src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1719
5f1f51edaff6
child 2314
f95d63e2154a
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2004, 2006, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    24 #include "incls/_precompiled.incl"
    25 #include "incls/_cmsAdaptiveSizePolicy.cpp.incl"
    27 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
    28 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
    30 // Defined if the granularity of the time measurements is potentially too large.
    31 #define CLOCK_GRANULARITY_TOO_LARGE
    33 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
    34                                              size_t init_promo_size,
    35                                              size_t init_survivor_size,
    36                                              double max_gc_minor_pause_sec,
    37                                              double max_gc_pause_sec,
    38                                              uint gc_cost_ratio) :
    39   AdaptiveSizePolicy(init_eden_size,
    40                      init_promo_size,
    41                      init_survivor_size,
    42                      max_gc_pause_sec,
    43                      gc_cost_ratio) {
    45   clear_internal_time_intervals();
    47   _processor_count = os::active_processor_count();
    49   if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
    50     assert(_processor_count > 0, "Processor count is suspect");
    51     _concurrent_processor_count = MIN2((uint) ConcGCThreads,
    52                                        (uint) _processor_count);
    53   } else {
    54     _concurrent_processor_count = 1;
    55   }
    57   _avg_concurrent_time  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    58   _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    59   _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    61   _avg_initial_pause    = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    62                                                     PausePadding);
    63   _avg_remark_pause     = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    64                                                     PausePadding);
    66   _avg_cms_STW_time     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    67   _avg_cms_STW_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    69   _avg_cms_free         = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    70   _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    71   _avg_cms_promo        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    73   // Mark-sweep-compact
    74   _avg_msc_pause        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    75   _avg_msc_interval     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    76   _avg_msc_gc_cost      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    78   // Mark-sweep
    79   _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    80   _avg_ms_interval      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    81   _avg_ms_gc_cost       = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    83   // Variables that estimate pause times as a function of generation
    84   // size.
    85   _remark_pause_old_estimator =
    86     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    87   _initial_pause_old_estimator =
    88     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    89   _remark_pause_young_estimator =
    90     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    91   _initial_pause_young_estimator =
    92     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    94   // Alignment comes from that used in ReservedSpace.
    95   _generation_alignment = os::vm_allocation_granularity();
    97   // Start the concurrent timer here so that the first
    98   // concurrent_phases_begin() measures a finite mutator
    99   // time.  A finite mutator time is used to determine
   100   // if a concurrent collection has been started.  If this
   101   // proves to be a problem, use some explicit flag to
   102   // signal that a concurrent collection has been started.
   103   _concurrent_timer.start();
   104   _STW_timer.start();
   105 }
   107 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
   108   // For now assume no other daemon threads are taking alway
   109   // cpu's from the application.
   110   return ((double) _concurrent_processor_count / (double) _processor_count);
   111 }
   113 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
   114                                                   double interval_in_seconds) {
   115   //  When the precleaning and sweeping phases use multiple
   116   // threads, change one_processor_fraction to
   117   // concurrent_processor_fraction().
   118   double one_processor_fraction = 1.0 / ((double) processor_count());
   119   double concurrent_cost =
   120     collection_cost(_latest_cms_concurrent_marking_time_secs,
   121                 interval_in_seconds) * concurrent_processor_fraction() +
   122     collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   123                 interval_in_seconds) * one_processor_fraction +
   124     collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   125                 interval_in_seconds) * one_processor_fraction;
   126   if (PrintAdaptiveSizePolicy && Verbose) {
   127     gclog_or_tty->print_cr(
   128       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
   129       "_latest_cms_concurrent_marking_cost %f "
   130       "_latest_cms_concurrent_precleaning_cost %f "
   131       "_latest_cms_concurrent_sweeping_cost %f "
   132       "concurrent_processor_fraction %f "
   133       "concurrent_cost %f ",
   134       interval_in_seconds,
   135       collection_cost(_latest_cms_concurrent_marking_time_secs,
   136         interval_in_seconds),
   137       collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   138         interval_in_seconds),
   139       collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   140         interval_in_seconds),
   141       concurrent_processor_fraction(),
   142       concurrent_cost);
   143   }
   144   return concurrent_cost;
   145 }
   147 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
   148   double latest_cms_sum_concurrent_phases_time_secs =
   149     _latest_cms_concurrent_marking_time_secs +
   150     _latest_cms_concurrent_precleaning_time_secs +
   151     _latest_cms_concurrent_sweeping_time_secs;
   152   return latest_cms_sum_concurrent_phases_time_secs;
   153 }
   155 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
   156   //  When the precleaning and sweeping phases use multiple
   157   // threads, change one_processor_fraction to
   158   // concurrent_processor_fraction().
   159   double one_processor_fraction = 1.0 / ((double) processor_count());
   160   double latest_cms_sum_concurrent_phases_time_secs =
   161     _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
   162     _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
   163     _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
   164   if (PrintAdaptiveSizePolicy && Verbose) {
   165     gclog_or_tty->print_cr(
   166       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
   167       "_latest_cms_concurrent_marking_time_secs %f "
   168       "_latest_cms_concurrent_precleaning_time_secs %f "
   169       "_latest_cms_concurrent_sweeping_time_secs %f "
   170       "concurrent_processor_fraction %f "
   171       "latest_cms_sum_concurrent_phases_time_secs %f ",
   172       _latest_cms_concurrent_marking_time_secs,
   173       _latest_cms_concurrent_precleaning_time_secs,
   174       _latest_cms_concurrent_sweeping_time_secs,
   175       concurrent_processor_fraction(),
   176       latest_cms_sum_concurrent_phases_time_secs);
   177   }
   178   return latest_cms_sum_concurrent_phases_time_secs;
   179 }
   181 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
   182     double minor_pause_in_ms) {
   183   // Get the equivalent of the free space
   184   // that is available for promotions in the CMS generation
   185   // and use that to update _minor_pause_old_estimator
   187   // Don't implement this until it is needed. A warning is
   188   // printed if _minor_pause_old_estimator is used.
