src/cpu/x86/vm/stubGenerator_x86_64.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1861
2338d41fbd81
child 1938
02e771df338e
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_64.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    34 #define a__ ((Assembler*)_masm)->
    36 #ifdef PRODUCT
    37 #define BLOCK_COMMENT(str) /* nothing */
    38 #else
    39 #define BLOCK_COMMENT(str) __ block_comment(str)
    40 #endif
    42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    45 // Stub Code definitions
    47 static address handle_unsafe_access() {
    48   JavaThread* thread = JavaThread::current();
    49   address pc = thread->saved_exception_pc();
    50   // pc is the instruction which we must emulate
    51   // doing a no-op is fine:  return garbage from the load
    52   // therefore, compute npc
    53   address npc = Assembler::locate_next_instruction(pc);
    55   // request an async exception
    56   thread->set_pending_unsafe_access_error();
    58   // return address of next instruction to execute
    59   return npc;
    60 }
    62 class StubGenerator: public StubCodeGenerator {
    63  private:
    65 #ifdef PRODUCT
    66 #define inc_counter_np(counter) (0)
    67 #else
    68   void inc_counter_np_(int& counter) {
    69     __ incrementl(ExternalAddress((address)&counter));
    70   }
    71 #define inc_counter_np(counter) \
    72   BLOCK_COMMENT("inc_counter " #counter); \
    73   inc_counter_np_(counter);
    74 #endif
    76   // Call stubs are used to call Java from C
    77   //
    78   // Linux Arguments:
    79   //    c_rarg0:   call wrapper address                   address
    80   //    c_rarg1:   result                                 address
    81   //    c_rarg2:   result type                            BasicType
    82   //    c_rarg3:   method                                 methodOop
    83   //    c_rarg4:   (interpreter) entry point              address
    84   //    c_rarg5:   parameters                             intptr_t*
    85   //    16(rbp): parameter size (in words)              int
    86   //    24(rbp): thread                                 Thread*
    87   //
    88   //     [ return_from_Java     ] <--- rsp
    89   //     [ argument word n      ]
    90   //      ...
    91   // -12 [ argument word 1      ]
    92   // -11 [ saved r15            ] <--- rsp_after_call
    93   // -10 [ saved r14            ]
    94   //  -9 [ saved r13            ]
    95   //  -8 [ saved r12            ]
    96   //  -7 [ saved rbx            ]
    97   //  -6 [ call wrapper         ]
    98   //  -5 [ result               ]
    99   //  -4 [ result type          ]
   100   //  -3 [ method               ]
   101   //  -2 [ entry point          ]
   102   //  -1 [ parameters           ]
   103   //   0 [ saved rbp            ] <--- rbp
   104   //   1 [ return address       ]
   105   //   2 [ parameter size       ]
   106   //   3 [ thread               ]
   107   //
   108   // Windows Arguments:
   109   //    c_rarg0:   call wrapper address                   address
   110   //    c_rarg1:   result                                 address
   111   //    c_rarg2:   result type                            BasicType
   112   //    c_rarg3:   method                                 methodOop
   113   //    48(rbp): (interpreter) entry point              address
   114   //    56(rbp): parameters                             intptr_t*
   115   //    64(rbp): parameter size (in words)              int
   116   //    72(rbp): thread                                 Thread*
   117   //
   118   //     [ return_from_Java     ] <--- rsp
   119   //     [ argument word n      ]
   120   //      ...
   121   //  -8 [ argument word 1      ]
   122   //  -7 [ saved r15            ] <--- rsp_after_call
   123   //  -6 [ saved r14            ]
   124   //  -5 [ saved r13            ]
   125   //  -4 [ saved r12            ]
   126   //  -3 [ saved rdi            ]
   127   //  -2 [ saved rsi            ]
   128   //  -1 [ saved rbx            ]
   129   //   0 [ saved rbp            ] <--- rbp
   130   //   1 [ return address       ]
   131   //   2 [ call wrapper         ]
   132   //   3 [ result               ]
   133   //   4 [ result type          ]
   134   //   5 [ method               ]
   135   //   6 [ entry point          ]
   136   //   7 [ parameters           ]
   137   //   8 [ parameter size       ]
   138   //   9 [ thread               ]
   139   //
   140   //    Windows reserves the callers stack space for arguments 1-4.
   141   //    We spill c_rarg0-c_rarg3 to this space.
   143   // Call stub stack layout word offsets from rbp
   144   enum call_stub_layout {
   145 #ifdef _WIN64
   146     rsp_after_call_off = -7,
   147     r15_off            = rsp_after_call_off,
   148     r14_off            = -6,
   149     r13_off            = -5,
   150     r12_off            = -4,
   151     rdi_off            = -3,
   152     rsi_off            = -2,
   153     rbx_off            = -1,
   154     rbp_off            =  0,
   155     retaddr_off        =  1,
   156     call_wrapper_off   =  2,
   157     result_off         =  3,
   158     result_type_off    =  4,
   159     method_off         =  5,
   160     entry_point_off    =  6,
   161     parameters_off     =  7,
   162     parameter_size_off =  8,
   163     thread_off         =  9
   164 #else
   165     rsp_after_call_off = -12,
   166     mxcsr_off          = rsp_after_call_off,
   167     r15_off            = -11,
   168     r14_off            = -10,
   169     r13_off            = -9,
   170     r12_off            = -8,
   171     rbx_off            = -7,
   172     call_wrapper_off   = -6,
   173     result_off         = -5,
   174     result_type_off    = -4,
   175     method_off         = -3,
   176     entry_point_off    = -2,
   177     parameters_off     = -1,
   178     rbp_off            =  0,
   179     retaddr_off        =  1,
   180     parameter_size_off =  2,
   181     thread_off         =  3
   182 #endif
   183   };
   185   address generate_call_stub(address& return_address) {
   186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   188            "adjust this code");
   189     StubCodeMark mark(this, "StubRoutines", "call_stub");
   190     address start = __ pc();
   192     // same as in generate_catch_exception()!
   193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   196     const Address result        (rbp, result_off         * wordSize);
   197     const Address result_type   (rbp, result_type_off    * wordSize);
   198     const Address method        (rbp, method_off         * wordSize);
   199     const Address entry_point   (rbp, entry_point_off    * wordSize);
   200     const Address parameters    (rbp, parameters_off     * wordSize);
   201     const Address parameter_size(rbp, parameter_size_off * wordSize);
   203     // same as in generate_catch_exception()!
   204     const Address thread        (rbp, thread_off         * wordSize);
   206     const Address r15_save(rbp, r15_off * wordSize);
   207     const Address r14_save(rbp, r14_off * wordSize);
   208     const Address r13_save(rbp, r13_off * wordSize);
   209     const Address r12_save(rbp, r12_off * wordSize);
   210     const Address rbx_save(rbp, rbx_off * wordSize);
   212     // stub code
   213     __ enter();
   214     __ subptr(rsp, -rsp_after_call_off * wordSize);
   216     // save register parameters
   217 #ifndef _WIN64
   218     __ movptr(parameters,   c_rarg5); // parameters
   219     __ movptr(entry_point,  c_rarg4); // entry_point
   220 #endif
   222     __ movptr(method,       c_rarg3); // method
   223     __ movl(result_type,  c_rarg2);   // result type
   224     __ movptr(result,       c_rarg1); // result
   225     __ movptr(call_wrapper, c_rarg0); // call wrapper
   227     // save regs belonging to calling function
   228     __ movptr(rbx_save, rbx);
   229     __ movptr(r12_save, r12);
   230     __ movptr(r13_save, r13);
   231     __ movptr(r14_save, r14);
   232     __ movptr(r15_save, r15);
   234 #ifdef _WIN64
   235     const Address rdi_save(rbp, rdi_off * wordSize);
   236     const Address rsi_save(rbp, rsi_off * wordSize);
   238     __ movptr(rsi_save, rsi);
   239     __ movptr(rdi_save, rdi);
   240 #else
   241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   242     {
   243       Label skip_ldmx;
   244       __ stmxcsr(mxcsr_save);
   245       __ movl(rax, mxcsr_save);
   246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   248       __ cmp32(rax, mxcsr_std);
   249       __ jcc(Assembler::equal, skip_ldmx);
   250       __ ldmxcsr(mxcsr_std);
   251       __ bind(skip_ldmx);
   252     }
   253 #endif
   255     // Load up thread register
   256     __ movptr(r15_thread, thread);
   257     __ reinit_heapbase();
   259 #ifdef ASSERT
   260     // make sure we have no pending exceptions
   261     {
   262       Label L;
   263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   264       __ jcc(Assembler::equal, L);
   265       __ stop("StubRoutines::call_stub: entered with pending exception");
   266       __ bind(L);
   267     }
   268 #endif
   270     // pass parameters if any
   271     BLOCK_COMMENT("pass parameters if any");
   272     Label parameters_done;
   273     __ movl(c_rarg3, parameter_size);
   274     __ testl(c_rarg3, c_rarg3);
   275     __ jcc(Assembler::zero, parameters_done);
   277     Label loop;
   278     __ movptr(c_rarg2, parameters);       // parameter pointer
   279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   280     __ BIND(loop);
   281     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   282     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   283     __ decrementl(c_rarg1);             // decrement counter
   284     __ push(rax);                       // pass parameter
   285     __ jcc(Assembler::notZero, loop);
   287     // call Java function
   288     __ BIND(parameters_done);
   289     __ movptr(rbx, method);             // get methodOop
   290     __ movptr(c_rarg1, entry_point);    // get entry_point
   291     __ mov(r13, rsp);                   // set sender sp
   292     BLOCK_COMMENT("call Java function");
   293     __ call(c_rarg1);
   295     BLOCK_COMMENT("call_stub_return_address:");
   296     return_address = __ pc();
   298     // store result depending on type (everything that is not
   299     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   300     __ movptr(c_rarg0, result);
   301     Label is_long, is_float, is_double, exit;
   302     __ movl(c_rarg1, result_type);
   303     __ cmpl(c_rarg1, T_OBJECT);
   304     __ jcc(Assembler::equal, is_long);
   305     __ cmpl(c_rarg1, T_LONG);
   306     __ jcc(Assembler::equal, is_long);
   307     __ cmpl(c_rarg1, T_FLOAT);
   308     __ jcc(Assembler::equal, is_float);
   309     __ cmpl(c_rarg1, T_DOUBLE);
   310     __ jcc(Assembler::equal, is_double);
   312     // handle T_INT case
   313     __ movl(Address(c_rarg0, 0), rax);
   315     __ BIND(exit);
   317     // pop parameters
   318     __ lea(rsp, rsp_after_call);
   320 #ifdef ASSERT
   321     // verify that threads correspond
   322     {
   323       Label L, S;
   324       __ cmpptr(r15_thread, thread);
   325       __ jcc(Assembler::notEqual, S);
   326       __ get_thread(rbx);
   327       __ cmpptr(r15_thread, rbx);
   328       __ jcc(Assembler::equal, L);
   329       __ bind(S);
   330       __ jcc(Assembler::equal, L);
   331       __ stop("StubRoutines::call_stub: threads must correspond");
   332       __ bind(L);
   333     }
   334 #endif
   336     // restore regs belonging to calling function
   337     __ movptr(r15, r15_save);
   338     __ movptr(r14, r14_save);
   339     __ movptr(r13, r13_save);
   340     __ movptr(r12, r12_save);
   341     __ movptr(rbx, rbx_save);
   343 #ifdef _WIN64
   344     __ movptr(rdi, rdi_save);
   345     __ movptr(rsi, rsi_save);
   346 #else
   347     __ ldmxcsr(mxcsr_save);
   348 #endif
   350     // restore rsp
   351     __ addptr(rsp, -rsp_after_call_off * wordSize);
   353     // return
   354     __ pop(rbp);
   355     __ ret(0);
   357     // handle return types different from T_INT
   358     __ BIND(is_long);
   359     __ movq(Address(c_rarg0, 0), rax);
   360     __ jmp(exit);
   362     __ BIND(is_float);
   363     __ movflt(Address(c_rarg0, 0), xmm0);
   364     __ jmp(exit);
   366     __ BIND(is_double);
   367     __ movdbl(Address(c_rarg0, 0), xmm0);
   368     __ jmp(exit);
   370     return start;
   371   }
   373   // Return point for a Java call if there's an exception thrown in
   374   // Java code.  The exception is caught and transformed into a
   375   // pending exception stored in JavaThread that can be tested from
   376   // within the VM.
