src/cpu/x86/vm/x86_32.ad

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1831
d7f654633cfe
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 //
     2 // Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   *(cbuf.code_end()) = c;
   354   cbuf.set_code_end(cbuf.code_end() + 1);
   355 }
   357 // EMIT_CC()
   358 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   359   unsigned char c = (unsigned char)( f1 | f2 );
   360   *(cbuf.code_end()) = c;
   361   cbuf.set_code_end(cbuf.code_end() + 1);
   362 }
   364 // EMIT_OPCODE()
   365 void emit_opcode(CodeBuffer &cbuf, int code) {
   366   *(cbuf.code_end()) = (unsigned char)code;
   367   cbuf.set_code_end(cbuf.code_end() + 1);
   368 }
   370 // EMIT_OPCODE() w/ relocation information
   371 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   372   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   373   emit_opcode(cbuf, code);
   374 }
   376 // EMIT_D8()
   377 void emit_d8(CodeBuffer &cbuf, int d8) {
   378   *(cbuf.code_end()) = (unsigned char)d8;
   379   cbuf.set_code_end(cbuf.code_end() + 1);
   380 }
   382 // EMIT_D16()
   383 void emit_d16(CodeBuffer &cbuf, int d16) {
   384   *((short *)(cbuf.code_end())) = d16;
   385   cbuf.set_code_end(cbuf.code_end() + 2);
   386 }
   388 // EMIT_D32()
   389 void emit_d32(CodeBuffer &cbuf, int d32) {
   390   *((int *)(cbuf.code_end())) = d32;
   391   cbuf.set_code_end(cbuf.code_end() + 4);
   392 }
   394 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   395 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   396         int format) {
   397   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   399   *((int *)(cbuf.code_end())) = d32;
   400   cbuf.set_code_end(cbuf.code_end() + 4);
   401 }
   403 // emit 32 bit value and construct relocation entry from RelocationHolder
   404 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   405         int format) {
   406 #ifdef ASSERT
   407   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   408     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   409   }
   410 #endif
   411   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   413   *((int *)(cbuf.code_end())) = d32;
   414   cbuf.set_code_end(cbuf.code_end() + 4);
   415 }
   417 // Access stack slot for load or store
   418 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   419   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   420   if( -128 <= disp && disp <= 127 ) {
   421     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   422     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   423     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   424   } else {
   425     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   426     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   427     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   428   }
   429 }
   431    // eRegI ereg, memory mem) %{    // emit_reg_mem
   432 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   433   // There is no index & no scale, use form without SIB byte
   434   if ((index == 0x4) &&
   435       (scale == 0) && (base != ESP_enc)) {
   436     // If no displacement, mode is 0x0; unless base is [EBP]
   437     if ( (displace == 0) && (base != EBP_enc) ) {
   438       emit_rm(cbuf, 0x0, reg_encoding, base);
   439     }
   440     else {                    // If 8-bit displacement, mode 0x1
   441       if ((displace >= -128) && (displace <= 127)
   442           && !(displace_is_oop) ) {
   443         emit_rm(cbuf, 0x1, reg_encoding, base);
   444         emit_d8(cbuf, displace);
   445       }
   446       else {                  // If 32-bit displacement
   447         if (base == -1) { // Special flag for absolute address
   448           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   449           // (manual lies; no SIB needed here)
   450           if ( displace_is_oop ) {
   451             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   452           } else {
   453             emit_d32      (cbuf, displace);
   454           }
   455         }
   456         else {                // Normal base + offset
   457           emit_rm(cbuf, 0x2, reg_encoding, base);
   458           if ( displace_is_oop ) {
   459             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   460           } else {
   461             emit_d32      (cbuf, displace);
   462           }
   463         }
   464       }
   465     }
   466   }
   467   else {                      // Else, encode with the SIB byte
   468     // If no displacement, mode is 0x0; unless base is [EBP]
   469     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   470       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   471       emit_rm(cbuf, scale, index, base);
   472     }
   473     else {                    // If 8-bit displacement, mode 0x1
   474       if ((displace >= -128) && (displace <= 127)
   475           && !(displace_is_oop) ) {
   476         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   477         emit_rm(cbuf, scale, index, base);
   478         emit_d8(cbuf, displace);
   479       }
   480       else {                  // If 32-bit displacement
   481         if (base == 0x04 ) {
   482           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   483           emit_rm(cbuf, scale, index, 0x04);
   484         } else {
   485           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   486           emit_rm(cbuf, scale, index, base);
   487         }
   488         if ( displace_is_oop ) {
   489           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   490         } else {
   491           emit_d32      (cbuf, displace);
   492         }
   493       }
   494     }
   495   }
   496 }
   499 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   500   if( dst_encoding == src_encoding ) {
   501     // reg-reg copy, use an empty encoding
   502   } else {
   503     emit_opcode( cbuf, 0x8B );
   504     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   505   }
   506 }
   508 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   509   if( dst_encoding == src_encoding ) {
   510     // reg-reg copy, use an empty encoding
   511   } else {
   512     MacroAssembler _masm(&cbuf);
   514     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   515   }
   516 }
   519 //=============================================================================
   520 #ifndef PRODUCT
   521 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   522   Compile* C = ra_->C;
   523   if( C->in_24_bit_fp_mode() ) {
   524     st->print("FLDCW  24 bit fpu control word");
   525     st->print_cr(""); st->print("\t");
   526   }
   528   int framesize = C->frame_slots() << LogBytesPerInt;
   529   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   530   // Remove two words for return addr and rbp,
   531   framesize -= 2*wordSize;
   533   // Calls to C2R adapters often do not accept exceptional returns.
   534   // We require that their callers must bang for them.  But be careful, because
   535   // some VM calls (such as call site linkage) can use several kilobytes of
   536   // stack.  But the stack safety zone should account for that.
   537   // See bugs 4446381, 4468289, 4497237.
   538   if (C->need_stack_bang(framesize)) {
   539     st->print_cr("# stack bang"); st->print("\t");
   540   }
   541   st->print_cr("PUSHL  EBP"); st->print("\t");
   543   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   544     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   545     st->print_cr(""); st->print("\t");
   546     framesize -= wordSize;
   547   }
   549   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   550     if (framesize) {
   551       st->print("SUB    ESP,%d\t# Create frame",framesize);
   552     }
   553   } else {
   554     st->print("SUB    ESP,%d\t# Create frame",framesize);
   555   }
   556 }
   557 #endif
   560 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   561   Compile* C = ra_->C;
   563   if (UseSSE >= 2 && VerifyFPU) {
   564     MacroAssembler masm(&cbuf);
   565     masm.verify_FPU(0, "FPU stack must be clean on entry");
   566   }
   568   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   569   // NativeJump::patch_verified_entry will be able to patch out the entry
   570   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   571   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   572   // 6 bytes. So if we don't do the fldcw or the push then we must
   573   // use the 6 byte frame allocation even if we have no frame. :-(
   574   // If method sets FPU control word do it now
   575   if( C->in_24_bit_fp_mode() ) {
   576     MacroAssembler masm(&cbuf);
   577     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   578   }
   580   int framesize = C->frame_slots() << LogBytesPerInt;
   581   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   582   // Remove two words for return addr and rbp,
   583   framesize -= 2*wordSize;
   585   // Calls to C2R adapters often do not accept exceptional returns.
   586   // We require that their callers must bang for them.  But be careful, because
   587   // some VM calls (such as call site linkage) can use several kilobytes of
   588   // stack.  But the stack safety zone should account for that.
   589   // See bugs 4446381, 4468289, 4497237.
   590   if (C->need_stack_bang(framesize)) {
   591     MacroAssembler masm(&cbuf);
   592     masm.generate_stack_overflow_check(framesize);
   593   }
   595   // We always push rbp, so that on return to interpreter rbp, will be
   596   // restored correctly and we can correct the stack.
   597   emit_opcode(cbuf, 0x50 | EBP_enc);
   599   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   600     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   601     emit_d32(cbuf, 0xbadb100d);
   602     framesize -= wordSize;
   603   }
   605   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   606     if (framesize) {
   607       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   608       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   609       emit_d8(cbuf, framesize);
   610     }
   611   } else {
   612     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   613     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   614     emit_d32(cbuf, framesize);
   615   }
   616   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   618 #ifdef ASSERT
   619   if (VerifyStackAtCalls) {
   620     Label L;
   621     MacroAssembler masm(&cbuf);
   622     masm.push(rax);
   623     masm.mov(rax, rsp);
   624     masm.andptr(rax, StackAlignmentInBytes-1);
   625     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   626     masm.pop(rax);
   627     masm.jcc(Assembler::equal, L);
   628     masm.stop("Stack is not properly aligned!");
   629     masm.bind(L);
   630   }
   631 #endif
   633 }
   635 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   636   return MachNode::size(ra_); // too many variables; just compute it the hard way
   637 }
   639 int MachPrologNode::reloc() const {
   640   return 0; // a large enough number
   641 }
   643 //=============================================================================
   644 #ifndef PRODUCT
   645 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   646   Compile *C = ra_->C;
   647   int framesize = C->frame_slots() << LogBytesPerInt;
   648   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   649   // Remove two words for return addr and rbp,
   650   framesize -= 2*wordSize;
   652   if( C->in_24_bit_fp_mode() ) {
   653     st->print("FLDCW  standard control word");
   654     st->cr(); st->print("\t");
   655   }
   656   if( framesize ) {
   657     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   658     st->cr(); st->print("\t");
   659   }
   660   st->print_cr("POPL   EBP"); st->print("\t");
   661   if( do_polling() && C->is_method_compilation() ) {
   662     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   663     st->cr(); st->print("\t");
   664   }
   665 }
   666 #endif
   668 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   669   Compile *C = ra_->C;
   671   // If method set FPU control word, restore to standard control word
   672   if( C->in_24_bit_fp_mode() ) {
   673     MacroAssembler masm(&cbuf);
   674     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   675   }
   677   int framesize = C->frame_slots() << LogBytesPerInt;
   678   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   679   // Remove two words for return addr and rbp,
   680   framesize -= 2*wordSize;
   682   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   684   if( framesize >= 128 ) {
   685     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   686     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   687     emit_d32(cbuf, framesize);
   688   }
   689   else if( framesize ) {
   690     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   691     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   692     emit_d8(cbuf, framesize);
   693   }
   695   emit_opcode(cbuf, 0x58 | EBP_enc);
   697   if( do_polling() && C->is_method_compilation() ) {
   698     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   699     emit_opcode(cbuf,0x85);
   700     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   701     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   702   }
   703 }
   705 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   706   Compile *C = ra_->C;
   707   // If method set FPU control word, restore to standard control word
   708   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   709   if( do_polling() && C->is_method_compilation() ) size += 6;
   711   int framesize = C->frame_slots() << LogBytesPerInt;
   712   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   713   // Remove two words for return addr and rbp,
   714   framesize -= 2*wordSize;
   716   size++; // popl rbp,
   718   if( framesize >= 128 ) {
   719     size += 6;
   720   } else {
   721     size += framesize ? 3 : 0;
   722   }
   723   return size;
   724 }
   726 int MachEpilogNode::reloc() const {
   727   return 0; // a large enough number
   728 }
   730 const Pipeline * MachEpilogNode::pipeline() const {
   731   return MachNode::pipeline_class();
   732 }
   734 int MachEpilogNode::safepoint_offset() const { return 0; }
   736 //=============================================================================
   738 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   739 static enum RC rc_class( OptoReg::Name reg ) {
   741   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   742   if (OptoReg::is_stack(reg)) return rc_stack;
   744   VMReg r = OptoReg::as_VMReg(reg);
   745   if (r->is_Register()) return rc_int;
   746   if (r->is_FloatRegister()) {
   747     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   748     return rc_float;
   749   }
   750   assert(r->is_XMMRegister(), "must be");
   751   return rc_xmm;
   752 }
   754 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   755                         int opcode, const char *op_str, int size, outputStream* st ) {
   756   if( cbuf ) {
   757     emit_opcode  (*cbuf, opcode );
   758     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   759 #ifndef PRODUCT
   760   } else if( !do_size ) {
   761     if( size != 0 ) st->print("\n\t");
   762     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   763       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   764       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   765     } else { // FLD, FST, PUSH, POP
   766       st->print("%s [ESP + #%d]",op_str,offset);
   767     }
   768 #endif
   769   }
   770   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   771   return size+3+offset_size;
   772 }
   774 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   775 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   776                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   777   if( cbuf ) {
   778     if( reg_lo+1 == reg_hi ) { // double move?
   779       if( is_load && !UseXmmLoadAndClearUpper )
   780         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   781       else
   782         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   783     } else {
   784       emit_opcode(*cbuf, 0xF3 );
   785     }
   786     emit_opcode(*cbuf, 0x0F );
   787     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   788       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   789     else
   790       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   791     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   792 #ifndef PRODUCT
   793   } else if( !do_size ) {
   794     if( size != 0 ) st->print("\n\t");
   795     if( reg_lo+1 == reg_hi ) { // double move?
   796       if( is_load ) st->print("%s %s,[ESP + #%d]",
   797                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   798                                Matcher::regName[reg_lo], offset);
   799       else          st->print("MOVSD  [ESP + #%d],%s",
   800                                offset, Matcher::regName[reg_lo]);
   801     } else {
   802       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   803                                Matcher::regName[reg_lo], offset);
   804       else          st->print("MOVSS  [ESP + #%d],%s",
   805                                offset, Matcher::regName[reg_lo]);
   806     }
   807 #endif
   808   }
   809   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   810   return size+5+offset_size;
   811 }
   814 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   815                             int src_hi, int dst_hi, int size, outputStream* st ) {
   816   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   817     if( cbuf ) {
   818       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   819         emit_opcode(*cbuf, 0x66 );
   820       }
   821       emit_opcode(*cbuf, 0x0F );
   822       emit_opcode(*cbuf, 0x28 );
   823       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   824 #ifndef PRODUCT
   825     } else if( !do_size ) {
   826       if( size != 0 ) st->print("\n\t");
   827       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   829       } else {
   830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   831       }
   832 #endif
   833     }
   834     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   835   } else {
   836     if( cbuf ) {
   837       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   838       emit_opcode(*cbuf, 0x0F );
   839       emit_opcode(*cbuf, 0x10 );
   840       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   841 #ifndef PRODUCT
   842     } else if( !do_size ) {
   843       if( size != 0 ) st->print("\n\t");
   844       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   845         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   846       } else {
   847         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   848       }
   849 #endif
   850     }
   851     return size+4;
   852   }
   853 }
   855 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   856   if( cbuf ) {
   857     emit_opcode(*cbuf, 0x8B );
   858     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   859 #ifndef PRODUCT
   860   } else if( !do_size ) {
   861     if( size != 0 ) st->print("\n\t");
   862     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   863 #endif
   864   }
   865   return size+2;
   866 }
   868 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   869                                  int offset, int size, outputStream* st ) {
   870   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   871     if( cbuf ) {
   872       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   873       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   874 #ifndef PRODUCT
   875     } else if( !do_size ) {
   876       if( size != 0 ) st->print("\n\t");
   877       st->print("FLD    %s",Matcher::regName[src_lo]);
   878 #endif
   879     }
   880     size += 2;
   881   }
   883   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   884   const char *op_str;
   885   int op;
   886   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   887     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   888     op = 0xDD;
   889   } else {                   // 32-bit store
   890     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   891     op = 0xD9;
   892     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   893   }
   895   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   896 }
   898 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   899   // Get registers to move
   900   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   901   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   902   OptoReg::Name dst_second = ra_->get_reg_second(this );
   903   OptoReg::Name dst_first = ra_->get_reg_first(this );
   905   enum RC src_second_rc = rc_class(src_second);
   906   enum RC src_first_rc = rc_class(src_first);
   907   enum RC dst_second_rc = rc_class(dst_second);
   908   enum RC dst_first_rc = rc_class(dst_first);
   910   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   912   // Generate spill code!
   913   int size = 0;
   915   if( src_first == dst_first && src_second == dst_second )
   916     return size;            // Self copy, no move
   918   // --------------------------------------
   919   // Check for mem-mem move.  push/pop to move.
   920   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   921     if( src_second == dst_first ) { // overlapping stack copy ranges
   922       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   923       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   924       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   925       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   926     }
   927     // move low bits
   928     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   929     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   930     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   931       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   932       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   933     }
   934     return size;
   935   }
   937   // --------------------------------------
   938   // Check for integer reg-reg copy
   939   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   940     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   942   // Check for integer store
   943   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   944     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   946   // Check for integer load
   947   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   948     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   950   // --------------------------------------
   951   // Check for float reg-reg copy
   952   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   953     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   954             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   955     if( cbuf ) {
   957       // Note the mucking with the register encode to compensate for the 0/1
   958       // indexing issue mentioned in a comment in the reg_def sections
   959       // for FPR registers many lines above here.
   961       if( src_first != FPR1L_num ) {
   962         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   963         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   964         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   965         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   966      } else {
   967         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   968         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   969      }
   970 #ifndef PRODUCT
   971     } else if( !do_size ) {
   972       if( size != 0 ) st->print("\n\t");
   973       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   974       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   975 #endif
   976     }
   977     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   978   }
   980   // Check for float store
   981   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   982     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   983   }
   985   // Check for float load
   986   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
   987     int offset = ra_->reg2offset(src_first);
   988     const char *op_str;
   989     int op;
   990     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
   991       op_str = "FLD_D";
   992       op = 0xDD;
   993     } else {                   // 32-bit load
   994       op_str = "FLD_S";
   995       op = 0xD9;
   996       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
   997     }
   998     if( cbuf ) {
   999       emit_opcode  (*cbuf, op );
  1000       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1001       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1002       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1003 #ifndef PRODUCT
  1004     } else if( !do_size ) {
  1005       if( size != 0 ) st->print("\n\t");
  1006       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1007 #endif
  1009     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1010     return size + 3+offset_size+2;
  1013   // Check for xmm reg-reg copy
  1014   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1015     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1016             (src_first+1 == src_second && dst_first+1 == dst_second),
  1017             "no non-adjacent float-moves" );
  1018     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1021   // Check for xmm store
  1022   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1023     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1026   // Check for float xmm load
  1027   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1028     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1031   // Copy from float reg to xmm reg
  1032   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1033     // copy to the top of stack from floating point reg
  1034     // and use LEA to preserve flags
  1035     if( cbuf ) {
  1036       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1037       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1038       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1039       emit_d8(*cbuf,0xF8);
  1040 #ifndef PRODUCT
  1041     } else if( !do_size ) {
  1042       if( size != 0 ) st->print("\n\t");
  1043       st->print("LEA    ESP,[ESP-8]");
  1044 #endif
  1046     size += 4;
  1048     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1050     // Copy from the temp memory to the xmm reg.
  1051     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1053     if( cbuf ) {
  1054       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1055       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1056       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1057       emit_d8(*cbuf,0x08);
  1058 #ifndef PRODUCT
  1059     } else if( !do_size ) {
  1060       if( size != 0 ) st->print("\n\t");
  1061       st->print("LEA    ESP,[ESP+8]");
  1062 #endif
  1064     size += 4;
  1065     return size;
  1068   assert( size > 0, "missed a case" );
  1070   // --------------------------------------------------------------------
  1071   // Check for second bits still needing moving.
  1072   if( src_second == dst_second )
  1073     return size;               // Self copy; no move
  1074   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1076   // Check for second word int-int move
  1077   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1078     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1080   // Check for second word integer store
  1081   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1082     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1084   // Check for second word integer load
  1085   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1086     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1089   Unimplemented();
  1092 #ifndef PRODUCT
  1093 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1094   implementation( NULL, ra_, false, st );
  1096 #endif
  1098 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1099   implementation( &cbuf, ra_, false, NULL );
  1102 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1103   return implementation( NULL, ra_, true, NULL );
  1106 //=============================================================================
  1107 #ifndef PRODUCT
  1108 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1109   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1111 #endif
  1113 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1114   MacroAssembler _masm(&cbuf);
  1115   __ nop(_count);
  1118 uint MachNopNode::size(PhaseRegAlloc *) const {
  1119   return _count;
  1123 //=============================================================================
  1124 #ifndef PRODUCT
  1125 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1126   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1127   int reg = ra_->get_reg_first(this);
  1128   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1130 #endif
  1132 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1133   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1134   int reg = ra_->get_encode(this);
  1135   if( offset >= 128 ) {
  1136     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1137     emit_rm(cbuf, 0x2, reg, 0x04);
  1138     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1139     emit_d32(cbuf, offset);
  1141   else {
  1142     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1143     emit_rm(cbuf, 0x1, reg, 0x04);
  1144     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1145     emit_d8(cbuf, offset);
  1149 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1150   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1151   if( offset >= 128 ) {
  1152     return 7;
  1154   else {
  1155     return 4;
  1159 //=============================================================================
  1161 // emit call stub, compiled java to interpreter
  1162 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1163   // Stub is fixed up when the corresponding call is converted from calling
  1164   // compiled code to calling interpreted code.
  1165   // mov rbx,0
  1166   // jmp -1
  1168   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1170   // Note that the code buffer's inst_mark is always relative to insts.
  1171   // That's why we must use the macroassembler to generate a stub.
  1172   MacroAssembler _masm(&cbuf);
  1174   address base =
  1175   __ start_a_stub(Compile::MAX_stubs_size);
  1176   if (base == NULL)  return;  // CodeBuffer::expand failed
  1177   // static stub relocation stores the instruction address of the call
  1178   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1179   // static stub relocation also tags the methodOop in the code-stream.
  1180   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1181   // This is recognized as unresolved by relocs/nativeInst/ic code
  1182   __ jump(RuntimeAddress(__ pc()));
  1184   __ end_a_stub();
  1185   // Update current stubs pointer and restore code_end.
  1187 // size of call stub, compiled java to interpretor
  1188 uint size_java_to_interp() {
  1189   return 10;  // movl; jmp
  1191 // relocation entries for call stub, compiled java to interpretor
  1192 uint reloc_java_to_interp() {
  1193   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1196 //=============================================================================
  1197 #ifndef PRODUCT
  1198 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1199   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1200   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1201   st->print_cr("\tNOP");
  1202   st->print_cr("\tNOP");
  1203   if( !OptoBreakpoint )
  1204     st->print_cr("\tNOP");
  1206 #endif
  1208 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1209   MacroAssembler masm(&cbuf);
  1210 #ifdef ASSERT
  1211   uint code_size = cbuf.code_size();
  1212 #endif
  1213   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1214   masm.jump_cc(Assembler::notEqual,
  1215                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1216   /* WARNING these NOPs are critical so that verified entry point is properly
  1217      aligned for patching by NativeJump::patch_verified_entry() */
  1218   int nops_cnt = 2;
  1219   if( !OptoBreakpoint ) // Leave space for int3
  1220      nops_cnt += 1;
  1221   masm.nop(nops_cnt);
  1223   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1226 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1227   return OptoBreakpoint ? 11 : 12;
  1231 //=============================================================================
  1232 uint size_exception_handler() {
  1233   // NativeCall instruction size is the same as NativeJump.
  1234   // exception handler starts out as jump and can be patched to
  1235   // a call be deoptimization.  (4932387)
  1236   // Note that this value is also credited (in output.cpp) to
  1237   // the size of the code section.
  1238   return NativeJump::instruction_size;
  1241 // Emit exception handler code.  Stuff framesize into a register
  1242 // and call a VM stub routine.
  1243 int emit_exception_handler(CodeBuffer& cbuf) {
  1245   // Note that the code buffer's inst_mark is always relative to insts.
  1246   // That's why we must use the macroassembler to generate a handler.
  1247   MacroAssembler _masm(&cbuf);
  1248   address base =
  1249   __ start_a_stub(size_exception_handler());
  1250   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1251   int offset = __ offset();
  1252   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1253   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1254   __ end_a_stub();
  1255   return offset;
  1258 uint size_deopt_handler() {
  1259   // NativeCall instruction size is the same as NativeJump.
  1260   // exception handler starts out as jump and can be patched to
  1261   // a call be deoptimization.  (4932387)
  1262   // Note that this value is also credited (in output.cpp) to
  1263   // the size of the code section.
  1264   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1267 // Emit deopt handler code.
  1268 int emit_deopt_handler(CodeBuffer& cbuf) {
  1270   // Note that the code buffer's inst_mark is always relative to insts.
  1271   // That's why we must use the macroassembler to generate a handler.
  1272   MacroAssembler _masm(&cbuf);
  1273   address base =
  1274   __ start_a_stub(size_exception_handler());
  1275   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1276   int offset = __ offset();
  1277   InternalAddress here(__ pc());
  1278   __ pushptr(here.addr());
  1280   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1281   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1282   __ end_a_stub();
  1283   return offset;
  1287 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1288   int mark = cbuf.insts()->mark_off();
  1289   MacroAssembler _masm(&cbuf);
  1290   address double_address = __ double_constant(x);
  1291   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1292   emit_d32_reloc(cbuf,
  1293                  (int)double_address,
  1294                  internal_word_Relocation::spec(double_address),
  1295                  RELOC_DISP32);
  1298 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1299   int mark = cbuf.insts()->mark_off();
  1300   MacroAssembler _masm(&cbuf);
  1301   address float_address = __ float_constant(x);
  1302   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1303   emit_d32_reloc(cbuf,
  1304                  (int)float_address,
  1305                  internal_word_Relocation::spec(float_address),
  1306                  RELOC_DISP32);
  1310 const bool Matcher::match_rule_supported(int opcode) {
  1311   if (!has_match_rule(opcode))
  1312     return false;
  1314   return true;  // Per default match rules are supported.
  1317 int Matcher::regnum_to_fpu_offset(int regnum) {
  1318   return regnum - 32; // The FP registers are in the second chunk
  1321 bool is_positive_zero_float(jfloat f) {
  1322   return jint_cast(f) == jint_cast(0.0F);
  1325 bool is_positive_one_float(jfloat f) {
  1326   return jint_cast(f) == jint_cast(1.0F);
  1329 bool is_positive_zero_double(jdouble d) {
  1330   return jlong_cast(d) == jlong_cast(0.0);
  1333 bool is_positive_one_double(jdouble d) {
  1334   return jlong_cast(d) == jlong_cast(1.0);
  1337 // This is UltraSparc specific, true just means we have fast l2f conversion
  1338 const bool Matcher::convL2FSupported(void) {
  1339   return true;
  1342 // Vector width in bytes
  1343 const uint Matcher::vector_width_in_bytes(void) {
  1344   return UseSSE >= 2 ? 8 : 0;
  1347 // Vector ideal reg
  1348 const uint Matcher::vector_ideal_reg(void) {
  1349   return Op_RegD;
  1352 // Is this branch offset short enough that a short branch can be used?
  1353 //
  1354 // NOTE: If the platform does not provide any short branch variants, then
  1355 //       this method should return false for offset 0.
  1356 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1357   // the short version of jmpConUCF2 contains multiple branches,
  1358   // making the reach slightly less
  1359   if (rule == jmpConUCF2_rule)
  1360     return (-126 <= offset && offset <= 125);
  1361   return (-128 <= offset && offset <= 127);
  1364 const bool Matcher::isSimpleConstant64(jlong value) {
  1365   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1366   return false;
  1369 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1370 const bool Matcher::init_array_count_is_in_bytes = false;
  1372 // Threshold size for cleararray.
  1373 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1375 // Should the Matcher clone shifts on addressing modes, expecting them to
  1376 // be subsumed into complex addressing expressions or compute them into
  1377 // registers?  True for Intel but false for most RISCs
  1378 const bool Matcher::clone_shift_expressions = true;
  1380 // Is it better to copy float constants, or load them directly from memory?
  1381 // Intel can load a float constant from a direct address, requiring no
  1382 // extra registers.  Most RISCs will have to materialize an address into a
  1383 // register first, so they would do better to copy the constant from stack.
  1384 const bool Matcher::rematerialize_float_constants = true;
  1386 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1387 // needed.  Else we split the double into 2 integer pieces and move it
  1388 // piece-by-piece.  Only happens when passing doubles into C code as the
  1389 // Java calling convention forces doubles to be aligned.
  1390 const bool Matcher::misaligned_doubles_ok = true;
  1393 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1394   // Get the memory operand from the node
  1395   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1396   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1397   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1398   uint opcnt     = 1;                 // First operand
  1399   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1400   while( idx >= skipped+num_edges ) {
  1401     skipped += num_edges;
  1402     opcnt++;                          // Bump operand count
  1403     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1404     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1407   MachOper *memory = node->_opnds[opcnt];
  1408   MachOper *new_memory = NULL;
  1409   switch (memory->opcode()) {
  1410   case DIRECT:
  1411   case INDOFFSET32X:
  1412     // No transformation necessary.
  1413     return;
  1414   case INDIRECT:
  1415     new_memory = new (C) indirect_win95_safeOper( );
  1416     break;
  1417   case INDOFFSET8:
  1418     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1419     break;
  1420   case INDOFFSET32:
  1421     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1422     break;
  1423   case INDINDEXOFFSET:
  1424     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1425     break;
  1426   case INDINDEXSCALE:
  1427     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1428     break;
  1429   case INDINDEXSCALEOFFSET:
  1430     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1431     break;
  1432   case LOAD_LONG_INDIRECT:
  1433   case LOAD_LONG_INDOFFSET32:
  1434     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1435     return;
  1436   default:
  1437     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1438     return;
  1440   node->_opnds[opcnt] = new_memory;
  1443 // Advertise here if the CPU requires explicit rounding operations
  1444 // to implement the UseStrictFP mode.
  1445 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1447 // Are floats conerted to double when stored to stack during deoptimization?
  1448 // On x32 it is stored with convertion only when FPU is used for floats.
  1449 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1451 // Do ints take an entire long register or just half?
  1452 const bool Matcher::int_in_long = false;
  1454 // Return whether or not this register is ever used as an argument.  This
  1455 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1456 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1457 // arguments in those registers not be available to the callee.
  1458 bool Matcher::can_be_java_arg( int reg ) {
  1459   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1460   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1461   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1462   return false;
  1465 bool Matcher::is_spillable_arg( int reg ) {
  1466   return can_be_java_arg(reg);
  1469 // Register for DIVI projection of divmodI
  1470 RegMask Matcher::divI_proj_mask() {
  1471   return EAX_REG_mask;
  1474 // Register for MODI projection of divmodI
  1475 RegMask Matcher::modI_proj_mask() {
  1476   return EDX_REG_mask;
  1479 // Register for DIVL projection of divmodL
  1480 RegMask Matcher::divL_proj_mask() {
  1481   ShouldNotReachHere();
  1482   return RegMask();
  1485 // Register for MODL projection of divmodL
  1486 RegMask Matcher::modL_proj_mask() {
  1487   ShouldNotReachHere();
  1488   return RegMask();
  1491 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1492   return EBP_REG_mask;
  1495 // Returns true if the high 32 bits of the value is known to be zero.
  1496 bool is_operand_hi32_zero(Node* n) {
  1497   int opc = n->Opcode();
  1498   if (opc == Op_LoadUI2L) {
  1499     return true;
  1501   if (opc == Op_AndL) {
  1502     Node* o2 = n->in(2);
  1503     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1504       return true;
  1507   return false;
  1510 %}
  1512 //----------ENCODING BLOCK-----------------------------------------------------
  1513 // This block specifies the encoding classes used by the compiler to output
  1514 // byte streams.  Encoding classes generate functions which are called by
  1515 // Machine Instruction Nodes in order to generate the bit encoding of the
  1516 // instruction.  Operands specify their base encoding interface with the
  1517 // interface keyword.  There are currently supported four interfaces,
  1518 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1519 // operand to generate a function which returns its register number when
  1520 // queried.   CONST_INTER causes an operand to generate a function which
  1521 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1522 // operand to generate four functions which return the Base Register, the
  1523 // Index Register, the Scale Value, and the Offset Value of the operand when
  1524 // queried.  COND_INTER causes an operand to generate six functions which
  1525 // return the encoding code (ie - encoding bits for the instruction)
  1526 // associated with each basic boolean condition for a conditional instruction.
  1527 // Instructions specify two basic values for encoding.  They use the
  1528 // ins_encode keyword to specify their encoding class (which must be one of
  1529 // the class names specified in the encoding block), and they use the
  1530 // opcode keyword to specify, in order, their primary, secondary, and
  1531 // tertiary opcode.  Only the opcode sections which a particular instruction
  1532 // needs for encoding need to be specified.
  1533 encode %{
  1534   // Build emit functions for each basic byte or larger field in the intel
  1535   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1536   // code in the enc_class source block.  Emit functions will live in the
  1537   // main source block for now.  In future, we can generalize this by
  1538   // adding a syntax that specifies the sizes of fields in an order,
  1539   // so that the adlc can build the emit functions automagically
  1541   // Emit primary opcode
  1542   enc_class OpcP %{
  1543     emit_opcode(cbuf, $primary);
  1544   %}
  1546   // Emit secondary opcode
  1547   enc_class OpcS %{
  1548     emit_opcode(cbuf, $secondary);
  1549   %}
  1551   // Emit opcode directly
  1552   enc_class Opcode(immI d8) %{
  1553     emit_opcode(cbuf, $d8$$constant);
  1554   %}
  1556   enc_class SizePrefix %{
  1557     emit_opcode(cbuf,0x66);
  1558   %}
  1560   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1561     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1562   %}
  1564   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1565     emit_opcode(cbuf,$opcode$$constant);
  1566     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1567   %}
  1569   enc_class mov_r32_imm0( eRegI dst ) %{
  1570     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1571     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1572   %}
  1574   enc_class cdq_enc %{
  1575     // Full implementation of Java idiv and irem; checks for
  1576     // special case as described in JVM spec., p.243 & p.271.
  1577     //
  1578     //         normal case                           special case
  1579     //
  1580     // input : rax,: dividend                         min_int
  1581     //         reg: divisor                          -1
  1582     //
  1583     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1584     //         rdx: remainder (= rax, irem reg)       0
  1585     //
  1586     //  Code sequnce:
  1587     //
  1588     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1589     //  0F 85 0B 00 00 00    jne         normal_case
  1590     //  33 D2                xor         rdx,edx
  1591     //  83 F9 FF             cmp         rcx,0FFh
  1592     //  0F 84 03 00 00 00    je          done
  1593     //                  normal_case:
  1594     //  99                   cdq
  1595     //  F7 F9                idiv        rax,ecx
  1596     //                  done:
  1597     //
  1598     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1599     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1600     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1601     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1602     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1603     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1604     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1605     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1606     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1607     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1608     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1609     // normal_case:
  1610     emit_opcode(cbuf,0x99);                                         // cdq
  1611     // idiv (note: must be emitted by the user of this rule)
  1612     // normal:
  1613   %}
  1615   // Dense encoding for older common ops
  1616   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1617     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1618   %}
  1621   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1622   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1623     // Check for 8-bit immediate, and set sign extend bit in opcode
  1624     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1625       emit_opcode(cbuf, $primary | 0x02);
  1627     else {                          // If 32-bit immediate
  1628       emit_opcode(cbuf, $primary);
  1630   %}
  1632   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1633     // Emit primary opcode and set sign-extend bit
  1634     // Check for 8-bit immediate, and set sign extend bit in opcode
  1635     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1636       emit_opcode(cbuf, $primary | 0x02);    }
  1637     else {                          // If 32-bit immediate
  1638       emit_opcode(cbuf, $primary);
  1640     // Emit r/m byte with secondary opcode, after primary opcode.
  1641     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1642   %}
  1644   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1645     // Check for 8-bit immediate, and set sign extend bit in opcode
  1646     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1647       $$$emit8$imm$$constant;
  1649     else {                          // If 32-bit immediate
  1650       // Output immediate
  1651       $$$emit32$imm$$constant;
  1653   %}
  1655   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1656     // Emit primary opcode and set sign-extend bit
  1657     // Check for 8-bit immediate, and set sign extend bit in opcode
  1658     int con = (int)$imm$$constant; // Throw away top bits
  1659     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1660     // Emit r/m byte with secondary opcode, after primary opcode.
  1661     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1662     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1663     else                               emit_d32(cbuf,con);
  1664   %}
  1666   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1667     // Emit primary opcode and set sign-extend bit
  1668     // Check for 8-bit immediate, and set sign extend bit in opcode
  1669     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1670     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1671     // Emit r/m byte with tertiary opcode, after primary opcode.
  1672     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1673     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1674     else                               emit_d32(cbuf,con);
  1675   %}
  1677   enc_class Lbl (label labl) %{ // JMP, CALL
  1678     Label *l = $labl$$label;
  1679     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1680   %}
  1682   enc_class LblShort (label labl) %{ // JMP, CALL
  1683     Label *l = $labl$$label;
  1684     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1685     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1686     emit_d8(cbuf, disp);
  1687   %}
  1689   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1690     emit_cc(cbuf, $secondary, $dst$$reg );
  1691   %}
  1693   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1694     int destlo = $dst$$reg;
  1695     int desthi = HIGH_FROM_LOW(destlo);
  1696     // bswap lo
  1697     emit_opcode(cbuf, 0x0F);
  1698     emit_cc(cbuf, 0xC8, destlo);
  1699     // bswap hi
  1700     emit_opcode(cbuf, 0x0F);
  1701     emit_cc(cbuf, 0xC8, desthi);
  1702     // xchg lo and hi
  1703     emit_opcode(cbuf, 0x87);
  1704     emit_rm(cbuf, 0x3, destlo, desthi);
  1705   %}
  1707   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1708     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1709   %}
  1711   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1712     Label *l = $labl$$label;
  1713     $$$emit8$primary;
  1714     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1715     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1716   %}
  1718   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1719     Label *l = $labl$$label;
  1720     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1721     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1722     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1723     emit_d8(cbuf, disp);
  1724   %}
  1726   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1727     $$$emit8$primary;
  1728     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1729   %}
  1731   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1732     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1733     emit_d8(cbuf, op >> 8 );
  1734     emit_d8(cbuf, op & 255);
  1735   %}
  1737   // emulate a CMOV with a conditional branch around a MOV
  1738   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1739     // Invert sense of branch from sense of CMOV
  1740     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1741     emit_d8( cbuf, $brOffs$$constant );
  1742   %}
  1744   enc_class enc_PartialSubtypeCheck( ) %{
  1745     Register Redi = as_Register(EDI_enc); // result register
  1746     Register Reax = as_Register(EAX_enc); // super class
  1747     Register Recx = as_Register(ECX_enc); // killed
  1748     Register Resi = as_Register(ESI_enc); // sub class
  1749     Label miss;
  1751     MacroAssembler _masm(&cbuf);
  1752     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1753                                      NULL, &miss,
  1754                                      /*set_cond_codes:*/ true);
  1755     if ($primary) {
  1756       __ xorptr(Redi, Redi);
  1758     __ bind(miss);
  1759   %}
  1761   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1762     MacroAssembler masm(&cbuf);
  1763     int start = masm.offset();
  1764     if (UseSSE >= 2) {
  1765       if (VerifyFPU) {
  1766         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1768     } else {
  1769       // External c_calling_convention expects the FPU stack to be 'clean'.
  1770       // Compiled code leaves it dirty.  Do cleanup now.
  1771       masm.empty_FPU_stack();
  1773     if (sizeof_FFree_Float_Stack_All == -1) {
  1774       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1775     } else {
  1776       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1778   %}
  1780   enc_class Verify_FPU_For_Leaf %{
  1781     if( VerifyFPU ) {
  1782       MacroAssembler masm(&cbuf);
  1783       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1785   %}
  1787   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1788     // This is the instruction starting address for relocation info.
  1789     cbuf.set_inst_mark();
  1790     $$$emit8$primary;
  1791     // CALL directly to the runtime
  1792     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1793                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1795     if (UseSSE >= 2) {
  1796       MacroAssembler _masm(&cbuf);
  1797       BasicType rt = tf()->return_type();
  1799       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1800         // A C runtime call where the return value is unused.  In SSE2+
  1801         // mode the result needs to be removed from the FPU stack.  It's
  1802         // likely that this function call could be removed by the
  1803         // optimizer if the C function is a pure function.
  1804         __ ffree(0);
  1805       } else if (rt == T_FLOAT) {
  1806         __ lea(rsp, Address(rsp, -4));
  1807         __ fstp_s(Address(rsp, 0));
  1808         __ movflt(xmm0, Address(rsp, 0));
  1809         __ lea(rsp, Address(rsp,  4));
  1810       } else if (rt == T_DOUBLE) {
  1811         __ lea(rsp, Address(rsp, -8));
  1812         __ fstp_d(Address(rsp, 0));
  1813         __ movdbl(xmm0, Address(rsp, 0));
  1814         __ lea(rsp, Address(rsp,  8));
  1817   %}
  1820   enc_class pre_call_FPU %{
  1821     // If method sets FPU control word restore it here
  1822     debug_only(int off0 = cbuf.code_size());
  1823     if( Compile::current()->in_24_bit_fp_mode() ) {
  1824       MacroAssembler masm(&cbuf);
  1825       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1827     debug_only(int off1 = cbuf.code_size());
  1828     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1829   %}
  1831   enc_class post_call_FPU %{
  1832     // If method sets FPU control word do it here also
  1833     if( Compile::current()->in_24_bit_fp_mode() ) {
  1834       MacroAssembler masm(&cbuf);
  1835       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1837   %}
  1839   enc_class preserve_SP %{
  1840     debug_only(int off0 = cbuf.code_size());
  1841     MacroAssembler _masm(&cbuf);
  1842     // RBP is preserved across all calls, even compiled calls.
  1843     // Use it to preserve RSP in places where the callee might change the SP.
  1844     __ movptr(rbp, rsp);
  1845     debug_only(int off1 = cbuf.code_size());
  1846     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1847   %}
  1849   enc_class restore_SP %{
  1850     MacroAssembler _masm(&cbuf);
  1851     __ movptr(rsp, rbp);
  1852   %}
  1854   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1855     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1856     // who we intended to call.
  1857     cbuf.set_inst_mark();
  1858     $$$emit8$primary;
  1859     if ( !_method ) {
  1860       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1861                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1862     } else if(_optimized_virtual) {
  1863       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1864                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1865     } else {
  1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1867                      static_call_Relocation::spec(), RELOC_IMM32 );
  1869     if( _method ) {  // Emit stub for static call
  1870       emit_java_to_interp(cbuf);
  1872   %}
  1874   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1875     // !!!!!
  1876     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1877     // emit_call_dynamic_prologue( cbuf );
  1878     cbuf.set_inst_mark();
  1879     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1880     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1881     address  virtual_call_oop_addr = cbuf.inst_mark();
  1882     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1883     // who we intended to call.
  1884     cbuf.set_inst_mark();
  1885     $$$emit8$primary;
  1886     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1887                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1888   %}
  1890   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1891     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1892     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1894     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1895     cbuf.set_inst_mark();
  1896     $$$emit8$primary;
  1897     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1898     emit_d8(cbuf, disp);             // Displacement
  1900   %}
  1902   enc_class Xor_Reg (eRegI dst) %{
  1903     emit_opcode(cbuf, 0x33);
  1904     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1905   %}
  1907 //   Following encoding is no longer used, but may be restored if calling
  1908 //   convention changes significantly.
  1909 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1910 //
  1911 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1912 //     // int ic_reg     = Matcher::inline_cache_reg();
  1913 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1914 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1915 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1916 //
  1917 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1918 //     // // so we load it immediately before the call
  1919 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1920 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1921 //
  1922 //     // xor rbp,ebp
  1923 //     emit_opcode(cbuf, 0x33);
  1924 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1925 //
  1926 //     // CALL to interpreter.
  1927 //     cbuf.set_inst_mark();
  1928 //     $$$emit8$primary;
  1929 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1930 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1931 //   %}
  1933   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1934     $$$emit8$primary;
  1935     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1936     $$$emit8$shift$$constant;
  1937   %}
  1939   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1940     // Load immediate does not have a zero or sign extended version
  1941     // for 8-bit immediates
  1942     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1943     $$$emit32$src$$constant;
  1944   %}
  1946   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1947     // Load immediate does not have a zero or sign extended version
  1948     // for 8-bit immediates
  1949     emit_opcode(cbuf, $primary + $dst$$reg);
  1950     $$$emit32$src$$constant;
  1951   %}
  1953   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1954     // Load immediate does not have a zero or sign extended version
  1955     // for 8-bit immediates
  1956     int dst_enc = $dst$$reg;
  1957     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1958     if (src_con == 0) {
  1959       // xor dst, dst
  1960       emit_opcode(cbuf, 0x33);
  1961       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1962     } else {
  1963       emit_opcode(cbuf, $primary + dst_enc);
  1964       emit_d32(cbuf, src_con);
  1966   %}
  1968   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1969     // Load immediate does not have a zero or sign extended version
  1970     // for 8-bit immediates
  1971     int dst_enc = $dst$$reg + 2;
  1972     int src_con = ((julong)($src$$constant)) >> 32;
  1973     if (src_con == 0) {
  1974       // xor dst, dst
  1975       emit_opcode(cbuf, 0x33);
  1976       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1977     } else {
  1978       emit_opcode(cbuf, $primary + dst_enc);
  1979       emit_d32(cbuf, src_con);
  1981   %}
  1984   enc_class LdImmD (immD src) %{    // Load Immediate
  1985     if( is_positive_zero_double($src$$constant)) {
  1986       // FLDZ
  1987       emit_opcode(cbuf,0xD9);
  1988       emit_opcode(cbuf,0xEE);
  1989     } else if( is_positive_one_double($src$$constant)) {
  1990       // FLD1
  1991       emit_opcode(cbuf,0xD9);
  1992       emit_opcode(cbuf,0xE8);
  1993     } else {
  1994       emit_opcode(cbuf,0xDD);
  1995       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1996       emit_double_constant(cbuf, $src$$constant);
  1998   %}
  2001   enc_class LdImmF (immF src) %{    // Load Immediate
  2002     if( is_positive_zero_float($src$$constant)) {
  2003       emit_opcode(cbuf,0xD9);
  2004       emit_opcode(cbuf,0xEE);
  2005     } else if( is_positive_one_float($src$$constant)) {
  2006       emit_opcode(cbuf,0xD9);
  2007       emit_opcode(cbuf,0xE8);
  2008     } else {
  2009       $$$emit8$primary;
  2010       // Load immediate does not have a zero or sign extended version
  2011       // for 8-bit immediates
  2012       // First load to TOS, then move to dst
  2013       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2014       emit_float_constant(cbuf, $src$$constant);
  2016   %}
  2018   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  2019     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2020     emit_float_constant(cbuf, $con$$constant);
  2021   %}
  2023   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2024     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2025     emit_double_constant(cbuf, $con$$constant);
  2026   %}
  2028   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2029     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2030     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2031     emit_opcode(cbuf, 0x0F);
  2032     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2033     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2034     emit_double_constant(cbuf, $con$$constant);
  2035   %}
  2037   enc_class Opc_MemImm_F(immF src) %{
  2038     cbuf.set_inst_mark();
  2039     $$$emit8$primary;
  2040     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2041     emit_float_constant(cbuf, $src$$constant);
  2042   %}
  2045   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2046     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2047     emit_opcode(cbuf, 0x0F );
  2048     emit_opcode(cbuf, 0x6E );
  2049     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2050   %}
  2052   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2053     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2054     emit_opcode(cbuf, 0x0F );
  2055     emit_opcode(cbuf, 0x7E );
  2056     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2057   %}
  2059   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2060     { // MOVD $dst,$src.lo
  2061       emit_opcode(cbuf,0x66);
  2062       emit_opcode(cbuf,0x0F);
  2063       emit_opcode(cbuf,0x6E);
  2064       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2066     { // MOVD $tmp,$src.hi
  2067       emit_opcode(cbuf,0x66);
  2068       emit_opcode(cbuf,0x0F);
  2069       emit_opcode(cbuf,0x6E);
  2070       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2072     { // PUNPCKLDQ $dst,$tmp
  2073       emit_opcode(cbuf,0x66);
  2074       emit_opcode(cbuf,0x0F);
  2075       emit_opcode(cbuf,0x62);
  2076       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2078   %}
  2080   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2081     { // MOVD $dst.lo,$src
  2082       emit_opcode(cbuf,0x66);
  2083       emit_opcode(cbuf,0x0F);
  2084       emit_opcode(cbuf,0x7E);
  2085       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2087     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2088       emit_opcode(cbuf,0xF2);
  2089       emit_opcode(cbuf,0x0F);
  2090       emit_opcode(cbuf,0x70);
  2091       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2092       emit_d8(cbuf, 0x4E);
  2094     { // MOVD $dst.hi,$tmp
  2095       emit_opcode(cbuf,0x66);
  2096       emit_opcode(cbuf,0x0F);
  2097       emit_opcode(cbuf,0x7E);
  2098       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2100   %}
  2103   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2104   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2105     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2106   %}
  2108   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2109     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2110   %}
  2112   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2113   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2114     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2115   %}
  2117   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2118     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2119   %}
  2121   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2122     $$$emit8$primary;
  2123     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2124   %}
  2126   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2127     $$$emit8$secondary;
  2128     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2129   %}
  2131   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2132     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2133   %}
  2135   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2136     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2137   %}
  2139   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2140     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2141   %}
  2143   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2144     // Output immediate
  2145     $$$emit32$src$$constant;
  2146   %}
  2148   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2149     // Output Float immediate bits
  2150     jfloat jf = $src$$constant;
  2151     int    jf_as_bits = jint_cast( jf );
  2152     emit_d32(cbuf, jf_as_bits);
  2153   %}
  2155   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2156     // Output Float immediate bits
  2157     jfloat jf = $src$$constant;
  2158     int    jf_as_bits = jint_cast( jf );
  2159     emit_d32(cbuf, jf_as_bits);
  2160   %}
  2162   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2163     // Output immediate
  2164     $$$emit16$src$$constant;
  2165   %}
  2167   enc_class Con_d32(immI src) %{
  2168     emit_d32(cbuf,$src$$constant);
  2169   %}
  2171   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2172     // Output immediate memory reference
  2173     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2174     emit_d32(cbuf, 0x00);
  2175   %}
  2177   enc_class lock_prefix( ) %{
  2178     if( os::is_MP() )
  2179       emit_opcode(cbuf,0xF0);         // [Lock]
  2180   %}
  2182   // Cmp-xchg long value.
  2183   // Note: we need to swap rbx, and rcx before and after the
  2184   //       cmpxchg8 instruction because the instruction uses
  2185   //       rcx as the high order word of the new value to store but
  2186   //       our register encoding uses rbx,.
  2187   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2189     // XCHG  rbx,ecx
  2190     emit_opcode(cbuf,0x87);
  2191     emit_opcode(cbuf,0xD9);
  2192     // [Lock]
  2193     if( os::is_MP() )
  2194       emit_opcode(cbuf,0xF0);
  2195     // CMPXCHG8 [Eptr]
  2196     emit_opcode(cbuf,0x0F);
  2197     emit_opcode(cbuf,0xC7);
  2198     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2199     // XCHG  rbx,ecx
  2200     emit_opcode(cbuf,0x87);
  2201     emit_opcode(cbuf,0xD9);
  2202   %}
  2204   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2205     // [Lock]
  2206     if( os::is_MP() )
  2207       emit_opcode(cbuf,0xF0);
  2209     // CMPXCHG [Eptr]
  2210     emit_opcode(cbuf,0x0F);
  2211     emit_opcode(cbuf,0xB1);
  2212     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2213   %}
  2215   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2216     int res_encoding = $res$$reg;
  2218     // MOV  res,0
  2219     emit_opcode( cbuf, 0xB8 + res_encoding);
  2220     emit_d32( cbuf, 0 );
  2221     // JNE,s  fail
  2222     emit_opcode(cbuf,0x75);
  2223     emit_d8(cbuf, 5 );
  2224     // MOV  res,1
  2225     emit_opcode( cbuf, 0xB8 + res_encoding);
  2226     emit_d32( cbuf, 1 );
  2227     // fail:
  2228   %}
  2230   enc_class set_instruction_start( ) %{
  2231     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2232   %}
  2234   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2235     int reg_encoding = $ereg$$reg;
  2236     int base  = $mem$$base;
  2237     int index = $mem$$index;
  2238     int scale = $mem$$scale;
  2239     int displace = $mem$$disp;
  2240     bool disp_is_oop = $mem->disp_is_oop();
  2241     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2242   %}
  2244   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2245     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2246     int base  = $mem$$base;
  2247     int index = $mem$$index;
  2248     int scale = $mem$$scale;
  2249     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2250     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2251     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2252   %}
  2254   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2255     int r1, r2;
  2256     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2257     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2258     emit_opcode(cbuf,0x0F);
  2259     emit_opcode(cbuf,$tertiary);
  2260     emit_rm(cbuf, 0x3, r1, r2);
  2261     emit_d8(cbuf,$cnt$$constant);
  2262     emit_d8(cbuf,$primary);
  2263     emit_rm(cbuf, 0x3, $secondary, r1);
  2264     emit_d8(cbuf,$cnt$$constant);
  2265   %}
  2267   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2268     emit_opcode( cbuf, 0x8B ); // Move
  2269     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2270     emit_d8(cbuf,$primary);
  2271     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2272     emit_d8(cbuf,$cnt$$constant-32);
  2273     emit_d8(cbuf,$primary);
  2274     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2275     emit_d8(cbuf,31);
  2276   %}
  2278   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2279     int r1, r2;
  2280     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2281     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2283     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2284     emit_rm(cbuf, 0x3, r1, r2);
  2285     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2286       emit_opcode(cbuf,$primary);
  2287       emit_rm(cbuf, 0x3, $secondary, r1);
  2288       emit_d8(cbuf,$cnt$$constant-32);
  2290     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2291     emit_rm(cbuf, 0x3, r2, r2);
  2292   %}
  2294   // Clone of RegMem but accepts an extra parameter to access each
  2295   // half of a double in memory; it never needs relocation info.