   189 }
   191 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
   192   if (PrintAdaptiveSizePolicy && Verbose) {
   193     gclog_or_tty->print(" ");
   194     gclog_or_tty->stamp();
   195     gclog_or_tty->print(": concurrent_marking_begin ");
   196   }
   197   //  Update the interval time
   198   _concurrent_timer.stop();
   199   _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
   200   if (PrintAdaptiveSizePolicy && Verbose) {
   201     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
   202     "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
   203   }
   204   _concurrent_timer.reset();
   205   _concurrent_timer.start();
   206 }
   208 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
   209   if (PrintAdaptiveSizePolicy && Verbose) {
   210     gclog_or_tty->stamp();
   211     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
   212   }
   214   _concurrent_timer.stop();
   215   _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
   217   if (PrintAdaptiveSizePolicy && Verbose) {
   218     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
   219       ":concurrent marking time (s) %f",
   220       _latest_cms_concurrent_marking_time_secs);
   221   }
   222 }
   224 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
   225   if (PrintAdaptiveSizePolicy && Verbose) {
   226     gclog_or_tty->stamp();
   227     gclog_or_tty->print_cr(
   228       "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
   229   }
   230   _concurrent_timer.reset();
   231   _concurrent_timer.start();
   232 }
   235 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
   236   if (PrintAdaptiveSizePolicy && Verbose) {
   237     gclog_or_tty->stamp();
   238     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
   239   }
   241   _concurrent_timer.stop();
   242   // May be set again by a second call during the same collection.
   243   _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
   245   if (PrintAdaptiveSizePolicy && Verbose) {
   246     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
   247       ":concurrent precleaning time (s) %f",
   248       _latest_cms_concurrent_precleaning_time_secs);
   249   }
   250 }
   252 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
   253   if (PrintAdaptiveSizePolicy && Verbose) {
   254     gclog_or_tty->stamp();
   255     gclog_or_tty->print_cr(
   256       "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
   257   }
   258   _concurrent_timer.reset();
   259   _concurrent_timer.start();
   260 }
   263 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
   264   if (PrintAdaptiveSizePolicy && Verbose) {
   265     gclog_or_tty->stamp();
   266     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
   267   }
   269   _concurrent_timer.stop();
   270   _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
   272   if (PrintAdaptiveSizePolicy && Verbose) {
   273     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
   274       ":concurrent sweeping time (s) %f",
   275       _latest_cms_concurrent_sweeping_time_secs);
   276   }
   277 }
   279 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
   280                                                   size_t cur_eden,
   281                                                   size_t cur_promo) {
   282   if (PrintAdaptiveSizePolicy && Verbose) {
   283     gclog_or_tty->print(" ");
   284     gclog_or_tty->stamp();
   285     gclog_or_tty->print(": concurrent_phases_end ");
   286   }
   288   // Update the concurrent timer
   289   _concurrent_timer.stop();
   291   if (gc_cause != GCCause::_java_lang_system_gc ||
   292       UseAdaptiveSizePolicyWithSystemGC) {
   294     avg_cms_free()->sample(cur_promo);
   295     double latest_cms_sum_concurrent_phases_time_secs =
   296       concurrent_collection_time();
   298     _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
   300     // Cost of collection (unit-less)
   302     // Total interval for collection.  May not be valid.  Tests
   303     // below determine whether to use this.
   304     //
   305   if (PrintAdaptiveSizePolicy && Verbose) {
   306     gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
   307       "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
   308       "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
   309       "_latest_cms_remark_start_to_end_time_secs %f \n"
   310       "_latest_cms_concurrent_marking_time_secs %f \n"
   311       "_latest_cms_concurrent_precleaning_time_secs %f \n"
   312       "_latest_cms_concurrent_sweeping_time_secs %f \n"
   313       "latest_cms_sum_concurrent_phases_time_secs %f \n"
   314       "_latest_cms_collection_end_to_collection_start_secs %f \n"
   315       "concurrent_processor_fraction %f",
   316       _latest_cms_reset_end_to_initial_mark_start_secs,
   317       _latest_cms_initial_mark_start_to_end_time_secs,
   318       _latest_cms_remark_start_to_end_time_secs,
   319       _latest_cms_concurrent_marking_time_secs,
   320       _latest_cms_concurrent_precleaning_time_secs,
   321       _latest_cms_concurrent_sweeping_time_secs,
   322       latest_cms_sum_concurrent_phases_time_secs,
   323       _latest_cms_collection_end_to_collection_start_secs,
   324       concurrent_processor_fraction());
   325   }
   326     double interval_in_seconds =
   327       _latest_cms_initial_mark_start_to_end_time_secs +
   328       _latest_cms_remark_start_to_end_time_secs +
   329       latest_cms_sum_concurrent_phases_time_secs +
   330       _latest_cms_collection_end_to_collection_start_secs;
   331     assert(interval_in_seconds >= 0.0,
   332       "Bad interval between cms collections");
   334     // Sample for performance counter
   335     avg_concurrent_interval()->sample(interval_in_seconds);
   337     // STW costs (initial and remark pauses)
   338     // Cost of collection (unit-less)
   339     assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
   340       "Bad initial mark pause");
   341     assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
   342       "Bad remark pause");
   343     double STW_time_in_seconds =
   344       _latest_cms_initial_mark_start_to_end_time_secs +
   345       _latest_cms_remark_start_to_end_time_secs;
   346     double STW_collection_cost = 0.0;
   347     if (interval_in_seconds > 0.0) {
   348       // cost for the STW phases of the concurrent collection.