   377   //
   378   // Note: Usually the parameters are removed by the callee. In case
   379   // of an exception crossing an activation frame boundary, that is
   380   // not the case if the callee is compiled code => need to setup the
   381   // rsp.
   382   //
   383   // rax: exception oop
   385   address generate_catch_exception() {
   386     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   387     address start = __ pc();
   389     // same as in generate_call_stub():
   390     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   391     const Address thread        (rbp, thread_off         * wordSize);
   393 #ifdef ASSERT
   394     // verify that threads correspond
   395     {
   396       Label L, S;
   397       __ cmpptr(r15_thread, thread);
   398       __ jcc(Assembler::notEqual, S);
   399       __ get_thread(rbx);
   400       __ cmpptr(r15_thread, rbx);
   401       __ jcc(Assembler::equal, L);
   402       __ bind(S);
   403       __ stop("StubRoutines::catch_exception: threads must correspond");
   404       __ bind(L);
   405     }
   406 #endif
   408     // set pending exception
   409     __ verify_oop(rax);
   411     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   412     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   413     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   414     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   416     // complete return to VM
   417     assert(StubRoutines::_call_stub_return_address != NULL,
   418            "_call_stub_return_address must have been generated before");
   419     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   421     return start;
   422   }
   424   // Continuation point for runtime calls returning with a pending
   425   // exception.  The pending exception check happened in the runtime
   426   // or native call stub.  The pending exception in Thread is
   427   // converted into a Java-level exception.
   428   //
   429   // Contract with Java-level exception handlers:
   430   // rax: exception
   431   // rdx: throwing pc
   432   //
   433   // NOTE: At entry of this stub, exception-pc must be on stack !!
   435   address generate_forward_exception() {
   436     StubCodeMark mark(this, "StubRoutines", "forward exception");
   437     address start = __ pc();
   439     // Upon entry, the sp points to the return address returning into
   440     // Java (interpreted or compiled) code; i.e., the return address
   441     // becomes the throwing pc.
   442     //
   443     // Arguments pushed before the runtime call are still on the stack
   444     // but the exception handler will reset the stack pointer ->
   445     // ignore them.  A potential result in registers can be ignored as
   446     // well.
   448 #ifdef ASSERT
   449     // make sure this code is only executed if there is a pending exception
   450     {
   451       Label L;
   452       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   453       __ jcc(Assembler::notEqual, L);
   454       __ stop("StubRoutines::forward exception: no pending exception (1)");
   455       __ bind(L);
   456     }
   457 #endif
   459     // compute exception handler into rbx
   460     __ movptr(c_rarg0, Address(rsp, 0));
   461     BLOCK_COMMENT("call exception_handler_for_return_address");
   462     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   463                          SharedRuntime::exception_handler_for_return_address),
   464                     r15_thread, c_rarg0);
   465     __ mov(rbx, rax);
   467     // setup rax & rdx, remove return address & clear pending exception
   468     __ pop(rdx);
   469     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   470     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   472 #ifdef ASSERT
   473     // make sure exception is set
   474     {
   475       Label L;
   476       __ testptr(rax, rax);
   477       __ jcc(Assembler::notEqual, L);
   478       __ stop("StubRoutines::forward exception: no pending exception (2)");
   479       __ bind(L);
   480     }
   481 #endif
   483     // continue at exception handler (return address removed)
   484     // rax: exception
   485     // rbx: exception handler
   486     // rdx: throwing pc
   487     __ verify_oop(rax);
   488     __ jmp(rbx);
   490     return start;
   491   }
   493   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   494   //
   495   // Arguments :
   496   //    c_rarg0: exchange_value
   497   //    c_rarg0: dest
   498   //
   499   // Result:
   500   //    *dest <- ex, return (orig *dest)
   501   address generate_atomic_xchg() {
   502     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   503     address start = __ pc();
   505     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   506     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   507     __ ret(0);
   509     return start;
   510   }
   512   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   513   //
   514   // Arguments :
   515   //    c_rarg0: exchange_value
   516   //    c_rarg1: dest
   517   //
   518   // Result:
   519   //    *dest <- ex, return (orig *dest)
   520   address generate_atomic_xchg_ptr() {
   521     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   522     address start = __ pc();
   524     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   525     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   526     __ ret(0);
   528     return start;
   529   }
   531   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   532   //                                         jint compare_value)
   533   //
   534   // Arguments :
   535   //    c_rarg0: exchange_value
   536   //    c_rarg1: dest
   537   //    c_rarg2: compare_value
   538   //
   539   // Result:
   540   //    if ( compare_value == *dest ) {
   541   //       *dest = exchange_value
   542   //       return compare_value;
   543   //    else
   544   //       return *dest;
   545   address generate_atomic_cmpxchg() {
   546     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   547     address start = __ pc();
   549     __ movl(rax, c_rarg2);
   550    if ( os::is_MP() ) __ lock();
   551     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   552     __ ret(0);
   554     return start;
   555   }
   557   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   558   //                                             volatile jlong* dest,
   559   //                                             jlong compare_value)
   560   // Arguments :
   561   //    c_rarg0: exchange_value
   562   //    c_rarg1: dest
   563   //    c_rarg2: compare_value
   564   //
   565   // Result:
   566   //    if ( compare_value == *dest ) {
   567   //       *dest = exchange_value
   568   //       return compare_value;
   569   //    else
   570   //       return *dest;
   571   address generate_atomic_cmpxchg_long() {
   572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   573     address start = __ pc();
   575     __ movq(rax, c_rarg2);
   576    if ( os::is_MP() ) __ lock();
   577     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   578     __ ret(0);
   580     return start;
   581   }
   583   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   584   //
   585   // Arguments :
   586   //    c_rarg0: add_value
   587   //    c_rarg1: dest
   588   //
   589   // Result:
   590   //    *dest += add_value
   591   //    return *dest;
   592   address generate_atomic_add() {
   593     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   594     address start = __ pc();
   596     __ movl(rax, c_rarg0);
   597    if ( os::is_MP() ) __ lock();
   598     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   599     __ addl(rax, c_rarg0);
   600     __ ret(0);
   602     return start;
   603   }
   605   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   606   //
   607   // Arguments :
   608   //    c_rarg0: add_value
   609   //    c_rarg1: dest
   610   //
   611   // Result:
   612   //    *dest += add_value
   613   //    return *dest;
   614   address generate_atomic_add_ptr() {
   615     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   616     address start = __ pc();
   618     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   619    if ( os::is_MP() ) __ lock();
   620     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   621     __ addptr(rax, c_rarg0);
   622     __ ret(0);
   624     return start;
   625   }
   627   // Support for intptr_t OrderAccess::fence()
   628   //
   629   // Arguments :
   630   //
   631   // Result:
   632   address generate_orderaccess_fence() {
   633     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   634     address start = __ pc();
   635     __ membar(Assembler::StoreLoad);
   636     __ ret(0);
   638     return start;
   639   }
   641   // Support for intptr_t get_previous_fp()
   642   //
   643   // This routine is used to find the previous frame pointer for the
   644   // caller (current_frame_guess). This is used as part of debugging
   645   // ps() is seemingly lost trying to find frames.
   646   // This code assumes that caller current_frame_guess) has a frame.
   647   address generate_get_previous_fp() {
   648     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   649     const Address old_fp(rbp, 0);
   650     const Address older_fp(rax, 0);
   651     address start = __ pc();
   653     __ enter();
   654     __ movptr(rax, old_fp); // callers fp
   655     __ movptr(rax, older_fp); // the frame for ps()
   656     __ pop(rbp);
   657     __ ret(0);
   659     return start;
   660   }
   662   //----------------------------------------------------------------------------------------------------
   663   // Support for void verify_mxcsr()
   664   //
   665   // This routine is used with -Xcheck:jni to verify that native
   666   // JNI code does not return to Java code without restoring the
   667   // MXCSR register to our expected state.
