src/share/vm/c1/c1_Instruction.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1730
3cf667df43ef
child 1939
b812ff5abc73
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Instruction.cpp.incl"
    29 // Implementation of Instruction
    32 int Instruction::_next_id = 0;
    34 #ifdef ASSERT
    35 void Instruction::create_hi_word() {
    36   assert(type()->is_double_word() && _hi_word == NULL, "only double word has high word");
    37   _hi_word = new HiWord(this);
    38 }
    39 #endif
    41 Instruction::Condition Instruction::mirror(Condition cond) {
    42   switch (cond) {
    43     case eql: return eql;
    44     case neq: return neq;
    45     case lss: return gtr;
    46     case leq: return geq;
    47     case gtr: return lss;
    48     case geq: return leq;
    49   }
    50   ShouldNotReachHere();
    51   return eql;
    52 }
    55 Instruction::Condition Instruction::negate(Condition cond) {
    56   switch (cond) {
    57     case eql: return neq;
    58     case neq: return eql;
    59     case lss: return geq;
    60     case leq: return gtr;
    61     case gtr: return leq;
    62     case geq: return lss;
    63   }
    64   ShouldNotReachHere();
    65   return eql;
    66 }
    69 Instruction* Instruction::prev(BlockBegin* block) {
    70   Instruction* p = NULL;
    71   Instruction* q = block;
    72   while (q != this) {
    73     assert(q != NULL, "this is not in the block's instruction list");
    74     p = q; q = q->next();
    75   }
    76   return p;
    77 }
    80 #ifndef PRODUCT
    81 void Instruction::print() {
    82   InstructionPrinter ip;
    83   print(ip);
    84 }
    87 void Instruction::print_line() {
    88   InstructionPrinter ip;
    89   ip.print_line(this);
    90 }
    93 void Instruction::print(InstructionPrinter& ip) {
    94   ip.print_head();
    95   ip.print_line(this);
    96   tty->cr();
    97 }
    98 #endif // PRODUCT
   101 // perform constant and interval tests on index value
   102 bool AccessIndexed::compute_needs_range_check() {
   103   Constant* clength = length()->as_Constant();
   104   Constant* cindex = index()->as_Constant();
   105   if (clength && cindex) {
   106     IntConstant* l = clength->type()->as_IntConstant();
   107     IntConstant* i = cindex->type()->as_IntConstant();
   108     if (l && i && i->value() < l->value() && i->value() >= 0) {
   109       return false;
   110     }
   111   }
   112   return true;
   113 }
   116 ciType* LoadIndexed::exact_type() const {
   117   ciType* array_type = array()->exact_type();
   118   if (array_type == NULL) {
   119     return NULL;
   120   }
   121   assert(array_type->is_array_klass(), "what else?");
   122   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   124   if (ak->element_type()->is_instance_klass()) {
   125     ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
   126     if (ik->is_loaded() && ik->is_final()) {
   127       return ik;
   128     }
   129   }
   130   return NULL;
   131 }
   134 ciType* LoadIndexed::declared_type() const {
   135   ciType* array_type = array()->declared_type();
   136   if (array_type == NULL) {
   137     return NULL;
   138   }
   139   assert(array_type->is_array_klass(), "what else?");
   140   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   141   return ak->element_type();
   142 }
   145 ciType* LoadField::declared_type() const {
   146   return field()->type();
   147 }
   150 ciType* LoadField::exact_type() const {
   151   ciType* type = declared_type();
   152   // for primitive arrays, the declared type is the exact type
   153   if (type->is_type_array_klass()) {
   154     return type;
   155   }
   156   if (type->is_instance_klass()) {
   157     ciInstanceKlass* ik = (ciInstanceKlass*)type;
   158     if (ik->is_loaded() && ik->is_final()) {
   159       return type;
   160     }
   161   }
   162   return NULL;
   163 }
   166 ciType* NewTypeArray::exact_type() const {
   167   return ciTypeArrayKlass::make(elt_type());
   168 }
   171 ciType* NewObjectArray::exact_type() const {
   172   return ciObjArrayKlass::make(klass());
   173 }
   176 ciType* NewInstance::exact_type() const {
   177   return klass();
   178 }
   181 ciType* CheckCast::declared_type() const {
   182   return klass();
   183 }
   185 ciType* CheckCast::exact_type() const {
   186   if (klass()->is_instance_klass()) {
   187     ciInstanceKlass* ik = (ciInstanceKlass*)klass();
   188     if (ik->is_loaded() && ik->is_final()) {
   189       return ik;
   190     }
   191   }