   349       STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
   350       avg_cms_STW_gc_cost()->sample(STW_collection_cost);
   351     }
   352     if (PrintAdaptiveSizePolicy && Verbose) {
   353       gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
   354         "STW gc cost: %f  average: %f", STW_collection_cost,
   355         avg_cms_STW_gc_cost()->average());
   356       gclog_or_tty->print_cr("  STW pause: %f (ms) STW period %f (ms)",
   357         (double) STW_time_in_seconds * MILLIUNITS,
   358         (double) interval_in_seconds * MILLIUNITS);
   359     }
   361     double concurrent_cost = 0.0;
   362     if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
   363       concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   365       avg_concurrent_gc_cost()->sample(concurrent_cost);
   366       // Average this ms cost into all the other types gc costs
   368       if (PrintAdaptiveSizePolicy && Verbose) {
   369         gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
   370           "concurrent gc cost: %f  average: %f",
   371           concurrent_cost,
   372           _avg_concurrent_gc_cost->average());
   373         gclog_or_tty->print_cr("  concurrent time: %f (ms) cms period %f (ms)"
   374           " processor fraction: %f",
   375           latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
   376           interval_in_seconds * MILLIUNITS,
   377           concurrent_processor_fraction());
   378       }
   379     }
   380     double total_collection_cost = STW_collection_cost + concurrent_cost;
   381     avg_major_gc_cost()->sample(total_collection_cost);
   383     // Gather information for estimating future behavior
   384     double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
   385     double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
   387     double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
   388     initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   389       initial_pause_in_ms);
   390     remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   391       remark_pause_in_ms);
   392     major_collection_estimator()->update(cur_promo_size_in_mbytes,
   393       total_collection_cost);
   395     // This estimate uses the average eden size.  It could also
   396     // have used the latest eden size.  Which is better?
   397     double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
   398     initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   399       initial_pause_in_ms);
   400     remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   401       remark_pause_in_ms);
   402   }
   404   clear_internal_time_intervals();
   406   set_first_after_collection();
   408   // The concurrent phases keeps track of it's own mutator interval
   409   // with this timer.  This allows the stop-the-world phase to
   410   // be included in the mutator time so that the stop-the-world time
   411   // is not double counted.  Reset and start it.
   412   _concurrent_timer.reset();
   413   _concurrent_timer.start();
   415   // The mutator time between STW phases does not include the
   416   // concurrent collection time.
   417   _STW_timer.reset();
   418   _STW_timer.start();
   419 }
   421 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
   422   //  Update the interval time
   423   _STW_timer.stop();
   424   _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
   425   // Reset for the initial mark
   426   _STW_timer.reset();
   427   _STW_timer.start();
   428 }
   430 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
   431     GCCause::Cause gc_cause) {
   432   _STW_timer.stop();
   434   if (gc_cause != GCCause::_java_lang_system_gc ||
   435       UseAdaptiveSizePolicyWithSystemGC) {
   436     _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
   437     avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
   439     if (PrintAdaptiveSizePolicy && Verbose) {
   440       gclog_or_tty->print(
   441         "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
   442         "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
   443     }
   444   }
   446   _STW_timer.reset();
   447   _STW_timer.start();
   448 }
   450 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
   451   _STW_timer.stop();
   452   _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
   453   // Start accumumlating time for the remark in the STW timer.
   454   _STW_timer.reset();
   455   _STW_timer.start();
   456 }
   458 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
   459     GCCause::Cause gc_cause) {
   460   _STW_timer.stop();
   461   if (gc_cause != GCCause::_java_lang_system_gc ||
   462       UseAdaptiveSizePolicyWithSystemGC) {
   463     // Total initial mark pause + remark pause.
   464     _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
   465     double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   466       _latest_cms_remark_start_to_end_time_secs;
   467     double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
   469     avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
   471     // Sample total for initial mark + remark
   472     avg_cms_STW_time()->sample(STW_time_in_seconds);
   474     if (PrintAdaptiveSizePolicy && Verbose) {
   475       gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
   476         "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
   477     }
   479   }
   480   // Don't start the STW times here because the concurrent
   481   // sweep and reset has not happened.
   482   //  Keep the old comment above in case I don't understand
   483   // what is going on but now
   484   // Start the STW timer because it is used by ms_collection_begin()
   485   // and ms_collection_end() to get the sweep time if a MS is being
   486   // done in the foreground.
   487   _STW_timer.reset();
   488   _STW_timer.start();
   489 }
   491 void CMSAdaptiveSizePolicy::msc_collection_begin() {
   492   if (PrintAdaptiveSizePolicy && Verbose) {
   493     gclog_or_tty->print(" ");
   494     gclog_or_tty->stamp();
   495     gclog_or_tty->print(": msc_collection_begin ");
   496   }
   497   _STW_timer.stop();
   498   _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
   499   if (PrintAdaptiveSizePolicy && Verbose) {
   500     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
   501       "mutator time %f",
   502       _latest_cms_msc_end_to_msc_start_time_secs);
   503   }
   504   avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
   505   _STW_timer.reset();
   506   _STW_timer.start();
   507 }
   509 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
   510   if (PrintAdaptiveSizePolicy && Verbose) {
   511     gclog_or_tty->print(" ");
   512     gclog_or_tty->stamp();
   513     gclog_or_tty->print(": msc_collection_end ");
   514   }
   515   _STW_timer.stop();
   516   if (gc_cause != GCCause::_java_lang_system_gc ||
   517         UseAdaptiveSizePolicyWithSystemGC) {
   518     double msc_pause_in_seconds = _STW_timer.seconds();
   519     if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
   520         (msc_pause_in_seconds > 0.0)) {
   521       avg_msc_pause()->sample(msc_pause_in_seconds);
   522       double mutator_time_in_seconds = 0.0;
   523       if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
   524         // This assertion may fail because of time stamp gradularity.
