_policy()->is_two_generation_policy(),
  1875          "You may want to check the correctness of the following");
  1876   // Inform cms gen if this was due to partial collection failing.
  1877   // The CMS gen may use this fact to determine its expansion policy.
  1878   if (gch->incremental_collection_will_fail()) {
  1879     assert(!_cmsGen->incremental_collection_failed(),
  1880            "Should have been noticed, reacted to and cleared");
  1881     _cmsGen->set_incremental_collection_failed();
  1883   *should_compact =
  1884     UseCMSCompactAtFullCollection &&
  1885     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1886      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1887      gch->incremental_collection_will_fail());
  1888   *should_start_over = false;
  1889   if (clear_all_soft_refs && !*should_compact) {
  1890     // We are about to do a last ditch collection attempt
  1891     // so it would normally make sense to do a compaction
  1892     // to reclaim as much space as possible.
  1893     if (CMSCompactWhenClearAllSoftRefs) {
  1894       // Default: The rationale is that in this case either
  1895       // we are past the final marking phase, in which case
  1896       // we'd have to start over, or so little has been done
  1897       // that there's little point in saving that work. Compaction
  1898       // appears to be the sensible choice in either case.
  1899       *should_compact = true;
  1900     } else {
  1901       // We have been asked to clear all soft refs, but not to
  1902       // compact. Make sure that we aren't past the final checkpoint
  1903       // phase, for that is where we process soft refs. If we are already
  1904       // past that phase, we'll need to redo the refs discovery phase and
  1905       // if necessary clear soft refs that weren't previously
  1906       // cleared. We do so by remembering the phase in which
  1907       // we came in, and if we are past the refs processing
  1908       // phase, we'll choose to just redo the mark-sweep
  1909       // collection from scratch.
  1910       if (_collectorState > FinalMarking) {
  1911         // We are past the refs processing phase;
  1912         // start over and do a fresh synchronous CMS cycle
  1913         _collectorState = Resetting; // skip to reset to start new cycle
  1914         reset(false /* == !asynch */);
  1915         *should_start_over = true;
  1916       } // else we can continue a possibly ongoing current cycle
  1921 // A work method used by the foreground collector to do
  1922 // a mark-sweep-compact.
  1923 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1924   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1925   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1926   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1927     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1928       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1931   // Sample collection interval time and reset for collection pause.
  1932   if (UseAdaptiveSizePolicy) {
  1933     size_policy()->msc_collection_begin();
  1936   // Temporarily widen the span of the weak reference processing to
  1937   // the entire heap.
  1938   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1939   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1941   // Temporarily, clear the "is_alive_non_header" field of the
  1942   // reference processor.
  1943   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1945   // Temporarily make reference _processing_ single threaded (non-MT).
  1946   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1948   // Temporarily make refs discovery atomic
  1949   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1951   ref_processor()->set_enqueuing_is_done(false);
  1952   ref_processor()->enable_discovery();
  1953   ref_processor()->setup_policy(clear_all_soft_refs);
  1954   // If an asynchronous collection finishes, the _modUnionTable is
  1955   // all clear.  If we are assuming the collection from an asynchronous
  1956   // collection, clear the _modUnionTable.
  1957   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1958     "_modUnionTable should be clear if the baton was not passed");
  1959   _modUnionTable.clear_all();
  1961   // We must adjust the allocation statistics being maintained
  1962   // in the free list space. We do so by reading and clearing
  1963   // the sweep timer and updating the block flux rate estimates below.
  1964   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
  1965   if (_inter_sweep_timer.is_active()) {
  1966     _inter_sweep_timer.stop();
  1967     // Note that we do not use this sample to update the _inter_sweep_estimate.
  1968     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  1969                                             _inter_sweep_estimate.padded_average(),
  1970                                             _intra_sweep_estimate.padded_average());
  1973   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1974     ref_processor(), clear_all_soft_refs);
  1975   #ifdef ASSERT
  1976     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1977     size_t free_size = cms_space->free();
  1978     assert(free_size ==
  1979            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1980            * HeapWordSize,
  1981       "All the free space should be compacted into one chunk at top");
  1982     assert(cms_space->dictionary()->totalChunkSize(
  1983                                       debug_only(cms_space->freelistLock())) == 0 ||
  1984            cms_space->totalSizeInIndexedFreeLists() == 0,
  1985       "All the free space should be in a single chunk");
  1986     size_t num = cms_space->totalCount();
  1987     assert((free_size == 0 && num == 0) ||
  1988            (free_size > 0  && (num == 1 || num == 2)),
  1989          "There should be at most 2 free chunks after compaction");
  1990   #endif // ASSERT
  1991   _collectorState = Resetting;
  1992   assert(_restart_addr == NULL,
  1993          "Should have been NULL'd before baton was passed");
  1994   reset(false /* == !asynch */);
  1995   _cmsGen->reset_after_compaction();
  1996   _concurrent_cycles_since_last_unload = 0;
  1998   if (verifying() && !should_unload_classes()) {
  1999     perm_gen_verify_bit_map()->clear_all();
  2002   // Clear any data recorded in the PLAB chunk arrays.
  2003   if (_survivor_plab_array != NULL) {
  2004     reset_survivor_plab_arrays();
  2007   // Adjust the per-size allocation stats for the next epoch.
  2008   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
  2009   // Restart the "inter sweep timer" for the next epoch.
  2010   _inter_sweep_timer.reset();
  2011   _inter_sweep_timer.start();
  2013   // Sample collection pause time and reset for collection interval.
  2014   if (UseAdaptiveSizePolicy) {
  2015     size_policy()->msc_collection_end(gch->gc_cause());
  2018   // For a mark-sweep-compact, compute_new_size() will be called
  2019   // in the heap's do_collection() method.
  2022 // A work method used by the foreground collector to do
  2023 // a mark-sweep, after taking over from a possibly on-going
  2024 // concurrent mark-sweep collection.
  2025 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2026   CollectorState first_state, bool should_start_over) {
  2027   if (PrintGC && Verbose) {
  2028     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2029       "collector with count %d",
  2030       _full_gcs_since_conc_gc);
  2032   switch (_collectorState) {
  2033     case Idling:
  2034       if (first_state == Idling || should_start_over) {
  2035         // The background GC was not active, or should
  2036         // restarted from scratch;  start the cycle.
  2037         _collectorState = InitialMarking;
  2039       // If first_state was not Idling, then a background GC
  2040       // was in progress and has now finished.  No need to do it
  2041       // again.  Leave the state as Idling.
  2042       break;
  2043     case Precleaning:
  2044       // In the foreground case don't do the precleaning since
  2045       // it is not done concurrently and there is extra work
  2046       // required.
  2047       _collectorState = FinalMarking;
  2049   if (PrintGCDetails &&
  2050       (_collectorState > Idling ||
  2051        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2052     gclog_or_tty->print(" (concurrent mode failure)");
  2054   collect_in_foreground(clear_all_soft_refs);
  2056   // For a mark-sweep, compute_new_size() will be called
  2057   // in the heap's do_collection() method.
  2061 void CMSCollector::getFreelistLocks() const {
  2062   // Get locks for all free lists in all generations that this
  2063   // collector is responsible for
  2064   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2065   _permGen->freelistLock()->lock_without_safepoint_check();
  2068 void CMSCollector::releaseFreelistLocks() const {
  2069   // Release locks for all free lists in all generations that this
  2070   // collector is responsible for
  2071   _cmsGen->freelistLock()->unlock();
  2072   _permGen->freelistLock()->unlock();
  2075 bool CMSCollector::haveFreelistLocks() const {
  2076   // Check locks for all free lists in all generations that this
  2077   // collector is responsible for
  2078   assert_lock_strong(_cmsGen->freelistLock());
  2079   assert_lock_strong(_permGen->freelistLock());
  2080   PRODUCT_ONLY(ShouldNotReachHere());
  2081   return true;
  2084 // A utility class that is used by the CMS collector to
  2085 // temporarily "release" the foreground collector from its
  2086 // usual obligation to wait for the background collector to
  2087 // complete an ongoing phase before proceeding.
  2088 class ReleaseForegroundGC: public StackObj {
  2089  private:
  2090   CMSCollector* _c;
  2091  public:
  2092   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2093     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2094     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2095     // allow a potentially blocked foreground collector to proceed
  2096     _c->_foregroundGCShouldWait = false;
  2097     if (_c->_foregroundGCIsActive) {
  2098       CGC_lock->notify();
  2100     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2101            "Possible deadlock");
  2104   ~ReleaseForegroundGC() {
  2105     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2106     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2107     _c->_foregroundGCShouldWait = true;
  2109 };
  2111 // There are separate collect_in_background and collect_in_foreground because of
  2112 // the different locking requirements of the background collector and the
  2113 // foreground collector.  There was originally an attempt to share
  2114 // one "collect" method between the background collector and the foreground
  2115 // collector but the if-then-else required made it cleaner to have
  2116 // separate methods.
  2117 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2118   assert(Thread::current()->is_ConcurrentGC_thread(),
  2119     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2121   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2123     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2124     MutexLockerEx hl(Heap_lock, safepoint_check);
  2125     FreelistLocker fll(this);
  2126     MutexLockerEx x(CGC_lock, safepoint_check);
  2127     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2128       // The foreground collector is active or we're
  2129       // not using asynchronous collections.  Skip this
  2130       // background collection.
  2131       assert(!_foregroundGCShouldWait, "Should be clear");
  2132       return;
  2133     } else {
  2134       assert(_collectorState == Idling, "Should be idling before start.");
  2135       _collectorState = InitialMarking;
  2136       // Reset the expansion cause, now that we are about to begin
  2137       // a new cycle.
  2138       clear_expansion_cause();
  2140     // Decide if we want to enable class unloading as part of the
  2141     // ensuing concurrent GC cycle.
  2142     update_should_unload_classes();
  2143     _full_gc_requested = false;           // acks all outstanding full gc requests
  2144     // Signal that we are about to start a collection
  2145     gch->increment_total_full_collections();  // ... starting a collection cycle
  2146     _collection_count_start = gch->total_full_collections();
  2149   // Used for PrintGC
  2150   size_t prev_used;
  2151   if (PrintGC && Verbose) {
  2152     prev_used = _cmsGen->used(); // XXXPERM
  2155   // The change of the collection state is normally done at this level;
  2156   // the exceptions are phases that are executed while the world is
  2157   // stopped.  For those phases the change of state is done while the
  2158   // world is stopped.  For baton passing purposes this allows the
  2159   // background collector to finish the phase and change state atomically.
  2160   // The foreground collector cannot wait on a phase that is done
  2161   // while the world is stopped because the foreground collector already
  2162   // has the world stopped and would deadlock.
  2163   while (_collectorState != Idling) {
  2164     if (TraceCMSState) {
  2165       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2166         Thread::current(), _collectorState);
  2168     // The foreground collector
  2169     //   holds the Heap_lock throughout its collection.
  2170     //   holds the CMS token (but not the lock)
  2171     //     except while it is waiting for the background collector to yield.
  2172     //
  2173     // The foreground collector should be blocked (not for long)
  2174     //   if the background collector is about to start a phase
  2175     //   executed with world stopped.  If the background
  2176     //   collector has already started such a phase, the
  2177     //   foreground collector is blocked waiting for the
  2178     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2179     //   are executed in the VM thread.
  2180     //
  2181     // The locking order is
  2182     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2183     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2184     //   CMS token  (claimed in
  2185     //                stop_world_and_do() -->
  2186     //                  safepoint_synchronize() -->
  2187     //                    CMSThread::synchronize())
  2190       // Check if the FG collector wants us to yield.
  2191       CMSTokenSync x(true); // is cms thread
  2192       if (waitForForegroundGC()) {
  2193         // We yielded to a foreground GC, nothing more to be
  2194         // done this round.
  2195         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2196                "waitForForegroundGC()");
  2197         if (TraceCMSState) {
  2198           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2199             " exiting collection CMS state %d",
  2200             Thread::current(), _collectorState);
  2202         return;
  2203       } else {
  2204         // The background collector can run but check to see if the
  2205         // foreground collector has done a collection while the
  2206         // background collector was waiting to get the CGC_lock
  2207         // above.  If yes, break so that _foregroundGCShouldWait
  2208         // is cleared before returning.
  2209         if (_collectorState == Idling) {
  2210           break;
  2215     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2216       "should be waiting");
  2218     switch (_collectorState) {
  2219       case InitialMarking:
  2221           ReleaseForegroundGC x(this);
  2222           stats().record_cms_begin();
  2224           VM_CMS_Initial_Mark initial_mark_op(this);
  2225           VMThread::execute(&initial_mark_op);
  2227         // The collector state may be any legal state at this point
  2228         // since the background collector may have yielded to the
  2229         // foreground collector.
  2230         break;
  2231       case Marking:
  2232         // initial marking in checkpointRootsInitialWork has been completed
  2233         if (markFromRoots(true)) { // we were successful
  2234           assert(_collectorState == Precleaning, "Collector state should "
  2235             "have changed");
  2236         } else {
  2237           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2239         break;
  2240       case Precleaning:
  2241         if (UseAdaptiveSizePolicy) {
  2242           size_policy()->concurrent_precleaning_begin();
  2244         // marking from roots in markFromRoots has been completed
  2245         preclean();
  2246         if (UseAdaptiveSizePolicy) {
  2247           size_policy()->concurrent_precleaning_end();
  2249         assert(_collectorState == AbortablePreclean ||
  2250                _collectorState == FinalMarking,
  2251                "Collector state should have changed");
  2252         break;
  2253       case AbortablePreclean:
  2254         if (UseAdaptiveSizePolicy) {
  2255         size_policy()->concurrent_phases_resume();
  2257         abortable_preclean();
  2258         if (UseAdaptiveSizePolicy) {
  2259           size_policy()->concurrent_precleaning_end();
  2261         assert(_collectorState == FinalMarking, "Collector state should "
  2262           "have changed");
  2263         break;
  2264       case FinalMarking:
  2266           ReleaseForegroundGC x(this);
  2268           VM_CMS_Final_Remark final_remark_op(this);
  2269           VMThread::execute(&final_remark_op);
  2271         assert(_foregroundGCShouldWait, "block post-condition");
  2272         break;
  2273       case Sweeping:
  2274         if (UseAdaptiveSizePolicy) {
  2275           size_policy()->concurrent_sweeping_begin();
  2277         // final marking in checkpointRootsFinal has been completed
  2278         sweep(true);
  2279         assert(_collectorState == Resizing, "Collector state change "
  2280           "to Resizing must be done under the free_list_lock");
  2281         _full_gcs_since_conc_gc = 0;
  2283         // Stop the timers for adaptive size policy for the concurrent phases
  2284         if (UseAdaptiveSizePolicy) {
  2285           size_policy()->concurrent_sweeping_end();
  2286           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2287                                              gch->prev_gen(_cmsGen)->capacity(),
  2288                                              _cmsGen->free());
  2291       case Resizing: {
  2292         // Sweeping has been completed...
  2293         // At this point the background collection has completed.
  2294         // Don't move the call to compute_new_size() down
  2295         // into code that might be executed if the background
  2296         // collection was preempted.
  2298           ReleaseForegroundGC x(this);   // unblock FG collection
  2299           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2300           CMSTokenSync        z(true);   // not strictly needed.
  2301           if (_collectorState == Resizing) {
  2302             compute_new_size();
  2303             _collectorState = Resetting;
  2304           } else {
  2305             assert(_collectorState == Idling, "The state should only change"
  2306                    " because the foreground collector has finished the collection");
  2309         break;
  2311       case Resetting:
  2312         // CMS heap resizing has been completed
  2313         reset(true);
  2314         assert(_collectorState == Idling, "Collector state should "
  2315           "have changed");
  2316         stats().record_cms_end();
  2317         // Don't move the concurrent_phases_end() and compute_new_size()
  2318         // calls to here because a preempted background collection
  2319         // has it's state set to "Resetting".
  2320         break;
  2321       case Idling:
  2322       default:
  2323         ShouldNotReachHere();
  2324         break;
  2326     if (TraceCMSState) {
  2327       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2328         Thread::current(), _collectorState);
  2330     assert(_foregroundGCShouldWait, "block post-condition");
  2333   // Should this be in gc_epilogue?
  2334   collector_policy()->counters()->update_counters();
  2337     // Clear _foregroundGCShouldWait and, in the event that the
  2338     // foreground collector is waiting, notify it, before
  2339     // returning.
  2340     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2341     _foregroundGCShouldWait = false;
  2342     if (_foregroundGCIsActive) {
  2343       CGC_lock->notify();
  2345     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2346            "Possible deadlock");
  2348   if (TraceCMSState) {
  2349     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2350       " exiting collection CMS state %d",
  2351       Thread::current(), _collectorState);
  2353   if (PrintGC && Verbose) {
  2354     _cmsGen->print_heap_change(prev_used);
  2358 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2359   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2360          "Foreground collector should be waiting, not executing");
  2361   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2362     "may only be done by the VM Thread with the world stopped");
  2363   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2364          "VM thread should have CMS token");
  2366   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2367     true, gclog_or_tty);)
  2368   if (UseAdaptiveSizePolicy) {
  2369     size_policy()->ms_collection_begin();
  2371   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2373   HandleMark hm;  // Discard invalid handles created during verification
  2375   if (VerifyBeforeGC &&
  2376       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2377     Universe::verify(true);
  2380   // Snapshot the soft reference policy to be used in this collection cycle.
  2381   ref_processor()->setup_policy(clear_all_soft_refs);
  2383   bool init_mark_was_synchronous = false; // until proven otherwise
  2384   while (_collectorState != Idling) {
  2385     if (TraceCMSState) {
  2386       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2387         Thread::current(), _collectorState);
  2389     switch (_collectorState) {
  2390       case InitialMarking:
  2391         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2392         checkpointRootsInitial(false);
  2393         assert(_collectorState == Marking, "Collector state should have changed"
  2394           " within checkpointRootsInitial()");
  2395         break;
  2396       case Marking:
  2397         // initial marking in checkpointRootsInitialWork has been completed
  2398         if (VerifyDuringGC &&
  2399             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2400           gclog_or_tty->print("Verify before initial mark: ");
  2401           Universe::verify(true);
  2404           bool res = markFromRoots(false);
  2405           assert(res && _collectorState == FinalMarking, "Collector state should "
  2406             "have changed");
  2407           break;
  2409       case FinalMarking:
  2410         if (VerifyDuringGC &&
  2411             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2412           gclog_or_tty->print("Verify before re-mark: ");
  2413           Universe::verify(true);
  2415         checkpointRootsFinal(false, clear_all_soft_refs,
  2416                              init_mark_was_synchronous);
  2417         assert(_collectorState == Sweeping, "Collector state should not "
  2418           "have changed within checkpointRootsFinal()");
  2419         break;
  2420       case Sweeping:
  2421         // final marking in checkpointRootsFinal has been completed
  2422         if (VerifyDuringGC &&
  2423             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2424           gclog_or_tty->print("Verify before sweep: ");
  2425           Universe::verify(true);
  2427         sweep(false);
  2428         assert(_collectorState == Resizing, "Incorrect state");
  2429         break;
  2430       case Resizing: {
  2431         // Sweeping has been completed; the actual resize in this case
  2432         // is done separately; nothing to be done in this state.
  2433         _collectorState = Resetting;
  2434         break;
  2436       case Resetting:
  2437         // The heap has been resized.
  2438         if (VerifyDuringGC &&
  2439             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2440           gclog_or_tty->print("Verify before reset: ");
  2441           Universe::verify(true);
  2443         reset(false);
  2444         assert(_collectorState == Idling, "Collector state should "
  2445           "have changed");
  2446         break;
  2447       case Precleaning:
  2448       case AbortablePreclean:
  2449         // Elide the preclean phase
  2450         _collectorState = FinalMarking;
  2451         break;
  2452       default:
  2453         ShouldNotReachHere();
  2455     if (TraceCMSState) {
  2456       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2457         Thread::current(), _collectorState);
  2461   if (UseAdaptiveSizePolicy) {
  2462     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2463     size_policy()->ms_collection_end(gch->gc_cause());
  2466   if (VerifyAfterGC &&
  2467       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2468     Universe::verify(true);
  2470   if (TraceCMSState) {
  2471     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2472       " exiting collection CMS state %d",
  2473       Thread::current(), _collectorState);
  2477 bool CMSCollector::waitForForegroundGC() {
  2478   bool res = false;
  2479   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2480          "CMS thread should have CMS token");
  2481   // Block the foreground collector until the
  2482   // background collectors decides whether to
  2483   // yield.
  2484   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2485   _foregroundGCShouldWait = true;
  2486   if (_foregroundGCIsActive) {
  2487     // The background collector yields to the
  2488     // foreground collector and returns a value
  2489     // indicating that it has yielded.  The foreground
  2490     // collector can proceed.
  2491     res = true;
  2492     _foregroundGCShouldWait = false;
  2493     ConcurrentMarkSweepThread::clear_CMS_flag(
  2494       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2495     ConcurrentMarkSweepThread::set_CMS_flag(
  2496       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2497     // Get a possibly blocked foreground thread going
  2498     CGC_lock->notify();
  2499     if (TraceCMSState) {
  2500       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2501         Thread::current(), _collectorState);
  2503     while (_foregroundGCIsActive) {
  2504       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2506     ConcurrentMarkSweepThread::set_CMS_flag(
  2507       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2508     ConcurrentMarkSweepThread::clear_CMS_flag(
  2509       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2511   if (TraceCMSState) {
  2512     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2513       Thread::current(), _collectorState);
  2515   return res;
  2518 // Because of the need to lock the free lists and other structures in
  2519 // the collector, common to all the generations that the collector is
  2520 // collecting, we need the gc_prologues of individual CMS generations
  2521 // delegate to their collector. It may have been simpler had the
  2522 // current infrastructure allowed one to call a prologue on a
  2523 // collector. In the absence of that we have the generation's
  2524 // prologue delegate to the collector, which delegates back
  2525 // some "local" work to a worker method in the individual generations
  2526 // that it's responsible for collecting, while itself doing any
  2527 // work common to all generations it's responsible for. A similar
  2528 // comment applies to the  gc_epilogue()'s.
  2529 // The role of the varaible _between_prologue_and_epilogue is to
  2530 // enforce the invocation protocol.
  2531 void CMSCollector::gc_prologue(bool full) {
  2532   // Call gc_prologue_work() for each CMSGen and PermGen that
  2533   // we are responsible for.
  2535   // The following locking discipline assumes that we are only called
  2536   // when the world is stopped.
  2537   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2539   // The CMSCollector prologue must call the gc_prologues for the
  2540   // "generations" (including PermGen if any) that it's responsible
  2541   // for.
  2543   assert(   Thread::current()->is_VM_thread()
  2544          || (   CMSScavengeBeforeRemark
  2545              && Thread::current()->is_ConcurrentGC_thread()),
  2546          "Incorrect thread type for prologue execution");
  2548   if (_between_prologue_and_epilogue) {
  2549     // We have already been invoked; this is a gc_prologue delegation
  2550     // from yet another CMS generation that we are responsible for, just
  2551     // ignore it since all relevant work has already been done.
  2552     return;
  2555   // set a bit saying prologue has been called; cleared in epilogue
  2556   _between_prologue_and_epilogue = true;
  2557   // Claim locks for common data structures, then call gc_prologue_work()
  2558   // for each CMSGen and PermGen that we are responsible for.
  2560   getFreelistLocks();   // gets free list locks on constituent spaces
  2561   bitMapLock()->lock_without_safepoint_check();
  2563   // Should call gc_prologue_work() for all cms gens we are responsible for
  2564   bool registerClosure =    _collectorState >= Marking
  2565                          && _collectorState < Sweeping;
  2566   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2567                                                : &_modUnionClosure;
  2568   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2569   _permGen->gc_prologue_work(full, registerClosure, muc);
  2571   if (!full) {
  2572     stats().record_gc0_begin();
  2576 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2577   // Delegate to CMScollector which knows how to coordinate between
  2578   // this and any other CMS generations that it is responsible for
  2579   // collecting.
  2580   collector()->gc_prologue(full);
  2583 // This is a "private" interface for use by this generation's CMSCollector.
  2584 // Not to be called directly by any other entity (for instance,
  2585 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2586 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2587   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2588   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2589   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2590     "Should be NULL");
  2591   if (registerClosure) {
  2592     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2594   cmsSpace()->gc_prologue();
  2595   // Clear stat counters
  2596   NOT_PRODUCT(
  2597     assert(_numObjectsPromoted == 0, "check");
  2598     assert(_numWordsPromoted   == 0, "check");
  2599     if (Verbose && PrintGC) {
  2600       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2601                           SIZE_FORMAT" bytes concurrently",
  2602       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2604     _numObjectsAllocated = 0;
  2605     _numWordsAllocated   = 0;
  2609 void CMSCollector::gc_epilogue(bool full) {
  2610   // The following locking discipline assumes that we are only called
  2611   // when the world is stopped.
  2612   assert(SafepointSynchronize::is_at_safepoint(),
  2613          "world is stopped assumption");
  2615   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2616   // if linear allocation blocks need to be appropriately marked to allow the
  2617   // the blocks to be parsable. We also check here whether we need to nudge the
  2618   // CMS collector thread to start a new cycle (if it's not already active).
  2619   assert(   Thread::current()->is_VM_thread()
  2620          || (   CMSScavengeBeforeRemark
  2621              && Thread::current()->is_ConcurrentGC_thread()),
  2622          "Incorrect thread type for epilogue execution");
  2624   if (!_between_prologue_and_epilogue) {
  2625     // We have already been invoked; this is a gc_epilogue delegation
  2626     // from yet another CMS generation that we are responsible for, just
  2627     // ignore it since all relevant work has already been done.
  2628     return;
  2630   assert(haveFreelistLocks(), "must have freelist locks");
  2631   assert_lock_strong(bitMapLock());
  2633   _cmsGen->gc_epilogue_work(full);
  2634   _permGen->gc_epilogue_work(full);
  2636   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2637     // in case sampling was not already enabled, enable it
  2638     _start_sampling = true;
  2640   // reset _eden_chunk_array so sampling starts afresh
  2641   _eden_chunk_index = 0;
  2643   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2644   size_t perm_used  = _permGen->cmsSpace()->used();
  2646   // update performance counters - this uses a special version of
  2647   // update_counters() that allows the utilization to be passed as a
  2648   // parameter, avoiding multiple calls to used().
  2649   //
  2650   _cmsGen->update_counters(cms_used);
  2651   _permGen->update_counters(perm_used);
  2653   if (CMSIncrementalMode) {
  2654     icms_update_allocation_limits();
  2657   bitMapLock()->unlock();
  2658   releaseFreelistLocks();
  2660   _between_prologue_and_epilogue = false;  // ready for next cycle
  2663 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2664   collector()->gc_epilogue(full);
  2666   // Also reset promotion tracking in par gc thread states.
  2667   if (ParallelGCThreads > 0) {
  2668     for (uint i = 0; i < ParallelGCThreads; i++) {
  2669       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
  2674 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2675   assert(!incremental_collection_failed(), "Should have been cleared");
  2676   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2677   cmsSpace()->gc_epilogue();
  2678     // Print stat counters
  2679   NOT_PRODUCT(
  2680     assert(_numObjectsAllocated == 0, "check");
  2681     assert(_numWordsAllocated == 0, "check");
  2682     if (Verbose && PrintGC) {
  2683       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2684                           SIZE_FORMAT" bytes",
  2685                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2687     _numObjectsPromoted = 0;
  2688     _numWordsPromoted   = 0;
  2691   if (PrintGC && Verbose) {
  2692     // Call down the chain in contiguous_available needs the freelistLock
  2693     // so print this out before releasing the freeListLock.
  2694     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2695                         contiguous_available());
  2699 #ifndef PRODUCT
  2700 bool CMSCollector::have_cms_token() {
  2701   Thread* thr = Thread::current();
  2702   if (thr->is_VM_thread()) {
  2703     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2704   } else if (thr->is_ConcurrentGC_thread()) {
  2705     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2706   } else if (thr->is_GC_task_thread()) {
  2707     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2708            ParGCRareEvent_lock->owned_by_self();
  2710   return false;
  2712 #endif
  2714 // Check reachability of the given heap address in CMS generation,
  2715 // treating all other generations as roots.
  2716 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2717   // We could "guarantee" below, rather than assert, but i'll
  2718   // leave these as "asserts" so that an adventurous debugger
  2719   // could try this in the product build provided some subset of
  2720   // the conditions were met, provided they were intersted in the
  2721   // results and knew that the computation below wouldn't interfere
  2722   // with other concurrent computations mutating the structures
  2723   // being read or written.
  2724   assert(SafepointSynchronize::is_at_safepoint(),
  2725          "Else mutations in object graph will make answer suspect");
  2726   assert(have_cms_token(), "Should hold cms token");
  2727   assert(haveFreelistLocks(), "must hold free list locks");
  2728   assert_lock_strong(bitMapLock());
  2730   // Clear the marking bit map array before starting, but, just
  2731   // for kicks, first report if the given address is already marked
  2732   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2733                 _markBitMap.isMarked(addr) ? "" : " not");
  2735   if (verify_after_remark()) {
  2736     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2737     bool result = verification_mark_bm()->isMarked(addr);
  2738     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2739                            result ? "IS" : "is NOT");
  2740     return result;
  2741   } else {
  2742     gclog_or_tty->print_cr("Could not compute result");
  2743     return false;
  2747 ////////////////////////////////////////////////////////
  2748 // CMS Verification Support
  2749 ////////////////////////////////////////////////////////
  2750 // Following the remark phase, the following invariant
  2751 // should hold -- each object in the CMS heap which is
  2752 // marked in markBitMap() should be marked in the verification_mark_bm().
  2754 class VerifyMarkedClosure: public BitMapClosure {
  2755   CMSBitMap* _marks;
  2756   bool       _failed;
  2758  public:
  2759   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2761   bool do_bit(size_t offset) {
  2762     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2763     if (!_marks->isMarked(addr)) {
  2764       oop(addr)->print_on(gclog_or_tty);
  2765       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2766       _failed = true;
  2768     return true;
  2771   bool failed() { return _failed; }
  2772 };
  2774 bool CMSCollector::verify_after_remark() {
  2775   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2776   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2777   static bool init = false;
  2779   assert(SafepointSynchronize::is_at_safepoint(),
  2780          "Else mutations in object graph will make answer suspect");
  2781   assert(have_cms_token(),
  2782          "Else there may be mutual interference in use of "
  2783          " verification data structures");
  2784   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2785          "Else marking info checked here may be obsolete");
  2786   assert(haveFreelistLocks(), "must hold free list locks");
  2787   assert_lock_strong(bitMapLock());
  2790   // Allocate marking bit map if not already allocated
  2791   if (!init) { // first time
  2792     if (!verification_mark_bm()->allocate(_span)) {
  2793       return false;
  2795     init = true;
  2798   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2800   // Turn off refs discovery -- so we will be tracing through refs.