   192   return NULL;
   193 }
   196 void ArithmeticOp::other_values_do(void f(Value*)) {
   197   if (lock_stack() != NULL) lock_stack()->values_do(f);
   198 }
   200 void NullCheck::other_values_do(void f(Value*)) {
   201   lock_stack()->values_do(f);
   202 }
   204 void AccessArray::other_values_do(void f(Value*)) {
   205   if (lock_stack() != NULL) lock_stack()->values_do(f);
   206 }
   209 // Implementation of AccessField
   211 void AccessField::other_values_do(void f(Value*)) {
   212   if (state_before() != NULL) state_before()->values_do(f);
   213   if (lock_stack() != NULL) lock_stack()->values_do(f);
   214 }
   217 // Implementation of StoreIndexed
   219 IRScope* StoreIndexed::scope() const {
   220   return lock_stack()->scope();
   221 }
   224 // Implementation of ArithmeticOp
   226 bool ArithmeticOp::is_commutative() const {
   227   switch (op()) {
   228     case Bytecodes::_iadd: // fall through
   229     case Bytecodes::_ladd: // fall through
   230     case Bytecodes::_fadd: // fall through
   231     case Bytecodes::_dadd: // fall through
   232     case Bytecodes::_imul: // fall through
   233     case Bytecodes::_lmul: // fall through
   234     case Bytecodes::_fmul: // fall through
   235     case Bytecodes::_dmul: return true;
   236   }
   237   return false;
   238 }
   241 bool ArithmeticOp::can_trap() const {
   242   switch (op()) {
   243     case Bytecodes::_idiv: // fall through
   244     case Bytecodes::_ldiv: // fall through
   245     case Bytecodes::_irem: // fall through
   246     case Bytecodes::_lrem: return true;
   247   }
   248   return false;
   249 }
   252 // Implementation of LogicOp
   254 bool LogicOp::is_commutative() const {
   255 #ifdef ASSERT
   256   switch (op()) {
   257     case Bytecodes::_iand: // fall through
   258     case Bytecodes::_land: // fall through
   259     case Bytecodes::_ior : // fall through
   260     case Bytecodes::_lor : // fall through
   261     case Bytecodes::_ixor: // fall through
   262     case Bytecodes::_lxor: break;
   263     default              : ShouldNotReachHere();
   264   }
   265 #endif
   266   // all LogicOps are commutative
   267   return true;
   268 }
   271 // Implementation of CompareOp
   273 void CompareOp::other_values_do(void f(Value*)) {
   274   if (state_before() != NULL) state_before()->values_do(f);
   275 }
   278 // Implementation of IfOp
   280 bool IfOp::is_commutative() const {
   281   return cond() == eql || cond() == neq;
   282 }
   285 // Implementation of StateSplit
   287 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
   288   NOT_PRODUCT(bool assigned = false;)
   289   for (int i = 0; i < list.length(); i++) {
   290     BlockBegin** b = list.adr_at(i);
   291     if (*b == old_block) {
   292       *b = new_block;
   293       NOT_PRODUCT(assigned = true;)
   294     }
   295   }
   296   assert(assigned == true, "should have assigned at least once");
   297 }
   300 IRScope* StateSplit::scope() const {
   301   return _state->scope();
   302 }
   305 void StateSplit::state_values_do(void f(Value*)) {
   306   if (state() != NULL) state()->values_do(f);
   307 }
   310 void BlockBegin::state_values_do(void f(Value*)) {
   311   StateSplit::state_values_do(f);
   313   if (is_set(BlockBegin::exception_entry_flag)) {
   314     for (int i = 0; i < number_of_exception_states(); i++) {
   315       exception_state_at(i)->values_do(f);
   316     }
   317   }
   318 }
   321 void MonitorEnter::state_values_do(void f(Value*)) {
   322   StateSplit::state_values_do(f);
   323   _lock_stack_before->values_do(f);
   324 }
   327 void Intrinsic::state_values_do(void f(Value*)) {
   328   StateSplit::state_values_do(f);
   329   if (lock_stack() != NULL) lock_stack()->values_do(f);
   330 }
   333 // Implementation of Invoke
   336 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
   337                int vtable_index, ciMethod* target, ValueStack* state_before)
   338   : StateSplit(result_type)
   339   , _code(code)
   340   , _recv(recv)
   341   , _args(args)
   342   , _vtable_index(vtable_index)
   343   , _target(target)
   344   , _state_before(state_before)
   345 {
   346   set_flag(TargetIsLoadedFlag,   target->is_loaded());
   347   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
   348   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
   350   assert(args != NULL, "args must exist");
   351 #ifdef ASSERT
   352   values_do(assert_value);
   353 #endif // ASSERT
   355   // provide an initial guess of signature size.