   525         // Comment it out and investiage it at a later time.  The large
   526         // time stamp granularity occurs on some older linux systems.
   527 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   528         assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
   529                (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
   530                (_latest_cms_concurrent_sweeping_time_secs == 0.0),
   531           "There should not be any concurrent time");
   532 #endif
   533         // A concurrent collection did not start.  Mutator time
   534         // between collections comes from the STW MSC timer.
   535         mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
   536       } else {
   537         // The concurrent collection did start so count the mutator
   538         // time to the start of the concurrent collection.  In this
   539         // case the _latest_cms_msc_end_to_msc_start_time_secs measures
   540         // the time between the initial mark or remark and the
   541         // start of the MSC.  That has no real meaning.
   542         mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
   543       }
   545       double latest_cms_sum_concurrent_phases_time_secs =
   546         concurrent_collection_time();
   547       double interval_in_seconds =
   548         mutator_time_in_seconds +
   549         _latest_cms_initial_mark_start_to_end_time_secs +
   550         _latest_cms_remark_start_to_end_time_secs +
   551         latest_cms_sum_concurrent_phases_time_secs +
   552         msc_pause_in_seconds;
   554       if (PrintAdaptiveSizePolicy && Verbose) {
   555         gclog_or_tty->print_cr("  interval_in_seconds %f \n"
   556           "     mutator_time_in_seconds %f \n"
   557           "     _latest_cms_initial_mark_start_to_end_time_secs %f\n"
   558           "     _latest_cms_remark_start_to_end_time_secs %f\n"
   559           "     latest_cms_sum_concurrent_phases_time_secs %f\n"
   560           "     msc_pause_in_seconds %f\n",
   561           interval_in_seconds,
   562           mutator_time_in_seconds,
   563           _latest_cms_initial_mark_start_to_end_time_secs,
   564           _latest_cms_remark_start_to_end_time_secs,
   565           latest_cms_sum_concurrent_phases_time_secs,
   566           msc_pause_in_seconds);
   567       }
   569       // The concurrent cost is wasted cost but it should be
   570       // included.
   571       double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   573       // Initial mark and remark, also wasted.
   574       double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   575         _latest_cms_remark_start_to_end_time_secs;
   576       double STW_collection_cost =
   577         collection_cost(STW_time_in_seconds, interval_in_seconds) +
   578         concurrent_cost;
   580       if (PrintAdaptiveSizePolicy && Verbose) {
   581         gclog_or_tty->print_cr(" msc_collection_end:\n"
   582           "_latest_cms_collection_end_to_collection_start_secs %f\n"
   583           "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
   584           "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
   585           "_latest_cms_remark_start_to_end_time_secs %f\n"
   586           "latest_cms_sum_concurrent_phases_time_secs %f\n",
   587           _latest_cms_collection_end_to_collection_start_secs,
   588           _latest_cms_msc_end_to_msc_start_time_secs,
   589           _latest_cms_initial_mark_start_to_end_time_secs,
   590           _latest_cms_remark_start_to_end_time_secs,
   591           latest_cms_sum_concurrent_phases_time_secs);
   593         gclog_or_tty->print_cr(" msc_collection_end: \n"
   594           "latest_cms_sum_concurrent_phases_time_secs %f\n"
   595           "STW_time_in_seconds %f\n"
   596           "msc_pause_in_seconds %f\n",
   597           latest_cms_sum_concurrent_phases_time_secs,
   598           STW_time_in_seconds,
   599           msc_pause_in_seconds);
   600       }
   602       double cost = concurrent_cost + STW_collection_cost +
   603         collection_cost(msc_pause_in_seconds, interval_in_seconds);
   605       _avg_msc_gc_cost->sample(cost);
   607       // Average this ms cost into all the other types gc costs
   608       avg_major_gc_cost()->sample(cost);
   610       // Sample for performance counter
   611       _avg_msc_interval->sample(interval_in_seconds);
   612       if (PrintAdaptiveSizePolicy && Verbose) {
   613         gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
   614           "MSC gc cost: %f  average: %f", cost,
   615           _avg_msc_gc_cost->average());
   617         double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
   618         gclog_or_tty->print_cr("  MSC pause: %f (ms) MSC period %f (ms)",
   619           msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
   620       }
   621     }
   622   }
   624   clear_internal_time_intervals();
   626   // Can this call be put into the epilogue?
   627   set_first_after_collection();
   629   // The concurrent phases keeps track of it's own mutator interval
   630   // with this timer.  This allows the stop-the-world phase to
   631   // be included in the mutator time so that the stop-the-world time
   632   // is not double counted.  Reset and start it.
   633   _concurrent_timer.stop();
   634   _concurrent_timer.reset();
   635   _concurrent_timer.start();
   637   _STW_timer.reset();
   638   _STW_timer.start();
   639 }
   641 void CMSAdaptiveSizePolicy::ms_collection_begin() {
   642   if (PrintAdaptiveSizePolicy && Verbose) {
   643     gclog_or_tty->print(" ");
   644     gclog_or_tty->stamp();
   645     gclog_or_tty->print(": ms_collection_begin ");
   646   }
   647   _STW_timer.stop();
   648   _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
   649   if (PrintAdaptiveSizePolicy && Verbose) {
   650     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
   651       "mutator time %f",
   652       _latest_cms_ms_end_to_ms_start);
   653   }
   654   avg_ms_interval()->sample(_STW_timer.seconds());
   655   _STW_timer.reset();
   656   _STW_timer.start();
   657 }
   659 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
   660   if (PrintAdaptiveSizePolicy && Verbose) {
   661     gclog_or_tty->print(" ");
   662     gclog_or_tty->stamp();
   663     gclog_or_tty->print(": ms_collection_end ");
   664   }
   665   _STW_timer.stop();
   666   if (gc_cause != GCCause::_java_lang_system_gc ||
   667         UseAdaptiveSizePolicyWithSystemGC) {
   668     // The MS collection is a foreground collection that does all
   669     // the parts of a mostly concurrent collection.