   669   address generate_verify_mxcsr() {
   670     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   671     address start = __ pc();
   673     const Address mxcsr_save(rsp, 0);
   675     if (CheckJNICalls) {
   676       Label ok_ret;
   677       __ push(rax);
   678       __ subptr(rsp, wordSize);      // allocate a temp location
   679       __ stmxcsr(mxcsr_save);
   680       __ movl(rax, mxcsr_save);
   681       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   682       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   683       __ jcc(Assembler::equal, ok_ret);
   685       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   687       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   689       __ bind(ok_ret);
   690       __ addptr(rsp, wordSize);
   691       __ pop(rax);
   692     }
   694     __ ret(0);
   696     return start;
   697   }
   699   address generate_f2i_fixup() {
   700     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   701     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   703     address start = __ pc();
   705     Label L;
   707     __ push(rax);
   708     __ push(c_rarg3);
   709     __ push(c_rarg2);
   710     __ push(c_rarg1);
   712     __ movl(rax, 0x7f800000);
   713     __ xorl(c_rarg3, c_rarg3);
   714     __ movl(c_rarg2, inout);
   715     __ movl(c_rarg1, c_rarg2);
   716     __ andl(c_rarg1, 0x7fffffff);
   717     __ cmpl(rax, c_rarg1); // NaN? -> 0
   718     __ jcc(Assembler::negative, L);
   719     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   720     __ movl(c_rarg3, 0x80000000);
   721     __ movl(rax, 0x7fffffff);
   722     __ cmovl(Assembler::positive, c_rarg3, rax);
   724     __ bind(L);
   725     __ movptr(inout, c_rarg3);
   727     __ pop(c_rarg1);
   728     __ pop(c_rarg2);
   729     __ pop(c_rarg3);
   730     __ pop(rax);
   732     __ ret(0);
   734     return start;
   735   }
   737   address generate_f2l_fixup() {
   738     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   739     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   740     address start = __ pc();
   742     Label L;
   744     __ push(rax);
   745     __ push(c_rarg3);
   746     __ push(c_rarg2);
   747     __ push(c_rarg1);
   749     __ movl(rax, 0x7f800000);
   750     __ xorl(c_rarg3, c_rarg3);
   751     __ movl(c_rarg2, inout);
   752     __ movl(c_rarg1, c_rarg2);
   753     __ andl(c_rarg1, 0x7fffffff);
   754     __ cmpl(rax, c_rarg1); // NaN? -> 0
   755     __ jcc(Assembler::negative, L);
   756     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   757     __ mov64(c_rarg3, 0x8000000000000000);
   758     __ mov64(rax, 0x7fffffffffffffff);
   759     __ cmov(Assembler::positive, c_rarg3, rax);
   761     __ bind(L);
   762     __ movptr(inout, c_rarg3);
   764     __ pop(c_rarg1);
   765     __ pop(c_rarg2);
   766     __ pop(c_rarg3);
   767     __ pop(rax);
   769     __ ret(0);
   771     return start;
   772   }
   774   address generate_d2i_fixup() {
   775     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   776     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   778     address start = __ pc();
   780     Label L;
   782     __ push(rax);
   783     __ push(c_rarg3);
   784     __ push(c_rarg2);
   785     __ push(c_rarg1);
   786     __ push(c_rarg0);
   788     __ movl(rax, 0x7ff00000);
   789     __ movq(c_rarg2, inout);
   790     __ movl(c_rarg3, c_rarg2);
   791     __ mov(c_rarg1, c_rarg2);
   792     __ mov(c_rarg0, c_rarg2);
   793     __ negl(c_rarg3);
   794     __ shrptr(c_rarg1, 0x20);
   795     __ orl(c_rarg3, c_rarg2);
   796     __ andl(c_rarg1, 0x7fffffff);
   797     __ xorl(c_rarg2, c_rarg2);
   798     __ shrl(c_rarg3, 0x1f);
   799     __ orl(c_rarg1, c_rarg3);
   800     __ cmpl(rax, c_rarg1);
   801     __ jcc(Assembler::negative, L); // NaN -> 0
   802     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   803     __ movl(c_rarg2, 0x80000000);
   804     __ movl(rax, 0x7fffffff);
   805     __ cmov(Assembler::positive, c_rarg2, rax);
   807     __ bind(L);
   808     __ movptr(inout, c_rarg2);
   810     __ pop(c_rarg0);
   811     __ pop(c_rarg1);
   812     __ pop(c_rarg2);
   813     __ pop(c_rarg3);
   814     __ pop(rax);
   816     __ ret(0);
   818     return start;
   819   }
   821   address generate_d2l_fixup() {
   822     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   825     address start = __ pc();
   827     Label L;
   829     __ push(rax);
   830     __ push(c_rarg3);
   831     __ push(c_rarg2);
   832     __ push(c_rarg1);
   833     __ push(c_rarg0);
   835     __ movl(rax, 0x7ff00000);
   836     __ movq(c_rarg2, inout);
   837     __ movl(c_rarg3, c_rarg2);
   838     __ mov(c_rarg1, c_rarg2);
   839     __ mov(c_rarg0, c_rarg2);
   840     __ negl(c_rarg3);
   841     __ shrptr(c_rarg1, 0x20);
   842     __ orl(c_rarg3, c_rarg2);
   843     __ andl(c_rarg1, 0x7fffffff);
   844     __ xorl(c_rarg2, c_rarg2);
   845     __ shrl(c_rarg3, 0x1f);
   846     __ orl(c_rarg1, c_rarg3);
   847     __ cmpl(rax, c_rarg1);
   848     __ jcc(Assembler::negative, L); // NaN -> 0
   849     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   850     __ mov64(c_rarg2, 0x8000000000000000);
   851     __ mov64(rax, 0x7fffffffffffffff);
   852     __ cmovq(Assembler::positive, c_rarg2, rax);
   854     __ bind(L);
   855     __ movq(inout, c_rarg2);
   857     __ pop(c_rarg0);
   858     __ pop(c_rarg1);
   859     __ pop(c_rarg2);
   860     __ pop(c_rarg3);
   861     __ pop(rax);
   863     __ ret(0);
   865     return start;
   866   }
   868   address generate_fp_mask(const char *stub_name, int64_t mask) {
   869     __ align(CodeEntryAlignment);
   870     StubCodeMark mark(this, "StubRoutines", stub_name);
   871     address start = __ pc();
   873     __ emit_data64( mask, relocInfo::none );
   874     __ emit_data64( mask, relocInfo::none );
   876     return start;
   877   }
   879   // The following routine generates a subroutine to throw an
   880   // asynchronous UnknownError when an unsafe access gets a fault that
   881   // could not be reasonably prevented by the programmer.  (Example:
   882   // SIGBUS/OBJERR.)
   883   address generate_handler_for_unsafe_access() {
   884     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   885     address start = __ pc();
   887     __ push(0);                       // hole for return address-to-be
   888     __ pusha();                       // push registers
   889     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   891     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   892     BLOCK_COMMENT("call handle_unsafe_access");
   893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   894     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   896     __ movptr(next_pc, rax);          // stuff next address
   897     __ popa();
   898     __ ret(0);                        // jump to next address
   900     return start;
   901   }
   903   // Non-destructive plausibility checks for oops
   904   //
   905   // Arguments:
   906   //    all args on stack!
   907   //
   908   // Stack after saving c_rarg3:
   909   //    [tos + 0]: saved c_rarg3
   910   //    [tos + 1]: saved c_rarg2
   911   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   912   //    [tos + 3]: saved flags
   913   //    [tos + 4]: return address
   914   //  * [tos + 5]: error message (char*)
   915   //  * [tos + 6]: object to verify (oop)
   916   //  * [tos + 7]: saved rax - saved by caller and bashed
   917   //  * = popped on exit
   918   address generate_verify_oop() {
   919     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   920     address start = __ pc();
   922     Label exit, error;
   924     __ pushf();
   925     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   927     __ push(r12);
   929     // save c_rarg2 and c_rarg3
   930     __ push(c_rarg2);
   931     __ push(c_rarg3);
   933     enum {
   934            // After previous pushes.
   935            oop_to_verify = 6 * wordSize,
   936            saved_rax     = 7 * wordSize,
   938            // Before the call to MacroAssembler::debug(), see below.