   356   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
   357   if (has_receiver()) {
   358     _signature->append(as_BasicType(receiver()->type()));
   359   } else if (is_invokedynamic()) {
   360     // Add the synthetic MethodHandle argument to the signature.
   361     _signature->append(T_OBJECT);
   362   }
   363   for (int i = 0; i < number_of_arguments(); i++) {
   364     ValueType* t = argument_at(i)->type();
   365     BasicType bt = as_BasicType(t);
   366     _signature->append(bt);
   367   }
   368 }
   371 void Invoke::state_values_do(void f(Value*)) {
   372   StateSplit::state_values_do(f);
   373   if (state_before() != NULL) state_before()->values_do(f);
   374   if (state()        != NULL) state()->values_do(f);
   375 }
   378 // Implementation of Contant
   379 intx Constant::hash() const {
   380   if (_state == NULL) {
   381     switch (type()->tag()) {
   382     case intTag:
   383       return HASH2(name(), type()->as_IntConstant()->value());
   384     case longTag:
   385       {
   386         jlong temp = type()->as_LongConstant()->value();
   387         return HASH3(name(), high(temp), low(temp));
   388       }
   389     case floatTag:
   390       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
   391     case doubleTag:
   392       {
   393         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
   394         return HASH3(name(), high(temp), low(temp));
   395       }
   396     case objectTag:
   397       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
   398       return HASH2(name(), type()->as_ObjectType()->constant_value());
   399     }
   400   }
   401   return 0;
   402 }
   404 bool Constant::is_equal(Value v) const {
   405   if (v->as_Constant() == NULL) return false;
   407   switch (type()->tag()) {
   408     case intTag:
   409       {
   410         IntConstant* t1 =    type()->as_IntConstant();
   411         IntConstant* t2 = v->type()->as_IntConstant();
   412         return (t1 != NULL && t2 != NULL &&
   413                 t1->value() == t2->value());
   414       }
   415     case longTag:
   416       {
   417         LongConstant* t1 =    type()->as_LongConstant();
   418         LongConstant* t2 = v->type()->as_LongConstant();
   419         return (t1 != NULL && t2 != NULL &&
   420                 t1->value() == t2->value());
   421       }
   422     case floatTag:
   423       {
   424         FloatConstant* t1 =    type()->as_FloatConstant();
   425         FloatConstant* t2 = v->type()->as_FloatConstant();
   426         return (t1 != NULL && t2 != NULL &&
   427                 jint_cast(t1->value()) == jint_cast(t2->value()));
   428       }
   429     case doubleTag:
   430       {
   431         DoubleConstant* t1 =    type()->as_DoubleConstant();
   432         DoubleConstant* t2 = v->type()->as_DoubleConstant();
   433         return (t1 != NULL && t2 != NULL &&
   434                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
   435       }
   436     case objectTag:
   437       {
   438         ObjectType* t1 =    type()->as_ObjectType();
   439         ObjectType* t2 = v->type()->as_ObjectType();
   440         return (t1 != NULL && t2 != NULL &&