  2801   // This is as intended, because by this time
  2802   // GC must already have cleared any refs that need to be cleared,
  2803   // and traced those that need to be marked; moreover,
  2804   // the marking done here is not going to intefere in any
  2805   // way with the marking information used by GC.
  2806   NoRefDiscovery no_discovery(ref_processor());
  2808   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2810   // Clear any marks from a previous round
  2811   verification_mark_bm()->clear_all();
  2812   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2813   verify_work_stacks_empty();
  2815   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2816   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2817   // Update the saved marks which may affect the root scans.
  2818   gch->save_marks();
  2820   if (CMSRemarkVerifyVariant == 1) {
  2821     // In this first variant of verification, we complete
  2822     // all marking, then check if the new marks-verctor is
  2823     // a subset of the CMS marks-vector.
  2824     verify_after_remark_work_1();
  2825   } else if (CMSRemarkVerifyVariant == 2) {
  2826     // In this second variant of verification, we flag an error
  2827     // (i.e. an object reachable in the new marks-vector not reachable
  2828     // in the CMS marks-vector) immediately, also indicating the
  2829     // identify of an object (A) that references the unmarked object (B) --
  2830     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2831     verify_after_remark_work_2();
  2832   } else {
  2833     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2834             CMSRemarkVerifyVariant);
  2836   gclog_or_tty->print(" done] ");
  2837   return true;
  2840 void CMSCollector::verify_after_remark_work_1() {
  2841   ResourceMark rm;
  2842   HandleMark  hm;
  2843   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2845   // Mark from roots one level into CMS
  2846   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  2847   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2849   gch->gen_process_strong_roots(_cmsGen->level(),
  2850                                 true,   // younger gens are roots
  2851                                 true,   // activate StrongRootsScope
  2852                                 true,   // collecting perm gen
  2853                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2854                                 &notOlder,
  2855                                 true,   // walk code active on stacks
  2856                                 NULL);
  2858   // Now mark from the roots
  2859   assert(_revisitStack.isEmpty(), "Should be empty");
  2860   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2861     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2862     false /* don't yield */, true /* verifying */);
  2863   assert(_restart_addr == NULL, "Expected pre-condition");
  2864   verification_mark_bm()->iterate(&markFromRootsClosure);
  2865   while (_restart_addr != NULL) {
  2866     // Deal with stack overflow: by restarting at the indicated
  2867     // address.
  2868     HeapWord* ra = _restart_addr;
  2869     markFromRootsClosure.reset(ra);
  2870     _restart_addr = NULL;
  2871     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2873   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2874   verify_work_stacks_empty();
  2875   // Should reset the revisit stack above, since no class tree
  2876   // surgery is forthcoming.
  2877   _revisitStack.reset(); // throwing away all contents
  2879   // Marking completed -- now verify that each bit marked in
  2880   // verification_mark_bm() is also marked in markBitMap(); flag all
  2881   // errors by printing corresponding objects.
  2882   VerifyMarkedClosure vcl(markBitMap());
  2883   verification_mark_bm()->iterate(&vcl);
  2884   if (vcl.failed()) {
  2885     gclog_or_tty->print("Verification failed");
  2886     Universe::heap()->print_on(gclog_or_tty);
  2887     fatal("CMS: failed marking verification after remark");
  2891 void CMSCollector::verify_after_remark_work_2() {
  2892   ResourceMark rm;
  2893   HandleMark  hm;
  2894   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2896   // Mark from roots one level into CMS
  2897   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2898                                      markBitMap());
  2899   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2900   gch->gen_process_strong_roots(_cmsGen->level(),
  2901                                 true,   // younger gens are roots
  2902                                 true,   // activate StrongRootsScope
  2903                                 true,   // collecting perm gen
  2904                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2905                                 &notOlder,
  2906                                 true,   // walk code active on stacks
  2907                                 NULL);
  2909   // Now mark from the roots
  2910   assert(_revisitStack.isEmpty(), "Should be empty");
  2911   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2912     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2913   assert(_restart_addr == NULL, "Expected pre-condition");
  2914   verification_mark_bm()->iterate(&markFromRootsClosure);
  2915   while (_restart_addr != NULL) {
  2916     // Deal with stack overflow: by restarting at the indicated
  2917     // address.
  2918     HeapWord* ra = _restart_addr;
  2919     markFromRootsClosure.reset(ra);
  2920     _restart_addr = NULL;
  2921     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2923   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2924   verify_work_stacks_empty();
  2925   // Should reset the revisit stack above, since no class tree
  2926   // surgery is forthcoming.
  2927   _revisitStack.reset(); // throwing away all contents
  2929   // Marking completed -- now verify that each bit marked in
  2930   // verification_mark_bm() is also marked in markBitMap(); flag all
  2931   // errors by printing corresponding objects.
  2932   VerifyMarkedClosure vcl(markBitMap());
  2933   verification_mark_bm()->iterate(&vcl);
  2934   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2937 void ConcurrentMarkSweepGeneration::save_marks() {
  2938   // delegate to CMS space
  2939   cmsSpace()->save_marks();
  2940   for (uint i = 0; i < ParallelGCThreads; i++) {
  2941     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2945 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2946   return cmsSpace()->no_allocs_since_save_marks();
  2949 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2951 void ConcurrentMarkSweepGeneration::                            \
  2952 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2953   cl->set_generation(this);                                     \
  2954   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2955   cl->reset_generation();                                       \
  2956   save_marks();                                                 \
  2959 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2961 void
  2962 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2964   // Not currently implemented; need to do the following. -- ysr.
  2965   // dld -- I think that is used for some sort of allocation profiler.  So it
  2966   // really means the objects allocated by the mutator since the last
  2967   // GC.  We could potentially implement this cheaply by recording only
  2968   // the direct allocations in a side data structure.
  2969   //
  2970   // I think we probably ought not to be required to support these
  2971   // iterations at any arbitrary point; I think there ought to be some
  2972   // call to enable/disable allocation profiling in a generation/space,
  2973   // and the iterator ought to return the objects allocated in the
  2974   // gen/space since the enable call, or the last iterator call (which
  2975   // will probably be at a GC.)  That way, for gens like CM&S that would
  2976   // require some extra data structure to support this, we only pay the
  2977   // cost when it's in use...
  2978   cmsSpace()->object_iterate_since_last_GC(blk);
  2981 void
  2982 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2983   cl->set_generation(this);
  2984   younger_refs_in_space_iterate(_cmsSpace, cl);
  2985   cl->reset_generation();
  2988 void
  2989 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2990   if (freelistLock()->owned_by_self()) {
  2991     Generation::oop_iterate(mr, cl);
  2992   } else {
  2993     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2994     Generation::oop_iterate(mr, cl);
  2998 void
  2999 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  3000   if (freelistLock()->owned_by_self()) {
  3001     Generation::oop_iterate(cl);
  3002   } else {
  3003     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3004     Generation::oop_iterate(cl);
  3008 void
  3009 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3010   if (freelistLock()->owned_by_self()) {
  3011     Generation::object_iterate(cl);
  3012   } else {
  3013     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3014     Generation::object_iterate(cl);
  3018 void
  3019 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3020   if (freelistLock()->owned_by_self()) {
  3021     Generation::safe_object_iterate(cl);
  3022   } else {
  3023     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3024     Generation::safe_object_iterate(cl);
  3028 void
  3029 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3032 void
  3033 ConcurrentMarkSweepGeneration::post_compact() {
  3036 void
  3037 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3038   // Fix the linear allocation blocks to look like free blocks.
  3040   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3041   // are not called when the heap is verified during universe initialization and
  3042   // at vm shutdown.
  3043   if (freelistLock()->owned_by_self()) {
  3044     cmsSpace()->prepare_for_verify();
  3045   } else {
  3046     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3047     cmsSpace()->prepare_for_verify();
  3051 void
  3052 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3053   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3054   // are not called when the heap is verified during universe initialization and
  3055   // at vm shutdown.
  3056   if (freelistLock()->owned_by_self()) {
  3057     cmsSpace()->verify(false /* ignored */);
  3058   } else {
  3059     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3060     cmsSpace()->verify(false /* ignored */);
  3064 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3065   _cmsGen->verify(allow_dirty);
  3066   _permGen->verify(allow_dirty);
  3069 #ifndef PRODUCT
  3070 bool CMSCollector::overflow_list_is_empty() const {
  3071   assert(_num_par_pushes >= 0, "Inconsistency");
  3072   if (_overflow_list == NULL) {
  3073     assert(_num_par_pushes == 0, "Inconsistency");
  3075   return _overflow_list == NULL;
  3078 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3079 // merely consolidate assertion checks that appear to occur together frequently.
  3080 void CMSCollector::verify_work_stacks_empty() const {
  3081   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3082   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3085 void CMSCollector::verify_overflow_empty() const {
  3086   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3087   assert(no_preserved_marks(), "No preserved marks");
  3089 #endif // PRODUCT
  3091 // Decide if we want to enable class unloading as part of the
  3092 // ensuing concurrent GC cycle. We will collect the perm gen and
  3093 // unload classes if it's the case that:
  3094 // (1) an explicit gc request has been made and the flag
  3095 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3096 // (2) (a) class unloading is enabled at the command line, and
  3097 //     (b) (i)   perm gen threshold has been crossed, or
  3098 //         (ii)  old gen is getting really full, or
  3099 //         (iii) the previous N CMS collections did not collect the
  3100 //               perm gen
  3101 // NOTE: Provided there is no change in the state of the heap between
  3102 // calls to this method, it should have idempotent results. Moreover,
  3103 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3104 // but not 1 to 0) between successive calls between which the heap was
  3105 // not collected. For the implementation below, it must thus rely on
  3106 // the property that concurrent_cycles_since_last_unload()
  3107 // will not decrease unless a collection cycle happened and that
  3108 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3109 // themselves also monotonic in that sense. See check_monotonicity()
  3110 // below.
  3111 bool CMSCollector::update_should_unload_classes() {
  3112   _should_unload_classes = false;
  3113   // Condition 1 above
  3114   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3115     _should_unload_classes = true;
  3116   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3117     // Disjuncts 2.b.(i,ii,iii) above
  3118     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3119                               CMSClassUnloadingMaxInterval)
  3120                            || _permGen->should_concurrent_collect()
  3121                            || _cmsGen->is_too_full();
  3123   return _should_unload_classes;
  3126 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3127   bool res = should_concurrent_collect();
  3128   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3129   return res;
  3132 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3133   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3134                              || VerifyBeforeExit;
  3135   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3136                              |   SharedHeap::SO_CodeCache;
  3138   if (should_unload_classes()) {   // Should unload classes this cycle
  3139     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3140     set_verifying(should_verify);    // Set verification state for this cycle
  3141     return;                            // Nothing else needs to be done at this time
  3144   // Not unloading classes this cycle
  3145   assert(!should_unload_classes(), "Inconsitency!");
  3146   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3147     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3148     // AND some verification options are enabled this cycle; in this case,
  3149     // we must make sure that the deadness map is allocated if not already so,
  3150     // and cleared (if already allocated previously --
  3151     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3152     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3153       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3154         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3155                 "permanent generation verification disabled");
  3156         return;  // Note that we leave verification disabled, so we'll retry this
  3157                  // allocation next cycle. We _could_ remember this failure
  3158                  // and skip further attempts and permanently disable verification
  3159                  // attempts if that is considered more desirable.
  3161       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3162               "_perm_gen_ver_bit_map inconsistency?");
  3163     } else {
  3164       perm_gen_verify_bit_map()->clear_all();
  3166     // Include symbols, strings and code cache elements to prevent their resurrection.
  3167     add_root_scanning_option(rso);
  3168     set_verifying(true);
  3169   } else if (verifying() && !should_verify) {
  3170     // We were verifying, but some verification flags got disabled.
  3171     set_verifying(false);
  3172     // Exclude symbols, strings and code cache elements from root scanning to
  3173     // reduce IM and RM pauses.
  3174     remove_root_scanning_option(rso);
  3179 #ifndef PRODUCT
  3180 HeapWord* CMSCollector::block_start(const void* p) const {
  3181   const HeapWord* addr = (HeapWord*)p;
  3182   if (_span.contains(p)) {
  3183     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3184       return _cmsGen->cmsSpace()->block_start(p);
  3185     } else {
  3186       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3187              "Inconsistent _span?");
  3188       return _permGen->cmsSpace()->block_start(p);
  3191   return NULL;
  3193 #endif
  3195 HeapWord*
  3196 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3197                                                    bool   tlab,
  3198                                                    bool   parallel) {
  3199   assert(!tlab, "Can't deal with TLAB allocation");
  3200   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3201   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3202     CMSExpansionCause::_satisfy_allocation);
  3203   if (GCExpandToAllocateDelayMillis > 0) {
  3204     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3206   return have_lock_and_allocate(word_size, tlab);
  3209 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3210 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3211 // to CardGeneration and share it...
  3212 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3213   return CardGeneration::expand(bytes, expand_bytes);
  3216 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3217   CMSExpansionCause::Cause cause)
  3220   bool success = expand(bytes, expand_bytes);
  3222   // remember why we expanded; this information is used
  3223   // by shouldConcurrentCollect() when making decisions on whether to start
  3224   // a new CMS cycle.
  3225   if (success) {
  3226     set_expansion_cause(cause);
  3227     if (PrintGCDetails && Verbose) {
  3228       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3229         CMSExpansionCause::to_string(cause));
  3234 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3235   HeapWord* res = NULL;
  3236   MutexLocker x(ParGCRareEvent_lock);
  3237   while (true) {
  3238     // Expansion by some other thread might make alloc OK now:
  3239     res = ps->lab.alloc(word_sz);
  3240     if (res != NULL) return res;
  3241     // If there's not enough expansion space available, give up.
  3242     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3243       return NULL;
  3245     // Otherwise, we try expansion.
  3246     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3247       CMSExpansionCause::_allocate_par_lab);
  3248     // Now go around the loop and try alloc again;
  3249     // A competing par_promote might beat us to the expansion space,
  3250     // so we may go around the loop again if promotion fails agaion.
  3251     if (GCExpandToAllocateDelayMillis > 0) {
  3252       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3258 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3259   PromotionInfo* promo) {
  3260   MutexLocker x(ParGCRareEvent_lock);
  3261   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3262   while (true) {
  3263     // Expansion by some other thread might make alloc OK now:
  3264     if (promo->ensure_spooling_space()) {
  3265       assert(promo->has_spooling_space(),
  3266              "Post-condition of successful ensure_spooling_space()");
  3267       return true;
  3269     // If there's not enough expansion space available, give up.
  3270     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3271       return false;
  3273     // Otherwise, we try expansion.
  3274     expand(refill_size_bytes, MinHeapDeltaBytes,
  3275       CMSExpansionCause::_allocate_par_spooling_space);
  3276     // Now go around the loop and try alloc again;
  3277     // A competing allocation might beat us to the expansion space,
  3278     // so we may go around the loop again if allocation fails again.
  3279     if (GCExpandToAllocateDelayMillis > 0) {
  3280       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3287 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3288   assert_locked_or_safepoint(Heap_lock);
  3289   size_t size = ReservedSpace::page_align_size_down(bytes);
  3290   if (size > 0) {
  3291     shrink_by(size);
  3295 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3296   assert_locked_or_safepoint(Heap_lock);
  3297   bool result = _virtual_space.expand_by(bytes);
  3298   if (result) {
  3299     HeapWord* old_end = _cmsSpace->end();
  3300     size_t new_word_size =
  3301       heap_word_size(_virtual_space.committed_size());
  3302     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3303     _bts->resize(new_word_size);  // resize the block offset shared array
  3304     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3305     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3306     // This is quite ugly; FIX ME XXX
  3307     _cmsSpace->assert_locked(freelistLock());
  3308     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3310     // update the space and generation capacity counters
  3311     if (UsePerfData) {
  3312       _space_counters->update_capacity();
  3313       _gen_counters->update_all();
  3316     if (Verbose && PrintGC) {
  3317       size_t new_mem_size = _virtual_space.committed_size();
  3318       size_t old_mem_size = new_mem_size - bytes;
  3319       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3320                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3323   return result;
  3326 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3327   assert_locked_or_safepoint(Heap_lock);
  3328   bool success = true;
  3329   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3330   if (remaining_bytes > 0) {
  3331     success = grow_by(remaining_bytes);
  3332     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3334   return success;
  3337 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3338   assert_locked_or_safepoint(Heap_lock);
  3339   assert_lock_strong(freelistLock());
  3340   // XXX Fix when compaction is implemented.
  3341   warning("Shrinking of CMS not yet implemented");
  3342   return;
  3346 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3347 // phases.
  3348 class CMSPhaseAccounting: public StackObj {
  3349  public:
  3350   CMSPhaseAccounting(CMSCollector *collector,
  3351                      const char *phase,
  3352                      bool print_cr = true);
  3353   ~CMSPhaseAccounting();
  3355  private:
  3356   CMSCollector *_collector;
  3357   const char *_phase;
  3358   elapsedTimer _wallclock;
  3359   bool _print_cr;
  3361  public:
  3362   // Not MT-safe; so do not pass around these StackObj's
  3363   // where they may be accessed by other threads.
  3364   jlong wallclock_millis() {
  3365     assert(_wallclock.is_active(), "Wall clock should not stop");
  3366     _wallclock.stop();  // to record time
  3367     jlong ret = _wallclock.milliseconds();
  3368     _wallclock.start(); // restart
  3369     return ret;
  3371 };
  3373 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3374                                        const char *phase,
  3375                                        bool print_cr) :
  3376   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3378   if (PrintCMSStatistics != 0) {
  3379     _collector->resetYields();
  3381   if (PrintGCDetails && PrintGCTimeStamps) {
  3382     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3383     gclog_or_tty->stamp();
  3384     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3385       _collector->cmsGen()->short_name(), _phase);
  3387   _collector->resetTimer();
  3388   _wallclock.start();
  3389   _collector->startTimer();
  3392 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3393   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3394   _collector->stopTimer();
  3395   _wallclock.stop();
  3396   if (PrintGCDetails) {
  3397     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3398     if (PrintGCTimeStamps) {
  3399       gclog_or_tty->stamp();
  3400       gclog_or_tty->print(": ");
  3402     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3403                  _collector->cmsGen()->short_name(),
  3404                  _phase, _collector->timerValue(), _wallclock.seconds());
  3405     if (_print_cr) {
  3406       gclog_or_tty->print_cr("");
  3408     if (PrintCMSStatistics != 0) {
  3409       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3410                     _collector->yields());
  3415 // CMS work
  3417 // Checkpoint the roots into this generation from outside
  3418 // this generation. [Note this initial checkpoint need only
  3419 // be approximate -- we'll do a catch up phase subsequently.]
  3420 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3421   assert(_collectorState == InitialMarking, "Wrong collector state");
  3422   check_correct_thread_executing();
  3423   ReferenceProcessor* rp = ref_processor();
  3424   SpecializationStats::clear();
  3425   assert(_restart_addr == NULL, "Control point invariant");
  3426   if (asynch) {
  3427     // acquire locks for subsequent manipulations
  3428     MutexLockerEx x(bitMapLock(),
  3429                     Mutex::_no_safepoint_check_flag);
  3430     checkpointRootsInitialWork(asynch);
  3431     rp->verify_no_references_recorded();
  3432     rp->enable_discovery(); // enable ("weak") refs discovery
  3433     _collectorState = Marking;
  3434   } else {
  3435     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3436     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3437     // discovery; verify that they aren't meddling.
  3438     assert(!rp->discovery_is_atomic(),
  3439            "incorrect setting of discovery predicate");
  3440     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3441            "ref discovery for this generation kind");
  3442     // already have locks
  3443     checkpointRootsInitialWork(asynch);
  3444     rp->enable_discovery(); // now enable ("weak") refs discovery
  3445     _collectorState = Marking;
  3447   SpecializationStats::print();
  3450 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3451   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3452   assert(_collectorState == InitialMarking, "just checking");
  3454   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3455   // precede our marking with a collection of all
  3456   // younger generations to keep floating garbage to a minimum.
  3457   // XXX: we won't do this for now -- it's an optimization to be done later.
  3459   // already have locks
  3460   assert_lock_strong(bitMapLock());
  3461   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3463   // Setup the verification and class unloading state for this
  3464   // CMS collection cycle.
  3465   setup_cms_unloading_and_verification_state();
  3467   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3468     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3469   if (UseAdaptiveSizePolicy) {
  3470     size_policy()->checkpoint_roots_initial_begin();
  3473   // Reset all the PLAB chunk arrays if necessary.
  3474   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3475     reset_survivor_plab_arrays();
  3478   ResourceMark rm;
  3479   HandleMark  hm;
  3481   FalseClosure falseClosure;
  3482   // In the case of a synchronous collection, we will elide the
  3483   // remark step, so it's important to catch all the nmethod oops
  3484   // in this step.
  3485   // The final 'true' flag to gen_process_strong_roots will ensure this.
  3486   // If 'async' is true, we can relax the nmethod tracing.
  3487   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3488   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3490   verify_work_stacks_empty();
  3491   verify_overflow_empty();
  3493   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3494   // Update the saved marks which may affect the root scans.
  3495   gch->save_marks();
  3497   // weak reference processing has not started yet.
  3498   ref_processor()->set_enqueuing_is_done(false);
  3501     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
  3502     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3503     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3504     gch->gen_process_strong_roots(_cmsGen->level(),
  3505                                   true,   // younger gens are roots
  3506                                   true,   // activate StrongRootsScope
  3507                                   true,   // collecting perm gen
  3508                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3509                                   &notOlder,
  3510                                   true,   // walk all of code cache if (so & SO_CodeCache)
  3511                                   NULL);
  3514   // Clear mod-union table; it will be dirtied in the prologue of
  3515   // CMS generation per each younger generation collection.
  3517   assert(_modUnionTable.isAllClear(),
  3518        "Was cleared in most recent final checkpoint phase"
  3519        " or no bits are set in the gc_prologue before the start of the next "
  3520        "subsequent marking phase.");
  3522   // Temporarily disabled, since pre/post-consumption closures don't
  3523   // care about precleaned cards
  3524   #if 0
  3526     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3527                              (HeapWord*)_virtual_space.high());
  3528     _ct->ct_bs()->preclean_dirty_cards(mr);
  3530   #endif
  3532   // Save the end of the used_region of the constituent generations
  3533   // to be used to limit the extent of sweep in each generation.
  3534   save_sweep_limits();
  3535   if (UseAdaptiveSizePolicy) {
  3536     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3538   verify_overflow_empty();
  3541 bool CMSCollector::markFromRoots(bool asynch) {
  3542   // we might be tempted to assert that:
  3543   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3544   //        "inconsistent argument?");
  3545   // However that wouldn't be right, because it's possible that
  3546   // a safepoint is indeed in progress as a younger generation
  3547   // stop-the-world GC happens even as we mark in this generation.
  3548   assert(_collectorState == Marking, "inconsistent state?");
  3549   check_correct_thread_executing();
  3550   verify_overflow_empty();
  3552   bool res;
  3553   if (asynch) {
  3555     // Start the timers for adaptive size policy for the concurrent phases
  3556     // Do it here so that the foreground MS can use the concurrent
  3557     // timer since a foreground MS might has the sweep done concurrently
  3558     // or STW.
  3559     if (UseAdaptiveSizePolicy) {
  3560       size_policy()->concurrent_marking_begin();
  3563     // Weak ref discovery note: We may be discovering weak
  3564     // refs in this generation concurrent (but interleaved) with
  3565     // weak ref discovery by a younger generation collector.
  3567     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3568     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3569     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3570     res = markFromRootsWork(asynch);
  3571     if (res) {
  3572       _collectorState = Precleaning;
  3573     } else { // We failed and a foreground collection wants to take over
  3574       assert(_foregroundGCIsActive, "internal state inconsistency");
  3575       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3576       if (PrintGCDetails) {
  3577         gclog_or_tty->print_cr("bailing out to foreground collection");
  3580     if (UseAdaptiveSizePolicy) {
  3581       size_policy()->concurrent_marking_end();
  3583   } else {
  3584     assert(SafepointSynchronize::is_at_safepoint(),
  3585            "inconsistent with asynch == false");
  3586     if (UseAdaptiveSizePolicy) {
  3587       size_policy()->ms_collection_marking_begin();
  3589     // already have locks
  3590     res = markFromRootsWork(asynch);
  3591     _collectorState = FinalMarking;
  3592     if (UseAdaptiveSizePolicy) {
  3593       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3594       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3597   verify_overflow_empty();
  3598   return res;
  3601 bool CMSCollector::markFromRootsWork(bool asynch) {
  3602   // iterate over marked bits in bit map, doing a full scan and mark
  3603   // from these roots using the following algorithm:
  3604   // . if oop is to the right of the current scan pointer,
  3605   //   mark corresponding bit (we'll process it later)
  3606   // . else (oop is to left of current scan pointer)
  3607   //   push oop on marking stack
  3608   // . drain the marking stack
  3610   // Note that when we do a marking step we need to hold the
  3611   // bit map lock -- recall that direct allocation (by mutators)
  3612   // and promotion (by younger generation collectors) is also
  3613   // marking the bit map. [the so-called allocate live policy.]
  3614   // Because the implementation of bit map marking is not
  3615   // robust wrt simultaneous marking of bits in the same word,
  3616   // we need to make sure that there is no such interference
  3617   // between concurrent such updates.
  3619   // already have locks
  3620   assert_lock_strong(bitMapLock());
  3622   // Clear the revisit stack, just in case there are any
  3623   // obsolete contents from a short-circuited previous CMS cycle.
  3624   _revisitStack.reset();
  3625   verify_work_stacks_empty();
  3626   verify_overflow_empty();
  3627   assert(_revisitStack.isEmpty(), "tabula rasa");
  3628   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
  3629   bool result = false;
  3630   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
  3631     result = do_marking_mt(asynch);
  3632   } else {
  3633     result = do_marking_st(asynch);
  3635   return result;
  3638 // Forward decl
  3639 class CMSConcMarkingTask;
  3641 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3642   CMSCollector*       _collector;
  3643   CMSConcMarkingTask* _task;
  3644   bool _yield;
  3645  protected:
  3646   virtual void yield();
  3647  public:
  3648   // "n_threads" is the number of threads to be terminated.
  3649   // "queue_set" is a set of work queues of other threads.
  3650   // "collector" is the CMS collector associated with this task terminator.
  3651   // "yield" indicates whether we need the gang as a whole to yield.
  3652   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3653                            CMSCollector* collector, bool yield) :
  3654     ParallelTaskTerminator(n_threads, queue_set),
  3655     _collector(collector),
  3656     _yield(yield) { }
  3658   void set_task(CMSConcMarkingTask* task) {
  3659     _task = task;
  3661 };
  3663 // MT Concurrent Marking Task
  3664 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3665   CMSCollector* _collector;
  3666   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3667   int           _n_workers;                  // requested/desired # workers
  3668   bool          _asynch;
  3669   bool          _result;
  3670   CompactibleFreeListSpace*  _cms_space;
  3671   CompactibleFreeListSpace* _perm_space;
  3672   HeapWord*     _global_finger;
  3673   HeapWord*     _restart_addr;
  3675   //  Exposed here for yielding support
  3676   Mutex* const _bit_map_lock;
  3678   // The per thread work queues, available here for stealing
  3679   OopTaskQueueSet*  _task_queues;
  3680   CMSConcMarkingTerminator _term;
  3682  public:
  3683   CMSConcMarkingTask(CMSCollector* collector,
  3684                  CompactibleFreeListSpace* cms_space,
  3685                  CompactibleFreeListSpace* perm_space,
  3686                  bool asynch, int n_workers,
  3687                  YieldingFlexibleWorkGang* workers,
  3688                  OopTaskQueueSet* task_queues):
  3689     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3690     _collector(collector),
  3691     _cms_space(cms_space),
  3692     _perm_space(perm_space),
  3693     _asynch(asynch), _n_workers(n_workers), _result(true),
  3694     _workers(workers), _task_queues(task_queues),
  3695     _term(n_workers, task_queues, _collector, asynch),
  3696     _bit_map_lock(collector->bitMapLock())
  3698     assert(n_workers <= workers->total_workers(),
  3699            "Else termination won't work correctly today"); // XXX FIX ME!