  2296   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2297     emit_opcode(cbuf,$opcode$$constant);
  2298     int reg_encoding = $rm_reg$$reg;
  2299     int base     = $mem$$base;
  2300     int index    = $mem$$index;
  2301     int scale    = $mem$$scale;
  2302     int displace = $mem$$disp + $disp_for_half$$constant;
  2303     bool disp_is_oop = false;
  2304     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2305   %}
  2307   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2308   //
  2309   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2310   // and it never needs relocation information.
  2311   // Frequently used to move data between FPU's Stack Top and memory.
  2312   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2313     int rm_byte_opcode = $rm_opcode$$constant;
  2314     int base     = $mem$$base;
  2315     int index    = $mem$$index;
  2316     int scale    = $mem$$scale;
  2317     int displace = $mem$$disp;
  2318     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2319     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2320   %}
  2322   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2323     int rm_byte_opcode = $rm_opcode$$constant;
  2324     int base     = $mem$$base;
  2325     int index    = $mem$$index;
  2326     int scale    = $mem$$scale;
  2327     int displace = $mem$$disp;
  2328     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2329     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2330   %}
  2332   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2333     int reg_encoding = $dst$$reg;
  2334     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2335     int index        = 0x04;            // 0x04 indicates no index
  2336     int scale        = 0x00;            // 0x00 indicates no scale
  2337     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2338     bool disp_is_oop = false;
  2339     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2340   %}
  2342   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2343     // Compare dst,src
  2344     emit_opcode(cbuf,0x3B);
  2345     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2346     // jmp dst < src around move
  2347     emit_opcode(cbuf,0x7C);
  2348     emit_d8(cbuf,2);
  2349     // move dst,src
  2350     emit_opcode(cbuf,0x8B);
  2351     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2352   %}
  2354   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2355     // Compare dst,src
  2356     emit_opcode(cbuf,0x3B);
  2357     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2358     // jmp dst > src around move
  2359     emit_opcode(cbuf,0x7F);
  2360     emit_d8(cbuf,2);
  2361     // move dst,src
  2362     emit_opcode(cbuf,0x8B);
  2363     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2364   %}
  2366   enc_class enc_FP_store(memory mem, regD src) %{
  2367     // If src is FPR1, we can just FST to store it.
  2368     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2369     int reg_encoding = 0x2; // Just store
  2370     int base  = $mem$$base;
  2371     int index = $mem$$index;
  2372     int scale = $mem$$scale;
  2373     int displace = $mem$$disp;
  2374     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2375     if( $src$$reg != FPR1L_enc ) {
  2376       reg_encoding = 0x3;  // Store & pop
  2377       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2378       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2380     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2381     emit_opcode(cbuf,$primary);
  2382     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2383   %}
  2385   enc_class neg_reg(eRegI dst) %{
  2386     // NEG $dst
  2387     emit_opcode(cbuf,0xF7);
  2388     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2389   %}
  2391   enc_class setLT_reg(eCXRegI dst) %{
  2392     // SETLT $dst
  2393     emit_opcode(cbuf,0x0F);
  2394     emit_opcode(cbuf,0x9C);
  2395     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2396   %}
  2398   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2399     int tmpReg = $tmp$$reg;
  2401     // SUB $p,$q
  2402     emit_opcode(cbuf,0x2B);
  2403     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2404     // SBB $tmp,$tmp
  2405     emit_opcode(cbuf,0x1B);
  2406     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2407     // AND $tmp,$y
  2408     emit_opcode(cbuf,0x23);
  2409     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2410     // ADD $p,$tmp
  2411     emit_opcode(cbuf,0x03);
  2412     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2413   %}
  2415   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2416     int tmpReg = $tmp$$reg;
  2418     // SUB $p,$q
  2419     emit_opcode(cbuf,0x2B);
  2420     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2421     // SBB $tmp,$tmp
  2422     emit_opcode(cbuf,0x1B);
  2423     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2424     // AND $tmp,$y
  2425     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2426     emit_opcode(cbuf,0x23);
  2427     int reg_encoding = tmpReg;
  2428     int base  = $mem$$base;
  2429     int index = $mem$$index;
  2430     int scale = $mem$$scale;
  2431     int displace = $mem$$disp;
  2432     bool disp_is_oop = $mem->disp_is_oop();
  2433     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2434     // ADD $p,$tmp
  2435     emit_opcode(cbuf,0x03);
  2436     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2437   %}
  2439   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2440     // TEST shift,32
  2441     emit_opcode(cbuf,0xF7);
  2442     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2443     emit_d32(cbuf,0x20);
  2444     // JEQ,s small
  2445     emit_opcode(cbuf, 0x74);
  2446     emit_d8(cbuf, 0x04);
  2447     // MOV    $dst.hi,$dst.lo
  2448     emit_opcode( cbuf, 0x8B );
  2449     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2450     // CLR    $dst.lo
  2451     emit_opcode(cbuf, 0x33);
  2452     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2453 // small:
  2454     // SHLD   $dst.hi,$dst.lo,$shift
  2455     emit_opcode(cbuf,0x0F);
  2456     emit_opcode(cbuf,0xA5);
  2457     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2458     // SHL    $dst.lo,$shift"
  2459     emit_opcode(cbuf,0xD3);
  2460     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2461   %}
  2463   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2464     // TEST shift,32
  2465     emit_opcode(cbuf,0xF7);
  2466     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2467     emit_d32(cbuf,0x20);
  2468     // JEQ,s small
  2469     emit_opcode(cbuf, 0x74);
  2470     emit_d8(cbuf, 0x04);
  2471     // MOV    $dst.lo,$dst.hi
  2472     emit_opcode( cbuf, 0x8B );
  2473     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2474     // CLR    $dst.hi
  2475     emit_opcode(cbuf, 0x33);
  2476     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2477 // small:
  2478     // SHRD   $dst.lo,$dst.hi,$shift
  2479     emit_opcode(cbuf,0x0F);
  2480     emit_opcode(cbuf,0xAD);
  2481     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2482     // SHR    $dst.hi,$shift"
  2483     emit_opcode(cbuf,0xD3);
  2484     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2485   %}
  2487   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2488     // TEST shift,32
  2489     emit_opcode(cbuf,0xF7);
  2490     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2491     emit_d32(cbuf,0x20);
  2492     // JEQ,s small
  2493     emit_opcode(cbuf, 0x74);
  2494     emit_d8(cbuf, 0x05);
  2495     // MOV    $dst.lo,$dst.hi
  2496     emit_opcode( cbuf, 0x8B );
  2497     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2498     // SAR    $dst.hi,31
  2499     emit_opcode(cbuf, 0xC1);
  2500     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2501     emit_d8(cbuf, 0x1F );
  2502 // small:
  2503     // SHRD   $dst.lo,$dst.hi,$shift
  2504     emit_opcode(cbuf,0x0F);
  2505     emit_opcode(cbuf,0xAD);
  2506     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2507     // SAR    $dst.hi,$shift"
  2508     emit_opcode(cbuf,0xD3);
  2509     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2510   %}
  2513   // ----------------- Encodings for floating point unit -----------------
  2514   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2515   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2516     $$$emit8$primary;
  2517     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2518   %}
  2520   // Pop argument in FPR0 with FSTP ST(0)
  2521   enc_class PopFPU() %{
  2522     emit_opcode( cbuf, 0xDD );
  2523     emit_d8( cbuf, 0xD8 );
  2524   %}
  2526   // !!!!! equivalent to Pop_Reg_F
  2527   enc_class Pop_Reg_D( regD dst ) %{
  2528     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2529     emit_d8( cbuf, 0xD8+$dst$$reg );
  2530   %}
  2532   enc_class Push_Reg_D( regD dst ) %{
  2533     emit_opcode( cbuf, 0xD9 );
  2534     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2535   %}
  2537   enc_class strictfp_bias1( regD dst ) %{
  2538     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2539     emit_opcode( cbuf, 0x2D );
  2540     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2541     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2542     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2543   %}
  2545   enc_class strictfp_bias2( regD dst ) %{
  2546     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2547     emit_opcode( cbuf, 0x2D );
  2548     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2549     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2550     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2551   %}
  2553   // Special case for moving an integer register to a stack slot.
  2554   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2555     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2556   %}
  2558   // Special case for moving a register to a stack slot.
  2559   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2560     // Opcode already emitted
  2561     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2562     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2563     emit_d32(cbuf, $dst$$disp);   // Displacement
  2564   %}
  2566   // Push the integer in stackSlot 'src' onto FP-stack
  2567   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2568     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2569   %}
  2571   // Push the float in stackSlot 'src' onto FP-stack
  2572   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2573     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2574   %}
  2576   // Push the double in stackSlot 'src' onto FP-stack
  2577   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2578     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2579   %}
  2581   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2582   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2583     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2584   %}
  2586   // Same as Pop_Mem_F except for opcode
  2587   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2588   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2589     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2590   %}
  2592   enc_class Pop_Reg_F( regF dst ) %{
  2593     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2594     emit_d8( cbuf, 0xD8+$dst$$reg );
  2595   %}
  2597   enc_class Push_Reg_F( regF dst ) %{
  2598     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2599     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2600   %}
  2602   // Push FPU's float to a stack-slot, and pop FPU-stack
  2603   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2604     int pop = 0x02;
  2605     if ($src$$reg != FPR1L_enc) {
  2606       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2607       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2608       pop = 0x03;
  2610     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2611   %}
  2613   // Push FPU's double to a stack-slot, and pop FPU-stack
  2614   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2615     int pop = 0x02;
  2616     if ($src$$reg != FPR1L_enc) {
  2617       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2618       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2619       pop = 0x03;
  2621     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2622   %}
  2624   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2625   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2626     int pop = 0xD0 - 1; // -1 since we skip FLD
  2627     if ($src$$reg != FPR1L_enc) {
  2628       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2629       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2630       pop = 0xD8;
  2632     emit_opcode( cbuf, 0xDD );
  2633     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2634   %}
  2637   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2638     MacroAssembler masm(&cbuf);
  2639     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2640     masm.fmul(   $src2$$reg+0);   // value at TOS
  2641     masm.fadd(   $src$$reg+0);    // value at TOS
  2642     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2643   %}
  2646   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2647     // load dst in FPR0
  2648     emit_opcode( cbuf, 0xD9 );
  2649     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2650     if ($src$$reg != FPR1L_enc) {
  2651       // fincstp
  2652       emit_opcode (cbuf, 0xD9);
  2653       emit_opcode (cbuf, 0xF7);
  2654       // swap src with FPR1:
  2655       // FXCH FPR1 with src
  2656       emit_opcode(cbuf, 0xD9);
  2657       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2658       // fdecstp
  2659       emit_opcode (cbuf, 0xD9);
  2660       emit_opcode (cbuf, 0xF6);
  2662   %}
  2664   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2665     // Allocate a word
  2666     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2667     emit_opcode(cbuf,0xEC);
  2668     emit_d8(cbuf,0x08);
  2670     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2671     emit_opcode  (cbuf, 0x0F );
  2672     emit_opcode  (cbuf, 0x11 );
  2673     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2675     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2676     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2678     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2679     emit_opcode  (cbuf, 0x0F );
  2680     emit_opcode  (cbuf, 0x11 );
  2681     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2683     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2684     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2686   %}
  2688   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2689     // Allocate a word
  2690     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2691     emit_opcode(cbuf,0xEC);
  2692     emit_d8(cbuf,0x04);
  2694     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2695     emit_opcode  (cbuf, 0x0F );
  2696     emit_opcode  (cbuf, 0x11 );
  2697     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2699     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2700     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2702     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2703     emit_opcode  (cbuf, 0x0F );
  2704     emit_opcode  (cbuf, 0x11 );
  2705     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2707     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2708     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2710   %}
  2712   enc_class Push_ResultXD(regXD dst) %{
  2713     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2715     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2716     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2717     emit_opcode  (cbuf, 0x0F );
  2718     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2719     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2721     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2722     emit_opcode(cbuf,0xC4);
  2723     emit_d8(cbuf,0x08);
  2724   %}
  2726   enc_class Push_ResultX(regX dst, immI d8) %{
  2727     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2729     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2730     emit_opcode  (cbuf, 0x0F );
  2731     emit_opcode  (cbuf, 0x10 );
  2732     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2734     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2735     emit_opcode(cbuf,0xC4);
  2736     emit_d8(cbuf,$d8$$constant);
  2737   %}
  2739   enc_class Push_SrcXD(regXD src) %{
  2740     // Allocate a word
  2741     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2742     emit_opcode(cbuf,0xEC);
  2743     emit_d8(cbuf,0x08);
  2745     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2746     emit_opcode  (cbuf, 0x0F );
  2747     emit_opcode  (cbuf, 0x11 );
  2748     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2750     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2751     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2752   %}
  2754   enc_class push_stack_temp_qword() %{
  2755     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2756     emit_opcode(cbuf,0xEC);
  2757     emit_d8    (cbuf,0x08);
  2758   %}
  2760   enc_class pop_stack_temp_qword() %{
  2761     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2762     emit_opcode(cbuf,0xC4);
  2763     emit_d8    (cbuf,0x08);
  2764   %}
  2766   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2767     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2768     emit_opcode  (cbuf, 0x0F );
  2769     emit_opcode  (cbuf, 0x11 );
  2770     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2772     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2773     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2774   %}
  2776   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2777   // Otherwise return a NaN.
  2778   enc_class pow_exp_core_encoding %{
  2779     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2780     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2781     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2782     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2783     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2784     emit_opcode(cbuf,0x1C);
  2785     emit_d8(cbuf,0x24);
  2786     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2787     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2788     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2789     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2790     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2791     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2792     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2793     emit_d32(cbuf,0xFFFFF800);
  2794     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2795     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2796     emit_d32(cbuf,1023);
  2797     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2798     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2799     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2800     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2801     emit_d8(cbuf,20);
  2802     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2803     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2804     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2805     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2806     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2807     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2808     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2809     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2810     emit_d32(cbuf,0);
  2811     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2812     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2813   %}
  2815 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2816 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2818   enc_class Push_Result_Mod_D( regD src) %{
  2819     if ($src$$reg != FPR1L_enc) {
  2820       // fincstp
  2821       emit_opcode (cbuf, 0xD9);
  2822       emit_opcode (cbuf, 0xF7);
  2823       // FXCH FPR1 with src
  2824       emit_opcode(cbuf, 0xD9);
  2825       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2826       // fdecstp
  2827       emit_opcode (cbuf, 0xD9);
  2828       emit_opcode (cbuf, 0xF6);
  2830     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2831     // // FSTP   FPR$dst$$reg
  2832     // emit_opcode( cbuf, 0xDD );
  2833     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2834   %}
  2836   enc_class fnstsw_sahf_skip_parity() %{
  2837     // fnstsw ax
  2838     emit_opcode( cbuf, 0xDF );
  2839     emit_opcode( cbuf, 0xE0 );
  2840     // sahf
  2841     emit_opcode( cbuf, 0x9E );
  2842     // jnp  ::skip
  2843     emit_opcode( cbuf, 0x7B );
  2844     emit_opcode( cbuf, 0x05 );
  2845   %}
  2847   enc_class emitModD() %{
  2848     // fprem must be iterative
  2849     // :: loop
  2850     // fprem
  2851     emit_opcode( cbuf, 0xD9 );
  2852     emit_opcode( cbuf, 0xF8 );
  2853     // wait
  2854     emit_opcode( cbuf, 0x9b );
  2855     // fnstsw ax
  2856     emit_opcode( cbuf, 0xDF );
  2857     emit_opcode( cbuf, 0xE0 );
  2858     // sahf
  2859     emit_opcode( cbuf, 0x9E );
  2860     // jp  ::loop
  2861     emit_opcode( cbuf, 0x0F );
  2862     emit_opcode( cbuf, 0x8A );
  2863     emit_opcode( cbuf, 0xF4 );
  2864     emit_opcode( cbuf, 0xFF );
  2865     emit_opcode( cbuf, 0xFF );
  2866     emit_opcode( cbuf, 0xFF );
  2867   %}
  2869   enc_class fpu_flags() %{
  2870     // fnstsw_ax
  2871     emit_opcode( cbuf, 0xDF);
  2872     emit_opcode( cbuf, 0xE0);
  2873     // test ax,0x0400
  2874     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2875     emit_opcode( cbuf, 0xA9 );
  2876     emit_d16   ( cbuf, 0x0400 );
  2877     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2878     // // test rax,0x0400
  2879     // emit_opcode( cbuf, 0xA9 );
  2880     // emit_d32   ( cbuf, 0x00000400 );
  2881     //
  2882     // jz exit (no unordered comparison)
  2883     emit_opcode( cbuf, 0x74 );
  2884     emit_d8    ( cbuf, 0x02 );
  2885     // mov ah,1 - treat as LT case (set carry flag)
  2886     emit_opcode( cbuf, 0xB4 );
  2887     emit_d8    ( cbuf, 0x01 );
  2888     // sahf
  2889     emit_opcode( cbuf, 0x9E);
  2890   %}
  2892   enc_class cmpF_P6_fixup() %{
  2893     // Fixup the integer flags in case comparison involved a NaN
  2894     //
  2895     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2896     emit_opcode( cbuf, 0x7B );
  2897     emit_d8    ( cbuf, 0x03 );
  2898     // MOV AH,1 - treat as LT case (set carry flag)
  2899     emit_opcode( cbuf, 0xB4 );
  2900     emit_d8    ( cbuf, 0x01 );
  2901     // SAHF
  2902     emit_opcode( cbuf, 0x9E);
  2903     // NOP     // target for branch to avoid branch to branch
  2904     emit_opcode( cbuf, 0x90);
  2905   %}
  2907 //     fnstsw_ax();
  2908 //     sahf();
  2909 //     movl(dst, nan_result);
  2910 //     jcc(Assembler::parity, exit);
  2911 //     movl(dst, less_result);
  2912 //     jcc(Assembler::below, exit);
  2913 //     movl(dst, equal_result);
  2914 //     jcc(Assembler::equal, exit);
  2915 //     movl(dst, greater_result);
  2917 // less_result     =  1;
  2918 // greater_result  = -1;
  2919 // equal_result    = 0;
  2920 // nan_result      = -1;
  2922   enc_class CmpF_Result(eRegI dst) %{
  2923     // fnstsw_ax();
  2924     emit_opcode( cbuf, 0xDF);
  2925     emit_opcode( cbuf, 0xE0);
  2926     // sahf
  2927     emit_opcode( cbuf, 0x9E);
  2928     // movl(dst, nan_result);
  2929     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2930     emit_d32( cbuf, -1 );
  2931     // jcc(Assembler::parity, exit);
  2932     emit_opcode( cbuf, 0x7A );
  2933     emit_d8    ( cbuf, 0x13 );
  2934     // movl(dst, less_result);
  2935     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2936     emit_d32( cbuf, -1 );
  2937     // jcc(Assembler::below, exit);
  2938     emit_opcode( cbuf, 0x72 );
  2939     emit_d8    ( cbuf, 0x0C );
  2940     // movl(dst, equal_result);
  2941     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2942     emit_d32( cbuf, 0 );
  2943     // jcc(Assembler::equal, exit);
  2944     emit_opcode( cbuf, 0x74 );
  2945     emit_d8    ( cbuf, 0x05 );
  2946     // movl(dst, greater_result);
  2947     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2948     emit_d32( cbuf, 1 );
  2949   %}
  2952   // XMM version of CmpF_Result. Because the XMM compare
  2953   // instructions set the EFLAGS directly. It becomes simpler than
  2954   // the float version above.
  2955   enc_class CmpX_Result(eRegI dst) %{
  2956     MacroAssembler _masm(&cbuf);
  2957     Label nan, inc, done;
  2959     __ jccb(Assembler::parity, nan);
  2960     __ jccb(Assembler::equal,  done);
  2961     __ jccb(Assembler::above,  inc);
  2962     __ bind(nan);
  2963     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2964     __ jmpb(done);
  2965     __ bind(inc);
  2966     __ increment(as_Register($dst$$reg)); // NO L qqq
  2967     __ bind(done);
  2968   %}
  2970   // Compare the longs and set flags
  2971   // BROKEN!  Do Not use as-is
  2972   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2973     // CMP    $src1.hi,$src2.hi
  2974     emit_opcode( cbuf, 0x3B );
  2975     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2976     // JNE,s  done
  2977     emit_opcode(cbuf,0x75);
  2978     emit_d8(cbuf, 2 );
  2979     // CMP    $src1.lo,$src2.lo
  2980     emit_opcode( cbuf, 0x3B );
  2981     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2982 // done:
  2983   %}
  2985   enc_class convert_int_long( regL dst, eRegI src ) %{
  2986     // mov $dst.lo,$src
  2987     int dst_encoding = $dst$$reg;
  2988     int src_encoding = $src$$reg;
  2989     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2990     // mov $dst.hi,$src
  2991     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2992     // sar $dst.hi,31
  2993     emit_opcode( cbuf, 0xC1 );
  2994     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2995     emit_d8(cbuf, 0x1F );
  2996   %}
  2998   enc_class convert_long_double( eRegL src ) %{
  2999     // push $src.hi
  3000     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3001     // push $src.lo
  3002     emit_opcode(cbuf, 0x50+$src$$reg  );
  3003     // fild 64-bits at [SP]
  3004     emit_opcode(cbuf,0xdf);
  3005     emit_d8(cbuf, 0x6C);
  3006     emit_d8(cbuf, 0x24);
  3007     emit_d8(cbuf, 0x00);
  3008     // pop stack
  3009     emit_opcode(cbuf, 0x83); // add  SP, #8
  3010     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3011     emit_d8(cbuf, 0x8);
  3012   %}
  3014   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  3015     // IMUL   EDX:EAX,$src1
  3016     emit_opcode( cbuf, 0xF7 );
  3017     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  3018     // SAR    EDX,$cnt-32
  3019     int shift_count = ((int)$cnt$$constant) - 32;
  3020     if (shift_count > 0) {
  3021       emit_opcode(cbuf, 0xC1);
  3022       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3023       emit_d8(cbuf, shift_count);
  3025   %}
  3027   // this version doesn't have add sp, 8
  3028   enc_class convert_long_double2( eRegL src ) %{
  3029     // push $src.hi
  3030     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3031     // push $src.lo
  3032     emit_opcode(cbuf, 0x50+$src$$reg  );
  3033     // fild 64-bits at [SP]
  3034     emit_opcode(cbuf,0xdf);
  3035     emit_d8(cbuf, 0x6C);
  3036     emit_d8(cbuf, 0x24);
  3037     emit_d8(cbuf, 0x00);
  3038   %}
  3040   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3041     // Basic idea: long = (long)int * (long)int
  3042     // IMUL EDX:EAX, src
  3043     emit_opcode( cbuf, 0xF7 );
  3044     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3045   %}
  3047   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3048     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3049     // MUL EDX:EAX, src
  3050     emit_opcode( cbuf, 0xF7 );
  3051     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3052   %}
  3054   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3055     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3056     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3057     // MOV    $tmp,$src.lo
  3058     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3059     // IMUL   $tmp,EDX
  3060     emit_opcode( cbuf, 0x0F );
  3061     emit_opcode( cbuf, 0xAF );
  3062     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3063     // MOV    EDX,$src.hi
  3064     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3065     // IMUL   EDX,EAX
  3066     emit_opcode( cbuf, 0x0F );
  3067     emit_opcode( cbuf, 0xAF );
  3068     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3069     // ADD    $tmp,EDX
  3070     emit_opcode( cbuf, 0x03 );
  3071     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3072     // MUL   EDX:EAX,$src.lo
  3073     emit_opcode( cbuf, 0xF7 );
  3074     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3075     // ADD    EDX,ESI
  3076     emit_opcode( cbuf, 0x03 );
  3077     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3078   %}
  3080   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3081     // Basic idea: lo(result) = lo(src * y_lo)
  3082     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3083     // IMUL   $tmp,EDX,$src
  3084     emit_opcode( cbuf, 0x6B );
  3085     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3086     emit_d8( cbuf, (int)$src$$constant );
  3087     // MOV    EDX,$src
  3088     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3089     emit_d32( cbuf, (int)$src$$constant );
  3090     // MUL   EDX:EAX,EDX
  3091     emit_opcode( cbuf, 0xF7 );
  3092     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3093     // ADD    EDX,ESI
  3094     emit_opcode( cbuf, 0x03 );
  3095     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3096   %}
  3098   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3099     // PUSH src1.hi
  3100     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3101     // PUSH src1.lo
  3102     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3103     // PUSH src2.hi
  3104     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3105     // PUSH src2.lo
  3106     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3107     // CALL directly to the runtime
  3108     cbuf.set_inst_mark();
  3109     emit_opcode(cbuf,0xE8);       // Call into runtime
  3110     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3111     // Restore stack
  3112     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3113     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3114     emit_d8(cbuf, 4*4);
  3115   %}
  3117   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3118     // PUSH src1.hi
  3119     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3120     // PUSH src1.lo
  3121     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3122     // PUSH src2.hi
  3123     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3124     // PUSH src2.lo
  3125     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3126     // CALL directly to the runtime
  3127     cbuf.set_inst_mark();
  3128     emit_opcode(cbuf,0xE8);       // Call into runtime
  3129     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3130     // Restore stack
  3131     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3132     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3133     emit_d8(cbuf, 4*4);
  3134   %}
  3136   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3137     // MOV   $tmp,$src.lo
  3138     emit_opcode(cbuf, 0x8B);
  3139     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3140     // OR    $tmp,$src.hi
  3141     emit_opcode(cbuf, 0x0B);
  3142     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3143   %}
  3145   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3146     // CMP    $src1.lo,$src2.lo
  3147     emit_opcode( cbuf, 0x3B );
  3148     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3149     // JNE,s  skip
  3150     emit_cc(cbuf, 0x70, 0x5);
  3151     emit_d8(cbuf,2);
  3152     // CMP    $src1.hi,$src2.hi
  3153     emit_opcode( cbuf, 0x3B );
  3154     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3155   %}
  3157   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3158     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3159     emit_opcode( cbuf, 0x3B );
  3160     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3161     // MOV    $tmp,$src1.hi
  3162     emit_opcode( cbuf, 0x8B );
  3163     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3164     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3165     emit_opcode( cbuf, 0x1B );
  3166     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3167   %}
  3169   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3170     // XOR    $tmp,$tmp
  3171     emit_opcode(cbuf,0x33);  // XOR
  3172     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3173     // CMP    $tmp,$src.lo
  3174     emit_opcode( cbuf, 0x3B );
  3175     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3176     // SBB    $tmp,$src.hi
  3177     emit_opcode( cbuf, 0x1B );
  3178     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3179   %}
  3181  // Sniff, sniff... smells like Gnu Superoptimizer
  3182   enc_class neg_long( eRegL dst ) %{
  3183     emit_opcode(cbuf,0xF7);    // NEG hi
  3184     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3185     emit_opcode(cbuf,0xF7);    // NEG lo
  3186     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3187     emit_opcode(cbuf,0x83);    // SBB hi,0
  3188     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3189     emit_d8    (cbuf,0 );
  3190   %}
  3192   enc_class movq_ld(regXD dst, memory mem) %{
  3193     MacroAssembler _masm(&cbuf);
  3194     __ movq($dst$$XMMRegister, $mem$$Address);
  3195   %}
  3197   enc_class movq_st(memory mem, regXD src) %{
  3198     MacroAssembler _masm(&cbuf);
  3199     __ movq($mem$$Address, $src$$XMMRegister);
  3200   %}
  3202   enc_class pshufd_8x8(regX dst, regX src) %{
  3203     MacroAssembler _masm(&cbuf);
  3205     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3206     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3207     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3208   %}
  3210   enc_class pshufd_4x16(regX dst, regX src) %{
  3211     MacroAssembler _masm(&cbuf);
  3213     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3214   %}
  3216   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3217     MacroAssembler _masm(&cbuf);
  3219     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3220   %}
  3222   enc_class pxor(regXD dst, regXD src) %{
  3223     MacroAssembler _masm(&cbuf);
  3225     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3226   %}
  3228   enc_class mov_i2x(regXD dst, eRegI src) %{
  3229     MacroAssembler _masm(&cbuf);
  3231     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3232   %}
  3235   // Because the transitions from emitted code to the runtime
  3236   // monitorenter/exit helper stubs are so slow it's critical that
  3237   // we inline both the stack-locking fast-path and the inflated fast path.
  3238   //
  3239   // See also: cmpFastLock and cmpFastUnlock.
  3240   //
  3241   // What follows is a specialized inline transliteration of the code
  3242   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3243   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3244   // at startup-time.  These methods would accept arguments as
  3245   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3246   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3247   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3248   // In practice, however, the # of lock sites is bounded and is usually small.
  3249   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3250   // if the processor uses simple bimodal branch predictors keyed by EIP
  3251   // Since the helper routines would be called from multiple synchronization
  3252   // sites.
  3253   //
  3254   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3255   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3256   // to those specialized methods.  That'd give us a mostly platform-independent
  3257   // implementation that the JITs could optimize and inline at their pleasure.
  3258   // Done correctly, the only time we'd need to cross to native could would be
  3259   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3260   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3261   // (b) explicit barriers or fence operations.
  3262   //
  3263   // TODO:
  3264   //
  3265   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3266   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3267   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3268   //    the lock operators would typically be faster than reifying Self.
  3269   //
  3270   // *  Ideally I'd define the primitives as:
  3271   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3272   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3273   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3274   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3275   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3276   //    sub-optimal code near the synchronization site.
  3277   //
  3278   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3279   //    Alternately, use a better sp-proximity test.
  3280   //
  3281   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3282   //    Either one is sufficient to uniquely identify a thread.
  3283   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3284   //
  3285   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3286   //    object is locked by the calling thread but the waitlist is empty.
  3287   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3288   //
  3289   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3290   //    But beware of excessive branch density on AMD Opterons.
  3291   //
  3292   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3293   //    or failure of the fast-path.  If the fast-path fails then we pass
  3294   //    control to the slow-path, typically in C.  In Fast_Lock and
  3295   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3296   //    will emit a conditional branch immediately after the node.
  3297   //    So we have branches to branches and lots of ICC.ZF games.
  3298   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3299   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3300   //    will drop through the node.  ICC.ZF is undefined at exit.
  3301   //    In the case of failure, the node will branch directly to the
  3302   //    FailureLabel
  3305   // obj: object to lock
  3306   // box: on-stack box address (displaced header location) - KILLED
  3307   // rax,: tmp -- KILLED
  3308   // scr: tmp -- KILLED
  3309   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3311     Register objReg = as_Register($obj$$reg);
  3312     Register boxReg = as_Register($box$$reg);
  3313     Register tmpReg = as_Register($tmp$$reg);
  3314     Register scrReg = as_Register($scr$$reg);
  3316     // Ensure the register assignents are disjoint
  3317     guarantee (objReg != boxReg, "") ;
  3318     guarantee (objReg != tmpReg, "") ;
  3319     guarantee (objReg != scrReg, "") ;
  3320     guarantee (boxReg != tmpReg, "") ;
  3321     guarantee (boxReg != scrReg, "") ;
  3322     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3324     MacroAssembler masm(&cbuf);
  3326     if (_counters != NULL) {
  3327       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3329     if (EmitSync & 1) {
  3330         // set box->dhw = unused_mark (3)
  3331         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3332         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3333         masm.cmpptr (rsp, (int32_t)0) ;                        
  3334     } else 
  3335     if (EmitSync & 2) { 
  3336         Label DONE_LABEL ;           
  3337         if (UseBiasedLocking) {
  3338            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3339            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3342         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3343         masm.orptr (tmpReg, 0x1);
  3344         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3345         if (os::is_MP()) { masm.lock();  }
  3346         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3347         masm.jcc(Assembler::equal, DONE_LABEL);
  3348         // Recursive locking
  3349         masm.subptr(tmpReg, rsp);
  3350         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3351         masm.movptr(Address(boxReg, 0), tmpReg);
  3352         masm.bind(DONE_LABEL) ; 
  3353     } else {  
  3354       // Possible cases that we'll encounter in fast_lock 
  3355       // ------------------------------------------------
  3356       // * Inflated
  3357       //    -- unlocked
  3358       //    -- Locked
  3359       //       = by self
  3360       //       = by other
  3361       // * biased
  3362       //    -- by Self
  3363       //    -- by other
  3364       // * neutral
  3365       // * stack-locked
  3366       //    -- by self
  3367       //       = sp-proximity test hits
  3368       //       = sp-proximity test generates false-negative
  3369       //    -- by other
  3370       //
  3372       Label IsInflated, DONE_LABEL, PopDone ;
  3374       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3375       // order to reduce the number of conditional branches in the most common cases.
  3376       // Beware -- there's a subtle invariant that fetch of the markword
  3377       // at [FETCH], below, will never observe a biased encoding (*101b).
  3378       // If this invariant is not held we risk exclusion (safety) failure.
  3379       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3380         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3383       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3384       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3385       masm.jccb  (Assembler::notZero, IsInflated) ;
  3387       // Attempt stack-locking ...
  3388       masm.orptr (tmpReg, 0x1);
  3389       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3390       if (os::is_MP()) { masm.lock();  }
  3391       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3392       if (_counters != NULL) {
  3393         masm.cond_inc32(Assembler::equal,
  3394                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3396       masm.jccb (Assembler::equal, DONE_LABEL);
  3398       // Recursive locking
  3399       masm.subptr(tmpReg, rsp);
  3400       masm.andptr(tmpReg, 0xFFFFF003 );
  3401       masm.movptr(Address(boxReg, 0), tmpReg);
  3402       if (_counters != NULL) {
  3403         masm.cond_inc32(Assembler::equal,
  3404                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3406       masm.jmp  (DONE_LABEL) ;
  3408       masm.bind (IsInflated) ;
  3410       // The object is inflated.
  3411       //
  3412       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3413       //   Use markOopDesc::monitor_value instead of "2".
  3414       //   use markOop::unused_mark() instead of "3".
  3415       // The tmpReg value is an objectMonitor reference ORed with
  3416       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3417       // objectmonitor pointer by masking off the "2" bit or we can just
  3418       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3419       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3420       //
  3421       // I use the latter as it avoids AGI stalls.
  3422       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3423       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3424       //
  3425       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3427       // boxReg refers to the on-stack BasicLock in the current frame.
  3428       // We'd like to write:
  3429       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3430       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3431       // additional latency as we have another ST in the store buffer that must drain.
  3433       if (EmitSync & 8192) { 
  3434          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3435          masm.get_thread (scrReg) ; 
  3436          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3437          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3438          if (os::is_MP()) { masm.lock(); } 
  3439          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3440       } else 
  3441       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3442          masm.movptr(scrReg, boxReg) ; 
  3443          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3445          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3446          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3447             // prefetchw [eax + Offset(_owner)-2]
  3448             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3451          if ((EmitSync & 64) == 0) {
  3452            // Optimistic form: consider XORL tmpReg,tmpReg
  3453            masm.movptr(tmpReg, NULL_WORD) ; 
  3454          } else { 
  3455            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3456            // Test-And-CAS instead of CAS
  3457            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3458            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3459            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3462          // Appears unlocked - try to swing _owner from null to non-null.
  3463          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3464          // to CAS the register containing Self into m->Owner.
  3465          // But we don't have enough registers, so instead we can either try to CAS
  3466          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3467          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3468          // (rsp or the address of the box) into  m->owner is harmless.
  3469          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3470          if (os::is_MP()) { masm.lock();  }
  3471          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3472          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3473          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3474          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3475          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3476          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3478          // If the CAS fails we can either retry or pass control to the slow-path.  
  3479          // We use the latter tactic.  
  3480          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3481          // If the CAS was successful ...
  3482          //   Self has acquired the lock
  3483          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3484          // Intentional fall-through into DONE_LABEL ...
  3485       } else {
  3486          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3487          masm.movptr(boxReg, tmpReg) ; 
  3489          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3490          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3491             // prefetchw [eax + Offset(_owner)-2]
  3492             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3495          if ((EmitSync & 64) == 0) {
  3496            // Optimistic form
  3497            masm.xorptr  (tmpReg, tmpReg) ; 
  3498          } else { 
  3499            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3500            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3501            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3502            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3505          // Appears unlocked - try to swing _owner from null to non-null.
  3506          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3507          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3508          masm.get_thread (scrReg) ;
  3509          if (os::is_MP()) { masm.lock(); }
  3510          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3512          // If the CAS fails we can either retry or pass control to the slow-path.
  3513          // We use the latter tactic.
  3514          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3515          // If the CAS was successful ...
  3516          //   Self has acquired the lock
  3517          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3518          // Intentional fall-through into DONE_LABEL ...
  3521       // DONE_LABEL is a hot target - we'd really like to place it at the
  3522       // start of cache line by padding with NOPs.
  3523       // See the AMD and Intel software optimization manuals for the
  3524       // most efficient "long" NOP encodings.
  3525       // Unfortunately none of our alignment mechanisms suffice.
  3526       masm.bind(DONE_LABEL);
  3528       // Avoid branch-to-branch on AMD processors
  3529       // This appears to be superstition.
  3530       if (EmitSync & 32) masm.nop() ;
  3533       // At DONE_LABEL the icc ZFlag is set as follows ...
  3534       // Fast_Unlock uses the same protocol.
  3535       // ZFlag == 1 -> Success
  3536       // ZFlag == 0 -> Failure - force control through the slow-path
  3538   %}
  3540   // obj: object to unlock
  3541   // box: box address (displaced header location), killed.  Must be EAX.
  3542   // rbx,: killed tmp; cannot be obj nor box.
  3543   //
  3544   // Some commentary on balanced locking:
  3545   //
  3546   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3547   // Methods that don't have provably balanced locking are forced to run in the
  3548   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3549   // The interpreter provides two properties:
  3550   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3551   //      objects acquired the current activation (frame).  Recall that the
  3552   //      interpreter maintains an on-stack list of locks currently held by
  3553   //      a frame.
  3554   // I2:  If a method attempts to unlock an object that is not held by the
  3555   //      the frame the interpreter throws IMSX.
  3556   //
  3557   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3558   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3559   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3560   // is still locked by A().
  3561   //
  3562   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3563   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3564   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3565   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3567   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3569     Register objReg = as_Register($obj$$reg);
  3570     Register boxReg = as_Register($box$$reg);
  3571     Register tmpReg = as_Register($tmp$$reg);
  3573     guarantee (objReg != boxReg, "") ;
  3574     guarantee (objReg != tmpReg, "") ;
  3575     guarantee (boxReg != tmpReg, "") ;
  3576     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3577     MacroAssembler masm(&cbuf);
  3579     if (EmitSync & 4) {
  3580       // Disable - inhibit all inlining.  Force control through the slow-path
  3581       masm.cmpptr (rsp, 0) ; 
  3582     } else 
  3583     if (EmitSync & 8) {
  3584       Label DONE_LABEL ;
  3585       if (UseBiasedLocking) {
  3586          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3588       // classic stack-locking code ...
  3589       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3590       masm.testptr(tmpReg, tmpReg) ;
  3591       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3592       if (os::is_MP()) { masm.lock(); }
  3593       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3594       masm.bind(DONE_LABEL);
  3595     } else {
  3596       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3598       // Critically, the biased locking test must have precedence over
  3599       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3600       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3601          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3604       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3605       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3606       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3608       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3609       masm.jccb  (Assembler::zero, Stacked) ;
  3611       masm.bind  (Inflated) ;
  3612       // It's inflated.
  3613       // Despite our balanced locking property we still check that m->_owner == Self
  3614       // as java routines or native JNI code called by this thread might
  3615       // have released the lock.
  3616       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3617       // state in _succ so we can avoid fetching EntryList|cxq.
  3618       //
  3619       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3620       // such as recursive enter and exit -- but we have to be wary of
  3621       // I$ bloat, T$ effects and BP$ effects.
  3622       //
  3623       // If there's no contention try a 1-0 exit.  That is, exit without
  3624       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3625       // we detect and recover from the race that the 1-0 exit admits.
  3626       //
  3627       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3628       // before it STs null into _owner, releasing the lock.  Updates
  3629       // to data protected by the critical section must be visible before
  3630       // we drop the lock (and thus before any other thread could acquire
  3631       // the lock and observe the fields protected by the lock).
  3632       // IA32's memory-model is SPO, so STs are ordered with respect to
  3633       // each other and there's no need for an explicit barrier (fence).
  3634       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3636       masm.get_thread (boxReg) ;
  3637       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3638         // prefetchw [ebx + Offset(_owner)-2]
  3639         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3642       // Note that we could employ various encoding schemes to reduce
  3643       // the number of loads below (currently 4) to just 2 or 3.
  3644       // Refer to the comments in synchronizer.cpp.
  3645       // In practice the chain of fetches doesn't seem to impact performance, however.
  3646       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3647          // Attempt to reduce branch density - AMD's branch predictor.
  3648          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3649          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3650          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3651          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3652          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3653          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3654          masm.jmpb  (DONE_LABEL) ; 
  3655       } else { 
  3656          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3657          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3658          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3659          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3660          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3661          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3662          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3663          masm.jmpb  (DONE_LABEL) ; 
  3666       // The Following code fragment (EmitSync & 65536) improves the performance of
  3667       // contended applications and contended synchronization microbenchmarks.
  3668       // Unfortunately the emission of the code - even though not executed - causes regressions
  3669       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3670       // with an equal number of never-executed NOPs results in the same regression.
  3671       // We leave it off by default.
  3673       if ((EmitSync & 65536) != 0) {
  3674          Label LSuccess, LGoSlowPath ;
  3676          masm.bind  (CheckSucc) ;
  3678          // Optional pre-test ... it's safe to elide this
  3679          if ((EmitSync & 16) == 0) { 
  3680             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3681             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3684          // We have a classic Dekker-style idiom:
  3685          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3686          // There are a number of ways to implement the barrier:
  3687          // (1) lock:andl &m->_owner, 0
  3688          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3689          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3690          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3691          // (2) If supported, an explicit MFENCE is appealing.
  3692          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3693          //     particularly if the write-buffer is full as might be the case if
  3694          //     if stores closely precede the fence or fence-equivalent instruction.
  3695          //     In more modern implementations MFENCE appears faster, however.
  3696          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3697          //     The $lines underlying the top-of-stack should be in M-state.
  3698          //     The locked add instruction is serializing, of course.
  3699          // (4) Use xchg, which is serializing
  3700          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3701          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3702          //     The integer condition codes will tell us if succ was 0.
  3703          //     Since _succ and _owner should reside in the same $line and
  3704          //     we just stored into _owner, it's likely that the $line
  3705          //     remains in M-state for the lock:orl.
  3706          //
  3707          // We currently use (3), although it's likely that switching to (2)
  3708          // is correct for the future.
  3710          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3711          if (os::is_MP()) { 
  3712             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3713               masm.mfence();
  3714             } else { 
  3715               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3718          // Ratify _succ remains non-null
  3719          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3720          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3722          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3723          if (os::is_MP()) { masm.lock(); }
  3724          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3725          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3726          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3727          // Now install Self over rsp.  This is safe as we're transitioning from
  3728          // non-null to non=null
  3729          masm.get_thread (boxReg) ;
  3730          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3731          // Intentional fall-through into LGoSlowPath ...
  3733          masm.bind  (LGoSlowPath) ; 
  3734          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3735          masm.jmpb  (DONE_LABEL) ; 
  3737          masm.bind  (LSuccess) ; 
  3738          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3739          masm.jmpb  (DONE_LABEL) ; 
  3742       masm.bind (Stacked) ;
  3743       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3744       // It must be stack-locked.
  3745       // Try to reset the header to displaced header.
  3746       // The "box" value on the stack is stable, so we can reload
  3747       // and be assured we observe the same value as above.
  3748       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3749       if (os::is_MP()) {   masm.lock();    }
  3750       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3751       // Intention fall-thru into DONE_LABEL
  3754       // DONE_LABEL is a hot target - we'd really like to place it at the
  3755       // start of cache line by padding with NOPs.
  3756       // See the AMD and Intel software optimization manuals for the
  3757       // most efficient "long" NOP encodings.
  3758       // Unfortunately none of our alignment mechanisms suffice.
  3759       if ((EmitSync & 65536) == 0) {
  3760          masm.bind (CheckSucc) ;
  3762       masm.bind(DONE_LABEL);
  3764       // Avoid branch to branch on AMD processors
  3765       if (EmitSync & 32768) { masm.nop() ; }
  3767   %}
  3770   enc_class enc_pop_rdx() %{
  3771     emit_opcode(cbuf,0x5A);
  3772   %}
  3774   enc_class enc_rethrow() %{
  3775     cbuf.set_inst_mark();
  3776     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3777     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3778                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3779   %}
  3782   // Convert a double to an int.  Java semantics require we do complex
  3783   // manglelations in the corner cases.  So we set the rounding mode to
  3784   // 'zero', store the darned double down as an int, and reset the
  3785   // rounding mode to 'nearest'.  The hardware throws an exception which
  3786   // patches up the correct value directly to the stack.
  3787   enc_class D2I_encoding( regD src ) %{
  3788     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3789     // exceptions here, so that a NAN or other corner-case value will
  3790     // thrown an exception (but normal values get converted at full speed).
  3791     // However, I2C adapters and other float-stack manglers leave pending
  3792     // invalid-op exceptions hanging.  We would have to clear them before
  3793     // enabling them and that is more expensive than just testing for the
  3794     // invalid value Intel stores down in the corner cases.
  3795     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3796     emit_opcode(cbuf,0x2D);
  3797     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3798     // Allocate a word
  3799     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3800     emit_opcode(cbuf,0xEC);
  3801     emit_d8(cbuf,0x04);
  3802     // Encoding assumes a double has been pushed into FPR0.
  3803     // Store down the double as an int, popping the FPU stack
  3804     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3805     emit_opcode(cbuf,0x1C);
  3806     emit_d8(cbuf,0x24);
  3807     // Restore the rounding mode; mask the exception
  3808     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3809     emit_opcode(cbuf,0x2D);
  3810     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3811         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3812         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3814     // Load the converted int; adjust CPU stack
  3815     emit_opcode(cbuf,0x58);       // POP EAX
  3816     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3817     emit_d32   (cbuf,0x80000000); //         0x80000000
  3818     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3819     emit_d8    (cbuf,0x07);       // Size of slow_call
  3820     // Push src onto stack slow-path
  3821     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3822     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3823     // CALL directly to the runtime
  3824     cbuf.set_inst_mark();
  3825     emit_opcode(cbuf,0xE8);       // Call into runtime
  3826     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3827     // Carry on here...
  3828   %}
  3830   enc_class D2L_encoding( regD src ) %{
  3831     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3832     emit_opcode(cbuf,0x2D);
  3833     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3834     // Allocate a word
  3835     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3836     emit_opcode(cbuf,0xEC);
  3837     emit_d8(cbuf,0x08);
  3838     // Encoding assumes a double has been pushed into FPR0.
  3839     // Store down the double as a long, popping the FPU stack
  3840     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3841     emit_opcode(cbuf,0x3C);
  3842     emit_d8(cbuf,0x24);
  3843     // Restore the rounding mode; mask the exception
  3844     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3845     emit_opcode(cbuf,0x2D);
  3846     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3847         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3848         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3850     // Load the converted int; adjust CPU stack
  3851     emit_opcode(cbuf,0x58);       // POP EAX
  3852     emit_opcode(cbuf,0x5A);       // POP EDX
  3853     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3854     emit_d8    (cbuf,0xFA);       // rdx
  3855     emit_d32   (cbuf,0x80000000); //         0x80000000
  3856     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3857     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3858     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3859     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3860     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3861     emit_d8    (cbuf,0x07);       // Size of slow_call
  3862     // Push src onto stack slow-path
  3863     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3864     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3865     // CALL directly to the runtime
  3866     cbuf.set_inst_mark();
  3867     emit_opcode(cbuf,0xE8);       // Call into runtime
  3868     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3869     // Carry on here...
  3870   %}
  3872   enc_class X2L_encoding( regX src ) %{
  3873     // Allocate a word
  3874     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3875     emit_opcode(cbuf,0xEC);
  3876     emit_d8(cbuf,0x08);
  3878     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3879     emit_opcode  (cbuf, 0x0F );
  3880     emit_opcode  (cbuf, 0x11 );
  3881     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3883     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3884     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3886     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3887     emit_opcode(cbuf,0x2D);
  3888     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3890     // Encoding assumes a double has been pushed into FPR0.
  3891     // Store down the double as a long, popping the FPU stack
  3892     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3893     emit_opcode(cbuf,0x3C);
  3894     emit_d8(cbuf,0x24);
  3896     // Restore the rounding mode; mask the exception
  3897     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3898     emit_opcode(cbuf,0x2D);
  3899     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3900       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3901       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3903     // Load the converted int; adjust CPU stack
  3904     emit_opcode(cbuf,0x58);      // POP EAX
  3906     emit_opcode(cbuf,0x5A);      // POP EDX
  3908     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3909     emit_d8    (cbuf,0xFA);      // rdx
  3910     emit_d32   (cbuf,0x80000000);//         0x80000000
  3912     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3913     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3915     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3916     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3918     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3919     emit_d8    (cbuf,0x13);      // Size of slow_call
  3921     // Allocate a word
  3922     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3923     emit_opcode(cbuf,0xEC);
  3924     emit_d8(cbuf,0x04);
  3926     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3927     emit_opcode  (cbuf, 0x0F );
  3928     emit_opcode  (cbuf, 0x11 );
  3929     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3931     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3932     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3934     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3935     emit_opcode(cbuf,0xC4);
  3936     emit_d8(cbuf,0x04);
  3938     // CALL directly to the runtime
  3939     cbuf.set_inst_mark();
  3940     emit_opcode(cbuf,0xE8);       // Call into runtime
  3941     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3942     // Carry on here...
  3943   %}
  3945   enc_class XD2L_encoding( regXD src ) %{
  3946     // Allocate a word
  3947     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3948     emit_opcode(cbuf,0xEC);
  3949     emit_d8(cbuf,0x08);
  3951     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3952     emit_opcode  (cbuf, 0x0F );
  3953     emit_opcode  (cbuf, 0x11 );
  3954     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3956     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3957     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3959     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3960     emit_opcode(cbuf,0x2D);
  3961     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3963     // Encoding assumes a double has been pushed into FPR0.