   441                 t1->is_loaded() && t2->is_loaded() &&
   442                 t1->constant_value() == t2->constant_value());
   443       }
   444   }
   445   return false;
   446 }
   449 BlockBegin* Constant::compare(Instruction::Condition cond, Value right,
   450                               BlockBegin* true_sux, BlockBegin* false_sux) {
   451   Constant* rc = right->as_Constant();
   452   // other is not a constant
   453   if (rc == NULL) return NULL;
   455   ValueType* lt = type();
   456   ValueType* rt = rc->type();
   457   // different types
   458   if (lt->base() != rt->base()) return NULL;
   459   switch (lt->tag()) {
   460   case intTag: {
   461     int x = lt->as_IntConstant()->value();
   462     int y = rt->as_IntConstant()->value();
   463     switch (cond) {
   464     case If::eql: return x == y ? true_sux : false_sux;
   465     case If::neq: return x != y ? true_sux : false_sux;
   466     case If::lss: return x <  y ? true_sux : false_sux;
   467     case If::leq: return x <= y ? true_sux : false_sux;
   468     case If::gtr: return x >  y ? true_sux : false_sux;
   469     case If::geq: return x >= y ? true_sux : false_sux;
   470     }
   471     break;
   472   }
   473   case longTag: {
   474     jlong x = lt->as_LongConstant()->value();
   475     jlong y = rt->as_LongConstant()->value();
   476     switch (cond) {
   477     case If::eql: return x == y ? true_sux : false_sux;
   478     case If::neq: return x != y ? true_sux : false_sux;
   479     case If::lss: return x <  y ? true_sux : false_sux;
   480     case If::leq: return x <= y ? true_sux : false_sux;
   481     case If::gtr: return x >  y ? true_sux : false_sux;
   482     case If::geq: return x >= y ? true_sux : false_sux;
   483     }
   484     break;
   485   }
   486   case objectTag: {
   487     ciObject* xvalue = lt->as_ObjectType()->constant_value();
   488     ciObject* yvalue = rt->as_ObjectType()->constant_value();
   489     assert(xvalue != NULL && yvalue != NULL, "not constants");
   490     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   491       switch (cond) {
   492       case If::eql: return xvalue == yvalue ? true_sux : false_sux;
   493       case If::neq: return xvalue != yvalue ? true_sux : false_sux;
   494       }
   495     }
   496     break;
   497   }
   498   }
   499   return NULL;
   500 }
   503 void Constant::other_values_do(void f(Value*)) {
   504   if (state() != NULL) state()->values_do(f);
   505 }
   508 // Implementation of NewArray
   510 void NewArray::other_values_do(void f(Value*)) {
   511   if (state_before() != NULL) state_before()->values_do(f);
   512 }
   515 // Implementation of TypeCheck
   517 void TypeCheck::other_values_do(void f(Value*)) {
   518   if (state_before() != NULL) state_before()->values_do(f);
   519 }
   522 // Implementation of BlockBegin
   524 int BlockBegin::_next_block_id = 0;
   527 void BlockBegin::set_end(BlockEnd* end) {
   528   assert(end != NULL, "should not reset block end to NULL");
   529   BlockEnd* old_end = _end;
   530   if (end == old_end) {
   531     return;
   532   }
   533   // Must make the predecessors/successors match up with the
   534   // BlockEnd's notion.