   939            return_addr   = 16 * wordSize,
   940            error_msg     = 17 * wordSize
   941     };
   943     // get object
   944     __ movptr(rax, Address(rsp, oop_to_verify));
   946     // make sure object is 'reasonable'
   947     __ testptr(rax, rax);
   948     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
   949     // Check if the oop is in the right area of memory
   950     __ movptr(c_rarg2, rax);
   951     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
   952     __ andptr(c_rarg2, c_rarg3);
   953     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
   954     __ cmpptr(c_rarg2, c_rarg3);
   955     __ jcc(Assembler::notZero, error);
   957     // set r12 to heapbase for load_klass()
   958     __ reinit_heapbase();
   960     // make sure klass is 'reasonable'
   961     __ load_klass(rax, rax);  // get klass
   962     __ testptr(rax, rax);
   963     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
   964     // Check if the klass is in the right area of memory
   965     __ mov(c_rarg2, rax);
   966     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   967     __ andptr(c_rarg2, c_rarg3);
   968     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   969     __ cmpptr(c_rarg2, c_rarg3);
   970     __ jcc(Assembler::notZero, error);
   972     // make sure klass' klass is 'reasonable'
   973     __ load_klass(rax, rax);
   974     __ testptr(rax, rax);
   975     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
   976     // Check if the klass' klass is in the right area of memory
   977     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   978     __ andptr(rax, c_rarg3);
   979     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   980     __ cmpptr(rax, c_rarg3);
   981     __ jcc(Assembler::notZero, error);
   983     // return if everything seems ok
   984     __ bind(exit);
   985     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
   986     __ pop(c_rarg3);                             // restore c_rarg3
   987     __ pop(c_rarg2);                             // restore c_rarg2
   988     __ pop(r12);                                 // restore r12
   989     __ popf();                                   // restore flags
   990     __ ret(3 * wordSize);                        // pop caller saved stuff
   992     // handle errors
   993     __ bind(error);
   994     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
   995     __ pop(c_rarg3);                             // get saved c_rarg3 back
   996     __ pop(c_rarg2);                             // get saved c_rarg2 back
   997     __ pop(r12);                                 // get saved r12 back
   998     __ popf();                                   // get saved flags off stack --
   999                                                  // will be ignored
  1001     __ pusha();                                  // push registers
  1002                                                  // (rip is already
  1003                                                  // already pushed)
  1004     // debug(char* msg, int64_t pc, int64_t regs[])
  1005     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1006     // pushed all the registers, so now the stack looks like:
  1007     //     [tos +  0] 16 saved registers
  1008     //     [tos + 16] return address
  1009     //   * [tos + 17] error message (char*)
  1010     //   * [tos + 18] object to verify (oop)
  1011     //   * [tos + 19] saved rax - saved by caller and bashed
  1012     //   * = popped on exit
  1014     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1015     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1016     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1017     __ mov(r12, rsp);                               // remember rsp
  1018     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1019     __ andptr(rsp, -16);                            // align stack as required by ABI
  1020     BLOCK_COMMENT("call MacroAssembler::debug");
  1021     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1022     __ mov(rsp, r12);                               // restore rsp
  1023     __ popa();                                      // pop registers (includes r12)
  1024     __ ret(3 * wordSize);                           // pop caller saved stuff
  1026     return start;
  1029   static address disjoint_byte_copy_entry;
  1030   static address disjoint_short_copy_entry;
  1031   static address disjoint_int_copy_entry;
  1032   static address disjoint_long_copy_entry;
  1033   static address disjoint_oop_copy_entry;
  1035   static address byte_copy_entry;
  1036   static address short_copy_entry;
  1037   static address int_copy_entry;
  1038   static address long_copy_entry;
  1039   static address oop_copy_entry;
  1041   static address checkcast_copy_entry;
  1043   //
  1044   // Verify that a register contains clean 32-bits positive value
  1045   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1046   //
  1047   //  Input:
  1048   //    Rint  -  32-bits value
  1049   //    Rtmp  -  scratch
  1050   //
  1051   void assert_clean_int(Register Rint, Register Rtmp) {
  1052 #ifdef ASSERT
  1053     Label L;
  1054     assert_different_registers(Rtmp, Rint);
  1055     __ movslq(Rtmp, Rint);
  1056     __ cmpq(Rtmp, Rint);
  1057     __ jcc(Assembler::equal, L);
  1058     __ stop("high 32-bits of int value are not 0");
  1059     __ bind(L);
  1060 #endif
  1063   //  Generate overlap test for array copy stubs
  1064   //
  1065   //  Input:
  1066   //     c_rarg0 - from
  1067   //     c_rarg1 - to
  1068   //     c_rarg2 - element count
  1069   //
  1070   //  Output:
  1071   //     rax   - &from[element count - 1]
  1072   //
  1073   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1074     assert(no_overlap_target != NULL, "must be generated");
  1075     array_overlap_test(no_overlap_target, NULL, sf);
  1077   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1078     array_overlap_test(NULL, &L_no_overlap, sf);
  1080   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1081     const Register from     = c_rarg0;
  1082     const Register to       = c_rarg1;
  1083     const Register count    = c_rarg2;
  1084     const Register end_from = rax;
  1086     __ cmpptr(to, from);
  1087     __ lea(end_from, Address(from, count, sf, 0));
  1088     if (NOLp == NULL) {
  1089       ExternalAddress no_overlap(no_overlap_target);
  1090       __ jump_cc(Assembler::belowEqual, no_overlap);
  1091       __ cmpptr(to, end_from);
  1092       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1093     } else {
  1094       __ jcc(Assembler::belowEqual, (*NOLp));
  1095       __ cmpptr(to, end_from);
  1096       __ jcc(Assembler::aboveEqual, (*NOLp));
  1100   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1101   //
  1102   // Outputs:
  1103   //    rdi - rcx
  1104   //    rsi - rdx
  1105   //    rdx - r8
  1106   //    rcx - r9
  1107   //
  1108   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1109   // are non-volatile.  r9 and r10 should not be used by the caller.
  1110   //
  1111   void setup_arg_regs(int nargs = 3) {
  1112     const Register saved_rdi = r9;
  1113     const Register saved_rsi = r10;
  1114     assert(nargs == 3 || nargs == 4, "else fix");
  1115 #ifdef _WIN64
  1116     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1117            "unexpected argument registers");
  1118     if (nargs >= 4)
  1119       __ mov(rax, r9);  // r9 is also saved_rdi
  1120     __ movptr(saved_rdi, rdi);
  1121     __ movptr(saved_rsi, rsi);
  1122     __ mov(rdi, rcx); // c_rarg0
  1123     __ mov(rsi, rdx); // c_rarg1
  1124     __ mov(rdx, r8);  // c_rarg2
  1125     if (nargs >= 4)
  1126       __ mov(rcx, rax); // c_rarg3 (via rax)
  1127 #else
  1128     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1129            "unexpected argument registers");
  1130 #endif
  1133   void restore_arg_regs() {
  1134     const Register saved_rdi = r9;
  1135     const Register saved_rsi = r10;
  1136 #ifdef _WIN64
  1137     __ movptr(rdi, saved_rdi);
  1138     __ movptr(rsi, saved_rsi);
  1139 #endif
  1142   // Generate code for an array write pre barrier
  1143   //
  1144   //     addr    -  starting address
  1145   //     count    -  element count
  1146   //
  1147   //     Destroy no registers!
  1148   //
  1149   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1150     BarrierSet* bs = Universe::heap()->barrier_set();
  1151     switch (bs->kind()) {
  1152       case BarrierSet::G1SATBCT:
  1153       case BarrierSet::G1SATBCTLogging:
  1155           __ pusha();                      // push registers
  1156           if (count == c_rarg0) {
  1157             if (addr == c_rarg1) {
  1158               // exactly backwards!!
  1159               __ xchgptr(c_rarg1, c_rarg0);
  1160             } else {
  1161               __ movptr(c_rarg1, count);
  1162               __ movptr(c_rarg0, addr);
  1165           } else {
  1166             __ movptr(c_rarg0, addr);
  1167             __ movptr(c_rarg1, count);
  1169           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1170           __ popa();
  1172         break;
  1173       case BarrierSet::CardTableModRef:
  1174       case BarrierSet::CardTableExtension:
  1175       case BarrierSet::ModRef:
  1176         break;
  1177       default:
  1178         ShouldNotReachHere();
  1183   //
  1184   // Generate code for an array write post barrier
  1185   //
  1186   //  Input:
  1187   //     start    - register containing starting address of destination array
  1188   //     end      - register containing ending address of destination array
  1189   //     scratch  - scratch register
  1190   //
  1191   //  The input registers are overwritten.
  1192   //  The ending address is inclusive.
  1193   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1194     assert_different_registers(start, end, scratch);
  1195     BarrierSet* bs = Universe::heap()->barrier_set();
  1196     switch (bs->kind()) {
  1197       case BarrierSet::G1SATBCT:
  1198       case BarrierSet::G1SATBCTLogging:
  1201           __ pusha();                      // push registers (overkill)
  1202           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1203           assert_different_registers(start, end, scratch);
  1204           __ lea(scratch, Address(end, BytesPerHeapOop));
  1205           __ subptr(scratch, start);               // subtract start to get #bytes
  1206           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1207           __ mov(c_rarg0, start);
  1208           __ mov(c_rarg1, scratch);
  1209           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1210           __ popa();
  1212         break;
  1213       case BarrierSet::CardTableModRef:
  1214       case BarrierSet::CardTableExtension:
  1216           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1217           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1219           Label L_loop;
  1221            __ shrptr(start, CardTableModRefBS::card_shift);
  1222            __ addptr(end, BytesPerHeapOop);
  1223            __ shrptr(end, CardTableModRefBS::card_shift);
  1224            __ subptr(end, start); // number of bytes to copy
  1226           intptr_t disp = (intptr_t) ct->byte_map_base;
  1227           if (__ is_simm32(disp)) {
  1228             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1229             __ lea(scratch, cardtable);
  1230           } else {
  1231             ExternalAddress cardtable((address)disp);
  1232             __ lea(scratch, cardtable);
  1235           const Register count = end; // 'end' register contains bytes count now
  1236           __ addptr(start, scratch);
  1237         __ BIND(L_loop);
  1238           __ movb(Address(start, count, Address::times_1), 0);
  1239           __ decrement(count);
  1240           __ jcc(Assembler::greaterEqual, L_loop);
  1242         break;
  1243       default:
  1244         ShouldNotReachHere();
  1250   // Copy big chunks forward
  1251   //
  1252   // Inputs:
  1253   //   end_from     - source arrays end address
  1254   //   end_to       - destination array end address
  1255   //   qword_count  - 64-bits element count, negative
  1256   //   to           - scratch
  1257   //   L_copy_32_bytes - entry label
  1258   //   L_copy_8_bytes  - exit  label
  1259   //
  1260   void copy_32_bytes_forward(Register end_from, Register end_to,
  1261                              Register qword_count, Register to,
  1262                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1263     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1264     Label L_loop;
  1265     __ align(OptoLoopAlignment);
  1266   __ BIND(L_loop);
  1267     if(UseUnalignedLoadStores) {
  1268       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1269       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1270       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1271       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1273     } else {
  1274       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1275       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1276       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1277       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1278       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1279       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1280       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1281       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1283   __ BIND(L_copy_32_bytes);
  1284     __ addptr(qword_count, 4);
  1285     __ jcc(Assembler::lessEqual, L_loop);
  1286     __ subptr(qword_count, 4);
  1287     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1291   // Copy big chunks backward
  1292   //
  1293   // Inputs:
  1294   //   from         - source arrays address
  1295   //   dest         - destination array address
  1296   //   qword_count  - 64-bits element count
  1297   //   to           - scratch
  1298   //   L_copy_32_bytes - entry label
  1299   //   L_copy_8_bytes  - exit  label
  1300   //
  1301   void copy_32_bytes_backward(Register from, Register dest,
  1302                               Register qword_count, Register to,
  1303                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1304     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1305     Label L_loop;
  1306     __ align(OptoLoopAlignment);
  1307   __ BIND(L_loop);
  1308     if(UseUnalignedLoadStores) {
  1309       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1310       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1311       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1312       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1314     } else {
  1315       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1316       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1317       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1318       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1319       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1320       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1321       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1322       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1324   __ BIND(L_copy_32_bytes);
  1325     __ subptr(qword_count, 4);
  1326     __ jcc(Assembler::greaterEqual, L_loop);
  1327     __ addptr(qword_count, 4);
  1328     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1332   // Arguments:
  1333   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1334   //             ignored
  1335   //   name    - stub name string
  1336   //
  1337   // Inputs:
  1338   //   c_rarg0   - source array address
  1339   //   c_rarg1   - destination array address
  1340   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1341   //
  1342   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1343   // we let the hardware handle it.  The one to eight bytes within words,
  1344   // dwords or qwords that span cache line boundaries will still be loaded
  1345   // and stored atomically.