  3964     // Store down the double as a long, popping the FPU stack
  3965     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3966     emit_opcode(cbuf,0x3C);
  3967     emit_d8(cbuf,0x24);
  3969     // Restore the rounding mode; mask the exception
  3970     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3971     emit_opcode(cbuf,0x2D);
  3972     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3973       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3974       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3976     // Load the converted int; adjust CPU stack
  3977     emit_opcode(cbuf,0x58);      // POP EAX
  3979     emit_opcode(cbuf,0x5A);      // POP EDX
  3981     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3982     emit_d8    (cbuf,0xFA);      // rdx
  3983     emit_d32   (cbuf,0x80000000); //         0x80000000
  3985     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3986     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3988     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3989     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3991     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3992     emit_d8    (cbuf,0x13);      // Size of slow_call
  3994     // Push src onto stack slow-path
  3995     // Allocate a word
  3996     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3997     emit_opcode(cbuf,0xEC);
  3998     emit_d8(cbuf,0x08);
  4000     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4001     emit_opcode  (cbuf, 0x0F );
  4002     emit_opcode  (cbuf, 0x11 );
  4003     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4005     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4006     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4008     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4009     emit_opcode(cbuf,0xC4);
  4010     emit_d8(cbuf,0x08);
  4012     // CALL directly to the runtime
  4013     cbuf.set_inst_mark();
  4014     emit_opcode(cbuf,0xE8);      // Call into runtime
  4015     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4016     // Carry on here...
  4017   %}
  4019   enc_class D2X_encoding( regX dst, regD src ) %{
  4020     // Allocate a word
  4021     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4022     emit_opcode(cbuf,0xEC);
  4023     emit_d8(cbuf,0x04);
  4024     int pop = 0x02;
  4025     if ($src$$reg != FPR1L_enc) {
  4026       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4027       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4028       pop = 0x03;
  4030     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4032     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4033     emit_opcode  (cbuf, 0x0F );
  4034     emit_opcode  (cbuf, 0x10 );
  4035     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4037     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4038     emit_opcode(cbuf,0xC4);
  4039     emit_d8(cbuf,0x04);
  4040     // Carry on here...
  4041   %}
  4043   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4044     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4046     // Compare the result to see if we need to go to the slow path
  4047     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4048     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4049     emit_d32   (cbuf,0x80000000); //         0x80000000
  4051     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4052     emit_d8    (cbuf,0x13);       // Size of slow_call
  4053     // Store xmm to a temp memory
  4054     // location and push it onto stack.
  4056     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4057     emit_opcode(cbuf,0xEC);
  4058     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4060     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4061     emit_opcode  (cbuf, 0x0F );
  4062     emit_opcode  (cbuf, 0x11 );
  4063     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4065     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4066     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4068     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4069     emit_opcode(cbuf,0xC4);
  4070     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4072     // CALL directly to the runtime
  4073     cbuf.set_inst_mark();
  4074     emit_opcode(cbuf,0xE8);       // Call into runtime
  4075     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4077     // Carry on here...
  4078   %}
  4080   enc_class X2D_encoding( regD dst, regX src ) %{
  4081     // Allocate a word
  4082     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4083     emit_opcode(cbuf,0xEC);
  4084     emit_d8(cbuf,0x04);
  4086     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4087     emit_opcode  (cbuf, 0x0F );
  4088     emit_opcode  (cbuf, 0x11 );
  4089     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4091     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4092     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4094     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4095     emit_opcode(cbuf,0xC4);
  4096     emit_d8(cbuf,0x04);
  4098     // Carry on here...
  4099   %}
  4101   enc_class AbsXF_encoding(regX dst) %{
  4102     address signmask_address=(address)float_signmask_pool;
  4103     // andpd:\tANDPS  $dst,[signconst]
  4104     emit_opcode(cbuf, 0x0F);
  4105     emit_opcode(cbuf, 0x54);
  4106     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4107     emit_d32(cbuf, (int)signmask_address);
  4108   %}
  4110   enc_class AbsXD_encoding(regXD dst) %{
  4111     address signmask_address=(address)double_signmask_pool;
  4112     // andpd:\tANDPD  $dst,[signconst]
  4113     emit_opcode(cbuf, 0x66);
  4114     emit_opcode(cbuf, 0x0F);
  4115     emit_opcode(cbuf, 0x54);
  4116     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4117     emit_d32(cbuf, (int)signmask_address);
  4118   %}
  4120   enc_class NegXF_encoding(regX dst) %{
  4121     address signmask_address=(address)float_signflip_pool;
  4122     // andpd:\tXORPS  $dst,[signconst]
  4123     emit_opcode(cbuf, 0x0F);
  4124     emit_opcode(cbuf, 0x57);
  4125     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4126     emit_d32(cbuf, (int)signmask_address);
  4127   %}
  4129   enc_class NegXD_encoding(regXD dst) %{
  4130     address signmask_address=(address)double_signflip_pool;
  4131     // andpd:\tXORPD  $dst,[signconst]
  4132     emit_opcode(cbuf, 0x66);
  4133     emit_opcode(cbuf, 0x0F);
  4134     emit_opcode(cbuf, 0x57);
  4135     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4136     emit_d32(cbuf, (int)signmask_address);
  4137   %}
  4139   enc_class FMul_ST_reg( eRegF src1 ) %{
  4140     // Operand was loaded from memory into fp ST (stack top)
  4141     // FMUL   ST,$src  /* D8 C8+i */
  4142     emit_opcode(cbuf, 0xD8);
  4143     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4144   %}
  4146   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4147     // FADDP  ST,src2  /* D8 C0+i */
  4148     emit_opcode(cbuf, 0xD8);
  4149     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4150     //could use FADDP  src2,fpST  /* DE C0+i */
  4151   %}
  4153   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4154     // FADDP  src2,ST  /* DE C0+i */
  4155     emit_opcode(cbuf, 0xDE);
  4156     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4157   %}
  4159   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4160     // Operand has been loaded into fp ST (stack top)
  4161       // FSUB   ST,$src1
  4162       emit_opcode(cbuf, 0xD8);
  4163       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4165       // FDIV
  4166       emit_opcode(cbuf, 0xD8);
  4167       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4168   %}
  4170   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4171     // Operand was loaded from memory into fp ST (stack top)
  4172     // FADD   ST,$src  /* D8 C0+i */
  4173     emit_opcode(cbuf, 0xD8);
  4174     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4176     // FMUL  ST,src2  /* D8 C*+i */
  4177     emit_opcode(cbuf, 0xD8);
  4178     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4179   %}
  4182   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4183     // Operand was loaded from memory into fp ST (stack top)
  4184     // FADD   ST,$src  /* D8 C0+i */
  4185     emit_opcode(cbuf, 0xD8);
  4186     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4188     // FMULP  src2,ST  /* DE C8+i */
  4189     emit_opcode(cbuf, 0xDE);
  4190     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4191   %}
  4193   // Atomically load the volatile long
  4194   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4195     emit_opcode(cbuf,0xDF);
  4196     int rm_byte_opcode = 0x05;
  4197     int base     = $mem$$base;
  4198     int index    = $mem$$index;
  4199     int scale    = $mem$$scale;
  4200     int displace = $mem$$disp;
  4201     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4202     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4203     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4204   %}
  4206   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4207     { // Atomic long load
  4208       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4209       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4210       emit_opcode(cbuf,0x0F);
  4211       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4212       int base     = $mem$$base;
  4213       int index    = $mem$$index;
  4214       int scale    = $mem$$scale;
  4215       int displace = $mem$$disp;
  4216       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4217       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4219     { // MOVSD $dst,$tmp ! atomic long store
  4220       emit_opcode(cbuf,0xF2);
  4221       emit_opcode(cbuf,0x0F);
  4222       emit_opcode(cbuf,0x11);
  4223       int base     = $dst$$base;
  4224       int index    = $dst$$index;
  4225       int scale    = $dst$$scale;
  4226       int displace = $dst$$disp;
  4227       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4228       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4230   %}
  4232   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4233     { // Atomic long load
  4234       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4235       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4236       emit_opcode(cbuf,0x0F);
  4237       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4238       int base     = $mem$$base;
  4239       int index    = $mem$$index;
  4240       int scale    = $mem$$scale;
  4241       int displace = $mem$$disp;
  4242       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4243       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4245     { // MOVD $dst.lo,$tmp
  4246       emit_opcode(cbuf,0x66);
  4247       emit_opcode(cbuf,0x0F);
  4248       emit_opcode(cbuf,0x7E);
  4249       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4251     { // PSRLQ $tmp,32
  4252       emit_opcode(cbuf,0x66);
  4253       emit_opcode(cbuf,0x0F);
  4254       emit_opcode(cbuf,0x73);
  4255       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4256       emit_d8(cbuf, 0x20);
  4258     { // MOVD $dst.hi,$tmp
  4259       emit_opcode(cbuf,0x66);
  4260       emit_opcode(cbuf,0x0F);
  4261       emit_opcode(cbuf,0x7E);
  4262       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4264   %}
  4266   // Volatile Store Long.  Must be atomic, so move it into
  4267   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4268   // target address before the store (for null-ptr checks)
  4269   // so the memory operand is used twice in the encoding.
  4270   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4271     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4272     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4273     emit_opcode(cbuf,0xDF);
  4274     int rm_byte_opcode = 0x07;
  4275     int base     = $mem$$base;
  4276     int index    = $mem$$index;
  4277     int scale    = $mem$$scale;
  4278     int displace = $mem$$disp;
  4279     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4280     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4281   %}
  4283   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4284     { // Atomic long load
  4285       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4286       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4287       emit_opcode(cbuf,0x0F);
  4288       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4289       int base     = $src$$base;
  4290       int index    = $src$$index;
  4291       int scale    = $src$$scale;
  4292       int displace = $src$$disp;
  4293       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4294       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4296     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4297     { // MOVSD $mem,$tmp ! atomic long store
  4298       emit_opcode(cbuf,0xF2);
  4299       emit_opcode(cbuf,0x0F);
  4300       emit_opcode(cbuf,0x11);
  4301       int base     = $mem$$base;
  4302       int index    = $mem$$index;
  4303       int scale    = $mem$$scale;
  4304       int displace = $mem$$disp;
  4305       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4306       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4308   %}
  4310   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4311     { // MOVD $tmp,$src.lo
  4312       emit_opcode(cbuf,0x66);
  4313       emit_opcode(cbuf,0x0F);
  4314       emit_opcode(cbuf,0x6E);
  4315       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4317     { // MOVD $tmp2,$src.hi
  4318       emit_opcode(cbuf,0x66);
  4319       emit_opcode(cbuf,0x0F);
  4320       emit_opcode(cbuf,0x6E);
  4321       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4323     { // PUNPCKLDQ $tmp,$tmp2
  4324       emit_opcode(cbuf,0x66);
  4325       emit_opcode(cbuf,0x0F);
  4326       emit_opcode(cbuf,0x62);
  4327       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4329     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4330     { // MOVSD $mem,$tmp ! atomic long store
  4331       emit_opcode(cbuf,0xF2);
  4332       emit_opcode(cbuf,0x0F);
  4333       emit_opcode(cbuf,0x11);
  4334       int base     = $mem$$base;
  4335       int index    = $mem$$index;
  4336       int scale    = $mem$$scale;
  4337       int displace = $mem$$disp;
  4338       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4339       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4341   %}
  4343   // Safepoint Poll.  This polls the safepoint page, and causes an
  4344   // exception if it is not readable. Unfortunately, it kills the condition code
  4345   // in the process
  4346   // We current use TESTL [spp],EDI
  4347   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4349   enc_class Safepoint_Poll() %{
  4350     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4351     emit_opcode(cbuf,0x85);
  4352     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4353     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4354   %}
  4355 %}
  4358 //----------FRAME--------------------------------------------------------------
  4359 // Definition of frame structure and management information.
  4360 //
  4361 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4362 //                             |   (to get allocators register number
  4363 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4364 //  r   CALLER     |        |
  4365 //  o     |        +--------+      pad to even-align allocators stack-slot
  4366 //  w     V        |  pad0  |        numbers; owned by CALLER
  4367 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4368 //  h     ^        |   in   |  5
  4369 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4370 //  |     |        |        |  3
  4371 //  |     |        +--------+
  4372 //  V     |        | old out|      Empty on Intel, window on Sparc
  4373 //        |    old |preserve|      Must be even aligned.
  4374 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4375 //        |        |   in   |  3   area for Intel ret address
  4376 //     Owned by    |preserve|      Empty on Sparc.
  4377 //       SELF      +--------+
  4378 //        |        |  pad2  |  2   pad to align old SP
  4379 //        |        +--------+  1
  4380 //        |        | locks  |  0
  4381 //        |        +--------+----> OptoReg::stack0(), even aligned
  4382 //        |        |  pad1  | 11   pad to align new SP
  4383 //        |        +--------+
  4384 //        |        |        | 10
  4385 //        |        | spills |  9   spills
  4386 //        V        |        |  8   (pad0 slot for callee)
  4387 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4388 //        ^        |  out   |  7
  4389 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4390 //     Owned by    +--------+
  4391 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4392 //        |    new |preserve|      Must be even-aligned.
  4393 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4394 //        |        |        |
  4395 //
  4396 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4397 //         known from SELF's arguments and the Java calling convention.
  4398 //         Region 6-7 is determined per call site.
  4399 // Note 2: If the calling convention leaves holes in the incoming argument
  4400 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4401 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4402 //         incoming area, as the Java calling convention is completely under
  4403 //         the control of the AD file.  Doubles can be sorted and packed to
  4404 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4405 //         varargs C calling conventions.
  4406 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4407 //         even aligned with pad0 as needed.
  4408 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4409 //         region 6-11 is even aligned; it may be padded out more so that
  4410 //         the region from SP to FP meets the minimum stack alignment.
  4412 frame %{
  4413   // What direction does stack grow in (assumed to be same for C & Java)
  4414   stack_direction(TOWARDS_LOW);
  4416   // These three registers define part of the calling convention
  4417   // between compiled code and the interpreter.
  4418   inline_cache_reg(EAX);                // Inline Cache Register
  4419   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4421   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4422   cisc_spilling_operand_name(indOffset32);
  4424   // Number of stack slots consumed by locking an object
  4425   sync_stack_slots(1);
  4427   // Compiled code's Frame Pointer
  4428   frame_pointer(ESP);
  4429   // Interpreter stores its frame pointer in a register which is
  4430   // stored to the stack by I2CAdaptors.
  4431   // I2CAdaptors convert from interpreted java to compiled java.
  4432   interpreter_frame_pointer(EBP);
  4434   // Stack alignment requirement
  4435   // Alignment size in bytes (128-bit -> 16 bytes)
  4436   stack_alignment(StackAlignmentInBytes);
  4438   // Number of stack slots between incoming argument block and the start of
  4439   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4440   // EPILOG must remove this many slots.  Intel needs one slot for
  4441   // return address and one for rbp, (must save rbp)
  4442   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4444   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4445   // for calls to C.  Supports the var-args backing area for register parms.
  4446   varargs_C_out_slots_killed(0);
  4448   // The after-PROLOG location of the return address.  Location of
  4449   // return address specifies a type (REG or STACK) and a number
  4450   // representing the register number (i.e. - use a register name) or
  4451   // stack slot.
  4452   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4453   // Otherwise, it is above the locks and verification slot and alignment word
  4454   return_addr(STACK - 1 +
  4455               round_to(1+VerifyStackAtCalls+
  4456               Compile::current()->fixed_slots(),
  4457               (StackAlignmentInBytes/wordSize)));
  4459   // Body of function which returns an integer array locating
  4460   // arguments either in registers or in stack slots.  Passed an array
  4461   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4462   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4463   // arguments for a CALLEE.  Incoming stack arguments are
  4464   // automatically biased by the preserve_stack_slots field above.
  4465   calling_convention %{
  4466     // No difference between ingoing/outgoing just pass false
  4467     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4468   %}
  4471   // Body of function which returns an integer array locating
  4472   // arguments either in registers or in stack slots.  Passed an array
  4473   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4474   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4475   // arguments for a CALLEE.  Incoming stack arguments are
  4476   // automatically biased by the preserve_stack_slots field above.
  4477   c_calling_convention %{
  4478     // This is obviously always outgoing
  4479     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4480   %}
  4482   // Location of C & interpreter return values
  4483   c_return_value %{
  4484     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4485     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4486     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4488     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4489     // that C functions return float and double results in XMM0.
  4490     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4491       return OptoRegPair(XMM0b_num,XMM0a_num);
  4492     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4493       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4495     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4496   %}
  4498   // Location of return values
  4499   return_value %{
  4500     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4501     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4502     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4503     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4504       return OptoRegPair(XMM0b_num,XMM0a_num);
  4505     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4506       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4507     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4508   %}
  4510 %}
  4512 //----------ATTRIBUTES---------------------------------------------------------
  4513 //----------Operand Attributes-------------------------------------------------
  4514 op_attrib op_cost(0);        // Required cost attribute
  4516 //----------Instruction Attributes---------------------------------------------
  4517 ins_attrib ins_cost(100);       // Required cost attribute
  4518 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4519 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4520 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4521                                 // non-matching short branch variant of some
  4522                                                             // long branch?
  4523 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4524                                 // specifies the alignment that some part of the instruction (not
  4525                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4526                                 // function must be provided for the instruction
  4528 //----------OPERANDS-----------------------------------------------------------
  4529 // Operand definitions must precede instruction definitions for correct parsing
  4530 // in the ADLC because operands constitute user defined types which are used in
  4531 // instruction definitions.
  4533 //----------Simple Operands----------------------------------------------------
  4534 // Immediate Operands
  4535 // Integer Immediate
  4536 operand immI() %{
  4537   match(ConI);
  4539   op_cost(10);
  4540   format %{ %}
  4541   interface(CONST_INTER);
  4542 %}
  4544 // Constant for test vs zero
  4545 operand immI0() %{
  4546   predicate(n->get_int() == 0);
  4547   match(ConI);
  4549   op_cost(0);
  4550   format %{ %}
  4551   interface(CONST_INTER);
  4552 %}
  4554 // Constant for increment
  4555 operand immI1() %{
  4556   predicate(n->get_int() == 1);
  4557   match(ConI);
  4559   op_cost(0);
  4560   format %{ %}
  4561   interface(CONST_INTER);
  4562 %}
  4564 // Constant for decrement
  4565 operand immI_M1() %{
  4566   predicate(n->get_int() == -1);
  4567   match(ConI);
  4569   op_cost(0);
  4570   format %{ %}
  4571   interface(CONST_INTER);
  4572 %}
  4574 // Valid scale values for addressing modes
  4575 operand immI2() %{
  4576   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4577   match(ConI);
  4579   format %{ %}
  4580   interface(CONST_INTER);
  4581 %}
  4583 operand immI8() %{
  4584   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4585   match(ConI);
  4587   op_cost(5);
  4588   format %{ %}
  4589   interface(CONST_INTER);
  4590 %}
  4592 operand immI16() %{
  4593   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4594   match(ConI);
  4596   op_cost(10);
  4597   format %{ %}
  4598   interface(CONST_INTER);
  4599 %}
  4601 // Constant for long shifts
  4602 operand immI_32() %{
  4603   predicate( n->get_int() == 32 );
  4604   match(ConI);
  4606   op_cost(0);
  4607   format %{ %}
  4608   interface(CONST_INTER);
  4609 %}
  4611 operand immI_1_31() %{
  4612   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4613   match(ConI);
  4615   op_cost(0);
  4616   format %{ %}
  4617   interface(CONST_INTER);
  4618 %}
  4620 operand immI_32_63() %{
  4621   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4622   match(ConI);
  4623   op_cost(0);
  4625   format %{ %}
  4626   interface(CONST_INTER);
  4627 %}
  4629 operand immI_1() %{
  4630   predicate( n->get_int() == 1 );
  4631   match(ConI);
  4633   op_cost(0);
  4634   format %{ %}
  4635   interface(CONST_INTER);
  4636 %}
  4638 operand immI_2() %{
  4639   predicate( n->get_int() == 2 );
  4640   match(ConI);
  4642   op_cost(0);
  4643   format %{ %}
  4644   interface(CONST_INTER);
  4645 %}
  4647 operand immI_3() %{
  4648   predicate( n->get_int() == 3 );
  4649   match(ConI);
  4651   op_cost(0);
  4652   format %{ %}
  4653   interface(CONST_INTER);
  4654 %}
  4656 // Pointer Immediate
  4657 operand immP() %{
  4658   match(ConP);
  4660   op_cost(10);
  4661   format %{ %}
  4662   interface(CONST_INTER);
  4663 %}
  4665 // NULL Pointer Immediate
  4666 operand immP0() %{
  4667   predicate( n->get_ptr() == 0 );
  4668   match(ConP);
  4669   op_cost(0);
  4671   format %{ %}
  4672   interface(CONST_INTER);
  4673 %}
  4675 // Long Immediate
  4676 operand immL() %{
  4677   match(ConL);
  4679   op_cost(20);
  4680   format %{ %}
  4681   interface(CONST_INTER);
  4682 %}
  4684 // Long Immediate zero
  4685 operand immL0() %{
  4686   predicate( n->get_long() == 0L );
  4687   match(ConL);
  4688   op_cost(0);
  4690   format %{ %}
  4691   interface(CONST_INTER);
  4692 %}
  4694 // Long Immediate zero
  4695 operand immL_M1() %{
  4696   predicate( n->get_long() == -1L );
  4697   match(ConL);
  4698   op_cost(0);
  4700   format %{ %}
  4701   interface(CONST_INTER);
  4702 %}
  4704 // Long immediate from 0 to 127.
  4705 // Used for a shorter form of long mul by 10.
  4706 operand immL_127() %{
  4707   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4708   match(ConL);
  4709   op_cost(0);
  4711   format %{ %}
  4712   interface(CONST_INTER);
  4713 %}
  4715 // Long Immediate: low 32-bit mask
  4716 operand immL_32bits() %{
  4717   predicate(n->get_long() == 0xFFFFFFFFL);
  4718   match(ConL);
  4719   op_cost(0);
  4721   format %{ %}
  4722   interface(CONST_INTER);
  4723 %}
  4725 // Long Immediate: low 32-bit mask
  4726 operand immL32() %{
  4727   predicate(n->get_long() == (int)(n->get_long()));
  4728   match(ConL);
  4729   op_cost(20);
  4731   format %{ %}
  4732   interface(CONST_INTER);
  4733 %}
  4735 //Double Immediate zero
  4736 operand immD0() %{
  4737   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4738   // bug that generates code such that NaNs compare equal to 0.0
  4739   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4740   match(ConD);
  4742   op_cost(5);
  4743   format %{ %}
  4744   interface(CONST_INTER);
  4745 %}
  4747 // Double Immediate
  4748 operand immD1() %{
  4749   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4750   match(ConD);
  4752   op_cost(5);
  4753   format %{ %}
  4754   interface(CONST_INTER);
  4755 %}
  4757 // Double Immediate
  4758 operand immD() %{
  4759   predicate(UseSSE<=1);
  4760   match(ConD);
  4762   op_cost(5);
  4763   format %{ %}
  4764   interface(CONST_INTER);
  4765 %}
  4767 operand immXD() %{
  4768   predicate(UseSSE>=2);
  4769   match(ConD);
  4771   op_cost(5);
  4772   format %{ %}
  4773   interface(CONST_INTER);
  4774 %}
  4776 // Double Immediate zero
  4777 operand immXD0() %{
  4778   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4779   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4780   // compare equal to -0.0.
  4781   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4782   match(ConD);
  4784   format %{ %}
  4785   interface(CONST_INTER);
  4786 %}
  4788 // Float Immediate zero
  4789 operand immF0() %{
  4790   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4791   match(ConF);
  4793   op_cost(5);
  4794   format %{ %}
  4795   interface(CONST_INTER);
  4796 %}
  4798 // Float Immediate
  4799 operand immF() %{
  4800   predicate( UseSSE == 0 );
  4801   match(ConF);
  4803   op_cost(5);
  4804   format %{ %}
  4805   interface(CONST_INTER);
  4806 %}
  4808 // Float Immediate
  4809 operand immXF() %{
  4810   predicate(UseSSE >= 1);
  4811   match(ConF);
  4813   op_cost(5);
  4814   format %{ %}
  4815   interface(CONST_INTER);
  4816 %}
  4818 // Float Immediate zero.  Zero and not -0.0
  4819 operand immXF0() %{
  4820   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4821   match(ConF);
  4823   op_cost(5);
  4824   format %{ %}
  4825   interface(CONST_INTER);
  4826 %}
  4828 // Immediates for special shifts (sign extend)
  4830 // Constants for increment
  4831 operand immI_16() %{
  4832   predicate( n->get_int() == 16 );
  4833   match(ConI);
  4835   format %{ %}
  4836   interface(CONST_INTER);
  4837 %}
  4839 operand immI_24() %{
  4840   predicate( n->get_int() == 24 );
  4841   match(ConI);
  4843   format %{ %}
  4844   interface(CONST_INTER);
  4845 %}
  4847 // Constant for byte-wide masking
  4848 operand immI_255() %{
  4849   predicate( n->get_int() == 255 );
  4850   match(ConI);
  4852   format %{ %}
  4853   interface(CONST_INTER);
  4854 %}
  4856 // Constant for short-wide masking
  4857 operand immI_65535() %{
  4858   predicate(n->get_int() == 65535);
  4859   match(ConI);
  4861   format %{ %}
  4862   interface(CONST_INTER);
  4863 %}
  4865 // Register Operands
  4866 // Integer Register
  4867 operand eRegI() %{
  4868   constraint(ALLOC_IN_RC(e_reg));
  4869   match(RegI);
  4870   match(xRegI);
  4871   match(eAXRegI);
  4872   match(eBXRegI);
  4873   match(eCXRegI);
  4874   match(eDXRegI);
  4875   match(eDIRegI);
  4876   match(eSIRegI);
  4878   format %{ %}
  4879   interface(REG_INTER);
  4880 %}
  4882 // Subset of Integer Register
  4883 operand xRegI(eRegI reg) %{
  4884   constraint(ALLOC_IN_RC(x_reg));
  4885   match(reg);
  4886   match(eAXRegI);
  4887   match(eBXRegI);
  4888   match(eCXRegI);
  4889   match(eDXRegI);
  4891   format %{ %}
  4892   interface(REG_INTER);
  4893 %}
  4895 // Special Registers
  4896 operand eAXRegI(xRegI reg) %{
  4897   constraint(ALLOC_IN_RC(eax_reg));
  4898   match(reg);
  4899   match(eRegI);
  4901   format %{ "EAX" %}
  4902   interface(REG_INTER);
  4903 %}
  4905 // Special Registers
  4906 operand eBXRegI(xRegI reg) %{
  4907   constraint(ALLOC_IN_RC(ebx_reg));
  4908   match(reg);
  4909   match(eRegI);
  4911   format %{ "EBX" %}
  4912   interface(REG_INTER);
  4913 %}
  4915 operand eCXRegI(xRegI reg) %{
  4916   constraint(ALLOC_IN_RC(ecx_reg));
  4917   match(reg);
  4918   match(eRegI);
  4920   format %{ "ECX" %}
  4921   interface(REG_INTER);
  4922 %}
  4924 operand eDXRegI(xRegI reg) %{
  4925   constraint(ALLOC_IN_RC(edx_reg));
  4926   match(reg);
  4927   match(eRegI);
  4929   format %{ "EDX" %}
  4930   interface(REG_INTER);
  4931 %}
  4933 operand eDIRegI(xRegI reg) %{
  4934   constraint(ALLOC_IN_RC(edi_reg));
  4935   match(reg);
  4936   match(eRegI);
  4938   format %{ "EDI" %}
  4939   interface(REG_INTER);
  4940 %}
  4942 operand naxRegI() %{
  4943   constraint(ALLOC_IN_RC(nax_reg));
  4944   match(RegI);
  4945   match(eCXRegI);
  4946   match(eDXRegI);
  4947   match(eSIRegI);
  4948   match(eDIRegI);
  4950   format %{ %}
  4951   interface(REG_INTER);
  4952 %}
  4954 operand nadxRegI() %{
  4955   constraint(ALLOC_IN_RC(nadx_reg));
  4956   match(RegI);
  4957   match(eBXRegI);
  4958   match(eCXRegI);
  4959   match(eSIRegI);
  4960   match(eDIRegI);
  4962   format %{ %}
  4963   interface(REG_INTER);
  4964 %}
  4966 operand ncxRegI() %{
  4967   constraint(ALLOC_IN_RC(ncx_reg));
  4968   match(RegI);
  4969   match(eAXRegI);
  4970   match(eDXRegI);
  4971   match(eSIRegI);
  4972   match(eDIRegI);
  4974   format %{ %}
  4975   interface(REG_INTER);
  4976 %}
  4978 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4979 // //
  4980 operand eSIRegI(xRegI reg) %{
  4981    constraint(ALLOC_IN_RC(esi_reg));
  4982    match(reg);
  4983    match(eRegI);
  4985    format %{ "ESI" %}
  4986    interface(REG_INTER);
  4987 %}
  4989 // Pointer Register
  4990 operand anyRegP() %{
  4991   constraint(ALLOC_IN_RC(any_reg));
  4992   match(RegP);
  4993   match(eAXRegP);
  4994   match(eBXRegP);
  4995   match(eCXRegP);
  4996   match(eDIRegP);
  4997   match(eRegP);
  4999   format %{ %}
  5000   interface(REG_INTER);
  5001 %}
  5003 operand eRegP() %{
  5004   constraint(ALLOC_IN_RC(e_reg));
  5005   match(RegP);
  5006   match(eAXRegP);
  5007   match(eBXRegP);
  5008   match(eCXRegP);
  5009   match(eDIRegP);
  5011   format %{ %}
  5012   interface(REG_INTER);
  5013 %}
  5015 // On windows95, EBP is not safe to use for implicit null tests.
  5016 operand eRegP_no_EBP() %{
  5017   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5018   match(RegP);
  5019   match(eAXRegP);
  5020   match(eBXRegP);
  5021   match(eCXRegP);
  5022   match(eDIRegP);
  5024   op_cost(100);
  5025   format %{ %}
  5026   interface(REG_INTER);
  5027 %}
  5029 operand naxRegP() %{
  5030   constraint(ALLOC_IN_RC(nax_reg));
  5031   match(RegP);
  5032   match(eBXRegP);
  5033   match(eDXRegP);
  5034   match(eCXRegP);
  5035   match(eSIRegP);
  5036   match(eDIRegP);
  5038   format %{ %}
  5039   interface(REG_INTER);
  5040 %}
  5042 operand nabxRegP() %{
  5043   constraint(ALLOC_IN_RC(nabx_reg));
  5044   match(RegP);
  5045   match(eCXRegP);
  5046   match(eDXRegP);
  5047   match(eSIRegP);
  5048   match(eDIRegP);
  5050   format %{ %}
  5051   interface(REG_INTER);
  5052 %}
  5054 operand pRegP() %{
  5055   constraint(ALLOC_IN_RC(p_reg));
  5056   match(RegP);
  5057   match(eBXRegP);
  5058   match(eDXRegP);
  5059   match(eSIRegP);
  5060   match(eDIRegP);
  5062   format %{ %}
  5063   interface(REG_INTER);
  5064 %}
  5066 // Special Registers
  5067 // Return a pointer value
  5068 operand eAXRegP(eRegP reg) %{
  5069   constraint(ALLOC_IN_RC(eax_reg));
  5070   match(reg);
  5071   format %{ "EAX" %}
  5072   interface(REG_INTER);
  5073 %}
  5075 // Used in AtomicAdd
  5076 operand eBXRegP(eRegP reg) %{
  5077   constraint(ALLOC_IN_RC(ebx_reg));
  5078   match(reg);
  5079   format %{ "EBX" %}
  5080   interface(REG_INTER);
  5081 %}
  5083 // Tail-call (interprocedural jump) to interpreter
  5084 operand eCXRegP(eRegP reg) %{
  5085   constraint(ALLOC_IN_RC(ecx_reg));
  5086   match(reg);
  5087   format %{ "ECX" %}
  5088   interface(REG_INTER);
  5089 %}
  5091 operand eSIRegP(eRegP reg) %{
  5092   constraint(ALLOC_IN_RC(esi_reg));
  5093   match(reg);
  5094   format %{ "ESI" %}
  5095   interface(REG_INTER);
  5096 %}
  5098 // Used in rep stosw
  5099 operand eDIRegP(eRegP reg) %{
  5100   constraint(ALLOC_IN_RC(edi_reg));
  5101   match(reg);
  5102   format %{ "EDI" %}
  5103   interface(REG_INTER);
  5104 %}
  5106 operand eBPRegP() %{
  5107   constraint(ALLOC_IN_RC(ebp_reg));
  5108   match(RegP);
  5109   format %{ "EBP" %}
  5110   interface(REG_INTER);
  5111 %}
  5113 operand eRegL() %{
  5114   constraint(ALLOC_IN_RC(long_reg));
  5115   match(RegL);
  5116   match(eADXRegL);
  5118   format %{ %}
  5119   interface(REG_INTER);
  5120 %}
  5122 operand eADXRegL( eRegL reg ) %{
  5123   constraint(ALLOC_IN_RC(eadx_reg));
  5124   match(reg);
  5126   format %{ "EDX:EAX" %}
  5127   interface(REG_INTER);
  5128 %}
  5130 operand eBCXRegL( eRegL reg ) %{
  5131   constraint(ALLOC_IN_RC(ebcx_reg));
  5132   match(reg);
  5134   format %{ "EBX:ECX" %}
  5135   interface(REG_INTER);
  5136 %}
  5138 // Special case for integer high multiply
  5139 operand eADXRegL_low_only() %{
  5140   constraint(ALLOC_IN_RC(eadx_reg));
  5141   match(RegL);
  5143   format %{ "EAX" %}
  5144   interface(REG_INTER);
  5145 %}
  5147 // Flags register, used as output of compare instructions
  5148 operand eFlagsReg() %{
  5149   constraint(ALLOC_IN_RC(int_flags));
  5150   match(RegFlags);
  5152   format %{ "EFLAGS" %}
  5153   interface(REG_INTER);
  5154 %}
  5156 // Flags register, used as output of FLOATING POINT compare instructions
  5157 operand eFlagsRegU() %{
  5158   constraint(ALLOC_IN_RC(int_flags));
  5159   match(RegFlags);
  5161   format %{ "EFLAGS_U" %}
  5162   interface(REG_INTER);
  5163 %}
  5165 operand eFlagsRegUCF() %{
  5166   constraint(ALLOC_IN_RC(int_flags));
  5167   match(RegFlags);
  5168   predicate(false);
  5170   format %{ "EFLAGS_U_CF" %}
  5171   interface(REG_INTER);
  5172 %}
  5174 // Condition Code Register used by long compare
  5175 operand flagsReg_long_LTGE() %{
  5176   constraint(ALLOC_IN_RC(int_flags));
  5177   match(RegFlags);
  5178   format %{ "FLAGS_LTGE" %}
  5179   interface(REG_INTER);
  5180 %}
  5181 operand flagsReg_long_EQNE() %{
  5182   constraint(ALLOC_IN_RC(int_flags));
  5183   match(RegFlags);
  5184   format %{ "FLAGS_EQNE" %}
  5185   interface(REG_INTER);
  5186 %}
  5187 operand flagsReg_long_LEGT() %{
  5188   constraint(ALLOC_IN_RC(int_flags));
  5189   match(RegFlags);
  5190   format %{ "FLAGS_LEGT" %}
  5191   interface(REG_INTER);
  5192 %}
  5194 // Float register operands
  5195 operand regD() %{
  5196   predicate( UseSSE < 2 );
  5197   constraint(ALLOC_IN_RC(dbl_reg));
  5198   match(RegD);
  5199   match(regDPR1);
  5200   match(regDPR2);
  5201   format %{ %}
  5202   interface(REG_INTER);
  5203 %}
  5205 operand regDPR1(regD reg) %{
  5206   predicate( UseSSE < 2 );
  5207   constraint(ALLOC_IN_RC(dbl_reg0));
  5208   match(reg);
  5209   format %{ "FPR1" %}
  5210   interface(REG_INTER);
  5211 %}
  5213 operand regDPR2(regD reg) %{
  5214   predicate( UseSSE < 2 );
  5215   constraint(ALLOC_IN_RC(dbl_reg1));
  5216   match(reg);
  5217   format %{ "FPR2" %}
  5218   interface(REG_INTER);
  5219 %}
  5221 operand regnotDPR1(regD reg) %{
  5222   predicate( UseSSE < 2 );
  5223   constraint(ALLOC_IN_RC(dbl_notreg0));
  5224   match(reg);
  5225   format %{ %}
  5226   interface(REG_INTER);
  5227 %}
  5229 // XMM Double register operands
  5230 operand regXD() %{
  5231   predicate( UseSSE>=2 );
  5232   constraint(ALLOC_IN_RC(xdb_reg));
  5233   match(RegD);
  5234   match(regXD6);
  5235   match(regXD7);
  5236   format %{ %}
  5237   interface(REG_INTER);
  5238 %}
  5240 // XMM6 double register operands
  5241 operand regXD6(regXD reg) %{
  5242   predicate( UseSSE>=2 );
  5243   constraint(ALLOC_IN_RC(xdb_reg6));
  5244   match(reg);
  5245   format %{ "XMM6" %}
  5246   interface(REG_INTER);
  5247 %}
  5249 // XMM7 double register operands
  5250 operand regXD7(regXD reg) %{
  5251   predicate( UseSSE>=2 );
  5252   constraint(ALLOC_IN_RC(xdb_reg7));
  5253   match(reg);
  5254   format %{ "XMM7" %}
  5255   interface(REG_INTER);
  5256 %}
  5258 // Float register operands
  5259 operand regF() %{
  5260   predicate( UseSSE < 2 );
  5261   constraint(ALLOC_IN_RC(flt_reg));
  5262   match(RegF);
  5263   match(regFPR1);
  5264   format %{ %}
  5265   interface(REG_INTER);
  5266 %}
  5268 // Float register operands
  5269 operand regFPR1(regF reg) %{
  5270   predicate( UseSSE < 2 );
  5271   constraint(ALLOC_IN_RC(flt_reg0));
  5272   match(reg);
  5273   format %{ "FPR1" %}
  5274   interface(REG_INTER);
  5275 %}
  5277 // XMM register operands
  5278 operand regX() %{
  5279   predicate( UseSSE>=1 );
  5280   constraint(ALLOC_IN_RC(xmm_reg));
  5281   match(RegF);
  5282   format %{ %}
  5283   interface(REG_INTER);
  5284 %}
  5287 //----------Memory Operands----------------------------------------------------
  5288 // Direct Memory Operand
  5289 operand direct(immP addr) %{
  5290   match(addr);
  5292   format %{ "[$addr]" %}
  5293   interface(MEMORY_INTER) %{
  5294     base(0xFFFFFFFF);
  5295     index(0x4);
  5296     scale(0x0);
  5297     disp($addr);
  5298   %}
  5299 %}
  5301 // Indirect Memory Operand
  5302 operand indirect(eRegP reg) %{
  5303   constraint(ALLOC_IN_RC(e_reg));
  5304   match(reg);
  5306   format %{ "[$reg]" %}
  5307   interface(MEMORY_INTER) %{
  5308     base($reg);
  5309     index(0x4);
  5310     scale(0x0);
  5311     disp(0x0);
  5312   %}
  5313 %}
  5315 // Indirect Memory Plus Short Offset Operand
  5316 operand indOffset8(eRegP reg, immI8 off) %{
  5317   match(AddP reg off);
  5319   format %{ "[$reg + $off]" %}
  5320   interface(MEMORY_INTER) %{
  5321     base($reg);
  5322     index(0x4);
  5323     scale(0x0);
  5324     disp($off);
  5325   %}
  5326 %}
  5328 // Indirect Memory Plus Long Offset Operand
  5329 operand indOffset32(eRegP reg, immI off) %{
  5330   match(AddP reg off);
  5332   format %{ "[$reg + $off]" %}
  5333   interface(MEMORY_INTER) %{
  5334     base($reg);
  5335     index(0x4);
  5336     scale(0x0);
  5337     disp($off);
  5338   %}
  5339 %}
  5341 // Indirect Memory Plus Long Offset Operand
  5342 operand indOffset32X(eRegI reg, immP off) %{
  5343   match(AddP off reg);
  5345   format %{ "[$reg + $off]" %}
  5346   interface(MEMORY_INTER) %{
  5347     base($reg);
  5348     index(0x4);
  5349     scale(0x0);
  5350     disp($off);
  5351   %}
  5352 %}
  5354 // Indirect Memory Plus Index Register Plus Offset Operand
  5355 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5356   match(AddP (AddP reg ireg) off);
  5358   op_cost(10);
  5359   format %{"[$reg + $off + $ireg]" %}
  5360   interface(MEMORY_INTER) %{
  5361     base($reg);
  5362     index($ireg);
  5363     scale(0x0);
  5364     disp($off);
  5365   %}
  5366 %}
  5368 // Indirect Memory Plus Index Register Plus Offset Operand
  5369 operand indIndex(eRegP reg, eRegI ireg) %{
  5370   match(AddP reg ireg);
  5372   op_cost(10);
  5373   format %{"[$reg + $ireg]" %}
  5374   interface(MEMORY_INTER) %{
  5375     base($reg);
  5376     index($ireg);
  5377     scale(0x0);
  5378     disp(0x0);
  5379   %}
  5380 %}
  5382 // // -------------------------------------------------------------------------
  5383 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5384 // // -------------------------------------------------------------------------
  5385 // // Scaled Memory Operands
  5386 // // Indirect Memory Times Scale Plus Offset Operand
  5387 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5388 //   match(AddP off (LShiftI ireg scale));
  5389 //
  5390 //   op_cost(10);
  5391 //   format %{"[$off + $ireg << $scale]" %}
  5392 //   interface(MEMORY_INTER) %{
  5393 //     base(0x4);
  5394 //     index($ireg);
  5395 //     scale($scale);
  5396 //     disp($off);
  5397 //   %}
  5398 // %}
  5400 // Indirect Memory Times Scale Plus Index Register
  5401 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5402   match(AddP reg (LShiftI ireg scale));
  5404   op_cost(10);
  5405   format %{"[$reg + $ireg << $scale]" %}
  5406   interface(MEMORY_INTER) %{
  5407     base($reg);
  5408     index($ireg);
  5409     scale($scale);
  5410     disp(0x0);
  5411   %}
  5412 %}
  5414 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5415 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5416   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5418   op_cost(10);
  5419   format %{"[$reg + $off + $ireg << $scale]" %}
  5420   interface(MEMORY_INTER) %{
  5421     base($reg);
  5422     index($ireg);
  5423     scale($scale);
  5424     disp($off);
  5425   %}
  5426 %}
  5428 //----------Load Long Memory Operands------------------------------------------
  5429 // The load-long idiom will use it's address expression again after loading
  5430 // the first word of the long.  If the load-long destination overlaps with
  5431 // registers used in the addressing expression, the 2nd half will be loaded
  5432 // from a clobbered address.  Fix this by requiring that load-long use
  5433 // address registers that do not overlap with the load-long target.
  5435 // load-long support
  5436 operand load_long_RegP() %{
  5437   constraint(ALLOC_IN_RC(esi_reg));
  5438   match(RegP);
  5439   match(eSIRegP);
  5440   op_cost(100);
  5441   format %{  %}
  5442   interface(REG_INTER);
  5443 %}
  5445 // Indirect Memory Operand Long
  5446 operand load_long_indirect(load_long_RegP reg) %{
  5447   constraint(ALLOC_IN_RC(esi_reg));
  5448   match(reg);
  5450   format %{ "[$reg]" %}
  5451   interface(MEMORY_INTER) %{
  5452     base($reg);
  5453     index(0x4);
  5454     scale(0x0);
  5455     disp(0x0);
  5456   %}
  5457 %}
  5459 // Indirect Memory Plus Long Offset Operand
  5460 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5461   match(AddP reg off);
  5463   format %{ "[$reg + $off]" %}
  5464   interface(MEMORY_INTER) %{
  5465     base($reg);
  5466     index(0x4);
  5467     scale(0x0);
  5468     disp($off);
  5469   %}
  5470 %}
  5472 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5475 //----------Special Memory Operands--------------------------------------------
  5476 // Stack Slot Operand - This operand is used for loading and storing temporary
  5477 //                      values on the stack where a match requires a value to
  5478 //                      flow through memory.
  5479 operand stackSlotP(sRegP reg) %{
  5480   constraint(ALLOC_IN_RC(stack_slots));
  5481   // No match rule because this operand is only generated in matching
  5482   format %{ "[$reg]" %}
  5483   interface(MEMORY_INTER) %{
  5484     base(0x4);   // ESP
  5485     index(0x4);  // No Index
  5486     scale(0x0);  // No Scale
  5487     disp($reg);  // Stack Offset
  5488   %}
  5489 %}
  5491 operand stackSlotI(sRegI reg) %{
  5492   constraint(ALLOC_IN_RC(stack_slots));
  5493   // No match rule because this operand is only generated in matching
  5494   format %{ "[$reg]" %}
  5495   interface(MEMORY_INTER) %{
  5496     base(0x4);   // ESP
  5497     index(0x4);  // No Index
  5498     scale(0x0);  // No Scale
  5499     disp($reg);  // Stack Offset
  5500   %}
  5501 %}
  5503 operand stackSlotF(sRegF reg) %{
  5504   constraint(ALLOC_IN_RC(stack_slots));
  5505   // No match rule because this operand is only generated in matching
  5506   format %{ "[$reg]" %}
  5507   interface(MEMORY_INTER) %{
  5508     base(0x4);   // ESP
  5509     index(0x4);  // No Index
  5510     scale(0x0);  // No Scale
  5511     disp($reg);  // Stack Offset
  5512   %}
  5513 %}
  5515 operand stackSlotD(sRegD reg) %{
  5516   constraint(ALLOC_IN_RC(stack_slots));
  5517   // No match rule because this operand is only generated in matching
  5518   format %{ "[$reg]" %}
  5519   interface(MEMORY_INTER) %{
  5520     base(0x4);   // ESP
  5521     index(0x4);  // No Index
  5522     scale(0x0);  // No Scale
  5523     disp($reg);  // Stack Offset
  5524   %}
  5525 %}
  5527 operand stackSlotL(sRegL reg) %{
  5528   constraint(ALLOC_IN_RC(stack_slots));
  5529   // No match rule because this operand is only generated in matching
  5530   format %{ "[$reg]" %}
  5531   interface(MEMORY_INTER) %{
  5532     base(0x4);   // ESP
  5533     index(0x4);  // No Index
  5534     scale(0x0);  // No Scale
  5535     disp($reg);  // Stack Offset
  5536   %}
  5537 %}
  5539 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5540 // Indirect Memory Operand
  5541 operand indirect_win95_safe(eRegP_no_EBP reg)
  5542 %{
  5543   constraint(ALLOC_IN_RC(e_reg));
  5544   match(reg);
  5546   op_cost(100);
  5547   format %{ "[$reg]" %}
  5548   interface(MEMORY_INTER) %{
  5549     base($reg);
  5550     index(0x4);
  5551     scale(0x0);
  5552     disp(0x0);
  5553   %}
  5554 %}
  5556 // Indirect Memory Plus Short Offset Operand
  5557 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5558 %{
  5559   match(AddP reg off);
  5561   op_cost(100);
  5562   format %{ "[$reg + $off]" %}
  5563   interface(MEMORY_INTER) %{
  5564     base($reg);
  5565     index(0x4);
  5566     scale(0x0);
  5567     disp($off);
  5568   %}
  5569 %}
  5571 // Indirect Memory Plus Long Offset Operand
  5572 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5573 %{
  5574   match(AddP reg off);
  5576   op_cost(100);
  5577   format %{ "[$reg + $off]" %}
  5578   interface(MEMORY_INTER) %{
  5579     base($reg);
  5580     index(0x4);
  5581     scale(0x0);
  5582     disp($off);
  5583   %}
  5584 %}
  5586 // Indirect Memory Plus Index Register Plus Offset Operand
  5587 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5588 %{
  5589   match(AddP (AddP reg ireg) off);
  5591   op_cost(100);
  5592   format %{"[$reg + $off + $ireg]" %}
  5593   interface(MEMORY_INTER) %{
  5594     base($reg);
  5595     index($ireg);
  5596     scale(0x0);
  5597     disp($off);
  5598   %}
  5599 %}
  5601 // Indirect Memory Times Scale Plus Index Register
  5602 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5603 %{
  5604   match(AddP reg (LShiftI ireg scale));
  5606   op_cost(100);
  5607   format %{"[$reg + $ireg << $scale]" %}
  5608   interface(MEMORY_INTER) %{
  5609     base($reg);
  5610     index($ireg);
  5611     scale($scale);
  5612     disp(0x0);
  5613   %}
  5614 %}
  5616 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5617 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5618 %{
  5619   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5621   op_cost(100);
  5622   format %{"[$reg + $off + $ireg << $scale]" %}
  5623   interface(MEMORY_INTER) %{
  5624     base($reg);
  5625     index($ireg);
  5626     scale($scale);
  5627     disp($off);
  5628   %}
  5629 %}
  5631 //----------Conditional Branch Operands----------------------------------------
  5632 // Comparison Op  - This is the operation of the comparison, and is limited to
  5633 //                  the following set of codes:
  5634 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5635 //
  5636 // Other attributes of the comparison, such as unsignedness, are specified
  5637 // by the comparison instruction that sets a condition code flags register.
  5638 // That result is represented by a flags operand whose subtype is appropriate
  5639 // to the unsignedness (etc.) of the comparison.
  5640 //
  5641 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5642 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5643 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5645 // Comparision Code
  5646 operand cmpOp() %{
  5647   match(Bool);
  5649   format %{ "" %}
  5650   interface(COND_INTER) %{
  5651     equal(0x4, "e");
  5652     not_equal(0x5, "ne");
  5653     less(0xC, "l");
  5654     greater_equal(0xD, "ge");
  5655     less_equal(0xE, "le");
  5656     greater(0xF, "g");
  5657   %}
  5658 %}
  5660 // Comparison Code, unsigned compare.  Used by FP also, with
  5661 // C2 (unordered) turned into GT or LT already.  The other bits
  5662 // C0 and C3 are turned into Carry & Zero flags.
  5663 operand cmpOpU() %{
  5664   match(Bool);
  5666   format %{ "" %}
  5667   interface(COND_INTER) %{
  5668     equal(0x4, "e");
  5669     not_equal(0x5, "ne");
  5670     less(0x2, "b");
  5671     greater_equal(0x3, "nb");
  5672     less_equal(0x6, "be");
  5673     greater(0x7, "nbe");
  5674   %}
  5675 %}
  5677 // Floating comparisons that don't require any fixup for the unordered case
  5678 operand cmpOpUCF() %{
  5679   match(Bool);
  5680   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5681             n->as_Bool()->_test._test == BoolTest::ge ||
  5682             n->as_Bool()->_test._test == BoolTest::le ||
  5683             n->as_Bool()->_test._test == BoolTest::gt);
  5684   format %{ "" %}
  5685   interface(COND_INTER) %{
  5686     equal(0x4, "e");
  5687     not_equal(0x5, "ne");
  5688     less(0x2, "b");
  5689     greater_equal(0x3, "nb");
  5690     less_equal(0x6, "be");
  5691     greater(0x7, "nbe");
  5692   %}
  5693 %}
  5696 // Floating comparisons that can be fixed up with extra conditional jumps
  5697 operand cmpOpUCF2() %{
  5698   match(Bool);
  5699   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5700             n->as_Bool()->_test._test == BoolTest::eq);
  5701   format %{ "" %}
  5702   interface(COND_INTER) %{
  5703     equal(0x4, "e");
  5704     not_equal(0x5, "ne");
  5705     less(0x2, "b");
  5706     greater_equal(0x3, "nb");
  5707     less_equal(0x6, "be");
  5708     greater(0x7, "nbe");
  5709   %}
  5710 %}
  5712 // Comparison Code for FP conditional move
  5713 operand cmpOp_fcmov() %{
  5714   match(Bool);
  5716   format %{ "" %}
  5717   interface(COND_INTER) %{
  5718     equal        (0x0C8);
  5719     not_equal    (0x1C8);
  5720     less         (0x0C0);
  5721     greater_equal(0x1C0);
  5722     less_equal   (0x0D0);
  5723     greater      (0x1D0);
  5724   %}
  5725 %}
  5727 // Comparision Code used in long compares
  5728 operand cmpOp_commute() %{
  5729   match(Bool);
  5731   format %{ "" %}
  5732   interface(COND_INTER) %{
  5733     equal(0x4, "e");
  5734     not_equal(0x5, "ne");
  5735     less(0xF, "g");
  5736     greater_equal(0xE, "le");
  5737     less_equal(0xD, "ge");
  5738     greater(0xC, "l");
  5739   %}
  5740 %}
  5742 //----------OPERAND CLASSES----------------------------------------------------
  5743 // Operand Classes are groups of operands that are used as to simplify
  5744 // instruction definitions by not requiring the AD writer to specify separate
  5745 // instructions for every form of operand when the instruction accepts
  5746 // multiple operand types with the same basic encoding and format.  The classic
  5747 // case of this is memory operands.