  3700     _requested_size = n_workers;
  3701     _term.set_task(this);
  3702     assert(_cms_space->bottom() < _perm_space->bottom(),
  3703            "Finger incorrectly initialized below");
  3704     _restart_addr = _global_finger = _cms_space->bottom();
  3708   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3710   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3712   HeapWord** global_finger_addr() { return &_global_finger; }
  3714   CMSConcMarkingTerminator* terminator() { return &_term; }
  3716   void work(int i);
  3718   virtual void coordinator_yield();  // stuff done by coordinator
  3719   bool result() { return _result; }
  3721   void reset(HeapWord* ra) {
  3722     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3723     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
  3724     assert(ra             <  _perm_space->end(), "ra too large");
  3725     _restart_addr = _global_finger = ra;
  3726     _term.reset_for_reuse();
  3729   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3730                                            OopTaskQueue* work_q);
  3732  private:
  3733   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3734   void do_work_steal(int i);
  3735   void bump_global_finger(HeapWord* f);
  3736 };
  3738 void CMSConcMarkingTerminator::yield() {
  3739   if (ConcurrentMarkSweepThread::should_yield() &&
  3740       !_collector->foregroundGCIsActive() &&
  3741       _yield) {
  3742     _task->yield();
  3743   } else {
  3744     ParallelTaskTerminator::yield();
  3748 ////////////////////////////////////////////////////////////////
  3749 // Concurrent Marking Algorithm Sketch
  3750 ////////////////////////////////////////////////////////////////
  3751 // Until all tasks exhausted (both spaces):
  3752 // -- claim next available chunk
  3753 // -- bump global finger via CAS
  3754 // -- find first object that starts in this chunk
  3755 //    and start scanning bitmap from that position
  3756 // -- scan marked objects for oops
  3757 // -- CAS-mark target, and if successful:
  3758 //    . if target oop is above global finger (volatile read)
  3759 //      nothing to do
  3760 //    . if target oop is in chunk and above local finger
  3761 //        then nothing to do
  3762 //    . else push on work-queue
  3763 // -- Deal with possible overflow issues:
  3764 //    . local work-queue overflow causes stuff to be pushed on
  3765 //      global (common) overflow queue
  3766 //    . always first empty local work queue
  3767 //    . then get a batch of oops from global work queue if any
  3768 //    . then do work stealing
  3769 // -- When all tasks claimed (both spaces)
  3770 //    and local work queue empty,
  3771 //    then in a loop do:
  3772 //    . check global overflow stack; steal a batch of oops and trace
  3773 //    . try to steal from other threads oif GOS is empty
  3774 //    . if neither is available, offer termination
  3775 // -- Terminate and return result
  3776 //
  3777 void CMSConcMarkingTask::work(int i) {
  3778   elapsedTimer _timer;
  3779   ResourceMark rm;
  3780   HandleMark hm;
  3782   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3784   // Before we begin work, our work queue should be empty
  3785   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3786   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3787   _timer.start();
  3788   do_scan_and_mark(i, _cms_space);
  3789   _timer.stop();
  3790   if (PrintCMSStatistics != 0) {
  3791     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3792       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3795   // ... do the same for the _perm_space
  3796   _timer.reset();
  3797   _timer.start();
  3798   do_scan_and_mark(i, _perm_space);
  3799   _timer.stop();
  3800   if (PrintCMSStatistics != 0) {
  3801     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3802       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3805   // ... do work stealing
  3806   _timer.reset();
  3807   _timer.start();
  3808   do_work_steal(i);
  3809   _timer.stop();
  3810   if (PrintCMSStatistics != 0) {
  3811     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3812       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3814   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3815   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3816   // Note that under the current task protocol, the
  3817   // following assertion is true even of the spaces
  3818   // expanded since the completion of the concurrent
  3819   // marking. XXX This will likely change under a strict
  3820   // ABORT semantics.
  3821   assert(_global_finger >  _cms_space->end() &&
  3822          _global_finger >= _perm_space->end(),
  3823          "All tasks have been completed");
  3824   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3827 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3828   HeapWord* read = _global_finger;
  3829   HeapWord* cur  = read;
  3830   while (f > read) {
  3831     cur = read;
  3832     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3833     if (cur == read) {
  3834       // our cas succeeded
  3835       assert(_global_finger >= f, "protocol consistency");
  3836       break;
  3841 // This is really inefficient, and should be redone by
  3842 // using (not yet available) block-read and -write interfaces to the
  3843 // stack and the work_queue. XXX FIX ME !!!
  3844 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3845                                                       OopTaskQueue* work_q) {
  3846   // Fast lock-free check
  3847   if (ovflw_stk->length() == 0) {
  3848     return false;
  3850   assert(work_q->size() == 0, "Shouldn't steal");
  3851   MutexLockerEx ml(ovflw_stk->par_lock(),
  3852                    Mutex::_no_safepoint_check_flag);
  3853   // Grab up to 1/4 the size of the work queue
  3854   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  3855                     (size_t)ParGCDesiredObjsFromOverflowList);
  3856   num = MIN2(num, ovflw_stk->length());
  3857   for (int i = (int) num; i > 0; i--) {
  3858     oop cur = ovflw_stk->pop();
  3859     assert(cur != NULL, "Counted wrong?");
  3860     work_q->push(cur);
  3862   return num > 0;
  3865 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3866   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3867   int n_tasks = pst->n_tasks();
  3868   // We allow that there may be no tasks to do here because
  3869   // we are restarting after a stack overflow.
  3870   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3871   int nth_task = 0;
  3873   HeapWord* aligned_start = sp->bottom();
  3874   if (sp->used_region().contains(_restart_addr)) {
  3875     // Align down to a card boundary for the start of 0th task
  3876     // for this space.
  3877     aligned_start =
  3878       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3879                                  CardTableModRefBS::card_size);
  3882   size_t chunk_size = sp->marking_task_size();
  3883   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3884     // Having claimed the nth task in this space,
  3885     // compute the chunk that it corresponds to:
  3886     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3887                                aligned_start + (nth_task+1)*chunk_size);
  3888     // Try and bump the global finger via a CAS;
  3889     // note that we need to do the global finger bump
  3890     // _before_ taking the intersection below, because
  3891     // the task corresponding to that region will be
  3892     // deemed done even if the used_region() expands
  3893     // because of allocation -- as it almost certainly will
  3894     // during start-up while the threads yield in the
  3895     // closure below.
  3896     HeapWord* finger = span.end();
  3897     bump_global_finger(finger);   // atomically
  3898     // There are null tasks here corresponding to chunks
  3899     // beyond the "top" address of the space.
  3900     span = span.intersection(sp->used_region());
  3901     if (!span.is_empty()) {  // Non-null task
  3902       HeapWord* prev_obj;
  3903       assert(!span.contains(_restart_addr) || nth_task == 0,
  3904              "Inconsistency");
  3905       if (nth_task == 0) {
  3906         // For the 0th task, we'll not need to compute a block_start.
  3907         if (span.contains(_restart_addr)) {
  3908           // In the case of a restart because of stack overflow,
  3909           // we might additionally skip a chunk prefix.
  3910           prev_obj = _restart_addr;
  3911         } else {
  3912           prev_obj = span.start();
  3914       } else {
  3915         // We want to skip the first object because
  3916         // the protocol is to scan any object in its entirety
  3917         // that _starts_ in this span; a fortiori, any
  3918         // object starting in an earlier span is scanned
  3919         // as part of an earlier claimed task.
  3920         // Below we use the "careful" version of block_start
  3921         // so we do not try to navigate uninitialized objects.
  3922         prev_obj = sp->block_start_careful(span.start());
  3923         // Below we use a variant of block_size that uses the
  3924         // Printezis bits to avoid waiting for allocated
  3925         // objects to become initialized/parsable.
  3926         while (prev_obj < span.start()) {
  3927           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3928           if (sz > 0) {
  3929             prev_obj += sz;
  3930           } else {
  3931             // In this case we may end up doing a bit of redundant
  3932             // scanning, but that appears unavoidable, short of
  3933             // locking the free list locks; see bug 6324141.
  3934             break;
  3938       if (prev_obj < span.end()) {
  3939         MemRegion my_span = MemRegion(prev_obj, span.end());
  3940         // Do the marking work within a non-empty span --
  3941         // the last argument to the constructor indicates whether the
  3942         // iteration should be incremental with periodic yields.
  3943         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3944                                     &_collector->_markBitMap,
  3945                                     work_queue(i),
  3946                                     &_collector->_markStack,
  3947                                     &_collector->_revisitStack,
  3948                                     _asynch);
  3949         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3950       } // else nothing to do for this task
  3951     }   // else nothing to do for this task
  3953   // We'd be tempted to assert here that since there are no
  3954   // more tasks left to claim in this space, the global_finger
  3955   // must exceed space->top() and a fortiori space->end(). However,
  3956   // that would not quite be correct because the bumping of
  3957   // global_finger occurs strictly after the claiming of a task,
  3958   // so by the time we reach here the global finger may not yet
  3959   // have been bumped up by the thread that claimed the last
  3960   // task.
  3961   pst->all_tasks_completed();
  3964 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
  3965  private:
  3966   MemRegion     _span;
  3967   CMSBitMap*    _bit_map;
  3968   CMSMarkStack* _overflow_stack;
  3969   OopTaskQueue* _work_queue;
  3970  protected:
  3971   DO_OOP_WORK_DEFN
  3972  public:
  3973   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3974                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
  3975                          CMSMarkStack* revisit_stack):
  3976     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  3977     _span(_collector->_span),
  3978     _work_queue(work_queue),
  3979     _bit_map(bit_map),
  3980     _overflow_stack(overflow_stack)
  3981   { }
  3982   virtual void do_oop(oop* p);
  3983   virtual void do_oop(narrowOop* p);
  3984   void trim_queue(size_t max);
  3985   void handle_stack_overflow(HeapWord* lost);
  3986 };
  3988 // Grey object scanning during work stealing phase --
  3989 // the salient assumption here is that any references
  3990 // that are in these stolen objects being scanned must
  3991 // already have been initialized (else they would not have
  3992 // been published), so we do not need to check for
  3993 // uninitialized objects before pushing here.
  3994 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3995   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  3996   HeapWord* addr = (HeapWord*)obj;
  3997   // Check if oop points into the CMS generation
  3998   // and is not marked
  3999   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4000     // a white object ...
  4001     // If we manage to "claim" the object, by being the
  4002     // first thread to mark it, then we push it on our
  4003     // marking stack
  4004     if (_bit_map->par_mark(addr)) {     // ... now grey
  4005       // push on work queue (grey set)
  4006       bool simulate_overflow = false;
  4007       NOT_PRODUCT(
  4008         if (CMSMarkStackOverflowALot &&
  4009             _collector->simulate_overflow()) {
  4010           // simulate a stack overflow
  4011           simulate_overflow = true;
  4014       if (simulate_overflow ||
  4015           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4016         // stack overflow
  4017         if (PrintCMSStatistics != 0) {
  4018           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4019                                  SIZE_FORMAT, _overflow_stack->capacity());
  4021         // We cannot assert that the overflow stack is full because
  4022         // it may have been emptied since.
  4023         assert(simulate_overflow ||
  4024                _work_queue->size() == _work_queue->max_elems(),
  4025               "Else push should have succeeded");
  4026         handle_stack_overflow(addr);
  4028     } // Else, some other thread got there first
  4032 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4033 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4035 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4036   while (_work_queue->size() > max) {
  4037     oop new_oop;
  4038     if (_work_queue->pop_local(new_oop)) {
  4039       assert(new_oop->is_oop(), "Should be an oop");
  4040       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4041       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4042       assert(new_oop->is_parsable(), "Should be parsable");
  4043       new_oop->oop_iterate(this);  // do_oop() above
  4048 // Upon stack overflow, we discard (part of) the stack,
  4049 // remembering the least address amongst those discarded
  4050 // in CMSCollector's _restart_address.
  4051 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4052   // We need to do this under a mutex to prevent other
  4053   // workers from interfering with the work done below.
  4054   MutexLockerEx ml(_overflow_stack->par_lock(),
  4055                    Mutex::_no_safepoint_check_flag);
  4056   // Remember the least grey address discarded
  4057   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4058   _collector->lower_restart_addr(ra);
  4059   _overflow_stack->reset();  // discard stack contents
  4060   _overflow_stack->expand(); // expand the stack if possible
  4064 void CMSConcMarkingTask::do_work_steal(int i) {
  4065   OopTaskQueue* work_q = work_queue(i);
  4066   oop obj_to_scan;
  4067   CMSBitMap* bm = &(_collector->_markBitMap);
  4068   CMSMarkStack* ovflw = &(_collector->_markStack);
  4069   CMSMarkStack* revisit = &(_collector->_revisitStack);
  4070   int* seed = _collector->hash_seed(i);
  4071   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw, revisit);
  4072   while (true) {
  4073     cl.trim_queue(0);
  4074     assert(work_q->size() == 0, "Should have been emptied above");
  4075     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4076       // Can't assert below because the work obtained from the
  4077       // overflow stack may already have been stolen from us.
  4078       // assert(work_q->size() > 0, "Work from overflow stack");
  4079       continue;
  4080     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4081       assert(obj_to_scan->is_oop(), "Should be an oop");
  4082       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4083       obj_to_scan->oop_iterate(&cl);
  4084     } else if (terminator()->offer_termination()) {
  4085       assert(work_q->size() == 0, "Impossible!");
  4086       break;
  4091 // This is run by the CMS (coordinator) thread.
  4092 void CMSConcMarkingTask::coordinator_yield() {
  4093   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4094          "CMS thread should hold CMS token");
  4095   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4096   // First give up the locks, then yield, then re-lock
  4097   // We should probably use a constructor/destructor idiom to
  4098   // do this unlock/lock or modify the MutexUnlocker class to
  4099   // serve our purpose. XXX
  4100   assert_lock_strong(_bit_map_lock);
  4101   _bit_map_lock->unlock();
  4102   ConcurrentMarkSweepThread::desynchronize(true);
  4103   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4104   _collector->stopTimer();
  4105   if (PrintCMSStatistics != 0) {
  4106     _collector->incrementYields();
  4108   _collector->icms_wait();
  4110   // It is possible for whichever thread initiated the yield request
  4111   // not to get a chance to wake up and take the bitmap lock between
  4112   // this thread releasing it and reacquiring it. So, while the
  4113   // should_yield() flag is on, let's sleep for a bit to give the
  4114   // other thread a chance to wake up. The limit imposed on the number
  4115   // of iterations is defensive, to avoid any unforseen circumstances
  4116   // putting us into an infinite loop. Since it's always been this
  4117   // (coordinator_yield()) method that was observed to cause the
  4118   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4119   // which is by default non-zero. For the other seven methods that
  4120   // also perform the yield operation, as are using a different
  4121   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4122   // can enable the sleeping for those methods too, if necessary.
  4123   // See 6442774.
  4124   //
  4125   // We really need to reconsider the synchronization between the GC
  4126   // thread and the yield-requesting threads in the future and we
  4127   // should really use wait/notify, which is the recommended
  4128   // way of doing this type of interaction. Additionally, we should
  4129   // consolidate the eight methods that do the yield operation and they
  4130   // are almost identical into one for better maintenability and
  4131   // readability. See 6445193.
  4132   //
  4133   // Tony 2006.06.29
  4134   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4135                    ConcurrentMarkSweepThread::should_yield() &&
  4136                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4137     os::sleep(Thread::current(), 1, false);
  4138     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4141   ConcurrentMarkSweepThread::synchronize(true);
  4142   _bit_map_lock->lock_without_safepoint_check();
  4143   _collector->startTimer();
  4146 bool CMSCollector::do_marking_mt(bool asynch) {
  4147   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
  4148   // In the future this would be determined ergonomically, based
  4149   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4150   int num_workers = ConcGCThreads;
  4152   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4153   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4155   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4156                          asynch, num_workers /* number requested XXX */,
  4157                          conc_workers(), task_queues());
  4159   // Since the actual number of workers we get may be different
  4160   // from the number we requested above, do we need to do anything different
  4161   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4162   // class?? XXX
  4163   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4164   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4166   // Refs discovery is already non-atomic.
  4167   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4168   // Mutate the Refs discovery so it is MT during the
  4169   // multi-threaded marking phase.
  4170   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4171   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
  4172   conc_workers()->start_task(&tsk);
  4173   while (tsk.yielded()) {
  4174     tsk.coordinator_yield();
  4175     conc_workers()->continue_task(&tsk);
  4177   // If the task was aborted, _restart_addr will be non-NULL
  4178   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4179   while (_restart_addr != NULL) {
  4180     // XXX For now we do not make use of ABORTED state and have not
  4181     // yet implemented the right abort semantics (even in the original
  4182     // single-threaded CMS case). That needs some more investigation
  4183     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4184     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4185     // If _restart_addr is non-NULL, a marking stack overflow
  4186     // occurred; we need to do a fresh marking iteration from the
  4187     // indicated restart address.
  4188     if (_foregroundGCIsActive && asynch) {
  4189       // We may be running into repeated stack overflows, having
  4190       // reached the limit of the stack size, while making very
  4191       // slow forward progress. It may be best to bail out and
  4192       // let the foreground collector do its job.
  4193       // Clear _restart_addr, so that foreground GC
  4194       // works from scratch. This avoids the headache of
  4195       // a "rescan" which would otherwise be needed because
  4196       // of the dirty mod union table & card table.
  4197       _restart_addr = NULL;
  4198       return false;
  4200     // Adjust the task to restart from _restart_addr
  4201     tsk.reset(_restart_addr);
  4202     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4203                   _restart_addr);
  4204     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4205                   _restart_addr);
  4206     _restart_addr = NULL;
  4207     // Get the workers going again
  4208     conc_workers()->start_task(&tsk);
  4209     while (tsk.yielded()) {
  4210       tsk.coordinator_yield();
  4211       conc_workers()->continue_task(&tsk);
  4214   assert(tsk.completed(), "Inconsistency");
  4215   assert(tsk.result() == true, "Inconsistency");
  4216   return true;
  4219 bool CMSCollector::do_marking_st(bool asynch) {
  4220   ResourceMark rm;
  4221   HandleMark   hm;
  4223   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4224     &_markStack, &_revisitStack, CMSYield && asynch);
  4225   // the last argument to iterate indicates whether the iteration
  4226   // should be incremental with periodic yields.
  4227   _markBitMap.iterate(&markFromRootsClosure);
  4228   // If _restart_addr is non-NULL, a marking stack overflow
  4229   // occurred; we need to do a fresh iteration from the
  4230   // indicated restart address.
  4231   while (_restart_addr != NULL) {
  4232     if (_foregroundGCIsActive && asynch) {
  4233       // We may be running into repeated stack overflows, having
  4234       // reached the limit of the stack size, while making very
  4235       // slow forward progress. It may be best to bail out and
  4236       // let the foreground collector do its job.
  4237       // Clear _restart_addr, so that foreground GC
  4238       // works from scratch. This avoids the headache of
  4239       // a "rescan" which would otherwise be needed because
  4240       // of the dirty mod union table & card table.
  4241       _restart_addr = NULL;
  4242       return false;  // indicating failure to complete marking
  4244     // Deal with stack overflow:
  4245     // we restart marking from _restart_addr
  4246     HeapWord* ra = _restart_addr;
  4247     markFromRootsClosure.reset(ra);
  4248     _restart_addr = NULL;
  4249     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4251   return true;
  4254 void CMSCollector::preclean() {
  4255   check_correct_thread_executing();
  4256   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4257   verify_work_stacks_empty();
  4258   verify_overflow_empty();
  4259   _abort_preclean = false;
  4260   if (CMSPrecleaningEnabled) {
  4261     _eden_chunk_index = 0;
  4262     size_t used = get_eden_used();
  4263     size_t capacity = get_eden_capacity();
  4264     // Don't start sampling unless we will get sufficiently
  4265     // many samples.
  4266     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4267                 * CMSScheduleRemarkEdenPenetration)) {
  4268       _start_sampling = true;
  4269     } else {
  4270       _start_sampling = false;
  4272     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4273     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4274     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4276   CMSTokenSync x(true); // is cms thread
  4277   if (CMSPrecleaningEnabled) {
  4278     sample_eden();
  4279     _collectorState = AbortablePreclean;
  4280   } else {
  4281     _collectorState = FinalMarking;
  4283   verify_work_stacks_empty();
  4284   verify_overflow_empty();
  4287 // Try and schedule the remark such that young gen
  4288 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4289 void CMSCollector::abortable_preclean() {
  4290   check_correct_thread_executing();
  4291   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4292   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4294   // If Eden's current occupancy is below this threshold,
  4295   // immediately schedule the remark; else preclean
  4296   // past the next scavenge in an effort to
  4297   // schedule the pause as described avove. By choosing
  4298   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4299   // we will never do an actual abortable preclean cycle.
  4300   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4301     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4302     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4303     // We need more smarts in the abortable preclean
  4304     // loop below to deal with cases where allocation
  4305     // in young gen is very very slow, and our precleaning
  4306     // is running a losing race against a horde of
  4307     // mutators intent on flooding us with CMS updates
  4308     // (dirty cards).
  4309     // One, admittedly dumb, strategy is to give up
  4310     // after a certain number of abortable precleaning loops
  4311     // or after a certain maximum time. We want to make
  4312     // this smarter in the next iteration.
  4313     // XXX FIX ME!!! YSR
  4314     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4315     while (!(should_abort_preclean() ||
  4316              ConcurrentMarkSweepThread::should_terminate())) {
  4317       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4318       cumworkdone += workdone;
  4319       loops++;
  4320       // Voluntarily terminate abortable preclean phase if we have
  4321       // been at it for too long.
  4322       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4323           loops >= CMSMaxAbortablePrecleanLoops) {
  4324         if (PrintGCDetails) {
  4325           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4327         break;
  4329       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4330         if (PrintGCDetails) {
  4331           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4333         break;
  4335       // If we are doing little work each iteration, we should
  4336       // take a short break.
  4337       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4338         // Sleep for some time, waiting for work to accumulate
  4339         stopTimer();
  4340         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4341         startTimer();
  4342         waited++;
  4345     if (PrintCMSStatistics > 0) {
  4346       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4347                           loops, waited, cumworkdone);
  4350   CMSTokenSync x(true); // is cms thread
  4351   if (_collectorState != Idling) {
  4352     assert(_collectorState == AbortablePreclean,
  4353            "Spontaneous state transition?");
  4354     _collectorState = FinalMarking;
  4355   } // Else, a foreground collection completed this CMS cycle.
  4356   return;
  4359 // Respond to an Eden sampling opportunity
  4360 void CMSCollector::sample_eden() {
  4361   // Make sure a young gc cannot sneak in between our
  4362   // reading and recording of a sample.
  4363   assert(Thread::current()->is_ConcurrentGC_thread(),
  4364          "Only the cms thread may collect Eden samples");
  4365   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4366          "Should collect samples while holding CMS token");
  4367   if (!_start_sampling) {
  4368     return;
  4370   if (_eden_chunk_array) {
  4371     if (_eden_chunk_index < _eden_chunk_capacity) {
  4372       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4373       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4374              "Unexpected state of Eden");
  4375       // We'd like to check that what we just sampled is an oop-start address;
  4376       // however, we cannot do that here since the object may not yet have been
  4377       // initialized. So we'll instead do the check when we _use_ this sample
  4378       // later.
  4379       if (_eden_chunk_index == 0 ||
  4380           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4381                          _eden_chunk_array[_eden_chunk_index-1])
  4382            >= CMSSamplingGrain)) {
  4383         _eden_chunk_index++;  // commit sample
  4387   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4388     size_t used = get_eden_used();
  4389     size_t capacity = get_eden_capacity();
  4390     assert(used <= capacity, "Unexpected state of Eden");
  4391     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4392       _abort_preclean = true;
  4398 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4399   assert(_collectorState == Precleaning ||
  4400          _collectorState == AbortablePreclean, "incorrect state");
  4401   ResourceMark rm;
  4402   HandleMark   hm;
  4403   // Do one pass of scrubbing the discovered reference lists
  4404   // to remove any reference objects with strongly-reachable
  4405   // referents.
  4406   if (clean_refs) {
  4407     ReferenceProcessor* rp = ref_processor();
  4408     CMSPrecleanRefsYieldClosure yield_cl(this);
  4409     assert(rp->span().equals(_span), "Spans should be equal");
  4410     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4411                                    &_markStack, &_revisitStack,
  4412                                    true /* preclean */);
  4413     CMSDrainMarkingStackClosure complete_trace(this,
  4414                                    _span, &_markBitMap, &_markStack,
  4415                                    &keep_alive, true /* preclean */);
  4417     // We don't want this step to interfere with a young
  4418     // collection because we don't want to take CPU
  4419     // or memory bandwidth away from the young GC threads
  4420     // (which may be as many as there are CPUs).
  4421     // Note that we don't need to protect ourselves from
  4422     // interference with mutators because they can't
  4423     // manipulate the discovered reference lists nor affect
  4424     // the computed reachability of the referents, the
  4425     // only properties manipulated by the precleaning
  4426     // of these reference lists.
  4427     stopTimer();
  4428     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4429                             bitMapLock());
  4430     startTimer();
  4431     sample_eden();
  4433     // The following will yield to allow foreground
  4434     // collection to proceed promptly. XXX YSR:
  4435     // The code in this method may need further
  4436     // tweaking for better performance and some restructuring
  4437     // for cleaner interfaces.
  4438     rp->preclean_discovered_references(
  4439           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4440           &yield_cl, should_unload_classes());
  4443   if (clean_survivor) {  // preclean the active survivor space(s)
  4444     assert(_young_gen->kind() == Generation::DefNew ||
  4445            _young_gen->kind() == Generation::ParNew ||
  4446            _young_gen->kind() == Generation::ASParNew,
  4447          "incorrect type for cast");
  4448     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4449     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4450                              &_markBitMap, &_modUnionTable,
  4451                              &_markStack, &_revisitStack,
  4452                              true /* precleaning phase */);
  4453     stopTimer();
  4454     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4455                              bitMapLock());
  4456     startTimer();
  4457     unsigned int before_count =
  4458       GenCollectedHeap::heap()->total_collections();
  4459     SurvivorSpacePrecleanClosure
  4460       sss_cl(this, _span, &_markBitMap, &_markStack,
  4461              &pam_cl, before_count, CMSYield);
  4462     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4463     dng->from()->object_iterate_careful(&sss_cl);
  4464     dng->to()->object_iterate_careful(&sss_cl);
  4466   MarkRefsIntoAndScanClosure
  4467     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4468              &_markStack, &_revisitStack, this, CMSYield,
  4469              true /* precleaning phase */);
  4470   // CAUTION: The following closure has persistent state that may need to
  4471   // be reset upon a decrease in the sequence of addresses it
  4472   // processes.
  4473   ScanMarkedObjectsAgainCarefullyClosure
  4474     smoac_cl(this, _span,
  4475       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4477   // Preclean dirty cards in ModUnionTable and CardTable using
  4478   // appropriate convergence criterion;
  4479   // repeat CMSPrecleanIter times unless we find that
  4480   // we are losing.
  4481   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4482   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4483          "Bad convergence multiplier");
  4484   assert(CMSPrecleanThreshold >= 100,
  4485          "Unreasonably low CMSPrecleanThreshold");
  4487   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4488   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4489        numIter < CMSPrecleanIter;
  4490        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4491     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4492     if (CMSPermGenPrecleaningEnabled) {
  4493       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4495     if (Verbose && PrintGCDetails) {
  4496       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4498     // Either there are very few dirty cards, so re-mark
  4499     // pause will be small anyway, or our pre-cleaning isn't
  4500     // that much faster than the rate at which cards are being
  4501     // dirtied, so we might as well stop and re-mark since
  4502     // precleaning won't improve our re-mark time by much.
  4503     if (curNumCards <= CMSPrecleanThreshold ||
  4504         (numIter > 0 &&
  4505          (curNumCards * CMSPrecleanDenominator >
  4506          lastNumCards * CMSPrecleanNumerator))) {
  4507       numIter++;
  4508       cumNumCards += curNumCards;
  4509       break;
  4512   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4513   if (CMSPermGenPrecleaningEnabled) {
  4514     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4516   cumNumCards += curNumCards;
  4517   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4518     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4519                   curNumCards, cumNumCards, numIter);
  4521   return cumNumCards;   // as a measure of useful work done
  4524 // PRECLEANING NOTES:
  4525 // Precleaning involves:
  4526 // . reading the bits of the modUnionTable and clearing the set bits.
  4527 // . For the cards corresponding to the set bits, we scan the
  4528 //   objects on those cards. This means we need the free_list_lock
  4529 //   so that we can safely iterate over the CMS space when scanning
  4530 //   for oops.
  4531 // . When we scan the objects, we'll be both reading and setting
  4532 //   marks in the marking bit map, so we'll need the marking bit map.
  4533 // . For protecting _collector_state transitions, we take the CGC_lock.
  4534 //   Note that any races in the reading of of card table entries by the
  4535 //   CMS thread on the one hand and the clearing of those entries by the
  4536 //   VM thread or the setting of those entries by the mutator threads on the
  4537 //   other are quite benign. However, for efficiency it makes sense to keep
  4538 //   the VM thread from racing with the CMS thread while the latter is
  4539 //   dirty card info to the modUnionTable. We therefore also use the
  4540 //   CGC_lock to protect the reading of the card table and the mod union
  4541 //   table by the CM thread.
  4542 // . We run concurrently with mutator updates, so scanning
  4543 //   needs to be done carefully  -- we should not try to scan
  4544 //   potentially uninitialized objects.
  4545 //
  4546 // Locking strategy: While holding the CGC_lock, we scan over and
  4547 // reset a maximal dirty range of the mod union / card tables, then lock
  4548 // the free_list_lock and bitmap lock to do a full marking, then
  4549 // release these locks; and repeat the cycle. This allows for a
  4550 // certain amount of fairness in the sharing of these locks between
  4551 // the CMS collector on the one hand, and the VM thread and the
  4552 // mutators on the other.
  4554 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4555 // further below are largely identical; if you need to modify
  4556 // one of these methods, please check the other method too.
  4558 size_t CMSCollector::preclean_mod_union_table(
  4559   ConcurrentMarkSweepGeneration* gen,
  4560   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4561   verify_work_stacks_empty();
  4562   verify_overflow_empty();
  4564   // Turn off checking for this method but turn it back on
  4565   // selectively.  There are yield points in this method
  4566   // but it is difficult to turn the checking off just around
  4567   // the yield points.  It is simpler to selectively turn
  4568   // it on.
  4569   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4571   // strategy: starting with the first card, accumulate contiguous
  4572   // ranges of dirty cards; clear these cards, then scan the region
  4573   // covered by these cards.
  4575   // Since all of the MUT is committed ahead, we can just use
  4576   // that, in case the generations expand while we are precleaning.
  4577   // It might also be fine to just use the committed part of the
  4578   // generation, but we might potentially miss cards when the
  4579   // generation is rapidly expanding while we are in the midst
  4580   // of precleaning.
  4581   HeapWord* startAddr = gen->reserved().start();
  4582   HeapWord* endAddr   = gen->reserved().end();
  4584   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4586   size_t numDirtyCards, cumNumDirtyCards;
  4587   HeapWord *nextAddr, *lastAddr;
  4588   for (cumNumDirtyCards = numDirtyCards = 0,
  4589        nextAddr = lastAddr = startAddr;
  4590        nextAddr < endAddr;
  4591        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4593     ResourceMark rm;
  4594     HandleMark   hm;
  4596     MemRegion dirtyRegion;
  4598       stopTimer();
  4599       // Potential yield point
  4600       CMSTokenSync ts(true);
  4601       startTimer();
  4602       sample_eden();
  4603       // Get dirty region starting at nextOffset (inclusive),
  4604       // simultaneously clearing it.