   535   int i, n;
   536   if (old_end != NULL) {
   537     // disconnect from the old end
   538     old_end->set_begin(NULL);
   540     // disconnect this block from it's current successors
   541     for (i = 0; i < _successors.length(); i++) {
   542       _successors.at(i)->remove_predecessor(this);
   543     }
   544   }
   545   _end = end;
   547   _successors.clear();
   548   // Now reset successors list based on BlockEnd
   549   n = end->number_of_sux();
   550   for (i = 0; i < n; i++) {
   551     BlockBegin* sux = end->sux_at(i);
   552     _successors.append(sux);
   553     sux->_predecessors.append(this);
   554   }
   555   _end->set_begin(this);
   556 }
   559 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
   560   // disconnect any edges between from and to
   561 #ifndef PRODUCT
   562   if (PrintIR && Verbose) {
   563     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
   564   }
   565 #endif
   566   for (int s = 0; s < from->number_of_sux();) {
   567     BlockBegin* sux = from->sux_at(s);
   568     if (sux == to) {
   569       int index = sux->_predecessors.index_of(from);
   570       if (index >= 0) {
   571         sux->_predecessors.remove_at(index);
   572       }
   573       from->_successors.remove_at(s);
   574     } else {
   575       s++;
   576     }
   577   }
   578 }
   581 void BlockBegin::disconnect_from_graph() {
   582   // disconnect this block from all other blocks
   583   for (int p = 0; p < number_of_preds(); p++) {
   584     pred_at(p)->remove_successor(this);
   585   }
   586   for (int s = 0; s < number_of_sux(); s++) {
   587     sux_at(s)->remove_predecessor(this);
   588   }
   589 }
   591 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   592   // modify predecessors before substituting successors
   593   for (int i = 0; i < number_of_sux(); i++) {
   594     if (sux_at(i) == old_sux) {
   595       // remove old predecessor before adding new predecessor
   596       // otherwise there is a dead predecessor in the list
   597       new_sux->remove_predecessor(old_sux);
   598       new_sux->add_predecessor(this);
   599     }
   600   }
   601   old_sux->remove_predecessor(this);
   602   end()->substitute_sux(old_sux, new_sux);
   603 }
   607 // In general it is not possible to calculate a value for the field "depth_first_number"
   608 // of the inserted block, without recomputing the values of the other blocks
   609 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
   610 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
   611   // Try to make the bci close to a block with a single pred or sux,
   612   // since this make the block layout algorithm work better.
   613   int bci = -1;
   614   if (sux->number_of_preds() == 1) {
   615     bci = sux->bci();
   616   } else {
   617     bci = end()->bci();
   618   }
   620   BlockBegin* new_sux = new BlockBegin(bci);
   622   // mark this block (special treatment when block order is computed)
   623   new_sux->set(critical_edge_split_flag);
   625   // This goto is not a safepoint.
   626   Goto* e = new Goto(sux, false);
   627   new_sux->set_next(e, bci);
   628   new_sux->set_end(e);
   629   // setup states
   630   ValueStack* s = end()->state();
   631   new_sux->set_state(s->copy());
   632   e->set_state(s->copy());
   633   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
   634   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
   635   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
   637   // link predecessor to new block
   638   end()->substitute_sux(sux, new_sux);
   640   // The ordering needs to be the same, so remove the link that the
   641   // set_end call above added and substitute the new_sux for this
   642   // block.
   643   sux->remove_predecessor(new_sux);
   645   // the successor could be the target of a switch so it might have
   646   // multiple copies of this predecessor, so substitute the new_sux
   647   // for the first and delete the rest.
   648   bool assigned = false;
   649   BlockList& list = sux->_predecessors;
   650   for (int i = 0; i < list.length(); i++) {
   651     BlockBegin** b = list.adr_at(i);
   652     if (*b == this) {
   653       if (assigned) {
   654         list.remove_at(i);
   655         // reprocess this index
   656         i--;
   657       } else {
   658         assigned = true;
   659         *b = new_sux;
   660       }
   661       // link the new block back to it's predecessors.