  5749 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5750                indIndex, indIndexScale, indIndexScaleOffset);
  5752 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5753 // This means some kind of offset is always required and you cannot use
  5754 // an oop as the offset (done when working on static globals).
  5755 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5756                     indIndex, indIndexScale, indIndexScaleOffset);
  5759 //----------PIPELINE-----------------------------------------------------------
  5760 // Rules which define the behavior of the target architectures pipeline.
  5761 pipeline %{
  5763 //----------ATTRIBUTES---------------------------------------------------------
  5764 attributes %{
  5765   variable_size_instructions;        // Fixed size instructions
  5766   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5767   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5768   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5769   instruction_fetch_units = 1;       // of 16 bytes
  5771   // List of nop instructions
  5772   nops( MachNop );
  5773 %}
  5775 //----------RESOURCES----------------------------------------------------------
  5776 // Resources are the functional units available to the machine
  5778 // Generic P2/P3 pipeline
  5779 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5780 // 3 instructions decoded per cycle.
  5781 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5782 // 2 ALU op, only ALU0 handles mul/div instructions.
  5783 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5784            MS0, MS1, MEM = MS0 | MS1,
  5785            BR, FPU,
  5786            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5788 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5789 // Pipeline Description specifies the stages in the machine's pipeline
  5791 // Generic P2/P3 pipeline
  5792 pipe_desc(S0, S1, S2, S3, S4, S5);
  5794 //----------PIPELINE CLASSES---------------------------------------------------
  5795 // Pipeline Classes describe the stages in which input and output are
  5796 // referenced by the hardware pipeline.
  5798 // Naming convention: ialu or fpu
  5799 // Then: _reg
  5800 // Then: _reg if there is a 2nd register
  5801 // Then: _long if it's a pair of instructions implementing a long
  5802 // Then: _fat if it requires the big decoder
  5803 //   Or: _mem if it requires the big decoder and a memory unit.
  5805 // Integer ALU reg operation
  5806 pipe_class ialu_reg(eRegI dst) %{
  5807     single_instruction;
  5808     dst    : S4(write);
  5809     dst    : S3(read);
  5810     DECODE : S0;        // any decoder
  5811     ALU    : S3;        // any alu
  5812 %}
  5814 // Long ALU reg operation
  5815 pipe_class ialu_reg_long(eRegL dst) %{
  5816     instruction_count(2);
  5817     dst    : S4(write);
  5818     dst    : S3(read);
  5819     DECODE : S0(2);     // any 2 decoders
  5820     ALU    : S3(2);     // both alus
  5821 %}
  5823 // Integer ALU reg operation using big decoder
  5824 pipe_class ialu_reg_fat(eRegI dst) %{
  5825     single_instruction;
  5826     dst    : S4(write);
  5827     dst    : S3(read);
  5828     D0     : S0;        // big decoder only
  5829     ALU    : S3;        // any alu
  5830 %}
  5832 // Long ALU reg operation using big decoder
  5833 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5834     instruction_count(2);
  5835     dst    : S4(write);
  5836     dst    : S3(read);
  5837     D0     : S0(2);     // big decoder only; twice
  5838     ALU    : S3(2);     // any 2 alus
  5839 %}
  5841 // Integer ALU reg-reg operation
  5842 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5843     single_instruction;
  5844     dst    : S4(write);
  5845     src    : S3(read);
  5846     DECODE : S0;        // any decoder
  5847     ALU    : S3;        // any alu
  5848 %}
  5850 // Long ALU reg-reg operation
  5851 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5852     instruction_count(2);
  5853     dst    : S4(write);
  5854     src    : S3(read);
  5855     DECODE : S0(2);     // any 2 decoders
  5856     ALU    : S3(2);     // both alus
  5857 %}
  5859 // Integer ALU reg-reg operation
  5860 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5861     single_instruction;
  5862     dst    : S4(write);
  5863     src    : S3(read);
  5864     D0     : S0;        // big decoder only
  5865     ALU    : S3;        // any alu
  5866 %}
  5868 // Long ALU reg-reg operation
  5869 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5870     instruction_count(2);
  5871     dst    : S4(write);
  5872     src    : S3(read);
  5873     D0     : S0(2);     // big decoder only; twice
  5874     ALU    : S3(2);     // both alus
  5875 %}
  5877 // Integer ALU reg-mem operation
  5878 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5879     single_instruction;
  5880     dst    : S5(write);
  5881     mem    : S3(read);
  5882     D0     : S0;        // big decoder only
  5883     ALU    : S4;        // any alu
  5884     MEM    : S3;        // any mem
  5885 %}
  5887 // Long ALU reg-mem operation
  5888 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5889     instruction_count(2);
  5890     dst    : S5(write);
  5891     mem    : S3(read);
  5892     D0     : S0(2);     // big decoder only; twice
  5893     ALU    : S4(2);     // any 2 alus
  5894     MEM    : S3(2);     // both mems
  5895 %}
  5897 // Integer mem operation (prefetch)
  5898 pipe_class ialu_mem(memory mem)
  5899 %{
  5900     single_instruction;
  5901     mem    : S3(read);
  5902     D0     : S0;        // big decoder only
  5903     MEM    : S3;        // any mem
  5904 %}
  5906 // Integer Store to Memory
  5907 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5908     single_instruction;
  5909     mem    : S3(read);
  5910     src    : S5(read);
  5911     D0     : S0;        // big decoder only
  5912     ALU    : S4;        // any alu
  5913     MEM    : S3;
  5914 %}
  5916 // Long Store to Memory
  5917 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5918     instruction_count(2);
  5919     mem    : S3(read);
  5920     src    : S5(read);
  5921     D0     : S0(2);     // big decoder only; twice
  5922     ALU    : S4(2);     // any 2 alus
  5923     MEM    : S3(2);     // Both mems
  5924 %}
  5926 // Integer Store to Memory
  5927 pipe_class ialu_mem_imm(memory mem) %{
  5928     single_instruction;
  5929     mem    : S3(read);
  5930     D0     : S0;        // big decoder only
  5931     ALU    : S4;        // any alu
  5932     MEM    : S3;
  5933 %}
  5935 // Integer ALU0 reg-reg operation
  5936 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5937     single_instruction;
  5938     dst    : S4(write);
  5939     src    : S3(read);
  5940     D0     : S0;        // Big decoder only
  5941     ALU0   : S3;        // only alu0
  5942 %}
  5944 // Integer ALU0 reg-mem operation
  5945 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5946     single_instruction;
  5947     dst    : S5(write);
  5948     mem    : S3(read);
  5949     D0     : S0;        // big decoder only
  5950     ALU0   : S4;        // ALU0 only
  5951     MEM    : S3;        // any mem
  5952 %}
  5954 // Integer ALU reg-reg operation
  5955 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5956     single_instruction;
  5957     cr     : S4(write);
  5958     src1   : S3(read);
  5959     src2   : S3(read);
  5960     DECODE : S0;        // any decoder
  5961     ALU    : S3;        // any alu
  5962 %}
  5964 // Integer ALU reg-imm operation
  5965 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5966     single_instruction;
  5967     cr     : S4(write);
  5968     src1   : S3(read);
  5969     DECODE : S0;        // any decoder
  5970     ALU    : S3;        // any alu
  5971 %}
  5973 // Integer ALU reg-mem operation
  5974 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5975     single_instruction;
  5976     cr     : S4(write);
  5977     src1   : S3(read);
  5978     src2   : S3(read);
  5979     D0     : S0;        // big decoder only
  5980     ALU    : S4;        // any alu
  5981     MEM    : S3;
  5982 %}
  5984 // Conditional move reg-reg
  5985 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5986     instruction_count(4);
  5987     y      : S4(read);
  5988     q      : S3(read);
  5989     p      : S3(read);
  5990     DECODE : S0(4);     // any decoder
  5991 %}
  5993 // Conditional move reg-reg
  5994 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5995     single_instruction;
  5996     dst    : S4(write);
  5997     src    : S3(read);
  5998     cr     : S3(read);
  5999     DECODE : S0;        // any decoder
  6000 %}
  6002 // Conditional move reg-mem
  6003 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6004     single_instruction;
  6005     dst    : S4(write);
  6006     src    : S3(read);
  6007     cr     : S3(read);
  6008     DECODE : S0;        // any decoder
  6009     MEM    : S3;
  6010 %}
  6012 // Conditional move reg-reg long
  6013 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6014     single_instruction;
  6015     dst    : S4(write);
  6016     src    : S3(read);
  6017     cr     : S3(read);
  6018     DECODE : S0(2);     // any 2 decoders
  6019 %}
  6021 // Conditional move double reg-reg
  6022 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6023     single_instruction;
  6024     dst    : S4(write);
  6025     src    : S3(read);
  6026     cr     : S3(read);
  6027     DECODE : S0;        // any decoder
  6028 %}
  6030 // Float reg-reg operation
  6031 pipe_class fpu_reg(regD dst) %{
  6032     instruction_count(2);
  6033     dst    : S3(read);
  6034     DECODE : S0(2);     // any 2 decoders
  6035     FPU    : S3;
  6036 %}
  6038 // Float reg-reg operation
  6039 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6040     instruction_count(2);
  6041     dst    : S4(write);
  6042     src    : S3(read);
  6043     DECODE : S0(2);     // any 2 decoders
  6044     FPU    : S3;
  6045 %}
  6047 // Float reg-reg operation
  6048 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6049     instruction_count(3);
  6050     dst    : S4(write);
  6051     src1   : S3(read);
  6052     src2   : S3(read);
  6053     DECODE : S0(3);     // any 3 decoders
  6054     FPU    : S3(2);
  6055 %}
  6057 // Float reg-reg operation
  6058 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6059     instruction_count(4);
  6060     dst    : S4(write);
  6061     src1   : S3(read);
  6062     src2   : S3(read);
  6063     src3   : S3(read);
  6064     DECODE : S0(4);     // any 3 decoders
  6065     FPU    : S3(2);
  6066 %}
  6068 // Float reg-reg operation
  6069 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6070     instruction_count(4);
  6071     dst    : S4(write);
  6072     src1   : S3(read);
  6073     src2   : S3(read);
  6074     src3   : S3(read);
  6075     DECODE : S1(3);     // any 3 decoders
  6076     D0     : S0;        // Big decoder only
  6077     FPU    : S3(2);
  6078     MEM    : S3;
  6079 %}
  6081 // Float reg-mem operation
  6082 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6083     instruction_count(2);
  6084     dst    : S5(write);
  6085     mem    : S3(read);
  6086     D0     : S0;        // big decoder only
  6087     DECODE : S1;        // any decoder for FPU POP
  6088     FPU    : S4;
  6089     MEM    : S3;        // any mem
  6090 %}
  6092 // Float reg-mem operation
  6093 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6094     instruction_count(3);
  6095     dst    : S5(write);
  6096     src1   : S3(read);
  6097     mem    : S3(read);
  6098     D0     : S0;        // big decoder only
  6099     DECODE : S1(2);     // any decoder for FPU POP
  6100     FPU    : S4;
  6101     MEM    : S3;        // any mem
  6102 %}
  6104 // Float mem-reg operation
  6105 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6106     instruction_count(2);
  6107     src    : S5(read);
  6108     mem    : S3(read);
  6109     DECODE : S0;        // any decoder for FPU PUSH
  6110     D0     : S1;        // big decoder only
  6111     FPU    : S4;
  6112     MEM    : S3;        // any mem
  6113 %}
  6115 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6116     instruction_count(3);
  6117     src1   : S3(read);
  6118     src2   : S3(read);
  6119     mem    : S3(read);
  6120     DECODE : S0(2);     // any decoder for FPU PUSH
  6121     D0     : S1;        // big decoder only
  6122     FPU    : S4;
  6123     MEM    : S3;        // any mem
  6124 %}
  6126 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6127     instruction_count(3);
  6128     src1   : S3(read);
  6129     src2   : S3(read);
  6130     mem    : S4(read);
  6131     DECODE : S0;        // any decoder for FPU PUSH
  6132     D0     : S0(2);     // big decoder only
  6133     FPU    : S4;
  6134     MEM    : S3(2);     // any mem
  6135 %}
  6137 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6138     instruction_count(2);
  6139     src1   : S3(read);
  6140     dst    : S4(read);
  6141     D0     : S0(2);     // big decoder only
  6142     MEM    : S3(2);     // any mem
  6143 %}
  6145 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6146     instruction_count(3);
  6147     src1   : S3(read);
  6148     src2   : S3(read);
  6149     dst    : S4(read);
  6150     D0     : S0(3);     // big decoder only
  6151     FPU    : S4;
  6152     MEM    : S3(3);     // any mem
  6153 %}
  6155 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6156     instruction_count(3);
  6157     src1   : S4(read);
  6158     mem    : S4(read);
  6159     DECODE : S0;        // any decoder for FPU PUSH
  6160     D0     : S0(2);     // big decoder only
  6161     FPU    : S4;
  6162     MEM    : S3(2);     // any mem
  6163 %}
  6165 // Float load constant
  6166 pipe_class fpu_reg_con(regD dst) %{
  6167     instruction_count(2);
  6168     dst    : S5(write);
  6169     D0     : S0;        // big decoder only for the load
  6170     DECODE : S1;        // any decoder for FPU POP
  6171     FPU    : S4;
  6172     MEM    : S3;        // any mem
  6173 %}
  6175 // Float load constant
  6176 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6177     instruction_count(3);
  6178     dst    : S5(write);
  6179     src    : S3(read);
  6180     D0     : S0;        // big decoder only for the load
  6181     DECODE : S1(2);     // any decoder for FPU POP
  6182     FPU    : S4;
  6183     MEM    : S3;        // any mem
  6184 %}
  6186 // UnConditional branch
  6187 pipe_class pipe_jmp( label labl ) %{
  6188     single_instruction;
  6189     BR   : S3;
  6190 %}
  6192 // Conditional branch
  6193 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6194     single_instruction;
  6195     cr    : S1(read);
  6196     BR    : S3;
  6197 %}
  6199 // Allocation idiom
  6200 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6201     instruction_count(1); force_serialization;
  6202     fixed_latency(6);
  6203     heap_ptr : S3(read);
  6204     DECODE   : S0(3);
  6205     D0       : S2;
  6206     MEM      : S3;
  6207     ALU      : S3(2);
  6208     dst      : S5(write);
  6209     BR       : S5;
  6210 %}
  6212 // Generic big/slow expanded idiom
  6213 pipe_class pipe_slow(  ) %{
  6214     instruction_count(10); multiple_bundles; force_serialization;
  6215     fixed_latency(100);
  6216     D0  : S0(2);
  6217     MEM : S3(2);
  6218 %}
  6220 // The real do-nothing guy
  6221 pipe_class empty( ) %{
  6222     instruction_count(0);
  6223 %}
  6225 // Define the class for the Nop node
  6226 define %{
  6227    MachNop = empty;
  6228 %}
  6230 %}
  6232 //----------INSTRUCTIONS-------------------------------------------------------
  6233 //
  6234 // match      -- States which machine-independent subtree may be replaced
  6235 //               by this instruction.
  6236 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6237 //               selection to identify a minimum cost tree of machine
  6238 //               instructions that matches a tree of machine-independent
  6239 //               instructions.
  6240 // format     -- A string providing the disassembly for this instruction.
  6241 //               The value of an instruction's operand may be inserted
  6242 //               by referring to it with a '$' prefix.
  6243 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6244 //               to within an encode class as $primary, $secondary, and $tertiary
  6245 //               respectively.  The primary opcode is commonly used to
  6246 //               indicate the type of machine instruction, while secondary
  6247 //               and tertiary are often used for prefix options or addressing
  6248 //               modes.
  6249 // ins_encode -- A list of encode classes with parameters. The encode class
  6250 //               name must have been defined in an 'enc_class' specification
  6251 //               in the encode section of the architecture description.
  6253 //----------BSWAP-Instruction--------------------------------------------------
  6254 instruct bytes_reverse_int(eRegI dst) %{
  6255   match(Set dst (ReverseBytesI dst));
  6257   format %{ "BSWAP  $dst" %}
  6258   opcode(0x0F, 0xC8);
  6259   ins_encode( OpcP, OpcSReg(dst) );
  6260   ins_pipe( ialu_reg );
  6261 %}
  6263 instruct bytes_reverse_long(eRegL dst) %{
  6264   match(Set dst (ReverseBytesL dst));
  6266   format %{ "BSWAP  $dst.lo\n\t"
  6267             "BSWAP  $dst.hi\n\t"
  6268             "XCHG   $dst.lo $dst.hi" %}
  6270   ins_cost(125);
  6271   ins_encode( bswap_long_bytes(dst) );
  6272   ins_pipe( ialu_reg_reg);
  6273 %}
  6275 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6276   match(Set dst (ReverseBytesUS dst));
  6278   format %{ "BSWAP  $dst\n\t" 
  6279             "SHR    $dst,16\n\t" %}
  6280   ins_encode %{
  6281     __ bswapl($dst$$Register);
  6282     __ shrl($dst$$Register, 16); 
  6283   %}
  6284   ins_pipe( ialu_reg );
  6285 %}
  6287 instruct bytes_reverse_short(eRegI dst) %{
  6288   match(Set dst (ReverseBytesS dst));
  6290   format %{ "BSWAP  $dst\n\t" 
  6291             "SAR    $dst,16\n\t" %}
  6292   ins_encode %{
  6293     __ bswapl($dst$$Register);
  6294     __ sarl($dst$$Register, 16); 
  6295   %}
  6296   ins_pipe( ialu_reg );
  6297 %}
  6300 //---------- Zeros Count Instructions ------------------------------------------
  6302 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6303   predicate(UseCountLeadingZerosInstruction);
  6304   match(Set dst (CountLeadingZerosI src));
  6305   effect(KILL cr);
  6307   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6308   ins_encode %{
  6309     __ lzcntl($dst$$Register, $src$$Register);
  6310   %}
  6311   ins_pipe(ialu_reg);
  6312 %}
  6314 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6315   predicate(!UseCountLeadingZerosInstruction);
  6316   match(Set dst (CountLeadingZerosI src));
  6317   effect(KILL cr);
  6319   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6320             "JNZ    skip\n\t"
  6321             "MOV    $dst, -1\n"
  6322       "skip:\n\t"
  6323             "NEG    $dst\n\t"
  6324             "ADD    $dst, 31" %}
  6325   ins_encode %{
  6326     Register Rdst = $dst$$Register;
  6327     Register Rsrc = $src$$Register;
  6328     Label skip;
  6329     __ bsrl(Rdst, Rsrc);
  6330     __ jccb(Assembler::notZero, skip);
  6331     __ movl(Rdst, -1);
  6332     __ bind(skip);
  6333     __ negl(Rdst);
  6334     __ addl(Rdst, BitsPerInt - 1);
  6335   %}
  6336   ins_pipe(ialu_reg);
  6337 %}
  6339 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6340   predicate(UseCountLeadingZerosInstruction);
  6341   match(Set dst (CountLeadingZerosL src));
  6342   effect(TEMP dst, KILL cr);
  6344   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6345             "JNC    done\n\t"
  6346             "LZCNT  $dst, $src.lo\n\t"
  6347             "ADD    $dst, 32\n"
  6348       "done:" %}
  6349   ins_encode %{
  6350     Register Rdst = $dst$$Register;
  6351     Register Rsrc = $src$$Register;
  6352     Label done;
  6353     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6354     __ jccb(Assembler::carryClear, done);
  6355     __ lzcntl(Rdst, Rsrc);
  6356     __ addl(Rdst, BitsPerInt);
  6357     __ bind(done);
  6358   %}
  6359   ins_pipe(ialu_reg);
  6360 %}
  6362 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6363   predicate(!UseCountLeadingZerosInstruction);
  6364   match(Set dst (CountLeadingZerosL src));
  6365   effect(TEMP dst, KILL cr);
  6367   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6368             "JZ     msw_is_zero\n\t"
  6369             "ADD    $dst, 32\n\t"
  6370             "JMP    not_zero\n"
  6371       "msw_is_zero:\n\t"
  6372             "BSR    $dst, $src.lo\n\t"
  6373             "JNZ    not_zero\n\t"
  6374             "MOV    $dst, -1\n"
  6375       "not_zero:\n\t"
  6376             "NEG    $dst\n\t"
  6377             "ADD    $dst, 63\n" %}
  6378  ins_encode %{
  6379     Register Rdst = $dst$$Register;
  6380     Register Rsrc = $src$$Register;
  6381     Label msw_is_zero;
  6382     Label not_zero;
  6383     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6384     __ jccb(Assembler::zero, msw_is_zero);
  6385     __ addl(Rdst, BitsPerInt);
  6386     __ jmpb(not_zero);
  6387     __ bind(msw_is_zero);
  6388     __ bsrl(Rdst, Rsrc);
  6389     __ jccb(Assembler::notZero, not_zero);
  6390     __ movl(Rdst, -1);
  6391     __ bind(not_zero);
  6392     __ negl(Rdst);
  6393     __ addl(Rdst, BitsPerLong - 1);
  6394   %}
  6395   ins_pipe(ialu_reg);
  6396 %}
  6398 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6399   match(Set dst (CountTrailingZerosI src));
  6400   effect(KILL cr);
  6402   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6403             "JNZ    done\n\t"
  6404             "MOV    $dst, 32\n"
  6405       "done:" %}
  6406   ins_encode %{
  6407     Register Rdst = $dst$$Register;
  6408     Label done;
  6409     __ bsfl(Rdst, $src$$Register);
  6410     __ jccb(Assembler::notZero, done);
  6411     __ movl(Rdst, BitsPerInt);
  6412     __ bind(done);
  6413   %}
  6414   ins_pipe(ialu_reg);
  6415 %}
  6417 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6418   match(Set dst (CountTrailingZerosL src));
  6419   effect(TEMP dst, KILL cr);
  6421   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6422             "JNZ    done\n\t"
  6423             "BSF    $dst, $src.hi\n\t"
  6424             "JNZ    msw_not_zero\n\t"
  6425             "MOV    $dst, 32\n"
  6426       "msw_not_zero:\n\t"
  6427             "ADD    $dst, 32\n"
  6428       "done:" %}
  6429   ins_encode %{
  6430     Register Rdst = $dst$$Register;
  6431     Register Rsrc = $src$$Register;
  6432     Label msw_not_zero;
  6433     Label done;
  6434     __ bsfl(Rdst, Rsrc);
  6435     __ jccb(Assembler::notZero, done);
  6436     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6437     __ jccb(Assembler::notZero, msw_not_zero);
  6438     __ movl(Rdst, BitsPerInt);
  6439     __ bind(msw_not_zero);
  6440     __ addl(Rdst, BitsPerInt);
  6441     __ bind(done);
  6442   %}
  6443   ins_pipe(ialu_reg);
  6444 %}
  6447 //---------- Population Count Instructions -------------------------------------
  6449 instruct popCountI(eRegI dst, eRegI src) %{
  6450   predicate(UsePopCountInstruction);
  6451   match(Set dst (PopCountI src));
  6453   format %{ "POPCNT $dst, $src" %}
  6454   ins_encode %{
  6455     __ popcntl($dst$$Register, $src$$Register);
  6456   %}
  6457   ins_pipe(ialu_reg);
  6458 %}
  6460 instruct popCountI_mem(eRegI dst, memory mem) %{
  6461   predicate(UsePopCountInstruction);
  6462   match(Set dst (PopCountI (LoadI mem)));
  6464   format %{ "POPCNT $dst, $mem" %}
  6465   ins_encode %{
  6466     __ popcntl($dst$$Register, $mem$$Address);
  6467   %}
  6468   ins_pipe(ialu_reg);
  6469 %}
  6471 // Note: Long.bitCount(long) returns an int.
  6472 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6473   predicate(UsePopCountInstruction);
  6474   match(Set dst (PopCountL src));
  6475   effect(KILL cr, TEMP tmp, TEMP dst);
  6477   format %{ "POPCNT $dst, $src.lo\n\t"
  6478             "POPCNT $tmp, $src.hi\n\t"
  6479             "ADD    $dst, $tmp" %}
  6480   ins_encode %{
  6481     __ popcntl($dst$$Register, $src$$Register);
  6482     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6483     __ addl($dst$$Register, $tmp$$Register);
  6484   %}
  6485   ins_pipe(ialu_reg);
  6486 %}
  6488 // Note: Long.bitCount(long) returns an int.
  6489 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6490   predicate(UsePopCountInstruction);
  6491   match(Set dst (PopCountL (LoadL mem)));
  6492   effect(KILL cr, TEMP tmp, TEMP dst);
  6494   format %{ "POPCNT $dst, $mem\n\t"
  6495             "POPCNT $tmp, $mem+4\n\t"
  6496             "ADD    $dst, $tmp" %}
  6497   ins_encode %{
  6498     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6499     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6500     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6501     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6502     __ addl($dst$$Register, $tmp$$Register);
  6503   %}
  6504   ins_pipe(ialu_reg);
  6505 %}
  6508 //----------Load/Store/Move Instructions---------------------------------------
  6509 //----------Load Instructions--------------------------------------------------
  6510 // Load Byte (8bit signed)
  6511 instruct loadB(xRegI dst, memory mem) %{
  6512   match(Set dst (LoadB mem));
  6514   ins_cost(125);
  6515   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6517   ins_encode %{
  6518     __ movsbl($dst$$Register, $mem$$Address);
  6519   %}
  6521   ins_pipe(ialu_reg_mem);
  6522 %}
  6524 // Load Byte (8bit signed) into Long Register
  6525 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6526   match(Set dst (ConvI2L (LoadB mem)));
  6527   effect(KILL cr);
  6529   ins_cost(375);
  6530   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6531             "MOV    $dst.hi,$dst.lo\n\t"
  6532             "SAR    $dst.hi,7" %}
  6534   ins_encode %{
  6535     __ movsbl($dst$$Register, $mem$$Address);
  6536     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6537     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6538   %}
  6540   ins_pipe(ialu_reg_mem);
  6541 %}
  6543 // Load Unsigned Byte (8bit UNsigned)
  6544 instruct loadUB(xRegI dst, memory mem) %{
  6545   match(Set dst (LoadUB mem));
  6547   ins_cost(125);
  6548   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6550   ins_encode %{
  6551     __ movzbl($dst$$Register, $mem$$Address);
  6552   %}
  6554   ins_pipe(ialu_reg_mem);
  6555 %}
  6557 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6558 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6559   match(Set dst (ConvI2L (LoadUB mem)));
  6560   effect(KILL cr);
  6562   ins_cost(250);
  6563   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6564             "XOR    $dst.hi,$dst.hi" %}
  6566   ins_encode %{
  6567     Register Rdst = $dst$$Register;
  6568     __ movzbl(Rdst, $mem$$Address);
  6569     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6570   %}
  6572   ins_pipe(ialu_reg_mem);
  6573 %}
  6575 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6576 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6577   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6578   effect(KILL cr);
  6580   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6581             "XOR    $dst.hi,$dst.hi\n\t"
  6582             "AND    $dst.lo,$mask" %}
  6583   ins_encode %{
  6584     Register Rdst = $dst$$Register;
  6585     __ movzbl(Rdst, $mem$$Address);
  6586     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6587     __ andl(Rdst, $mask$$constant);
  6588   %}
  6589   ins_pipe(ialu_reg_mem);
  6590 %}
  6592 // Load Short (16bit signed)
  6593 instruct loadS(eRegI dst, memory mem) %{
  6594   match(Set dst (LoadS mem));
  6596   ins_cost(125);
  6597   format %{ "MOVSX  $dst,$mem\t# short" %}
  6599   ins_encode %{
  6600     __ movswl($dst$$Register, $mem$$Address);
  6601   %}
  6603   ins_pipe(ialu_reg_mem);
  6604 %}
  6606 // Load Short (16 bit signed) to Byte (8 bit signed)
  6607 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6608   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6610   ins_cost(125);
  6611   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6612   ins_encode %{
  6613     __ movsbl($dst$$Register, $mem$$Address);
  6614   %}
  6615   ins_pipe(ialu_reg_mem);
  6616 %}
  6618 // Load Short (16bit signed) into Long Register
  6619 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6620   match(Set dst (ConvI2L (LoadS mem)));
  6621   effect(KILL cr);
  6623   ins_cost(375);
  6624   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6625             "MOV    $dst.hi,$dst.lo\n\t"
  6626             "SAR    $dst.hi,15" %}
  6628   ins_encode %{
  6629     __ movswl($dst$$Register, $mem$$Address);
  6630     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6631     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6632   %}
  6634   ins_pipe(ialu_reg_mem);
  6635 %}
  6637 // Load Unsigned Short/Char (16bit unsigned)
  6638 instruct loadUS(eRegI dst, memory mem) %{
  6639   match(Set dst (LoadUS mem));
  6641   ins_cost(125);
  6642   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6644   ins_encode %{
  6645     __ movzwl($dst$$Register, $mem$$Address);
  6646   %}
  6648   ins_pipe(ialu_reg_mem);
  6649 %}
  6651 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6652 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6653   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6655   ins_cost(125);
  6656   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6657   ins_encode %{
  6658     __ movsbl($dst$$Register, $mem$$Address);
  6659   %}
  6660   ins_pipe(ialu_reg_mem);
  6661 %}
  6663 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6664 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6665   match(Set dst (ConvI2L (LoadUS mem)));
  6666   effect(KILL cr);
  6668   ins_cost(250);
  6669   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6670             "XOR    $dst.hi,$dst.hi" %}
  6672   ins_encode %{
  6673     __ movzwl($dst$$Register, $mem$$Address);
  6674     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6675   %}
  6677   ins_pipe(ialu_reg_mem);
  6678 %}
  6680 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6681 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6682   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6683   effect(KILL cr);
  6685   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6686             "XOR    $dst.hi,$dst.hi" %}
  6687   ins_encode %{
  6688     Register Rdst = $dst$$Register;
  6689     __ movzbl(Rdst, $mem$$Address);
  6690     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6691   %}
  6692   ins_pipe(ialu_reg_mem);
  6693 %}
  6695 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6696 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6697   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6698   effect(KILL cr);
  6700   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6701             "XOR    $dst.hi,$dst.hi\n\t"
  6702             "AND    $dst.lo,$mask" %}
  6703   ins_encode %{
  6704     Register Rdst = $dst$$Register;
  6705     __ movzwl(Rdst, $mem$$Address);
  6706     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6707     __ andl(Rdst, $mask$$constant);
  6708   %}
  6709   ins_pipe(ialu_reg_mem);
  6710 %}
  6712 // Load Integer
  6713 instruct loadI(eRegI dst, memory mem) %{
  6714   match(Set dst (LoadI mem));
  6716   ins_cost(125);
  6717   format %{ "MOV    $dst,$mem\t# int" %}
  6719   ins_encode %{
  6720     __ movl($dst$$Register, $mem$$Address);
  6721   %}
  6723   ins_pipe(ialu_reg_mem);
  6724 %}
  6726 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6727 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6728   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6730   ins_cost(125);
  6731   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6732   ins_encode %{
  6733     __ movsbl($dst$$Register, $mem$$Address);
  6734   %}
  6735   ins_pipe(ialu_reg_mem);
  6736 %}
  6738 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6739 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6740   match(Set dst (AndI (LoadI mem) mask));
  6742   ins_cost(125);
  6743   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6744   ins_encode %{
  6745     __ movzbl($dst$$Register, $mem$$Address);
  6746   %}
  6747   ins_pipe(ialu_reg_mem);
  6748 %}
  6750 // Load Integer (32 bit signed) to Short (16 bit signed)
  6751 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6752   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6754   ins_cost(125);
  6755   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6756   ins_encode %{
  6757     __ movswl($dst$$Register, $mem$$Address);
  6758   %}
  6759   ins_pipe(ialu_reg_mem);
  6760 %}
  6762 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6763 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6764   match(Set dst (AndI (LoadI mem) mask));
  6766   ins_cost(125);
  6767   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6768   ins_encode %{
  6769     __ movzwl($dst$$Register, $mem$$Address);
  6770   %}
  6771   ins_pipe(ialu_reg_mem);
  6772 %}
  6774 // Load Integer into Long Register
  6775 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6776   match(Set dst (ConvI2L (LoadI mem)));
  6777   effect(KILL cr);
  6779   ins_cost(375);
  6780   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6781             "MOV    $dst.hi,$dst.lo\n\t"
  6782             "SAR    $dst.hi,31" %}
  6784   ins_encode %{
  6785     __ movl($dst$$Register, $mem$$Address);
  6786     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6787     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6788   %}
  6790   ins_pipe(ialu_reg_mem);
  6791 %}
  6793 // Load Integer with mask 0xFF into Long Register
  6794 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6795   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6796   effect(KILL cr);
  6798   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6799             "XOR    $dst.hi,$dst.hi" %}
  6800   ins_encode %{
  6801     Register Rdst = $dst$$Register;
  6802     __ movzbl(Rdst, $mem$$Address);
  6803     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6804   %}
  6805   ins_pipe(ialu_reg_mem);
  6806 %}
  6808 // Load Integer with mask 0xFFFF into Long Register
  6809 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6810   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6811   effect(KILL cr);
  6813   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6814             "XOR    $dst.hi,$dst.hi" %}
  6815   ins_encode %{
  6816     Register Rdst = $dst$$Register;
  6817     __ movzwl(Rdst, $mem$$Address);
  6818     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6819   %}
  6820   ins_pipe(ialu_reg_mem);
  6821 %}
  6823 // Load Integer with 32-bit mask into Long Register
  6824 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6825   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6826   effect(KILL cr);
  6828   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6829             "XOR    $dst.hi,$dst.hi\n\t"
  6830             "AND    $dst.lo,$mask" %}
  6831   ins_encode %{
  6832     Register Rdst = $dst$$Register;
  6833     __ movl(Rdst, $mem$$Address);
  6834     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6835     __ andl(Rdst, $mask$$constant);
  6836   %}
  6837   ins_pipe(ialu_reg_mem);
  6838 %}
  6840 // Load Unsigned Integer into Long Register
  6841 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6842   match(Set dst (LoadUI2L mem));
  6843   effect(KILL cr);
  6845   ins_cost(250);
  6846   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6847             "XOR    $dst.hi,$dst.hi" %}
  6849   ins_encode %{
  6850     __ movl($dst$$Register, $mem$$Address);
  6851     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6852   %}
  6854   ins_pipe(ialu_reg_mem);
  6855 %}
  6857 // Load Long.  Cannot clobber address while loading, so restrict address
  6858 // register to ESI
  6859 instruct loadL(eRegL dst, load_long_memory mem) %{
  6860   predicate(!((LoadLNode*)n)->require_atomic_access());
  6861   match(Set dst (LoadL mem));
  6863   ins_cost(250);
  6864   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6865             "MOV    $dst.hi,$mem+4" %}
  6867   ins_encode %{
  6868     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6869     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6870     __ movl($dst$$Register, Amemlo);
  6871     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6872   %}
  6874   ins_pipe(ialu_reg_long_mem);
  6875 %}
  6877 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6878 // then store it down to the stack and reload on the int
  6879 // side.
  6880 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6881   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6882   match(Set dst (LoadL mem));
  6884   ins_cost(200);
  6885   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6886             "FISTp  $dst" %}
  6887   ins_encode(enc_loadL_volatile(mem,dst));
  6888   ins_pipe( fpu_reg_mem );
  6889 %}
  6891 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6892   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6893   match(Set dst (LoadL mem));
  6894   effect(TEMP tmp);
  6895   ins_cost(180);
  6896   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6897             "MOVSD  $dst,$tmp" %}
  6898   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6899   ins_pipe( pipe_slow );
  6900 %}
  6902 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6903   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6904   match(Set dst (LoadL mem));
  6905   effect(TEMP tmp);
  6906   ins_cost(160);
  6907   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6908             "MOVD   $dst.lo,$tmp\n\t"
  6909             "PSRLQ  $tmp,32\n\t"
  6910             "MOVD   $dst.hi,$tmp" %}
  6911   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6912   ins_pipe( pipe_slow );
  6913 %}
  6915 // Load Range
  6916 instruct loadRange(eRegI dst, memory mem) %{
  6917   match(Set dst (LoadRange mem));
  6919   ins_cost(125);
  6920   format %{ "MOV    $dst,$mem" %}
  6921   opcode(0x8B);
  6922   ins_encode( OpcP, RegMem(dst,mem));
  6923   ins_pipe( ialu_reg_mem );
  6924 %}
  6927 // Load Pointer
  6928 instruct loadP(eRegP dst, memory mem) %{
  6929   match(Set dst (LoadP mem));
  6931   ins_cost(125);
  6932   format %{ "MOV    $dst,$mem" %}
  6933   opcode(0x8B);
  6934   ins_encode( OpcP, RegMem(dst,mem));
  6935   ins_pipe( ialu_reg_mem );
  6936 %}
  6938 // Load Klass Pointer
  6939 instruct loadKlass(eRegP dst, memory mem) %{
  6940   match(Set dst (LoadKlass mem));
  6942   ins_cost(125);
  6943   format %{ "MOV    $dst,$mem" %}
  6944   opcode(0x8B);
  6945   ins_encode( OpcP, RegMem(dst,mem));
  6946   ins_pipe( ialu_reg_mem );
  6947 %}
  6949 // Load Double
  6950 instruct loadD(regD dst, memory mem) %{
  6951   predicate(UseSSE<=1);
  6952   match(Set dst (LoadD mem));
  6954   ins_cost(150);
  6955   format %{ "FLD_D  ST,$mem\n\t"
  6956             "FSTP   $dst" %}
  6957   opcode(0xDD);               /* DD /0 */
  6958   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6959               Pop_Reg_D(dst) );
  6960   ins_pipe( fpu_reg_mem );
  6961 %}
  6963 // Load Double to XMM
  6964 instruct loadXD(regXD dst, memory mem) %{
  6965   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6966   match(Set dst (LoadD mem));
  6967   ins_cost(145);
  6968   format %{ "MOVSD  $dst,$mem" %}
  6969   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6970   ins_pipe( pipe_slow );
  6971 %}
  6973 instruct loadXD_partial(regXD dst, memory mem) %{
  6974   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6975   match(Set dst (LoadD mem));
  6976   ins_cost(145);
  6977   format %{ "MOVLPD $dst,$mem" %}
  6978   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6979   ins_pipe( pipe_slow );
  6980 %}
  6982 // Load to XMM register (single-precision floating point)
  6983 // MOVSS instruction
  6984 instruct loadX(regX dst, memory mem) %{
  6985   predicate(UseSSE>=1);
  6986   match(Set dst (LoadF mem));
  6987   ins_cost(145);
  6988   format %{ "MOVSS  $dst,$mem" %}
  6989   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6990   ins_pipe( pipe_slow );
  6991 %}
  6993 // Load Float
  6994 instruct loadF(regF dst, memory mem) %{
  6995   predicate(UseSSE==0);
  6996   match(Set dst (LoadF mem));
  6998   ins_cost(150);
  6999   format %{ "FLD_S  ST,$mem\n\t"
  7000             "FSTP   $dst" %}
  7001   opcode(0xD9);               /* D9 /0 */
  7002   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7003               Pop_Reg_F(dst) );
  7004   ins_pipe( fpu_reg_mem );
  7005 %}
  7007 // Load Aligned Packed Byte to XMM register
  7008 instruct loadA8B(regXD dst, memory mem) %{
  7009   predicate(UseSSE>=1);
  7010   match(Set dst (Load8B mem));
  7011   ins_cost(125);
  7012   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  7013   ins_encode( movq_ld(dst, mem));
  7014   ins_pipe( pipe_slow );
  7015 %}
  7017 // Load Aligned Packed Short to XMM register
  7018 instruct loadA4S(regXD dst, memory mem) %{
  7019   predicate(UseSSE>=1);
  7020   match(Set dst (Load4S mem));
  7021   ins_cost(125);
  7022   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  7023   ins_encode( movq_ld(dst, mem));
  7024   ins_pipe( pipe_slow );
  7025 %}
  7027 // Load Aligned Packed Char to XMM register
  7028 instruct loadA4C(regXD dst, memory mem) %{
  7029   predicate(UseSSE>=1);
  7030   match(Set dst (Load4C mem));
  7031   ins_cost(125);
  7032   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7033   ins_encode( movq_ld(dst, mem));
  7034   ins_pipe( pipe_slow );
  7035 %}
  7037 // Load Aligned Packed Integer to XMM register
  7038 instruct load2IU(regXD dst, memory mem) %{
  7039   predicate(UseSSE>=1);
  7040   match(Set dst (Load2I mem));
  7041   ins_cost(125);
  7042   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7043   ins_encode( movq_ld(dst, mem));
  7044   ins_pipe( pipe_slow );
  7045 %}
  7047 // Load Aligned Packed Single to XMM
  7048 instruct loadA2F(regXD dst, memory mem) %{
  7049   predicate(UseSSE>=1);
  7050   match(Set dst (Load2F mem));
  7051   ins_cost(145);
  7052   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7053   ins_encode( movq_ld(dst, mem));
  7054   ins_pipe( pipe_slow );
  7055 %}
  7057 // Load Effective Address
  7058 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7059   match(Set dst mem);
  7061   ins_cost(110);
  7062   format %{ "LEA    $dst,$mem" %}
  7063   opcode(0x8D);
  7064   ins_encode( OpcP, RegMem(dst,mem));
  7065   ins_pipe( ialu_reg_reg_fat );
  7066 %}
  7068 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7069   match(Set dst mem);
  7071   ins_cost(110);
  7072   format %{ "LEA    $dst,$mem" %}
  7073   opcode(0x8D);
  7074   ins_encode( OpcP, RegMem(dst,mem));
  7075   ins_pipe( ialu_reg_reg_fat );
  7076 %}
  7078 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7079   match(Set dst mem);
  7081   ins_cost(110);
  7082   format %{ "LEA    $dst,$mem" %}
  7083   opcode(0x8D);
  7084   ins_encode( OpcP, RegMem(dst,mem));
  7085   ins_pipe( ialu_reg_reg_fat );
  7086 %}
  7088 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7089   match(Set dst mem);
  7091   ins_cost(110);
  7092   format %{ "LEA    $dst,$mem" %}
  7093   opcode(0x8D);
  7094   ins_encode( OpcP, RegMem(dst,mem));
  7095   ins_pipe( ialu_reg_reg_fat );
  7096 %}
  7098 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7099   match(Set dst mem);
  7101   ins_cost(110);
  7102   format %{ "LEA    $dst,$mem" %}
  7103   opcode(0x8D);
  7104   ins_encode( OpcP, RegMem(dst,mem));
  7105   ins_pipe( ialu_reg_reg_fat );
  7106 %}
  7108 // Load Constant
  7109 instruct loadConI(eRegI dst, immI src) %{
  7110   match(Set dst src);
  7112   format %{ "MOV    $dst,$src" %}
  7113   ins_encode( LdImmI(dst, src) );
  7114   ins_pipe( ialu_reg_fat );
  7115 %}
  7117 // Load Constant zero
  7118 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7119   match(Set dst src);
  7120   effect(KILL cr);
  7122   ins_cost(50);
  7123   format %{ "XOR    $dst,$dst" %}
  7124   opcode(0x33);  /* + rd */
  7125   ins_encode( OpcP, RegReg( dst, dst ) );
  7126   ins_pipe( ialu_reg );
  7127 %}
  7129 instruct loadConP(eRegP dst, immP src) %{
  7130   match(Set dst src);
  7132   format %{ "MOV    $dst,$src" %}
  7133   opcode(0xB8);  /* + rd */
  7134   ins_encode( LdImmP(dst, src) );
  7135   ins_pipe( ialu_reg_fat );
  7136 %}
  7138 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7139   match(Set dst src);
  7140   effect(KILL cr);
  7141   ins_cost(200);
  7142   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7143             "MOV    $dst.hi,$src.hi" %}
  7144   opcode(0xB8);
  7145   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7146   ins_pipe( ialu_reg_long_fat );
  7147 %}
  7149 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7150   match(Set dst src);
  7151   effect(KILL cr);
  7152   ins_cost(150);
  7153   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7154             "XOR    $dst.hi,$dst.hi" %}
  7155   opcode(0x33,0x33);
  7156   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7157   ins_pipe( ialu_reg_long );
  7158 %}
  7160 // The instruction usage is guarded by predicate in operand immF().
  7161 instruct loadConF(regF dst, immF src) %{
  7162   match(Set dst src);
  7163   ins_cost(125);
  7165   format %{ "FLD_S  ST,$src\n\t"
  7166             "FSTP   $dst" %}
  7167   opcode(0xD9, 0x00);       /* D9 /0 */
  7168   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7169   ins_pipe( fpu_reg_con );
  7170 %}
  7172 // The instruction usage is guarded by predicate in operand immXF().
  7173 instruct loadConX(regX dst, immXF con) %{
  7174   match(Set dst con);
  7175   ins_cost(125);
  7176   format %{ "MOVSS  $dst,[$con]" %}
  7177   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7178   ins_pipe( pipe_slow );
  7179 %}
  7181 // The instruction usage is guarded by predicate in operand immXF0().
  7182 instruct loadConX0(regX dst, immXF0 src) %{
  7183   match(Set dst src);
  7184   ins_cost(100);
  7185   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7186   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7187   ins_pipe( pipe_slow );
  7188 %}
  7190 // The instruction usage is guarded by predicate in operand immD().
  7191 instruct loadConD(regD dst, immD src) %{
  7192   match(Set dst src);
  7193   ins_cost(125);
  7195   format %{ "FLD_D  ST,$src\n\t"
  7196             "FSTP   $dst" %}
  7197   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7198   ins_pipe( fpu_reg_con );
  7199 %}
  7201 // The instruction usage is guarded by predicate in operand immXD().
  7202 instruct loadConXD(regXD dst, immXD con) %{
  7203   match(Set dst con);
  7204   ins_cost(125);
  7205   format %{ "MOVSD  $dst,[$con]" %}
  7206   ins_encode(load_conXD(dst, con));
  7207   ins_pipe( pipe_slow );
  7208 %}
  7210 // The instruction usage is guarded by predicate in operand immXD0().
  7211 instruct loadConXD0(regXD dst, immXD0 src) %{
  7212   match(Set dst src);
  7213   ins_cost(100);
  7214   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7215   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7216   ins_pipe( pipe_slow );
  7217 %}
  7219 // Load Stack Slot
  7220 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7221   match(Set dst src);
  7222   ins_cost(125);
  7224   format %{ "MOV    $dst,$src" %}
  7225   opcode(0x8B);
  7226   ins_encode( OpcP, RegMem(dst,src));
  7227   ins_pipe( ialu_reg_mem );
  7228 %}
  7230 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7231   match(Set dst src);
  7233   ins_cost(200);
  7234   format %{ "MOV    $dst,$src.lo\n\t"
  7235             "MOV    $dst+4,$src.hi" %}
  7236   opcode(0x8B, 0x8B);
  7237   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7238   ins_pipe( ialu_mem_long_reg );
  7239 %}
  7241 // Load Stack Slot
  7242 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7243   match(Set dst src);
  7244   ins_cost(125);
  7246   format %{ "MOV    $dst,$src" %}
  7247   opcode(0x8B);
  7248   ins_encode( OpcP, RegMem(dst,src));
  7249   ins_pipe( ialu_reg_mem );
  7250 %}
  7252 // Load Stack Slot
  7253 instruct loadSSF(regF dst, stackSlotF src) %{
  7254   match(Set dst src);
  7255   ins_cost(125);
  7257   format %{ "FLD_S  $src\n\t"
  7258             "FSTP   $dst" %}
  7259   opcode(0xD9);               /* D9 /0, FLD m32real */
  7260   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7261               Pop_Reg_F(dst) );
  7262   ins_pipe( fpu_reg_mem );
  7263 %}
  7265 // Load Stack Slot
  7266 instruct loadSSD(regD dst, stackSlotD src) %{
  7267   match(Set dst src);
  7268   ins_cost(125);
  7270   format %{ "FLD_D  $src\n\t"
  7271             "FSTP   $dst" %}
  7272   opcode(0xDD);               /* DD /0, FLD m64real */
  7273   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7274               Pop_Reg_D(dst) );
  7275   ins_pipe( fpu_reg_mem );
  7276 %}
  7278 // Prefetch instructions.
  7279 // Must be safe to execute with invalid address (cannot fault).
  7281 instruct prefetchr0( memory mem ) %{
  7282   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7283   match(PrefetchRead mem);
  7284   ins_cost(0);
  7285   size(0);
  7286   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7287   ins_encode();
  7288   ins_pipe(empty);
  7289 %}
  7291 instruct prefetchr( memory mem ) %{
  7292   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7293   match(PrefetchRead mem);
  7294   ins_cost(100);
  7296   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7297   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7298   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7299   ins_pipe(ialu_mem);
  7300 %}
  7302 instruct prefetchrNTA( memory mem ) %{
  7303   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7304   match(PrefetchRead mem);
  7305   ins_cost(100);
  7307   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7308   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7309   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7310   ins_pipe(ialu_mem);
  7311 %}
  7313 instruct prefetchrT0( memory mem ) %{
  7314   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7315   match(PrefetchRead mem);
  7316   ins_cost(100);
  7318   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7319   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7320   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7321   ins_pipe(ialu_mem);
  7322 %}
  7324 instruct prefetchrT2( memory mem ) %{
  7325   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7326   match(PrefetchRead mem);
  7327   ins_cost(100);
  7329   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7330   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7331   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7332   ins_pipe(ialu_mem);
  7333 %}
  7335 instruct prefetchw0( memory mem ) %{
  7336   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7337   match(PrefetchWrite mem);
  7338   ins_cost(0);
  7339   size(0);
  7340   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7341   ins_encode();
  7342   ins_pipe(empty);
  7343 %}
  7345 instruct prefetchw( memory mem ) %{
  7346   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7347   match( PrefetchWrite mem );
  7348   ins_cost(100);
  7350   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7351   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7352   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7353   ins_pipe(ialu_mem);
  7354 %}
  7356 instruct prefetchwNTA( memory mem ) %{
  7357   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7358   match(PrefetchWrite mem);
  7359   ins_cost(100);
  7361   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7362   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7363   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7364   ins_pipe(ialu_mem);
  7365 %}
  7367 instruct prefetchwT0( memory mem ) %{
  7368   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7369   match(PrefetchWrite mem);
  7370   ins_cost(100);
  7372   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7373   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7374   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7375   ins_pipe(ialu_mem);
  7376 %}
  7378 instruct prefetchwT2( memory mem ) %{
  7379   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7380   match(PrefetchWrite mem);
  7381   ins_cost(100);
  7383   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7384   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7385   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7386   ins_pipe(ialu_mem);
  7387 %}
  7389 //----------Store Instructions-------------------------------------------------
  7391 // Store Byte
  7392 instruct storeB(memory mem, xRegI src) %{
  7393   match(Set mem (StoreB mem src));
  7395   ins_cost(125);
  7396   format %{ "MOV8   $mem,$src" %}
  7397   opcode(0x88);
  7398   ins_encode( OpcP, RegMem( src, mem ) );
  7399   ins_pipe( ialu_mem_reg );
  7400 %}
  7402 // Store Char/Short
  7403 instruct storeC(memory mem, eRegI src) %{
  7404   match(Set mem (StoreC mem src));
  7406   ins_cost(125);
  7407   format %{ "MOV16  $mem,$src" %}
  7408   opcode(0x89, 0x66);
  7409   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7410   ins_pipe( ialu_mem_reg );
  7411 %}
  7413 // Store Integer
  7414 instruct storeI(memory mem, eRegI src) %{
  7415   match(Set mem (StoreI mem src));
  7417   ins_cost(125);
  7418   format %{ "MOV    $mem,$src" %}
  7419   opcode(0x89);
  7420   ins_encode( OpcP, RegMem( src, mem ) );
  7421   ins_pipe( ialu_mem_reg );
  7422 %}
  7424 // Store Long
  7425 instruct storeL(long_memory mem, eRegL src) %{
  7426   predicate(!((StoreLNode*)n)->require_atomic_access());
  7427   match(Set mem (StoreL mem src));
  7429   ins_cost(200);
  7430   format %{ "MOV    $mem,$src.lo\n\t"
  7431             "MOV    $mem+4,$src.hi" %}
  7432   opcode(0x89, 0x89);
  7433   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7434   ins_pipe( ialu_mem_long_reg );
  7435 %}
  7437 // Store Long to Integer
  7438 instruct storeL2I(memory mem, eRegL src) %{
  7439   match(Set mem (StoreI mem (ConvL2I src)));
  7441   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7442   ins_encode %{
  7443     __ movl($mem$$Address, $src$$Register);
  7444   %}
  7445   ins_pipe(ialu_mem_reg);
  7446 %}
  7448 // Volatile Store Long.  Must be atomic, so move it into
  7449 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7450 // target address before the store (for null-ptr checks)
  7451 // so the memory operand is used twice in the encoding.