  4605       dirtyRegion =
  4606         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4607       assert(dirtyRegion.start() >= nextAddr,
  4608              "returned region inconsistent?");
  4610     // Remember where the next search should begin.
  4611     // The returned region (if non-empty) is a right open interval,
  4612     // so lastOffset is obtained from the right end of that
  4613     // interval.
  4614     lastAddr = dirtyRegion.end();
  4615     // Should do something more transparent and less hacky XXX
  4616     numDirtyCards =
  4617       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4619     // We'll scan the cards in the dirty region (with periodic
  4620     // yields for foreground GC as needed).
  4621     if (!dirtyRegion.is_empty()) {
  4622       assert(numDirtyCards > 0, "consistency check");
  4623       HeapWord* stop_point = NULL;
  4624       stopTimer();
  4625       // Potential yield point
  4626       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4627                                bitMapLock());
  4628       startTimer();
  4630         verify_work_stacks_empty();
  4631         verify_overflow_empty();
  4632         sample_eden();
  4633         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4634         stop_point =
  4635           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4637       if (stop_point != NULL) {
  4638         // The careful iteration stopped early either because it found an
  4639         // uninitialized object, or because we were in the midst of an
  4640         // "abortable preclean", which should now be aborted. Redirty
  4641         // the bits corresponding to the partially-scanned or unscanned
  4642         // cards. We'll either restart at the next block boundary or
  4643         // abort the preclean.
  4644         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4645                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4646                "Unparsable objects should only be in perm gen.");
  4647         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4648         if (should_abort_preclean()) {
  4649           break; // out of preclean loop
  4650         } else {
  4651           // Compute the next address at which preclean should pick up;
  4652           // might need bitMapLock in order to read P-bits.
  4653           lastAddr = next_card_start_after_block(stop_point);
  4656     } else {
  4657       assert(lastAddr == endAddr, "consistency check");
  4658       assert(numDirtyCards == 0, "consistency check");
  4659       break;
  4662   verify_work_stacks_empty();
  4663   verify_overflow_empty();
  4664   return cumNumDirtyCards;
  4667 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4668 // below are largely identical; if you need to modify
  4669 // one of these methods, please check the other method too.
  4671 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4672   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4673   // strategy: it's similar to precleamModUnionTable above, in that
  4674   // we accumulate contiguous ranges of dirty cards, mark these cards
  4675   // precleaned, then scan the region covered by these cards.
  4676   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4677   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4679   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4681   size_t numDirtyCards, cumNumDirtyCards;
  4682   HeapWord *lastAddr, *nextAddr;
  4684   for (cumNumDirtyCards = numDirtyCards = 0,
  4685        nextAddr = lastAddr = startAddr;
  4686        nextAddr < endAddr;
  4687        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4689     ResourceMark rm;
  4690     HandleMark   hm;
  4692     MemRegion dirtyRegion;
  4694       // See comments in "Precleaning notes" above on why we
  4695       // do this locking. XXX Could the locking overheads be
  4696       // too high when dirty cards are sparse? [I don't think so.]
  4697       stopTimer();
  4698       CMSTokenSync x(true); // is cms thread
  4699       startTimer();
  4700       sample_eden();
  4701       // Get and clear dirty region from card table
  4702       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4703                                     MemRegion(nextAddr, endAddr),
  4704                                     true,
  4705                                     CardTableModRefBS::precleaned_card_val());
  4707       assert(dirtyRegion.start() >= nextAddr,
  4708              "returned region inconsistent?");
  4710     lastAddr = dirtyRegion.end();
  4711     numDirtyCards =
  4712       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4714     if (!dirtyRegion.is_empty()) {
  4715       stopTimer();
  4716       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4717       startTimer();
  4718       sample_eden();
  4719       verify_work_stacks_empty();
  4720       verify_overflow_empty();
  4721       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
  4722       HeapWord* stop_point =
  4723         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4724       if (stop_point != NULL) {
  4725         // The careful iteration stopped early because it found an
  4726         // uninitialized object.  Redirty the bits corresponding to the
  4727         // partially-scanned or unscanned cards, and start again at the
  4728         // next block boundary.
  4729         assert(CMSPermGenPrecleaningEnabled ||
  4730                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4731                "Unparsable objects should only be in perm gen.");
  4732         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4733         if (should_abort_preclean()) {
  4734           break; // out of preclean loop
  4735         } else {
  4736           // Compute the next address at which preclean should pick up.
  4737           lastAddr = next_card_start_after_block(stop_point);
  4740     } else {
  4741       break;
  4744   verify_work_stacks_empty();
  4745   verify_overflow_empty();
  4746   return cumNumDirtyCards;
  4749 void CMSCollector::checkpointRootsFinal(bool asynch,
  4750   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4751   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4752   check_correct_thread_executing();
  4753   // world is stopped at this checkpoint
  4754   assert(SafepointSynchronize::is_at_safepoint(),
  4755          "world should be stopped");
  4756   verify_work_stacks_empty();
  4757   verify_overflow_empty();
  4759   SpecializationStats::clear();
  4760   if (PrintGCDetails) {
  4761     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4762                         _young_gen->used() / K,
  4763                         _young_gen->capacity() / K);
  4765   if (asynch) {
  4766     if (CMSScavengeBeforeRemark) {
  4767       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4768       // Temporarily set flag to false, GCH->do_collection will
  4769       // expect it to be false and set to true
  4770       FlagSetting fl(gch->_is_gc_active, false);
  4771       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4772         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4773       int level = _cmsGen->level() - 1;
  4774       if (level >= 0) {
  4775         gch->do_collection(true,        // full (i.e. force, see below)
  4776                            false,       // !clear_all_soft_refs
  4777                            0,           // size
  4778                            false,       // is_tlab
  4779                            level        // max_level
  4780                           );
  4783     FreelistLocker x(this);
  4784     MutexLockerEx y(bitMapLock(),
  4785                     Mutex::_no_safepoint_check_flag);
  4786     assert(!init_mark_was_synchronous, "but that's impossible!");
  4787     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4788   } else {
  4789     // already have all the locks
  4790     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4791                              init_mark_was_synchronous);
  4793   verify_work_stacks_empty();
  4794   verify_overflow_empty();
  4795   SpecializationStats::print();
  4798 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4799   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4801   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4803   assert(haveFreelistLocks(), "must have free list locks");
  4804   assert_lock_strong(bitMapLock());
  4806   if (UseAdaptiveSizePolicy) {
  4807     size_policy()->checkpoint_roots_final_begin();
  4810   ResourceMark rm;
  4811   HandleMark   hm;
  4813   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4815   if (should_unload_classes()) {
  4816     CodeCache::gc_prologue();
  4818   assert(haveFreelistLocks(), "must have free list locks");
  4819   assert_lock_strong(bitMapLock());
  4821   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
  4822   if (!init_mark_was_synchronous) {
  4823     // We might assume that we need not fill TLAB's when
  4824     // CMSScavengeBeforeRemark is set, because we may have just done
  4825     // a scavenge which would have filled all TLAB's -- and besides
  4826     // Eden would be empty. This however may not always be the case --
  4827     // for instance although we asked for a scavenge, it may not have
  4828     // happened because of a JNI critical section. We probably need
  4829     // a policy for deciding whether we can in that case wait until
  4830     // the critical section releases and then do the remark following
  4831     // the scavenge, and skip it here. In the absence of that policy,
  4832     // or of an indication of whether the scavenge did indeed occur,
  4833     // we cannot rely on TLAB's having been filled and must do
  4834     // so here just in case a scavenge did not happen.
  4835     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4836     // Update the saved marks which may affect the root scans.
  4837     gch->save_marks();
  4840       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4842       // Note on the role of the mod union table:
  4843       // Since the marker in "markFromRoots" marks concurrently with
  4844       // mutators, it is possible for some reachable objects not to have been
  4845       // scanned. For instance, an only reference to an object A was
  4846       // placed in object B after the marker scanned B. Unless B is rescanned,
  4847       // A would be collected. Such updates to references in marked objects
  4848       // are detected via the mod union table which is the set of all cards
  4849       // dirtied since the first checkpoint in this GC cycle and prior to
  4850       // the most recent young generation GC, minus those cleaned up by the
  4851       // concurrent precleaning.
  4852       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4853         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4854         do_remark_parallel();
  4855       } else {
  4856         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4857                     gclog_or_tty);
  4858         do_remark_non_parallel();
  4861   } else {
  4862     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4863     // The initial mark was stop-world, so there's no rescanning to
  4864     // do; go straight on to the next step below.
  4866   verify_work_stacks_empty();
  4867   verify_overflow_empty();
  4870     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4871     refProcessingWork(asynch, clear_all_soft_refs);
  4873   verify_work_stacks_empty();
  4874   verify_overflow_empty();
  4876   if (should_unload_classes()) {
  4877     CodeCache::gc_epilogue();
  4880   // If we encountered any (marking stack / work queue) overflow
  4881   // events during the current CMS cycle, take appropriate
  4882   // remedial measures, where possible, so as to try and avoid
  4883   // recurrence of that condition.
  4884   assert(_markStack.isEmpty(), "No grey objects");
  4885   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4886                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4887   if (ser_ovflw > 0) {
  4888     if (PrintCMSStatistics != 0) {
  4889       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4890         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4891         ", kac_preclean="SIZE_FORMAT")",
  4892         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4893         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4895     _markStack.expand();
  4896     _ser_pmc_remark_ovflw = 0;
  4897     _ser_pmc_preclean_ovflw = 0;
  4898     _ser_kac_preclean_ovflw = 0;
  4899     _ser_kac_ovflw = 0;
  4901   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4902     if (PrintCMSStatistics != 0) {
  4903       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4904         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4905         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4907     _par_pmc_remark_ovflw = 0;
  4908     _par_kac_ovflw = 0;
  4910   if (PrintCMSStatistics != 0) {
  4911      if (_markStack._hit_limit > 0) {
  4912        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4913                               _markStack._hit_limit);
  4915      if (_markStack._failed_double > 0) {
  4916        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4917                               " current capacity "SIZE_FORMAT,
  4918                               _markStack._failed_double,
  4919                               _markStack.capacity());
  4922   _markStack._hit_limit = 0;
  4923   _markStack._failed_double = 0;
  4925   // Check that all the klasses have been checked
  4926   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
  4928   if ((VerifyAfterGC || VerifyDuringGC) &&
  4929       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4930     verify_after_remark();
  4933   // Change under the freelistLocks.
  4934   _collectorState = Sweeping;
  4935   // Call isAllClear() under bitMapLock
  4936   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4937     " final marking");
  4938   if (UseAdaptiveSizePolicy) {
  4939     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4943 // Parallel remark task
  4944 class CMSParRemarkTask: public AbstractGangTask {
  4945   CMSCollector* _collector;
  4946   WorkGang*     _workers;
  4947   int           _n_workers;
  4948   CompactibleFreeListSpace* _cms_space;
  4949   CompactibleFreeListSpace* _perm_space;
  4951   // The per-thread work queues, available here for stealing.
  4952   OopTaskQueueSet*       _task_queues;
  4953   ParallelTaskTerminator _term;
  4955  public:
  4956   CMSParRemarkTask(CMSCollector* collector,
  4957                    CompactibleFreeListSpace* cms_space,
  4958                    CompactibleFreeListSpace* perm_space,
  4959                    int n_workers, WorkGang* workers,
  4960                    OopTaskQueueSet* task_queues):
  4961     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4962     _collector(collector),
  4963     _cms_space(cms_space), _perm_space(perm_space),
  4964     _n_workers(n_workers),
  4965     _workers(workers),
  4966     _task_queues(task_queues),
  4967     _term(workers->total_workers(), task_queues) { }
  4969   OopTaskQueueSet* task_queues() { return _task_queues; }
  4971   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4973   ParallelTaskTerminator* terminator() { return &_term; }
  4975   void work(int i);
  4977  private:
  4978   // Work method in support of parallel rescan ... of young gen spaces
  4979   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4980                              ContiguousSpace* space,
  4981                              HeapWord** chunk_array, size_t chunk_top);
  4983   // ... of  dirty cards in old space
  4984   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4985                                   Par_MarkRefsIntoAndScanClosure* cl);
  4987   // ... work stealing for the above
  4988   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4989 };
  4991 void CMSParRemarkTask::work(int i) {
  4992   elapsedTimer _timer;
  4993   ResourceMark rm;
  4994   HandleMark   hm;
  4996   // ---------- rescan from roots --------------
  4997   _timer.start();
  4998   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4999   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5000     _collector->_span, _collector->ref_processor(),
  5001     &(_collector->_markBitMap),
  5002     work_queue(i), &(_collector->_revisitStack));
  5004   // Rescan young gen roots first since these are likely
  5005   // coarsely partitioned and may, on that account, constitute
  5006   // the critical path; thus, it's best to start off that
  5007   // work first.
  5008   // ---------- young gen roots --------------
  5010     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5011     EdenSpace* eden_space = dng->eden();
  5012     ContiguousSpace* from_space = dng->from();
  5013     ContiguousSpace* to_space   = dng->to();
  5015     HeapWord** eca = _collector->_eden_chunk_array;
  5016     size_t     ect = _collector->_eden_chunk_index;
  5017     HeapWord** sca = _collector->_survivor_chunk_array;
  5018     size_t     sct = _collector->_survivor_chunk_index;
  5020     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5021     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5023     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  5024     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  5025     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  5027     _timer.stop();
  5028     if (PrintCMSStatistics != 0) {
  5029       gclog_or_tty->print_cr(
  5030         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5031         i, _timer.seconds());
  5035   // ---------- remaining roots --------------
  5036   _timer.reset();
  5037   _timer.start();
  5038   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5039                                 false,     // yg was scanned above
  5040                                 false,     // this is parallel code
  5041                                 true,      // collecting perm gen
  5042                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5043                                 &par_mrias_cl,
  5044                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5045                                 NULL);
  5046   assert(_collector->should_unload_classes()
  5047          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5048          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5049   _timer.stop();
  5050   if (PrintCMSStatistics != 0) {
  5051     gclog_or_tty->print_cr(
  5052       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5053       i, _timer.seconds());
  5056   // ---------- rescan dirty cards ------------
  5057   _timer.reset();
  5058   _timer.start();
  5060   // Do the rescan tasks for each of the two spaces
  5061   // (cms_space and perm_space) in turn.
  5062   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5063   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5064   _timer.stop();
  5065   if (PrintCMSStatistics != 0) {
  5066     gclog_or_tty->print_cr(
  5067       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5068       i, _timer.seconds());
  5071   // ---------- steal work from other threads ...
  5072   // ---------- ... and drain overflow list.
  5073   _timer.reset();
  5074   _timer.start();
  5075   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5076   _timer.stop();
  5077   if (PrintCMSStatistics != 0) {
  5078     gclog_or_tty->print_cr(
  5079       "Finished work stealing in %dth thread: %3.3f sec",
  5080       i, _timer.seconds());
  5084 void
  5085 CMSParRemarkTask::do_young_space_rescan(int i,
  5086   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5087   HeapWord** chunk_array, size_t chunk_top) {
  5088   // Until all tasks completed:
  5089   // . claim an unclaimed task
  5090   // . compute region boundaries corresponding to task claimed
  5091   //   using chunk_array
  5092   // . par_oop_iterate(cl) over that region
  5094   ResourceMark rm;
  5095   HandleMark   hm;
  5097   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5098   assert(pst->valid(), "Uninitialized use?");
  5100   int nth_task = 0;
  5101   int n_tasks  = pst->n_tasks();
  5103   HeapWord *start, *end;
  5104   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5105     // We claimed task # nth_task; compute its boundaries.
  5106     if (chunk_top == 0) {  // no samples were taken
  5107       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5108       start = space->bottom();
  5109       end   = space->top();
  5110     } else if (nth_task == 0) {
  5111       start = space->bottom();
  5112       end   = chunk_array[nth_task];
  5113     } else if (nth_task < (jint)chunk_top) {
  5114       assert(nth_task >= 1, "Control point invariant");
  5115       start = chunk_array[nth_task - 1];
  5116       end   = chunk_array[nth_task];
  5117     } else {
  5118       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5119       start = chunk_array[chunk_top - 1];
  5120       end   = space->top();
  5122     MemRegion mr(start, end);
  5123     // Verify that mr is in space
  5124     assert(mr.is_empty() || space->used_region().contains(mr),
  5125            "Should be in space");
  5126     // Verify that "start" is an object boundary
  5127     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5128            "Should be an oop");
  5129     space->par_oop_iterate(mr, cl);
  5131   pst->all_tasks_completed();
  5134 void
  5135 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5136   CompactibleFreeListSpace* sp, int i,
  5137   Par_MarkRefsIntoAndScanClosure* cl) {
  5138   // Until all tasks completed:
  5139   // . claim an unclaimed task
  5140   // . compute region boundaries corresponding to task claimed
  5141   // . transfer dirty bits ct->mut for that region
  5142   // . apply rescanclosure to dirty mut bits for that region
  5144   ResourceMark rm;
  5145   HandleMark   hm;
  5147   OopTaskQueue* work_q = work_queue(i);
  5148   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5149   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5150   // CAUTION: This closure has state that persists across calls to
  5151   // the work method dirty_range_iterate_clear() in that it has
  5152   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5153   // use of that state in the imbedded UpwardsObjectClosure instance
  5154   // assumes that the cards are always iterated (even if in parallel
  5155   // by several threads) in monotonically increasing order per each
  5156   // thread. This is true of the implementation below which picks
  5157   // card ranges (chunks) in monotonically increasing order globally
  5158   // and, a-fortiori, in monotonically increasing order per thread
  5159   // (the latter order being a subsequence of the former).
  5160   // If the work code below is ever reorganized into a more chaotic
  5161   // work-partitioning form than the current "sequential tasks"
  5162   // paradigm, the use of that persistent state will have to be
  5163   // revisited and modified appropriately. See also related
  5164   // bug 4756801 work on which should examine this code to make
  5165   // sure that the changes there do not run counter to the
  5166   // assumptions made here and necessary for correctness and
  5167   // efficiency. Note also that this code might yield inefficient
  5168   // behaviour in the case of very large objects that span one or
  5169   // more work chunks. Such objects would potentially be scanned
  5170   // several times redundantly. Work on 4756801 should try and
  5171   // address that performance anomaly if at all possible. XXX
  5172   MemRegion  full_span  = _collector->_span;
  5173   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5174   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5175   MarkFromDirtyCardsClosure
  5176     greyRescanClosure(_collector, full_span, // entire span of interest
  5177                       sp, bm, work_q, rs, cl);
  5179   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5180   assert(pst->valid(), "Uninitialized use?");
  5181   int nth_task = 0;
  5182   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5183   MemRegion span = sp->used_region();
  5184   HeapWord* start_addr = span.start();
  5185   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5186                                            alignment);
  5187   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5188   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5189          start_addr, "Check alignment");
  5190   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5191          chunk_size, "Check alignment");
  5193   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5194     // Having claimed the nth_task, compute corresponding mem-region,
  5195     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5196     // The alignment restriction ensures that we do not need any
  5197     // synchronization with other gang-workers while setting or
  5198     // clearing bits in thus chunk of the MUT.
  5199     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5200                                     start_addr + (nth_task+1)*chunk_size);
  5201     // The last chunk's end might be way beyond end of the
  5202     // used region. In that case pull back appropriately.
  5203     if (this_span.end() > end_addr) {
  5204       this_span.set_end(end_addr);
  5205       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5207     // Iterate over the dirty cards covering this chunk, marking them
  5208     // precleaned, and setting the corresponding bits in the mod union
  5209     // table. Since we have been careful to partition at Card and MUT-word
  5210     // boundaries no synchronization is needed between parallel threads.
  5211     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5212                                                  &modUnionClosure);
  5214     // Having transferred these marks into the modUnionTable,
  5215     // rescan the marked objects on the dirty cards in the modUnionTable.
  5216     // Even if this is at a synchronous collection, the initial marking
  5217     // may have been done during an asynchronous collection so there
  5218     // may be dirty bits in the mod-union table.
  5219     _collector->_modUnionTable.dirty_range_iterate_clear(
  5220                   this_span, &greyRescanClosure);
  5221     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5222                                  this_span.start(),
  5223                                  this_span.end());
  5225   pst->all_tasks_completed();  // declare that i am done
  5228 // . see if we can share work_queues with ParNew? XXX
  5229 void
  5230 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5231                                 int* seed) {
  5232   OopTaskQueue* work_q = work_queue(i);
  5233   NOT_PRODUCT(int num_steals = 0;)
  5234   oop obj_to_scan;
  5235   CMSBitMap* bm = &(_collector->_markBitMap);
  5237   while (true) {
  5238     // Completely finish any left over work from (an) earlier round(s)
  5239     cl->trim_queue(0);
  5240     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5241                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5242     // Now check if there's any work in the overflow list
  5243     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5244                                                 work_q)) {
  5245       // found something in global overflow list;
  5246       // not yet ready to go stealing work from others.
  5247       // We'd like to assert(work_q->size() != 0, ...)
  5248       // because we just took work from the overflow list,
  5249       // but of course we can't since all of that could have
  5250       // been already stolen from us.
  5251       // "He giveth and He taketh away."
  5252       continue;
  5254     // Verify that we have no work before we resort to stealing
  5255     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5256     // Try to steal from other queues that have work
  5257     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5258       NOT_PRODUCT(num_steals++;)
  5259       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5260       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5261       // Do scanning work
  5262       obj_to_scan->oop_iterate(cl);
  5263       // Loop around, finish this work, and try to steal some more
  5264     } else if (terminator()->offer_termination()) {
  5265         break;  // nirvana from the infinite cycle
  5268   NOT_PRODUCT(
  5269     if (PrintCMSStatistics != 0) {
  5270       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5273   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5274          "Else our work is not yet done");
  5277 // Return a thread-local PLAB recording array, as appropriate.
  5278 void* CMSCollector::get_data_recorder(int thr_num) {
  5279   if (_survivor_plab_array != NULL &&
  5280       (CMSPLABRecordAlways ||
  5281        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5282     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5283     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5284     ca->reset();   // clear it so that fresh data is recorded
  5285     return (void*) ca;
  5286   } else {
  5287     return NULL;
  5291 // Reset all the thread-local PLAB recording arrays
  5292 void CMSCollector::reset_survivor_plab_arrays() {
  5293   for (uint i = 0; i < ParallelGCThreads; i++) {
  5294     _survivor_plab_array[i].reset();
  5298 // Merge the per-thread plab arrays into the global survivor chunk
  5299 // array which will provide the partitioning of the survivor space
  5300 // for CMS rescan.
  5301 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5302   assert(_survivor_plab_array  != NULL, "Error");
  5303   assert(_survivor_chunk_array != NULL, "Error");
  5304   assert(_collectorState == FinalMarking, "Error");
  5305   for (uint j = 0; j < ParallelGCThreads; j++) {
  5306     _cursor[j] = 0;
  5308   HeapWord* top = surv->top();
  5309   size_t i;
  5310   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5311     HeapWord* min_val = top;          // Higher than any PLAB address
  5312     uint      min_tid = 0;            // position of min_val this round
  5313     for (uint j = 0; j < ParallelGCThreads; j++) {
  5314       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5315       if (_cursor[j] == cur_sca->end()) {
  5316         continue;
  5318       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5319       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5320       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5321       if (cur_val < min_val) {
  5322         min_tid = j;
  5323         min_val = cur_val;
  5324       } else {
  5325         assert(cur_val < top, "All recorded addresses should be less");
  5328     // At this point min_val and min_tid are respectively
  5329     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5330     // and the thread (j) that witnesses that address.
  5331     // We record this address in the _survivor_chunk_array[i]
  5332     // and increment _cursor[min_tid] prior to the next round i.
  5333     if (min_val == top) {
  5334       break;
  5336     _survivor_chunk_array[i] = min_val;
  5337     _cursor[min_tid]++;
  5339   // We are all done; record the size of the _survivor_chunk_array
  5340   _survivor_chunk_index = i; // exclusive: [0, i)
  5341   if (PrintCMSStatistics > 0) {
  5342     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5344   // Verify that we used up all the recorded entries
  5345   #ifdef ASSERT
  5346     size_t total = 0;
  5347     for (uint j = 0; j < ParallelGCThreads; j++) {
  5348       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5349       total += _cursor[j];
  5351     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5352     // Check that the merged array is in sorted order
  5353     if (total > 0) {
  5354       for (size_t i = 0; i < total - 1; i++) {
  5355         if (PrintCMSStatistics > 0) {
  5356           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5357                               i, _survivor_chunk_array[i]);
  5359         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5360                "Not sorted");
  5363   #endif // ASSERT
  5366 // Set up the space's par_seq_tasks structure for work claiming
  5367 // for parallel rescan of young gen.
  5368 // See ParRescanTask where this is currently used.
  5369 void
  5370 CMSCollector::
  5371 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5372   assert(n_threads > 0, "Unexpected n_threads argument");
  5373   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5375   // Eden space
  5377     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5378     assert(!pst->valid(), "Clobbering existing data?");
  5379     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5380     size_t n_tasks = _eden_chunk_index + 1;
  5381     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5382     pst->set_par_threads(n_threads);
  5383     pst->set_n_tasks((int)n_tasks);
  5386   // Merge the survivor plab arrays into _survivor_chunk_array
  5387   if (_survivor_plab_array != NULL) {
  5388     merge_survivor_plab_arrays(dng->from());
  5389   } else {
  5390     assert(_survivor_chunk_index == 0, "Error");
  5393   // To space
  5395     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5396     assert(!pst->valid(), "Clobbering existing data?");
  5397     pst->set_par_threads(n_threads);
  5398     pst->set_n_tasks(1);
  5399     assert(pst->valid(), "Error");
  5402   // From space
  5404     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5405     assert(!pst->valid(), "Clobbering existing data?");
  5406     size_t n_tasks = _survivor_chunk_index + 1;
  5407     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5408     pst->set_par_threads(n_threads);
  5409     pst->set_n_tasks((int)n_tasks);
  5410     assert(pst->valid(), "Error");
  5414 // Parallel version of remark
  5415 void CMSCollector::do_remark_parallel() {
  5416   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5417   WorkGang* workers = gch->workers();
  5418   assert(workers != NULL, "Need parallel worker threads.");
  5419   int n_workers = workers->total_workers();
  5420   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5421   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5423   CMSParRemarkTask tsk(this,
  5424     cms_space, perm_space,
  5425     n_workers, workers, task_queues());
  5427   // Set up for parallel process_strong_roots work.
  5428   gch->set_par_threads(n_workers);
  5429   // We won't be iterating over the cards in the card table updating
  5430   // the younger_gen cards, so we shouldn't call the following else
  5431   // the verification code as well as subsequent younger_refs_iterate
  5432   // code would get confused. XXX
  5433   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5435   // The young gen rescan work will not be done as part of
  5436   // process_strong_roots (which currently doesn't knw how to
  5437   // parallelize such a scan), but rather will be broken up into
  5438   // a set of parallel tasks (via the sampling that the [abortable]
  5439   // preclean phase did of EdenSpace, plus the [two] tasks of
  5440   // scanning the [two] survivor spaces. Further fine-grain
  5441   // parallelization of the scanning of the survivor spaces
  5442   // themselves, and of precleaning of the younger gen itself
  5443   // is deferred to the future.
  5444   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5446   // The dirty card rescan work is broken up into a "sequence"
  5447   // of parallel tasks (per constituent space) that are dynamically
  5448   // claimed by the parallel threads.
  5449   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5450   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5452   // It turns out that even when we're using 1 thread, doing the work in a
  5453   // separate thread causes wide variance in run times.  We can't help this
  5454   // in the multi-threaded case, but we special-case n=1 here to get
  5455   // repeatable measurements of the 1-thread overhead of the parallel code.
  5456   if (n_workers > 1) {
  5457     // Make refs discovery MT-safe
  5458     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5459     GenCollectedHeap::StrongRootsScope srs(gch);
  5460     workers->run_task(&tsk);
  5461   } else {
  5462     GenCollectedHeap::StrongRootsScope srs(gch);
  5463     tsk.work(0);
  5465   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5466   // restore, single-threaded for now, any preserved marks
  5467   // as a result of work_q overflow
  5468   restore_preserved_marks_if_any();
  5471 // Non-parallel version of remark
  5472 void CMSCollector::do_remark_non_parallel() {
  5473   ResourceMark rm;
  5474   HandleMark   hm;
  5475   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5476   MarkRefsIntoAndScanClosure
  5477     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5478              &_markStack, &_revisitStack, this,
  5479              false /* should_yield */, false /* not precleaning */);
  5480   MarkFromDirtyCardsClosure
  5481     markFromDirtyCardsClosure(this, _span,
  5482                               NULL,  // space is set further below
  5483                               &_markBitMap, &_markStack, &_revisitStack,
  5484                               &mrias_cl);
  5486     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5487     // Iterate over the dirty cards, setting the corresponding bits in the
  5488     // mod union table.
  5490       ModUnionClosure modUnionClosure(&_modUnionTable);
  5491       _ct->ct_bs()->dirty_card_iterate(
  5492                       _cmsGen->used_region(),
  5493                       &modUnionClosure);
  5494       _ct->ct_bs()->dirty_card_iterate(
  5495                       _permGen->used_region(),
  5496                       &modUnionClosure);
  5498     // Having transferred these marks into the modUnionTable, we just need
  5499     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5500     // The initial marking may have been done during an asynchronous
  5501     // collection so there may be dirty bits in the mod-union table.