   662       new_sux->add_predecessor(this);
   663     }
   664   }
   665   assert(assigned == true, "should have assigned at least once");
   666   return new_sux;
   667 }
   670 void BlockBegin::remove_successor(BlockBegin* pred) {
   671   int idx;
   672   while ((idx = _successors.index_of(pred)) >= 0) {
   673     _successors.remove_at(idx);
   674   }
   675 }
   678 void BlockBegin::add_predecessor(BlockBegin* pred) {
   679   _predecessors.append(pred);
   680 }
   683 void BlockBegin::remove_predecessor(BlockBegin* pred) {
   684   int idx;
   685   while ((idx = _predecessors.index_of(pred)) >= 0) {
   686     _predecessors.remove_at(idx);
   687   }
   688 }
   691 void BlockBegin::add_exception_handler(BlockBegin* b) {
   692   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
   693   // add only if not in the list already
   694   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
   695 }
   697 int BlockBegin::add_exception_state(ValueStack* state) {
   698   assert(is_set(exception_entry_flag), "only for xhandlers");
   699   if (_exception_states == NULL) {
   700     _exception_states = new ValueStackStack(4);
   701   }
   702   _exception_states->append(state);
   703   return _exception_states->length() - 1;
   704 }
   707 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
   708   if (!mark.at(block_id())) {
   709     mark.at_put(block_id(), true);
   710     closure->block_do(this);
   711     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
   712     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
   713     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
   714   }
   715 }
   718 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
   719   if (!mark.at(block_id())) {
   720     mark.at_put(block_id(), true);
   721     BlockEnd* e = end();
   722     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
   723     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
   724     closure->block_do(this);
   725   }
   726 }
   729 void BlockBegin::iterate_preorder(BlockClosure* closure) {
   730   boolArray mark(number_of_blocks(), false);
   731   iterate_preorder(mark, closure);
   732 }
   735 void BlockBegin::iterate_postorder(BlockClosure* closure) {
   736   boolArray mark(number_of_blocks(), false);
   737   iterate_postorder(mark, closure);
   738 }
   741 void BlockBegin::block_values_do(void f(Value*)) {
   742   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
   743 }
   746 #ifndef PRODUCT
   747   #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
   748 #else
   749   #define TRACE_PHI(coce)
   750 #endif
   753 bool BlockBegin::try_merge(ValueStack* new_state) {
   754   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
   756   // local variables used for state iteration
   757   int index;
   758   Value new_value, existing_value;
   760   ValueStack* existing_state = state();
   761   if (existing_state == NULL) {
   762     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
   764     if (is_set(BlockBegin::was_visited_flag)) {
   765       // this actually happens for complicated jsr/ret structures
   766       return false; // BAILOUT in caller
   767     }
   769     // copy state because it is altered
   770     new_state = new_state->copy();
   772     // Use method liveness to invalidate dead locals
   773     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
   774     if (liveness.is_valid()) {
   775       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
   777       for_each_local_value(new_state, index, new_value) {
   778         if (!liveness.at(index) || new_value->type()->is_illegal()) {
   779           new_state->invalidate_local(index);
   780           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
   781         }
   782       }
   783     }
   785     if (is_set(BlockBegin::parser_loop_header_flag)) {
   786       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
   788       for_each_stack_value(new_state, index, new_value) {
   789         new_state->setup_phi_for_stack(this, index);
   790         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
   791       }
   793       BitMap requires_phi_function = new_state->scope()->requires_phi_function();
   795       for_each_local_value(new_state, index, new_value) {
   796         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
   797         if (requires_phi || !SelectivePhiFunctions) {
   798           new_state->setup_phi_for_local(this, index);
   799           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
   800         }
   801       }
   802     }
   804     // initialize state of block
   805     set_state(new_state);
   807   } else if (existing_state->is_same_across_scopes(new_state)) {
   808     TRACE_PHI(tty->print_cr("exisiting state found"));
   810     // Inlining may cause the local state not to match up, so walk up
   811     // the new state until we get to the same scope as the
   812     // existing and then start processing from there.
   813     while (existing_state->scope() != new_state->scope()) {
   814       new_state = new_state->caller_state();
   815       assert(new_state != NULL, "could not match up scopes");
   817       assert(false, "check if this is necessary");
   818     }
   820     assert(existing_state->scope() == new_state->scope(), "not matching");
   821     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
   822     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
   824     if (is_set(BlockBegin::was_visited_flag)) {
   825       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
   827       if (!is_set(BlockBegin::parser_loop_header_flag)) {
   828         // this actually happens for complicated jsr/ret structures
   829         return false; // BAILOUT in caller
   830       }