  7452 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7453   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7454   match(Set mem (StoreL mem src));
  7455   effect( KILL cr );
  7456   ins_cost(400);
  7457   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7458             "FILD   $src\n\t"
  7459             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7460   opcode(0x3B);
  7461   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7462   ins_pipe( fpu_reg_mem );
  7463 %}
  7465 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7466   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7467   match(Set mem (StoreL mem src));
  7468   effect( TEMP tmp, KILL cr );
  7469   ins_cost(380);
  7470   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7471             "MOVSD  $tmp,$src\n\t"
  7472             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7473   opcode(0x3B);
  7474   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7475   ins_pipe( pipe_slow );
  7476 %}
  7478 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7479   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7480   match(Set mem (StoreL mem src));
  7481   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7482   ins_cost(360);
  7483   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7484             "MOVD   $tmp,$src.lo\n\t"
  7485             "MOVD   $tmp2,$src.hi\n\t"
  7486             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7487             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7488   opcode(0x3B);
  7489   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7490   ins_pipe( pipe_slow );
  7491 %}
  7493 // Store Pointer; for storing unknown oops and raw pointers
  7494 instruct storeP(memory mem, anyRegP src) %{
  7495   match(Set mem (StoreP mem src));
  7497   ins_cost(125);
  7498   format %{ "MOV    $mem,$src" %}
  7499   opcode(0x89);
  7500   ins_encode( OpcP, RegMem( src, mem ) );
  7501   ins_pipe( ialu_mem_reg );
  7502 %}
  7504 // Store Integer Immediate
  7505 instruct storeImmI(memory mem, immI src) %{
  7506   match(Set mem (StoreI mem src));
  7508   ins_cost(150);
  7509   format %{ "MOV    $mem,$src" %}
  7510   opcode(0xC7);               /* C7 /0 */
  7511   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7512   ins_pipe( ialu_mem_imm );
  7513 %}
  7515 // Store Short/Char Immediate
  7516 instruct storeImmI16(memory mem, immI16 src) %{
  7517   predicate(UseStoreImmI16);
  7518   match(Set mem (StoreC mem src));
  7520   ins_cost(150);
  7521   format %{ "MOV16  $mem,$src" %}
  7522   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7523   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7524   ins_pipe( ialu_mem_imm );
  7525 %}
  7527 // Store Pointer Immediate; null pointers or constant oops that do not
  7528 // need card-mark barriers.
  7529 instruct storeImmP(memory mem, immP src) %{
  7530   match(Set mem (StoreP mem src));
  7532   ins_cost(150);
  7533   format %{ "MOV    $mem,$src" %}
  7534   opcode(0xC7);               /* C7 /0 */
  7535   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7536   ins_pipe( ialu_mem_imm );
  7537 %}
  7539 // Store Byte Immediate
  7540 instruct storeImmB(memory mem, immI8 src) %{
  7541   match(Set mem (StoreB mem src));
  7543   ins_cost(150);
  7544   format %{ "MOV8   $mem,$src" %}
  7545   opcode(0xC6);               /* C6 /0 */
  7546   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7547   ins_pipe( ialu_mem_imm );
  7548 %}
  7550 // Store Aligned Packed Byte XMM register to memory
  7551 instruct storeA8B(memory mem, regXD src) %{
  7552   predicate(UseSSE>=1);
  7553   match(Set mem (Store8B mem src));
  7554   ins_cost(145);
  7555   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7556   ins_encode( movq_st(mem, src));
  7557   ins_pipe( pipe_slow );
  7558 %}
  7560 // Store Aligned Packed Char/Short XMM register to memory
  7561 instruct storeA4C(memory mem, regXD src) %{
  7562   predicate(UseSSE>=1);
  7563   match(Set mem (Store4C mem src));
  7564   ins_cost(145);
  7565   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7566   ins_encode( movq_st(mem, src));
  7567   ins_pipe( pipe_slow );
  7568 %}
  7570 // Store Aligned Packed Integer XMM register to memory
  7571 instruct storeA2I(memory mem, regXD src) %{
  7572   predicate(UseSSE>=1);
  7573   match(Set mem (Store2I mem src));
  7574   ins_cost(145);
  7575   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7576   ins_encode( movq_st(mem, src));
  7577   ins_pipe( pipe_slow );
  7578 %}
  7580 // Store CMS card-mark Immediate
  7581 instruct storeImmCM(memory mem, immI8 src) %{
  7582   match(Set mem (StoreCM mem src));
  7584   ins_cost(150);
  7585   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7586   opcode(0xC6);               /* C6 /0 */
  7587   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7588   ins_pipe( ialu_mem_imm );
  7589 %}
  7591 // Store Double
  7592 instruct storeD( memory mem, regDPR1 src) %{
  7593   predicate(UseSSE<=1);
  7594   match(Set mem (StoreD mem src));
  7596   ins_cost(100);
  7597   format %{ "FST_D  $mem,$src" %}
  7598   opcode(0xDD);       /* DD /2 */
  7599   ins_encode( enc_FP_store(mem,src) );
  7600   ins_pipe( fpu_mem_reg );
  7601 %}
  7603 // Store double does rounding on x86
  7604 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7605   predicate(UseSSE<=1);
  7606   match(Set mem (StoreD mem (RoundDouble src)));
  7608   ins_cost(100);
  7609   format %{ "FST_D  $mem,$src\t# round" %}
  7610   opcode(0xDD);       /* DD /2 */
  7611   ins_encode( enc_FP_store(mem,src) );
  7612   ins_pipe( fpu_mem_reg );
  7613 %}
  7615 // Store XMM register to memory (double-precision floating points)
  7616 // MOVSD instruction
  7617 instruct storeXD(memory mem, regXD src) %{
  7618   predicate(UseSSE>=2);
  7619   match(Set mem (StoreD mem src));
  7620   ins_cost(95);
  7621   format %{ "MOVSD  $mem,$src" %}
  7622   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7623   ins_pipe( pipe_slow );
  7624 %}
  7626 // Store XMM register to memory (single-precision floating point)
  7627 // MOVSS instruction
  7628 instruct storeX(memory mem, regX src) %{
  7629   predicate(UseSSE>=1);
  7630   match(Set mem (StoreF mem src));
  7631   ins_cost(95);
  7632   format %{ "MOVSS  $mem,$src" %}
  7633   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7634   ins_pipe( pipe_slow );
  7635 %}
  7637 // Store Aligned Packed Single Float XMM register to memory
  7638 instruct storeA2F(memory mem, regXD src) %{
  7639   predicate(UseSSE>=1);
  7640   match(Set mem (Store2F mem src));
  7641   ins_cost(145);
  7642   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7643   ins_encode( movq_st(mem, src));
  7644   ins_pipe( pipe_slow );
  7645 %}
  7647 // Store Float
  7648 instruct storeF( memory mem, regFPR1 src) %{
  7649   predicate(UseSSE==0);
  7650   match(Set mem (StoreF mem src));
  7652   ins_cost(100);
  7653   format %{ "FST_S  $mem,$src" %}
  7654   opcode(0xD9);       /* D9 /2 */
  7655   ins_encode( enc_FP_store(mem,src) );
  7656   ins_pipe( fpu_mem_reg );
  7657 %}
  7659 // Store Float does rounding on x86
  7660 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7661   predicate(UseSSE==0);
  7662   match(Set mem (StoreF mem (RoundFloat src)));
  7664   ins_cost(100);
  7665   format %{ "FST_S  $mem,$src\t# round" %}
  7666   opcode(0xD9);       /* D9 /2 */
  7667   ins_encode( enc_FP_store(mem,src) );
  7668   ins_pipe( fpu_mem_reg );
  7669 %}
  7671 // Store Float does rounding on x86
  7672 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7673   predicate(UseSSE<=1);
  7674   match(Set mem (StoreF mem (ConvD2F src)));
  7676   ins_cost(100);
  7677   format %{ "FST_S  $mem,$src\t# D-round" %}
  7678   opcode(0xD9);       /* D9 /2 */
  7679   ins_encode( enc_FP_store(mem,src) );
  7680   ins_pipe( fpu_mem_reg );
  7681 %}
  7683 // Store immediate Float value (it is faster than store from FPU register)
  7684 // The instruction usage is guarded by predicate in operand immF().
  7685 instruct storeF_imm( memory mem, immF src) %{
  7686   match(Set mem (StoreF mem src));
  7688   ins_cost(50);
  7689   format %{ "MOV    $mem,$src\t# store float" %}
  7690   opcode(0xC7);               /* C7 /0 */
  7691   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7692   ins_pipe( ialu_mem_imm );
  7693 %}
  7695 // Store immediate Float value (it is faster than store from XMM register)
  7696 // The instruction usage is guarded by predicate in operand immXF().
  7697 instruct storeX_imm( memory mem, immXF src) %{
  7698   match(Set mem (StoreF mem src));
  7700   ins_cost(50);
  7701   format %{ "MOV    $mem,$src\t# store float" %}
  7702   opcode(0xC7);               /* C7 /0 */
  7703   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7704   ins_pipe( ialu_mem_imm );
  7705 %}
  7707 // Store Integer to stack slot
  7708 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7709   match(Set dst src);
  7711   ins_cost(100);
  7712   format %{ "MOV    $dst,$src" %}
  7713   opcode(0x89);
  7714   ins_encode( OpcPRegSS( dst, src ) );
  7715   ins_pipe( ialu_mem_reg );
  7716 %}
  7718 // Store Integer to stack slot
  7719 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7720   match(Set dst src);
  7722   ins_cost(100);
  7723   format %{ "MOV    $dst,$src" %}
  7724   opcode(0x89);
  7725   ins_encode( OpcPRegSS( dst, src ) );
  7726   ins_pipe( ialu_mem_reg );
  7727 %}
  7729 // Store Long to stack slot
  7730 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7731   match(Set dst src);
  7733   ins_cost(200);
  7734   format %{ "MOV    $dst,$src.lo\n\t"
  7735             "MOV    $dst+4,$src.hi" %}
  7736   opcode(0x89, 0x89);
  7737   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7738   ins_pipe( ialu_mem_long_reg );
  7739 %}
  7741 //----------MemBar Instructions-----------------------------------------------
  7742 // Memory barrier flavors
  7744 instruct membar_acquire() %{
  7745   match(MemBarAcquire);
  7746   ins_cost(400);
  7748   size(0);
  7749   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7750   ins_encode();
  7751   ins_pipe(empty);
  7752 %}
  7754 instruct membar_acquire_lock() %{
  7755   match(MemBarAcquire);
  7756   predicate(Matcher::prior_fast_lock(n));
  7757   ins_cost(0);
  7759   size(0);
  7760   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7761   ins_encode( );
  7762   ins_pipe(empty);
  7763 %}
  7765 instruct membar_release() %{
  7766   match(MemBarRelease);
  7767   ins_cost(400);
  7769   size(0);
  7770   format %{ "MEMBAR-release ! (empty encoding)" %}
  7771   ins_encode( );
  7772   ins_pipe(empty);
  7773 %}
  7775 instruct membar_release_lock() %{
  7776   match(MemBarRelease);
  7777   predicate(Matcher::post_fast_unlock(n));
  7778   ins_cost(0);
  7780   size(0);
  7781   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7782   ins_encode( );
  7783   ins_pipe(empty);
  7784 %}
  7786 instruct membar_volatile(eFlagsReg cr) %{
  7787   match(MemBarVolatile);
  7788   effect(KILL cr);
  7789   ins_cost(400);
  7791   format %{ 
  7792     $$template
  7793     if (os::is_MP()) {
  7794       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7795     } else {
  7796       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7798   %}
  7799   ins_encode %{
  7800     __ membar(Assembler::StoreLoad);
  7801   %}
  7802   ins_pipe(pipe_slow);
  7803 %}
  7805 instruct unnecessary_membar_volatile() %{
  7806   match(MemBarVolatile);
  7807   predicate(Matcher::post_store_load_barrier(n));
  7808   ins_cost(0);
  7810   size(0);
  7811   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7812   ins_encode( );
  7813   ins_pipe(empty);
  7814 %}
  7816 //----------Move Instructions--------------------------------------------------
  7817 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7818   match(Set dst (CastX2P src));
  7819   format %{ "# X2P  $dst, $src" %}
  7820   ins_encode( /*empty encoding*/ );
  7821   ins_cost(0);
  7822   ins_pipe(empty);
  7823 %}
  7825 instruct castP2X(eRegI dst, eRegP src ) %{
  7826   match(Set dst (CastP2X src));
  7827   ins_cost(50);
  7828   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7829   ins_encode( enc_Copy( dst, src) );
  7830   ins_pipe( ialu_reg_reg );
  7831 %}
  7833 //----------Conditional Move---------------------------------------------------
  7834 // Conditional move
  7835 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7836   predicate(VM_Version::supports_cmov() );
  7837   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7838   ins_cost(200);
  7839   format %{ "CMOV$cop $dst,$src" %}
  7840   opcode(0x0F,0x40);
  7841   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7842   ins_pipe( pipe_cmov_reg );
  7843 %}
  7845 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7846   predicate(VM_Version::supports_cmov() );
  7847   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7848   ins_cost(200);
  7849   format %{ "CMOV$cop $dst,$src" %}
  7850   opcode(0x0F,0x40);
  7851   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7852   ins_pipe( pipe_cmov_reg );
  7853 %}
  7855 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7856   predicate(VM_Version::supports_cmov() );
  7857   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7858   ins_cost(200);
  7859   expand %{
  7860     cmovI_regU(cop, cr, dst, src);
  7861   %}
  7862 %}
  7864 // Conditional move
  7865 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7866   predicate(VM_Version::supports_cmov() );
  7867   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7868   ins_cost(250);
  7869   format %{ "CMOV$cop $dst,$src" %}
  7870   opcode(0x0F,0x40);
  7871   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7872   ins_pipe( pipe_cmov_mem );
  7873 %}
  7875 // Conditional move
  7876 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7877   predicate(VM_Version::supports_cmov() );
  7878   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7879   ins_cost(250);
  7880   format %{ "CMOV$cop $dst,$src" %}
  7881   opcode(0x0F,0x40);
  7882   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7883   ins_pipe( pipe_cmov_mem );
  7884 %}
  7886 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7887   predicate(VM_Version::supports_cmov() );
  7888   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7889   ins_cost(250);
  7890   expand %{
  7891     cmovI_memU(cop, cr, dst, src);
  7892   %}
  7893 %}
  7895 // Conditional move
  7896 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7897   predicate(VM_Version::supports_cmov() );
  7898   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7899   ins_cost(200);
  7900   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7901   opcode(0x0F,0x40);
  7902   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7903   ins_pipe( pipe_cmov_reg );
  7904 %}
  7906 // Conditional move (non-P6 version)
  7907 // Note:  a CMoveP is generated for  stubs and native wrappers
  7908 //        regardless of whether we are on a P6, so we
  7909 //        emulate a cmov here
  7910 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7911   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7912   ins_cost(300);
  7913   format %{ "Jn$cop   skip\n\t"
  7914           "MOV    $dst,$src\t# pointer\n"
  7915       "skip:" %}
  7916   opcode(0x8b);
  7917   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7918   ins_pipe( pipe_cmov_reg );
  7919 %}
  7921 // Conditional move
  7922 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7923   predicate(VM_Version::supports_cmov() );
  7924   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7925   ins_cost(200);
  7926   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7927   opcode(0x0F,0x40);
  7928   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7929   ins_pipe( pipe_cmov_reg );
  7930 %}
  7932 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7933   predicate(VM_Version::supports_cmov() );
  7934   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7935   ins_cost(200);
  7936   expand %{
  7937     cmovP_regU(cop, cr, dst, src);
  7938   %}
  7939 %}
  7941 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7942 // correctly meets the two pointer arguments; one is an incoming
  7943 // register but the other is a memory operand.  ALSO appears to
  7944 // be buggy with implicit null checks.
  7945 //
  7946 //// Conditional move
  7947 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7948 //  predicate(VM_Version::supports_cmov() );
  7949 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7950 //  ins_cost(250);
  7951 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7952 //  opcode(0x0F,0x40);
  7953 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7954 //  ins_pipe( pipe_cmov_mem );
  7955 //%}
  7956 //
  7957 //// Conditional move
  7958 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7959 //  predicate(VM_Version::supports_cmov() );
  7960 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7961 //  ins_cost(250);
  7962 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7963 //  opcode(0x0F,0x40);
  7964 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7965 //  ins_pipe( pipe_cmov_mem );
  7966 //%}
  7968 // Conditional move
  7969 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7970   predicate(UseSSE<=1);
  7971   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7972   ins_cost(200);
  7973   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7974   opcode(0xDA);
  7975   ins_encode( enc_cmov_d(cop,src) );
  7976   ins_pipe( pipe_cmovD_reg );
  7977 %}
  7979 // Conditional move
  7980 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  7981   predicate(UseSSE==0);
  7982   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7983   ins_cost(200);
  7984   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7985   opcode(0xDA);
  7986   ins_encode( enc_cmov_d(cop,src) );
  7987   ins_pipe( pipe_cmovD_reg );
  7988 %}
  7990 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7991 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7992   predicate(UseSSE<=1);
  7993   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7994   ins_cost(200);
  7995   format %{ "Jn$cop   skip\n\t"
  7996             "MOV    $dst,$src\t# double\n"
  7997       "skip:" %}
  7998   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7999   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8000   ins_pipe( pipe_cmovD_reg );
  8001 %}
  8003 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8004 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8005   predicate(UseSSE==0);
  8006   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8007   ins_cost(200);
  8008   format %{ "Jn$cop    skip\n\t"
  8009             "MOV    $dst,$src\t# float\n"
  8010       "skip:" %}
  8011   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8012   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8013   ins_pipe( pipe_cmovD_reg );
  8014 %}
  8016 // No CMOVE with SSE/SSE2
  8017 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8018   predicate (UseSSE>=1);
  8019   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8020   ins_cost(200);
  8021   format %{ "Jn$cop   skip\n\t"
  8022             "MOVSS  $dst,$src\t# float\n"
  8023       "skip:" %}
  8024   ins_encode %{
  8025     Label skip;
  8026     // Invert sense of branch from sense of CMOV
  8027     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8028     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8029     __ bind(skip);
  8030   %}
  8031   ins_pipe( pipe_slow );
  8032 %}
  8034 // No CMOVE with SSE/SSE2
  8035 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8036   predicate (UseSSE>=2);
  8037   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8038   ins_cost(200);
  8039   format %{ "Jn$cop   skip\n\t"
  8040             "MOVSD  $dst,$src\t# float\n"
  8041       "skip:" %}
  8042   ins_encode %{
  8043     Label skip;
  8044     // Invert sense of branch from sense of CMOV
  8045     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8046     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8047     __ bind(skip);
  8048   %}
  8049   ins_pipe( pipe_slow );
  8050 %}
  8052 // unsigned version
  8053 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8054   predicate (UseSSE>=1);
  8055   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8056   ins_cost(200);
  8057   format %{ "Jn$cop   skip\n\t"
  8058             "MOVSS  $dst,$src\t# float\n"
  8059       "skip:" %}
  8060   ins_encode %{
  8061     Label skip;
  8062     // Invert sense of branch from sense of CMOV
  8063     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8064     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8065     __ bind(skip);
  8066   %}
  8067   ins_pipe( pipe_slow );
  8068 %}
  8070 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8071   predicate (UseSSE>=1);
  8072   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8073   ins_cost(200);
  8074   expand %{
  8075     fcmovX_regU(cop, cr, dst, src);
  8076   %}
  8077 %}
  8079 // unsigned version
  8080 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8081   predicate (UseSSE>=2);
  8082   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8083   ins_cost(200);
  8084   format %{ "Jn$cop   skip\n\t"
  8085             "MOVSD  $dst,$src\t# float\n"
  8086       "skip:" %}
  8087   ins_encode %{
  8088     Label skip;
  8089     // Invert sense of branch from sense of CMOV
  8090     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8091     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8092     __ bind(skip);
  8093   %}
  8094   ins_pipe( pipe_slow );
  8095 %}
  8097 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8098   predicate (UseSSE>=2);
  8099   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8100   ins_cost(200);
  8101   expand %{
  8102     fcmovXD_regU(cop, cr, dst, src);
  8103   %}
  8104 %}
  8106 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8107   predicate(VM_Version::supports_cmov() );
  8108   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8109   ins_cost(200);
  8110   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8111             "CMOV$cop $dst.hi,$src.hi" %}
  8112   opcode(0x0F,0x40);
  8113   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8114   ins_pipe( pipe_cmov_reg_long );
  8115 %}
  8117 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8118   predicate(VM_Version::supports_cmov() );
  8119   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8120   ins_cost(200);
  8121   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8122             "CMOV$cop $dst.hi,$src.hi" %}
  8123   opcode(0x0F,0x40);
  8124   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8125   ins_pipe( pipe_cmov_reg_long );
  8126 %}
  8128 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8129   predicate(VM_Version::supports_cmov() );
  8130   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8131   ins_cost(200);
  8132   expand %{
  8133     cmovL_regU(cop, cr, dst, src);
  8134   %}
  8135 %}
  8137 //----------Arithmetic Instructions--------------------------------------------
  8138 //----------Addition Instructions----------------------------------------------
  8139 // Integer Addition Instructions
  8140 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8141   match(Set dst (AddI dst src));
  8142   effect(KILL cr);
  8144   size(2);
  8145   format %{ "ADD    $dst,$src" %}
  8146   opcode(0x03);
  8147   ins_encode( OpcP, RegReg( dst, src) );
  8148   ins_pipe( ialu_reg_reg );
  8149 %}
  8151 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8152   match(Set dst (AddI dst src));
  8153   effect(KILL cr);
  8155   format %{ "ADD    $dst,$src" %}
  8156   opcode(0x81, 0x00); /* /0 id */
  8157   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8158   ins_pipe( ialu_reg );
  8159 %}
  8161 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8162   predicate(UseIncDec);
  8163   match(Set dst (AddI dst src));
  8164   effect(KILL cr);
  8166   size(1);
  8167   format %{ "INC    $dst" %}
  8168   opcode(0x40); /*  */
  8169   ins_encode( Opc_plus( primary, dst ) );
  8170   ins_pipe( ialu_reg );
  8171 %}
  8173 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8174   match(Set dst (AddI src0 src1));
  8175   ins_cost(110);
  8177   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8178   opcode(0x8D); /* 0x8D /r */
  8179   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8180   ins_pipe( ialu_reg_reg );
  8181 %}
  8183 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8184   match(Set dst (AddP src0 src1));
  8185   ins_cost(110);
  8187   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8188   opcode(0x8D); /* 0x8D /r */
  8189   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8190   ins_pipe( ialu_reg_reg );
  8191 %}
  8193 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8194   predicate(UseIncDec);
  8195   match(Set dst (AddI dst src));
  8196   effect(KILL cr);
  8198   size(1);
  8199   format %{ "DEC    $dst" %}
  8200   opcode(0x48); /*  */
  8201   ins_encode( Opc_plus( primary, dst ) );
  8202   ins_pipe( ialu_reg );
  8203 %}
  8205 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8206   match(Set dst (AddP dst src));
  8207   effect(KILL cr);
  8209   size(2);
  8210   format %{ "ADD    $dst,$src" %}
  8211   opcode(0x03);
  8212   ins_encode( OpcP, RegReg( dst, src) );
  8213   ins_pipe( ialu_reg_reg );
  8214 %}
  8216 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8217   match(Set dst (AddP dst src));
  8218   effect(KILL cr);
  8220   format %{ "ADD    $dst,$src" %}
  8221   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8222   // ins_encode( RegImm( dst, src) );
  8223   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8224   ins_pipe( ialu_reg );
  8225 %}
  8227 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8228   match(Set dst (AddI dst (LoadI src)));
  8229   effect(KILL cr);
  8231   ins_cost(125);
  8232   format %{ "ADD    $dst,$src" %}
  8233   opcode(0x03);
  8234   ins_encode( OpcP, RegMem( dst, src) );
  8235   ins_pipe( ialu_reg_mem );
  8236 %}
  8238 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8239   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8240   effect(KILL cr);
  8242   ins_cost(150);
  8243   format %{ "ADD    $dst,$src" %}
  8244   opcode(0x01);  /* Opcode 01 /r */
  8245   ins_encode( OpcP, RegMem( src, dst ) );
  8246   ins_pipe( ialu_mem_reg );
  8247 %}
  8249 // Add Memory with Immediate
  8250 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8251   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8252   effect(KILL cr);
  8254   ins_cost(125);
  8255   format %{ "ADD    $dst,$src" %}
  8256   opcode(0x81);               /* Opcode 81 /0 id */
  8257   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8258   ins_pipe( ialu_mem_imm );
  8259 %}
  8261 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8262   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8263   effect(KILL cr);
  8265   ins_cost(125);
  8266   format %{ "INC    $dst" %}
  8267   opcode(0xFF);               /* Opcode FF /0 */
  8268   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8269   ins_pipe( ialu_mem_imm );
  8270 %}
  8272 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8273   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8274   effect(KILL cr);
  8276   ins_cost(125);
  8277   format %{ "DEC    $dst" %}
  8278   opcode(0xFF);               /* Opcode FF /1 */
  8279   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8280   ins_pipe( ialu_mem_imm );
  8281 %}
  8284 instruct checkCastPP( eRegP dst ) %{
  8285   match(Set dst (CheckCastPP dst));
  8287   size(0);
  8288   format %{ "#checkcastPP of $dst" %}
  8289   ins_encode( /*empty encoding*/ );
  8290   ins_pipe( empty );
  8291 %}
  8293 instruct castPP( eRegP dst ) %{
  8294   match(Set dst (CastPP dst));
  8295   format %{ "#castPP of $dst" %}
  8296   ins_encode( /*empty encoding*/ );
  8297   ins_pipe( empty );
  8298 %}
  8300 instruct castII( eRegI dst ) %{
  8301   match(Set dst (CastII dst));
  8302   format %{ "#castII of $dst" %}
  8303   ins_encode( /*empty encoding*/ );
  8304   ins_cost(0);
  8305   ins_pipe( empty );
  8306 %}
  8309 // Load-locked - same as a regular pointer load when used with compare-swap
  8310 instruct loadPLocked(eRegP dst, memory mem) %{
  8311   match(Set dst (LoadPLocked mem));
  8313   ins_cost(125);
  8314   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8315   opcode(0x8B);
  8316   ins_encode( OpcP, RegMem(dst,mem));
  8317   ins_pipe( ialu_reg_mem );
  8318 %}
  8320 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8321 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8322   predicate(UseSSE<=1);
  8323   match(Set dst (LoadLLocked mem));
  8325   ins_cost(200);
  8326   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8327             "FISTp  $dst" %}
  8328   ins_encode(enc_loadL_volatile(mem,dst));
  8329   ins_pipe( fpu_reg_mem );
  8330 %}
  8332 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8333   predicate(UseSSE>=2);
  8334   match(Set dst (LoadLLocked mem));
  8335   effect(TEMP tmp);
  8336   ins_cost(180);
  8337   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8338             "MOVSD  $dst,$tmp" %}
  8339   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8340   ins_pipe( pipe_slow );
  8341 %}
  8343 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8344   predicate(UseSSE>=2);
  8345   match(Set dst (LoadLLocked mem));
  8346   effect(TEMP tmp);
  8347   ins_cost(160);
  8348   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8349             "MOVD   $dst.lo,$tmp\n\t"
  8350             "PSRLQ  $tmp,32\n\t"
  8351             "MOVD   $dst.hi,$tmp" %}
  8352   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8353   ins_pipe( pipe_slow );
  8354 %}
  8356 // Conditional-store of the updated heap-top.
  8357 // Used during allocation of the shared heap.
  8358 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8359 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8360   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8361   // EAX is killed if there is contention, but then it's also unused.
  8362   // In the common case of no contention, EAX holds the new oop address.
  8363   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8364   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8365   ins_pipe( pipe_cmpxchg );
  8366 %}
  8368 // Conditional-store of an int value.
  8369 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8370 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8371   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8372   effect(KILL oldval);
  8373   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8374   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8375   ins_pipe( pipe_cmpxchg );
  8376 %}
  8378 // Conditional-store of a long value.
  8379 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8380 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8381   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8382   effect(KILL oldval);
  8383   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8384             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8385             "XCHG   EBX,ECX"
  8386   %}
  8387   ins_encode %{
  8388     // Note: we need to swap rbx, and rcx before and after the
  8389     //       cmpxchg8 instruction because the instruction uses
  8390     //       rcx as the high order word of the new value to store but
  8391     //       our register encoding uses rbx.
  8392     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8393     if( os::is_MP() )
  8394       __ lock();
  8395     __ cmpxchg8($mem$$Address);
  8396     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8397   %}
  8398   ins_pipe( pipe_cmpxchg );
  8399 %}
  8401 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8403 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8404   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8405   effect(KILL cr, KILL oldval);
  8406   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8407             "MOV    $res,0\n\t"
  8408             "JNE,s  fail\n\t"
  8409             "MOV    $res,1\n"
  8410           "fail:" %}
  8411   ins_encode( enc_cmpxchg8(mem_ptr),
  8412               enc_flags_ne_to_boolean(res) );
  8413   ins_pipe( pipe_cmpxchg );
  8414 %}
  8416 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8417   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8418   effect(KILL cr, KILL oldval);
  8419   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8420             "MOV    $res,0\n\t"
  8421             "JNE,s  fail\n\t"
  8422             "MOV    $res,1\n"
  8423           "fail:" %}
  8424   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8425   ins_pipe( pipe_cmpxchg );
  8426 %}
  8428 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8429   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8430   effect(KILL cr, KILL oldval);
  8431   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8432             "MOV    $res,0\n\t"
  8433             "JNE,s  fail\n\t"
  8434             "MOV    $res,1\n"
  8435           "fail:" %}
  8436   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8437   ins_pipe( pipe_cmpxchg );
  8438 %}
  8440 //----------Subtraction Instructions-------------------------------------------
  8441 // Integer Subtraction Instructions
  8442 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8443   match(Set dst (SubI dst src));
  8444   effect(KILL cr);
  8446   size(2);
  8447   format %{ "SUB    $dst,$src" %}
  8448   opcode(0x2B);
  8449   ins_encode( OpcP, RegReg( dst, src) );
  8450   ins_pipe( ialu_reg_reg );
  8451 %}
  8453 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8454   match(Set dst (SubI dst src));
  8455   effect(KILL cr);
  8457   format %{ "SUB    $dst,$src" %}
  8458   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8459   // ins_encode( RegImm( dst, src) );
  8460   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8461   ins_pipe( ialu_reg );
  8462 %}
  8464 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8465   match(Set dst (SubI dst (LoadI src)));
  8466   effect(KILL cr);
  8468   ins_cost(125);
  8469   format %{ "SUB    $dst,$src" %}
  8470   opcode(0x2B);
  8471   ins_encode( OpcP, RegMem( dst, src) );
  8472   ins_pipe( ialu_reg_mem );
  8473 %}
  8475 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8476   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8477   effect(KILL cr);
  8479   ins_cost(150);
  8480   format %{ "SUB    $dst,$src" %}
  8481   opcode(0x29);  /* Opcode 29 /r */
  8482   ins_encode( OpcP, RegMem( src, dst ) );
  8483   ins_pipe( ialu_mem_reg );
  8484 %}
  8486 // Subtract from a pointer
  8487 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8488   match(Set dst (AddP dst (SubI zero src)));
  8489   effect(KILL cr);
  8491   size(2);
  8492   format %{ "SUB    $dst,$src" %}
  8493   opcode(0x2B);
  8494   ins_encode( OpcP, RegReg( dst, src) );
  8495   ins_pipe( ialu_reg_reg );
  8496 %}
  8498 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8499   match(Set dst (SubI zero dst));
  8500   effect(KILL cr);
  8502   size(2);
  8503   format %{ "NEG    $dst" %}
  8504   opcode(0xF7,0x03);  // Opcode F7 /3
  8505   ins_encode( OpcP, RegOpc( dst ) );
  8506   ins_pipe( ialu_reg );
  8507 %}
  8510 //----------Multiplication/Division Instructions-------------------------------
  8511 // Integer Multiplication Instructions
  8512 // Multiply Register
  8513 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8514   match(Set dst (MulI dst src));
  8515   effect(KILL cr);
  8517   size(3);
  8518   ins_cost(300);
  8519   format %{ "IMUL   $dst,$src" %}
  8520   opcode(0xAF, 0x0F);
  8521   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8522   ins_pipe( ialu_reg_reg_alu0 );
  8523 %}
  8525 // Multiply 32-bit Immediate
  8526 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8527   match(Set dst (MulI src imm));
  8528   effect(KILL cr);
  8530   ins_cost(300);
  8531   format %{ "IMUL   $dst,$src,$imm" %}
  8532   opcode(0x69);  /* 69 /r id */
  8533   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8534   ins_pipe( ialu_reg_reg_alu0 );
  8535 %}
  8537 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8538   match(Set dst src);
  8539   effect(KILL cr);
  8541   // Note that this is artificially increased to make it more expensive than loadConL
  8542   ins_cost(250);
  8543   format %{ "MOV    EAX,$src\t// low word only" %}
  8544   opcode(0xB8);
  8545   ins_encode( LdImmL_Lo(dst, src) );
  8546   ins_pipe( ialu_reg_fat );
  8547 %}
  8549 // Multiply by 32-bit Immediate, taking the shifted high order results
  8550 //  (special case for shift by 32)
  8551 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8552   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8553   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8554              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8555              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8556   effect(USE src1, KILL cr);
  8558   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8559   ins_cost(0*100 + 1*400 - 150);
  8560   format %{ "IMUL   EDX:EAX,$src1" %}
  8561   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8562   ins_pipe( pipe_slow );
  8563 %}
  8565 // Multiply by 32-bit Immediate, taking the shifted high order results
  8566 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8567   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8568   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8569              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8570              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8571   effect(USE src1, KILL cr);
  8573   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8574   ins_cost(1*100 + 1*400 - 150);
  8575   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8576             "SAR    EDX,$cnt-32" %}
  8577   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8578   ins_pipe( pipe_slow );
  8579 %}
  8581 // Multiply Memory 32-bit Immediate
  8582 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8583   match(Set dst (MulI (LoadI src) imm));
  8584   effect(KILL cr);
  8586   ins_cost(300);
  8587   format %{ "IMUL   $dst,$src,$imm" %}
  8588   opcode(0x69);  /* 69 /r id */
  8589   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8590   ins_pipe( ialu_reg_mem_alu0 );
  8591 %}
  8593 // Multiply Memory
  8594 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8595   match(Set dst (MulI dst (LoadI src)));
  8596   effect(KILL cr);
  8598   ins_cost(350);
  8599   format %{ "IMUL   $dst,$src" %}
  8600   opcode(0xAF, 0x0F);
  8601   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8602   ins_pipe( ialu_reg_mem_alu0 );
  8603 %}
  8605 // Multiply Register Int to Long
  8606 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8607   // Basic Idea: long = (long)int * (long)int
  8608   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8609   effect(DEF dst, USE src, USE src1, KILL flags);
  8611   ins_cost(300);
  8612   format %{ "IMUL   $dst,$src1" %}
  8614   ins_encode( long_int_multiply( dst, src1 ) );
  8615   ins_pipe( ialu_reg_reg_alu0 );
  8616 %}
  8618 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8619   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8620   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8621   effect(KILL flags);
  8623   ins_cost(300);
  8624   format %{ "MUL    $dst,$src1" %}
  8626   ins_encode( long_uint_multiply(dst, src1) );
  8627   ins_pipe( ialu_reg_reg_alu0 );
  8628 %}
  8630 // Multiply Register Long
  8631 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8632   match(Set dst (MulL dst src));
  8633   effect(KILL cr, TEMP tmp);
  8634   ins_cost(4*100+3*400);
  8635 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8636 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8637   format %{ "MOV    $tmp,$src.lo\n\t"
  8638             "IMUL   $tmp,EDX\n\t"
  8639             "MOV    EDX,$src.hi\n\t"
  8640             "IMUL   EDX,EAX\n\t"
  8641             "ADD    $tmp,EDX\n\t"
  8642             "MUL    EDX:EAX,$src.lo\n\t"
  8643             "ADD    EDX,$tmp" %}
  8644   ins_encode( long_multiply( dst, src, tmp ) );
  8645   ins_pipe( pipe_slow );
  8646 %}
  8648 // Multiply Register Long where the left operand's high 32 bits are zero
  8649 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8650   predicate(is_operand_hi32_zero(n->in(1)));
  8651   match(Set dst (MulL dst src));
  8652   effect(KILL cr, TEMP tmp);
  8653   ins_cost(2*100+2*400);
  8654 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8655 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8656   format %{ "MOV    $tmp,$src.hi\n\t"
  8657             "IMUL   $tmp,EAX\n\t"
  8658             "MUL    EDX:EAX,$src.lo\n\t"
  8659             "ADD    EDX,$tmp" %}
  8660   ins_encode %{
  8661     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8662     __ imull($tmp$$Register, rax);
  8663     __ mull($src$$Register);
  8664     __ addl(rdx, $tmp$$Register);
  8665   %}
  8666   ins_pipe( pipe_slow );
  8667 %}
  8669 // Multiply Register Long where the right operand's high 32 bits are zero
  8670 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8671   predicate(is_operand_hi32_zero(n->in(2)));
  8672   match(Set dst (MulL dst src));
  8673   effect(KILL cr, TEMP tmp);
  8674   ins_cost(2*100+2*400);
  8675 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8676 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8677   format %{ "MOV    $tmp,$src.lo\n\t"
  8678             "IMUL   $tmp,EDX\n\t"
  8679             "MUL    EDX:EAX,$src.lo\n\t"
  8680             "ADD    EDX,$tmp" %}
  8681   ins_encode %{
  8682     __ movl($tmp$$Register, $src$$Register);
  8683     __ imull($tmp$$Register, rdx);
  8684     __ mull($src$$Register);
  8685     __ addl(rdx, $tmp$$Register);
  8686   %}
  8687   ins_pipe( pipe_slow );
  8688 %}
  8690 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8691 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8692   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8693   match(Set dst (MulL dst src));
  8694   effect(KILL cr);
  8695   ins_cost(1*400);
  8696 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8697 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8698   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8699   ins_encode %{
  8700     __ mull($src$$Register);
  8701   %}
  8702   ins_pipe( pipe_slow );
  8703 %}
  8705 // Multiply Register Long by small constant
  8706 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8707   match(Set dst (MulL dst src));
  8708   effect(KILL cr, TEMP tmp);
  8709   ins_cost(2*100+2*400);
  8710   size(12);
  8711 // Basic idea: lo(result) = lo(src * EAX)
  8712 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8713   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8714             "MOV    EDX,$src\n\t"
  8715             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8716             "ADD    EDX,$tmp" %}
  8717   ins_encode( long_multiply_con( dst, src, tmp ) );
  8718   ins_pipe( pipe_slow );
  8719 %}
  8721 // Integer DIV with Register
  8722 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8723   match(Set rax (DivI rax div));
  8724   effect(KILL rdx, KILL cr);
  8725   size(26);
  8726   ins_cost(30*100+10*100);
  8727   format %{ "CMP    EAX,0x80000000\n\t"
  8728             "JNE,s  normal\n\t"
  8729             "XOR    EDX,EDX\n\t"
  8730             "CMP    ECX,-1\n\t"
  8731             "JE,s   done\n"
  8732     "normal: CDQ\n\t"
  8733             "IDIV   $div\n\t"
  8734     "done:"        %}
  8735   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8736   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8737   ins_pipe( ialu_reg_reg_alu0 );
  8738 %}
  8740 // Divide Register Long
  8741 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8742   match(Set dst (DivL src1 src2));
  8743   effect( KILL cr, KILL cx, KILL bx );
  8744   ins_cost(10000);
  8745   format %{ "PUSH   $src1.hi\n\t"
  8746             "PUSH   $src1.lo\n\t"
  8747             "PUSH   $src2.hi\n\t"
  8748             "PUSH   $src2.lo\n\t"
  8749             "CALL   SharedRuntime::ldiv\n\t"
  8750             "ADD    ESP,16" %}
  8751   ins_encode( long_div(src1,src2) );
  8752   ins_pipe( pipe_slow );
  8753 %}
  8755 // Integer DIVMOD with Register, both quotient and mod results
  8756 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8757   match(DivModI rax div);
  8758   effect(KILL cr);
  8759   size(26);
  8760   ins_cost(30*100+10*100);
  8761   format %{ "CMP    EAX,0x80000000\n\t"
  8762             "JNE,s  normal\n\t"
  8763             "XOR    EDX,EDX\n\t"
  8764             "CMP    ECX,-1\n\t"
  8765             "JE,s   done\n"
  8766     "normal: CDQ\n\t"
  8767             "IDIV   $div\n\t"
  8768     "done:"        %}
  8769   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8770   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8771   ins_pipe( pipe_slow );
  8772 %}
  8774 // Integer MOD with Register
  8775 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8776   match(Set rdx (ModI rax div));
  8777   effect(KILL rax, KILL cr);
  8779   size(26);
  8780   ins_cost(300);
  8781   format %{ "CDQ\n\t"
  8782             "IDIV   $div" %}
  8783   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8784   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8785   ins_pipe( ialu_reg_reg_alu0 );
  8786 %}
  8788 // Remainder Register Long
  8789 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8790   match(Set dst (ModL src1 src2));
  8791   effect( KILL cr, KILL cx, KILL bx );
  8792   ins_cost(10000);
  8793   format %{ "PUSH   $src1.hi\n\t"
  8794             "PUSH   $src1.lo\n\t"
  8795             "PUSH   $src2.hi\n\t"
  8796             "PUSH   $src2.lo\n\t"
  8797             "CALL   SharedRuntime::lrem\n\t"
  8798             "ADD    ESP,16" %}
  8799   ins_encode( long_mod(src1,src2) );
  8800   ins_pipe( pipe_slow );
  8801 %}
  8803 // Integer Shift Instructions
  8804 // Shift Left by one
  8805 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8806   match(Set dst (LShiftI dst shift));
  8807   effect(KILL cr);
  8809   size(2);
  8810   format %{ "SHL    $dst,$shift" %}
  8811   opcode(0xD1, 0x4);  /* D1 /4 */
  8812   ins_encode( OpcP, RegOpc( dst ) );
  8813   ins_pipe( ialu_reg );
  8814 %}
  8816 // Shift Left by 8-bit immediate
  8817 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8818   match(Set dst (LShiftI dst shift));
  8819   effect(KILL cr);
  8821   size(3);
  8822   format %{ "SHL    $dst,$shift" %}
  8823   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8824   ins_encode( RegOpcImm( dst, shift) );
  8825   ins_pipe( ialu_reg );
  8826 %}
  8828 // Shift Left by variable
  8829 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8830   match(Set dst (LShiftI dst shift));
  8831   effect(KILL cr);
  8833   size(2);
  8834   format %{ "SHL    $dst,$shift" %}
  8835   opcode(0xD3, 0x4);  /* D3 /4 */
  8836   ins_encode( OpcP, RegOpc( dst ) );
  8837   ins_pipe( ialu_reg_reg );
  8838 %}
  8840 // Arithmetic shift right by one
  8841 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8842   match(Set dst (RShiftI dst shift));
  8843   effect(KILL cr);
  8845   size(2);
  8846   format %{ "SAR    $dst,$shift" %}
  8847   opcode(0xD1, 0x7);  /* D1 /7 */
  8848   ins_encode( OpcP, RegOpc( dst ) );
  8849   ins_pipe( ialu_reg );
  8850 %}
  8852 // Arithmetic shift right by one
  8853 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8854   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8855   effect(KILL cr);
  8856   format %{ "SAR    $dst,$shift" %}
  8857   opcode(0xD1, 0x7);  /* D1 /7 */
  8858   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8859   ins_pipe( ialu_mem_imm );
  8860 %}
  8862 // Arithmetic Shift Right by 8-bit immediate
  8863 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8864   match(Set dst (RShiftI dst shift));
  8865   effect(KILL cr);
  8867   size(3);
  8868   format %{ "SAR    $dst,$shift" %}
  8869   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8870   ins_encode( RegOpcImm( dst, shift ) );
  8871   ins_pipe( ialu_mem_imm );
  8872 %}
  8874 // Arithmetic Shift Right by 8-bit immediate
  8875 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8876   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8877   effect(KILL cr);
  8879   format %{ "SAR    $dst,$shift" %}
  8880   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8881   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8882   ins_pipe( ialu_mem_imm );
  8883 %}
  8885 // Arithmetic Shift Right by variable
  8886 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8887   match(Set dst (RShiftI dst shift));
  8888   effect(KILL cr);
  8890   size(2);
  8891   format %{ "SAR    $dst,$shift" %}
  8892   opcode(0xD3, 0x7);  /* D3 /7 */
  8893   ins_encode( OpcP, RegOpc( dst ) );
  8894   ins_pipe( ialu_reg_reg );
  8895 %}
  8897 // Logical shift right by one
  8898 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8899   match(Set dst (URShiftI dst shift));
  8900   effect(KILL cr);
  8902   size(2);
  8903   format %{ "SHR    $dst,$shift" %}
  8904   opcode(0xD1, 0x5);  /* D1 /5 */
  8905   ins_encode( OpcP, RegOpc( dst ) );
  8906   ins_pipe( ialu_reg );
  8907 %}
  8909 // Logical Shift Right by 8-bit immediate
  8910 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8911   match(Set dst (URShiftI dst shift));
  8912   effect(KILL cr);
  8914   size(3);
  8915   format %{ "SHR    $dst,$shift" %}
  8916   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8917   ins_encode( RegOpcImm( dst, shift) );
  8918   ins_pipe( ialu_reg );
  8919 %}
  8922 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8923 // This idiom is used by the compiler for the i2b bytecode.
  8924 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8925   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8927   size(3);
  8928   format %{ "MOVSX  $dst,$src :8" %}
  8929   ins_encode %{
  8930     __ movsbl($dst$$Register, $src$$Register);
  8931   %}
  8932   ins_pipe(ialu_reg_reg);
  8933 %}
  8935 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8936 // This idiom is used by the compiler the i2s bytecode.