  1346   //
  1347   // Side Effects:
  1348   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1349   //   used by generate_conjoint_byte_copy().
  1350   //
  1351   address generate_disjoint_byte_copy(bool aligned, const char *name) {
  1352     __ align(CodeEntryAlignment);
  1353     StubCodeMark mark(this, "StubRoutines", name);
  1354     address start = __ pc();
  1356     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1357     Label L_copy_byte, L_exit;
  1358     const Register from        = rdi;  // source array address
  1359     const Register to          = rsi;  // destination array address
  1360     const Register count       = rdx;  // elements count
  1361     const Register byte_count  = rcx;
  1362     const Register qword_count = count;
  1363     const Register end_from    = from; // source array end address
  1364     const Register end_to      = to;   // destination array end address
  1365     // End pointers are inclusive, and if count is not zero they point
  1366     // to the last unit copied:  end_to[0] := end_from[0]
  1368     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1369     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1371     disjoint_byte_copy_entry = __ pc();
  1372     BLOCK_COMMENT("Entry:");
  1373     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1375     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1376                       // r9 and r10 may be used to save non-volatile registers
  1378     // 'from', 'to' and 'count' are now valid
  1379     __ movptr(byte_count, count);
  1380     __ shrptr(count, 3); // count => qword_count
  1382     // Copy from low to high addresses.  Use 'to' as scratch.
  1383     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1384     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1385     __ negptr(qword_count); // make the count negative
  1386     __ jmp(L_copy_32_bytes);
  1388     // Copy trailing qwords
  1389   __ BIND(L_copy_8_bytes);
  1390     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1391     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1392     __ increment(qword_count);
  1393     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1395     // Check for and copy trailing dword
  1396   __ BIND(L_copy_4_bytes);
  1397     __ testl(byte_count, 4);
  1398     __ jccb(Assembler::zero, L_copy_2_bytes);
  1399     __ movl(rax, Address(end_from, 8));
  1400     __ movl(Address(end_to, 8), rax);
  1402     __ addptr(end_from, 4);
  1403     __ addptr(end_to, 4);
  1405     // Check for and copy trailing word
  1406   __ BIND(L_copy_2_bytes);
  1407     __ testl(byte_count, 2);
  1408     __ jccb(Assembler::zero, L_copy_byte);
  1409     __ movw(rax, Address(end_from, 8));
  1410     __ movw(Address(end_to, 8), rax);
  1412     __ addptr(end_from, 2);
  1413     __ addptr(end_to, 2);
  1415     // Check for and copy trailing byte
  1416   __ BIND(L_copy_byte);
  1417     __ testl(byte_count, 1);
  1418     __ jccb(Assembler::zero, L_exit);
  1419     __ movb(rax, Address(end_from, 8));
  1420     __ movb(Address(end_to, 8), rax);
  1422   __ BIND(L_exit);
  1423     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1424     restore_arg_regs();
  1425     __ xorptr(rax, rax); // return 0
  1426     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1427     __ ret(0);
  1429     // Copy in 32-bytes chunks
  1430     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1431     __ jmp(L_copy_4_bytes);
  1433     return start;
  1436   // Arguments:
  1437   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1438   //             ignored
  1439   //   name    - stub name string
  1440   //
  1441   // Inputs:
  1442   //   c_rarg0   - source array address
  1443   //   c_rarg1   - destination array address
  1444   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1445   //
  1446   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1447   // we let the hardware handle it.  The one to eight bytes within words,
  1448   // dwords or qwords that span cache line boundaries will still be loaded
  1449   // and stored atomically.
  1450   //
  1451   address generate_conjoint_byte_copy(bool aligned, const char *name) {
  1452     __ align(CodeEntryAlignment);
  1453     StubCodeMark mark(this, "StubRoutines", name);
  1454     address start = __ pc();
  1456     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1457     const Register from        = rdi;  // source array address
  1458     const Register to          = rsi;  // destination array address
  1459     const Register count       = rdx;  // elements count
  1460     const Register byte_count  = rcx;
  1461     const Register qword_count = count;
  1463     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1464     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1466     byte_copy_entry = __ pc();
  1467     BLOCK_COMMENT("Entry:");
  1468     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1470     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
  1471     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1472                       // r9 and r10 may be used to save non-volatile registers
  1474     // 'from', 'to' and 'count' are now valid
  1475     __ movptr(byte_count, count);
  1476     __ shrptr(count, 3);   // count => qword_count
  1478     // Copy from high to low addresses.
  1480     // Check for and copy trailing byte
  1481     __ testl(byte_count, 1);
  1482     __ jcc(Assembler::zero, L_copy_2_bytes);
  1483     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1484     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1485     __ decrement(byte_count); // Adjust for possible trailing word
  1487     // Check for and copy trailing word
  1488   __ BIND(L_copy_2_bytes);
  1489     __ testl(byte_count, 2);
  1490     __ jcc(Assembler::zero, L_copy_4_bytes);
  1491     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1492     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1494     // Check for and copy trailing dword
  1495   __ BIND(L_copy_4_bytes);
  1496     __ testl(byte_count, 4);
  1497     __ jcc(Assembler::zero, L_copy_32_bytes);
  1498     __ movl(rax, Address(from, qword_count, Address::times_8));
  1499     __ movl(Address(to, qword_count, Address::times_8), rax);
  1500     __ jmp(L_copy_32_bytes);
  1502     // Copy trailing qwords
  1503   __ BIND(L_copy_8_bytes);
  1504     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1505     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1506     __ decrement(qword_count);
  1507     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1509     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1510     restore_arg_regs();
  1511     __ xorptr(rax, rax); // return 0
  1512     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1513     __ ret(0);
  1515     // Copy in 32-bytes chunks
  1516     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1518     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1519     restore_arg_regs();
  1520     __ xorptr(rax, rax); // return 0
  1521     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1522     __ ret(0);
  1524     return start;
  1527   // Arguments:
  1528   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1529   //             ignored
  1530   //   name    - stub name string
  1531   //
  1532   // Inputs:
  1533   //   c_rarg0   - source array address
  1534   //   c_rarg1   - destination array address
  1535   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1536   //
  1537   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1538   // let the hardware handle it.  The two or four words within dwords
  1539   // or qwords that span cache line boundaries will still be loaded
  1540   // and stored atomically.
  1541   //
  1542   // Side Effects:
  1543   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1544   //   used by generate_conjoint_short_copy().
  1545   //
  1546   address generate_disjoint_short_copy(bool aligned, const char *name) {
  1547     __ align(CodeEntryAlignment);
  1548     StubCodeMark mark(this, "StubRoutines", name);
  1549     address start = __ pc();
  1551     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1552     const Register from        = rdi;  // source array address
  1553     const Register to          = rsi;  // destination array address
  1554     const Register count       = rdx;  // elements count
  1555     const Register word_count  = rcx;
  1556     const Register qword_count = count;
  1557     const Register end_from    = from; // source array end address
  1558     const Register end_to      = to;   // destination array end address
  1559     // End pointers are inclusive, and if count is not zero they point
  1560     // to the last unit copied:  end_to[0] := end_from[0]
  1562     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1563     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1565     disjoint_short_copy_entry = __ pc();
  1566     BLOCK_COMMENT("Entry:");
  1567     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1569     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1570                       // r9 and r10 may be used to save non-volatile registers
  1572     // 'from', 'to' and 'count' are now valid
  1573     __ movptr(word_count, count);
  1574     __ shrptr(count, 2); // count => qword_count
  1576     // Copy from low to high addresses.  Use 'to' as scratch.
  1577     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1578     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1579     __ negptr(qword_count);
  1580     __ jmp(L_copy_32_bytes);
  1582     // Copy trailing qwords
  1583   __ BIND(L_copy_8_bytes);
  1584     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1585     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1586     __ increment(qword_count);
  1587     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1589     // Original 'dest' is trashed, so we can't use it as a
  1590     // base register for a possible trailing word copy
  1592     // Check for and copy trailing dword
  1593   __ BIND(L_copy_4_bytes);
  1594     __ testl(word_count, 2);
  1595     __ jccb(Assembler::zero, L_copy_2_bytes);
  1596     __ movl(rax, Address(end_from, 8));
  1597     __ movl(Address(end_to, 8), rax);
  1599     __ addptr(end_from, 4);
  1600     __ addptr(end_to, 4);
  1602     // Check for and copy trailing word
  1603   __ BIND(L_copy_2_bytes);
  1604     __ testl(word_count, 1);
  1605     __ jccb(Assembler::zero, L_exit);
  1606     __ movw(rax, Address(end_from, 8));
  1607     __ movw(Address(end_to, 8), rax);
  1609   __ BIND(L_exit);
  1610     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1611     restore_arg_regs();
  1612     __ xorptr(rax, rax); // return 0
  1613     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1614     __ ret(0);
  1616     // Copy in 32-bytes chunks
  1617     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1618     __ jmp(L_copy_4_bytes);
  1620     return start;
  1623   // Arguments:
  1624   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1625   //             ignored
  1626   //   name    - stub name string
  1627   //
  1628   // Inputs:
  1629   //   c_rarg0   - source array address
  1630   //   c_rarg1   - destination array address
  1631   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1632   //
  1633   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1634   // let the hardware handle it.  The two or four words within dwords
  1635   // or qwords that span cache line boundaries will still be loaded
  1636   // and stored atomically.
  1637   //
  1638   address generate_conjoint_short_copy(bool aligned, const char *name) {
  1639     __ align(CodeEntryAlignment);
  1640     StubCodeMark mark(this, "StubRoutines", name);
  1641     address start = __ pc();
  1643     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1644     const Register from        = rdi;  // source array address
  1645     const Register to          = rsi;  // destination array address
  1646     const Register count       = rdx;  // elements count
  1647     const Register word_count  = rcx;
  1648     const Register qword_count = count;
  1650     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1651     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1653     short_copy_entry = __ pc();
  1654     BLOCK_COMMENT("Entry:");
  1655     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1657     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
  1658     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1659                       // r9 and r10 may be used to save non-volatile registers
  1661     // 'from', 'to' and 'count' are now valid
  1662     __ movptr(word_count, count);
  1663     __ shrptr(count, 2); // count => qword_count
  1665     // Copy from high to low addresses.  Use 'to' as scratch.