   832       for_each_local_value(existing_state, index, existing_value) {
   833         Value new_value = new_state->local_at(index);
   834         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   835           // The old code invalidated the phi function here
   836           // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
   837           return false; // BAILOUT in caller
   838         }
   839       }
   841 #ifdef ASSERT
   842       // check that all necessary phi functions are present
   843       for_each_stack_value(existing_state, index, existing_value) {
   844         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
   845       }
   846       for_each_local_value(existing_state, index, existing_value) {
   847         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
   848       }
   849 #endif
   851     } else {
   852       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
   854       // create necessary phi functions for stack
   855       for_each_stack_value(existing_state, index, existing_value) {
   856         Value new_value = new_state->stack_at(index);
   857         Phi* existing_phi = existing_value->as_Phi();
   859         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   860           existing_state->setup_phi_for_stack(this, index);
   861           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
   862         }
   863       }
   865       // create necessary phi functions for locals
   866       for_each_local_value(existing_state, index, existing_value) {
   867         Value new_value = new_state->local_at(index);
   868         Phi* existing_phi = existing_value->as_Phi();
   870         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   871           existing_state->invalidate_local(index);
   872           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
   873         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   874           existing_state->setup_phi_for_local(this, index);
   875           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
   876         }
   877       }
   878     }
   880     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
   882   } else {
   883     assert(false, "stack or locks not matching (invalid bytecodes)");
   884     return false;
   885   }
   887   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
   889   return true;
   890 }
   893 #ifndef PRODUCT
   894 void BlockBegin::print_block() {
   895   InstructionPrinter ip;
   896   print_block(ip, false);
   897 }
   900 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
   901   ip.print_instr(this); tty->cr();
   902   ip.print_stack(this->state()); tty->cr();
   903   ip.print_inline_level(this);
   904   ip.print_head();
   905   for (Instruction* n = next(); n != NULL; n = n->next()) {
   906     if (!live_only || n->is_pinned() || n->use_count() > 0) {
   907       ip.print_line(n);
   908     }
   909   }
   910   tty->cr();
   911 }
   912 #endif // PRODUCT
   915 // Implementation of BlockList
   917 void BlockList::iterate_forward (BlockClosure* closure) {
   918   const int l = length();
   919   for (int i = 0; i < l; i++) closure->block_do(at(i));
   920 }
   923 void BlockList::iterate_backward(BlockClosure* closure) {
   924   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
   925 }
   928 void BlockList::blocks_do(void f(BlockBegin*)) {
   929   for (int i = length() - 1; i >= 0; i--) f(at(i));
   930 }
   933 void BlockList::values_do(void f(Value*)) {
   934   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
   935 }
   938 #ifndef PRODUCT
   939 void BlockList::print(bool cfg_only, bool live_only) {
   940   InstructionPrinter ip;
   941   for (int i = 0; i < length(); i++) {
   942     BlockBegin* block = at(i);
   943     if (cfg_only) {
   944       ip.print_instr(block); tty->cr();
   945     } else {
   946       block->print_block(ip, live_only);
   947     }
   948   }
   949 }
   950 #endif // PRODUCT
   953 // Implementation of BlockEnd
   955 void BlockEnd::set_begin(BlockBegin* begin) {
   956   BlockList* sux = NULL;
   957   if (begin != NULL) {
   958     sux = begin->successors();
   959   } else if (_begin != NULL) {
   960     // copy our sux list
   961     BlockList* sux = new BlockList(_begin->number_of_sux());
   962     for (int i = 0; i < _begin->number_of_sux(); i++) {
   963       sux->append(_begin->sux_at(i));
   964     }
   965   }
   966   _sux = sux;
   967   _begin = begin;
   968 }
   971 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   972   substitute(*_sux, old_sux, new_sux);
   973 }
   976 void BlockEnd::other_values_do(void f(Value*)) {
   977   if (state_before() != NULL) state_before()->values_do(f);
   978 }
   981 // Implementation of Phi
   983 // Normal phi functions take their operands from the last instruction of the
   984 // predecessor. Special handling is needed for xhanlder entries because there
   985 // the state of arbitrary instructions are needed.
   987 Value Phi::operand_at(int i) const {
   988   ValueStack* state;
   989   if (_block->is_set(BlockBegin::exception_entry_flag)) {
   990     state = _block->exception_state_at(i);
   991   } else {
   992     state = _block->pred_at(i)->end()->state();
   993   }
   994   assert(state != NULL, "");
   996   if (is_local()) {
   997     return state->local_at(local_index());
   998   } else {
   999     return state->stack_at(stack_index());
  1004 int Phi::operand_count() const {
  1005   if (_block->is_set(BlockBegin::exception_entry_flag)) {
  1006     return _block->number_of_exception_states();
  1007   } else {
  1008     return _block->number_of_preds();
  1013 // Implementation of Throw
  1015 void Throw::state_values_do(void f(Value*)) {
  1016   BlockEnd::state_values_do(f);

mercurial