   670     //
   671     // For this collection include the cost of the
   672     //  initial mark
   673     //  remark
   674     //  all concurrent time (scaled down by the
   675     //    concurrent_processor_fraction).  Some
   676     //    may be zero if the baton was passed before
   677     //    it was reached.
   678     //    concurrent marking
   679     //    sweeping
   680     //    resetting
   681     //  STW after baton was passed (STW_in_foreground_in_seconds)
   682     double STW_in_foreground_in_seconds = _STW_timer.seconds();
   684     double latest_cms_sum_concurrent_phases_time_secs =
   685       concurrent_collection_time();
   686     if (PrintAdaptiveSizePolicy && Verbose) {
   687       gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
   688         "STW_in_foreground_in_seconds %f "
   689         "_latest_cms_initial_mark_start_to_end_time_secs %f "
   690         "_latest_cms_remark_start_to_end_time_secs %f "
   691         "latest_cms_sum_concurrent_phases_time_secs %f "
   692         "_latest_cms_ms_marking_start_to_end_time_secs %f "
   693         "_latest_cms_ms_end_to_ms_start %f",
   694         STW_in_foreground_in_seconds,
   695         _latest_cms_initial_mark_start_to_end_time_secs,
   696         _latest_cms_remark_start_to_end_time_secs,
   697         latest_cms_sum_concurrent_phases_time_secs,
   698         _latest_cms_ms_marking_start_to_end_time_secs,
   699         _latest_cms_ms_end_to_ms_start);
   700     }
   702     double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   703       _latest_cms_remark_start_to_end_time_secs;
   704 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   705     assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
   706            latest_cms_sum_concurrent_phases_time_secs == 0.0,
   707            "marking done twice?");
   708 #endif
   709     double ms_time_in_seconds = STW_marking_in_seconds +
   710       STW_in_foreground_in_seconds +
   711       _latest_cms_ms_marking_start_to_end_time_secs +
   712       scaled_concurrent_collection_time();
   713     avg_ms_pause()->sample(ms_time_in_seconds);
   714     // Use the STW costs from the initial mark and remark plus
   715     // the cost of the concurrent phase to calculate a
   716     // collection cost.
   717     double cost = 0.0;
   718     if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
   719         (ms_time_in_seconds > 0.0)) {
   720       double interval_in_seconds =
   721         _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
   723       if (PrintAdaptiveSizePolicy && Verbose) {
   724         gclog_or_tty->print_cr("\n ms_time_in_seconds  %f  "
   725           "latest_cms_sum_concurrent_phases_time_secs %f  "
   726           "interval_in_seconds %f",
   727           ms_time_in_seconds,
   728           latest_cms_sum_concurrent_phases_time_secs,
   729           interval_in_seconds);
   730       }
   732       cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
   734       _avg_ms_gc_cost->sample(cost);
   735       // Average this ms cost into all the other types gc costs
   736       avg_major_gc_cost()->sample(cost);
   738       // Sample for performance counter
   739       _avg_ms_interval->sample(interval_in_seconds);
   740     }
   741     if (PrintAdaptiveSizePolicy && Verbose) {
   742       gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
   743         "MS gc cost: %f  average: %f", cost, _avg_ms_gc_cost->average());
   745       double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
   746       gclog_or_tty->print_cr("  MS pause: %f (ms) MS period %f (ms)",
   747         ms_time_in_ms,
   748         _latest_cms_ms_end_to_ms_start * MILLIUNITS);
   749     }
   750   }
   752   // Consider putting this code (here to end) into a
   753   // method for convenience.
   754   clear_internal_time_intervals();
   756   set_first_after_collection();
   758   // The concurrent phases keeps track of it's own mutator interval
   759   // with this timer.  This allows the stop-the-world phase to
   760   // be included in the mutator time so that the stop-the-world time
   761   // is not double counted.  Reset and start it.
   762   _concurrent_timer.stop();
   763   _concurrent_timer.reset();
   764   _concurrent_timer.start();
   766   _STW_timer.reset();
   767   _STW_timer.start();
   768 }
   770 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
   771   _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
   772   _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
   773   _latest_cms_collection_end_to_collection_start_secs = 0.0;
   774   _latest_cms_concurrent_marking_time_secs = 0.0;
   775   _latest_cms_concurrent_precleaning_time_secs = 0.0;
   776   _latest_cms_concurrent_sweeping_time_secs = 0.0;
   777   _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
   778   _latest_cms_ms_end_to_ms_start = 0.0;
   779   _latest_cms_remark_start_to_end_time_secs = 0.0;
   780   _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
   781   _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
   782 }
   784 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   785   AdaptiveSizePolicy::clear_generation_free_space_flags();
   787   set_change_young_gen_for_maj_pauses(0);
   788 }
   790 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
   791   if (PrintAdaptiveSizePolicy && Verbose) {
   792     gclog_or_tty->stamp();
   793     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
   794   }
   795   _concurrent_timer.start();
   796 }
   798 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
   799   _concurrent_timer.stop();
   800   double time_since_cms_gc = _concurrent_timer.seconds();
   801   _concurrent_timer.start();
   802   _STW_timer.stop();
   803   double time_since_STW_gc = _STW_timer.seconds();
   804   _STW_timer.start();
   806   return MIN2(time_since_cms_gc, time_since_STW_gc);
   807 }
   809 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
   810   double cms_interval = _avg_concurrent_interval->average();
   811   double msc_interval = _avg_msc_interval->average();
   812   double ms_interval = _avg_ms_interval->average();
   814   return MAX3(cms_interval, msc_interval, ms_interval);
   815 }
   817 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
   818   return avg_major_gc_cost()->average();
   819 }
   821 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
   822   _STW_timer.stop();
   823   // Start accumumlating time for the marking in the STW timer.