  1667     // Check for and copy trailing word
  1668     __ testl(word_count, 1);
  1669     __ jccb(Assembler::zero, L_copy_4_bytes);
  1670     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1671     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1673     // Check for and copy trailing dword
  1674   __ BIND(L_copy_4_bytes);
  1675     __ testl(word_count, 2);
  1676     __ jcc(Assembler::zero, L_copy_32_bytes);
  1677     __ movl(rax, Address(from, qword_count, Address::times_8));
  1678     __ movl(Address(to, qword_count, Address::times_8), rax);
  1679     __ jmp(L_copy_32_bytes);
  1681     // Copy trailing qwords
  1682   __ BIND(L_copy_8_bytes);
  1683     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1684     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1685     __ decrement(qword_count);
  1686     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1688     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1689     restore_arg_regs();
  1690     __ xorptr(rax, rax); // return 0
  1691     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1692     __ ret(0);
  1694     // Copy in 32-bytes chunks
  1695     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1697     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1698     restore_arg_regs();
  1699     __ xorptr(rax, rax); // return 0
  1700     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1701     __ ret(0);
  1703     return start;
  1706   // Arguments:
  1707   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1708   //             ignored
  1709   //   is_oop  - true => oop array, so generate store check code
  1710   //   name    - stub name string
  1711   //
  1712   // Inputs:
  1713   //   c_rarg0   - source array address
  1714   //   c_rarg1   - destination array address
  1715   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1716   //
  1717   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1718   // the hardware handle it.  The two dwords within qwords that span
  1719   // cache line boundaries will still be loaded and stored atomicly.
  1720   //
  1721   // Side Effects:
  1722   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1723   //   used by generate_conjoint_int_oop_copy().
  1724   //
  1725   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1726     __ align(CodeEntryAlignment);
  1727     StubCodeMark mark(this, "StubRoutines", name);
  1728     address start = __ pc();
  1730     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1731     const Register from        = rdi;  // source array address
  1732     const Register to          = rsi;  // destination array address
  1733     const Register count       = rdx;  // elements count
  1734     const Register dword_count = rcx;
  1735     const Register qword_count = count;
  1736     const Register end_from    = from; // source array end address
  1737     const Register end_to      = to;   // destination array end address
  1738     const Register saved_to    = r11;  // saved destination array address
  1739     // End pointers are inclusive, and if count is not zero they point
  1740     // to the last unit copied:  end_to[0] := end_from[0]
  1742     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1743     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1745     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
  1747     if (is_oop) {
  1748       // no registers are destroyed by this call
  1749       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1752     BLOCK_COMMENT("Entry:");
  1753     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1755     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1756                       // r9 and r10 may be used to save non-volatile registers
  1758     if (is_oop) {
  1759       __ movq(saved_to, to);
  1762     // 'from', 'to' and 'count' are now valid
  1763     __ movptr(dword_count, count);
  1764     __ shrptr(count, 1); // count => qword_count
  1766     // Copy from low to high addresses.  Use 'to' as scratch.
  1767     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1768     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1769     __ negptr(qword_count);
  1770     __ jmp(L_copy_32_bytes);
  1772     // Copy trailing qwords
  1773   __ BIND(L_copy_8_bytes);
  1774     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1775     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1776     __ increment(qword_count);
  1777     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1779     // Check for and copy trailing dword
  1780   __ BIND(L_copy_4_bytes);
  1781     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1782     __ jccb(Assembler::zero, L_exit);
  1783     __ movl(rax, Address(end_from, 8));
  1784     __ movl(Address(end_to, 8), rax);
  1786   __ BIND(L_exit);
  1787     if (is_oop) {
  1788       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1789       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1791     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1792     restore_arg_regs();
  1793     __ xorptr(rax, rax); // return 0
  1794     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1795     __ ret(0);
  1797     // Copy 32-bytes chunks
  1798     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1799     __ jmp(L_copy_4_bytes);
  1801     return start;
  1804   // Arguments:
  1805   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1806   //             ignored
  1807   //   is_oop  - true => oop array, so generate store check code
  1808   //   name    - stub name string
  1809   //
  1810   // Inputs:
  1811   //   c_rarg0   - source array address
  1812   //   c_rarg1   - destination array address
  1813   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1814   //
  1815   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1816   // the hardware handle it.  The two dwords within qwords that span
  1817   // cache line boundaries will still be loaded and stored atomicly.
  1818   //
  1819   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1820     __ align(CodeEntryAlignment);
  1821     StubCodeMark mark(this, "StubRoutines", name);
  1822     address start = __ pc();
  1824     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1825     const Register from        = rdi;  // source array address
  1826     const Register to          = rsi;  // destination array address
  1827     const Register count       = rdx;  // elements count
  1828     const Register dword_count = rcx;
  1829     const Register qword_count = count;
  1831     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1832     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1834     if (is_oop) {
  1835       // no registers are destroyed by this call
  1836       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1839     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
  1840     BLOCK_COMMENT("Entry:");
  1841     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1843     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
  1844                        Address::times_4);
  1845     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1846                       // r9 and r10 may be used to save non-volatile registers
  1848     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1849     // 'from', 'to' and 'count' are now valid
  1850     __ movptr(dword_count, count);
  1851     __ shrptr(count, 1); // count => qword_count
  1853     // Copy from high to low addresses.  Use 'to' as scratch.
  1855     // Check for and copy trailing dword
  1856     __ testl(dword_count, 1);
  1857     __ jcc(Assembler::zero, L_copy_32_bytes);
  1858     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1859     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1860     __ jmp(L_copy_32_bytes);
  1862     // Copy trailing qwords
  1863   __ BIND(L_copy_8_bytes);
  1864     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1865     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1866     __ decrement(qword_count);
  1867     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1869     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1870     if (is_oop) {
  1871       __ jmp(L_exit);
  1873     restore_arg_regs();
  1874     __ xorptr(rax, rax); // return 0
  1875     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1876     __ ret(0);
  1878     // Copy in 32-bytes chunks
  1879     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1881    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1882    __ bind(L_exit);
  1883      if (is_oop) {
  1884        Register end_to = rdx;
  1885        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1886        gen_write_ref_array_post_barrier(to, end_to, rax);
  1888     restore_arg_regs();
  1889     __ xorptr(rax, rax); // return 0
  1890     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1891     __ ret(0);
  1893     return start;
  1896   // Arguments:
  1897   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1898   //             ignored
  1899   //   is_oop  - true => oop array, so generate store check code
  1900   //   name    - stub name string
  1901   //
  1902   // Inputs:
  1903   //   c_rarg0   - source array address
  1904   //   c_rarg1   - destination array address
  1905   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1906   //
  1907  // Side Effects:
  1908   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1909   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1910   //
  1911   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1912     __ align(CodeEntryAlignment);
  1913     StubCodeMark mark(this, "StubRoutines", name);
  1914     address start = __ pc();
  1916     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1917     const Register from        = rdi;  // source array address
  1918     const Register to          = rsi;  // destination array address
  1919     const Register qword_count = rdx;  // elements count
  1920     const Register end_from    = from; // source array end address
  1921     const Register end_to      = rcx;  // destination array end address
  1922     const Register saved_to    = to;
  1923     // End pointers are inclusive, and if count is not zero they point
  1924     // to the last unit copied:  end_to[0] := end_from[0]
  1926     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1927     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  1928     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1930     if (is_oop) {
  1931       disjoint_oop_copy_entry  = __ pc();
  1932       // no registers are destroyed by this call
  1933       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1934     } else {
  1935       disjoint_long_copy_entry = __ pc();
  1937     BLOCK_COMMENT("Entry:");
  1938     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1940     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1941                       // r9 and r10 may be used to save non-volatile registers
  1943     // 'from', 'to' and 'qword_count' are now valid
  1945     // Copy from low to high addresses.  Use 'to' as scratch.
  1946     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1947     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1948     __ negptr(qword_count);
  1949     __ jmp(L_copy_32_bytes);
  1951     // Copy trailing qwords
  1952   __ BIND(L_copy_8_bytes);
  1953     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1954     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1955     __ increment(qword_count);
  1956     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1958     if (is_oop) {
  1959       __ jmp(L_exit);
  1960     } else {
  1961       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1962       restore_arg_regs();
  1963       __ xorptr(rax, rax); // return 0
  1964       __ leave(); // required for proper stackwalking of RuntimeStub frame
  1965       __ ret(0);
  1968     // Copy 64-byte chunks
  1969     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1971     if (is_oop) {
  1972     __ BIND(L_exit);
  1973       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1974       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  1975     } else {
  1976       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1978     restore_arg_regs();
  1979     __ xorptr(rax, rax); // return 0
  1980     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1981     __ ret(0);
  1983     return start;
  1986   // Arguments:
  1987   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1988   //             ignored
  1989   //   is_oop  - true => oop array, so generate store check code
  1990   //   name    - stub name string
  1991   //
  1992   // Inputs:
  1993   //   c_rarg0   - source array address
  1994   //   c_rarg1   - destination array address
  1995   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1996   //
  1997   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1998     __ align(CodeEntryAlignment);
  1999     StubCodeMark mark(this, "StubRoutines", name);
  2000     address start = __ pc();
  2002     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2003     const Register from        = rdi;  // source array address
  2004     const Register to          = rsi;  // destination array address
  2005     const Register qword_count = rdx;  // elements count
  2006     const Register saved_count = rcx;
  2008     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2009     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2011     address disjoint_copy_entry = NULL;
  2012     if (is_oop) {
  2013       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
  2014       disjoint_copy_entry = disjoint_oop_copy_entry;
  2015       oop_copy_entry  = __ pc();
  2016       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
  2017     } else {
  2018       disjoint_copy_entry = disjoint_long_copy_entry;
  2019       long_copy_entry = __ pc();
  2020       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
  2022     BLOCK_COMMENT("Entry:");
  2023     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2025     array_overlap_test(disjoint_copy_entry, Address::times_8);
  2026     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2027                       // r9 and r10 may be used to save non-volatile registers
  2029     // 'from', 'to' and 'qword_count' are now valid
  2031     if (is_oop) {
  2032       // Save to and count for store barrier
  2033       __ movptr(saved_count, qword_count);
  2034       // No registers are destroyed by this call
  2035       gen_write_ref_array_pre_barrier(to, saved_count);
  2038     __ jmp(L_copy_32_bytes);
  2040     // Copy trailing qwords
  2041   __ BIND(L_copy_8_bytes);
  2042     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2043     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2044     __ decrement(qword_count);
  2045     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2047     if (is_oop) {
  2048       __ jmp(L_exit);
  2049     } else {
  2050       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2051       restore_arg_regs();
  2052       __ xorptr(rax, rax); // return 0
  2053       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2054       __ ret(0);
  2057     // Copy in 32-bytes chunks
  2058     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2060     if (is_oop) {
  2061     __ BIND(L_exit);
  2062       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2063       gen_write_ref_array_post_barrier(to, rcx, rax);
  2064       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2065     } else {
  2066       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2068     restore_arg_regs();
  2069     __ xorptr(rax, rax); // return 0
  2070     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2071     __ ret(0);
  2073     return start;
  2077   // Helper for generating a dynamic type check.