  8937 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8938   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8940   size(3);
  8941   format %{ "MOVSX  $dst,$src :16" %}
  8942   ins_encode %{
  8943     __ movswl($dst$$Register, $src$$Register);
  8944   %}
  8945   ins_pipe(ialu_reg_reg);
  8946 %}
  8949 // Logical Shift Right by variable
  8950 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8951   match(Set dst (URShiftI dst shift));
  8952   effect(KILL cr);
  8954   size(2);
  8955   format %{ "SHR    $dst,$shift" %}
  8956   opcode(0xD3, 0x5);  /* D3 /5 */
  8957   ins_encode( OpcP, RegOpc( dst ) );
  8958   ins_pipe( ialu_reg_reg );
  8959 %}
  8962 //----------Logical Instructions-----------------------------------------------
  8963 //----------Integer Logical Instructions---------------------------------------
  8964 // And Instructions
  8965 // And Register with Register
  8966 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8967   match(Set dst (AndI dst src));
  8968   effect(KILL cr);
  8970   size(2);
  8971   format %{ "AND    $dst,$src" %}
  8972   opcode(0x23);
  8973   ins_encode( OpcP, RegReg( dst, src) );
  8974   ins_pipe( ialu_reg_reg );
  8975 %}
  8977 // And Register with Immediate
  8978 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8979   match(Set dst (AndI dst src));
  8980   effect(KILL cr);
  8982   format %{ "AND    $dst,$src" %}
  8983   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8984   // ins_encode( RegImm( dst, src) );
  8985   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8986   ins_pipe( ialu_reg );
  8987 %}
  8989 // And Register with Memory
  8990 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8991   match(Set dst (AndI dst (LoadI src)));
  8992   effect(KILL cr);
  8994   ins_cost(125);
  8995   format %{ "AND    $dst,$src" %}
  8996   opcode(0x23);
  8997   ins_encode( OpcP, RegMem( dst, src) );
  8998   ins_pipe( ialu_reg_mem );
  8999 %}
  9001 // And Memory with Register
  9002 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9003   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9004   effect(KILL cr);
  9006   ins_cost(150);
  9007   format %{ "AND    $dst,$src" %}
  9008   opcode(0x21);  /* Opcode 21 /r */
  9009   ins_encode( OpcP, RegMem( src, dst ) );
  9010   ins_pipe( ialu_mem_reg );
  9011 %}
  9013 // And Memory with Immediate
  9014 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9015   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9016   effect(KILL cr);
  9018   ins_cost(125);
  9019   format %{ "AND    $dst,$src" %}
  9020   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9021   // ins_encode( MemImm( dst, src) );
  9022   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9023   ins_pipe( ialu_mem_imm );
  9024 %}
  9026 // Or Instructions
  9027 // Or Register with Register
  9028 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9029   match(Set dst (OrI dst src));
  9030   effect(KILL cr);
  9032   size(2);
  9033   format %{ "OR     $dst,$src" %}
  9034   opcode(0x0B);
  9035   ins_encode( OpcP, RegReg( dst, src) );
  9036   ins_pipe( ialu_reg_reg );
  9037 %}
  9039 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9040   match(Set dst (OrI dst (CastP2X src)));
  9041   effect(KILL cr);
  9043   size(2);
  9044   format %{ "OR     $dst,$src" %}
  9045   opcode(0x0B);
  9046   ins_encode( OpcP, RegReg( dst, src) );
  9047   ins_pipe( ialu_reg_reg );
  9048 %}
  9051 // Or Register with Immediate
  9052 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9053   match(Set dst (OrI dst src));
  9054   effect(KILL cr);
  9056   format %{ "OR     $dst,$src" %}
  9057   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9058   // ins_encode( RegImm( dst, src) );
  9059   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9060   ins_pipe( ialu_reg );
  9061 %}
  9063 // Or Register with Memory
  9064 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9065   match(Set dst (OrI dst (LoadI src)));
  9066   effect(KILL cr);
  9068   ins_cost(125);
  9069   format %{ "OR     $dst,$src" %}
  9070   opcode(0x0B);
  9071   ins_encode( OpcP, RegMem( dst, src) );
  9072   ins_pipe( ialu_reg_mem );
  9073 %}
  9075 // Or Memory with Register
  9076 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9077   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9078   effect(KILL cr);
  9080   ins_cost(150);
  9081   format %{ "OR     $dst,$src" %}
  9082   opcode(0x09);  /* Opcode 09 /r */
  9083   ins_encode( OpcP, RegMem( src, dst ) );
  9084   ins_pipe( ialu_mem_reg );
  9085 %}
  9087 // Or Memory with Immediate
  9088 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9089   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9090   effect(KILL cr);
  9092   ins_cost(125);
  9093   format %{ "OR     $dst,$src" %}
  9094   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9095   // ins_encode( MemImm( dst, src) );
  9096   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9097   ins_pipe( ialu_mem_imm );
  9098 %}
  9100 // ROL/ROR
  9101 // ROL expand
  9102 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9103   effect(USE_DEF dst, USE shift, KILL cr);
  9105   format %{ "ROL    $dst, $shift" %}
  9106   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9107   ins_encode( OpcP, RegOpc( dst ));
  9108   ins_pipe( ialu_reg );
  9109 %}
  9111 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9112   effect(USE_DEF dst, USE shift, KILL cr);
  9114   format %{ "ROL    $dst, $shift" %}
  9115   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9116   ins_encode( RegOpcImm(dst, shift) );
  9117   ins_pipe(ialu_reg);
  9118 %}
  9120 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9121   effect(USE_DEF dst, USE shift, KILL cr);
  9123   format %{ "ROL    $dst, $shift" %}
  9124   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9125   ins_encode(OpcP, RegOpc(dst));
  9126   ins_pipe( ialu_reg_reg );
  9127 %}
  9128 // end of ROL expand
  9130 // ROL 32bit by one once
  9131 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9132   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9134   expand %{
  9135     rolI_eReg_imm1(dst, lshift, cr);
  9136   %}
  9137 %}
  9139 // ROL 32bit var by imm8 once
  9140 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9141   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9142   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9144   expand %{
  9145     rolI_eReg_imm8(dst, lshift, cr);
  9146   %}
  9147 %}
  9149 // ROL 32bit var by var once
  9150 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9151   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9153   expand %{
  9154     rolI_eReg_CL(dst, shift, cr);
  9155   %}
  9156 %}
  9158 // ROL 32bit var by var once
  9159 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9160   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9162   expand %{
  9163     rolI_eReg_CL(dst, shift, cr);
  9164   %}
  9165 %}
  9167 // ROR expand
  9168 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9169   effect(USE_DEF dst, USE shift, KILL cr);
  9171   format %{ "ROR    $dst, $shift" %}
  9172   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9173   ins_encode( OpcP, RegOpc( dst ) );
  9174   ins_pipe( ialu_reg );
  9175 %}
  9177 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9178   effect (USE_DEF dst, USE shift, KILL cr);
  9180   format %{ "ROR    $dst, $shift" %}
  9181   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9182   ins_encode( RegOpcImm(dst, shift) );
  9183   ins_pipe( ialu_reg );
  9184 %}
  9186 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9187   effect(USE_DEF dst, USE shift, KILL cr);
  9189   format %{ "ROR    $dst, $shift" %}
  9190   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9191   ins_encode(OpcP, RegOpc(dst));
  9192   ins_pipe( ialu_reg_reg );
  9193 %}
  9194 // end of ROR expand
  9196 // ROR right once
  9197 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9198   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9200   expand %{
  9201     rorI_eReg_imm1(dst, rshift, cr);
  9202   %}
  9203 %}
  9205 // ROR 32bit by immI8 once
  9206 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9207   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9208   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9210   expand %{
  9211     rorI_eReg_imm8(dst, rshift, cr);
  9212   %}
  9213 %}
  9215 // ROR 32bit var by var once
  9216 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9217   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9219   expand %{
  9220     rorI_eReg_CL(dst, shift, cr);
  9221   %}
  9222 %}
  9224 // ROR 32bit var by var once
  9225 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9226   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9228   expand %{
  9229     rorI_eReg_CL(dst, shift, cr);
  9230   %}
  9231 %}
  9233 // Xor Instructions
  9234 // Xor Register with Register
  9235 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9236   match(Set dst (XorI dst src));
  9237   effect(KILL cr);
  9239   size(2);
  9240   format %{ "XOR    $dst,$src" %}
  9241   opcode(0x33);
  9242   ins_encode( OpcP, RegReg( dst, src) );
  9243   ins_pipe( ialu_reg_reg );
  9244 %}
  9246 // Xor Register with Immediate -1
  9247 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9248   match(Set dst (XorI dst imm));  
  9250   size(2);
  9251   format %{ "NOT    $dst" %}  
  9252   ins_encode %{
  9253      __ notl($dst$$Register);
  9254   %}
  9255   ins_pipe( ialu_reg );
  9256 %}
  9258 // Xor Register with Immediate
  9259 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9260   match(Set dst (XorI dst src));
  9261   effect(KILL cr);
  9263   format %{ "XOR    $dst,$src" %}
  9264   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9265   // ins_encode( RegImm( dst, src) );
  9266   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9267   ins_pipe( ialu_reg );
  9268 %}
  9270 // Xor Register with Memory
  9271 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9272   match(Set dst (XorI dst (LoadI src)));
  9273   effect(KILL cr);
  9275   ins_cost(125);
  9276   format %{ "XOR    $dst,$src" %}
  9277   opcode(0x33);
  9278   ins_encode( OpcP, RegMem(dst, src) );
  9279   ins_pipe( ialu_reg_mem );
  9280 %}
  9282 // Xor Memory with Register
  9283 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9284   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9285   effect(KILL cr);
  9287   ins_cost(150);
  9288   format %{ "XOR    $dst,$src" %}
  9289   opcode(0x31);  /* Opcode 31 /r */
  9290   ins_encode( OpcP, RegMem( src, dst ) );
  9291   ins_pipe( ialu_mem_reg );
  9292 %}
  9294 // Xor Memory with Immediate
  9295 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9296   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9297   effect(KILL cr);
  9299   ins_cost(125);
  9300   format %{ "XOR    $dst,$src" %}
  9301   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9302   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9303   ins_pipe( ialu_mem_imm );
  9304 %}
  9306 //----------Convert Int to Boolean---------------------------------------------
  9308 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9309   effect( DEF dst, USE src );
  9310   format %{ "MOV    $dst,$src" %}
  9311   ins_encode( enc_Copy( dst, src) );
  9312   ins_pipe( ialu_reg_reg );
  9313 %}
  9315 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9316   effect( USE_DEF dst, USE src, KILL cr );
  9318   size(4);
  9319   format %{ "NEG    $dst\n\t"
  9320             "ADC    $dst,$src" %}
  9321   ins_encode( neg_reg(dst),
  9322               OpcRegReg(0x13,dst,src) );
  9323   ins_pipe( ialu_reg_reg_long );
  9324 %}
  9326 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9327   match(Set dst (Conv2B src));
  9329   expand %{
  9330     movI_nocopy(dst,src);
  9331     ci2b(dst,src,cr);
  9332   %}
  9333 %}
  9335 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9336   effect( DEF dst, USE src );
  9337   format %{ "MOV    $dst,$src" %}
  9338   ins_encode( enc_Copy( dst, src) );
  9339   ins_pipe( ialu_reg_reg );
  9340 %}
  9342 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9343   effect( USE_DEF dst, USE src, KILL cr );
  9344   format %{ "NEG    $dst\n\t"
  9345             "ADC    $dst,$src" %}
  9346   ins_encode( neg_reg(dst),
  9347               OpcRegReg(0x13,dst,src) );
  9348   ins_pipe( ialu_reg_reg_long );
  9349 %}
  9351 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9352   match(Set dst (Conv2B src));
  9354   expand %{
  9355     movP_nocopy(dst,src);
  9356     cp2b(dst,src,cr);
  9357   %}
  9358 %}
  9360 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9361   match(Set dst (CmpLTMask p q));
  9362   effect( KILL cr );
  9363   ins_cost(400);
  9365   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9366   format %{ "XOR    $dst,$dst\n\t"
  9367             "CMP    $p,$q\n\t"
  9368             "SETlt  $dst\n\t"
  9369             "NEG    $dst" %}
  9370   ins_encode( OpcRegReg(0x33,dst,dst),
  9371               OpcRegReg(0x3B,p,q),
  9372               setLT_reg(dst), neg_reg(dst) );
  9373   ins_pipe( pipe_slow );
  9374 %}
  9376 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9377   match(Set dst (CmpLTMask dst zero));
  9378   effect( DEF dst, KILL cr );
  9379   ins_cost(100);
  9381   format %{ "SAR    $dst,31" %}
  9382   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9383   ins_encode( RegOpcImm( dst, 0x1F ) );
  9384   ins_pipe( ialu_reg );
  9385 %}
  9388 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9389   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9390   effect( KILL tmp, KILL cr );
  9391   ins_cost(400);
  9392   // annoyingly, $tmp has no edges so you cant ask for it in
  9393   // any format or encoding
  9394   format %{ "SUB    $p,$q\n\t"
  9395             "SBB    ECX,ECX\n\t"
  9396             "AND    ECX,$y\n\t"
  9397             "ADD    $p,ECX" %}
  9398   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9399   ins_pipe( pipe_cmplt );
  9400 %}
  9402 /* If I enable this, I encourage spilling in the inner loop of compress.
  9403 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9404   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9405   effect( USE_KILL tmp, KILL cr );
  9406   ins_cost(400);
  9408   format %{ "SUB    $p,$q\n\t"
  9409             "SBB    ECX,ECX\n\t"
  9410             "AND    ECX,$y\n\t"
  9411             "ADD    $p,ECX" %}
  9412   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9413 %}
  9414 */
  9416 //----------Long Instructions------------------------------------------------
  9417 // Add Long Register with Register
  9418 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9419   match(Set dst (AddL dst src));
  9420   effect(KILL cr);
  9421   ins_cost(200);
  9422   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9423             "ADC    $dst.hi,$src.hi" %}
  9424   opcode(0x03, 0x13);
  9425   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9426   ins_pipe( ialu_reg_reg_long );
  9427 %}
  9429 // Add Long Register with Immediate
  9430 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9431   match(Set dst (AddL dst src));
  9432   effect(KILL cr);
  9433   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9434             "ADC    $dst.hi,$src.hi" %}
  9435   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9436   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9437   ins_pipe( ialu_reg_long );
  9438 %}
  9440 // Add Long Register with Memory
  9441 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9442   match(Set dst (AddL dst (LoadL mem)));
  9443   effect(KILL cr);
  9444   ins_cost(125);
  9445   format %{ "ADD    $dst.lo,$mem\n\t"
  9446             "ADC    $dst.hi,$mem+4" %}
  9447   opcode(0x03, 0x13);
  9448   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9449   ins_pipe( ialu_reg_long_mem );
  9450 %}
  9452 // Subtract Long Register with Register.
  9453 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9454   match(Set dst (SubL dst src));
  9455   effect(KILL cr);
  9456   ins_cost(200);
  9457   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9458             "SBB    $dst.hi,$src.hi" %}
  9459   opcode(0x2B, 0x1B);
  9460   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9461   ins_pipe( ialu_reg_reg_long );
  9462 %}
  9464 // Subtract Long Register with Immediate
  9465 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9466   match(Set dst (SubL dst src));
  9467   effect(KILL cr);
  9468   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9469             "SBB    $dst.hi,$src.hi" %}
  9470   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9471   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9472   ins_pipe( ialu_reg_long );
  9473 %}
  9475 // Subtract Long Register with Memory
  9476 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9477   match(Set dst (SubL dst (LoadL mem)));
  9478   effect(KILL cr);
  9479   ins_cost(125);
  9480   format %{ "SUB    $dst.lo,$mem\n\t"
  9481             "SBB    $dst.hi,$mem+4" %}
  9482   opcode(0x2B, 0x1B);
  9483   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9484   ins_pipe( ialu_reg_long_mem );
  9485 %}
  9487 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9488   match(Set dst (SubL zero dst));
  9489   effect(KILL cr);
  9490   ins_cost(300);
  9491   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9492   ins_encode( neg_long(dst) );
  9493   ins_pipe( ialu_reg_reg_long );
  9494 %}
  9496 // And Long Register with Register
  9497 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9498   match(Set dst (AndL dst src));
  9499   effect(KILL cr);
  9500   format %{ "AND    $dst.lo,$src.lo\n\t"
  9501             "AND    $dst.hi,$src.hi" %}
  9502   opcode(0x23,0x23);
  9503   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9504   ins_pipe( ialu_reg_reg_long );
  9505 %}
  9507 // And Long Register with Immediate
  9508 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9509   match(Set dst (AndL dst src));
  9510   effect(KILL cr);
  9511   format %{ "AND    $dst.lo,$src.lo\n\t"
  9512             "AND    $dst.hi,$src.hi" %}
  9513   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9514   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9515   ins_pipe( ialu_reg_long );
  9516 %}
  9518 // And Long Register with Memory
  9519 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9520   match(Set dst (AndL dst (LoadL mem)));
  9521   effect(KILL cr);
  9522   ins_cost(125);
  9523   format %{ "AND    $dst.lo,$mem\n\t"
  9524             "AND    $dst.hi,$mem+4" %}
  9525   opcode(0x23, 0x23);
  9526   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9527   ins_pipe( ialu_reg_long_mem );
  9528 %}
  9530 // Or Long Register with Register
  9531 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9532   match(Set dst (OrL dst src));
  9533   effect(KILL cr);
  9534   format %{ "OR     $dst.lo,$src.lo\n\t"
  9535             "OR     $dst.hi,$src.hi" %}
  9536   opcode(0x0B,0x0B);
  9537   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9538   ins_pipe( ialu_reg_reg_long );
  9539 %}
  9541 // Or Long Register with Immediate
  9542 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9543   match(Set dst (OrL dst src));
  9544   effect(KILL cr);
  9545   format %{ "OR     $dst.lo,$src.lo\n\t"
  9546             "OR     $dst.hi,$src.hi" %}
  9547   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9548   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9549   ins_pipe( ialu_reg_long );
  9550 %}
  9552 // Or Long Register with Memory
  9553 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9554   match(Set dst (OrL dst (LoadL mem)));
  9555   effect(KILL cr);
  9556   ins_cost(125);
  9557   format %{ "OR     $dst.lo,$mem\n\t"
  9558             "OR     $dst.hi,$mem+4" %}
  9559   opcode(0x0B,0x0B);
  9560   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9561   ins_pipe( ialu_reg_long_mem );
  9562 %}
  9564 // Xor Long Register with Register
  9565 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9566   match(Set dst (XorL dst src));
  9567   effect(KILL cr);
  9568   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9569             "XOR    $dst.hi,$src.hi" %}
  9570   opcode(0x33,0x33);
  9571   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9572   ins_pipe( ialu_reg_reg_long );
  9573 %}
  9575 // Xor Long Register with Immediate -1
  9576 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9577   match(Set dst (XorL dst imm));  
  9578   format %{ "NOT    $dst.lo\n\t"
  9579             "NOT    $dst.hi" %}
  9580   ins_encode %{
  9581      __ notl($dst$$Register);
  9582      __ notl(HIGH_FROM_LOW($dst$$Register));
  9583   %}
  9584   ins_pipe( ialu_reg_long );
  9585 %}
  9587 // Xor Long Register with Immediate
  9588 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9589   match(Set dst (XorL dst src));
  9590   effect(KILL cr);
  9591   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9592             "XOR    $dst.hi,$src.hi" %}
  9593   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9594   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9595   ins_pipe( ialu_reg_long );
  9596 %}
  9598 // Xor Long Register with Memory
  9599 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9600   match(Set dst (XorL dst (LoadL mem)));
  9601   effect(KILL cr);
  9602   ins_cost(125);
  9603   format %{ "XOR    $dst.lo,$mem\n\t"
  9604             "XOR    $dst.hi,$mem+4" %}
  9605   opcode(0x33,0x33);
  9606   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9607   ins_pipe( ialu_reg_long_mem );
  9608 %}
  9610 // Shift Left Long by 1
  9611 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9612   predicate(UseNewLongLShift);
  9613   match(Set dst (LShiftL dst cnt));
  9614   effect(KILL cr);
  9615   ins_cost(100);
  9616   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9617             "ADC    $dst.hi,$dst.hi" %}
  9618   ins_encode %{
  9619     __ addl($dst$$Register,$dst$$Register);
  9620     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9621   %}
  9622   ins_pipe( ialu_reg_long );
  9623 %}
  9625 // Shift Left Long by 2
  9626 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9627   predicate(UseNewLongLShift);
  9628   match(Set dst (LShiftL dst cnt));
  9629   effect(KILL cr);
  9630   ins_cost(100);
  9631   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9632             "ADC    $dst.hi,$dst.hi\n\t" 
  9633             "ADD    $dst.lo,$dst.lo\n\t"
  9634             "ADC    $dst.hi,$dst.hi" %}
  9635   ins_encode %{
  9636     __ addl($dst$$Register,$dst$$Register);
  9637     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9638     __ addl($dst$$Register,$dst$$Register);
  9639     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9640   %}
  9641   ins_pipe( ialu_reg_long );
  9642 %}
  9644 // Shift Left Long by 3
  9645 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9646   predicate(UseNewLongLShift);
  9647   match(Set dst (LShiftL dst cnt));
  9648   effect(KILL cr);
  9649   ins_cost(100);
  9650   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9651             "ADC    $dst.hi,$dst.hi\n\t" 
  9652             "ADD    $dst.lo,$dst.lo\n\t"
  9653             "ADC    $dst.hi,$dst.hi\n\t" 
  9654             "ADD    $dst.lo,$dst.lo\n\t"
  9655             "ADC    $dst.hi,$dst.hi" %}
  9656   ins_encode %{
  9657     __ addl($dst$$Register,$dst$$Register);
  9658     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9659     __ addl($dst$$Register,$dst$$Register);
  9660     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9661     __ addl($dst$$Register,$dst$$Register);
  9662     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9663   %}
  9664   ins_pipe( ialu_reg_long );
  9665 %}
  9667 // Shift Left Long by 1-31
  9668 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9669   match(Set dst (LShiftL dst cnt));
  9670   effect(KILL cr);
  9671   ins_cost(200);
  9672   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9673             "SHL    $dst.lo,$cnt" %}
  9674   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9675   ins_encode( move_long_small_shift(dst,cnt) );
  9676   ins_pipe( ialu_reg_long );
  9677 %}
  9679 // Shift Left Long by 32-63
  9680 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9681   match(Set dst (LShiftL dst cnt));
  9682   effect(KILL cr);
  9683   ins_cost(300);
  9684   format %{ "MOV    $dst.hi,$dst.lo\n"
  9685           "\tSHL    $dst.hi,$cnt-32\n"
  9686           "\tXOR    $dst.lo,$dst.lo" %}
  9687   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9688   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9689   ins_pipe( ialu_reg_long );
  9690 %}
  9692 // Shift Left Long by variable
  9693 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9694   match(Set dst (LShiftL dst shift));
  9695   effect(KILL cr);
  9696   ins_cost(500+200);
  9697   size(17);
  9698   format %{ "TEST   $shift,32\n\t"
  9699             "JEQ,s  small\n\t"
  9700             "MOV    $dst.hi,$dst.lo\n\t"
  9701             "XOR    $dst.lo,$dst.lo\n"
  9702     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9703             "SHL    $dst.lo,$shift" %}
  9704   ins_encode( shift_left_long( dst, shift ) );
  9705   ins_pipe( pipe_slow );
  9706 %}
  9708 // Shift Right Long by 1-31
  9709 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9710   match(Set dst (URShiftL dst cnt));
  9711   effect(KILL cr);
  9712   ins_cost(200);
  9713   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9714             "SHR    $dst.hi,$cnt" %}
  9715   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9716   ins_encode( move_long_small_shift(dst,cnt) );
  9717   ins_pipe( ialu_reg_long );
  9718 %}
  9720 // Shift Right Long by 32-63
  9721 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9722   match(Set dst (URShiftL dst cnt));
  9723   effect(KILL cr);
  9724   ins_cost(300);
  9725   format %{ "MOV    $dst.lo,$dst.hi\n"
  9726           "\tSHR    $dst.lo,$cnt-32\n"
  9727           "\tXOR    $dst.hi,$dst.hi" %}
  9728   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9729   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9730   ins_pipe( ialu_reg_long );
  9731 %}
  9733 // Shift Right Long by variable
  9734 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9735   match(Set dst (URShiftL dst shift));
  9736   effect(KILL cr);
  9737   ins_cost(600);
  9738   size(17);
  9739   format %{ "TEST   $shift,32\n\t"
  9740             "JEQ,s  small\n\t"
  9741             "MOV    $dst.lo,$dst.hi\n\t"
  9742             "XOR    $dst.hi,$dst.hi\n"
  9743     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9744             "SHR    $dst.hi,$shift" %}
  9745   ins_encode( shift_right_long( dst, shift ) );
  9746   ins_pipe( pipe_slow );
  9747 %}
  9749 // Shift Right Long by 1-31
  9750 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9751   match(Set dst (RShiftL dst cnt));
  9752   effect(KILL cr);
  9753   ins_cost(200);
  9754   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9755             "SAR    $dst.hi,$cnt" %}
  9756   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9757   ins_encode( move_long_small_shift(dst,cnt) );
  9758   ins_pipe( ialu_reg_long );
  9759 %}
  9761 // Shift Right Long by 32-63
  9762 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9763   match(Set dst (RShiftL dst cnt));
  9764   effect(KILL cr);
  9765   ins_cost(300);
  9766   format %{ "MOV    $dst.lo,$dst.hi\n"
  9767           "\tSAR    $dst.lo,$cnt-32\n"
  9768           "\tSAR    $dst.hi,31" %}
  9769   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9770   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9771   ins_pipe( ialu_reg_long );
  9772 %}
  9774 // Shift Right arithmetic Long by variable
  9775 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9776   match(Set dst (RShiftL dst shift));
  9777   effect(KILL cr);
  9778   ins_cost(600);
  9779   size(18);
  9780   format %{ "TEST   $shift,32\n\t"
  9781             "JEQ,s  small\n\t"
  9782             "MOV    $dst.lo,$dst.hi\n\t"
  9783             "SAR    $dst.hi,31\n"
  9784     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9785             "SAR    $dst.hi,$shift" %}
  9786   ins_encode( shift_right_arith_long( dst, shift ) );
  9787   ins_pipe( pipe_slow );
  9788 %}
  9791 //----------Double Instructions------------------------------------------------
  9792 // Double Math
  9794 // Compare & branch
  9796 // P6 version of float compare, sets condition codes in EFLAGS
  9797 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9798   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9799   match(Set cr (CmpD src1 src2));
  9800   effect(KILL rax);
  9801   ins_cost(150);
  9802   format %{ "FLD    $src1\n\t"
  9803             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9804             "JNP    exit\n\t"
  9805             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9806             "SAHF\n"
  9807      "exit:\tNOP               // avoid branch to branch" %}
  9808   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9809   ins_encode( Push_Reg_D(src1),
  9810               OpcP, RegOpc(src2),
  9811               cmpF_P6_fixup );
  9812   ins_pipe( pipe_slow );
  9813 %}
  9815 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9816   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9817   match(Set cr (CmpD src1 src2));
  9818   ins_cost(150);
  9819   format %{ "FLD    $src1\n\t"
  9820             "FUCOMIP ST,$src2  // P6 instruction" %}
  9821   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9822   ins_encode( Push_Reg_D(src1),
  9823               OpcP, RegOpc(src2));
  9824   ins_pipe( pipe_slow );
  9825 %}
  9827 // Compare & branch
  9828 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9829   predicate(UseSSE<=1);
  9830   match(Set cr (CmpD src1 src2));
  9831   effect(KILL rax);
  9832   ins_cost(200);
  9833   format %{ "FLD    $src1\n\t"
  9834             "FCOMp  $src2\n\t"
  9835             "FNSTSW AX\n\t"
  9836             "TEST   AX,0x400\n\t"
  9837             "JZ,s   flags\n\t"
  9838             "MOV    AH,1\t# unordered treat as LT\n"
  9839     "flags:\tSAHF" %}
  9840   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9841   ins_encode( Push_Reg_D(src1),
  9842               OpcP, RegOpc(src2),
  9843               fpu_flags);
  9844   ins_pipe( pipe_slow );
  9845 %}
  9847 // Compare vs zero into -1,0,1
  9848 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9849   predicate(UseSSE<=1);
  9850   match(Set dst (CmpD3 src1 zero));
  9851   effect(KILL cr, KILL rax);
  9852   ins_cost(280);
  9853   format %{ "FTSTD  $dst,$src1" %}
  9854   opcode(0xE4, 0xD9);
  9855   ins_encode( Push_Reg_D(src1),
  9856               OpcS, OpcP, PopFPU,
  9857               CmpF_Result(dst));
  9858   ins_pipe( pipe_slow );
  9859 %}
  9861 // Compare into -1,0,1
  9862 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9863   predicate(UseSSE<=1);
  9864   match(Set dst (CmpD3 src1 src2));
  9865   effect(KILL cr, KILL rax);
  9866   ins_cost(300);
  9867   format %{ "FCMPD  $dst,$src1,$src2" %}
  9868   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9869   ins_encode( Push_Reg_D(src1),
  9870               OpcP, RegOpc(src2),
  9871               CmpF_Result(dst));
  9872   ins_pipe( pipe_slow );
  9873 %}
  9875 // float compare and set condition codes in EFLAGS by XMM regs
  9876 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9877   predicate(UseSSE>=2);
  9878   match(Set cr (CmpD dst src));
  9879   effect(KILL rax);
  9880   ins_cost(125);
  9881   format %{ "COMISD $dst,$src\n"
  9882           "\tJNP    exit\n"
  9883           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9884           "\tSAHF\n"
  9885      "exit:\tNOP               // avoid branch to branch" %}
  9886   opcode(0x66, 0x0F, 0x2F);
  9887   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9888   ins_pipe( pipe_slow );
  9889 %}
  9891 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9892   predicate(UseSSE>=2);
  9893   match(Set cr (CmpD dst src));
  9894   ins_cost(100);
  9895   format %{ "COMISD $dst,$src" %}
  9896   opcode(0x66, 0x0F, 0x2F);
  9897   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9898   ins_pipe( pipe_slow );
  9899 %}
  9901 // float compare and set condition codes in EFLAGS by XMM regs
  9902 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9903   predicate(UseSSE>=2);
  9904   match(Set cr (CmpD dst (LoadD src)));
  9905   effect(KILL rax);
  9906   ins_cost(145);
  9907   format %{ "COMISD $dst,$src\n"
  9908           "\tJNP    exit\n"
  9909           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9910           "\tSAHF\n"
  9911      "exit:\tNOP               // avoid branch to branch" %}
  9912   opcode(0x66, 0x0F, 0x2F);
  9913   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9914   ins_pipe( pipe_slow );
  9915 %}
  9917 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9918   predicate(UseSSE>=2);
  9919   match(Set cr (CmpD dst (LoadD src)));
  9920   ins_cost(100);
  9921   format %{ "COMISD $dst,$src" %}
  9922   opcode(0x66, 0x0F, 0x2F);
  9923   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9924   ins_pipe( pipe_slow );
  9925 %}
  9927 // Compare into -1,0,1 in XMM
  9928 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9929   predicate(UseSSE>=2);
  9930   match(Set dst (CmpD3 src1 src2));
  9931   effect(KILL cr);
  9932   ins_cost(255);
  9933   format %{ "XOR    $dst,$dst\n"
  9934           "\tCOMISD $src1,$src2\n"
  9935           "\tJP,s   nan\n"
  9936           "\tJEQ,s  exit\n"
  9937           "\tJA,s   inc\n"
  9938       "nan:\tDEC    $dst\n"
  9939           "\tJMP,s  exit\n"
  9940       "inc:\tINC    $dst\n"
  9941       "exit:"
  9942                 %}
  9943   opcode(0x66, 0x0F, 0x2F);
  9944   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9945              CmpX_Result(dst));
  9946   ins_pipe( pipe_slow );
  9947 %}
  9949 // Compare into -1,0,1 in XMM and memory
  9950 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9951   predicate(UseSSE>=2);
  9952   match(Set dst (CmpD3 src1 (LoadD mem)));
  9953   effect(KILL cr);
  9954   ins_cost(275);
  9955   format %{ "COMISD $src1,$mem\n"
  9956           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9957           "\tJP,s   nan\n"
  9958           "\tJEQ,s  exit\n"
  9959           "\tJA,s   inc\n"
  9960       "nan:\tDEC    $dst\n"
  9961           "\tJMP,s  exit\n"
  9962       "inc:\tINC    $dst\n"
  9963       "exit:"
  9964                 %}
  9965   opcode(0x66, 0x0F, 0x2F);
  9966   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
  9967              LdImmI(dst,0x0), CmpX_Result(dst));
  9968   ins_pipe( pipe_slow );
  9969 %}
  9972 instruct subD_reg(regD dst, regD src) %{
  9973   predicate (UseSSE <=1);
  9974   match(Set dst (SubD dst src));
  9976   format %{ "FLD    $src\n\t"
  9977             "DSUBp  $dst,ST" %}
  9978   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9979   ins_cost(150);
  9980   ins_encode( Push_Reg_D(src),
  9981               OpcP, RegOpc(dst) );
  9982   ins_pipe( fpu_reg_reg );
  9983 %}
  9985 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9986   predicate (UseSSE <=1);
  9987   match(Set dst (RoundDouble (SubD src1 src2)));
  9988   ins_cost(250);
  9990   format %{ "FLD    $src2\n\t"
  9991             "DSUB   ST,$src1\n\t"
  9992             "FSTP_D $dst\t# D-round" %}
  9993   opcode(0xD8, 0x5);
  9994   ins_encode( Push_Reg_D(src2),
  9995               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9996   ins_pipe( fpu_mem_reg_reg );
  9997 %}
 10000 instruct subD_reg_mem(regD dst, memory src) %{
 10001   predicate (UseSSE <=1);
 10002   match(Set dst (SubD dst (LoadD src)));
 10003   ins_cost(150);
 10005   format %{ "FLD    $src\n\t"
 10006             "DSUBp  $dst,ST" %}
 10007   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10008   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10009               OpcP, RegOpc(dst) );
 10010   ins_pipe( fpu_reg_mem );
 10011 %}
 10013 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10014   predicate (UseSSE<=1);
 10015   match(Set dst (AbsD src));
 10016   ins_cost(100);
 10017   format %{ "FABS" %}
 10018   opcode(0xE1, 0xD9);
 10019   ins_encode( OpcS, OpcP );
 10020   ins_pipe( fpu_reg_reg );
 10021 %}
 10023 instruct absXD_reg( regXD dst ) %{
 10024   predicate(UseSSE>=2);
 10025   match(Set dst (AbsD dst));
 10026   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10027   ins_encode( AbsXD_encoding(dst));
 10028   ins_pipe( pipe_slow );
 10029 %}
 10031 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10032   predicate(UseSSE<=1);
 10033   match(Set dst (NegD src));
 10034   ins_cost(100);
 10035   format %{ "FCHS" %}
 10036   opcode(0xE0, 0xD9);
 10037   ins_encode( OpcS, OpcP );
 10038   ins_pipe( fpu_reg_reg );
 10039 %}
 10041 instruct negXD_reg( regXD dst ) %{
 10042   predicate(UseSSE>=2);
 10043   match(Set dst (NegD dst));
 10044   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10045   ins_encode %{
 10046      __ xorpd($dst$$XMMRegister,
 10047               ExternalAddress((address)double_signflip_pool));
 10048   %}
 10049   ins_pipe( pipe_slow );
 10050 %}
 10052 instruct addD_reg(regD dst, regD src) %{
 10053   predicate(UseSSE<=1);
 10054   match(Set dst (AddD dst src));
 10055   format %{ "FLD    $src\n\t"
 10056             "DADD   $dst,ST" %}
 10057   size(4);
 10058   ins_cost(150);
 10059   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10060   ins_encode( Push_Reg_D(src),
 10061               OpcP, RegOpc(dst) );
 10062   ins_pipe( fpu_reg_reg );
 10063 %}
 10066 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10067   predicate(UseSSE<=1);
 10068   match(Set dst (RoundDouble (AddD src1 src2)));
 10069   ins_cost(250);
 10071   format %{ "FLD    $src2\n\t"
 10072             "DADD   ST,$src1\n\t"
 10073             "FSTP_D $dst\t# D-round" %}
 10074   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10075   ins_encode( Push_Reg_D(src2),
 10076               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10077   ins_pipe( fpu_mem_reg_reg );
 10078 %}
 10081 instruct addD_reg_mem(regD dst, memory src) %{
 10082   predicate(UseSSE<=1);
 10083   match(Set dst (AddD dst (LoadD src)));
 10084   ins_cost(150);
 10086   format %{ "FLD    $src\n\t"
 10087             "DADDp  $dst,ST" %}
 10088   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10089   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10090               OpcP, RegOpc(dst) );
 10091   ins_pipe( fpu_reg_mem );
 10092 %}
 10094 // add-to-memory
 10095 instruct addD_mem_reg(memory dst, regD src) %{
 10096   predicate(UseSSE<=1);
 10097   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10098   ins_cost(150);
 10100   format %{ "FLD_D  $dst\n\t"
 10101             "DADD   ST,$src\n\t"
 10102             "FST_D  $dst" %}
 10103   opcode(0xDD, 0x0);
 10104   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10105               Opcode(0xD8), RegOpc(src),
 10106               set_instruction_start,
 10107               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10108   ins_pipe( fpu_reg_mem );
 10109 %}
 10111 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10112   predicate(UseSSE<=1);
 10113   match(Set dst (AddD dst src));
 10114   ins_cost(125);
 10115   format %{ "FLD1\n\t"
 10116             "DADDp  $dst,ST" %}
 10117   opcode(0xDE, 0x00);
 10118   ins_encode( LdImmD(src),
 10119               OpcP, RegOpc(dst) );
 10120   ins_pipe( fpu_reg );
 10121 %}
 10123 instruct addD_reg_imm(regD dst, immD src) %{
 10124   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10125   match(Set dst (AddD dst src));
 10126   ins_cost(200);
 10127   format %{ "FLD_D  [$src]\n\t"
 10128             "DADDp  $dst,ST" %}
 10129   opcode(0xDE, 0x00);       /* DE /0 */
 10130   ins_encode( LdImmD(src),
 10131               OpcP, RegOpc(dst));
 10132   ins_pipe( fpu_reg_mem );
 10133 %}
 10135 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10136   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10137   match(Set dst (RoundDouble (AddD src con)));
 10138   ins_cost(200);
 10139   format %{ "FLD_D  [$con]\n\t"
 10140             "DADD   ST,$src\n\t"
 10141             "FSTP_D $dst\t# D-round" %}
 10142   opcode(0xD8, 0x00);       /* D8 /0 */
 10143   ins_encode( LdImmD(con),
 10144               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10145   ins_pipe( fpu_mem_reg_con );
 10146 %}
 10148 // Add two double precision floating point values in xmm
 10149 instruct addXD_reg(regXD dst, regXD src) %{
 10150   predicate(UseSSE>=2);
 10151   match(Set dst (AddD dst src));
 10152   format %{ "ADDSD  $dst,$src" %}
 10153   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10154   ins_pipe( pipe_slow );
 10155 %}
 10157 instruct addXD_imm(regXD dst, immXD con) %{
 10158   predicate(UseSSE>=2);
 10159   match(Set dst (AddD dst con));
 10160   format %{ "ADDSD  $dst,[$con]" %}
 10161   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10162   ins_pipe( pipe_slow );
 10163 %}
 10165 instruct addXD_mem(regXD dst, memory mem) %{
 10166   predicate(UseSSE>=2);
 10167   match(Set dst (AddD dst (LoadD mem)));
 10168   format %{ "ADDSD  $dst,$mem" %}
 10169   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10170   ins_pipe( pipe_slow );
 10171 %}
 10173 // Sub two double precision floating point values in xmm
 10174 instruct subXD_reg(regXD dst, regXD src) %{
 10175   predicate(UseSSE>=2);
 10176   match(Set dst (SubD dst src));
 10177   format %{ "SUBSD  $dst,$src" %}
 10178   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10179   ins_pipe( pipe_slow );
 10180 %}
 10182 instruct subXD_imm(regXD dst, immXD con) %{
 10183   predicate(UseSSE>=2);
 10184   match(Set dst (SubD dst con));
 10185   format %{ "SUBSD  $dst,[$con]" %}
 10186   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10187   ins_pipe( pipe_slow );
 10188 %}
 10190 instruct subXD_mem(regXD dst, memory mem) %{
 10191   predicate(UseSSE>=2);
 10192   match(Set dst (SubD dst (LoadD mem)));
 10193   format %{ "SUBSD  $dst,$mem" %}
 10194   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10195   ins_pipe( pipe_slow );
 10196 %}
 10198 // Mul two double precision floating point values in xmm
 10199 instruct mulXD_reg(regXD dst, regXD src) %{
 10200   predicate(UseSSE>=2);
 10201   match(Set dst (MulD dst src));
 10202   format %{ "MULSD  $dst,$src" %}
 10203   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10204   ins_pipe( pipe_slow );
 10205 %}
 10207 instruct mulXD_imm(regXD dst, immXD con) %{
 10208   predicate(UseSSE>=2);
 10209   match(Set dst (MulD dst con));
 10210   format %{ "MULSD  $dst,[$con]" %}
 10211   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10212   ins_pipe( pipe_slow );
 10213 %}
 10215 instruct mulXD_mem(regXD dst, memory mem) %{
 10216   predicate(UseSSE>=2);
 10217   match(Set dst (MulD dst (LoadD mem)));
 10218   format %{ "MULSD  $dst,$mem" %}
 10219   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10220   ins_pipe( pipe_slow );
 10221 %}
 10223 // Div two double precision floating point values in xmm
 10224 instruct divXD_reg(regXD dst, regXD src) %{
 10225   predicate(UseSSE>=2);
 10226   match(Set dst (DivD dst src));
 10227   format %{ "DIVSD  $dst,$src" %}
 10228   opcode(0xF2, 0x0F, 0x5E);
 10229   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10230   ins_pipe( pipe_slow );
 10231 %}
 10233 instruct divXD_imm(regXD dst, immXD con) %{
 10234   predicate(UseSSE>=2);
 10235   match(Set dst (DivD dst con));
 10236   format %{ "DIVSD  $dst,[$con]" %}
 10237   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10238   ins_pipe( pipe_slow );
 10239 %}
 10241 instruct divXD_mem(regXD dst, memory mem) %{
 10242   predicate(UseSSE>=2);
 10243   match(Set dst (DivD dst (LoadD mem)));
 10244   format %{ "DIVSD  $dst,$mem" %}
 10245   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10246   ins_pipe( pipe_slow );
 10247 %}
 10250 instruct mulD_reg(regD dst, regD src) %{
 10251   predicate(UseSSE<=1);
 10252   match(Set dst (MulD dst src));
 10253   format %{ "FLD    $src\n\t"
 10254             "DMULp  $dst,ST" %}
 10255   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10256   ins_cost(150);
 10257   ins_encode( Push_Reg_D(src),
 10258               OpcP, RegOpc(dst) );
 10259   ins_pipe( fpu_reg_reg );
 10260 %}
 10262 // Strict FP instruction biases argument before multiply then
 10263 // biases result to avoid double rounding of subnormals.
 10264 //
 10265 // scale arg1 by multiplying arg1 by 2^(-15360)
 10266 // load arg2
 10267 // multiply scaled arg1 by arg2
 10268 // rescale product by 2^(15360)
 10269 //
 10270 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10271   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10272   match(Set dst (MulD dst src));
 10273   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10275   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10276             "DMULp  $dst,ST\n\t"
 10277             "FLD    $src\n\t"
 10278             "DMULp  $dst,ST\n\t"
 10279             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10280             "DMULp  $dst,ST\n\t" %}
 10281   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10282   ins_encode( strictfp_bias1(dst),
 10283               Push_Reg_D(src),
 10284               OpcP, RegOpc(dst),
 10285               strictfp_bias2(dst) );
 10286   ins_pipe( fpu_reg_reg );
 10287 %}
 10289 instruct mulD_reg_imm(regD dst, immD src) %{
 10290   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10291   match(Set dst (MulD dst src));
 10292   ins_cost(200);
 10293   format %{ "FLD_D  [$src]\n\t"
 10294             "DMULp  $dst,ST" %}
 10295   opcode(0xDE, 0x1); /* DE /1 */
 10296   ins_encode( LdImmD(src),
 10297               OpcP, RegOpc(dst) );
 10298   ins_pipe( fpu_reg_mem );
 10299 %}
 10302 instruct mulD_reg_mem(regD dst, memory src) %{
 10303   predicate( UseSSE<=1 );
 10304   match(Set dst (MulD dst (LoadD src)));
 10305   ins_cost(200);
 10306   format %{ "FLD_D  $src\n\t"
 10307             "DMULp  $dst,ST" %}
 10308   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10309   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10310               OpcP, RegOpc(dst) );
 10311   ins_pipe( fpu_reg_mem );
 10312 %}
 10314 //
 10315 // Cisc-alternate to reg-reg multiply
 10316 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10317   predicate( UseSSE<=1 );
 10318   match(Set dst (MulD src (LoadD mem)));
 10319   ins_cost(250);
 10320   format %{ "FLD_D  $mem\n\t"
 10321             "DMUL   ST,$src\n\t"
 10322             "FSTP_D $dst" %}
 10323   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10324   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10325               OpcReg_F(src),
 10326               Pop_Reg_D(dst) );
 10327   ins_pipe( fpu_reg_reg_mem );
 10328 %}
 10331 // MACRO3 -- addD a mulD
 10332 // This instruction is a '2-address' instruction in that the result goes
 10333 // back to src2.  This eliminates a move from the macro; possibly the
 10334 // register allocator will have to add it back (and maybe not).
 10335 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10336   predicate( UseSSE<=1 );
 10337   match(Set src2 (AddD (MulD src0 src1) src2));
 10338   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10339             "DMUL   ST,$src1\n\t"
 10340             "DADDp  $src2,ST" %}
 10341   ins_cost(250);
 10342   opcode(0xDD); /* LoadD DD /0 */
 10343   ins_encode( Push_Reg_F(src0),
 10344               FMul_ST_reg(src1),
 10345               FAddP_reg_ST(src2) );
 10346   ins_pipe( fpu_reg_reg_reg );
 10347 %}
 10350 // MACRO3 -- subD a mulD
 10351 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10352   predicate( UseSSE<=1 );
 10353   match(Set src2 (SubD (MulD src0 src1) src2));
 10354   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10355             "DMUL   ST,$src1\n\t"
 10356             "DSUBRp $src2,ST" %}
 10357   ins_cost(250);
 10358   ins_encode( Push_Reg_F(src0),
 10359               FMul_ST_reg(src1),
 10360               Opcode(0xDE), Opc_plus(0xE0,src2));
 10361   ins_pipe( fpu_reg_reg_reg );
 10362 %}
 10365 instruct divD_reg(regD dst, regD src) %{
 10366   predicate( UseSSE<=1 );
 10367   match(Set dst (DivD dst src));
 10369   format %{ "FLD    $src\n\t"
 10370             "FDIVp  $dst,ST" %}
 10371   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10372   ins_cost(150);
 10373   ins_encode( Push_Reg_D(src),
 10374               OpcP, RegOpc(dst) );
 10375   ins_pipe( fpu_reg_reg );
 10376 %}
 10378 // Strict FP instruction biases argument before division then
 10379 // biases result, to avoid double rounding of subnormals.