  5502     const int alignment =
  5503       CardTableModRefBS::card_size * BitsPerWord;
  5505       // ... First handle dirty cards in CMS gen
  5506       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5507       MemRegion ur = _cmsGen->used_region();
  5508       HeapWord* lb = ur.start();
  5509       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5510       MemRegion cms_span(lb, ub);
  5511       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5512                                                &markFromDirtyCardsClosure);
  5513       verify_work_stacks_empty();
  5514       if (PrintCMSStatistics != 0) {
  5515         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5516           markFromDirtyCardsClosure.num_dirty_cards());
  5520       // .. and then repeat for dirty cards in perm gen
  5521       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5522       MemRegion ur = _permGen->used_region();
  5523       HeapWord* lb = ur.start();
  5524       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5525       MemRegion perm_span(lb, ub);
  5526       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5527                                                &markFromDirtyCardsClosure);
  5528       verify_work_stacks_empty();
  5529       if (PrintCMSStatistics != 0) {
  5530         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5531           markFromDirtyCardsClosure.num_dirty_cards());
  5535   if (VerifyDuringGC &&
  5536       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5537     HandleMark hm;  // Discard invalid handles created during verification
  5538     Universe::verify(true);
  5541     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5543     verify_work_stacks_empty();
  5545     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5546     GenCollectedHeap::StrongRootsScope srs(gch);
  5547     gch->gen_process_strong_roots(_cmsGen->level(),
  5548                                   true,  // younger gens as roots
  5549                                   false, // use the local StrongRootsScope
  5550                                   true,  // collecting perm gen
  5551                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5552                                   &mrias_cl,
  5553                                   true,   // walk code active on stacks
  5554                                   NULL);
  5555     assert(should_unload_classes()
  5556            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
  5557            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5559   verify_work_stacks_empty();
  5560   // Restore evacuated mark words, if any, used for overflow list links
  5561   if (!CMSOverflowEarlyRestoration) {
  5562     restore_preserved_marks_if_any();
  5564   verify_overflow_empty();
  5567 ////////////////////////////////////////////////////////
  5568 // Parallel Reference Processing Task Proxy Class
  5569 ////////////////////////////////////////////////////////
  5570 class CMSRefProcTaskProxy: public AbstractGangTask {
  5571   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5572   CMSCollector*          _collector;
  5573   CMSBitMap*             _mark_bit_map;
  5574   const MemRegion        _span;
  5575   OopTaskQueueSet*       _task_queues;
  5576   ParallelTaskTerminator _term;
  5577   ProcessTask&           _task;
  5579 public:
  5580   CMSRefProcTaskProxy(ProcessTask&     task,
  5581                       CMSCollector*    collector,
  5582                       const MemRegion& span,
  5583                       CMSBitMap*       mark_bit_map,
  5584                       int              total_workers,
  5585                       OopTaskQueueSet* task_queues):
  5586     AbstractGangTask("Process referents by policy in parallel"),
  5587     _task(task),
  5588     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5589     _task_queues(task_queues),
  5590     _term(total_workers, task_queues)
  5592       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5593              "Inconsistency in _span");
  5596   OopTaskQueueSet* task_queues() { return _task_queues; }
  5598   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5600   ParallelTaskTerminator* terminator() { return &_term; }
  5602   void do_work_steal(int i,
  5603                      CMSParDrainMarkingStackClosure* drain,
  5604                      CMSParKeepAliveClosure* keep_alive,
  5605                      int* seed);
  5607   virtual void work(int i);
  5608 };
  5610 void CMSRefProcTaskProxy::work(int i) {
  5611   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5612   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5613                                         _mark_bit_map,
  5614                                         &_collector->_revisitStack,
  5615                                         work_queue(i));
  5616   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5617                                                  _mark_bit_map,
  5618                                                  &_collector->_revisitStack,
  5619                                                  work_queue(i));
  5620   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5621   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5622   if (_task.marks_oops_alive()) {
  5623     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5624                   _collector->hash_seed(i));
  5626   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5627   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5630 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5631   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5632   EnqueueTask& _task;
  5634 public:
  5635   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5636     : AbstractGangTask("Enqueue reference objects in parallel"),
  5637       _task(task)
  5638   { }
  5640   virtual void work(int i)
  5642     _task.work(i);
  5644 };
  5646 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5647   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
  5648   OopTaskQueue* work_queue):
  5649    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  5650    _span(span),
  5651    _bit_map(bit_map),
  5652    _work_queue(work_queue),
  5653    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
  5654    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5655                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5656 { }
  5658 // . see if we can share work_queues with ParNew? XXX
  5659 void CMSRefProcTaskProxy::do_work_steal(int i,
  5660   CMSParDrainMarkingStackClosure* drain,
  5661   CMSParKeepAliveClosure* keep_alive,
  5662   int* seed) {
  5663   OopTaskQueue* work_q = work_queue(i);
  5664   NOT_PRODUCT(int num_steals = 0;)
  5665   oop obj_to_scan;
  5667   while (true) {
  5668     // Completely finish any left over work from (an) earlier round(s)
  5669     drain->trim_queue(0);
  5670     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5671                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5672     // Now check if there's any work in the overflow list
  5673     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5674                                                 work_q)) {
  5675       // Found something in global overflow list;
  5676       // not yet ready to go stealing work from others.
  5677       // We'd like to assert(work_q->size() != 0, ...)
  5678       // because we just took work from the overflow list,
  5679       // but of course we can't, since all of that might have
  5680       // been already stolen from us.
  5681       continue;
  5683     // Verify that we have no work before we resort to stealing
  5684     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5685     // Try to steal from other queues that have work
  5686     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5687       NOT_PRODUCT(num_steals++;)
  5688       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5689       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5690       // Do scanning work
  5691       obj_to_scan->oop_iterate(keep_alive);
  5692       // Loop around, finish this work, and try to steal some more
  5693     } else if (terminator()->offer_termination()) {
  5694       break;  // nirvana from the infinite cycle
  5697   NOT_PRODUCT(
  5698     if (PrintCMSStatistics != 0) {
  5699       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5704 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5706   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5707   WorkGang* workers = gch->workers();
  5708   assert(workers != NULL, "Need parallel worker threads.");
  5709   int n_workers = workers->total_workers();
  5710   CMSRefProcTaskProxy rp_task(task, &_collector,
  5711                               _collector.ref_processor()->span(),
  5712                               _collector.markBitMap(),
  5713                               n_workers, _collector.task_queues());
  5714   workers->run_task(&rp_task);
  5717 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5720   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5721   WorkGang* workers = gch->workers();
  5722   assert(workers != NULL, "Need parallel worker threads.");
  5723   CMSRefEnqueueTaskProxy enq_task(task);
  5724   workers->run_task(&enq_task);
  5727 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5729   ResourceMark rm;
  5730   HandleMark   hm;
  5732   ReferenceProcessor* rp = ref_processor();
  5733   assert(rp->span().equals(_span), "Spans should be equal");
  5734   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5735   // Process weak references.
  5736   rp->setup_policy(clear_all_soft_refs);
  5737   verify_work_stacks_empty();
  5739   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5740                                           &_markStack, &_revisitStack,
  5741                                           false /* !preclean */);
  5742   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5743                                 _span, &_markBitMap, &_markStack,
  5744                                 &cmsKeepAliveClosure, false /* !preclean */);
  5746     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5747     if (rp->processing_is_mt()) {
  5748       CMSRefProcTaskExecutor task_executor(*this);
  5749       rp->process_discovered_references(&_is_alive_closure,
  5750                                         &cmsKeepAliveClosure,
  5751                                         &cmsDrainMarkingStackClosure,
  5752                                         &task_executor);
  5753     } else {
  5754       rp->process_discovered_references(&_is_alive_closure,
  5755                                         &cmsKeepAliveClosure,
  5756                                         &cmsDrainMarkingStackClosure,
  5757                                         NULL);
  5759     verify_work_stacks_empty();
  5762   if (should_unload_classes()) {
  5764       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5766       // Follow SystemDictionary roots and unload classes
  5767       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5769       // Follow CodeCache roots and unload any methods marked for unloading
  5770       CodeCache::do_unloading(&_is_alive_closure,
  5771                               &cmsKeepAliveClosure,
  5772                               purged_class);
  5774       cmsDrainMarkingStackClosure.do_void();
  5775       verify_work_stacks_empty();
  5777       // Update subklass/sibling/implementor links in KlassKlass descendants
  5778       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5779       oop k;
  5780       while ((k = _revisitStack.pop()) != NULL) {
  5781         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5782                        &_is_alive_closure,
  5783                        &cmsKeepAliveClosure);
  5785       assert(!ClassUnloading ||
  5786              (_markStack.isEmpty() && overflow_list_is_empty()),
  5787              "Should not have found new reachable objects");
  5788       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5789       cmsDrainMarkingStackClosure.do_void();
  5790       verify_work_stacks_empty();
  5794       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5795       // Now clean up stale oops in SymbolTable and StringTable
  5796       SymbolTable::unlink(&_is_alive_closure);
  5797       StringTable::unlink(&_is_alive_closure);
  5801   verify_work_stacks_empty();
  5802   // Restore any preserved marks as a result of mark stack or
  5803   // work queue overflow
  5804   restore_preserved_marks_if_any();  // done single-threaded for now
  5806   rp->set_enqueuing_is_done(true);
  5807   if (rp->processing_is_mt()) {
  5808     CMSRefProcTaskExecutor task_executor(*this);
  5809     rp->enqueue_discovered_references(&task_executor);
  5810   } else {
  5811     rp->enqueue_discovered_references(NULL);
  5813   rp->verify_no_references_recorded();
  5814   assert(!rp->discovery_enabled(), "should have been disabled");
  5816   // JVMTI object tagging is based on JNI weak refs. If any of these
  5817   // refs were cleared then JVMTI needs to update its maps and
  5818   // maybe post ObjectFrees to agents.
  5819   JvmtiExport::cms_ref_processing_epilogue();
  5822 #ifndef PRODUCT
  5823 void CMSCollector::check_correct_thread_executing() {
  5824   Thread* t = Thread::current();
  5825   // Only the VM thread or the CMS thread should be here.
  5826   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5827          "Unexpected thread type");
  5828   // If this is the vm thread, the foreground process
  5829   // should not be waiting.  Note that _foregroundGCIsActive is
  5830   // true while the foreground collector is waiting.
  5831   if (_foregroundGCShouldWait) {
  5832     // We cannot be the VM thread
  5833     assert(t->is_ConcurrentGC_thread(),
  5834            "Should be CMS thread");
  5835   } else {
  5836     // We can be the CMS thread only if we are in a stop-world
  5837     // phase of CMS collection.
  5838     if (t->is_ConcurrentGC_thread()) {
  5839       assert(_collectorState == InitialMarking ||
  5840              _collectorState == FinalMarking,
  5841              "Should be a stop-world phase");
  5842       // The CMS thread should be holding the CMS_token.
  5843       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5844              "Potential interference with concurrently "
  5845              "executing VM thread");
  5849 #endif
  5851 void CMSCollector::sweep(bool asynch) {
  5852   assert(_collectorState == Sweeping, "just checking");
  5853   check_correct_thread_executing();
  5854   verify_work_stacks_empty();
  5855   verify_overflow_empty();
  5856   increment_sweep_count();
  5857   _inter_sweep_timer.stop();
  5858   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
  5859   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5861   // PermGen verification support: If perm gen sweeping is disabled in
  5862   // this cycle, we preserve the perm gen object "deadness" information
  5863   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5864   // all blocks in perm gen and mark all dead objects.
  5865   if (verifying() && !should_unload_classes()) {
  5866     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5867            "Should have already been allocated");
  5868     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5869                                markBitMap(), perm_gen_verify_bit_map());
  5870     if (asynch) {
  5871       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5872                                bitMapLock());
  5873       _permGen->cmsSpace()->blk_iterate(&mdo);
  5874     } else {
  5875       // In the case of synchronous sweep, we already have
  5876       // the requisite locks/tokens.
  5877       _permGen->cmsSpace()->blk_iterate(&mdo);
  5881   assert(!_intra_sweep_timer.is_active(), "Should not be active");
  5882   _intra_sweep_timer.reset();
  5883   _intra_sweep_timer.start();
  5884   if (asynch) {
  5885     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5886     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5887     // First sweep the old gen then the perm gen
  5889       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5890                                bitMapLock());
  5891       sweepWork(_cmsGen, asynch);
  5894     // Now repeat for perm gen
  5895     if (should_unload_classes()) {
  5896       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5897                              bitMapLock());
  5898       sweepWork(_permGen, asynch);
  5901     // Update Universe::_heap_*_at_gc figures.
  5902     // We need all the free list locks to make the abstract state
  5903     // transition from Sweeping to Resetting. See detailed note
  5904     // further below.
  5906       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5907                                _permGen->freelistLock());
  5908       // Update heap occupancy information which is used as
  5909       // input to soft ref clearing policy at the next gc.
  5910       Universe::update_heap_info_at_gc();
  5911       _collectorState = Resizing;
  5913   } else {
  5914     // already have needed locks
  5915     sweepWork(_cmsGen,  asynch);
  5917     if (should_unload_classes()) {
  5918       sweepWork(_permGen, asynch);
  5920     // Update heap occupancy information which is used as
  5921     // input to soft ref clearing policy at the next gc.
  5922     Universe::update_heap_info_at_gc();
  5923     _collectorState = Resizing;
  5925   verify_work_stacks_empty();
  5926   verify_overflow_empty();
  5928   _intra_sweep_timer.stop();
  5929   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
  5931   _inter_sweep_timer.reset();
  5932   _inter_sweep_timer.start();
  5934   update_time_of_last_gc(os::javaTimeMillis());
  5936   // NOTE on abstract state transitions:
  5937   // Mutators allocate-live and/or mark the mod-union table dirty
  5938   // based on the state of the collection.  The former is done in
  5939   // the interval [Marking, Sweeping] and the latter in the interval
  5940   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5941   // and out of the Sweeping state must be synchronously visible
  5942   // globally to the mutators.
  5943   // The transition into the Marking state happens with the world
  5944   // stopped so the mutators will globally see it.  Sweeping is
  5945   // done asynchronously by the background collector so the transition
  5946   // from the Sweeping state to the Resizing state must be done
  5947   // under the freelistLock (as is the check for whether to
  5948   // allocate-live and whether to dirty the mod-union table).
  5949   assert(_collectorState == Resizing, "Change of collector state to"
  5950     " Resizing must be done under the freelistLocks (plural)");
  5952   // Now that sweeping has been completed, if the GCH's
  5953   // incremental_collection_will_fail flag is set, clear it,
  5954   // thus inviting a younger gen collection to promote into
  5955   // this generation. If such a promotion may still fail,
  5956   // the flag will be set again when a young collection is
  5957   // attempted.
  5958   // I think the incremental_collection_will_fail flag's use
  5959   // is specific to a 2 generation collection policy, so i'll
  5960   // assert that that's the configuration we are operating within.
  5961   // The use of the flag can and should be generalized appropriately
  5962   // in the future to deal with a general n-generation system.
  5964   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5965   assert(gch->collector_policy()->is_two_generation_policy(),
  5966          "Resetting of incremental_collection_will_fail flag"
  5967          " may be incorrect otherwise");
  5968   gch->clear_incremental_collection_will_fail();
  5969   gch->update_full_collections_completed(_collection_count_start);
  5972 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5973 // CMSGen merely delegating to it.
  5974 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5975   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
  5976   HeapWord*  minAddr        = _cmsSpace->bottom();
  5977   HeapWord*  largestAddr    =
  5978     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5979   if (largestAddr == NULL) {
  5980     // The dictionary appears to be empty.  In this case
  5981     // try to coalesce at the end of the heap.
  5982     largestAddr = _cmsSpace->end();
  5984   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5985   size_t nearLargestOffset =
  5986     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5987   if (PrintFLSStatistics != 0) {
  5988     gclog_or_tty->print_cr(
  5989       "CMS: Large Block: " PTR_FORMAT ";"
  5990       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
  5991       largestAddr,
  5992       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
  5994   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5997 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5998   return addr >= _cmsSpace->nearLargestChunk();
  6001 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6002   return _cmsSpace->find_chunk_at_end();
  6005 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6006                                                     bool full) {
  6007   // The next lower level has been collected.  Gather any statistics
  6008   // that are of interest at this point.
  6009   if (!full && (current_level + 1) == level()) {
  6010     // Gather statistics on the young generation collection.
  6011     collector()->stats().record_gc0_end(used());
  6015 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6016   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6017   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6018     "Wrong type of heap");
  6019   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6020     gch->gen_policy()->size_policy();
  6021   assert(sp->is_gc_cms_adaptive_size_policy(),
  6022     "Wrong type of size policy");
  6023   return sp;
  6026 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6027   if (PrintGCDetails && Verbose) {
  6028     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6030   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6031   _debug_collection_type =
  6032     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6033   if (PrintGCDetails && Verbose) {
  6034     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6038 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6039   bool asynch) {
  6040   // We iterate over the space(s) underlying this generation,
  6041   // checking the mark bit map to see if the bits corresponding
  6042   // to specific blocks are marked or not. Blocks that are
  6043   // marked are live and are not swept up. All remaining blocks
  6044   // are swept up, with coalescing on-the-fly as we sweep up
  6045   // contiguous free and/or garbage blocks:
  6046   // We need to ensure that the sweeper synchronizes with allocators
  6047   // and stop-the-world collectors. In particular, the following
  6048   // locks are used:
  6049   // . CMS token: if this is held, a stop the world collection cannot occur
  6050   // . freelistLock: if this is held no allocation can occur from this
  6051   //                 generation by another thread
  6052   // . bitMapLock: if this is held, no other thread can access or update
  6053   //
  6055   // Note that we need to hold the freelistLock if we use
  6056   // block iterate below; else the iterator might go awry if
  6057   // a mutator (or promotion) causes block contents to change
  6058   // (for instance if the allocator divvies up a block).
  6059   // If we hold the free list lock, for all practical purposes
  6060   // young generation GC's can't occur (they'll usually need to
  6061   // promote), so we might as well prevent all young generation
  6062   // GC's while we do a sweeping step. For the same reason, we might
  6063   // as well take the bit map lock for the entire duration
  6065   // check that we hold the requisite locks
  6066   assert(have_cms_token(), "Should hold cms token");
  6067   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6068          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6069         "Should possess CMS token to sweep");
  6070   assert_lock_strong(gen->freelistLock());
  6071   assert_lock_strong(bitMapLock());
  6073   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
  6074   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
  6075   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  6076                                       _inter_sweep_estimate.padded_average(),
  6077                                       _intra_sweep_estimate.padded_average());
  6078   gen->setNearLargestChunk();
  6081     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6082                             CMSYield && asynch);
  6083     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6084     // We need to free-up/coalesce garbage/blocks from a
  6085     // co-terminal free run. This is done in the SweepClosure
  6086     // destructor; so, do not remove this scope, else the
  6087     // end-of-sweep-census below will be off by a little bit.
  6089   gen->cmsSpace()->sweep_completed();
  6090   gen->cmsSpace()->endSweepFLCensus(sweep_count());
  6091   if (should_unload_classes()) {                // unloaded classes this cycle,
  6092     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6093   } else {                                      // did not unload classes,
  6094     _concurrent_cycles_since_last_unload++;     // ... increment count
  6098 // Reset CMS data structures (for now just the marking bit map)
  6099 // preparatory for the next cycle.
  6100 void CMSCollector::reset(bool asynch) {
  6101   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6102   CMSAdaptiveSizePolicy* sp = size_policy();
  6103   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6104   if (asynch) {
  6105     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6107     // If the state is not "Resetting", the foreground  thread
  6108     // has done a collection and the resetting.
  6109     if (_collectorState != Resetting) {
  6110       assert(_collectorState == Idling, "The state should only change"
  6111         " because the foreground collector has finished the collection");
  6112       return;
  6115     // Clear the mark bitmap (no grey objects to start with)
  6116     // for the next cycle.
  6117     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6118     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6120     HeapWord* curAddr = _markBitMap.startWord();
  6121     while (curAddr < _markBitMap.endWord()) {
  6122       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6123       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6124       _markBitMap.clear_large_range(chunk);
  6125       if (ConcurrentMarkSweepThread::should_yield() &&
  6126           !foregroundGCIsActive() &&
  6127           CMSYield) {
  6128         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6129                "CMS thread should hold CMS token");
  6130         assert_lock_strong(bitMapLock());
  6131         bitMapLock()->unlock();
  6132         ConcurrentMarkSweepThread::desynchronize(true);
  6133         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6134         stopTimer();
  6135         if (PrintCMSStatistics != 0) {
  6136           incrementYields();
  6138         icms_wait();
  6140         // See the comment in coordinator_yield()
  6141         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6142                          ConcurrentMarkSweepThread::should_yield() &&
  6143                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6144           os::sleep(Thread::current(), 1, false);
  6145           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6148         ConcurrentMarkSweepThread::synchronize(true);
  6149         bitMapLock()->lock_without_safepoint_check();
  6150         startTimer();
  6152       curAddr = chunk.end();
  6154     // A successful mostly concurrent collection has been done.
  6155     // Because only the full (i.e., concurrent mode failure) collections
  6156     // are being measured for gc overhead limits, clean the "near" flag
  6157     // and count.
  6158     sp->reset_gc_overhead_limit_count();
  6159     _collectorState = Idling;
  6160   } else {
  6161     // already have the lock
  6162     assert(_collectorState == Resetting, "just checking");
  6163     assert_lock_strong(bitMapLock());
  6164     _markBitMap.clear_all();
  6165     _collectorState = Idling;
  6168   // Stop incremental mode after a cycle completes, so that any future cycles
  6169   // are triggered by allocation.
  6170   stop_icms();
  6172   NOT_PRODUCT(
  6173     if (RotateCMSCollectionTypes) {
  6174       _cmsGen->rotate_debug_collection_type();
  6179 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6180   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6181   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6182   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6183   TraceCollectorStats tcs(counters());
  6185   switch (op) {
  6186     case CMS_op_checkpointRootsInitial: {
  6187       checkpointRootsInitial(true);       // asynch
  6188       if (PrintGC) {
  6189         _cmsGen->printOccupancy("initial-mark");
  6191       break;
  6193     case CMS_op_checkpointRootsFinal: {
  6194       checkpointRootsFinal(true,    // asynch
  6195                            false,   // !clear_all_soft_refs
  6196                            false);  // !init_mark_was_synchronous
  6197       if (PrintGC) {
  6198         _cmsGen->printOccupancy("remark");
  6200       break;
  6202     default:
  6203       fatal("No such CMS_op");
  6207 #ifndef PRODUCT
  6208 size_t const CMSCollector::skip_header_HeapWords() {
  6209   return FreeChunk::header_size();
  6212 // Try and collect here conditions that should hold when
  6213 // CMS thread is exiting. The idea is that the foreground GC
  6214 // thread should not be blocked if it wants to terminate
  6215 // the CMS thread and yet continue to run the VM for a while
  6216 // after that.
  6217 void CMSCollector::verify_ok_to_terminate() const {
  6218   assert(Thread::current()->is_ConcurrentGC_thread(),
  6219          "should be called by CMS thread");
  6220   assert(!_foregroundGCShouldWait, "should be false");
  6221   // We could check here that all the various low-level locks
  6222   // are not held by the CMS thread, but that is overkill; see
  6223   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6224   // is checked.
  6226 #endif
  6228 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6229    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6230           "missing Printezis mark?");
  6231   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6232   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6233   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6234          "alignment problem");
  6235   assert(size >= 3, "Necessary for Printezis marks to work");
  6236   return size;
  6239 // A variant of the above (block_size_using_printezis_bits()) except
  6240 // that we return 0 if the P-bits are not yet set.
  6241 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6242   if (_markBitMap.isMarked(addr)) {
  6243     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6244     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6245     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6246     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6247            "alignment problem");
  6248     assert(size >= 3, "Necessary for Printezis marks to work");
  6249     return size;
  6250   } else {
  6251     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6252     return 0;
  6256 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6257   size_t sz = 0;
  6258   oop p = (oop)addr;
  6259   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6260     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6261   } else {
  6262     sz = block_size_using_printezis_bits(addr);
  6264   assert(sz > 0, "size must be nonzero");
  6265   HeapWord* next_block = addr + sz;
  6266   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6267                                              CardTableModRefBS::card_size);
  6268   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6269          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6270          "must be different cards");
  6271   return next_card;
  6275 // CMS Bit Map Wrapper /////////////////////////////////////////
  6277 // Construct a CMS bit map infrastructure, but don't create the
  6278 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6279 // further below.
  6280 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6281   _bm(),
  6282   _shifter(shifter),
  6283   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6285   _bmStartWord = 0;
  6286   _bmWordSize  = 0;
  6289 bool CMSBitMap::allocate(MemRegion mr) {
  6290   _bmStartWord = mr.start();
  6291   _bmWordSize  = mr.word_size();
  6292   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6293                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6294   if (!brs.is_reserved()) {
  6295     warning("CMS bit map allocation failure");
  6296     return false;
  6298   // For now we'll just commit all of the bit map up fromt.
  6299   // Later on we'll try to be more parsimonious with swap.
  6300   if (!_virtual_space.initialize(brs, brs.size())) {
  6301     warning("CMS bit map backing store failure");
  6302     return false;
  6304   assert(_virtual_space.committed_size() == brs.size(),
  6305          "didn't reserve backing store for all of CMS bit map?");
  6306   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6307   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6308          _bmWordSize, "inconsistency in bit map sizing");
  6309   _bm.set_size(_bmWordSize >> _shifter);
  6311   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6312   assert(isAllClear(),
  6313          "Expected zero'd memory from ReservedSpace constructor");
  6314   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6315          "consistency check");
  6316   return true;
  6319 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6320   HeapWord *next_addr, *end_addr, *last_addr;
  6321   assert_locked();
  6322   assert(covers(mr), "out-of-range error");
  6323   // XXX assert that start and end are appropriately aligned
  6324   for (next_addr = mr.start(), end_addr = mr.end();
  6325        next_addr < end_addr; next_addr = last_addr) {
  6326     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6327     last_addr = dirty_region.end();
  6328     if (!dirty_region.is_empty()) {
  6329       cl->do_MemRegion(dirty_region);
  6330     } else {
  6331       assert(last_addr == end_addr, "program logic");
  6332       return;
  6337 #ifndef PRODUCT
  6338 void CMSBitMap::assert_locked() const {
  6339   CMSLockVerifier::assert_locked(lock());
  6342 bool CMSBitMap::covers(MemRegion mr) const {
  6343   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6344   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6345          "size inconsistency");
  6346   return (mr.start() >= _bmStartWord) &&
  6347          (mr.end()   <= endWord());
  6350 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6351     return (start >= _bmStartWord && (start + size) <= endWord());
  6354 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6355   // verify that there are no 1 bits in the interval [left, right)
  6356   FalseBitMapClosure falseBitMapClosure;
  6357   iterate(&falseBitMapClosure, left, right);
  6360 void CMSBitMap::region_invariant(MemRegion mr)
  6362   assert_locked();
  6363   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6364   assert(!mr.is_empty(), "unexpected empty region");
  6365   assert(covers(mr), "mr should be covered by bit map");
  6366   // convert address range into offset range
  6367   size_t start_ofs = heapWordToOffset(mr.start());
  6368   // Make sure that end() is appropriately aligned
  6369   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6370                         (1 << (_shifter+LogHeapWordSize))),
  6371          "Misaligned mr.end()");
  6372   size_t end_ofs   = heapWordToOffset(mr.end());
  6373   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6376 #endif
  6378 bool CMSMarkStack::allocate(size_t size) {
  6379   // allocate a stack of the requisite depth
  6380   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6381                    size * sizeof(oop)));
  6382   if (!rs.is_reserved()) {
  6383     warning("CMSMarkStack allocation failure");
  6384     return false;
  6386   if (!_virtual_space.initialize(rs, rs.size())) {
  6387     warning("CMSMarkStack backing store failure");
  6388     return false;
  6390   assert(_virtual_space.committed_size() == rs.size(),
  6391          "didn't reserve backing store for all of CMS stack?");
  6392   _base = (oop*)(_virtual_space.low());
  6393   _index = 0;
  6394   _capacity = size;
  6395   NOT_PRODUCT(_max_depth = 0);
  6396   return true;
  6399 // XXX FIX ME !!! In the MT case we come in here holding a
  6400 // leaf lock. For printing we need to take a further lock
  6401 // which has lower rank. We need to recallibrate the two
  6402 // lock-ranks involved in order to be able to rpint the
  6403 // messages below. (Or defer the printing to the caller.
  6404 // For now we take the expedient path of just disabling the
  6405 // messages for the problematic case.)
  6406 void CMSMarkStack::expand() {
  6407   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
  6408   if (_capacity == MarkStackSizeMax) {
  6409     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6410       // We print a warning message only once per CMS cycle.
  6411       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6413     return;
  6415   // Double capacity if possible
  6416   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
  6417   // Do not give up existing stack until we have managed to
  6418   // get the double capacity that we desired.
  6419   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6420                    new_capacity * sizeof(oop)));
  6421   if (rs.is_reserved()) {
  6422     // Release the backing store associated with old stack
  6423     _virtual_space.release();
  6424     // Reinitialize virtual space for new stack
  6425     if (!_virtual_space.initialize(rs, rs.size())) {
  6426       fatal("Not enough swap for expanded marking stack");
  6428     _base = (oop*)(_virtual_space.low());
  6429     _index = 0;
  6430     _capacity = new_capacity;
  6431   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6432     // Failed to double capacity, continue;
  6433     // we print a detail message only once per CMS cycle.
  6434     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6435             SIZE_FORMAT"K",
  6436             _capacity / K, new_capacity / K);
  6441 // Closures
  6442 // XXX: there seems to be a lot of code  duplication here;
  6443 // should refactor and consolidate common code.
  6445 // This closure is used to mark refs into the CMS generation in
  6446 // the CMS bit map. Called at the first checkpoint. This closure
  6447 // assumes that we do not need to re-mark dirty cards; if the CMS
  6448 // generation on which this is used is not an oldest (modulo perm gen)
  6449 // generation then this will lose younger_gen cards!
  6451 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6452   MemRegion span, CMSBitMap* bitMap):
  6453     _span(span),
  6454     _bitMap(bitMap)
  6456     assert(_ref_processor == NULL, "deliberately left NULL");
  6457     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6460 void MarkRefsIntoClosure::do_oop(oop obj) {
  6461   // if p points into _span, then mark corresponding bit in _markBitMap
  6462   assert(obj->is_oop(), "expected an oop");
  6463   HeapWord* addr = (HeapWord*)obj;
  6464   if (_span.contains(addr)) {
  6465     // this should be made more efficient
  6466     _bitMap->mark(addr);
  6470 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6471 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6473 // A variant of the above, used for CMS marking verification.