  2078   // Smashes no registers.
  2079   void generate_type_check(Register sub_klass,
  2080                            Register super_check_offset,
  2081                            Register super_klass,
  2082                            Label& L_success) {
  2083     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2085     BLOCK_COMMENT("type_check:");
  2087     Label L_miss;
  2089     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2090                                      super_check_offset);
  2091     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2093     // Fall through on failure!
  2094     __ BIND(L_miss);
  2097   //
  2098   //  Generate checkcasting array copy stub
  2099   //
  2100   //  Input:
  2101   //    c_rarg0   - source array address
  2102   //    c_rarg1   - destination array address
  2103   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2104   //    c_rarg3   - size_t ckoff (super_check_offset)
  2105   // not Win64
  2106   //    c_rarg4   - oop ckval (super_klass)
  2107   // Win64
  2108   //    rsp+40    - oop ckval (super_klass)
  2109   //
  2110   //  Output:
  2111   //    rax ==  0  -  success
  2112   //    rax == -1^K - failure, where K is partial transfer count
  2113   //
  2114   address generate_checkcast_copy(const char *name) {
  2116     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2118     // Input registers (after setup_arg_regs)
  2119     const Register from        = rdi;   // source array address
  2120     const Register to          = rsi;   // destination array address
  2121     const Register length      = rdx;   // elements count
  2122     const Register ckoff       = rcx;   // super_check_offset
  2123     const Register ckval       = r8;    // super_klass
  2125     // Registers used as temps (r13, r14 are save-on-entry)
  2126     const Register end_from    = from;  // source array end address
  2127     const Register end_to      = r13;   // destination array end address
  2128     const Register count       = rdx;   // -(count_remaining)
  2129     const Register r14_length  = r14;   // saved copy of length
  2130     // End pointers are inclusive, and if length is not zero they point
  2131     // to the last unit copied:  end_to[0] := end_from[0]
  2133     const Register rax_oop    = rax;    // actual oop copied
  2134     const Register r11_klass  = r11;    // oop._klass
  2136     //---------------------------------------------------------------
  2137     // Assembler stub will be used for this call to arraycopy
  2138     // if the two arrays are subtypes of Object[] but the
  2139     // destination array type is not equal to or a supertype
  2140     // of the source type.  Each element must be separately
  2141     // checked.
  2143     __ align(CodeEntryAlignment);
  2144     StubCodeMark mark(this, "StubRoutines", name);
  2145     address start = __ pc();
  2147     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2149     checkcast_copy_entry  = __ pc();
  2150     BLOCK_COMMENT("Entry:");
  2152 #ifdef ASSERT
  2153     // caller guarantees that the arrays really are different
  2154     // otherwise, we would have to make conjoint checks
  2155     { Label L;
  2156       array_overlap_test(L, TIMES_OOP);
  2157       __ stop("checkcast_copy within a single array");
  2158       __ bind(L);
  2160 #endif //ASSERT
  2162     // allocate spill slots for r13, r14
  2163     enum {
  2164       saved_r13_offset,
  2165       saved_r14_offset,
  2166       saved_rbp_offset,
  2167       saved_rip_offset,
  2168       saved_rarg0_offset
  2169     };
  2170     __ subptr(rsp, saved_rbp_offset * wordSize);
  2171     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2172     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2173     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2174                        // ckoff => rcx, ckval => r8
  2175                        // r9 and r10 may be used to save non-volatile registers
  2176 #ifdef _WIN64
  2177     // last argument (#4) is on stack on Win64
  2178     const int ckval_offset = saved_rarg0_offset + 4;
  2179     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
  2180 #endif
  2182     // check that int operands are properly extended to size_t
  2183     assert_clean_int(length, rax);
  2184     assert_clean_int(ckoff, rax);
  2186 #ifdef ASSERT
  2187     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2188     // The ckoff and ckval must be mutually consistent,
  2189     // even though caller generates both.
  2190     { Label L;
  2191       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2192                         Klass::super_check_offset_offset_in_bytes());
  2193       __ cmpl(ckoff, Address(ckval, sco_offset));
  2194       __ jcc(Assembler::equal, L);
  2195       __ stop("super_check_offset inconsistent");
  2196       __ bind(L);
  2198 #endif //ASSERT
  2200     // Loop-invariant addresses.  They are exclusive end pointers.
  2201     Address end_from_addr(from, length, TIMES_OOP, 0);
  2202     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2203     // Loop-variant addresses.  They assume post-incremented count < 0.
  2204     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2205     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2207     gen_write_ref_array_pre_barrier(to, count);
  2209     // Copy from low to high addresses, indexed from the end of each array.
  2210     __ lea(end_from, end_from_addr);
  2211     __ lea(end_to,   end_to_addr);
  2212     __ movptr(r14_length, length);        // save a copy of the length
  2213     assert(length == count, "");          // else fix next line:
  2214     __ negptr(count);                     // negate and test the length
  2215     __ jcc(Assembler::notZero, L_load_element);
  2217     // Empty array:  Nothing to do.
  2218     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2219     __ jmp(L_done);
  2221     // ======== begin loop ========
  2222     // (Loop is rotated; its entry is L_load_element.)
  2223     // Loop control:
  2224     //   for (count = -count; count != 0; count++)
  2225     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2226     __ align(OptoLoopAlignment);
  2228     __ BIND(L_store_element);
  2229     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2230     __ increment(count);               // increment the count toward zero
  2231     __ jcc(Assembler::zero, L_do_card_marks);
  2233     // ======== loop entry is here ========
  2234     __ BIND(L_load_element);
  2235     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2236     __ testptr(rax_oop, rax_oop);
  2237     __ jcc(Assembler::zero, L_store_element);
  2239     __ load_klass(r11_klass, rax_oop);// query the object klass
  2240     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2241     // ======== end loop ========
  2243     // It was a real error; we must depend on the caller to finish the job.
  2244     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2245     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2246     // and report their number to the caller.
  2247     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2248     __ lea(end_to, to_element_addr);
  2249     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2250     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2251     __ movptr(rax, r14_length);           // original oops
  2252     __ addptr(rax, count);                // K = (original - remaining) oops
  2253     __ notptr(rax);                       // report (-1^K) to caller
  2254     __ jmp(L_done);
  2256     // Come here on success only.
  2257     __ BIND(L_do_card_marks);
  2258     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2259     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2260     __ xorptr(rax, rax);                  // return 0 on success
  2262     // Common exit point (success or failure).
  2263     __ BIND(L_done);
  2264     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2265     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2266     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2267     restore_arg_regs();
  2268     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2269     __ ret(0);
  2271     return start;
  2274   //
  2275   //  Generate 'unsafe' array copy stub
  2276   //  Though just as safe as the other stubs, it takes an unscaled
  2277   //  size_t argument instead of an element count.
  2278   //
  2279   //  Input:
  2280   //    c_rarg0   - source array address
  2281   //    c_rarg1   - destination array address
  2282   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2283   //
  2284   // Examines the alignment of the operands and dispatches
  2285   // to a long, int, short, or byte copy loop.
  2286   //
  2287   address generate_unsafe_copy(const char *name) {
  2289     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2291     // Input registers (before setup_arg_regs)
  2292     const Register from        = c_rarg0;  // source array address
  2293     const Register to          = c_rarg1;  // destination array address
  2294     const Register size        = c_rarg2;  // byte count (size_t)
  2296     // Register used as a temp
  2297     const Register bits        = rax;      // test copy of low bits
  2299     __ align(CodeEntryAlignment);
  2300     StubCodeMark mark(this, "StubRoutines", name);
  2301     address start = __ pc();
  2303     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2305     // bump this on entry, not on exit:
  2306     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2308     __ mov(bits, from);
  2309     __ orptr(bits, to);
  2310     __ orptr(bits, size);
  2312     __ testb(bits, BytesPerLong-1);
  2313     __ jccb(Assembler::zero, L_long_aligned);
  2315     __ testb(bits, BytesPerInt-1);
  2316     __ jccb(Assembler::zero, L_int_aligned);
  2318     __ testb(bits, BytesPerShort-1);
  2319     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2321     __ BIND(L_short_aligned);
  2322     __ shrptr(size, LogBytesPerShort); // size => short_count
  2323     __ jump(RuntimeAddress(short_copy_entry));
  2325     __ BIND(L_int_aligned);
  2326     __ shrptr(size, LogBytesPerInt); // size => int_count
  2327     __ jump(RuntimeAddress(int_copy_entry));
  2329     __ BIND(L_long_aligned);
  2330     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2331     __ jump(RuntimeAddress(long_copy_entry));
  2333     return start;
  2336   // Perform range checks on the proposed arraycopy.
  2337   // Kills temp, but nothing else.
  2338   // Also, clean the sign bits of src_pos and dst_pos.
  2339   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2340                               Register src_pos, // source position (c_rarg1)
  2341                               Register dst,     // destination array oo (c_rarg2)
  2342                               Register dst_pos, // destination position (c_rarg3)
  2343                               Register length,
  2344                               Register temp,
  2345                               Label& L_failed) {
  2346     BLOCK_COMMENT("arraycopy_range_checks:");
  2348     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2349     __ movl(temp, length);
  2350     __ addl(temp, src_pos);             // src_pos + length
  2351     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2352     __ jcc(Assembler::above, L_failed);
  2354     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2355     __ movl(temp, length);
  2356     __ addl(temp, dst_pos);             // dst_pos + length
  2357     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2358     __ jcc(Assembler::above, L_failed);
  2360     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2361     // Move with sign extension can be used since they are positive.