 10380 //
 10381 // scale dividend by multiplying dividend by 2^(-15360)
 10382 // load divisor
 10383 // divide scaled dividend by divisor
 10384 // rescale quotient by 2^(15360)
 10385 //
 10386 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10387   predicate (UseSSE<=1);
 10388   match(Set dst (DivD dst src));
 10389   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10390   ins_cost(01);
 10392   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10393             "DMULp  $dst,ST\n\t"
 10394             "FLD    $src\n\t"
 10395             "FDIVp  $dst,ST\n\t"
 10396             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10397             "DMULp  $dst,ST\n\t" %}
 10398   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10399   ins_encode( strictfp_bias1(dst),
 10400               Push_Reg_D(src),
 10401               OpcP, RegOpc(dst),
 10402               strictfp_bias2(dst) );
 10403   ins_pipe( fpu_reg_reg );
 10404 %}
 10406 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10407   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10408   match(Set dst (RoundDouble (DivD src1 src2)));
 10410   format %{ "FLD    $src1\n\t"
 10411             "FDIV   ST,$src2\n\t"
 10412             "FSTP_D $dst\t# D-round" %}
 10413   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10414   ins_encode( Push_Reg_D(src1),
 10415               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10416   ins_pipe( fpu_mem_reg_reg );
 10417 %}
 10420 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10421   predicate(UseSSE<=1);
 10422   match(Set dst (ModD dst src));
 10423   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10425   format %{ "DMOD   $dst,$src" %}
 10426   ins_cost(250);
 10427   ins_encode(Push_Reg_Mod_D(dst, src),
 10428               emitModD(),
 10429               Push_Result_Mod_D(src),
 10430               Pop_Reg_D(dst));
 10431   ins_pipe( pipe_slow );
 10432 %}
 10434 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10435   predicate(UseSSE>=2);
 10436   match(Set dst (ModD src0 src1));
 10437   effect(KILL rax, KILL cr);
 10439   format %{ "SUB    ESP,8\t # DMOD\n"
 10440           "\tMOVSD  [ESP+0],$src1\n"
 10441           "\tFLD_D  [ESP+0]\n"
 10442           "\tMOVSD  [ESP+0],$src0\n"
 10443           "\tFLD_D  [ESP+0]\n"
 10444      "loop:\tFPREM\n"
 10445           "\tFWAIT\n"
 10446           "\tFNSTSW AX\n"
 10447           "\tSAHF\n"
 10448           "\tJP     loop\n"
 10449           "\tFSTP_D [ESP+0]\n"
 10450           "\tMOVSD  $dst,[ESP+0]\n"
 10451           "\tADD    ESP,8\n"
 10452           "\tFSTP   ST0\t # Restore FPU Stack"
 10453     %}
 10454   ins_cost(250);
 10455   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10456   ins_pipe( pipe_slow );
 10457 %}
 10459 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10460   predicate (UseSSE<=1);
 10461   match(Set dst (SinD src));
 10462   ins_cost(1800);
 10463   format %{ "DSIN   $dst" %}
 10464   opcode(0xD9, 0xFE);
 10465   ins_encode( OpcP, OpcS );
 10466   ins_pipe( pipe_slow );
 10467 %}
 10469 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10470   predicate (UseSSE>=2);
 10471   match(Set dst (SinD dst));
 10472   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10473   ins_cost(1800);
 10474   format %{ "DSIN   $dst" %}
 10475   opcode(0xD9, 0xFE);
 10476   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10477   ins_pipe( pipe_slow );
 10478 %}
 10480 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10481   predicate (UseSSE<=1);
 10482   match(Set dst (CosD src));
 10483   ins_cost(1800);
 10484   format %{ "DCOS   $dst" %}
 10485   opcode(0xD9, 0xFF);
 10486   ins_encode( OpcP, OpcS );
 10487   ins_pipe( pipe_slow );
 10488 %}
 10490 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10491   predicate (UseSSE>=2);
 10492   match(Set dst (CosD dst));
 10493   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10494   ins_cost(1800);
 10495   format %{ "DCOS   $dst" %}
 10496   opcode(0xD9, 0xFF);
 10497   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10498   ins_pipe( pipe_slow );
 10499 %}
 10501 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10502   predicate (UseSSE<=1);
 10503   match(Set dst(TanD src));
 10504   format %{ "DTAN   $dst" %}
 10505   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10506               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10507   ins_pipe( pipe_slow );
 10508 %}
 10510 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10511   predicate (UseSSE>=2);
 10512   match(Set dst(TanD dst));
 10513   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10514   format %{ "DTAN   $dst" %}
 10515   ins_encode( Push_SrcXD(dst),
 10516               Opcode(0xD9), Opcode(0xF2),    // fptan
 10517               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10518               Push_ResultXD(dst) );
 10519   ins_pipe( pipe_slow );
 10520 %}
 10522 instruct atanD_reg(regD dst, regD src) %{
 10523   predicate (UseSSE<=1);
 10524   match(Set dst(AtanD dst src));
 10525   format %{ "DATA   $dst,$src" %}
 10526   opcode(0xD9, 0xF3);
 10527   ins_encode( Push_Reg_D(src),
 10528               OpcP, OpcS, RegOpc(dst) );
 10529   ins_pipe( pipe_slow );
 10530 %}
 10532 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10533   predicate (UseSSE>=2);
 10534   match(Set dst(AtanD dst src));
 10535   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10536   format %{ "DATA   $dst,$src" %}
 10537   opcode(0xD9, 0xF3);
 10538   ins_encode( Push_SrcXD(src),
 10539               OpcP, OpcS, Push_ResultXD(dst) );
 10540   ins_pipe( pipe_slow );
 10541 %}
 10543 instruct sqrtD_reg(regD dst, regD src) %{
 10544   predicate (UseSSE<=1);
 10545   match(Set dst (SqrtD src));
 10546   format %{ "DSQRT  $dst,$src" %}
 10547   opcode(0xFA, 0xD9);
 10548   ins_encode( Push_Reg_D(src),
 10549               OpcS, OpcP, Pop_Reg_D(dst) );
 10550   ins_pipe( pipe_slow );
 10551 %}
 10553 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10554   predicate (UseSSE<=1);
 10555   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10556   effect(KILL rax, KILL rbx, KILL rcx);
 10557   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10558             "FLD_D  $X\n\t"
 10559             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10561             "FDUP   \t\t\t# Q Q\n\t"
 10562             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10563             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10564             "FISTP  dword [ESP]\n\t"
 10565             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10566             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10567             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10568             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10569             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10570             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10571             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10572             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10573             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10574             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10575             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10576             "MOV    [ESP+0],0\n\t"
 10577             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10579             "ADD    ESP,8"
 10580              %}
 10581   ins_encode( push_stack_temp_qword,
 10582               Push_Reg_D(X),
 10583               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10584               pow_exp_core_encoding,
 10585               pop_stack_temp_qword);
 10586   ins_pipe( pipe_slow );
 10587 %}
 10589 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10590   predicate (UseSSE>=2);
 10591   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10592   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10593   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10594             "MOVSD  [ESP],$src1\n\t"
 10595             "FLD    FPR1,$src1\n\t"
 10596             "MOVSD  [ESP],$src0\n\t"
 10597             "FLD    FPR1,$src0\n\t"
 10598             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10600             "FDUP   \t\t\t# Q Q\n\t"
 10601             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10602             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10603             "FISTP  dword [ESP]\n\t"
 10604             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10605             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10606             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10607             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10608             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10609             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10610             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10611             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10612             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10613             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10614             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10615             "MOV    [ESP+0],0\n\t"
 10616             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10618             "FST_D  [ESP]\n\t"
 10619             "MOVSD  $dst,[ESP]\n\t"
 10620             "ADD    ESP,8"
 10621              %}
 10622   ins_encode( push_stack_temp_qword,
 10623               push_xmm_to_fpr1(src1),
 10624               push_xmm_to_fpr1(src0),
 10625               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10626               pow_exp_core_encoding,
 10627               Push_ResultXD(dst) );
 10628   ins_pipe( pipe_slow );
 10629 %}
 10632 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10633   predicate (UseSSE<=1);
 10634   match(Set dpr1 (ExpD dpr1));
 10635   effect(KILL rax, KILL rbx, KILL rcx);
 10636   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10637             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10638             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10640             "FDUP   \t\t\t# Q Q\n\t"
 10641             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10642             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10643             "FISTP  dword [ESP]\n\t"
 10644             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10645             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10646             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10647             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10648             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10649             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10650             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10651             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10652             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10653             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10654             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10655             "MOV    [ESP+0],0\n\t"
 10656             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10658             "ADD    ESP,8"
 10659              %}
 10660   ins_encode( push_stack_temp_qword,
 10661               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10662               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10663               pow_exp_core_encoding,
 10664               pop_stack_temp_qword);
 10665   ins_pipe( pipe_slow );
 10666 %}
 10668 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10669   predicate (UseSSE>=2);
 10670   match(Set dst (ExpD src));
 10671   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10672   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10673             "MOVSD  [ESP],$src\n\t"
 10674             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10675             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10677             "FDUP   \t\t\t# Q Q\n\t"
 10678             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10679             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10680             "FISTP  dword [ESP]\n\t"
 10681             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10682             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10683             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10684             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10685             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10686             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10687             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10688             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10689             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10690             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10691             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10692             "MOV    [ESP+0],0\n\t"
 10693             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10695             "FST_D  [ESP]\n\t"
 10696             "MOVSD  $dst,[ESP]\n\t"
 10697             "ADD    ESP,8"
 10698              %}
 10699   ins_encode( Push_SrcXD(src),
 10700               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10701               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10702               pow_exp_core_encoding,
 10703               Push_ResultXD(dst) );
 10704   ins_pipe( pipe_slow );
 10705 %}
 10709 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10710   predicate (UseSSE<=1);
 10711   // The source Double operand on FPU stack
 10712   match(Set dst (Log10D src));
 10713   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10714   // fxch         ; swap ST(0) with ST(1)
 10715   // fyl2x        ; compute log_10(2) * log_2(x)
 10716   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10717             "FXCH   \n\t"
 10718             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10719          %}
 10720   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10721               Opcode(0xD9), Opcode(0xC9),   // fxch
 10722               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10724   ins_pipe( pipe_slow );
 10725 %}
 10727 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10728   predicate (UseSSE>=2);
 10729   effect(KILL cr);
 10730   match(Set dst (Log10D src));
 10731   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10732   // fyl2x        ; compute log_10(2) * log_2(x)
 10733   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10734             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10735          %}
 10736   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10737               Push_SrcXD(src),
 10738               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10739               Push_ResultXD(dst));
 10741   ins_pipe( pipe_slow );
 10742 %}
 10744 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10745   predicate (UseSSE<=1);
 10746   // The source Double operand on FPU stack
 10747   match(Set dst (LogD src));
 10748   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10749   // fxch         ; swap ST(0) with ST(1)
 10750   // fyl2x        ; compute log_e(2) * log_2(x)
 10751   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10752             "FXCH   \n\t"
 10753             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10754          %}
 10755   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10756               Opcode(0xD9), Opcode(0xC9),   // fxch
 10757               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10759   ins_pipe( pipe_slow );
 10760 %}
 10762 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10763   predicate (UseSSE>=2);
 10764   effect(KILL cr);
 10765   // The source and result Double operands in XMM registers
 10766   match(Set dst (LogD src));
 10767   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10768   // fyl2x        ; compute log_e(2) * log_2(x)
 10769   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10770             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10771          %}
 10772   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10773               Push_SrcXD(src),
 10774               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10775               Push_ResultXD(dst));
 10776   ins_pipe( pipe_slow );
 10777 %}
 10779 //-------------Float Instructions-------------------------------
 10780 // Float Math
 10782 // Code for float compare:
 10783 //     fcompp();
 10784 //     fwait(); fnstsw_ax();
 10785 //     sahf();
 10786 //     movl(dst, unordered_result);
 10787 //     jcc(Assembler::parity, exit);
 10788 //     movl(dst, less_result);
 10789 //     jcc(Assembler::below, exit);
 10790 //     movl(dst, equal_result);
 10791 //     jcc(Assembler::equal, exit);
 10792 //     movl(dst, greater_result);
 10793 //   exit:
 10795 // P6 version of float compare, sets condition codes in EFLAGS
 10796 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10797   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10798   match(Set cr (CmpF src1 src2));
 10799   effect(KILL rax);
 10800   ins_cost(150);
 10801   format %{ "FLD    $src1\n\t"
 10802             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10803             "JNP    exit\n\t"
 10804             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10805             "SAHF\n"
 10806      "exit:\tNOP               // avoid branch to branch" %}
 10807   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10808   ins_encode( Push_Reg_D(src1),
 10809               OpcP, RegOpc(src2),
 10810               cmpF_P6_fixup );
 10811   ins_pipe( pipe_slow );
 10812 %}
 10814 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10815   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10816   match(Set cr (CmpF src1 src2));
 10817   ins_cost(100);
 10818   format %{ "FLD    $src1\n\t"
 10819             "FUCOMIP ST,$src2  // P6 instruction" %}
 10820   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10821   ins_encode( Push_Reg_D(src1),
 10822               OpcP, RegOpc(src2));
 10823   ins_pipe( pipe_slow );
 10824 %}
 10827 // Compare & branch
 10828 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10829   predicate(UseSSE == 0);
 10830   match(Set cr (CmpF src1 src2));
 10831   effect(KILL rax);
 10832   ins_cost(200);
 10833   format %{ "FLD    $src1\n\t"
 10834             "FCOMp  $src2\n\t"
 10835             "FNSTSW AX\n\t"
 10836             "TEST   AX,0x400\n\t"
 10837             "JZ,s   flags\n\t"
 10838             "MOV    AH,1\t# unordered treat as LT\n"
 10839     "flags:\tSAHF" %}
 10840   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10841   ins_encode( Push_Reg_D(src1),
 10842               OpcP, RegOpc(src2),
 10843               fpu_flags);
 10844   ins_pipe( pipe_slow );
 10845 %}
 10847 // Compare vs zero into -1,0,1
 10848 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10849   predicate(UseSSE == 0);
 10850   match(Set dst (CmpF3 src1 zero));
 10851   effect(KILL cr, KILL rax);
 10852   ins_cost(280);
 10853   format %{ "FTSTF  $dst,$src1" %}
 10854   opcode(0xE4, 0xD9);
 10855   ins_encode( Push_Reg_D(src1),
 10856               OpcS, OpcP, PopFPU,
 10857               CmpF_Result(dst));
 10858   ins_pipe( pipe_slow );
 10859 %}
 10861 // Compare into -1,0,1
 10862 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10863   predicate(UseSSE == 0);
 10864   match(Set dst (CmpF3 src1 src2));
 10865   effect(KILL cr, KILL rax);
 10866   ins_cost(300);
 10867   format %{ "FCMPF  $dst,$src1,$src2" %}
 10868   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10869   ins_encode( Push_Reg_D(src1),
 10870               OpcP, RegOpc(src2),
 10871               CmpF_Result(dst));
 10872   ins_pipe( pipe_slow );
 10873 %}
 10875 // float compare and set condition codes in EFLAGS by XMM regs
 10876 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10877   predicate(UseSSE>=1);
 10878   match(Set cr (CmpF dst src));
 10879   effect(KILL rax);
 10880   ins_cost(145);
 10881   format %{ "COMISS $dst,$src\n"
 10882           "\tJNP    exit\n"
 10883           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10884           "\tSAHF\n"
 10885      "exit:\tNOP               // avoid branch to branch" %}
 10886   opcode(0x0F, 0x2F);
 10887   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10888   ins_pipe( pipe_slow );
 10889 %}
 10891 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10892   predicate(UseSSE>=1);
 10893   match(Set cr (CmpF dst src));
 10894   ins_cost(100);
 10895   format %{ "COMISS $dst,$src" %}
 10896   opcode(0x0F, 0x2F);
 10897   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10898   ins_pipe( pipe_slow );
 10899 %}
 10901 // float compare and set condition codes in EFLAGS by XMM regs
 10902 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10903   predicate(UseSSE>=1);
 10904   match(Set cr (CmpF dst (LoadF src)));
 10905   effect(KILL rax);
 10906   ins_cost(165);
 10907   format %{ "COMISS $dst,$src\n"
 10908           "\tJNP    exit\n"
 10909           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10910           "\tSAHF\n"
 10911      "exit:\tNOP               // avoid branch to branch" %}
 10912   opcode(0x0F, 0x2F);
 10913   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10914   ins_pipe( pipe_slow );
 10915 %}
 10917 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10918   predicate(UseSSE>=1);
 10919   match(Set cr (CmpF dst (LoadF src)));
 10920   ins_cost(100);
 10921   format %{ "COMISS $dst,$src" %}
 10922   opcode(0x0F, 0x2F);
 10923   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10924   ins_pipe( pipe_slow );
 10925 %}
 10927 // Compare into -1,0,1 in XMM
 10928 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10929   predicate(UseSSE>=1);
 10930   match(Set dst (CmpF3 src1 src2));
 10931   effect(KILL cr);
 10932   ins_cost(255);
 10933   format %{ "XOR    $dst,$dst\n"
 10934           "\tCOMISS $src1,$src2\n"
 10935           "\tJP,s   nan\n"
 10936           "\tJEQ,s  exit\n"
 10937           "\tJA,s   inc\n"
 10938       "nan:\tDEC    $dst\n"
 10939           "\tJMP,s  exit\n"
 10940       "inc:\tINC    $dst\n"
 10941       "exit:"
 10942                 %}
 10943   opcode(0x0F, 0x2F);
 10944   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10945   ins_pipe( pipe_slow );
 10946 %}
 10948 // Compare into -1,0,1 in XMM and memory
 10949 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10950   predicate(UseSSE>=1);
 10951   match(Set dst (CmpF3 src1 (LoadF mem)));
 10952   effect(KILL cr);
 10953   ins_cost(275);
 10954   format %{ "COMISS $src1,$mem\n"
 10955           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10956           "\tJP,s   nan\n"
 10957           "\tJEQ,s  exit\n"
 10958           "\tJA,s   inc\n"
 10959       "nan:\tDEC    $dst\n"
 10960           "\tJMP,s  exit\n"
 10961       "inc:\tINC    $dst\n"
 10962       "exit:"
 10963                 %}
 10964   opcode(0x0F, 0x2F);
 10965   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 10966   ins_pipe( pipe_slow );
 10967 %}
 10969 // Spill to obtain 24-bit precision
 10970 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10971   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10972   match(Set dst (SubF src1 src2));
 10974   format %{ "FSUB   $dst,$src1 - $src2" %}
 10975   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10976   ins_encode( Push_Reg_F(src1),
 10977               OpcReg_F(src2),
 10978               Pop_Mem_F(dst) );
 10979   ins_pipe( fpu_mem_reg_reg );
 10980 %}
 10981 //
 10982 // This instruction does not round to 24-bits
 10983 instruct subF_reg(regF dst, regF src) %{
 10984   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10985   match(Set dst (SubF dst src));
 10987   format %{ "FSUB   $dst,$src" %}
 10988   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10989   ins_encode( Push_Reg_F(src),
 10990               OpcP, RegOpc(dst) );
 10991   ins_pipe( fpu_reg_reg );
 10992 %}
 10994 // Spill to obtain 24-bit precision
 10995 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10996   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10997   match(Set dst (AddF src1 src2));
 10999   format %{ "FADD   $dst,$src1,$src2" %}
 11000   opcode(0xD8, 0x0); /* D8 C0+i */
 11001   ins_encode( Push_Reg_F(src2),
 11002               OpcReg_F(src1),
 11003               Pop_Mem_F(dst) );
 11004   ins_pipe( fpu_mem_reg_reg );
 11005 %}
 11006 //
 11007 // This instruction does not round to 24-bits
 11008 instruct addF_reg(regF dst, regF src) %{
 11009   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11010   match(Set dst (AddF dst src));
 11012   format %{ "FLD    $src\n\t"
 11013             "FADDp  $dst,ST" %}
 11014   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11015   ins_encode( Push_Reg_F(src),
 11016               OpcP, RegOpc(dst) );
 11017   ins_pipe( fpu_reg_reg );
 11018 %}
 11020 // Add two single precision floating point values in xmm
 11021 instruct addX_reg(regX dst, regX src) %{
 11022   predicate(UseSSE>=1);
 11023   match(Set dst (AddF dst src));
 11024   format %{ "ADDSS  $dst,$src" %}
 11025   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11026   ins_pipe( pipe_slow );
 11027 %}
 11029 instruct addX_imm(regX dst, immXF con) %{
 11030   predicate(UseSSE>=1);
 11031   match(Set dst (AddF dst con));
 11032   format %{ "ADDSS  $dst,[$con]" %}
 11033   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 11034   ins_pipe( pipe_slow );
 11035 %}
 11037 instruct addX_mem(regX dst, memory mem) %{
 11038   predicate(UseSSE>=1);
 11039   match(Set dst (AddF dst (LoadF mem)));
 11040   format %{ "ADDSS  $dst,$mem" %}
 11041   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11042   ins_pipe( pipe_slow );
 11043 %}
 11045 // Subtract two single precision floating point values in xmm
 11046 instruct subX_reg(regX dst, regX src) %{
 11047   predicate(UseSSE>=1);
 11048   match(Set dst (SubF dst src));
 11049   format %{ "SUBSS  $dst,$src" %}
 11050   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11051   ins_pipe( pipe_slow );
 11052 %}
 11054 instruct subX_imm(regX dst, immXF con) %{
 11055   predicate(UseSSE>=1);
 11056   match(Set dst (SubF dst con));
 11057   format %{ "SUBSS  $dst,[$con]" %}
 11058   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 11059   ins_pipe( pipe_slow );
 11060 %}
 11062 instruct subX_mem(regX dst, memory mem) %{
 11063   predicate(UseSSE>=1);
 11064   match(Set dst (SubF dst (LoadF mem)));
 11065   format %{ "SUBSS  $dst,$mem" %}
 11066   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11067   ins_pipe( pipe_slow );
 11068 %}
 11070 // Multiply two single precision floating point values in xmm
 11071 instruct mulX_reg(regX dst, regX src) %{
 11072   predicate(UseSSE>=1);
 11073   match(Set dst (MulF dst src));
 11074   format %{ "MULSS  $dst,$src" %}
 11075   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11076   ins_pipe( pipe_slow );
 11077 %}
 11079 instruct mulX_imm(regX dst, immXF con) %{
 11080   predicate(UseSSE>=1);
 11081   match(Set dst (MulF dst con));
 11082   format %{ "MULSS  $dst,[$con]" %}
 11083   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 11084   ins_pipe( pipe_slow );
 11085 %}
 11087 instruct mulX_mem(regX dst, memory mem) %{
 11088   predicate(UseSSE>=1);
 11089   match(Set dst (MulF dst (LoadF mem)));
 11090   format %{ "MULSS  $dst,$mem" %}
 11091   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11092   ins_pipe( pipe_slow );
 11093 %}
 11095 // Divide two single precision floating point values in xmm
 11096 instruct divX_reg(regX dst, regX src) %{
 11097   predicate(UseSSE>=1);
 11098   match(Set dst (DivF dst src));
 11099   format %{ "DIVSS  $dst,$src" %}
 11100   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11101   ins_pipe( pipe_slow );
 11102 %}
 11104 instruct divX_imm(regX dst, immXF con) %{
 11105   predicate(UseSSE>=1);
 11106   match(Set dst (DivF dst con));
 11107   format %{ "DIVSS  $dst,[$con]" %}
 11108   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11109   ins_pipe( pipe_slow );
 11110 %}
 11112 instruct divX_mem(regX dst, memory mem) %{
 11113   predicate(UseSSE>=1);
 11114   match(Set dst (DivF dst (LoadF mem)));
 11115   format %{ "DIVSS  $dst,$mem" %}
 11116   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11117   ins_pipe( pipe_slow );
 11118 %}
 11120 // Get the square root of a single precision floating point values in xmm
 11121 instruct sqrtX_reg(regX dst, regX src) %{
 11122   predicate(UseSSE>=1);
 11123   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11124   format %{ "SQRTSS $dst,$src" %}
 11125   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11126   ins_pipe( pipe_slow );
 11127 %}
 11129 instruct sqrtX_mem(regX dst, memory mem) %{
 11130   predicate(UseSSE>=1);
 11131   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11132   format %{ "SQRTSS $dst,$mem" %}
 11133   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11134   ins_pipe( pipe_slow );
 11135 %}
 11137 // Get the square root of a double precision floating point values in xmm
 11138 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11139   predicate(UseSSE>=2);
 11140   match(Set dst (SqrtD src));
 11141   format %{ "SQRTSD $dst,$src" %}
 11142   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11143   ins_pipe( pipe_slow );
 11144 %}
 11146 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11147   predicate(UseSSE>=2);
 11148   match(Set dst (SqrtD (LoadD mem)));
 11149   format %{ "SQRTSD $dst,$mem" %}
 11150   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11151   ins_pipe( pipe_slow );
 11152 %}
 11154 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11155   predicate(UseSSE==0);
 11156   match(Set dst (AbsF src));
 11157   ins_cost(100);
 11158   format %{ "FABS" %}
 11159   opcode(0xE1, 0xD9);
 11160   ins_encode( OpcS, OpcP );
 11161   ins_pipe( fpu_reg_reg );
 11162 %}
 11164 instruct absX_reg(regX dst ) %{
 11165   predicate(UseSSE>=1);
 11166   match(Set dst (AbsF dst));
 11167   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11168   ins_encode( AbsXF_encoding(dst));
 11169   ins_pipe( pipe_slow );
 11170 %}
 11172 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11173   predicate(UseSSE==0);
 11174   match(Set dst (NegF src));
 11175   ins_cost(100);
 11176   format %{ "FCHS" %}
 11177   opcode(0xE0, 0xD9);
 11178   ins_encode( OpcS, OpcP );
 11179   ins_pipe( fpu_reg_reg );
 11180 %}
 11182 instruct negX_reg( regX dst ) %{
 11183   predicate(UseSSE>=1);
 11184   match(Set dst (NegF dst));
 11185   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11186   ins_encode( NegXF_encoding(dst));
 11187   ins_pipe( pipe_slow );
 11188 %}
 11190 // Cisc-alternate to addF_reg
 11191 // Spill to obtain 24-bit precision
 11192 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11193   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11194   match(Set dst (AddF src1 (LoadF src2)));
 11196   format %{ "FLD    $src2\n\t"
 11197             "FADD   ST,$src1\n\t"
 11198             "FSTP_S $dst" %}
 11199   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11200   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11201               OpcReg_F(src1),
 11202               Pop_Mem_F(dst) );
 11203   ins_pipe( fpu_mem_reg_mem );
 11204 %}
 11205 //
 11206 // Cisc-alternate to addF_reg
 11207 // This instruction does not round to 24-bits
 11208 instruct addF_reg_mem(regF dst, memory src) %{
 11209   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11210   match(Set dst (AddF dst (LoadF src)));
 11212   format %{ "FADD   $dst,$src" %}
 11213   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11214   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11215               OpcP, RegOpc(dst) );
 11216   ins_pipe( fpu_reg_mem );
 11217 %}
 11219 // // Following two instructions for _222_mpegaudio
 11220 // Spill to obtain 24-bit precision
 11221 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11222   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11223   match(Set dst (AddF src1 src2));
 11225   format %{ "FADD   $dst,$src1,$src2" %}
 11226   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11227   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11228               OpcReg_F(src2),
 11229               Pop_Mem_F(dst) );
 11230   ins_pipe( fpu_mem_reg_mem );
 11231 %}
 11233 // Cisc-spill variant
 11234 // Spill to obtain 24-bit precision
 11235 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11236   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11237   match(Set dst (AddF src1 (LoadF src2)));
 11239   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11240   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11241   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11242               set_instruction_start,
 11243               OpcP, RMopc_Mem(secondary,src1),
 11244               Pop_Mem_F(dst) );
 11245   ins_pipe( fpu_mem_mem_mem );
 11246 %}
 11248 // Spill to obtain 24-bit precision
 11249 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11250   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11251   match(Set dst (AddF src1 src2));
 11253   format %{ "FADD   $dst,$src1,$src2" %}
 11254   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11255   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11256               set_instruction_start,
 11257               OpcP, RMopc_Mem(secondary,src1),
 11258               Pop_Mem_F(dst) );
 11259   ins_pipe( fpu_mem_mem_mem );
 11260 %}
 11263 // Spill to obtain 24-bit precision
 11264 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11265   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11266   match(Set dst (AddF src1 src2));
 11267   format %{ "FLD    $src1\n\t"
 11268             "FADD   $src2\n\t"
 11269             "FSTP_S $dst"  %}
 11270   opcode(0xD8, 0x00);       /* D8 /0 */
 11271   ins_encode( Push_Reg_F(src1),
 11272               Opc_MemImm_F(src2),
 11273               Pop_Mem_F(dst));
 11274   ins_pipe( fpu_mem_reg_con );
 11275 %}
 11276 //
 11277 // This instruction does not round to 24-bits
 11278 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11279   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11280   match(Set dst (AddF src1 src2));
 11281   format %{ "FLD    $src1\n\t"
 11282             "FADD   $src2\n\t"
 11283             "FSTP_S $dst"  %}
 11284   opcode(0xD8, 0x00);       /* D8 /0 */
 11285   ins_encode( Push_Reg_F(src1),
 11286               Opc_MemImm_F(src2),
 11287               Pop_Reg_F(dst));
 11288   ins_pipe( fpu_reg_reg_con );
 11289 %}
 11291 // Spill to obtain 24-bit precision
 11292 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11293   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11294   match(Set dst (MulF src1 src2));
 11296   format %{ "FLD    $src1\n\t"
 11297             "FMUL   $src2\n\t"
 11298             "FSTP_S $dst"  %}
 11299   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11300   ins_encode( Push_Reg_F(src1),
 11301               OpcReg_F(src2),
 11302               Pop_Mem_F(dst) );
 11303   ins_pipe( fpu_mem_reg_reg );
 11304 %}
 11305 //
 11306 // This instruction does not round to 24-bits
 11307 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11308   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11309   match(Set dst (MulF src1 src2));
 11311   format %{ "FLD    $src1\n\t"
 11312             "FMUL   $src2\n\t"
 11313             "FSTP_S $dst"  %}
 11314   opcode(0xD8, 0x1); /* D8 C8+i */
 11315   ins_encode( Push_Reg_F(src2),
 11316               OpcReg_F(src1),
 11317               Pop_Reg_F(dst) );
 11318   ins_pipe( fpu_reg_reg_reg );
 11319 %}
 11322 // Spill to obtain 24-bit precision
 11323 // Cisc-alternate to reg-reg multiply
 11324 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11325   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11326   match(Set dst (MulF src1 (LoadF src2)));
 11328   format %{ "FLD_S  $src2\n\t"
 11329             "FMUL   $src1\n\t"
 11330             "FSTP_S $dst"  %}
 11331   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11332   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11333               OpcReg_F(src1),
 11334               Pop_Mem_F(dst) );
 11335   ins_pipe( fpu_mem_reg_mem );
 11336 %}
 11337 //
 11338 // This instruction does not round to 24-bits
 11339 // Cisc-alternate to reg-reg multiply
 11340 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11341   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11342   match(Set dst (MulF src1 (LoadF src2)));
 11344   format %{ "FMUL   $dst,$src1,$src2" %}
 11345   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11346   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11347               OpcReg_F(src1),
 11348               Pop_Reg_F(dst) );
 11349   ins_pipe( fpu_reg_reg_mem );
 11350 %}
 11352 // Spill to obtain 24-bit precision
 11353 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11354   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11355   match(Set dst (MulF src1 src2));
 11357   format %{ "FMUL   $dst,$src1,$src2" %}
 11358   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11359   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11360               set_instruction_start,
 11361               OpcP, RMopc_Mem(secondary,src1),
 11362               Pop_Mem_F(dst) );
 11363   ins_pipe( fpu_mem_mem_mem );
 11364 %}
 11366 // Spill to obtain 24-bit precision
 11367 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11368   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11369   match(Set dst (MulF src1 src2));
 11371   format %{ "FMULc $dst,$src1,$src2" %}
 11372   opcode(0xD8, 0x1);  /* D8 /1*/
 11373   ins_encode( Push_Reg_F(src1),
 11374               Opc_MemImm_F(src2),
 11375               Pop_Mem_F(dst));
 11376   ins_pipe( fpu_mem_reg_con );
 11377 %}
 11378 //
 11379 // This instruction does not round to 24-bits
 11380 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11381   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11382   match(Set dst (MulF src1 src2));
 11384   format %{ "FMULc $dst. $src1, $src2" %}
 11385   opcode(0xD8, 0x1);  /* D8 /1*/
 11386   ins_encode( Push_Reg_F(src1),
 11387               Opc_MemImm_F(src2),
 11388               Pop_Reg_F(dst));
 11389   ins_pipe( fpu_reg_reg_con );
 11390 %}
 11393 //
 11394 // MACRO1 -- subsume unshared load into mulF
 11395 // This instruction does not round to 24-bits
 11396 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11397   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11398   match(Set dst (MulF (LoadF mem1) src));
 11400   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11401             "FMUL   ST,$src\n\t"
 11402             "FSTP   $dst" %}
 11403   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11404   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11405               OpcReg_F(src),
 11406               Pop_Reg_F(dst) );
 11407   ins_pipe( fpu_reg_reg_mem );
 11408 %}
 11409 //
 11410 // MACRO2 -- addF a mulF which subsumed an unshared load
 11411 // This instruction does not round to 24-bits
 11412 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11413   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11414   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11415   ins_cost(95);
 11417   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11418             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11419             "FADD   ST,$src2\n\t"
 11420             "FSTP   $dst" %}
 11421   opcode(0xD9); /* LoadF D9 /0 */
 11422   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11423               FMul_ST_reg(src1),
 11424               FAdd_ST_reg(src2),
 11425               Pop_Reg_F(dst) );
 11426   ins_pipe( fpu_reg_mem_reg_reg );
 11427 %}
 11429 // MACRO3 -- addF a mulF
 11430 // This instruction does not round to 24-bits.  It is a '2-address'
 11431 // instruction in that the result goes back to src2.  This eliminates
 11432 // a move from the macro; possibly the register allocator will have
 11433 // to add it back (and maybe not).
 11434 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11435   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11436   match(Set src2 (AddF (MulF src0 src1) src2));
 11438   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11439             "FMUL   ST,$src1\n\t"
 11440             "FADDP  $src2,ST" %}
 11441   opcode(0xD9); /* LoadF D9 /0 */
 11442   ins_encode( Push_Reg_F(src0),
 11443               FMul_ST_reg(src1),
 11444               FAddP_reg_ST(src2) );
 11445   ins_pipe( fpu_reg_reg_reg );
 11446 %}
 11448 // MACRO4 -- divF subF
 11449 // This instruction does not round to 24-bits
 11450 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11451   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11452   match(Set dst (DivF (SubF src2 src1) src3));
 11454   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11455             "FSUB   ST,$src1\n\t"
 11456             "FDIV   ST,$src3\n\t"
 11457             "FSTP  $dst" %}
 11458   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11459   ins_encode( Push_Reg_F(src2),
 11460               subF_divF_encode(src1,src3),
 11461               Pop_Reg_F(dst) );
 11462   ins_pipe( fpu_reg_reg_reg_reg );
 11463 %}
 11465 // Spill to obtain 24-bit precision
 11466 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11467   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11468   match(Set dst (DivF src1 src2));
 11470   format %{ "FDIV   $dst,$src1,$src2" %}
 11471   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11472   ins_encode( Push_Reg_F(src1),
 11473               OpcReg_F(src2),
 11474               Pop_Mem_F(dst) );
 11475   ins_pipe( fpu_mem_reg_reg );
 11476 %}
 11477 //
 11478 // This instruction does not round to 24-bits
 11479 instruct divF_reg(regF dst, regF src) %{
 11480   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11481   match(Set dst (DivF dst src));
 11483   format %{ "FDIV   $dst,$src" %}
 11484   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11485   ins_encode( Push_Reg_F(src),
 11486               OpcP, RegOpc(dst) );
 11487   ins_pipe( fpu_reg_reg );
 11488 %}
 11491 // Spill to obtain 24-bit precision
 11492 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11493   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11494   match(Set dst (ModF src1 src2));
 11495   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11497   format %{ "FMOD   $dst,$src1,$src2" %}
 11498   ins_encode( Push_Reg_Mod_D(src1, src2),
 11499               emitModD(),
 11500               Push_Result_Mod_D(src2),
 11501               Pop_Mem_F(dst));
 11502   ins_pipe( pipe_slow );
 11503 %}
 11504 //
 11505 // This instruction does not round to 24-bits
 11506 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11507   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11508   match(Set dst (ModF dst src));
 11509   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11511   format %{ "FMOD   $dst,$src" %}
 11512   ins_encode(Push_Reg_Mod_D(dst, src),
 11513               emitModD(),
 11514               Push_Result_Mod_D(src),
 11515               Pop_Reg_F(dst));
 11516   ins_pipe( pipe_slow );
 11517 %}
 11519 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11520   predicate(UseSSE>=1);
 11521   match(Set dst (ModF src0 src1));
 11522   effect(KILL rax, KILL cr);
 11523   format %{ "SUB    ESP,4\t # FMOD\n"
 11524           "\tMOVSS  [ESP+0],$src1\n"
 11525           "\tFLD_S  [ESP+0]\n"
 11526           "\tMOVSS  [ESP+0],$src0\n"
 11527           "\tFLD_S  [ESP+0]\n"
 11528      "loop:\tFPREM\n"
 11529           "\tFWAIT\n"
 11530           "\tFNSTSW AX\n"
 11531           "\tSAHF\n"
 11532           "\tJP     loop\n"
 11533           "\tFSTP_S [ESP+0]\n"
 11534           "\tMOVSS  $dst,[ESP+0]\n"
 11535           "\tADD    ESP,4\n"
 11536           "\tFSTP   ST0\t # Restore FPU Stack"
 11537     %}
 11538   ins_cost(250);
 11539   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11540   ins_pipe( pipe_slow );
 11541 %}
 11544 //----------Arithmetic Conversion Instructions---------------------------------
 11545 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11547 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11548   predicate(UseSSE==0);
 11549   match(Set dst (RoundFloat src));
 11550   ins_cost(125);
 11551   format %{ "FST_S  $dst,$src\t# F-round" %}
 11552   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11553   ins_pipe( fpu_mem_reg );
 11554 %}
 11556 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11557   predicate(UseSSE<=1);
 11558   match(Set dst (RoundDouble src));
 11559   ins_cost(125);
 11560   format %{ "FST_D  $dst,$src\t# D-round" %}
 11561   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11562   ins_pipe( fpu_mem_reg );
 11563 %}
 11565 // Force rounding to 24-bit precision and 6-bit exponent
 11566 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11567   predicate(UseSSE==0);
 11568   match(Set dst (ConvD2F src));
 11569   format %{ "FST_S  $dst,$src\t# F-round" %}
 11570   expand %{
 11571     roundFloat_mem_reg(dst,src);
 11572   %}
 11573 %}
 11575 // Force rounding to 24-bit precision and 6-bit exponent
 11576 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11577   predicate(UseSSE==1);
 11578   match(Set dst (ConvD2F src));
 11579   effect( KILL cr );
 11580   format %{ "SUB    ESP,4\n\t"
 11581             "FST_S  [ESP],$src\t# F-round\n\t"
 11582             "MOVSS  $dst,[ESP]\n\t"
 11583             "ADD ESP,4" %}
 11584   ins_encode( D2X_encoding(dst, src) );
 11585   ins_pipe( pipe_slow );
 11586 %}
 11588 // Force rounding double precision to single precision
 11589 instruct convXD2X_reg(regX dst, regXD src) %{
 11590   predicate(UseSSE>=2);
 11591   match(Set dst (ConvD2F src));
 11592   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11593   opcode(0xF2, 0x0F, 0x5A);
 11594   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11595   ins_pipe( pipe_slow );
 11596 %}
 11598 instruct convF2D_reg_reg(regD dst, regF src) %{
 11599   predicate(UseSSE==0);
 11600   match(Set dst (ConvF2D src));
 11601   format %{ "FST_S  $dst,$src\t# D-round" %}
 11602   ins_encode( Pop_Reg_Reg_D(dst, src));
 11603   ins_pipe( fpu_reg_reg );
 11604 %}
 11606 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11607   predicate(UseSSE==1);
 11608   match(Set dst (ConvF2D src));
 11609   format %{ "FST_D  $dst,$src\t# D-round" %}
 11610   expand %{
 11611     roundDouble_mem_reg(dst,src);
 11612   %}
 11613 %}
 11615 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11616   predicate(UseSSE==1);
 11617   match(Set dst (ConvF2D src));
 11618   effect( KILL cr );
 11619   format %{ "SUB    ESP,4\n\t"
 11620             "MOVSS  [ESP] $src\n\t"
 11621             "FLD_S  [ESP]\n\t"
 11622             "ADD    ESP,4\n\t"
 11623             "FSTP   $dst\t# D-round" %}
 11624   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11625   ins_pipe( pipe_slow );
 11626 %}
 11628 instruct convX2XD_reg(regXD dst, regX src) %{
 11629   predicate(UseSSE>=2);
 11630   match(Set dst (ConvF2D src));
 11631   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11632   opcode(0xF3, 0x0F, 0x5A);
 11633   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11634   ins_pipe( pipe_slow );
 11635 %}
 11637 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11638 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11639   predicate(UseSSE<=1);
 11640   match(Set dst (ConvD2I src));
 11641   effect( KILL tmp, KILL cr );
 11642   format %{ "FLD    $src\t# Convert double to int \n\t"
 11643             "FLDCW  trunc mode\n\t"
 11644             "SUB    ESP,4\n\t"
 11645             "FISTp  [ESP + #0]\n\t"
 11646             "FLDCW  std/24-bit mode\n\t"
 11647             "POP    EAX\n\t"
 11648             "CMP    EAX,0x80000000\n\t"
 11649             "JNE,s  fast\n\t"
 11650             "FLD_D  $src\n\t"
 11651             "CALL   d2i_wrapper\n"
 11652       "fast:" %}
 11653   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11654   ins_pipe( pipe_slow );
 11655 %}
 11657 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11658 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11659   predicate(UseSSE>=2);
 11660   match(Set dst (ConvD2I src));
 11661   effect( KILL tmp, KILL cr );
 11662   format %{ "CVTTSD2SI $dst, $src\n\t"
 11663             "CMP    $dst,0x80000000\n\t"
 11664             "JNE,s  fast\n\t"
 11665             "SUB    ESP, 8\n\t"
 11666             "MOVSD  [ESP], $src\n\t"
 11667             "FLD_D  [ESP]\n\t"
 11668             "ADD    ESP, 8\n\t"
 11669             "CALL   d2i_wrapper\n"
 11670       "fast:" %}
 11671   opcode(0x1); // double-precision conversion
 11672   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11673   ins_pipe( pipe_slow );
 11674 %}
 11676 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11677   predicate(UseSSE<=1);
 11678   match(Set dst (ConvD2L src));
 11679   effect( KILL cr );
 11680   format %{ "FLD    $src\t# Convert double to long\n\t"
 11681             "FLDCW  trunc mode\n\t"
 11682             "SUB    ESP,8\n\t"
 11683             "FISTp  [ESP + #0]\n\t"
 11684             "FLDCW  std/24-bit mode\n\t"
 11685             "POP    EAX\n\t"
 11686             "POP    EDX\n\t"
 11687             "CMP    EDX,0x80000000\n\t"
 11688             "JNE,s  fast\n\t"
 11689             "TEST   EAX,EAX\n\t"
 11690             "JNE,s  fast\n\t"
 11691             "FLD    $src\n\t"
 11692             "CALL   d2l_wrapper\n"
 11693       "fast:" %}
 11694   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11695   ins_pipe( pipe_slow );
 11696 %}
 11698 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11699 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11700   predicate (UseSSE>=2);
 11701   match(Set dst (ConvD2L src));
 11702   effect( KILL cr );
 11703   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11704             "MOVSD  [ESP],$src\n\t"
 11705             "FLD_D  [ESP]\n\t"
 11706             "FLDCW  trunc mode\n\t"
 11707             "FISTp  [ESP + #0]\n\t"
 11708             "FLDCW  std/24-bit mode\n\t"
 11709             "POP    EAX\n\t"
 11710             "POP    EDX\n\t"
 11711             "CMP    EDX,0x80000000\n\t"
 11712             "JNE,s  fast\n\t"
 11713             "TEST   EAX,EAX\n\t"
 11714             "JNE,s  fast\n\t"
 11715             "SUB    ESP,8\n\t"
 11716             "MOVSD  [ESP],$src\n\t"
 11717             "FLD_D  [ESP]\n\t"
 11718             "CALL   d2l_wrapper\n"
 11719       "fast:" %}
 11720   ins_encode( XD2L_encoding(src) );
 11721   ins_pipe( pipe_slow );
 11722 %}
 11724 // Convert a double to an int.  Java semantics require we do complex
 11725 // manglations in the corner cases.  So we set the rounding mode to
 11726 // 'zero', store the darned double down as an int, and reset the
 11727 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11728 // if we would overflow or converted a NAN; we check for this and
 11729 // and go the slow path if needed.
 11730 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11731   predicate(UseSSE==0);
 11732   match(Set dst (ConvF2I src));
 11733   effect( KILL tmp, KILL cr );
 11734   format %{ "FLD    $src\t# Convert float to int \n\t"
 11735             "FLDCW  trunc mode\n\t"
 11736             "SUB    ESP,4\n\t"
 11737             "FISTp  [ESP + #0]\n\t"
 11738             "FLDCW  std/24-bit mode\n\t"
 11739             "POP    EAX\n\t"
 11740             "CMP    EAX,0x80000000\n\t"
 11741             "JNE,s  fast\n\t"
 11742             "FLD    $src\n\t"
 11743             "CALL   d2i_wrapper\n"
 11744       "fast:" %}
 11745   // D2I_encoding works for F2I
 11746   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11747   ins_pipe( pipe_slow );
 11748 %}
 11750 // Convert a float in xmm to an int reg.
 11751 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11752   predicate(UseSSE>=1);
 11753   match(Set dst (ConvF2I src));
 11754   effect( KILL tmp, KILL cr );
 11755   format %{ "CVTTSS2SI $dst, $src\n\t"
 11756             "CMP    $dst,0x80000000\n\t"
 11757             "JNE,s  fast\n\t"
 11758             "SUB    ESP, 4\n\t"
 11759             "MOVSS  [ESP], $src\n\t"
 11760             "FLD    [ESP]\n\t"
 11761             "ADD    ESP, 4\n\t"
 11762             "CALL   d2i_wrapper\n"
 11763       "fast:" %}
 11764   opcode(0x0); // single-precision conversion
 11765   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11766   ins_pipe( pipe_slow );
 11767 %}
 11769 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11770   predicate(UseSSE==0);
 11771   match(Set dst (ConvF2L src));
 11772   effect( KILL cr );
 11773   format %{ "FLD    $src\t# Convert float to long\n\t"
 11774             "FLDCW  trunc mode\n\t"
 11775             "SUB    ESP,8\n\t"
 11776             "FISTp  [ESP + #0]\n\t"
 11777             "FLDCW  std/24-bit mode\n\t"
 11778             "POP    EAX\n\t"
 11779             "POP    EDX\n\t"
 11780             "CMP    EDX,0x80000000\n\t"
 11781             "JNE,s  fast\n\t"
 11782             "TEST   EAX,EAX\n\t"
 11783             "JNE,s  fast\n\t"
 11784             "FLD    $src\n\t"
 11785             "CALL   d2l_wrapper\n"
 11786       "fast:" %}
 11787   // D2L_encoding works for F2L
 11788   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11789   ins_pipe( pipe_slow );
 11790 %}
 11792 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11793 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11794   predicate (UseSSE>=1);
 11795   match(Set dst (ConvF2L src));
 11796   effect( KILL cr );
 11797   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11798             "MOVSS  [ESP],$src\n\t"
 11799             "FLD_S  [ESP]\n\t"
 11800             "FLDCW  trunc mode\n\t"
 11801             "FISTp  [ESP + #0]\n\t"
 11802             "FLDCW  std/24-bit mode\n\t"
 11803             "POP    EAX\n\t"
 11804             "POP    EDX\n\t"
 11805             "CMP    EDX,0x80000000\n\t"
 11806             "JNE,s  fast\n\t"
 11807             "TEST   EAX,EAX\n\t"
 11808             "JNE,s  fast\n\t"
 11809             "SUB    ESP,4\t# Convert float to long\n\t"
 11810             "MOVSS  [ESP],$src\n\t"
 11811             "FLD_S  [ESP]\n\t"
 11812             "ADD    ESP,4\n\t"
 11813             "CALL   d2l_wrapper\n"
 11814       "fast:" %}
 11815   ins_encode( X2L_encoding(src) );
 11816   ins_pipe( pipe_slow );
 11817 %}
 11819 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11820   predicate( UseSSE<=1 );
 11821   match(Set dst (ConvI2D src));
 11822   format %{ "FILD   $src\n\t"
 11823             "FSTP   $dst" %}
 11824   opcode(0xDB, 0x0);  /* DB /0 */
 11825   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11826   ins_pipe( fpu_reg_mem );
 11827 %}
 11829 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11830   predicate( UseSSE>=2 && !UseXmmI2D );
 11831   match(Set dst (ConvI2D src));
 11832   format %{ "CVTSI2SD $dst,$src" %}
 11833   opcode(0xF2, 0x0F, 0x2A);
 11834   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11835   ins_pipe( pipe_slow );
 11836 %}
 11838 instruct convI2XD_mem(regXD dst, memory mem) %{
 11839   predicate( UseSSE>=2 );
 11840   match(Set dst (ConvI2D (LoadI mem)));
 11841   format %{ "CVTSI2SD $dst,$mem" %}
 11842   opcode(0xF2, 0x0F, 0x2A);
 11843   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11844   ins_pipe( pipe_slow );
 11845 %}
 11847 instruct convXI2XD_reg(regXD dst, eRegI src)
 11848 %{
 11849   predicate( UseSSE>=2 && UseXmmI2D );
 11850   match(Set dst (ConvI2D src));
 11852   format %{ "MOVD  $dst,$src\n\t"
 11853             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11854   ins_encode %{
 11855     __ movdl($dst$$XMMRegister, $src$$Register);
 11856     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11857   %}
 11858   ins_pipe(pipe_slow); // XXX
 11859 %}
 11861 instruct convI2D_mem(regD dst, memory mem) %{
 11862   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11863   match(Set dst (ConvI2D (LoadI mem)));
 11864   format %{ "FILD   $mem\n\t"
 11865             "FSTP   $dst" %}
 11866   opcode(0xDB);      /* DB /0 */
 11867   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11868               Pop_Reg_D(dst));
 11869   ins_pipe( fpu_reg_mem );
 11870 %}
 11872 // Convert a byte to a float; no rounding step needed.
 11873 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11874   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11875   match(Set dst (ConvI2F src));
 11876   format %{ "FILD   $src\n\t"
 11877             "FSTP   $dst" %}
 11879   opcode(0xDB, 0x0);  /* DB /0 */
 11880   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11881   ins_pipe( fpu_reg_mem );
 11882 %}
 11884 // In 24-bit mode, force exponent rounding by storing back out
 11885 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11886   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11887   match(Set dst (ConvI2F src));
 11888   ins_cost(200);
 11889   format %{ "FILD   $src\n\t"
 11890             "FSTP_S $dst" %}
 11891   opcode(0xDB, 0x0);  /* DB /0 */
 11892   ins_encode( Push_Mem_I(src),
 11893               Pop_Mem_F(dst));
 11894   ins_pipe( fpu_mem_mem );
 11895 %}
 11897 // In 24-bit mode, force exponent rounding by storing back out
 11898 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11899   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11900   match(Set dst (ConvI2F (LoadI mem)));
 11901   ins_cost(200);
 11902   format %{ "FILD   $mem\n\t"
 11903             "FSTP_S $dst" %}
 11904   opcode(0xDB);  /* DB /0 */
 11905   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11906               Pop_Mem_F(dst));
 11907   ins_pipe( fpu_mem_mem );
 11908 %}
 11910 // This instruction does not round to 24-bits
 11911 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11912   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11913   match(Set dst (ConvI2F src));
 11914   format %{ "FILD   $src\n\t"
 11915             "FSTP   $dst" %}
 11916   opcode(0xDB, 0x0);  /* DB /0 */
 11917   ins_encode( Push_Mem_I(src),
 11918               Pop_Reg_F(dst));
 11919   ins_pipe( fpu_reg_mem );
 11920 %}
 11922 // This instruction does not round to 24-bits
 11923 instruct convI2F_mem(regF dst, memory mem) %{
 11924   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11925   match(Set dst (ConvI2F (LoadI mem)));
 11926   format %{ "FILD   $mem\n\t"
 11927             "FSTP   $dst" %}
 11928   opcode(0xDB);      /* DB /0 */
 11929   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11930               Pop_Reg_F(dst));
 11931   ins_pipe( fpu_reg_mem );
 11932 %}
 11934 // Convert an int to a float in xmm; no rounding step needed.