  6474 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6475   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6476     _span(span),
  6477     _verification_bm(verification_bm),
  6478     _cms_bm(cms_bm)
  6480     assert(_ref_processor == NULL, "deliberately left NULL");
  6481     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6484 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6485   // if p points into _span, then mark corresponding bit in _markBitMap
  6486   assert(obj->is_oop(), "expected an oop");
  6487   HeapWord* addr = (HeapWord*)obj;
  6488   if (_span.contains(addr)) {
  6489     _verification_bm->mark(addr);
  6490     if (!_cms_bm->isMarked(addr)) {
  6491       oop(addr)->print();
  6492       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6493       fatal("... aborting");
  6498 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6499 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6501 //////////////////////////////////////////////////
  6502 // MarkRefsIntoAndScanClosure
  6503 //////////////////////////////////////////////////
  6505 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6506                                                        ReferenceProcessor* rp,
  6507                                                        CMSBitMap* bit_map,
  6508                                                        CMSBitMap* mod_union_table,
  6509                                                        CMSMarkStack*  mark_stack,
  6510                                                        CMSMarkStack*  revisit_stack,
  6511                                                        CMSCollector* collector,
  6512                                                        bool should_yield,
  6513                                                        bool concurrent_precleaning):
  6514   _collector(collector),
  6515   _span(span),
  6516   _bit_map(bit_map),
  6517   _mark_stack(mark_stack),
  6518   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6519                       mark_stack, revisit_stack, concurrent_precleaning),
  6520   _yield(should_yield),
  6521   _concurrent_precleaning(concurrent_precleaning),
  6522   _freelistLock(NULL)
  6524   _ref_processor = rp;
  6525   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6528 // This closure is used to mark refs into the CMS generation at the
  6529 // second (final) checkpoint, and to scan and transitively follow
  6530 // the unmarked oops. It is also used during the concurrent precleaning
  6531 // phase while scanning objects on dirty cards in the CMS generation.
  6532 // The marks are made in the marking bit map and the marking stack is
  6533 // used for keeping the (newly) grey objects during the scan.
  6534 // The parallel version (Par_...) appears further below.
  6535 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6536   if (obj != NULL) {
  6537     assert(obj->is_oop(), "expected an oop");
  6538     HeapWord* addr = (HeapWord*)obj;
  6539     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6540     assert(_collector->overflow_list_is_empty(),
  6541            "overflow list should be empty");
  6542     if (_span.contains(addr) &&
  6543         !_bit_map->isMarked(addr)) {
  6544       // mark bit map (object is now grey)
  6545       _bit_map->mark(addr);
  6546       // push on marking stack (stack should be empty), and drain the
  6547       // stack by applying this closure to the oops in the oops popped
  6548       // from the stack (i.e. blacken the grey objects)
  6549       bool res = _mark_stack->push(obj);
  6550       assert(res, "Should have space to push on empty stack");
  6551       do {
  6552         oop new_oop = _mark_stack->pop();
  6553         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6554         assert(new_oop->is_parsable(), "Found unparsable oop");
  6555         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6556                "only grey objects on this stack");
  6557         // iterate over the oops in this oop, marking and pushing
  6558         // the ones in CMS heap (i.e. in _span).
  6559         new_oop->oop_iterate(&_pushAndMarkClosure);
  6560         // check if it's time to yield
  6561         do_yield_check();
  6562       } while (!_mark_stack->isEmpty() ||
  6563                (!_concurrent_precleaning && take_from_overflow_list()));
  6564         // if marking stack is empty, and we are not doing this
  6565         // during precleaning, then check the overflow list
  6567     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6568     assert(_collector->overflow_list_is_empty(),
  6569            "overflow list was drained above");
  6570     // We could restore evacuated mark words, if any, used for
  6571     // overflow list links here because the overflow list is
  6572     // provably empty here. That would reduce the maximum
  6573     // size requirements for preserved_{oop,mark}_stack.
  6574     // But we'll just postpone it until we are all done
  6575     // so we can just stream through.
  6576     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6577       _collector->restore_preserved_marks_if_any();
  6578       assert(_collector->no_preserved_marks(), "No preserved marks");
  6580     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6581            "All preserved marks should have been restored above");
  6585 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6586 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6588 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6589   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6590          "CMS thread should hold CMS token");
  6591   assert_lock_strong(_freelistLock);
  6592   assert_lock_strong(_bit_map->lock());
  6593   // relinquish the free_list_lock and bitMaplock()
  6594   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6595   _bit_map->lock()->unlock();
  6596   _freelistLock->unlock();
  6597   ConcurrentMarkSweepThread::desynchronize(true);
  6598   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6599   _collector->stopTimer();
  6600   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6601   if (PrintCMSStatistics != 0) {
  6602     _collector->incrementYields();
  6604   _collector->icms_wait();
  6606   // See the comment in coordinator_yield()
  6607   for (unsigned i = 0;
  6608        i < CMSYieldSleepCount &&
  6609        ConcurrentMarkSweepThread::should_yield() &&
  6610        !CMSCollector::foregroundGCIsActive();
  6611        ++i) {
  6612     os::sleep(Thread::current(), 1, false);
  6613     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6616   ConcurrentMarkSweepThread::synchronize(true);
  6617   _freelistLock->lock_without_safepoint_check();
  6618   _bit_map->lock()->lock_without_safepoint_check();
  6619   _collector->startTimer();
  6622 ///////////////////////////////////////////////////////////
  6623 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6624 //                                 MarkRefsIntoAndScanClosure
  6625 ///////////////////////////////////////////////////////////
  6626 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6627   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6628   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6629   _span(span),
  6630   _bit_map(bit_map),
  6631   _work_queue(work_queue),
  6632   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6633                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6634   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6635                           revisit_stack)
  6637   _ref_processor = rp;
  6638   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6641 // This closure is used to mark refs into the CMS generation at the
  6642 // second (final) checkpoint, and to scan and transitively follow
  6643 // the unmarked oops. The marks are made in the marking bit map and
  6644 // the work_queue is used for keeping the (newly) grey objects during
  6645 // the scan phase whence they are also available for stealing by parallel
  6646 // threads. Since the marking bit map is shared, updates are
  6647 // synchronized (via CAS).
  6648 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6649   if (obj != NULL) {
  6650     // Ignore mark word because this could be an already marked oop
  6651     // that may be chained at the end of the overflow list.
  6652     assert(obj->is_oop(true), "expected an oop");
  6653     HeapWord* addr = (HeapWord*)obj;
  6654     if (_span.contains(addr) &&
  6655         !_bit_map->isMarked(addr)) {
  6656       // mark bit map (object will become grey):
  6657       // It is possible for several threads to be
  6658       // trying to "claim" this object concurrently;
  6659       // the unique thread that succeeds in marking the
  6660       // object first will do the subsequent push on
  6661       // to the work queue (or overflow list).
  6662       if (_bit_map->par_mark(addr)) {
  6663         // push on work_queue (which may not be empty), and trim the
  6664         // queue to an appropriate length by applying this closure to
  6665         // the oops in the oops popped from the stack (i.e. blacken the
  6666         // grey objects)
  6667         bool res = _work_queue->push(obj);
  6668         assert(res, "Low water mark should be less than capacity?");
  6669         trim_queue(_low_water_mark);
  6670       } // Else, another thread claimed the object
  6675 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6676 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6678 // This closure is used to rescan the marked objects on the dirty cards
  6679 // in the mod union table and the card table proper.
  6680 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6681   oop p, MemRegion mr) {
  6683   size_t size = 0;
  6684   HeapWord* addr = (HeapWord*)p;
  6685   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6686   assert(_span.contains(addr), "we are scanning the CMS generation");
  6687   // check if it's time to yield
  6688   if (do_yield_check()) {
  6689     // We yielded for some foreground stop-world work,
  6690     // and we have been asked to abort this ongoing preclean cycle.
  6691     return 0;
  6693   if (_bitMap->isMarked(addr)) {
  6694     // it's marked; is it potentially uninitialized?
  6695     if (p->klass_or_null() != NULL) {
  6696       // If is_conc_safe is false, the object may be undergoing
  6697       // change by the VM outside a safepoint.  Don't try to
  6698       // scan it, but rather leave it for the remark phase.
  6699       if (CMSPermGenPrecleaningEnabled &&
  6700           (!p->is_conc_safe() || !p->is_parsable())) {
  6701         // Signal precleaning to redirty the card since
  6702         // the klass pointer is already installed.
  6703         assert(size == 0, "Initial value");
  6704       } else {
  6705         assert(p->is_parsable(), "must be parsable.");
  6706         // an initialized object; ignore mark word in verification below
  6707         // since we are running concurrent with mutators
  6708         assert(p->is_oop(true), "should be an oop");
  6709         if (p->is_objArray()) {
  6710           // objArrays are precisely marked; restrict scanning
  6711           // to dirty cards only.
  6712           size = CompactibleFreeListSpace::adjustObjectSize(
  6713                    p->oop_iterate(_scanningClosure, mr));
  6714         } else {
  6715           // A non-array may have been imprecisely marked; we need
  6716           // to scan object in its entirety.
  6717           size = CompactibleFreeListSpace::adjustObjectSize(
  6718                    p->oop_iterate(_scanningClosure));
  6720         #ifdef DEBUG
  6721           size_t direct_size =
  6722             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6723           assert(size == direct_size, "Inconsistency in size");
  6724           assert(size >= 3, "Necessary for Printezis marks to work");
  6725           if (!_bitMap->isMarked(addr+1)) {
  6726             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6727           } else {
  6728             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6729             assert(_bitMap->isMarked(addr+size-1),
  6730                    "inconsistent Printezis mark");
  6732         #endif // DEBUG
  6734     } else {
  6735       // an unitialized object
  6736       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6737       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6738       size = pointer_delta(nextOneAddr + 1, addr);
  6739       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6740              "alignment problem");
  6741       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6742       // will dirty the card when the klass pointer is installed in the
  6743       // object (signalling the completion of initialization).
  6745   } else {
  6746     // Either a not yet marked object or an uninitialized object
  6747     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6748       // An uninitialized object, skip to the next card, since
  6749       // we may not be able to read its P-bits yet.
  6750       assert(size == 0, "Initial value");
  6751     } else {
  6752       // An object not (yet) reached by marking: we merely need to
  6753       // compute its size so as to go look at the next block.
  6754       assert(p->is_oop(true), "should be an oop");
  6755       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6758   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6759   return size;
  6762 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6763   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6764          "CMS thread should hold CMS token");
  6765   assert_lock_strong(_freelistLock);
  6766   assert_lock_strong(_bitMap->lock());
  6767   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6768   // relinquish the free_list_lock and bitMaplock()
  6769   _bitMap->lock()->unlock();
  6770   _freelistLock->unlock();
  6771   ConcurrentMarkSweepThread::desynchronize(true);
  6772   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6773   _collector->stopTimer();
  6774   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6775   if (PrintCMSStatistics != 0) {
  6776     _collector->incrementYields();
  6778   _collector->icms_wait();
  6780   // See the comment in coordinator_yield()
  6781   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6782                    ConcurrentMarkSweepThread::should_yield() &&
  6783                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6784     os::sleep(Thread::current(), 1, false);
  6785     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6788   ConcurrentMarkSweepThread::synchronize(true);
  6789   _freelistLock->lock_without_safepoint_check();
  6790   _bitMap->lock()->lock_without_safepoint_check();
  6791   _collector->startTimer();
  6795 //////////////////////////////////////////////////////////////////
  6796 // SurvivorSpacePrecleanClosure
  6797 //////////////////////////////////////////////////////////////////
  6798 // This (single-threaded) closure is used to preclean the oops in
  6799 // the survivor spaces.
  6800 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6802   HeapWord* addr = (HeapWord*)p;
  6803   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6804   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6805   assert(p->klass_or_null() != NULL, "object should be initializd");
  6806   assert(p->is_parsable(), "must be parsable.");
  6807   // an initialized object; ignore mark word in verification below
  6808   // since we are running concurrent with mutators
  6809   assert(p->is_oop(true), "should be an oop");
  6810   // Note that we do not yield while we iterate over
  6811   // the interior oops of p, pushing the relevant ones
  6812   // on our marking stack.
  6813   size_t size = p->oop_iterate(_scanning_closure);
  6814   do_yield_check();
  6815   // Observe that below, we do not abandon the preclean
  6816   // phase as soon as we should; rather we empty the
  6817   // marking stack before returning. This is to satisfy
  6818   // some existing assertions. In general, it may be a
  6819   // good idea to abort immediately and complete the marking
  6820   // from the grey objects at a later time.
  6821   while (!_mark_stack->isEmpty()) {
  6822     oop new_oop = _mark_stack->pop();
  6823     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6824     assert(new_oop->is_parsable(), "Found unparsable oop");
  6825     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6826            "only grey objects on this stack");
  6827     // iterate over the oops in this oop, marking and pushing
  6828     // the ones in CMS heap (i.e. in _span).
  6829     new_oop->oop_iterate(_scanning_closure);
  6830     // check if it's time to yield
  6831     do_yield_check();
  6833   unsigned int after_count =
  6834     GenCollectedHeap::heap()->total_collections();
  6835   bool abort = (_before_count != after_count) ||
  6836                _collector->should_abort_preclean();
  6837   return abort ? 0 : size;
  6840 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6841   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6842          "CMS thread should hold CMS token");
  6843   assert_lock_strong(_bit_map->lock());
  6844   DEBUG_ONLY(RememberKlassesChecker smx(false);)
  6845   // Relinquish the bit map lock
  6846   _bit_map->lock()->unlock();
  6847   ConcurrentMarkSweepThread::desynchronize(true);
  6848   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6849   _collector->stopTimer();
  6850   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6851   if (PrintCMSStatistics != 0) {
  6852     _collector->incrementYields();
  6854   _collector->icms_wait();
  6856   // See the comment in coordinator_yield()
  6857   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6858                        ConcurrentMarkSweepThread::should_yield() &&
  6859                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6860     os::sleep(Thread::current(), 1, false);
  6861     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6864   ConcurrentMarkSweepThread::synchronize(true);
  6865   _bit_map->lock()->lock_without_safepoint_check();
  6866   _collector->startTimer();
  6869 // This closure is used to rescan the marked objects on the dirty cards
  6870 // in the mod union table and the card table proper. In the parallel
  6871 // case, although the bitMap is shared, we do a single read so the
  6872 // isMarked() query is "safe".
  6873 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6874   // Ignore mark word because we are running concurrent with mutators
  6875   assert(p->is_oop_or_null(true), "expected an oop or null");
  6876   HeapWord* addr = (HeapWord*)p;
  6877   assert(_span.contains(addr), "we are scanning the CMS generation");
  6878   bool is_obj_array = false;
  6879   #ifdef DEBUG
  6880     if (!_parallel) {
  6881       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6882       assert(_collector->overflow_list_is_empty(),
  6883              "overflow list should be empty");
  6886   #endif // DEBUG
  6887   if (_bit_map->isMarked(addr)) {
  6888     // Obj arrays are precisely marked, non-arrays are not;
  6889     // so we scan objArrays precisely and non-arrays in their
  6890     // entirety.
  6891     if (p->is_objArray()) {
  6892       is_obj_array = true;
  6893       if (_parallel) {
  6894         p->oop_iterate(_par_scan_closure, mr);
  6895       } else {
  6896         p->oop_iterate(_scan_closure, mr);
  6898     } else {
  6899       if (_parallel) {
  6900         p->oop_iterate(_par_scan_closure);
  6901       } else {
  6902         p->oop_iterate(_scan_closure);
  6906   #ifdef DEBUG
  6907     if (!_parallel) {
  6908       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6909       assert(_collector->overflow_list_is_empty(),
  6910              "overflow list should be empty");
  6913   #endif // DEBUG
  6914   return is_obj_array;
  6917 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6918                         MemRegion span,
  6919                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6920                         CMSMarkStack*  revisitStack,
  6921                         bool should_yield, bool verifying):
  6922   _collector(collector),
  6923   _span(span),
  6924   _bitMap(bitMap),
  6925   _mut(&collector->_modUnionTable),
  6926   _markStack(markStack),
  6927   _revisitStack(revisitStack),
  6928   _yield(should_yield),
  6929   _skipBits(0)
  6931   assert(_markStack->isEmpty(), "stack should be empty");
  6932   _finger = _bitMap->startWord();
  6933   _threshold = _finger;
  6934   assert(_collector->_restart_addr == NULL, "Sanity check");
  6935   assert(_span.contains(_finger), "Out of bounds _finger?");
  6936   DEBUG_ONLY(_verifying = verifying;)
  6939 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6940   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6941   assert(_span.contains(addr), "Out of bounds _finger?");
  6942   _finger = addr;
  6943   _threshold = (HeapWord*)round_to(
  6944                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6947 // Should revisit to see if this should be restructured for
  6948 // greater efficiency.
  6949 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6950   if (_skipBits > 0) {
  6951     _skipBits--;
  6952     return true;
  6954   // convert offset into a HeapWord*
  6955   HeapWord* addr = _bitMap->startWord() + offset;
  6956   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6957          "address out of range");
  6958   assert(_bitMap->isMarked(addr), "tautology");
  6959   if (_bitMap->isMarked(addr+1)) {
  6960     // this is an allocated but not yet initialized object
  6961     assert(_skipBits == 0, "tautology");
  6962     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6963     oop p = oop(addr);
  6964     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6965       DEBUG_ONLY(if (!_verifying) {)
  6966         // We re-dirty the cards on which this object lies and increase
  6967         // the _threshold so that we'll come back to scan this object
  6968         // during the preclean or remark phase. (CMSCleanOnEnter)
  6969         if (CMSCleanOnEnter) {
  6970           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6971           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6972                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6973           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  6974           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6975           // Bump _threshold to end_card_addr; note that
  6976           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6977           // This prevents future clearing of the card as the scan proceeds
  6978           // to the right.
  6979           assert(_threshold <= end_card_addr,
  6980                  "Because we are just scanning into this object");
  6981           if (_threshold < end_card_addr) {
  6982             _threshold = end_card_addr;
  6984           if (p->klass_or_null() != NULL) {
  6985             // Redirty the range of cards...
  6986             _mut->mark_range(redirty_range);
  6987           } // ...else the setting of klass will dirty the card anyway.
  6989       DEBUG_ONLY(})
  6990       return true;
  6993   scanOopsInOop(addr);
  6994   return true;
  6997 // We take a break if we've been at this for a while,
  6998 // so as to avoid monopolizing the locks involved.
  6999 void MarkFromRootsClosure::do_yield_work() {
  7000   // First give up the locks, then yield, then re-lock
  7001   // We should probably use a constructor/destructor idiom to
  7002   // do this unlock/lock or modify the MutexUnlocker class to
  7003   // serve our purpose. XXX
  7004   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7005          "CMS thread should hold CMS token");
  7006   assert_lock_strong(_bitMap->lock());
  7007   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7008   _bitMap->lock()->unlock();
  7009   ConcurrentMarkSweepThread::desynchronize(true);
  7010   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7011   _collector->stopTimer();
  7012   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7013   if (PrintCMSStatistics != 0) {
  7014     _collector->incrementYields();
  7016   _collector->icms_wait();
  7018   // See the comment in coordinator_yield()
  7019   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7020                        ConcurrentMarkSweepThread::should_yield() &&
  7021                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7022     os::sleep(Thread::current(), 1, false);
  7023     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7026   ConcurrentMarkSweepThread::synchronize(true);
  7027   _bitMap->lock()->lock_without_safepoint_check();
  7028   _collector->startTimer();
  7031 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7032   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7033   assert(_markStack->isEmpty(),
  7034          "should drain stack to limit stack usage");
  7035   // convert ptr to an oop preparatory to scanning
  7036   oop obj = oop(ptr);
  7037   // Ignore mark word in verification below, since we
  7038   // may be running concurrent with mutators.
  7039   assert(obj->is_oop(true), "should be an oop");
  7040   assert(_finger <= ptr, "_finger runneth ahead");
  7041   // advance the finger to right end of this object
  7042   _finger = ptr + obj->size();
  7043   assert(_finger > ptr, "we just incremented it above");
  7044   // On large heaps, it may take us some time to get through
  7045   // the marking phase (especially if running iCMS). During
  7046   // this time it's possible that a lot of mutations have
  7047   // accumulated in the card table and the mod union table --
  7048   // these mutation records are redundant until we have
  7049   // actually traced into the corresponding card.
  7050   // Here, we check whether advancing the finger would make
  7051   // us cross into a new card, and if so clear corresponding
  7052   // cards in the MUT (preclean them in the card-table in the
  7053   // future).
  7055   DEBUG_ONLY(if (!_verifying) {)
  7056     // The clean-on-enter optimization is disabled by default,
  7057     // until we fix 6178663.
  7058     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7059       // [_threshold, _finger) represents the interval
  7060       // of cards to be cleared  in MUT (or precleaned in card table).
  7061       // The set of cards to be cleared is all those that overlap
  7062       // with the interval [_threshold, _finger); note that
  7063       // _threshold is always kept card-aligned but _finger isn't
  7064       // always card-aligned.
  7065       HeapWord* old_threshold = _threshold;
  7066       assert(old_threshold == (HeapWord*)round_to(
  7067               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7068              "_threshold should always be card-aligned");
  7069       _threshold = (HeapWord*)round_to(
  7070                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7071       MemRegion mr(old_threshold, _threshold);
  7072       assert(!mr.is_empty(), "Control point invariant");
  7073       assert(_span.contains(mr), "Should clear within span");
  7074       // XXX When _finger crosses from old gen into perm gen
  7075       // we may be doing unnecessary cleaning; do better in the
  7076       // future by detecting that condition and clearing fewer
  7077       // MUT/CT entries.
  7078       _mut->clear_range(mr);
  7080   DEBUG_ONLY(})
  7081   // Note: the finger doesn't advance while we drain
  7082   // the stack below.
  7083   PushOrMarkClosure pushOrMarkClosure(_collector,
  7084                                       _span, _bitMap, _markStack,
  7085                                       _revisitStack,
  7086                                       _finger, this);
  7087   bool res = _markStack->push(obj);
  7088   assert(res, "Empty non-zero size stack should have space for single push");
  7089   while (!_markStack->isEmpty()) {
  7090     oop new_oop = _markStack->pop();
  7091     // Skip verifying header mark word below because we are
  7092     // running concurrent with mutators.
  7093     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7094     // now scan this oop's oops
  7095     new_oop->oop_iterate(&pushOrMarkClosure);
  7096     do_yield_check();
  7098   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7101 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7102                        CMSCollector* collector, MemRegion span,
  7103                        CMSBitMap* bit_map,
  7104                        OopTaskQueue* work_queue,
  7105                        CMSMarkStack*  overflow_stack,
  7106                        CMSMarkStack*  revisit_stack,
  7107                        bool should_yield):
  7108   _collector(collector),
  7109   _whole_span(collector->_span),
  7110   _span(span),
  7111   _bit_map(bit_map),
  7112   _mut(&collector->_modUnionTable),
  7113   _work_queue(work_queue),
  7114   _overflow_stack(overflow_stack),
  7115   _revisit_stack(revisit_stack),
  7116   _yield(should_yield),
  7117   _skip_bits(0),
  7118   _task(task)
  7120   assert(_work_queue->size() == 0, "work_queue should be empty");
  7121   _finger = span.start();
  7122   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7123   assert(_span.contains(_finger), "Out of bounds _finger?");
  7126 // Should revisit to see if this should be restructured for
  7127 // greater efficiency.
  7128 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7129   if (_skip_bits > 0) {
  7130     _skip_bits--;
  7131     return true;
  7133   // convert offset into a HeapWord*
  7134   HeapWord* addr = _bit_map->startWord() + offset;
  7135   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7136          "address out of range");
  7137   assert(_bit_map->isMarked(addr), "tautology");
  7138   if (_bit_map->isMarked(addr+1)) {
  7139     // this is an allocated object that might not yet be initialized
  7140     assert(_skip_bits == 0, "tautology");
  7141     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7142     oop p = oop(addr);
  7143     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7144       // in the case of Clean-on-Enter optimization, redirty card
  7145       // and avoid clearing card by increasing  the threshold.
  7146       return true;
  7149   scan_oops_in_oop(addr);
  7150   return true;
  7153 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7154   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7155   // Should we assert that our work queue is empty or
  7156   // below some drain limit?
  7157   assert(_work_queue->size() == 0,
  7158          "should drain stack to limit stack usage");
  7159   // convert ptr to an oop preparatory to scanning
  7160   oop obj = oop(ptr);
  7161   // Ignore mark word in verification below, since we
  7162   // may be running concurrent with mutators.
  7163   assert(obj->is_oop(true), "should be an oop");
  7164   assert(_finger <= ptr, "_finger runneth ahead");
  7165   // advance the finger to right end of this object
  7166   _finger = ptr + obj->size();
  7167   assert(_finger > ptr, "we just incremented it above");
  7168   // On large heaps, it may take us some time to get through
  7169   // the marking phase (especially if running iCMS). During
  7170   // this time it's possible that a lot of mutations have
  7171   // accumulated in the card table and the mod union table --
  7172   // these mutation records are redundant until we have
  7173   // actually traced into the corresponding card.
  7174   // Here, we check whether advancing the finger would make
  7175   // us cross into a new card, and if so clear corresponding
  7176   // cards in the MUT (preclean them in the card-table in the
  7177   // future).
  7179   // The clean-on-enter optimization is disabled by default,
  7180   // until we fix 6178663.
  7181   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7182     // [_threshold, _finger) represents the interval
  7183     // of cards to be cleared  in MUT (or precleaned in card table).
  7184     // The set of cards to be cleared is all those that overlap
  7185     // with the interval [_threshold, _finger); note that
  7186     // _threshold is always kept card-aligned but _finger isn't
  7187     // always card-aligned.
  7188     HeapWord* old_threshold = _threshold;
  7189     assert(old_threshold == (HeapWord*)round_to(
  7190             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7191            "_threshold should always be card-aligned");
  7192     _threshold = (HeapWord*)round_to(
  7193                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7194     MemRegion mr(old_threshold, _threshold);
  7195     assert(!mr.is_empty(), "Control point invariant");
  7196     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7197     // XXX When _finger crosses from old gen into perm gen
  7198     // we may be doing unnecessary cleaning; do better in the
  7199     // future by detecting that condition and clearing fewer
  7200     // MUT/CT entries.
  7201     _mut->clear_range(mr);
  7204   // Note: the local finger doesn't advance while we drain
  7205   // the stack below, but the global finger sure can and will.
  7206   HeapWord** gfa = _task->global_finger_addr();
  7207   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7208                                       _span, _bit_map,
  7209                                       _work_queue,
  7210                                       _overflow_stack,
  7211                                       _revisit_stack,
  7212                                       _finger,
  7213                                       gfa, this);
  7214   bool res = _work_queue->push(obj);   // overflow could occur here
  7215   assert(res, "Will hold once we use workqueues");
  7216   while (true) {
  7217     oop new_oop;
  7218     if (!_work_queue->pop_local(new_oop)) {
  7219       // We emptied our work_queue; check if there's stuff that can
  7220       // be gotten from the overflow stack.
  7221       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7222             _overflow_stack, _work_queue)) {
  7223         do_yield_check();
  7224         continue;
  7225       } else {  // done
  7226         break;
  7229     // Skip verifying header mark word below because we are
  7230     // running concurrent with mutators.
  7231     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7232     // now scan this oop's oops
  7233     new_oop->oop_iterate(&pushOrMarkClosure);
  7234     do_yield_check();
  7236   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7239 // Yield in response to a request from VM Thread or
  7240 // from mutators.
  7241 void Par_MarkFromRootsClosure::do_yield_work() {
  7242   assert(_task != NULL, "sanity");
  7243   _task->yield();
  7246 // A variant of the above used for verifying CMS marking work.
  7247 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7248                         MemRegion span,
  7249                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7250                         CMSMarkStack*  mark_stack):
  7251   _collector(collector),
  7252   _span(span),
  7253   _verification_bm(verification_bm),
  7254   _cms_bm(cms_bm),
  7255   _mark_stack(mark_stack),
  7256   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7257                       mark_stack)
  7259   assert(_mark_stack->isEmpty(), "stack should be empty");
  7260   _finger = _verification_bm->startWord();
  7261   assert(_collector->_restart_addr == NULL, "Sanity check");
  7262   assert(_span.contains(_finger), "Out of bounds _finger?");
  7265 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7266   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7267   assert(_span.contains(addr), "Out of bounds _finger?");
  7268   _finger = addr;
  7271 // Should revisit to see if this should be restructured for
  7272 // greater efficiency.
  7273 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7274   // convert offset into a HeapWord*
  7275   HeapWord* addr = _verification_bm->startWord() + offset;
  7276   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7277          "address out of range");
  7278   assert(_verification_bm->isMarked(addr), "tautology");
  7279   assert(_cms_bm->isMarked(addr), "tautology");
  7281   assert(_mark_stack->isEmpty(),
  7282          "should drain stack to limit stack usage");
  7283   // convert addr to an oop preparatory to scanning
  7284   oop obj = oop(addr);
  7285   assert(obj->is_oop(), "should be an oop");
  7286   assert(_finger <= addr, "_finger runneth ahead");
  7287   // advance the finger to right end of this object
  7288   _finger = addr + obj->size();
  7289   assert(_finger > addr, "we just incremented it above");
  7290   // Note: the finger doesn't advance while we drain
  7291   // the stack below.
  7292   bool res = _mark_stack->push(obj);
  7293   assert(res, "Empty non-zero size stack should have space for single push");
  7294   while (!_mark_stack->isEmpty()) {
  7295     oop new_oop = _mark_stack->pop();
  7296     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7297     // now scan this oop's oops
  7298     new_oop->oop_iterate(&_pam_verify_closure);
  7300   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7301   return true;
  7304 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7305   CMSCollector* collector, MemRegion span,
  7306   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7307   CMSMarkStack*  mark_stack):
  7308   OopClosure(collector->ref_processor()),
  7309   _collector(collector),
  7310   _span(span),
  7311   _verification_bm(verification_bm),
  7312   _cms_bm(cms_bm),
  7313   _mark_stack(mark_stack)
  7314 { }
  7316 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7317 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7319 // Upon stack overflow, we discard (part of) the stack,
  7320 // remembering the least address amongst those discarded
  7321 // in CMSCollector's _restart_address.