   824   _STW_timer.reset();
   825   _STW_timer.start();
   826 }
   828 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
   829     GCCause::Cause gc_cause) {
   830   _STW_timer.stop();
   831   if (gc_cause != GCCause::_java_lang_system_gc ||
   832       UseAdaptiveSizePolicyWithSystemGC) {
   833     _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
   834     if (PrintAdaptiveSizePolicy && Verbose) {
   835       gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
   836         "msc_collection_marking_end: mutator time %f",
   837         _latest_cms_ms_marking_start_to_end_time_secs);
   838     }
   839   }
   840   _STW_timer.reset();
   841   _STW_timer.start();
   842 }
   844 double CMSAdaptiveSizePolicy::gc_cost() const {
   845   double cms_gen_cost = cms_gc_cost();
   846   double result =  MIN2(1.0, minor_gc_cost() + cms_gen_cost);
   847   assert(result >= 0.0, "Both minor and major costs are non-negative");
   848   return result;
   849 }
   851 // Cost of collection (unit-less)
   852 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
   853                                               double interval_in_seconds) {
   854   // Cost of collection (unit-less)
   855   double cost = 0.0;
   856   if ((interval_in_seconds > 0.0) &&
   857       (pause_in_seconds > 0.0)) {
   858     cost =
   859       pause_in_seconds / interval_in_seconds;
   860   }
   861   return cost;
   862 }
   864 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
   865   size_t change = 0;
   866   size_t desired_eden = cur_eden;
   868   // reduce eden size
   869   change = eden_decrement_aligned_down(cur_eden);
   870   desired_eden = cur_eden - change;
   872   if (PrintAdaptiveSizePolicy && Verbose) {
   873     gclog_or_tty->print_cr(
   874       "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
   875       "adjusting eden for pause time. "
   876       " starting eden size " SIZE_FORMAT
   877       " reduced eden size " SIZE_FORMAT
   878       " eden delta " SIZE_FORMAT,
   879       cur_eden, desired_eden, change);
   880   }
   882   return desired_eden;
   883 }
   885 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
   887   size_t desired_eden = cur_eden;
   889   set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
   891   size_t change = eden_increment_aligned_up(cur_eden);
   892   size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
   894   if (cur_eden + scaled_change > cur_eden) {
   895     desired_eden = cur_eden + scaled_change;
   896   }
   898   _young_gen_change_for_minor_throughput++;
   900   if (PrintAdaptiveSizePolicy && Verbose) {
   901     gclog_or_tty->print_cr(
   902       "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
   903       "adjusting eden for throughput. "
   904       " starting eden size " SIZE_FORMAT
   905       " increased eden size " SIZE_FORMAT
   906       " eden delta " SIZE_FORMAT,
   907       cur_eden, desired_eden, scaled_change);
   908   }
   910   return desired_eden;
   911 }
   913 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
   915   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   917   size_t change = eden_decrement(cur_eden);
   918   size_t desired_eden_size = cur_eden - change;
   920   if (PrintAdaptiveSizePolicy && Verbose) {
   921     gclog_or_tty->print_cr(
   922       "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
   923       "adjusting eden for footprint. "
   924       " starting eden size " SIZE_FORMAT
   925       " reduced eden size " SIZE_FORMAT
   926       " eden delta " SIZE_FORMAT,
   927       cur_eden, desired_eden_size, change);
   928   }
   929   return desired_eden_size;
   930 }
   932 // The eden and promo versions should be combined if possible.
   933 // They are the same except that the sizes of the decrement
   934 // and increment are different for eden and promo.
   935 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   936   size_t delta = eden_decrement(cur_eden);
   937   return align_size_down(delta, generation_alignment());
   938 }
   940 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   941   size_t delta = eden_increment(cur_eden);
   942   return align_size_up(delta, generation_alignment());
   943 }
   945 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
   946   size_t delta = promo_decrement(cur_promo);
   947   return align_size_down(delta, generation_alignment());
   948 }
   950 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   951   size_t delta = promo_increment(cur_promo);
   952   return align_size_up(delta, generation_alignment());
   953 }
   956 void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden,
   957                                           size_t max_eden_size)
   958 {
   959   size_t desired_eden_size = cur_eden;
   960   size_t eden_limit = max_eden_size;
   962   // Printout input
   963   if (PrintGC && PrintAdaptiveSizePolicy) {
   964     gclog_or_tty->print_cr(
   965       "CMSAdaptiveSizePolicy::compute_young_generation_free_space: "
   966       "cur_eden " SIZE_FORMAT,
   967       cur_eden);
   968   }
   970   // Used for diagnostics
   971   clear_generation_free_space_flags();
   973   if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
   974     if (minor_pause_young_estimator()->decrement_will_decrease()) {
   975       // If the minor pause is too long, shrink the young gen.
   976       set_change_young_gen_for_min_pauses(
   977         decrease_young_gen_for_min_pauses_true);
   978       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
   979     }
   980   } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
   981              (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
   982     // The remark or initial pauses are not meeting the goal.  Should
   983     // the generation be shrunk?
   984     if (get_and_clear_first_after_collection() &&
   985         ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
   986           remark_pause_young_estimator()->decrement_will_decrease()) ||
   987          (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
   988           initial_pause_young_estimator()->decrement_will_decrease()))) {
   990        set_change_young_gen_for_maj_pauses(
   991          decrease_young_gen_for_maj_pauses_true);
   993       // If the remark or initial pause is too long and this is the
   994       // first young gen collection after a cms collection, shrink
   995       // the young gen.