 11935 instruct convI2X_reg(regX dst, eRegI src) %{
 11936   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11937   match(Set dst (ConvI2F src));
 11938   format %{ "CVTSI2SS $dst, $src" %}
 11940   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11941   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11942   ins_pipe( pipe_slow );
 11943 %}
 11945  instruct convXI2X_reg(regX dst, eRegI src)
 11946 %{
 11947   predicate( UseSSE>=2 && UseXmmI2F );
 11948   match(Set dst (ConvI2F src));
 11950   format %{ "MOVD  $dst,$src\n\t"
 11951             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11952   ins_encode %{
 11953     __ movdl($dst$$XMMRegister, $src$$Register);
 11954     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11955   %}
 11956   ins_pipe(pipe_slow); // XXX
 11957 %}
 11959 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11960   match(Set dst (ConvI2L src));
 11961   effect(KILL cr);
 11962   ins_cost(375);
 11963   format %{ "MOV    $dst.lo,$src\n\t"
 11964             "MOV    $dst.hi,$src\n\t"
 11965             "SAR    $dst.hi,31" %}
 11966   ins_encode(convert_int_long(dst,src));
 11967   ins_pipe( ialu_reg_reg_long );
 11968 %}
 11970 // Zero-extend convert int to long
 11971 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11972   match(Set dst (AndL (ConvI2L src) mask) );
 11973   effect( KILL flags );
 11974   ins_cost(250);
 11975   format %{ "MOV    $dst.lo,$src\n\t"
 11976             "XOR    $dst.hi,$dst.hi" %}
 11977   opcode(0x33); // XOR
 11978   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11979   ins_pipe( ialu_reg_reg_long );
 11980 %}
 11982 // Zero-extend long
 11983 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11984   match(Set dst (AndL src mask) );
 11985   effect( KILL flags );
 11986   ins_cost(250);
 11987   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11988             "XOR    $dst.hi,$dst.hi\n\t" %}
 11989   opcode(0x33); // XOR
 11990   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11991   ins_pipe( ialu_reg_reg_long );
 11992 %}
 11994 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11995   predicate (UseSSE<=1);
 11996   match(Set dst (ConvL2D src));
 11997   effect( KILL cr );
 11998   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11999             "PUSH   $src.lo\n\t"
 12000             "FILD   ST,[ESP + #0]\n\t"
 12001             "ADD    ESP,8\n\t"
 12002             "FSTP_D $dst\t# D-round" %}
 12003   opcode(0xDF, 0x5);  /* DF /5 */
 12004   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12005   ins_pipe( pipe_slow );
 12006 %}
 12008 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12009   predicate (UseSSE>=2);
 12010   match(Set dst (ConvL2D src));
 12011   effect( KILL cr );
 12012   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12013             "PUSH   $src.lo\n\t"
 12014             "FILD_D [ESP]\n\t"
 12015             "FSTP_D [ESP]\n\t"
 12016             "MOVSD  $dst,[ESP]\n\t"
 12017             "ADD    ESP,8" %}
 12018   opcode(0xDF, 0x5);  /* DF /5 */
 12019   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12020   ins_pipe( pipe_slow );
 12021 %}
 12023 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12024   predicate (UseSSE>=1);
 12025   match(Set dst (ConvL2F src));
 12026   effect( KILL cr );
 12027   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12028             "PUSH   $src.lo\n\t"
 12029             "FILD_D [ESP]\n\t"
 12030             "FSTP_S [ESP]\n\t"
 12031             "MOVSS  $dst,[ESP]\n\t"
 12032             "ADD    ESP,8" %}
 12033   opcode(0xDF, 0x5);  /* DF /5 */
 12034   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12035   ins_pipe( pipe_slow );
 12036 %}
 12038 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12039   match(Set dst (ConvL2F src));
 12040   effect( KILL cr );
 12041   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12042             "PUSH   $src.lo\n\t"
 12043             "FILD   ST,[ESP + #0]\n\t"
 12044             "ADD    ESP,8\n\t"
 12045             "FSTP_S $dst\t# F-round" %}
 12046   opcode(0xDF, 0x5);  /* DF /5 */
 12047   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12048   ins_pipe( pipe_slow );
 12049 %}
 12051 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12052   match(Set dst (ConvL2I src));
 12053   effect( DEF dst, USE src );
 12054   format %{ "MOV    $dst,$src.lo" %}
 12055   ins_encode(enc_CopyL_Lo(dst,src));
 12056   ins_pipe( ialu_reg_reg );
 12057 %}
 12060 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12061   match(Set dst (MoveF2I src));
 12062   effect( DEF dst, USE src );
 12063   ins_cost(100);
 12064   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12065   opcode(0x8B);
 12066   ins_encode( OpcP, RegMem(dst,src));
 12067   ins_pipe( ialu_reg_mem );
 12068 %}
 12070 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12071   predicate(UseSSE==0);
 12072   match(Set dst (MoveF2I src));
 12073   effect( DEF dst, USE src );
 12075   ins_cost(125);
 12076   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12077   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12078   ins_pipe( fpu_mem_reg );
 12079 %}
 12081 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12082   predicate(UseSSE>=1);
 12083   match(Set dst (MoveF2I src));
 12084   effect( DEF dst, USE src );
 12086   ins_cost(95);
 12087   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12088   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12089   ins_pipe( pipe_slow );
 12090 %}
 12092 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12093   predicate(UseSSE>=2);
 12094   match(Set dst (MoveF2I src));
 12095   effect( DEF dst, USE src );
 12096   ins_cost(85);
 12097   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12098   ins_encode( MovX2I_reg(dst, src));
 12099   ins_pipe( pipe_slow );
 12100 %}
 12102 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12103   match(Set dst (MoveI2F src));
 12104   effect( DEF dst, USE src );
 12106   ins_cost(100);
 12107   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12108   opcode(0x89);
 12109   ins_encode( OpcPRegSS( dst, src ) );
 12110   ins_pipe( ialu_mem_reg );
 12111 %}
 12114 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12115   predicate(UseSSE==0);
 12116   match(Set dst (MoveI2F src));
 12117   effect(DEF dst, USE src);
 12119   ins_cost(125);
 12120   format %{ "FLD_S  $src\n\t"
 12121             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12122   opcode(0xD9);               /* D9 /0, FLD m32real */
 12123   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12124               Pop_Reg_F(dst) );
 12125   ins_pipe( fpu_reg_mem );
 12126 %}
 12128 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12129   predicate(UseSSE>=1);
 12130   match(Set dst (MoveI2F src));
 12131   effect( DEF dst, USE src );
 12133   ins_cost(95);
 12134   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12135   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12136   ins_pipe( pipe_slow );
 12137 %}
 12139 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12140   predicate(UseSSE>=2);
 12141   match(Set dst (MoveI2F src));
 12142   effect( DEF dst, USE src );
 12144   ins_cost(85);
 12145   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12146   ins_encode( MovI2X_reg(dst, src) );
 12147   ins_pipe( pipe_slow );
 12148 %}
 12150 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12151   match(Set dst (MoveD2L src));
 12152   effect(DEF dst, USE src);
 12154   ins_cost(250);
 12155   format %{ "MOV    $dst.lo,$src\n\t"
 12156             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12157   opcode(0x8B, 0x8B);
 12158   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12159   ins_pipe( ialu_mem_long_reg );
 12160 %}
 12162 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12163   predicate(UseSSE<=1);
 12164   match(Set dst (MoveD2L src));
 12165   effect(DEF dst, USE src);
 12167   ins_cost(125);
 12168   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12169   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12170   ins_pipe( fpu_mem_reg );
 12171 %}
 12173 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12174   predicate(UseSSE>=2);
 12175   match(Set dst (MoveD2L src));
 12176   effect(DEF dst, USE src);
 12177   ins_cost(95);
 12179   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12180   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12181   ins_pipe( pipe_slow );
 12182 %}
 12184 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12185   predicate(UseSSE>=2);
 12186   match(Set dst (MoveD2L src));
 12187   effect(DEF dst, USE src, TEMP tmp);
 12188   ins_cost(85);
 12189   format %{ "MOVD   $dst.lo,$src\n\t"
 12190             "PSHUFLW $tmp,$src,0x4E\n\t"
 12191             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12192   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12193   ins_pipe( pipe_slow );
 12194 %}
 12196 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12197   match(Set dst (MoveL2D src));
 12198   effect(DEF dst, USE src);
 12200   ins_cost(200);
 12201   format %{ "MOV    $dst,$src.lo\n\t"
 12202             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12203   opcode(0x89, 0x89);
 12204   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12205   ins_pipe( ialu_mem_long_reg );
 12206 %}
 12209 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12210   predicate(UseSSE<=1);
 12211   match(Set dst (MoveL2D src));
 12212   effect(DEF dst, USE src);
 12213   ins_cost(125);
 12215   format %{ "FLD_D  $src\n\t"
 12216             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12217   opcode(0xDD);               /* DD /0, FLD m64real */
 12218   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12219               Pop_Reg_D(dst) );
 12220   ins_pipe( fpu_reg_mem );
 12221 %}
 12224 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12225   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12226   match(Set dst (MoveL2D src));
 12227   effect(DEF dst, USE src);
 12229   ins_cost(95);
 12230   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12231   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12232   ins_pipe( pipe_slow );
 12233 %}
 12235 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12236   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12237   match(Set dst (MoveL2D src));
 12238   effect(DEF dst, USE src);
 12240   ins_cost(95);
 12241   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12242   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12243   ins_pipe( pipe_slow );
 12244 %}
 12246 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12247   predicate(UseSSE>=2);
 12248   match(Set dst (MoveL2D src));
 12249   effect(TEMP dst, USE src, TEMP tmp);
 12250   ins_cost(85);
 12251   format %{ "MOVD   $dst,$src.lo\n\t"
 12252             "MOVD   $tmp,$src.hi\n\t"
 12253             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12254   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12255   ins_pipe( pipe_slow );
 12256 %}
 12258 // Replicate scalar to packed byte (1 byte) values in xmm
 12259 instruct Repl8B_reg(regXD dst, regXD src) %{
 12260   predicate(UseSSE>=2);
 12261   match(Set dst (Replicate8B src));
 12262   format %{ "MOVDQA  $dst,$src\n\t"
 12263             "PUNPCKLBW $dst,$dst\n\t"
 12264             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12265   ins_encode( pshufd_8x8(dst, src));
 12266   ins_pipe( pipe_slow );
 12267 %}
 12269 // Replicate scalar to packed byte (1 byte) values in xmm
 12270 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12271   predicate(UseSSE>=2);
 12272   match(Set dst (Replicate8B src));
 12273   format %{ "MOVD    $dst,$src\n\t"
 12274             "PUNPCKLBW $dst,$dst\n\t"
 12275             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12276   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12277   ins_pipe( pipe_slow );
 12278 %}
 12280 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12281 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12282   predicate(UseSSE>=2);
 12283   match(Set dst (Replicate8B zero));
 12284   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12285   ins_encode( pxor(dst, dst));
 12286   ins_pipe( fpu_reg_reg );
 12287 %}
 12289 // Replicate scalar to packed shore (2 byte) values in xmm
 12290 instruct Repl4S_reg(regXD dst, regXD src) %{
 12291   predicate(UseSSE>=2);
 12292   match(Set dst (Replicate4S src));
 12293   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12294   ins_encode( pshufd_4x16(dst, src));
 12295   ins_pipe( fpu_reg_reg );
 12296 %}
 12298 // Replicate scalar to packed shore (2 byte) values in xmm
 12299 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12300   predicate(UseSSE>=2);
 12301   match(Set dst (Replicate4S src));
 12302   format %{ "MOVD    $dst,$src\n\t"
 12303             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12304   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12305   ins_pipe( fpu_reg_reg );
 12306 %}
 12308 // Replicate scalar zero to packed short (2 byte) values in xmm
 12309 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12310   predicate(UseSSE>=2);
 12311   match(Set dst (Replicate4S zero));
 12312   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12313   ins_encode( pxor(dst, dst));
 12314   ins_pipe( fpu_reg_reg );
 12315 %}
 12317 // Replicate scalar to packed char (2 byte) values in xmm
 12318 instruct Repl4C_reg(regXD dst, regXD src) %{
 12319   predicate(UseSSE>=2);
 12320   match(Set dst (Replicate4C src));
 12321   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12322   ins_encode( pshufd_4x16(dst, src));
 12323   ins_pipe( fpu_reg_reg );
 12324 %}
 12326 // Replicate scalar to packed char (2 byte) values in xmm
 12327 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12328   predicate(UseSSE>=2);
 12329   match(Set dst (Replicate4C src));
 12330   format %{ "MOVD    $dst,$src\n\t"
 12331             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12332   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12333   ins_pipe( fpu_reg_reg );
 12334 %}
 12336 // Replicate scalar zero to packed char (2 byte) values in xmm
 12337 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12338   predicate(UseSSE>=2);
 12339   match(Set dst (Replicate4C zero));
 12340   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12341   ins_encode( pxor(dst, dst));
 12342   ins_pipe( fpu_reg_reg );
 12343 %}
 12345 // Replicate scalar to packed integer (4 byte) values in xmm
 12346 instruct Repl2I_reg(regXD dst, regXD src) %{
 12347   predicate(UseSSE>=2);
 12348   match(Set dst (Replicate2I src));
 12349   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12350   ins_encode( pshufd(dst, src, 0x00));
 12351   ins_pipe( fpu_reg_reg );
 12352 %}
 12354 // Replicate scalar to packed integer (4 byte) values in xmm
 12355 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12356   predicate(UseSSE>=2);
 12357   match(Set dst (Replicate2I src));
 12358   format %{ "MOVD   $dst,$src\n\t"
 12359             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12360   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12361   ins_pipe( fpu_reg_reg );
 12362 %}
 12364 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12365 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12366   predicate(UseSSE>=2);
 12367   match(Set dst (Replicate2I zero));
 12368   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12369   ins_encode( pxor(dst, dst));
 12370   ins_pipe( fpu_reg_reg );
 12371 %}
 12373 // Replicate scalar to packed single precision floating point values in xmm
 12374 instruct Repl2F_reg(regXD dst, regXD src) %{
 12375   predicate(UseSSE>=2);
 12376   match(Set dst (Replicate2F src));
 12377   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12378   ins_encode( pshufd(dst, src, 0xe0));
 12379   ins_pipe( fpu_reg_reg );
 12380 %}
 12382 // Replicate scalar to packed single precision floating point values in xmm
 12383 instruct Repl2F_regX(regXD dst, regX src) %{
 12384   predicate(UseSSE>=2);
 12385   match(Set dst (Replicate2F src));
 12386   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12387   ins_encode( pshufd(dst, src, 0xe0));
 12388   ins_pipe( fpu_reg_reg );
 12389 %}
 12391 // Replicate scalar to packed single precision floating point values in xmm
 12392 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12393   predicate(UseSSE>=2);
 12394   match(Set dst (Replicate2F zero));
 12395   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12396   ins_encode( pxor(dst, dst));
 12397   ins_pipe( fpu_reg_reg );
 12398 %}
 12400 // =======================================================================
 12401 // fast clearing of an array
 12402 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12403   match(Set dummy (ClearArray cnt base));
 12404   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12405   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12406             "XOR    EAX,EAX\n\t"
 12407             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12408   opcode(0,0x4);
 12409   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12410               OpcRegReg(0x33,EAX,EAX),
 12411               Opcode(0xF3), Opcode(0xAB) );
 12412   ins_pipe( pipe_slow );
 12413 %}
 12415 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12416                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12417   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12418   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12420   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12421   ins_encode %{
 12422     __ string_compare($str1$$Register, $str2$$Register,
 12423                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12424                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12425   %}
 12426   ins_pipe( pipe_slow );
 12427 %}
 12429 // fast string equals
 12430 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12431                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12432   match(Set result (StrEquals (Binary str1 str2) cnt));
 12433   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12435   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12436   ins_encode %{
 12437     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12438                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12439                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12440   %}
 12441   ins_pipe( pipe_slow );
 12442 %}
 12444 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12445                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12446   predicate(UseSSE42Intrinsics);
 12447   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12448   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12450   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12451   ins_encode %{
 12452     __ string_indexof($str1$$Register, $str2$$Register,
 12453                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12454                       $tmp1$$XMMRegister, $tmp2$$Register);
 12455   %}
 12456   ins_pipe( pipe_slow );
 12457 %}
 12459 // fast array equals
 12460 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12461                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12462 %{
 12463   match(Set result (AryEq ary1 ary2));
 12464   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12465   //ins_cost(300);
 12467   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12468   ins_encode %{
 12469     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12470                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12471                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12472   %}
 12473   ins_pipe( pipe_slow );
 12474 %}
 12476 //----------Control Flow Instructions------------------------------------------
 12477 // Signed compare Instructions
 12478 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12479   match(Set cr (CmpI op1 op2));
 12480   effect( DEF cr, USE op1, USE op2 );
 12481   format %{ "CMP    $op1,$op2" %}
 12482   opcode(0x3B);  /* Opcode 3B /r */
 12483   ins_encode( OpcP, RegReg( op1, op2) );
 12484   ins_pipe( ialu_cr_reg_reg );
 12485 %}
 12487 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12488   match(Set cr (CmpI op1 op2));
 12489   effect( DEF cr, USE op1 );
 12490   format %{ "CMP    $op1,$op2" %}
 12491   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12492   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12493   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12494   ins_pipe( ialu_cr_reg_imm );
 12495 %}
 12497 // Cisc-spilled version of cmpI_eReg
 12498 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12499   match(Set cr (CmpI op1 (LoadI op2)));
 12501   format %{ "CMP    $op1,$op2" %}
 12502   ins_cost(500);
 12503   opcode(0x3B);  /* Opcode 3B /r */
 12504   ins_encode( OpcP, RegMem( op1, op2) );
 12505   ins_pipe( ialu_cr_reg_mem );
 12506 %}
 12508 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12509   match(Set cr (CmpI src zero));
 12510   effect( DEF cr, USE src );
 12512   format %{ "TEST   $src,$src" %}
 12513   opcode(0x85);
 12514   ins_encode( OpcP, RegReg( src, src ) );
 12515   ins_pipe( ialu_cr_reg_imm );
 12516 %}
 12518 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12519   match(Set cr (CmpI (AndI src con) zero));
 12521   format %{ "TEST   $src,$con" %}
 12522   opcode(0xF7,0x00);
 12523   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12524   ins_pipe( ialu_cr_reg_imm );
 12525 %}
 12527 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12528   match(Set cr (CmpI (AndI src mem) zero));
 12530   format %{ "TEST   $src,$mem" %}
 12531   opcode(0x85);
 12532   ins_encode( OpcP, RegMem( src, mem ) );
 12533   ins_pipe( ialu_cr_reg_mem );
 12534 %}
 12536 // Unsigned compare Instructions; really, same as signed except they
 12537 // produce an eFlagsRegU instead of eFlagsReg.
 12538 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12539   match(Set cr (CmpU op1 op2));
 12541   format %{ "CMPu   $op1,$op2" %}
 12542   opcode(0x3B);  /* Opcode 3B /r */
 12543   ins_encode( OpcP, RegReg( op1, op2) );
 12544   ins_pipe( ialu_cr_reg_reg );
 12545 %}
 12547 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12548   match(Set cr (CmpU op1 op2));
 12550   format %{ "CMPu   $op1,$op2" %}
 12551   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12552   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12553   ins_pipe( ialu_cr_reg_imm );
 12554 %}
 12556 // // Cisc-spilled version of cmpU_eReg
 12557 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12558   match(Set cr (CmpU op1 (LoadI op2)));
 12560   format %{ "CMPu   $op1,$op2" %}
 12561   ins_cost(500);
 12562   opcode(0x3B);  /* Opcode 3B /r */
 12563   ins_encode( OpcP, RegMem( op1, op2) );
 12564   ins_pipe( ialu_cr_reg_mem );
 12565 %}
 12567 // // Cisc-spilled version of cmpU_eReg
 12568 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12569 //  match(Set cr (CmpU (LoadI op1) op2));
 12570 //
 12571 //  format %{ "CMPu   $op1,$op2" %}
 12572 //  ins_cost(500);
 12573 //  opcode(0x39);  /* Opcode 39 /r */
 12574 //  ins_encode( OpcP, RegMem( op1, op2) );
 12575 //%}
 12577 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12578   match(Set cr (CmpU src zero));
 12580   format %{ "TESTu  $src,$src" %}
 12581   opcode(0x85);
 12582   ins_encode( OpcP, RegReg( src, src ) );
 12583   ins_pipe( ialu_cr_reg_imm );
 12584 %}
 12586 // Unsigned pointer compare Instructions
 12587 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12588   match(Set cr (CmpP op1 op2));
 12590   format %{ "CMPu   $op1,$op2" %}
 12591   opcode(0x3B);  /* Opcode 3B /r */
 12592   ins_encode( OpcP, RegReg( op1, op2) );
 12593   ins_pipe( ialu_cr_reg_reg );
 12594 %}
 12596 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12597   match(Set cr (CmpP op1 op2));
 12599   format %{ "CMPu   $op1,$op2" %}
 12600   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12601   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12602   ins_pipe( ialu_cr_reg_imm );
 12603 %}
 12605 // // Cisc-spilled version of cmpP_eReg
 12606 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12607   match(Set cr (CmpP op1 (LoadP op2)));
 12609   format %{ "CMPu   $op1,$op2" %}
 12610   ins_cost(500);
 12611   opcode(0x3B);  /* Opcode 3B /r */
 12612   ins_encode( OpcP, RegMem( op1, op2) );
 12613   ins_pipe( ialu_cr_reg_mem );
 12614 %}
 12616 // // Cisc-spilled version of cmpP_eReg
 12617 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12618 //  match(Set cr (CmpP (LoadP op1) op2));
 12619 //
 12620 //  format %{ "CMPu   $op1,$op2" %}
 12621 //  ins_cost(500);
 12622 //  opcode(0x39);  /* Opcode 39 /r */
 12623 //  ins_encode( OpcP, RegMem( op1, op2) );
 12624 //%}
 12626 // Compare raw pointer (used in out-of-heap check).
 12627 // Only works because non-oop pointers must be raw pointers
 12628 // and raw pointers have no anti-dependencies.
 12629 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12630   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12631   match(Set cr (CmpP op1 (LoadP op2)));
 12633   format %{ "CMPu   $op1,$op2" %}
 12634   opcode(0x3B);  /* Opcode 3B /r */
 12635   ins_encode( OpcP, RegMem( op1, op2) );
 12636   ins_pipe( ialu_cr_reg_mem );
 12637 %}
 12639 //
 12640 // This will generate a signed flags result. This should be ok
 12641 // since any compare to a zero should be eq/neq.
 12642 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12643   match(Set cr (CmpP src zero));
 12645   format %{ "TEST   $src,$src" %}
 12646   opcode(0x85);
 12647   ins_encode( OpcP, RegReg( src, src ) );
 12648   ins_pipe( ialu_cr_reg_imm );
 12649 %}
 12651 // Cisc-spilled version of testP_reg
 12652 // This will generate a signed flags result. This should be ok
 12653 // since any compare to a zero should be eq/neq.
 12654 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12655   match(Set cr (CmpP (LoadP op) zero));
 12657   format %{ "TEST   $op,0xFFFFFFFF" %}
 12658   ins_cost(500);
 12659   opcode(0xF7);               /* Opcode F7 /0 */
 12660   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12661   ins_pipe( ialu_cr_reg_imm );
 12662 %}
 12664 // Yanked all unsigned pointer compare operations.
 12665 // Pointer compares are done with CmpP which is already unsigned.
 12667 //----------Max and Min--------------------------------------------------------
 12668 // Min Instructions
 12669 ////
 12670 //   *** Min and Max using the conditional move are slower than the
 12671 //   *** branch version on a Pentium III.
 12672 // // Conditional move for min
 12673 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12674 //  effect( USE_DEF op2, USE op1, USE cr );
 12675 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12676 //  opcode(0x4C,0x0F);
 12677 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12678 //  ins_pipe( pipe_cmov_reg );
 12679 //%}
 12680 //
 12681 //// Min Register with Register (P6 version)
 12682 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12683 //  predicate(VM_Version::supports_cmov() );
 12684 //  match(Set op2 (MinI op1 op2));
 12685 //  ins_cost(200);
 12686 //  expand %{
 12687 //    eFlagsReg cr;
 12688 //    compI_eReg(cr,op1,op2);
 12689 //    cmovI_reg_lt(op2,op1,cr);
 12690 //  %}
 12691 //%}
 12693 // Min Register with Register (generic version)
 12694 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12695   match(Set dst (MinI dst src));
 12696   effect(KILL flags);
 12697   ins_cost(300);
 12699   format %{ "MIN    $dst,$src" %}
 12700   opcode(0xCC);
 12701   ins_encode( min_enc(dst,src) );
 12702   ins_pipe( pipe_slow );
 12703 %}
 12705 // Max Register with Register
 12706 //   *** Min and Max using the conditional move are slower than the
 12707 //   *** branch version on a Pentium III.
 12708 // // Conditional move for max
 12709 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12710 //  effect( USE_DEF op2, USE op1, USE cr );
 12711 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12712 //  opcode(0x4F,0x0F);
 12713 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12714 //  ins_pipe( pipe_cmov_reg );
 12715 //%}
 12716 //
 12717 // // Max Register with Register (P6 version)
 12718 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12719 //  predicate(VM_Version::supports_cmov() );
 12720 //  match(Set op2 (MaxI op1 op2));
 12721 //  ins_cost(200);
 12722 //  expand %{
 12723 //    eFlagsReg cr;
 12724 //    compI_eReg(cr,op1,op2);
 12725 //    cmovI_reg_gt(op2,op1,cr);
 12726 //  %}
 12727 //%}
 12729 // Max Register with Register (generic version)
 12730 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12731   match(Set dst (MaxI dst src));
 12732   effect(KILL flags);
 12733   ins_cost(300);
 12735   format %{ "MAX    $dst,$src" %}
 12736   opcode(0xCC);
 12737   ins_encode( max_enc(dst,src) );
 12738   ins_pipe( pipe_slow );
 12739 %}
 12741 // ============================================================================
 12742 // Branch Instructions
 12743 // Jump Table
 12744 instruct jumpXtnd(eRegI switch_val) %{
 12745   match(Jump switch_val);
 12746   ins_cost(350);
 12748   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12750   ins_encode %{
 12751     address table_base  = __ address_table_constant(_index2label);
 12753     // Jump to Address(table_base + switch_reg)
 12754     InternalAddress table(table_base);
 12755     Address index(noreg, $switch_val$$Register, Address::times_1);
 12756     __ jump(ArrayAddress(table, index));
 12757   %}
 12758   ins_pc_relative(1);
 12759   ins_pipe(pipe_jmp);
 12760 %}
 12762 // Jump Direct - Label defines a relative address from JMP+1
 12763 instruct jmpDir(label labl) %{
 12764   match(Goto);
 12765   effect(USE labl);
 12767   ins_cost(300);
 12768   format %{ "JMP    $labl" %}
 12769   size(5);
 12770   opcode(0xE9);
 12771   ins_encode( OpcP, Lbl( labl ) );
 12772   ins_pipe( pipe_jmp );
 12773   ins_pc_relative(1);
 12774 %}
 12776 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12777 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12778   match(If cop cr);
 12779   effect(USE labl);
 12781   ins_cost(300);
 12782   format %{ "J$cop    $labl" %}
 12783   size(6);
 12784   opcode(0x0F, 0x80);
 12785   ins_encode( Jcc( cop, labl) );
 12786   ins_pipe( pipe_jcc );
 12787   ins_pc_relative(1);
 12788 %}
 12790 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12791 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12792   match(CountedLoopEnd cop cr);
 12793   effect(USE labl);
 12795   ins_cost(300);
 12796   format %{ "J$cop    $labl\t# Loop end" %}
 12797   size(6);
 12798   opcode(0x0F, 0x80);
 12799   ins_encode( Jcc( cop, labl) );
 12800   ins_pipe( pipe_jcc );
 12801   ins_pc_relative(1);
 12802 %}
 12804 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12805 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12806   match(CountedLoopEnd cop cmp);
 12807   effect(USE labl);
 12809   ins_cost(300);
 12810   format %{ "J$cop,u  $labl\t# Loop end" %}
 12811   size(6);
 12812   opcode(0x0F, 0x80);
 12813   ins_encode( Jcc( cop, labl) );
 12814   ins_pipe( pipe_jcc );
 12815   ins_pc_relative(1);
 12816 %}
 12818 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12819   match(CountedLoopEnd cop cmp);
 12820   effect(USE labl);
 12822   ins_cost(200);
 12823   format %{ "J$cop,u  $labl\t# Loop end" %}
 12824   size(6);
 12825   opcode(0x0F, 0x80);
 12826   ins_encode( Jcc( cop, labl) );
 12827   ins_pipe( pipe_jcc );
 12828   ins_pc_relative(1);
 12829 %}
 12831 // Jump Direct Conditional - using unsigned comparison
 12832 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12833   match(If cop cmp);
 12834   effect(USE labl);
 12836   ins_cost(300);
 12837   format %{ "J$cop,u  $labl" %}
 12838   size(6);
 12839   opcode(0x0F, 0x80);
 12840   ins_encode(Jcc(cop, labl));
 12841   ins_pipe(pipe_jcc);
 12842   ins_pc_relative(1);
 12843 %}
 12845 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12846   match(If cop cmp);
 12847   effect(USE labl);
 12849   ins_cost(200);
 12850   format %{ "J$cop,u  $labl" %}
 12851   size(6);
 12852   opcode(0x0F, 0x80);
 12853   ins_encode(Jcc(cop, labl));
 12854   ins_pipe(pipe_jcc);
 12855   ins_pc_relative(1);
 12856 %}
 12858 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12859   match(If cop cmp);
 12860   effect(USE labl);
 12862   ins_cost(200);
 12863   format %{ $$template
 12864     if ($cop$$cmpcode == Assembler::notEqual) {
 12865       $$emit$$"JP,u   $labl\n\t"
 12866       $$emit$$"J$cop,u   $labl"
 12867     } else {
 12868       $$emit$$"JP,u   done\n\t"
 12869       $$emit$$"J$cop,u   $labl\n\t"
 12870       $$emit$$"done:"
 12872   %}
 12873   size(12);
 12874   opcode(0x0F, 0x80);
 12875   ins_encode %{
 12876     Label* l = $labl$$label;
 12877     $$$emit8$primary;
 12878     emit_cc(cbuf, $secondary, Assembler::parity);
 12879     int parity_disp = -1;
 12880     bool ok = false;
 12881     if ($cop$$cmpcode == Assembler::notEqual) {
 12882        // the two jumps 6 bytes apart so the jump distances are too
 12883        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12884     } else if ($cop$$cmpcode == Assembler::equal) {
 12885        parity_disp = 6;
 12886        ok = true;
 12887     } else {
 12888        ShouldNotReachHere();
 12890     emit_d32(cbuf, parity_disp);
 12891     $$$emit8$primary;
 12892     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12893     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12894     emit_d32(cbuf, disp);
 12895   %}
 12896   ins_pipe(pipe_jcc);
 12897   ins_pc_relative(1);
 12898 %}
 12900 // ============================================================================
 12901 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12902 // array for an instance of the superklass.  Set a hidden internal cache on a
 12903 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12904 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12905 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12906   match(Set result (PartialSubtypeCheck sub super));
 12907   effect( KILL rcx, KILL cr );
 12909   ins_cost(1100);  // slightly larger than the next version
 12910   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12911             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12912             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12913             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12914             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12915             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12916             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12917      "miss:\t" %}
 12919   opcode(0x1); // Force a XOR of EDI
 12920   ins_encode( enc_PartialSubtypeCheck() );
 12921   ins_pipe( pipe_slow );
 12922 %}
 12924 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12925   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12926   effect( KILL rcx, KILL result );
 12928   ins_cost(1000);
 12929   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12930             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12931             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12932             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12933             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12934             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12935      "miss:\t" %}
 12937   opcode(0x0);  // No need to XOR EDI
 12938   ins_encode( enc_PartialSubtypeCheck() );
 12939   ins_pipe( pipe_slow );
 12940 %}
 12942 // ============================================================================
 12943 // Branch Instructions -- short offset versions
 12944 //
 12945 // These instructions are used to replace jumps of a long offset (the default
 12946 // match) with jumps of a shorter offset.  These instructions are all tagged
 12947 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12948 // match rules in general matching.  Instead, the ADLC generates a conversion
 12949 // method in the MachNode which can be used to do in-place replacement of the
 12950 // long variant with the shorter variant.  The compiler will determine if a
 12951 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12952 // specific code section of the file.
 12954 // Jump Direct - Label defines a relative address from JMP+1
 12955 instruct jmpDir_short(label labl) %{
 12956   match(Goto);
 12957   effect(USE labl);
 12959   ins_cost(300);
 12960   format %{ "JMP,s  $labl" %}
 12961   size(2);
 12962   opcode(0xEB);
 12963   ins_encode( OpcP, LblShort( labl ) );
 12964   ins_pipe( pipe_jmp );
 12965   ins_pc_relative(1);
 12966   ins_short_branch(1);
 12967 %}
 12969 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12970 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12971   match(If cop cr);
 12972   effect(USE labl);
 12974   ins_cost(300);
 12975   format %{ "J$cop,s  $labl" %}
 12976   size(2);
 12977   opcode(0x70);
 12978   ins_encode( JccShort( cop, labl) );
 12979   ins_pipe( pipe_jcc );
 12980   ins_pc_relative(1);
 12981   ins_short_branch(1);
 12982 %}
 12984 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12985 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12986   match(CountedLoopEnd cop cr);
 12987   effect(USE labl);
 12989   ins_cost(300);
 12990   format %{ "J$cop,s  $labl\t# Loop end" %}
 12991   size(2);
 12992   opcode(0x70);
 12993   ins_encode( JccShort( cop, labl) );
 12994   ins_pipe( pipe_jcc );
 12995   ins_pc_relative(1);
 12996   ins_short_branch(1);
 12997 %}
 12999 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13000 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13001   match(CountedLoopEnd cop cmp);
 13002   effect(USE labl);
 13004   ins_cost(300);
 13005   format %{ "J$cop,us $labl\t# Loop end" %}
 13006   size(2);
 13007   opcode(0x70);
 13008   ins_encode( JccShort( cop, labl) );
 13009   ins_pipe( pipe_jcc );
 13010   ins_pc_relative(1);
 13011   ins_short_branch(1);
 13012 %}
 13014 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13015   match(CountedLoopEnd cop cmp);
 13016   effect(USE labl);
 13018   ins_cost(300);
 13019   format %{ "J$cop,us $labl\t# Loop end" %}
 13020   size(2);
 13021   opcode(0x70);
 13022   ins_encode( JccShort( cop, labl) );
 13023   ins_pipe( pipe_jcc );
 13024   ins_pc_relative(1);
 13025   ins_short_branch(1);
 13026 %}
 13028 // Jump Direct Conditional - using unsigned comparison
 13029 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13030   match(If cop cmp);
 13031   effect(USE labl);
 13033   ins_cost(300);
 13034   format %{ "J$cop,us $labl" %}
 13035   size(2);
 13036   opcode(0x70);
 13037   ins_encode( JccShort( cop, labl) );
 13038   ins_pipe( pipe_jcc );
 13039   ins_pc_relative(1);
 13040   ins_short_branch(1);
 13041 %}
 13043 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13044   match(If cop cmp);
 13045   effect(USE labl);
 13047   ins_cost(300);
 13048   format %{ "J$cop,us $labl" %}
 13049   size(2);
 13050   opcode(0x70);
 13051   ins_encode( JccShort( cop, labl) );
 13052   ins_pipe( pipe_jcc );
 13053   ins_pc_relative(1);
 13054   ins_short_branch(1);
 13055 %}
 13057 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13058   match(If cop cmp);
 13059   effect(USE labl);
 13061   ins_cost(300);
 13062   format %{ $$template
 13063     if ($cop$$cmpcode == Assembler::notEqual) {
 13064       $$emit$$"JP,u,s   $labl\n\t"
 13065       $$emit$$"J$cop,u,s   $labl"
 13066     } else {
 13067       $$emit$$"JP,u,s   done\n\t"
 13068       $$emit$$"J$cop,u,s  $labl\n\t"
 13069       $$emit$$"done:"
 13071   %}
 13072   size(4);
 13073   opcode(0x70);
 13074   ins_encode %{
 13075     Label* l = $labl$$label;
 13076     emit_cc(cbuf, $primary, Assembler::parity);
 13077     int parity_disp = -1;
 13078     if ($cop$$cmpcode == Assembler::notEqual) {
 13079       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13080     } else if ($cop$$cmpcode == Assembler::equal) {
 13081       parity_disp = 2;
 13082     } else {
 13083       ShouldNotReachHere();
 13085     emit_d8(cbuf, parity_disp);
 13086     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13087     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13088     emit_d8(cbuf, disp);
 13089     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13090     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13091   %}
 13092   ins_pipe(pipe_jcc);
 13093   ins_pc_relative(1);
 13094   ins_short_branch(1);
 13095 %}
 13097 // ============================================================================
 13098 // Long Compare
 13099 //
 13100 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13101 // is tricky.  The flavor of compare used depends on whether we are testing
 13102 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13103 // The GE test is the negated LT test.  The LE test can be had by commuting
 13104 // the operands (yielding a GE test) and then negating; negate again for the
 13105 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13106 // NE test is negated from that.
 13108 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13109 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13110 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13111 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13112 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13113 // foo match ends up with the wrong leaf.  One fix is to not match both
 13114 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13115 // both forms beat the trinary form of long-compare and both are very useful
 13116 // on Intel which has so few registers.
 13118 // Manifest a CmpL result in an integer register.  Very painful.
 13119 // This is the test to avoid.
 13120 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13121   match(Set dst (CmpL3 src1 src2));
 13122   effect( KILL flags );
 13123   ins_cost(1000);
 13124   format %{ "XOR    $dst,$dst\n\t"
 13125             "CMP    $src1.hi,$src2.hi\n\t"
 13126             "JLT,s  m_one\n\t"
 13127             "JGT,s  p_one\n\t"
 13128             "CMP    $src1.lo,$src2.lo\n\t"
 13129             "JB,s   m_one\n\t"
 13130             "JEQ,s  done\n"
 13131     "p_one:\tINC    $dst\n\t"
 13132             "JMP,s  done\n"
 13133     "m_one:\tDEC    $dst\n"
 13134      "done:" %}
 13135   ins_encode %{
 13136     Label p_one, m_one, done;
 13137     __ xorptr($dst$$Register, $dst$$Register);
 13138     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13139     __ jccb(Assembler::less,    m_one);
 13140     __ jccb(Assembler::greater, p_one);
 13141     __ cmpl($src1$$Register, $src2$$Register);
 13142     __ jccb(Assembler::below,   m_one);
 13143     __ jccb(Assembler::equal,   done);
 13144     __ bind(p_one);
 13145     __ incrementl($dst$$Register);
 13146     __ jmpb(done);
 13147     __ bind(m_one);
 13148     __ decrementl($dst$$Register);
 13149     __ bind(done);
 13150   %}
 13151   ins_pipe( pipe_slow );
 13152 %}
 13154 //======
 13155 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13156 // compares.  Can be used for LE or GT compares by reversing arguments.
 13157 // NOT GOOD FOR EQ/NE tests.
 13158 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13159   match( Set flags (CmpL src zero ));
 13160   ins_cost(100);
 13161   format %{ "TEST   $src.hi,$src.hi" %}
 13162   opcode(0x85);
 13163   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13164   ins_pipe( ialu_cr_reg_reg );
 13165 %}
 13167 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13168 // compares.  Can be used for LE or GT compares by reversing arguments.
 13169 // NOT GOOD FOR EQ/NE tests.
 13170 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13171   match( Set flags (CmpL src1 src2 ));
 13172   effect( TEMP tmp );
 13173   ins_cost(300);
 13174   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13175             "MOV    $tmp,$src1.hi\n\t"
 13176             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13177   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13178   ins_pipe( ialu_cr_reg_reg );
 13179 %}
 13181 // Long compares reg < zero/req OR reg >= zero/req.
 13182 // Just a wrapper for a normal branch, plus the predicate test.
 13183 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13184   match(If cmp flags);
 13185   effect(USE labl);
 13186   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13187   expand %{
 13188     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13189   %}
 13190 %}
 13192 // Compare 2 longs and CMOVE longs.
 13193 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13194   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13195   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13196   ins_cost(400);
 13197   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13198             "CMOV$cmp $dst.hi,$src.hi" %}
 13199   opcode(0x0F,0x40);
 13200   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13201   ins_pipe( pipe_cmov_reg_long );
 13202 %}
 13204 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13205   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13206   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13207   ins_cost(500);
 13208   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13209             "CMOV$cmp $dst.hi,$src.hi" %}
 13210   opcode(0x0F,0x40);
 13211   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13212   ins_pipe( pipe_cmov_reg_long );
 13213 %}
 13215 // Compare 2 longs and CMOVE ints.
 13216 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13217   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13218   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13219   ins_cost(200);
 13220   format %{ "CMOV$cmp $dst,$src" %}
 13221   opcode(0x0F,0x40);
 13222   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13223   ins_pipe( pipe_cmov_reg );
 13224 %}
 13226 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13227   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13228   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13229   ins_cost(250);
 13230   format %{ "CMOV$cmp $dst,$src" %}
 13231   opcode(0x0F,0x40);
 13232   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13233   ins_pipe( pipe_cmov_mem );
 13234 %}
 13236 // Compare 2 longs and CMOVE ints.
 13237 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13238   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13239   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13240   ins_cost(200);
 13241   format %{ "CMOV$cmp $dst,$src" %}
 13242   opcode(0x0F,0x40);
 13243   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13244   ins_pipe( pipe_cmov_reg );
 13245 %}
 13247 // Compare 2 longs and CMOVE doubles
 13248 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13249   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13250   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13251   ins_cost(200);
 13252   expand %{
 13253     fcmovD_regS(cmp,flags,dst,src);
 13254   %}
 13255 %}
 13257 // Compare 2 longs and CMOVE doubles
 13258 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13259   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13260   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13261   ins_cost(200);
 13262   expand %{
 13263     fcmovXD_regS(cmp,flags,dst,src);
 13264   %}
 13265 %}
 13267 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13268   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13269   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13270   ins_cost(200);
 13271   expand %{
 13272     fcmovF_regS(cmp,flags,dst,src);
 13273   %}
 13274 %}
 13276 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13277   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13278   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13279   ins_cost(200);
 13280   expand %{
 13281     fcmovX_regS(cmp,flags,dst,src);
 13282   %}
 13283 %}
 13285 //======
 13286 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13287 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13288   match( Set flags (CmpL src zero ));
 13289   effect(TEMP tmp);
 13290   ins_cost(200);
 13291   format %{ "MOV    $tmp,$src.lo\n\t"
 13292             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13293   ins_encode( long_cmp_flags0( src, tmp ) );
 13294   ins_pipe( ialu_reg_reg_long );
 13295 %}
 13297 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13298 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13299   match( Set flags (CmpL src1 src2 ));
 13300   ins_cost(200+300);
 13301   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13302             "JNE,s  skip\n\t"
 13303             "CMP    $src1.hi,$src2.hi\n\t"
 13304      "skip:\t" %}
 13305   ins_encode( long_cmp_flags1( src1, src2 ) );
 13306   ins_pipe( ialu_cr_reg_reg );
 13307 %}
 13309 // Long compare reg == zero/reg OR reg != zero/reg
 13310 // Just a wrapper for a normal branch, plus the predicate test.
 13311 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13312   match(If cmp flags);
 13313   effect(USE labl);
 13314   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13315   expand %{
 13316     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13317   %}
 13318 %}
 13320 // Compare 2 longs and CMOVE longs.
 13321 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13322   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13323   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13324   ins_cost(400);
 13325   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13326             "CMOV$cmp $dst.hi,$src.hi" %}
 13327   opcode(0x0F,0x40);
 13328   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13329   ins_pipe( pipe_cmov_reg_long );
 13330 %}
 13332 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13333   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13334   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13335   ins_cost(500);
 13336   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13337             "CMOV$cmp $dst.hi,$src.hi" %}
 13338   opcode(0x0F,0x40);
 13339   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13340   ins_pipe( pipe_cmov_reg_long );
 13341 %}
 13343 // Compare 2 longs and CMOVE ints.
 13344 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13345   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13346   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13347   ins_cost(200);
 13348   format %{ "CMOV$cmp $dst,$src" %}
 13349   opcode(0x0F,0x40);
 13350   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13351   ins_pipe( pipe_cmov_reg );
 13352 %}
 13354 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13355   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13356   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13357   ins_cost(250);
 13358   format %{ "CMOV$cmp $dst,$src" %}
 13359   opcode(0x0F,0x40);
 13360   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13361   ins_pipe( pipe_cmov_mem );
 13362 %}
 13364 // Compare 2 longs and CMOVE ints.
 13365 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13366   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13367   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13368   ins_cost(200);
 13369   format %{ "CMOV$cmp $dst,$src" %}
 13370   opcode(0x0F,0x40);
 13371   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13372   ins_pipe( pipe_cmov_reg );
 13373 %}
 13375 // Compare 2 longs and CMOVE doubles
 13376 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13377   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13378   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13379   ins_cost(200);
 13380   expand %{
 13381     fcmovD_regS(cmp,flags,dst,src);
 13382   %}
 13383 %}
 13385 // Compare 2 longs and CMOVE doubles
 13386 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13387   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13388   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13389   ins_cost(200);
 13390   expand %{
 13391     fcmovXD_regS(cmp,flags,dst,src);
 13392   %}
 13393 %}
 13395 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13396   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13397   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13398   ins_cost(200);
 13399   expand %{
 13400     fcmovF_regS(cmp,flags,dst,src);
 13401   %}
 13402 %}
 13404 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13405   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13406   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13407   ins_cost(200);
 13408   expand %{
 13409     fcmovX_regS(cmp,flags,dst,src);
 13410   %}
 13411 %}
 13413 //======
 13414 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13415 // Same as cmpL_reg_flags_LEGT except must negate src
 13416 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13417   match( Set flags (CmpL src zero ));
 13418   effect( TEMP tmp );
 13419   ins_cost(300);
 13420   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13421             "CMP    $tmp,$src.lo\n\t"
 13422             "SBB    $tmp,$src.hi\n\t" %}
 13423   ins_encode( long_cmp_flags3(src, tmp) );
 13424   ins_pipe( ialu_reg_reg_long );
 13425 %}
 13427 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13428 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13429 // requires a commuted test to get the same result.
 13430 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13431   match( Set flags (CmpL src1 src2 ));
 13432   effect( TEMP tmp );
 13433   ins_cost(300);
 13434   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13435             "MOV    $tmp,$src2.hi\n\t"
 13436             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13437   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13438   ins_pipe( ialu_cr_reg_reg );
 13439 %}
 13441 // Long compares reg < zero/req OR reg >= zero/req.
 13442 // Just a wrapper for a normal branch, plus the predicate test
 13443 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13444   match(If cmp flags);
 13445   effect(USE labl);
 13446   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13447   ins_cost(300);
 13448   expand %{
 13449     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13450   %}
 13451 %}
 13453 // Compare 2 longs and CMOVE longs.
 13454 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13455   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13456   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13457   ins_cost(400);
 13458   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13459             "CMOV$cmp $dst.hi,$src.hi" %}
 13460   opcode(0x0F,0x40);
 13461   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13462   ins_pipe( pipe_cmov_reg_long );
 13463 %}
 13465 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13466   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13467   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13468   ins_cost(500);
 13469   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13470             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13471   opcode(0x0F,0x40);
 13472   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13473   ins_pipe( pipe_cmov_reg_long );
 13474 %}
 13476 // Compare 2 longs and CMOVE ints.
 13477 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13478   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13479   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13480   ins_cost(200);
 13481   format %{ "CMOV$cmp $dst,$src" %}
 13482   opcode(0x0F,0x40);
 13483   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13484   ins_pipe( pipe_cmov_reg );
 13485 %}
 13487 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13488   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13489   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13490   ins_cost(250);
 13491   format %{ "CMOV$cmp $dst,$src" %}
 13492   opcode(0x0F,0x40);
 13493   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13494   ins_pipe( pipe_cmov_mem );
 13495 %}
 13497 // Compare 2 longs and CMOVE ptrs.
 13498 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13499   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13500   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13501   ins_cost(200);
 13502   format %{ "CMOV$cmp $dst,$src" %}
 13503   opcode(0x0F,0x40);
 13504   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13505   ins_pipe( pipe_cmov_reg );
 13506 %}
 13508 // Compare 2 longs and CMOVE doubles
 13509 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13510   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13511   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13512   ins_cost(200);
 13513   expand %{
 13514     fcmovD_regS(cmp,flags,dst,src);
 13515   %}
 13516 %}
 13518 // Compare 2 longs and CMOVE doubles
 13519 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13520   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13521   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13522   ins_cost(200);
 13523   expand %{
 13524     fcmovXD_regS(cmp,flags,dst,src);
 13525   %}
 13526 %}
 13528 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13529   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13530   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13531   ins_cost(200);
 13532   expand %{
 13533     fcmovF_regS(cmp,flags,dst,src);
 13534   %}
 13535 %}
 13538 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13539   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13540   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13541   ins_cost(200);
 13542   expand %{
 13543     fcmovX_regS(cmp,flags,dst,src);
 13544   %}
 13545 %}
 13548 // ============================================================================
 13549 // Procedure Call/Return Instructions
 13550 // Call Java Static Instruction
 13551 // Note: If this code changes, the corresponding ret_addr_offset() and
 13552 //       compute_padding() functions will have to be adjusted.
 13553 instruct CallStaticJavaDirect(method meth) %{
 13554   match(CallStaticJava);
 13555   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13556   effect(USE meth);
 13558   ins_cost(300);
 13559   format %{ "CALL,static " %}
 13560   opcode(0xE8); /* E8 cd */
 13561   ins_encode( pre_call_FPU,
 13562               Java_Static_Call( meth ),
 13563               call_epilog,
 13564               post_call_FPU );
 13565   ins_pipe( pipe_slow );
 13566   ins_pc_relative(1);
 13567   ins_alignment(4);
 13568 %}
 13570 // Call Java Static Instruction (method handle version)
 13571 // Note: If this code changes, the corresponding ret_addr_offset() and
 13572 //       compute_padding() functions will have to be adjusted.
 13573 instruct CallStaticJavaHandle(method meth, eBPRegP ebp) %{
 13574   match(CallStaticJava);
 13575   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13576   effect(USE meth);
 13577   // EBP is saved by all callees (for interpreter stack correction).
 13578   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13580   ins_cost(300);
 13581   format %{ "CALL,static/MethodHandle " %}
 13582   opcode(0xE8); /* E8 cd */
 13583   ins_encode( pre_call_FPU,
 13584               preserve_SP,
 13585               Java_Static_Call( meth ),
 13586               restore_SP,
 13587               call_epilog,
 13588               post_call_FPU );
 13589   ins_pipe( pipe_slow );
 13590   ins_pc_relative(1);
 13591   ins_alignment(4);
 13592 %}
 13594 // Call Java Dynamic Instruction
 13595 // Note: If this code changes, the corresponding ret_addr_offset() and
 13596 //       compute_padding() functions will have to be adjusted.
 13597 instruct CallDynamicJavaDirect(method meth) %{
 13598   match(CallDynamicJava);
 13599   effect(USE meth);
 13601   ins_cost(300);
 13602   format %{ "MOV    EAX,(oop)-1\n\t"
 13603             "CALL,dynamic" %}
 13604   opcode(0xE8); /* E8 cd */
 13605   ins_encode( pre_call_FPU,
 13606               Java_Dynamic_Call( meth ),
 13607               call_epilog,
 13608               post_call_FPU );
 13609   ins_pipe( pipe_slow );
 13610   ins_pc_relative(1);
 13611   ins_alignment(4);
 13612 %}
 13614 // Call Runtime Instruction
 13615 instruct CallRuntimeDirect(method meth) %{
 13616   match(CallRuntime );
 13617   effect(USE meth);
 13619   ins_cost(300);
 13620   format %{ "CALL,runtime " %}
 13621   opcode(0xE8); /* E8 cd */
 13622   // Use FFREEs to clear entries in float stack
 13623   ins_encode( pre_call_FPU,
 13624               FFree_Float_Stack_All,
 13625               Java_To_Runtime( meth ),
 13626               post_call_FPU );
 13627   ins_pipe( pipe_slow );
 13628   ins_pc_relative(1);
 13629 %}
 13631 // Call runtime without safepoint
 13632 instruct CallLeafDirect(method meth) %{
 13633   match(CallLeaf);
 13634   effect(USE meth);
 13636   ins_cost(300);
 13637   format %{ "CALL_LEAF,runtime " %}
 13638   opcode(0xE8); /* E8 cd */
 13639   ins_encode( pre_call_FPU,
 13640               FFree_Float_Stack_All,
 13641               Java_To_Runtime( meth ),
 13642               Verify_FPU_For_Leaf, post_call_FPU );
 13643   ins_pipe( pipe_slow );
 13644   ins_pc_relative(1);
 13645 %}
 13647 instruct CallLeafNoFPDirect(method meth) %{
 13648   match(CallLeafNoFP);
 13649   effect(USE meth);
 13651   ins_cost(300);
 13652   format %{ "CALL_LEAF_NOFP,runtime " %}
 13653   opcode(0xE8); /* E8 cd */
 13654   ins_encode(Java_To_Runtime(meth));
 13655   ins_pipe( pipe_slow );
 13656   ins_pc_relative(1);
 13657 %}
 13660 // Return Instruction
 13661 // Remove the return address & jump to it.
 13662 instruct Ret() %{
 13663   match(Return);
 13664   format %{ "RET" %}
 13665   opcode(0xC3);
 13666   ins_encode(OpcP);
 13667   ins_pipe( pipe_jmp );
 13668 %}
 13670 // Tail Call; Jump from runtime stub to Java code.
 13671 // Also known as an 'interprocedural jump'.
 13672 // Target of jump will eventually return to caller.
 13673 // TailJump below removes the return address.
 13674 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13675   match(TailCall jump_target method_oop );
 13676   ins_cost(300);
 13677   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13678   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13679   ins_encode( OpcP, RegOpc(jump_target) );
 13680   ins_pipe( pipe_jmp );
 13681 %}
 13684 // Tail Jump; remove the return address; jump to target.
 13685 // TailCall above leaves the return address around.
 13686 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13687   match( TailJump jump_target ex_oop );
 13688   ins_cost(300);
 13689   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13690             "JMP    $jump_target " %}
 13691   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13692   ins_encode( enc_pop_rdx,
 13693               OpcP, RegOpc(jump_target) );
 13694   ins_pipe( pipe_jmp );
 13695 %}
 13697 // Create exception oop: created by stack-crawling runtime code.
 13698 // Created exception is now available to this handler, and is setup
 13699 // just prior to jumping to this handler.  No code emitted.
 13700 instruct CreateException( eAXRegP ex_oop )
 13701 %{
 13702   match(Set ex_oop (CreateEx));
 13704   size(0);
 13705   // use the following format syntax
 13706   format %{ "# exception oop is in EAX; no code emitted" %}
 13707   ins_encode();
 13708   ins_pipe( empty );
 13709 %}
 13712 // Rethrow exception:
 13713 // The exception oop will come in the first argument position.
 13714 // Then JUMP (not call) to the rethrow stub code.
 13715 instruct RethrowException()
 13716 %{
 13717   match(Rethrow);
 13719   // use the following format syntax
 13720   format %{ "JMP    rethrow_stub" %}
 13721   ins_encode(enc_rethrow);
 13722   ins_pipe( pipe_jmp );
 13723 %}
 13725 // inlined locking and unlocking
 13728 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13729   match( Set cr (FastLock object box) );
 13730   effect( TEMP tmp, TEMP scr );
 13731   ins_cost(300);
 13732   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13733   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13734   ins_pipe( pipe_slow );
 13735   ins_pc_relative(1);
 13736 %}
 13738 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13739   match( Set cr (FastUnlock object box) );
 13740   effect( TEMP tmp );
 13741   ins_cost(300);
 13742   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13743   ins_encode( Fast_Unlock(object,box,tmp) );
 13744   ins_pipe( pipe_slow );
 13745   ins_pc_relative(1);
 13746 %}
 13750 // ============================================================================
 13751 // Safepoint Instruction
 13752 instruct safePoint_poll(eFlagsReg cr) %{
 13753   match(SafePoint);
 13754   effect(KILL cr);
 13756   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13757   // On SPARC that might be acceptable as we can generate the address with
 13758   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13759   // putting additional pressure on the index-0 in the D$.  Because of
 13760   // alignment (just like the situation at hand) the lower indices tend
 13761   // to see more traffic.  It'd be better to change the polling address
 13762   // to offset 0 of the last $line in the polling page.
 13764   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13765   ins_cost(125);
 13766   size(6) ;
 13767   ins_encode( Safepoint_Poll() );
 13768   ins_pipe( ialu_reg_mem );
 13769 %}
 13771 //----------PEEPHOLE RULES-----------------------------------------------------
 13772 // These must follow all instruction definitions as they use the names
 13773 // defined in the instructions definitions.
 13774 //
 13775 // peepmatch ( root_instr_name [preceding_instruction]* );
 13776 //
 13777 // peepconstraint %{
 13778 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13779 //  [, ...] );
 13780 // // instruction numbers are zero-based using left to right order in peepmatch
 13781 //
 13782 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13783 // // provide an instruction_number.operand_name for each operand that appears
 13784 // // in the replacement instruction's match rule
 13785 //
 13786 // ---------VM FLAGS---------------------------------------------------------
 13787 //
 13788 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13789 //
 13790 // Each peephole rule is given an identifying number starting with zero and
 13791 // increasing by one in the order seen by the parser.  An individual peephole
 13792 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13793 // on the command-line.
 13794 //
 13795 // ---------CURRENT LIMITATIONS----------------------------------------------
 13796 //
 13797 // Only match adjacent instructions in same basic block
 13798 // Only equality constraints
 13799 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13800 // Only one replacement instruction
 13801 //
 13802 // ---------EXAMPLE----------------------------------------------------------
 13803 //
 13804 // // pertinent parts of existing instructions in architecture description
 13805 // instruct movI(eRegI dst, eRegI src) %{
 13806 //   match(Set dst (CopyI src));
 13807 // %}
 13808 //
 13809 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13810 //   match(Set dst (AddI dst src));
 13811 //   effect(KILL cr);
 13812 // %}
 13813 //
 13814 // // Change (inc mov) to lea
 13815 // peephole %{
 13816 //   // increment preceeded by register-register move
 13817 //   peepmatch ( incI_eReg movI );
 13818 //   // require that the destination register of the increment
 13819 //   // match the destination register of the move
 13820 //   peepconstraint ( 0.dst == 1.dst );
 13821 //   // construct a replacement instruction that sets
 13822 //   // the destination to ( move's source register + one )
 13823 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13824 // %}
 13825 //
 13826 // Implementation no longer uses movX instructions since
 13827 // machine-independent system no longer uses CopyX nodes.
 13828 //
 13829 // peephole %{
 13830 //   peepmatch ( incI_eReg movI );
 13831 //   peepconstraint ( 0.dst == 1.dst );
 13832 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13833 // %}
 13834 //
 13835 // peephole %{
 13836 //   peepmatch ( decI_eReg movI );
 13837 //   peepconstraint ( 0.dst == 1.dst );
 13838 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13839 // %}
 13840 //
 13841 // peephole %{
 13842 //   peepmatch ( addI_eReg_imm movI );
 13843 //   peepconstraint ( 0.dst == 1.dst );
 13844 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13845 // %}
 13846 //
 13847 // peephole %{
 13848 //   peepmatch ( addP_eReg_imm movP );
 13849 //   peepconstraint ( 0.dst == 1.dst );
 13850 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13851 // %}
 13853 // // Change load of spilled value to only a spill
 13854 // instruct storeI(memory mem, eRegI src) %{
 13855 //   match(Set mem (StoreI mem src));
 13856 // %}
 13857 //
 13858 // instruct loadI(eRegI dst, memory mem) %{
 13859 //   match(Set dst (LoadI mem));
 13860 // %}
 13861 //
 13862 peephole %{
 13863   peepmatch ( loadI storeI );
 13864   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13865   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13866 %}
 13868 //----------SMARTSPILL RULES---------------------------------------------------
 13869 // These must follow all instruction definitions as they use the names
 13870 // defined in the instructions definitions.

mercurial