  7322 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7323   // Remember the least grey address discarded
  7324   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7325   _collector->lower_restart_addr(ra);
  7326   _mark_stack->reset();  // discard stack contents
  7327   _mark_stack->expand(); // expand the stack if possible
  7330 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7331   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7332   HeapWord* addr = (HeapWord*)obj;
  7333   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7334     // Oop lies in _span and isn't yet grey or black
  7335     _verification_bm->mark(addr);            // now grey
  7336     if (!_cms_bm->isMarked(addr)) {
  7337       oop(addr)->print();
  7338       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7339                              addr);
  7340       fatal("... aborting");
  7343     if (!_mark_stack->push(obj)) { // stack overflow
  7344       if (PrintCMSStatistics != 0) {
  7345         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7346                                SIZE_FORMAT, _mark_stack->capacity());
  7348       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7349       handle_stack_overflow(addr);
  7351     // anything including and to the right of _finger
  7352     // will be scanned as we iterate over the remainder of the
  7353     // bit map
  7357 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7358                      MemRegion span,
  7359                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7360                      CMSMarkStack*  revisitStack,
  7361                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7362   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
  7363   _span(span),
  7364   _bitMap(bitMap),
  7365   _markStack(markStack),
  7366   _finger(finger),
  7367   _parent(parent)
  7368 { }
  7370 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7371                      MemRegion span,
  7372                      CMSBitMap* bit_map,
  7373                      OopTaskQueue* work_queue,
  7374                      CMSMarkStack*  overflow_stack,
  7375                      CMSMarkStack*  revisit_stack,
  7376                      HeapWord* finger,
  7377                      HeapWord** global_finger_addr,
  7378                      Par_MarkFromRootsClosure* parent) :
  7379   Par_KlassRememberingOopClosure(collector,
  7380                             collector->ref_processor(),
  7381                             revisit_stack),
  7382   _whole_span(collector->_span),
  7383   _span(span),
  7384   _bit_map(bit_map),
  7385   _work_queue(work_queue),
  7386   _overflow_stack(overflow_stack),
  7387   _finger(finger),
  7388   _global_finger_addr(global_finger_addr),
  7389   _parent(parent)
  7390 { }
  7392 // Assumes thread-safe access by callers, who are
  7393 // responsible for mutual exclusion.
  7394 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7395   assert(_span.contains(low), "Out of bounds addr");
  7396   if (_restart_addr == NULL) {
  7397     _restart_addr = low;
  7398   } else {
  7399     _restart_addr = MIN2(_restart_addr, low);
  7403 // Upon stack overflow, we discard (part of) the stack,
  7404 // remembering the least address amongst those discarded
  7405 // in CMSCollector's _restart_address.
  7406 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7407   // Remember the least grey address discarded
  7408   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7409   _collector->lower_restart_addr(ra);
  7410   _markStack->reset();  // discard stack contents
  7411   _markStack->expand(); // expand the stack if possible
  7414 // Upon stack overflow, we discard (part of) the stack,
  7415 // remembering the least address amongst those discarded
  7416 // in CMSCollector's _restart_address.
  7417 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7418   // We need to do this under a mutex to prevent other
  7419   // workers from interfering with the work done below.
  7420   MutexLockerEx ml(_overflow_stack->par_lock(),
  7421                    Mutex::_no_safepoint_check_flag);
  7422   // Remember the least grey address discarded
  7423   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7424   _collector->lower_restart_addr(ra);
  7425   _overflow_stack->reset();  // discard stack contents
  7426   _overflow_stack->expand(); // expand the stack if possible
  7429 void PushOrMarkClosure::do_oop(oop obj) {
  7430   // Ignore mark word because we are running concurrent with mutators.
  7431   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7432   HeapWord* addr = (HeapWord*)obj;
  7433   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7434     // Oop lies in _span and isn't yet grey or black
  7435     _bitMap->mark(addr);            // now grey
  7436     if (addr < _finger) {
  7437       // the bit map iteration has already either passed, or
  7438       // sampled, this bit in the bit map; we'll need to
  7439       // use the marking stack to scan this oop's oops.
  7440       bool simulate_overflow = false;
  7441       NOT_PRODUCT(
  7442         if (CMSMarkStackOverflowALot &&
  7443             _collector->simulate_overflow()) {
  7444           // simulate a stack overflow
  7445           simulate_overflow = true;
  7448       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7449         if (PrintCMSStatistics != 0) {
  7450           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7451                                  SIZE_FORMAT, _markStack->capacity());
  7453         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7454         handle_stack_overflow(addr);
  7457     // anything including and to the right of _finger
  7458     // will be scanned as we iterate over the remainder of the
  7459     // bit map
  7460     do_yield_check();
  7464 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7465 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7467 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7468   // Ignore mark word because we are running concurrent with mutators.
  7469   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7470   HeapWord* addr = (HeapWord*)obj;
  7471   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7472     // Oop lies in _span and isn't yet grey or black
  7473     // We read the global_finger (volatile read) strictly after marking oop
  7474     bool res = _bit_map->par_mark(addr);    // now grey
  7475     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7476     // Should we push this marked oop on our stack?
  7477     // -- if someone else marked it, nothing to do
  7478     // -- if target oop is above global finger nothing to do
  7479     // -- if target oop is in chunk and above local finger
  7480     //      then nothing to do
  7481     // -- else push on work queue
  7482     if (   !res       // someone else marked it, they will deal with it
  7483         || (addr >= *gfa)  // will be scanned in a later task
  7484         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7485       return;
  7487     // the bit map iteration has already either passed, or
  7488     // sampled, this bit in the bit map; we'll need to
  7489     // use the marking stack to scan this oop's oops.
  7490     bool simulate_overflow = false;
  7491     NOT_PRODUCT(
  7492       if (CMSMarkStackOverflowALot &&
  7493           _collector->simulate_overflow()) {
  7494         // simulate a stack overflow
  7495         simulate_overflow = true;
  7498     if (simulate_overflow ||
  7499         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7500       // stack overflow
  7501       if (PrintCMSStatistics != 0) {
  7502         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7503                                SIZE_FORMAT, _overflow_stack->capacity());
  7505       // We cannot assert that the overflow stack is full because
  7506       // it may have been emptied since.
  7507       assert(simulate_overflow ||
  7508              _work_queue->size() == _work_queue->max_elems(),
  7509             "Else push should have succeeded");
  7510       handle_stack_overflow(addr);
  7512     do_yield_check();
  7516 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7517 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7519 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
  7520                                              ReferenceProcessor* rp,
  7521                                              CMSMarkStack* revisit_stack) :
  7522   OopClosure(rp),
  7523   _collector(collector),
  7524   _revisit_stack(revisit_stack),
  7525   _should_remember_klasses(collector->should_unload_classes()) {}
  7527 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7528                                        MemRegion span,
  7529                                        ReferenceProcessor* rp,
  7530                                        CMSBitMap* bit_map,
  7531                                        CMSBitMap* mod_union_table,
  7532                                        CMSMarkStack*  mark_stack,
  7533                                        CMSMarkStack*  revisit_stack,
  7534                                        bool           concurrent_precleaning):
  7535   KlassRememberingOopClosure(collector, rp, revisit_stack),
  7536   _span(span),
  7537   _bit_map(bit_map),
  7538   _mod_union_table(mod_union_table),
  7539   _mark_stack(mark_stack),
  7540   _concurrent_precleaning(concurrent_precleaning)
  7542   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7545 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7546 // the non-parallel version (the parallel version appears further below.)
  7547 void PushAndMarkClosure::do_oop(oop obj) {
  7548   // Ignore mark word verification. If during concurrent precleaning,
  7549   // the object monitor may be locked. If during the checkpoint
  7550   // phases, the object may already have been reached by a  different
  7551   // path and may be at the end of the global overflow list (so
  7552   // the mark word may be NULL).
  7553   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7554          "expected an oop or NULL");
  7555   HeapWord* addr = (HeapWord*)obj;
  7556   // Check if oop points into the CMS generation
  7557   // and is not marked
  7558   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7559     // a white object ...
  7560     _bit_map->mark(addr);         // ... now grey
  7561     // push on the marking stack (grey set)
  7562     bool simulate_overflow = false;
  7563     NOT_PRODUCT(
  7564       if (CMSMarkStackOverflowALot &&
  7565           _collector->simulate_overflow()) {
  7566         // simulate a stack overflow
  7567         simulate_overflow = true;
  7570     if (simulate_overflow || !_mark_stack->push(obj)) {
  7571       if (_concurrent_precleaning) {
  7572          // During precleaning we can just dirty the appropriate card(s)
  7573          // in the mod union table, thus ensuring that the object remains
  7574          // in the grey set  and continue. In the case of object arrays
  7575          // we need to dirty all of the cards that the object spans,
  7576          // since the rescan of object arrays will be limited to the
  7577          // dirty cards.
  7578          // Note that no one can be intefering with us in this action
  7579          // of dirtying the mod union table, so no locking or atomics
  7580          // are required.
  7581          if (obj->is_objArray()) {
  7582            size_t sz = obj->size();
  7583            HeapWord* end_card_addr = (HeapWord*)round_to(
  7584                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7585            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7586            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7587            _mod_union_table->mark_range(redirty_range);
  7588          } else {
  7589            _mod_union_table->mark(addr);
  7591          _collector->_ser_pmc_preclean_ovflw++;
  7592       } else {
  7593          // During the remark phase, we need to remember this oop
  7594          // in the overflow list.
  7595          _collector->push_on_overflow_list(obj);
  7596          _collector->_ser_pmc_remark_ovflw++;
  7602 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7603                                                MemRegion span,
  7604                                                ReferenceProcessor* rp,
  7605                                                CMSBitMap* bit_map,
  7606                                                OopTaskQueue* work_queue,
  7607                                                CMSMarkStack* revisit_stack):
  7608   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
  7609   _span(span),
  7610   _bit_map(bit_map),
  7611   _work_queue(work_queue)
  7613   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7616 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7617 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7619 // Grey object rescan during second checkpoint phase --
  7620 // the parallel version.
  7621 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7622   // In the assert below, we ignore the mark word because
  7623   // this oop may point to an already visited object that is
  7624   // on the overflow stack (in which case the mark word has
  7625   // been hijacked for chaining into the overflow stack --
  7626   // if this is the last object in the overflow stack then
  7627   // its mark word will be NULL). Because this object may
  7628   // have been subsequently popped off the global overflow
  7629   // stack, and the mark word possibly restored to the prototypical
  7630   // value, by the time we get to examined this failing assert in
  7631   // the debugger, is_oop_or_null(false) may subsequently start
  7632   // to hold.
  7633   assert(obj->is_oop_or_null(true),
  7634          "expected an oop or NULL");
  7635   HeapWord* addr = (HeapWord*)obj;
  7636   // Check if oop points into the CMS generation
  7637   // and is not marked
  7638   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7639     // a white object ...
  7640     // If we manage to "claim" the object, by being the
  7641     // first thread to mark it, then we push it on our
  7642     // marking stack
  7643     if (_bit_map->par_mark(addr)) {     // ... now grey
  7644       // push on work queue (grey set)
  7645       bool simulate_overflow = false;
  7646       NOT_PRODUCT(
  7647         if (CMSMarkStackOverflowALot &&
  7648             _collector->par_simulate_overflow()) {
  7649           // simulate a stack overflow
  7650           simulate_overflow = true;
  7653       if (simulate_overflow || !_work_queue->push(obj)) {
  7654         _collector->par_push_on_overflow_list(obj);
  7655         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7657     } // Else, some other thread got there first
  7661 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7662 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7664 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7665   // TBD
  7668 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7669   // TBD
  7672 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7673   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7674   Mutex* bml = _collector->bitMapLock();
  7675   assert_lock_strong(bml);
  7676   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7677          "CMS thread should hold CMS token");
  7679   bml->unlock();
  7680   ConcurrentMarkSweepThread::desynchronize(true);
  7682   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7684   _collector->stopTimer();
  7685   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7686   if (PrintCMSStatistics != 0) {
  7687     _collector->incrementYields();
  7689   _collector->icms_wait();
  7691   // See the comment in coordinator_yield()
  7692   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7693                        ConcurrentMarkSweepThread::should_yield() &&
  7694                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7695     os::sleep(Thread::current(), 1, false);
  7696     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7699   ConcurrentMarkSweepThread::synchronize(true);
  7700   bml->lock();
  7702   _collector->startTimer();
  7705 bool CMSPrecleanRefsYieldClosure::should_return() {
  7706   if (ConcurrentMarkSweepThread::should_yield()) {
  7707     do_yield_work();
  7709   return _collector->foregroundGCIsActive();
  7712 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7713   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7714          "mr should be aligned to start at a card boundary");
  7715   // We'd like to assert:
  7716   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7717   //        "mr should be a range of cards");
  7718   // However, that would be too strong in one case -- the last
  7719   // partition ends at _unallocated_block which, in general, can be
  7720   // an arbitrary boundary, not necessarily card aligned.
  7721   if (PrintCMSStatistics != 0) {
  7722     _num_dirty_cards +=
  7723          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7725   _space->object_iterate_mem(mr, &_scan_cl);
  7728 SweepClosure::SweepClosure(CMSCollector* collector,
  7729                            ConcurrentMarkSweepGeneration* g,
  7730                            CMSBitMap* bitMap, bool should_yield) :
  7731   _collector(collector),
  7732   _g(g),
  7733   _sp(g->cmsSpace()),
  7734   _limit(_sp->sweep_limit()),
  7735   _freelistLock(_sp->freelistLock()),
  7736   _bitMap(bitMap),
  7737   _yield(should_yield),
  7738   _inFreeRange(false),           // No free range at beginning of sweep
  7739   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7740   _lastFreeRangeCoalesced(false),
  7741   _freeFinger(g->used_region().start())
  7743   NOT_PRODUCT(
  7744     _numObjectsFreed = 0;
  7745     _numWordsFreed   = 0;
  7746     _numObjectsLive = 0;
  7747     _numWordsLive = 0;
  7748     _numObjectsAlreadyFree = 0;
  7749     _numWordsAlreadyFree = 0;
  7750     _last_fc = NULL;
  7752     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7753     _sp->dictionary()->initializeDictReturnedBytes();
  7755   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7756          "sweep _limit out of bounds");
  7757   if (CMSTraceSweeper) {
  7758     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7762 // We need this destructor to reclaim any space at the end
  7763 // of the space, which do_blk below may not have added back to
  7764 // the free lists. [basically dealing with the "fringe effect"]
  7765 SweepClosure::~SweepClosure() {
  7766   assert_lock_strong(_freelistLock);
  7767   // this should be treated as the end of a free run if any
  7768   // The current free range should be returned to the free lists
  7769   // as one coalesced chunk.
  7770   if (inFreeRange()) {
  7771     flushCurFreeChunk(freeFinger(),
  7772       pointer_delta(_limit, freeFinger()));
  7773     assert(freeFinger() < _limit, "the finger pointeth off base");
  7774     if (CMSTraceSweeper) {
  7775       gclog_or_tty->print("destructor:");
  7776       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7777                  "[coalesced:"SIZE_FORMAT"]\n",
  7778                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7779                  lastFreeRangeCoalesced());
  7782   NOT_PRODUCT(
  7783     if (Verbose && PrintGC) {
  7784       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7785                           SIZE_FORMAT " bytes",
  7786                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7787       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7788                              SIZE_FORMAT" bytes  "
  7789         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7790         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7791         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7792       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7793         sizeof(HeapWord);
  7794       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7796       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7797         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7798         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7799         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7800         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7801         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7802           indexListReturnedBytes);
  7803         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7804           dictReturnedBytes);
  7808   // Now, in debug mode, just null out the sweep_limit
  7809   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7810   if (CMSTraceSweeper) {
  7811     gclog_or_tty->print("end of sweep\n================\n");
  7815 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7816     bool freeRangeInFreeLists) {
  7817   if (CMSTraceSweeper) {
  7818     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7819                freeFinger, _sp->block_size(freeFinger),
  7820                freeRangeInFreeLists);
  7822   assert(!inFreeRange(), "Trampling existing free range");
  7823   set_inFreeRange(true);
  7824   set_lastFreeRangeCoalesced(false);
  7826   set_freeFinger(freeFinger);
  7827   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7828   if (CMSTestInFreeList) {
  7829     if (freeRangeInFreeLists) {
  7830       FreeChunk* fc = (FreeChunk*) freeFinger;
  7831       assert(fc->isFree(), "A chunk on the free list should be free.");
  7832       assert(fc->size() > 0, "Free range should have a size");
  7833       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7838 // Note that the sweeper runs concurrently with mutators. Thus,
  7839 // it is possible for direct allocation in this generation to happen
  7840 // in the middle of the sweep. Note that the sweeper also coalesces
  7841 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7842 // synchronize appropriately freshly allocated blocks may get swept up.
  7843 // This is accomplished by the sweeper locking the free lists while
  7844 // it is sweeping. Thus blocks that are determined to be free are
  7845 // indeed free. There is however one additional complication:
  7846 // blocks that have been allocated since the final checkpoint and
  7847 // mark, will not have been marked and so would be treated as
  7848 // unreachable and swept up. To prevent this, the allocator marks
  7849 // the bit map when allocating during the sweep phase. This leads,
  7850 // however, to a further complication -- objects may have been allocated
  7851 // but not yet initialized -- in the sense that the header isn't yet
  7852 // installed. The sweeper can not then determine the size of the block
  7853 // in order to skip over it. To deal with this case, we use a technique
  7854 // (due to Printezis) to encode such uninitialized block sizes in the
  7855 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7856 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7857 // that "normal marks" won't be adjacent in the bit map (there will
  7858 // always be at least two 0 bits between successive 1 bits). We make use
  7859 // of these "unused" bits to represent uninitialized blocks -- the bit
  7860 // corresponding to the start of the uninitialized object and the next
  7861 // bit are both set. Finally, a 1 bit marks the end of the object that
  7862 // started with the two consecutive 1 bits to indicate its potentially
  7863 // uninitialized state.
  7865 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7866   FreeChunk* fc = (FreeChunk*)addr;
  7867   size_t res;
  7869   // check if we are done sweepinrg
  7870   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7871     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7872            "sweep _limit out of bounds");
  7873     // help the closure application finish
  7874     return pointer_delta(_sp->end(), _limit);
  7876   assert(addr <= _limit, "sweep invariant");
  7878   // check if we should yield
  7879   do_yield_check(addr);
  7880   if (fc->isFree()) {
  7881     // Chunk that is already free
  7882     res = fc->size();
  7883     doAlreadyFreeChunk(fc);
  7884     debug_only(_sp->verifyFreeLists());
  7885     assert(res == fc->size(), "Don't expect the size to change");
  7886     NOT_PRODUCT(
  7887       _numObjectsAlreadyFree++;
  7888       _numWordsAlreadyFree += res;
  7890     NOT_PRODUCT(_last_fc = fc;)
  7891   } else if (!_bitMap->isMarked(addr)) {
  7892     // Chunk is fresh garbage
  7893     res = doGarbageChunk(fc);
  7894     debug_only(_sp->verifyFreeLists());
  7895     NOT_PRODUCT(
  7896       _numObjectsFreed++;
  7897       _numWordsFreed += res;
  7899   } else {
  7900     // Chunk that is alive.
  7901     res = doLiveChunk(fc);
  7902     debug_only(_sp->verifyFreeLists());
  7903     NOT_PRODUCT(
  7904         _numObjectsLive++;
  7905         _numWordsLive += res;
  7908   return res;
  7911 // For the smart allocation, record following
  7912 //  split deaths - a free chunk is removed from its free list because
  7913 //      it is being split into two or more chunks.
  7914 //  split birth - a free chunk is being added to its free list because
  7915 //      a larger free chunk has been split and resulted in this free chunk.
  7916 //  coal death - a free chunk is being removed from its free list because
  7917 //      it is being coalesced into a large free chunk.
  7918 //  coal birth - a free chunk is being added to its free list because
  7919 //      it was created when two or more free chunks where coalesced into
  7920 //      this free chunk.
  7921 //
  7922 // These statistics are used to determine the desired number of free
  7923 // chunks of a given size.  The desired number is chosen to be relative
  7924 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7925 // is the
  7926 //      count-at-end-of-previous-sweep (an amount that was enough)
  7927 //              - count-at-beginning-of-current-sweep  (the excess)
  7928 //              + split-births  (gains in this size during interval)
  7929 //              - split-deaths  (demands on this size during interval)
  7930 // where the interval is from the end of one sweep to the end of the
  7931 // next.
  7932 //
  7933 // When sweeping the sweeper maintains an accumulated chunk which is
  7934 // the chunk that is made up of chunks that have been coalesced.  That
  7935 // will be termed the left-hand chunk.  A new chunk of garbage that
  7936 // is being considered for coalescing will be referred to as the
  7937 // right-hand chunk.
  7938 //
  7939 // When making a decision on whether to coalesce a right-hand chunk with
  7940 // the current left-hand chunk, the current count vs. the desired count
  7941 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7942 // is near the large chunk at the end of the heap (see
  7943 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7944 // left-hand chunk is coalesced.
  7945 //
  7946 // When making a decision about whether to split a chunk, the desired count
  7947 // vs. the current count of the candidate to be split is also considered.
  7948 // If the candidate is underpopulated (currently fewer chunks than desired)
  7949 // a chunk of an overpopulated (currently more chunks than desired) size may
  7950 // be chosen.  The "hint" associated with a free list, if non-null, points
  7951 // to a free list which may be overpopulated.
  7952 //
  7954 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7955   size_t size = fc->size();
  7956   // Chunks that cannot be coalesced are not in the
  7957   // free lists.
  7958   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7959     assert(_sp->verifyChunkInFreeLists(fc),
  7960       "free chunk should be in free lists");
  7962   // a chunk that is already free, should not have been
  7963   // marked in the bit map
  7964   HeapWord* addr = (HeapWord*) fc;
  7965   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7966   // Verify that the bit map has no bits marked between
  7967   // addr and purported end of this block.
  7968   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7970   // Some chunks cannot be coalesced in under any circumstances.
  7971   // See the definition of cantCoalesce().
  7972   if (!fc->cantCoalesce()) {
  7973     // This chunk can potentially be coalesced.
  7974     if (_sp->adaptive_freelists()) {
  7975       // All the work is done in
  7976       doPostIsFreeOrGarbageChunk(fc, size);
  7977     } else {  // Not adaptive free lists
  7978       // this is a free chunk that can potentially be coalesced by the sweeper;
  7979       if (!inFreeRange()) {
  7980         // if the next chunk is a free block that can't be coalesced
  7981         // it doesn't make sense to remove this chunk from the free lists
  7982         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7983         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7984         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7985             nextChunk->isFree()    &&            // which is free...
  7986             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7987           // nothing to do
  7988         } else {
  7989           // Potentially the start of a new free range:
  7990           // Don't eagerly remove it from the free lists.
  7991           // No need to remove it if it will just be put
  7992           // back again.  (Also from a pragmatic point of view
  7993           // if it is a free block in a region that is beyond
  7994           // any allocated blocks, an assertion will fail)
  7995           // Remember the start of a free run.
  7996           initialize_free_range(addr, true);
  7997           // end - can coalesce with next chunk
  7999       } else {
  8000         // the midst of a free range, we are coalescing
  8001         debug_only(record_free_block_coalesced(fc);)
  8002         if (CMSTraceSweeper) {
  8003           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  8005         // remove it from the free lists
  8006         _sp->removeFreeChunkFromFreeLists(fc);
  8007         set_lastFreeRangeCoalesced(true);
  8008         // If the chunk is being coalesced and the current free range is
  8009         // in the free lists, remove the current free range so that it
  8010         // will be returned to the free lists in its entirety - all
  8011         // the coalesced pieces included.
  8012         if (freeRangeInFreeLists()) {
  8013           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8014           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8015             "Size of free range is inconsistent with chunk size.");
  8016           if (CMSTestInFreeList) {
  8017             assert(_sp->verifyChunkInFreeLists(ffc),
  8018               "free range is not in free lists");
  8020           _sp->removeFreeChunkFromFreeLists(ffc);
  8021           set_freeRangeInFreeLists(false);
  8025   } else {
  8026     // Code path common to both original and adaptive free lists.
  8028     // cant coalesce with previous block; this should be treated
  8029     // as the end of a free run if any
  8030     if (inFreeRange()) {
  8031       // we kicked some butt; time to pick up the garbage
  8032       assert(freeFinger() < addr, "the finger pointeth off base");
  8033       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8035     // else, nothing to do, just continue
  8039 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  8040   // This is a chunk of garbage.  It is not in any free list.
  8041   // Add it to a free list or let it possibly be coalesced into
  8042   // a larger chunk.
  8043   HeapWord* addr = (HeapWord*) fc;
  8044   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8046   if (_sp->adaptive_freelists()) {
  8047     // Verify that the bit map has no bits marked between
  8048     // addr and purported end of just dead object.
  8049     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8051     doPostIsFreeOrGarbageChunk(fc, size);
  8052   } else {
  8053     if (!inFreeRange()) {
  8054       // start of a new free range
  8055       assert(size > 0, "A free range should have a size");
  8056       initialize_free_range(addr, false);
  8058     } else {
  8059       // this will be swept up when we hit the end of the
  8060       // free range
  8061       if (CMSTraceSweeper) {
  8062         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8064       // If the chunk is being coalesced and the current free range is
  8065       // in the free lists, remove the current free range so that it
  8066       // will be returned to the free lists in its entirety - all
  8067       // the coalesced pieces included.
  8068       if (freeRangeInFreeLists()) {
  8069         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8070         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8071           "Size of free range is inconsistent with chunk size.");
  8072         if (CMSTestInFreeList) {
  8073           assert(_sp->verifyChunkInFreeLists(ffc),
  8074             "free range is not in free lists");
  8076         _sp->removeFreeChunkFromFreeLists(ffc);
  8077         set_freeRangeInFreeLists(false);
  8079       set_lastFreeRangeCoalesced(true);
  8081     // this will be swept up when we hit the end of the free range
  8083     // Verify that the bit map has no bits marked between
  8084     // addr and purported end of just dead object.
  8085     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8087   return size;
  8090 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8091   HeapWord* addr = (HeapWord*) fc;
  8092   // The sweeper has just found a live object. Return any accumulated
  8093   // left hand chunk to the free lists.
  8094   if (inFreeRange()) {
  8095     if (_sp->adaptive_freelists()) {
  8096       flushCurFreeChunk(freeFinger(),
  8097                         pointer_delta(addr, freeFinger()));
  8098     } else { // not adaptive freelists
  8099       set_inFreeRange(false);
  8100       // Add the free range back to the free list if it is not already
  8101       // there.
  8102       if (!freeRangeInFreeLists()) {
  8103         assert(freeFinger() < addr, "the finger pointeth off base");
  8104         if (CMSTraceSweeper) {
  8105           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8106             "[coalesced:%d]\n",
  8107             freeFinger(), pointer_delta(addr, freeFinger()),
  8108             lastFreeRangeCoalesced());
  8110         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8111           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8116   // Common code path for original and adaptive free lists.
  8118   // this object is live: we'd normally expect this to be
  8119   // an oop, and like to assert the following:
  8120   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8121   // However, as we commented above, this may be an object whose
  8122   // header hasn't yet been initialized.
  8123   size_t size;
  8124   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8125   if (_bitMap->isMarked(addr + 1)) {
  8126     // Determine the size from the bit map, rather than trying to
  8127     // compute it from the object header.
  8128     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8129     size = pointer_delta(nextOneAddr + 1, addr);
  8130     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8131            "alignment problem");
  8133     #ifdef DEBUG
  8134       if (oop(addr)->klass_or_null() != NULL &&
  8135           (   !_collector->should_unload_classes()
  8136            || (oop(addr)->is_parsable()) &&
  8137                oop(addr)->is_conc_safe())) {
  8138         // Ignore mark word because we are running concurrent with mutators
  8139         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8140         // is_conc_safe is checked before performing this assertion
  8141         // because an object that is not is_conc_safe may yet have
  8142         // the return from size() correct.
  8143         assert(size ==
  8144                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8145                "P-mark and computed size do not agree");
  8147     #endif
  8149   } else {
  8150     // This should be an initialized object that's alive.
  8151     assert(oop(addr)->klass_or_null() != NULL &&
  8152            (!_collector->should_unload_classes()
  8153             || oop(addr)->is_parsable()),
  8154            "Should be an initialized object");
  8155     // Note that there are objects used during class redefinition
  8156     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
  8157     // which are discarded with their is_conc_safe state still
  8158     // false.  These object may be floating garbage so may be
  8159     // seen here.  If they are floating garbage their size
  8160     // should be attainable from their klass.  Do not that
  8161     // is_conc_safe() is true for oop(addr).
  8162     // Ignore mark word because we are running concurrent with mutators
  8163     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8164     // Verify that the bit map has no bits marked between
  8165     // addr and purported end of this block.
  8166     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8167     assert(size >= 3, "Necessary for Printezis marks to work");
  8168     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8169     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8171   return size;
  8174 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8175                                             size_t chunkSize) {
  8176   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8177   // scheme.
  8178   bool fcInFreeLists = fc->isFree();
  8179   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8180   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8181   if (CMSTestInFreeList && fcInFreeLists) {
  8182     assert(_sp->verifyChunkInFreeLists(fc),
  8183       "free chunk is not in free lists");
  8187   if (CMSTraceSweeper) {
  8188     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8191   HeapWord* addr = (HeapWord*) fc;
  8193   bool coalesce;
  8194   size_t left  = pointer_delta(addr, freeFinger());
  8195   size_t right = chunkSize;
  8196   switch (FLSCoalescePolicy) {
  8197     // numeric value forms a coalition aggressiveness metric
  8198     case 0:  { // never coalesce
  8199       coalesce = false;
  8200       break;
  8202     case 1: { // coalesce if left & right chunks on overpopulated lists
  8203       coalesce = _sp->coalOverPopulated(left) &&
  8204                  _sp->coalOverPopulated(right);
  8205       break;
  8207     case 2: { // coalesce if left chunk on overpopulated list (default)
  8208       coalesce = _sp->coalOverPopulated(left);
  8209       break;
  8211     case 3: { // coalesce if left OR right chunk on overpopulated list
  8212       coalesce = _sp->coalOverPopulated(left) ||
  8213                  _sp->coalOverPopulated(right);
  8214       break;
  8216     case 4: { // always coalesce
  8217       coalesce = true;
  8218       break;
  8220     default:
  8221      ShouldNotReachHere();
  8224   // Should the current free range be coalesced?
  8225   // If the chunk is in a free range and either we decided to coalesce above
  8226   // or the chunk is near the large block at the end of the heap
  8227   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8228   bool doCoalesce = inFreeRange() &&
  8229     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8230   if (doCoalesce) {
  8231     // Coalesce the current free range on the left with the new
  8232     // chunk on the right.  If either is on a free list,
  8233     // it must be removed from the list and stashed in the closure.