   996       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
   997     }
   998     // If not the first young gen collection after a cms collection,
   999     // don't do anything.  In this case an adjustment has already
  1000     // been made and the results of the adjustment has not yet been
  1001     // measured.
  1002   } else if ((minor_gc_cost() >= 0.0) &&
  1003              (adjusted_mutator_cost() < _throughput_goal)) {
  1004     desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
  1005   } else {
  1006     desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
  1009   if (PrintGC && PrintAdaptiveSizePolicy) {
  1010     gclog_or_tty->print_cr(
  1011       "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:"
  1012       " desired_eden_size: " SIZE_FORMAT
  1013       " old_eden_size: " SIZE_FORMAT,
  1014       desired_eden_size, cur_eden);
  1017   set_eden_size(desired_eden_size);
  1020 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
  1021   size_t change = 0;
  1022   size_t desired_promo = cur_promo;
  1023   // Move this test up to caller like the adjust_eden_for_pause_time()
  1024   // call.
  1025   if ((AdaptiveSizePausePolicy == 0) &&
  1026       ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
  1027       (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
  1028     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1029     change = promo_decrement_aligned_down(cur_promo);
  1030     desired_promo = cur_promo - change;
  1031   } else if ((AdaptiveSizePausePolicy > 0) &&
  1032       (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
  1033        remark_pause_old_estimator()->decrement_will_decrease()) ||
  1034       ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
  1035        initial_pause_old_estimator()->decrement_will_decrease()))) {
  1036     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1037     change = promo_decrement_aligned_down(cur_promo);
  1038     desired_promo = cur_promo - change;
  1041   if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
  1042     gclog_or_tty->print_cr(
  1043       "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
  1044       "adjusting promo for pause time. "
  1045       " starting promo size " SIZE_FORMAT
  1046       " reduced promo size " SIZE_FORMAT
  1047       " promo delta " SIZE_FORMAT,
  1048       cur_promo, desired_promo, change);
  1051   return desired_promo;
  1054 // Try to share this with PS.
  1055 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
  1056                                                   double gen_gc_cost) {
  1058   // Calculate the change to use for the tenured gen.
  1059   size_t scaled_change = 0;
  1060   // Can the increment to the generation be scaled?
  1061   if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
  1062     double scale_by_ratio = gen_gc_cost / gc_cost();
  1063     scaled_change =
  1064       (size_t) (scale_by_ratio * (double) base_change);
  1065     if (PrintAdaptiveSizePolicy && Verbose) {
  1066       gclog_or_tty->print_cr(
  1067         "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
  1068           SIZE_FORMAT,
  1069         base_change, scale_by_ratio, scaled_change);
  1071   } else if (gen_gc_cost >= 0.0) {
  1072     // Scaling is not going to work.  If the major gc time is the
  1073     // larger than the other GC costs, give it a full increment.
  1074     if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
  1075       scaled_change = base_change;
  1077   } else {
  1078     // Don't expect to get here but it's ok if it does
  1079     // in the product build since the delta will be 0
  1080     // and nothing will change.
  1081     assert(false, "Unexpected value for gc costs");
  1084   return scaled_change;
  1087 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
  1089   size_t desired_promo = cur_promo;
  1091   set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
  1093   size_t change = promo_increment_aligned_up(cur_promo);
  1094   size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
  1096   if (cur_promo + scaled_change > cur_promo) {
  1097     desired_promo = cur_promo + scaled_change;
  1100   _old_gen_change_for_major_throughput++;
  1102   if (PrintAdaptiveSizePolicy && Verbose) {
  1103     gclog_or_tty->print_cr(
  1104       "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
  1105       "adjusting promo for throughput. "
  1106       " starting promo size " SIZE_FORMAT
  1107       " increased promo size " SIZE_FORMAT
  1108       " promo delta " SIZE_FORMAT,
  1109       cur_promo, desired_promo, scaled_change);
  1112   return desired_promo;
  1115 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
  1116                                                          size_t cur_eden) {
  1118   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
  1120   size_t change = promo_decrement(cur_promo);
  1121   size_t desired_promo_size = cur_promo - change;
  1123   if (PrintAdaptiveSizePolicy && Verbose) {
  1124     gclog_or_tty->print_cr(
  1125       "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
  1126       "adjusting promo for footprint. "
  1127       " starting promo size " SIZE_FORMAT
  1128       " reduced promo size " SIZE_FORMAT
  1129       " promo delta " SIZE_FORMAT,
  1130       cur_promo, desired_promo_size, change);
  1132   return desired_promo_size;
  1135 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
  1136                                 size_t cur_tenured_free,
  1137                                 size_t max_tenured_available,
  1138                                 size_t cur_eden) {
  1139   // This can be bad if the desired value grows/shrinks without
  1140   // any connection to the read free space
  1141   size_t desired_promo_size = promo_size();
  1142   size_t tenured_limit = max_tenured_available;
  1144   // Printout input
  1145   if (PrintGC && PrintAdaptiveSizePolicy) {
  1146     gclog_or_tty->print_cr(
  1147       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
  1148       "cur_tenured_free " SIZE_FORMAT
  1149       " max_tenured_available " SIZE_FORMAT,
  1150       cur_tenured_free, max_tenured_available);
  1153   // Used for diagnostics
  1154   clear_generation_free_space_flags();
  1156   set_decide_at_full_gc(decide_at_full_gc_true);
  1157   if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
  1158       avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
  1159     desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
  1160   } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
  1161     // Nothing to do since the minor collections are too large and
  1162     // this method only deals with the cms generation.
  1163   } else if ((cms_gc_cost() >= 0.0) &&
  1164              (adjusted_mutator_cost() < _throughput_goal)) {
  1165     desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
  1166   } else {
  1167     desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
  1168                                                     cur_eden);
  1171   if (PrintGC && PrintAdaptiveSizePolicy) {
  1172     gclog_or_tty->print_cr(
  1173       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
  1174       " desired_promo_size: " SIZE_FORMAT
  1175       " old_promo_size: " SIZE_FORMAT,
  1176       desired_promo_size, cur_tenured_free);
  1179   set_promo_size(desired_promo_size);
  1182 int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
  1183                                              bool is_survivor_overflow,
  1184                                              int tenuring_threshold,
  1185                                              size_t survivor_limit) {
  1186   assert(survivor_limit >= generation_alignment(),
  1187          "survivor_limit too small");
  1188   assert((size_t)align_size_down(survivor_limit, generation_alignment())
  1189          == survivor_limit, "survivor_limit not aligned");
  1191   // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
  1192   if (!UsePSAdaptiveSurvivorSizePolicy ||
  1193       !young_gen_policy_is_ready()) {
  1194     return tenuring_threshold;
  1197   // We'll decide whether to increase or decrease the tenuring
  1198   // threshold based partly on the newly computed survivor size
  1199   // (if we hit the maximum limit allowed, we'll always choose to
  1200   // decrement the threshold).
  1201   bool incr_tenuring_threshold = false;
  1202   bool decr_tenuring_threshold = false;
  1204   set_decrement_tenuring_threshold_for_gc_cost(false);
  1205   set_increment_tenuring_threshold_for_gc_cost(false);
  1206   set_decrement_tenuring_threshold_for_survivor_limit(false);
  1208   if (!is_survivor_overflow) {
  1209     // Keep running averages on how much survived
  1211     // We use the tenuring threshold to equalize the cost of major
  1212     // and minor collections.
  1213     // ThresholdTolerance is used to indicate how sensitive the
  1214     // tenuring threshold is to differences in cost betweent the
  1215     // collection types.
  1217     // Get the times of interest. This involves a little work, so
  1218     // we cache the values here.
  1219     const double major_cost = major_gc_cost();
  1220     const double minor_cost = minor_gc_cost();
  1222     if (minor_cost > major_cost * _threshold_tolerance_percent) {
  1223       // Minor times are getting too long;  lower the threshold so
  1224       // less survives and more is promoted.
  1225       decr_tenuring_threshold = true;
  1226       set_decrement_tenuring_threshold_for_gc_cost(true);
  1227     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
  1228       // Major times are too long, so we want less promotion.
  1229       incr_tenuring_threshold = true;
  1230       set_increment_tenuring_threshold_for_gc_cost(true);
  1233   } else {
  1234     // Survivor space overflow occurred, so promoted and survived are
  1235     // not accurate. We'll make our best guess by combining survived
  1236     // and promoted and count them as survivors.
  1237     //
  1238     // We'll lower the tenuring threshold to see if we can correct
  1239     // things. Also, set the survivor size conservatively. We're
  1240     // trying to avoid many overflows from occurring if defnew size
  1241     // is just too small.
  1243     decr_tenuring_threshold = true;
  1246   // The padded average also maintains a deviation from the average;
  1247   // we use this to see how good of an estimate we have of what survived.
  1248   // We're trying to pad the survivor size as little as possible without
  1249   // overflowing the survivor spaces.
  1250   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1251                                      generation_alignment());
  1252   target_size = MAX2(target_size, generation_alignment());
  1254   if (target_size > survivor_limit) {
  1255     // Target size is bigger than we can handle. Let's also reduce
  1256     // the tenuring threshold.
  1257     target_size = survivor_limit;
  1258     decr_tenuring_threshold = true;
  1259     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1262   // Finally, increment or decrement the tenuring threshold, as decided above.
  1263   // We test for decrementing first, as we might have hit the target size
  1264   // limit.
  1265   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1266     if (tenuring_threshold > 1) {
  1267       tenuring_threshold--;
  1269   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1270     if (tenuring_threshold < MaxTenuringThreshold) {
  1271       tenuring_threshold++;
  1275   // We keep a running average of the amount promoted which is used
  1276   // to decide when we should collect the old generation (when
  1277   // the amount of old gen free space is less than what we expect to
  1278   // promote).
  1280   if (PrintAdaptiveSizePolicy) {
  1281     // A little more detail if Verbose is on
  1282     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1283     if (Verbose) {
  1284       gclog_or_tty->print( "  avg_survived: %f"
  1285                   "  avg_deviation: %f",
  1286                   _avg_survived->average(),
  1287                   _avg_survived->deviation());
  1290     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1291                 _avg_survived->padded_average());
  1293     if (Verbose) {
  1294       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1295                   "  avg_promoted_dev: %f",
  1296                   gch->gc_stats(1)->avg_promoted()->average(),
  1297                   gch->gc_stats(1)->avg_promoted()->deviation());
  1300     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1301                 "  avg_pretenured_padded_avg: %f"
  1302                 "  tenuring_thresh: %d"
  1303                 "  target_size: " SIZE_FORMAT
  1304                 "  survivor_limit: " SIZE_FORMAT,
  1305                 gch->gc_stats(1)->avg_promoted()->padded_average(),
  1306                 _avg_pretenured->padded_average(),
  1307                 tenuring_threshold, target_size, survivor_limit);
  1308     gclog_or_tty->cr();
  1311   set_survivor_size(target_size);
  1313   return tenuring_threshold;
  1316 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
  1317   bool result = _first_after_collection;
  1318   _first_after_collection = false;
  1319   return result;
  1322 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
  1323                                                     outputStream* st) const {
  1325   if (!UseAdaptiveSizePolicy) return false;
  1327   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1328   Generation* gen0 = gch->get_gen(0);
  1329   DefNewGeneration* def_new = gen0->as_DefNewGeneration();
  1330   return
  1331     AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1332                                          st,
  1333                                          def_new->tenuring_threshold());

mercurial