  8234     if (freeRangeInFreeLists()) {
  8235       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8236       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8237         "Size of free range is inconsistent with chunk size.");
  8238       if (CMSTestInFreeList) {
  8239         assert(_sp->verifyChunkInFreeLists(ffc),
  8240           "Chunk is not in free lists");
  8242       _sp->coalDeath(ffc->size());
  8243       _sp->removeFreeChunkFromFreeLists(ffc);
  8244       set_freeRangeInFreeLists(false);
  8246     if (fcInFreeLists) {
  8247       _sp->coalDeath(chunkSize);
  8248       assert(fc->size() == chunkSize,
  8249         "The chunk has the wrong size or is not in the free lists");
  8250       _sp->removeFreeChunkFromFreeLists(fc);
  8252     set_lastFreeRangeCoalesced(true);
  8253   } else {  // not in a free range and/or should not coalesce
  8254     // Return the current free range and start a new one.
  8255     if (inFreeRange()) {
  8256       // In a free range but cannot coalesce with the right hand chunk.
  8257       // Put the current free range into the free lists.
  8258       flushCurFreeChunk(freeFinger(),
  8259         pointer_delta(addr, freeFinger()));
  8261     // Set up for new free range.  Pass along whether the right hand
  8262     // chunk is in the free lists.
  8263     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8266 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8267   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8268   assert(size > 0,
  8269     "A zero sized chunk cannot be added to the free lists.");
  8270   if (!freeRangeInFreeLists()) {
  8271     if(CMSTestInFreeList) {
  8272       FreeChunk* fc = (FreeChunk*) chunk;
  8273       fc->setSize(size);
  8274       assert(!_sp->verifyChunkInFreeLists(fc),
  8275         "chunk should not be in free lists yet");
  8277     if (CMSTraceSweeper) {
  8278       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8279                     chunk, size);
  8281     // A new free range is going to be starting.  The current
  8282     // free range has not been added to the free lists yet or
  8283     // was removed so add it back.
  8284     // If the current free range was coalesced, then the death
  8285     // of the free range was recorded.  Record a birth now.
  8286     if (lastFreeRangeCoalesced()) {
  8287       _sp->coalBirth(size);
  8289     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8290             lastFreeRangeCoalesced());
  8292   set_inFreeRange(false);
  8293   set_freeRangeInFreeLists(false);
  8296 // We take a break if we've been at this for a while,
  8297 // so as to avoid monopolizing the locks involved.
  8298 void SweepClosure::do_yield_work(HeapWord* addr) {
  8299   // Return current free chunk being used for coalescing (if any)
  8300   // to the appropriate freelist.  After yielding, the next
  8301   // free block encountered will start a coalescing range of
  8302   // free blocks.  If the next free block is adjacent to the
  8303   // chunk just flushed, they will need to wait for the next
  8304   // sweep to be coalesced.
  8305   if (inFreeRange()) {
  8306     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8309   // First give up the locks, then yield, then re-lock.
  8310   // We should probably use a constructor/destructor idiom to
  8311   // do this unlock/lock or modify the MutexUnlocker class to
  8312   // serve our purpose. XXX
  8313   assert_lock_strong(_bitMap->lock());
  8314   assert_lock_strong(_freelistLock);
  8315   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8316          "CMS thread should hold CMS token");
  8317   _bitMap->lock()->unlock();
  8318   _freelistLock->unlock();
  8319   ConcurrentMarkSweepThread::desynchronize(true);
  8320   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8321   _collector->stopTimer();
  8322   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8323   if (PrintCMSStatistics != 0) {
  8324     _collector->incrementYields();
  8326   _collector->icms_wait();
  8328   // See the comment in coordinator_yield()
  8329   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8330                        ConcurrentMarkSweepThread::should_yield() &&
  8331                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8332     os::sleep(Thread::current(), 1, false);
  8333     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8336   ConcurrentMarkSweepThread::synchronize(true);
  8337   _freelistLock->lock();
  8338   _bitMap->lock()->lock_without_safepoint_check();
  8339   _collector->startTimer();
  8342 #ifndef PRODUCT
  8343 // This is actually very useful in a product build if it can
  8344 // be called from the debugger.  Compile it into the product
  8345 // as needed.
  8346 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8347   return debug_cms_space->verifyChunkInFreeLists(fc);
  8350 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8351   if (CMSTraceSweeper) {
  8352     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8355 #endif
  8357 // CMSIsAliveClosure
  8358 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8359   HeapWord* addr = (HeapWord*)obj;
  8360   return addr != NULL &&
  8361          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8364 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8365                       MemRegion span,
  8366                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8367                       CMSMarkStack* revisit_stack, bool cpc):
  8368   KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8369   _span(span),
  8370   _bit_map(bit_map),
  8371   _mark_stack(mark_stack),
  8372   _concurrent_precleaning(cpc) {
  8373   assert(!_span.is_empty(), "Empty span could spell trouble");
  8377 // CMSKeepAliveClosure: the serial version
  8378 void CMSKeepAliveClosure::do_oop(oop obj) {
  8379   HeapWord* addr = (HeapWord*)obj;
  8380   if (_span.contains(addr) &&
  8381       !_bit_map->isMarked(addr)) {
  8382     _bit_map->mark(addr);
  8383     bool simulate_overflow = false;
  8384     NOT_PRODUCT(
  8385       if (CMSMarkStackOverflowALot &&
  8386           _collector->simulate_overflow()) {
  8387         // simulate a stack overflow
  8388         simulate_overflow = true;
  8391     if (simulate_overflow || !_mark_stack->push(obj)) {
  8392       if (_concurrent_precleaning) {
  8393         // We dirty the overflown object and let the remark
  8394         // phase deal with it.
  8395         assert(_collector->overflow_list_is_empty(), "Error");
  8396         // In the case of object arrays, we need to dirty all of
  8397         // the cards that the object spans. No locking or atomics
  8398         // are needed since no one else can be mutating the mod union
  8399         // table.
  8400         if (obj->is_objArray()) {
  8401           size_t sz = obj->size();
  8402           HeapWord* end_card_addr =
  8403             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8404           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8405           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8406           _collector->_modUnionTable.mark_range(redirty_range);
  8407         } else {
  8408           _collector->_modUnionTable.mark(addr);
  8410         _collector->_ser_kac_preclean_ovflw++;
  8411       } else {
  8412         _collector->push_on_overflow_list(obj);
  8413         _collector->_ser_kac_ovflw++;
  8419 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8420 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8422 // CMSParKeepAliveClosure: a parallel version of the above.
  8423 // The work queues are private to each closure (thread),
  8424 // but (may be) available for stealing by other threads.
  8425 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8426   HeapWord* addr = (HeapWord*)obj;
  8427   if (_span.contains(addr) &&
  8428       !_bit_map->isMarked(addr)) {
  8429     // In general, during recursive tracing, several threads
  8430     // may be concurrently getting here; the first one to
  8431     // "tag" it, claims it.
  8432     if (_bit_map->par_mark(addr)) {
  8433       bool res = _work_queue->push(obj);
  8434       assert(res, "Low water mark should be much less than capacity");
  8435       // Do a recursive trim in the hope that this will keep
  8436       // stack usage lower, but leave some oops for potential stealers
  8437       trim_queue(_low_water_mark);
  8438     } // Else, another thread got there first
  8442 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8443 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8445 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8446   while (_work_queue->size() > max) {
  8447     oop new_oop;
  8448     if (_work_queue->pop_local(new_oop)) {
  8449       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8450       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8451              "no white objects on this stack!");
  8452       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8453       // iterate over the oops in this oop, marking and pushing
  8454       // the ones in CMS heap (i.e. in _span).
  8455       new_oop->oop_iterate(&_mark_and_push);
  8460 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8461                                 CMSCollector* collector,
  8462                                 MemRegion span, CMSBitMap* bit_map,
  8463                                 CMSMarkStack* revisit_stack,
  8464                                 OopTaskQueue* work_queue):
  8465   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8466   _span(span),
  8467   _bit_map(bit_map),
  8468   _work_queue(work_queue) { }
  8470 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8471   HeapWord* addr = (HeapWord*)obj;
  8472   if (_span.contains(addr) &&
  8473       !_bit_map->isMarked(addr)) {
  8474     if (_bit_map->par_mark(addr)) {
  8475       bool simulate_overflow = false;
  8476       NOT_PRODUCT(
  8477         if (CMSMarkStackOverflowALot &&
  8478             _collector->par_simulate_overflow()) {
  8479           // simulate a stack overflow
  8480           simulate_overflow = true;
  8483       if (simulate_overflow || !_work_queue->push(obj)) {
  8484         _collector->par_push_on_overflow_list(obj);
  8485         _collector->_par_kac_ovflw++;
  8487     } // Else another thread got there already
  8491 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8492 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8494 //////////////////////////////////////////////////////////////////
  8495 //  CMSExpansionCause                /////////////////////////////
  8496 //////////////////////////////////////////////////////////////////
  8497 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8498   switch (cause) {
  8499     case _no_expansion:
  8500       return "No expansion";
  8501     case _satisfy_free_ratio:
  8502       return "Free ratio";
  8503     case _satisfy_promotion:
  8504       return "Satisfy promotion";
  8505     case _satisfy_allocation:
  8506       return "allocation";
  8507     case _allocate_par_lab:
  8508       return "Par LAB";
  8509     case _allocate_par_spooling_space:
  8510       return "Par Spooling Space";
  8511     case _adaptive_size_policy:
  8512       return "Ergonomics";
  8513     default:
  8514       return "unknown";
  8518 void CMSDrainMarkingStackClosure::do_void() {
  8519   // the max number to take from overflow list at a time
  8520   const size_t num = _mark_stack->capacity()/4;
  8521   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8522          "Overflow list should be NULL during concurrent phases");
  8523   while (!_mark_stack->isEmpty() ||
  8524          // if stack is empty, check the overflow list
  8525          _collector->take_from_overflow_list(num, _mark_stack)) {
  8526     oop obj = _mark_stack->pop();
  8527     HeapWord* addr = (HeapWord*)obj;
  8528     assert(_span.contains(addr), "Should be within span");
  8529     assert(_bit_map->isMarked(addr), "Should be marked");
  8530     assert(obj->is_oop(), "Should be an oop");
  8531     obj->oop_iterate(_keep_alive);
  8535 void CMSParDrainMarkingStackClosure::do_void() {
  8536   // drain queue
  8537   trim_queue(0);
  8540 // Trim our work_queue so its length is below max at return
  8541 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8542   while (_work_queue->size() > max) {
  8543     oop new_oop;
  8544     if (_work_queue->pop_local(new_oop)) {
  8545       assert(new_oop->is_oop(), "Expected an oop");
  8546       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8547              "no white objects on this stack!");
  8548       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8549       // iterate over the oops in this oop, marking and pushing
  8550       // the ones in CMS heap (i.e. in _span).
  8551       new_oop->oop_iterate(&_mark_and_push);
  8556 ////////////////////////////////////////////////////////////////////
  8557 // Support for Marking Stack Overflow list handling and related code
  8558 ////////////////////////////////////////////////////////////////////
  8559 // Much of the following code is similar in shape and spirit to the
  8560 // code used in ParNewGC. We should try and share that code
  8561 // as much as possible in the future.
  8563 #ifndef PRODUCT
  8564 // Debugging support for CMSStackOverflowALot
  8566 // It's OK to call this multi-threaded;  the worst thing
  8567 // that can happen is that we'll get a bunch of closely
  8568 // spaced simulated oveflows, but that's OK, in fact
  8569 // probably good as it would exercise the overflow code
  8570 // under contention.
  8571 bool CMSCollector::simulate_overflow() {
  8572   if (_overflow_counter-- <= 0) { // just being defensive
  8573     _overflow_counter = CMSMarkStackOverflowInterval;
  8574     return true;
  8575   } else {
  8576     return false;
  8580 bool CMSCollector::par_simulate_overflow() {
  8581   return simulate_overflow();
  8583 #endif
  8585 // Single-threaded
  8586 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8587   assert(stack->isEmpty(), "Expected precondition");
  8588   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8589   size_t i = num;
  8590   oop  cur = _overflow_list;
  8591   const markOop proto = markOopDesc::prototype();
  8592   NOT_PRODUCT(ssize_t n = 0;)
  8593   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8594     next = oop(cur->mark());
  8595     cur->set_mark(proto);   // until proven otherwise
  8596     assert(cur->is_oop(), "Should be an oop");
  8597     bool res = stack->push(cur);
  8598     assert(res, "Bit off more than can chew?");
  8599     NOT_PRODUCT(n++;)
  8601   _overflow_list = cur;
  8602 #ifndef PRODUCT
  8603   assert(_num_par_pushes >= n, "Too many pops?");
  8604   _num_par_pushes -=n;
  8605 #endif
  8606   return !stack->isEmpty();
  8609 #define BUSY  (oop(0x1aff1aff))
  8610 // (MT-safe) Get a prefix of at most "num" from the list.
  8611 // The overflow list is chained through the mark word of
  8612 // each object in the list. We fetch the entire list,
  8613 // break off a prefix of the right size and return the
  8614 // remainder. If other threads try to take objects from
  8615 // the overflow list at that time, they will wait for
  8616 // some time to see if data becomes available. If (and
  8617 // only if) another thread places one or more object(s)
  8618 // on the global list before we have returned the suffix
  8619 // to the global list, we will walk down our local list
  8620 // to find its end and append the global list to
  8621 // our suffix before returning it. This suffix walk can
  8622 // prove to be expensive (quadratic in the amount of traffic)
  8623 // when there are many objects in the overflow list and
  8624 // there is much producer-consumer contention on the list.
  8625 // *NOTE*: The overflow list manipulation code here and
  8626 // in ParNewGeneration:: are very similar in shape,
  8627 // except that in the ParNew case we use the old (from/eden)
  8628 // copy of the object to thread the list via its klass word.
  8629 // Because of the common code, if you make any changes in
  8630 // the code below, please check the ParNew version to see if
  8631 // similar changes might be needed.
  8632 // CR 6797058 has been filed to consolidate the common code.
  8633 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8634                                                OopTaskQueue* work_q) {
  8635   assert(work_q->size() == 0, "First empty local work queue");
  8636   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8637   if (_overflow_list == NULL) {
  8638     return false;
  8640   // Grab the entire list; we'll put back a suffix
  8641   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8642   Thread* tid = Thread::current();
  8643   size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
  8644   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  8645   // If the list is busy, we spin for a short while,
  8646   // sleeping between attempts to get the list.
  8647   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  8648     os::sleep(tid, sleep_time_millis, false);
  8649     if (_overflow_list == NULL) {
  8650       // Nothing left to take
  8651       return false;
  8652     } else if (_overflow_list != BUSY) {
  8653       // Try and grab the prefix
  8654       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8657   // If the list was found to be empty, or we spun long
  8658   // enough, we give up and return empty-handed. If we leave
  8659   // the list in the BUSY state below, it must be the case that
  8660   // some other thread holds the overflow list and will set it
  8661   // to a non-BUSY state in the future.
  8662   if (prefix == NULL || prefix == BUSY) {
  8663      // Nothing to take or waited long enough
  8664      if (prefix == NULL) {
  8665        // Write back the NULL in case we overwrote it with BUSY above
  8666        // and it is still the same value.
  8667        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8669      return false;
  8671   assert(prefix != NULL && prefix != BUSY, "Error");
  8672   size_t i = num;
  8673   oop cur = prefix;
  8674   // Walk down the first "num" objects, unless we reach the end.
  8675   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8676   if (cur->mark() == NULL) {
  8677     // We have "num" or fewer elements in the list, so there
  8678     // is nothing to return to the global list.
  8679     // Write back the NULL in lieu of the BUSY we wrote
  8680     // above, if it is still the same value.
  8681     if (_overflow_list == BUSY) {
  8682       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8684   } else {
  8685     // Chop off the suffix and rerturn it to the global list.
  8686     assert(cur->mark() != BUSY, "Error");
  8687     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8688     cur->set_mark(NULL);           // break off suffix
  8689     // It's possible that the list is still in the empty(busy) state
  8690     // we left it in a short while ago; in that case we may be
  8691     // able to place back the suffix without incurring the cost
  8692     // of a walk down the list.
  8693     oop observed_overflow_list = _overflow_list;
  8694     oop cur_overflow_list = observed_overflow_list;
  8695     bool attached = false;
  8696     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  8697       observed_overflow_list =
  8698         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8699       if (cur_overflow_list == observed_overflow_list) {
  8700         attached = true;
  8701         break;
  8702       } else cur_overflow_list = observed_overflow_list;
  8704     if (!attached) {
  8705       // Too bad, someone else sneaked in (at least) an element; we'll need
  8706       // to do a splice. Find tail of suffix so we can prepend suffix to global
  8707       // list.
  8708       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8709       oop suffix_tail = cur;
  8710       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8711              "Tautology");
  8712       observed_overflow_list = _overflow_list;
  8713       do {
  8714         cur_overflow_list = observed_overflow_list;
  8715         if (cur_overflow_list != BUSY) {
  8716           // Do the splice ...
  8717           suffix_tail->set_mark(markOop(cur_overflow_list));
  8718         } else { // cur_overflow_list == BUSY
  8719           suffix_tail->set_mark(NULL);
  8721         // ... and try to place spliced list back on overflow_list ...
  8722         observed_overflow_list =
  8723           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8724       } while (cur_overflow_list != observed_overflow_list);
  8725       // ... until we have succeeded in doing so.
  8729   // Push the prefix elements on work_q
  8730   assert(prefix != NULL, "control point invariant");
  8731   const markOop proto = markOopDesc::prototype();
  8732   oop next;
  8733   NOT_PRODUCT(ssize_t n = 0;)
  8734   for (cur = prefix; cur != NULL; cur = next) {
  8735     next = oop(cur->mark());
  8736     cur->set_mark(proto);   // until proven otherwise
  8737     assert(cur->is_oop(), "Should be an oop");
  8738     bool res = work_q->push(cur);
  8739     assert(res, "Bit off more than we can chew?");
  8740     NOT_PRODUCT(n++;)
  8742 #ifndef PRODUCT
  8743   assert(_num_par_pushes >= n, "Too many pops?");
  8744   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8745 #endif
  8746   return true;
  8749 // Single-threaded
  8750 void CMSCollector::push_on_overflow_list(oop p) {
  8751   NOT_PRODUCT(_num_par_pushes++;)
  8752   assert(p->is_oop(), "Not an oop");
  8753   preserve_mark_if_necessary(p);
  8754   p->set_mark((markOop)_overflow_list);
  8755   _overflow_list = p;
  8758 // Multi-threaded; use CAS to prepend to overflow list
  8759 void CMSCollector::par_push_on_overflow_list(oop p) {
  8760   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8761   assert(p->is_oop(), "Not an oop");
  8762   par_preserve_mark_if_necessary(p);
  8763   oop observed_overflow_list = _overflow_list;
  8764   oop cur_overflow_list;
  8765   do {
  8766     cur_overflow_list = observed_overflow_list;
  8767     if (cur_overflow_list != BUSY) {
  8768       p->set_mark(markOop(cur_overflow_list));
  8769     } else {
  8770       p->set_mark(NULL);
  8772     observed_overflow_list =
  8773       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8774   } while (cur_overflow_list != observed_overflow_list);
  8776 #undef BUSY
  8778 // Single threaded
  8779 // General Note on GrowableArray: pushes may silently fail
  8780 // because we are (temporarily) out of C-heap for expanding
  8781 // the stack. The problem is quite ubiquitous and affects
  8782 // a lot of code in the JVM. The prudent thing for GrowableArray
  8783 // to do (for now) is to exit with an error. However, that may
  8784 // be too draconian in some cases because the caller may be
  8785 // able to recover without much harm. For such cases, we
  8786 // should probably introduce a "soft_push" method which returns
  8787 // an indication of success or failure with the assumption that
  8788 // the caller may be able to recover from a failure; code in
  8789 // the VM can then be changed, incrementally, to deal with such
  8790 // failures where possible, thus, incrementally hardening the VM
  8791 // in such low resource situations.
  8792 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8793   if (_preserved_oop_stack == NULL) {
  8794     assert(_preserved_mark_stack == NULL,
  8795            "bijection with preserved_oop_stack");
  8796     // Allocate the stacks
  8797     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8798       GrowableArray<oop>(PreserveMarkStackSize, true);
  8799     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8800       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8801     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8802       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8803                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8806   _preserved_oop_stack->push(p);
  8807   _preserved_mark_stack->push(m);
  8808   assert(m == p->mark(), "Mark word changed");
  8809   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8810          "bijection");
  8813 // Single threaded
  8814 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8815   markOop m = p->mark();
  8816   if (m->must_be_preserved(p)) {
  8817     preserve_mark_work(p, m);
  8821 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8822   markOop m = p->mark();
  8823   if (m->must_be_preserved(p)) {
  8824     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8825     // Even though we read the mark word without holding
  8826     // the lock, we are assured that it will not change
  8827     // because we "own" this oop, so no other thread can
  8828     // be trying to push it on the overflow list; see
  8829     // the assertion in preserve_mark_work() that checks
  8830     // that m == p->mark().
  8831     preserve_mark_work(p, m);
  8835 // We should be able to do this multi-threaded,
  8836 // a chunk of stack being a task (this is
  8837 // correct because each oop only ever appears
  8838 // once in the overflow list. However, it's
  8839 // not very easy to completely overlap this with
  8840 // other operations, so will generally not be done
  8841 // until all work's been completed. Because we
  8842 // expect the preserved oop stack (set) to be small,
  8843 // it's probably fine to do this single-threaded.
  8844 // We can explore cleverer concurrent/overlapped/parallel
  8845 // processing of preserved marks if we feel the
  8846 // need for this in the future. Stack overflow should
  8847 // be so rare in practice and, when it happens, its
  8848 // effect on performance so great that this will
  8849 // likely just be in the noise anyway.
  8850 void CMSCollector::restore_preserved_marks_if_any() {
  8851   if (_preserved_oop_stack == NULL) {
  8852     assert(_preserved_mark_stack == NULL,
  8853            "bijection with preserved_oop_stack");
  8854     return;
  8857   assert(SafepointSynchronize::is_at_safepoint(),
  8858          "world should be stopped");
  8859   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8860          Thread::current()->is_VM_thread(),
  8861          "should be single-threaded");
  8863   int length = _preserved_oop_stack->length();
  8864   assert(_preserved_mark_stack->length() == length, "bijection");
  8865   for (int i = 0; i < length; i++) {
  8866     oop p = _preserved_oop_stack->at(i);
  8867     assert(p->is_oop(), "Should be an oop");
  8868     assert(_span.contains(p), "oop should be in _span");
  8869     assert(p->mark() == markOopDesc::prototype(),
  8870            "Set when taken from overflow list");
  8871     markOop m = _preserved_mark_stack->at(i);
  8872     p->set_mark(m);
  8874   _preserved_mark_stack->clear();
  8875   _preserved_oop_stack->clear();
  8876   assert(_preserved_mark_stack->is_empty() &&
  8877          _preserved_oop_stack->is_empty(),
  8878          "stacks were cleared above");
  8881 #ifndef PRODUCT
  8882 bool CMSCollector::no_preserved_marks() const {
  8883   return (   (   _preserved_mark_stack == NULL
  8884               && _preserved_oop_stack == NULL)
  8885           || (   _preserved_mark_stack->is_empty()
  8886               && _preserved_oop_stack->is_empty()));
  8888 #endif
  8890 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8892   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8893   CMSAdaptiveSizePolicy* size_policy =
  8894     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8895   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8896     "Wrong type for size policy");
  8897   return size_policy;
  8900 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8901                                            size_t desired_promo_size) {
  8902   if (cur_promo_size < desired_promo_size) {
  8903     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8904     if (PrintAdaptiveSizePolicy && Verbose) {
  8905       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8906         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8907         expand_bytes);
  8909     expand(expand_bytes,
  8910            MinHeapDeltaBytes,
  8911            CMSExpansionCause::_adaptive_size_policy);
  8912   } else if (desired_promo_size < cur_promo_size) {
  8913     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8914     if (PrintAdaptiveSizePolicy && Verbose) {
  8915       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8916         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8917         shrink_bytes);
  8919     shrink(shrink_bytes);
  8923 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8924   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8925   CMSGCAdaptivePolicyCounters* counters =
  8926     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8927   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8928     "Wrong kind of counters");
  8929   return counters;
  8933 void ASConcurrentMarkSweepGeneration::update_counters() {
  8934   if (UsePerfData) {
  8935     _space_counters->update_all();
  8936     _gen_counters->update_all();
  8937     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8938     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8939     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8940     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8941       "Wrong gc statistics type");
  8942     counters->update_counters(gc_stats_l);
  8946 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8947   if (UsePerfData) {
  8948     _space_counters->update_used(used);
  8949     _space_counters->update_capacity();
  8950     _gen_counters->update_all();
  8952     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8953     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8954     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8955     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8956       "Wrong gc statistics type");
  8957     counters->update_counters(gc_stats_l);
  8961 // The desired expansion delta is computed so that:
  8962 // . desired free percentage or greater is used
  8963 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8964   assert_locked_or_safepoint(Heap_lock);
  8966   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8968   // If incremental collection failed, we just want to expand
  8969   // to the limit.
  8970   if (incremental_collection_failed()) {
  8971     clear_incremental_collection_failed();
  8972     grow_to_reserved();
  8973     return;
  8976   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8978   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8979     "Wrong type of heap");
  8980   int prev_level = level() - 1;
  8981   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8982   Generation* prev_gen = gch->get_gen(prev_level);
  8983   assert(prev_gen->kind() == Generation::ASParNew,
  8984     "Wrong type of young generation");
  8985   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8986   size_t cur_eden = younger_gen->eden()->capacity();
  8987   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8988   size_t cur_promo = free();
  8989   size_policy->compute_tenured_generation_free_space(cur_promo,
  8990                                                        max_available(),
  8991                                                        cur_eden);
  8992   resize(cur_promo, size_policy->promo_size());
  8994   // Record the new size of the space in the cms generation
  8995   // that is available for promotions.  This is temporary.
  8996   // It should be the desired promo size.
  8997   size_policy->avg_cms_promo()->sample(free());
  8998   size_policy->avg_old_live()->sample(used());
  9000   if (UsePerfData) {
  9001     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9002     counters->update_cms_capacity_counter(capacity());
  9006 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9007   assert_locked_or_safepoint(Heap_lock);
  9008   assert_lock_strong(freelistLock());
  9009   HeapWord* old_end = _cmsSpace->end();
  9010   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9011   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9012   FreeChunk* chunk_at_end = find_chunk_at_end();
  9013   if (chunk_at_end == NULL) {
  9014     // No room to shrink
  9015     if (PrintGCDetails && Verbose) {
  9016       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9017         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9018         " chunk_at_end  " PTR_FORMAT,
  9019         old_end, unallocated_start, chunk_at_end);
  9021     return;
  9022   } else {
  9024     // Find the chunk at the end of the space and determine
  9025     // how much it can be shrunk.
  9026     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9027     size_t aligned_shrinkable_size_in_bytes =
  9028       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9029     assert(unallocated_start <= chunk_at_end->end(),
  9030       "Inconsistent chunk at end of space");
  9031     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9032     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9034     // Shrink the underlying space
  9035     _virtual_space.shrink_by(bytes);
  9036     if (PrintGCDetails && Verbose) {
  9037       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9038         " desired_bytes " SIZE_FORMAT
  9039         " shrinkable_size_in_bytes " SIZE_FORMAT
  9040         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9041         "  bytes  " SIZE_FORMAT,
  9042         desired_bytes, shrinkable_size_in_bytes,
  9043         aligned_shrinkable_size_in_bytes, bytes);
  9044       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9045         "  unallocated_start  " SIZE_FORMAT,
  9046         old_end, unallocated_start);
  9049     // If the space did shrink (shrinking is not guaranteed),
  9050     // shrink the chunk at the end by the appropriate amount.
  9051     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9052       size_t new_word_size =
  9053         heap_word_size(_virtual_space.committed_size());
  9055       // Have to remove the chunk from the dictionary because it is changing
  9056       // size and might be someplace elsewhere in the dictionary.
  9058       // Get the chunk at end, shrink it, and put it
  9059       // back.
  9060       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9061       size_t word_size_change = word_size_before - new_word_size;
  9062       size_t chunk_at_end_old_size = chunk_at_end->size();
  9063       assert(chunk_at_end_old_size >= word_size_change,
  9064         "Shrink is too large");
  9065       chunk_at_end->setSize(chunk_at_end_old_size -
  9066                           word_size_change);
  9067       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9068         word_size_change);
  9070       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9072       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9073       _bts->resize(new_word_size);  // resize the block offset shared array
  9074       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9075       _cmsSpace->assert_locked();
  9076       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9078       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9080       // update the space and generation capacity counters
  9081       if (UsePerfData) {
  9082         _space_counters->update_capacity();
  9083         _gen_counters->update_all();
  9086       if (Verbose && PrintGCDetails) {
  9087         size_t new_mem_size = _virtual_space.committed_size();
  9088         size_t old_mem_size = new_mem_size + bytes;
  9089         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  9090                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9094     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9095       "Inconsistency at end of space");
  9096     assert(chunk_at_end->end() == _cmsSpace->end(),
  9097       "Shrinking is inconsistent");
  9098     return;
  9102 // Transfer some number of overflown objects to usual marking
  9103 // stack. Return true if some objects were transferred.
  9104 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9105   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9106                     (size_t)ParGCDesiredObjsFromOverflowList);
  9108   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9109   assert(_collector->overflow_list_is_empty() || res,
  9110          "If list is not empty, we should have taken something");
  9111   assert(!res || !_mark_stack->isEmpty(),
  9112          "If we took something, it should now be on our stack");
  9113   return res;
  9116 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9117   size_t res = _sp->block_size_no_stall(addr, _collector);
  9118   assert(res != 0, "Should always be able to compute a size");
  9119   if (_sp->block_is_obj(addr)) {
  9120     if (_live_bit_map->isMarked(addr)) {
  9121       // It can't have been dead in a previous cycle
  9122       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9123     } else {
  9124       _dead_bit_map->mark(addr);      // mark the dead object
  9127   return res;

mercurial