  2362     __ movslq(src_pos, src_pos);
  2363     __ movslq(dst_pos, dst_pos);
  2365     BLOCK_COMMENT("arraycopy_range_checks done");
  2368   //
  2369   //  Generate generic array copy stubs
  2370   //
  2371   //  Input:
  2372   //    c_rarg0    -  src oop
  2373   //    c_rarg1    -  src_pos (32-bits)
  2374   //    c_rarg2    -  dst oop
  2375   //    c_rarg3    -  dst_pos (32-bits)
  2376   // not Win64
  2377   //    c_rarg4    -  element count (32-bits)
  2378   // Win64
  2379   //    rsp+40     -  element count (32-bits)
  2380   //
  2381   //  Output:
  2382   //    rax ==  0  -  success
  2383   //    rax == -1^K - failure, where K is partial transfer count
  2384   //
  2385   address generate_generic_copy(const char *name) {
  2387     Label L_failed, L_failed_0, L_objArray;
  2388     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2390     // Input registers
  2391     const Register src        = c_rarg0;  // source array oop
  2392     const Register src_pos    = c_rarg1;  // source position
  2393     const Register dst        = c_rarg2;  // destination array oop
  2394     const Register dst_pos    = c_rarg3;  // destination position
  2395     // elements count is on stack on Win64
  2396 #ifdef _WIN64
  2397 #define C_RARG4 Address(rsp, 6 * wordSize)
  2398 #else
  2399 #define C_RARG4 c_rarg4
  2400 #endif
  2402     { int modulus = CodeEntryAlignment;
  2403       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2404       int advance = target - (__ offset() % modulus);
  2405       if (advance < 0)  advance += modulus;
  2406       if (advance > 0)  __ nop(advance);
  2408     StubCodeMark mark(this, "StubRoutines", name);
  2410     // Short-hop target to L_failed.  Makes for denser prologue code.
  2411     __ BIND(L_failed_0);
  2412     __ jmp(L_failed);
  2413     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2415     __ align(CodeEntryAlignment);
  2416     address start = __ pc();
  2418     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2420     // bump this on entry, not on exit:
  2421     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2423     //-----------------------------------------------------------------------
  2424     // Assembler stub will be used for this call to arraycopy
  2425     // if the following conditions are met:
  2426     //
  2427     // (1) src and dst must not be null.
  2428     // (2) src_pos must not be negative.
  2429     // (3) dst_pos must not be negative.
  2430     // (4) length  must not be negative.
  2431     // (5) src klass and dst klass should be the same and not NULL.
  2432     // (6) src and dst should be arrays.
  2433     // (7) src_pos + length must not exceed length of src.
  2434     // (8) dst_pos + length must not exceed length of dst.
  2435     //
  2437     //  if (src == NULL) return -1;
  2438     __ testptr(src, src);         // src oop
  2439     size_t j1off = __ offset();
  2440     __ jccb(Assembler::zero, L_failed_0);
  2442     //  if (src_pos < 0) return -1;
  2443     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2444     __ jccb(Assembler::negative, L_failed_0);
  2446     //  if (dst == NULL) return -1;
  2447     __ testptr(dst, dst);         // dst oop
  2448     __ jccb(Assembler::zero, L_failed_0);
  2450     //  if (dst_pos < 0) return -1;
  2451     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2452     size_t j4off = __ offset();
  2453     __ jccb(Assembler::negative, L_failed_0);
  2455     // The first four tests are very dense code,
  2456     // but not quite dense enough to put four
  2457     // jumps in a 16-byte instruction fetch buffer.
  2458     // That's good, because some branch predicters
  2459     // do not like jumps so close together.
  2460     // Make sure of this.
  2461     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2463     // registers used as temp
  2464     const Register r11_length    = r11; // elements count to copy
  2465     const Register r10_src_klass = r10; // array klass
  2466     const Register r9_dst_klass  = r9;  // dest array klass
  2468     //  if (length < 0) return -1;
  2469     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
  2470     __ testl(r11_length, r11_length);
  2471     __ jccb(Assembler::negative, L_failed_0);
  2473     __ load_klass(r10_src_klass, src);
  2474 #ifdef ASSERT
  2475     //  assert(src->klass() != NULL);
  2476     BLOCK_COMMENT("assert klasses not null");
  2477     { Label L1, L2;
  2478       __ testptr(r10_src_klass, r10_src_klass);
  2479       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2480       __ bind(L1);
  2481       __ stop("broken null klass");
  2482       __ bind(L2);
  2483       __ load_klass(r9_dst_klass, dst);
  2484       __ cmpq(r9_dst_klass, 0);
  2485       __ jcc(Assembler::equal, L1);     // this would be broken also
  2486       BLOCK_COMMENT("assert done");
  2488 #endif
  2490     // Load layout helper (32-bits)
  2491     //
  2492     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2493     // 32        30    24            16              8     2                 0
  2494     //
  2495     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2496     //
  2498     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2499                     Klass::layout_helper_offset_in_bytes();
  2501     const Register rax_lh = rax;  // layout helper
  2503     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2505     // Handle objArrays completely differently...
  2506     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2507     __ cmpl(rax_lh, objArray_lh);
  2508     __ jcc(Assembler::equal, L_objArray);
  2510     //  if (src->klass() != dst->klass()) return -1;
  2511     __ load_klass(r9_dst_klass, dst);
  2512     __ cmpq(r10_src_klass, r9_dst_klass);
  2513     __ jcc(Assembler::notEqual, L_failed);
  2515     //  if (!src->is_Array()) return -1;
  2516     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2517     __ jcc(Assembler::greaterEqual, L_failed);
  2519     // At this point, it is known to be a typeArray (array_tag 0x3).
  2520 #ifdef ASSERT
  2521     { Label L;
  2522       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2523       __ jcc(Assembler::greaterEqual, L);
  2524       __ stop("must be a primitive array");
  2525       __ bind(L);
  2527 #endif
  2529     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2530                            r10, L_failed);
  2532     // typeArrayKlass
  2533     //
  2534     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2535     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2536     //
  2538     const Register r10_offset = r10;    // array offset
  2539     const Register rax_elsize = rax_lh; // element size
  2541     __ movl(r10_offset, rax_lh);
  2542     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2543     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2544     __ addptr(src, r10_offset);           // src array offset
  2545     __ addptr(dst, r10_offset);           // dst array offset
  2546     BLOCK_COMMENT("choose copy loop based on element size");
  2547     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2549     // next registers should be set before the jump to corresponding stub
  2550     const Register from     = c_rarg0;  // source array address
  2551     const Register to       = c_rarg1;  // destination array address
  2552     const Register count    = c_rarg2;  // elements count
  2554     // 'from', 'to', 'count' registers should be set in such order
  2555     // since they are the same as 'src', 'src_pos', 'dst'.
  2557   __ BIND(L_copy_bytes);
  2558     __ cmpl(rax_elsize, 0);
  2559     __ jccb(Assembler::notEqual, L_copy_shorts);
  2560     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2561     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2562     __ movl2ptr(count, r11_length); // length
  2563     __ jump(RuntimeAddress(byte_copy_entry));
  2565   __ BIND(L_copy_shorts);
  2566     __ cmpl(rax_elsize, LogBytesPerShort);
  2567     __ jccb(Assembler::notEqual, L_copy_ints);
  2568     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2569     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2570     __ movl2ptr(count, r11_length); // length
  2571     __ jump(RuntimeAddress(short_copy_entry));
  2573   __ BIND(L_copy_ints);
  2574     __ cmpl(rax_elsize, LogBytesPerInt);
  2575     __ jccb(Assembler::notEqual, L_copy_longs);
  2576     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2577     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2578     __ movl2ptr(count, r11_length); // length
  2579     __ jump(RuntimeAddress(int_copy_entry));
  2581   __ BIND(L_copy_longs);
  2582 #ifdef ASSERT
  2583     { Label L;
  2584       __ cmpl(rax_elsize, LogBytesPerLong);
  2585       __ jcc(Assembler::equal, L);
  2586       __ stop("must be long copy, but elsize is wrong");
  2587       __ bind(L);
  2589 #endif
  2590     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2591     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2592     __ movl2ptr(count, r11_length); // length
  2593     __ jump(RuntimeAddress(long_copy_entry));
  2595     // objArrayKlass
  2596   __ BIND(L_objArray);
  2597     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
  2599     Label L_plain_copy, L_checkcast_copy;
  2600     //  test array classes for subtyping
  2601     __ load_klass(r9_dst_klass, dst);
  2602     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
  2603     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2605     // Identically typed arrays can be copied without element-wise checks.
  2606     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2607                            r10, L_failed);
  2609     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2610                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2611     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2612                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2613     __ movl2ptr(count, r11_length); // length
  2614   __ BIND(L_plain_copy);
  2615     __ jump(RuntimeAddress(oop_copy_entry));
  2617   __ BIND(L_checkcast_copy);
  2618     // live at this point:  r10_src_klass, !r11_length
  2620       // assert(r11_length == C_RARG4); // will reload from here
  2621       Register r11_dst_klass = r11;
  2622       __ load_klass(r11_dst_klass, dst);
  2624       // Before looking at dst.length, make sure dst is also an objArray.
  2625       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
  2626       __ jcc(Assembler::notEqual, L_failed);
  2628       // It is safe to examine both src.length and dst.length.
  2629 #ifndef _WIN64
  2630       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
  2631                              rax, L_failed);
  2632 #else
  2633       __ movl(r11_length, C_RARG4);     // reload
  2634       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2635                              rax, L_failed);
  2636       __ load_klass(r11_dst_klass, dst); // reload
  2637 #endif
  2639       // Marshal the base address arguments now, freeing registers.
  2640       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2641                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2642       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2643                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2644       __ movl(count, C_RARG4);          // length (reloaded)
  2645       Register sco_temp = c_rarg3;      // this register is free now
  2646       assert_different_registers(from, to, count, sco_temp,
  2647                                  r11_dst_klass, r10_src_klass);
  2648       assert_clean_int(count, sco_temp);
  2650       // Generate the type check.
  2651       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2652                         Klass::super_check_offset_offset_in_bytes());
  2653       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2654       assert_clean_int(sco_temp, rax);
  2655       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2657       // Fetch destination element klass from the objArrayKlass header.
  2658       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2659                        objArrayKlass::element_klass_offset_in_bytes());
  2660       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2661       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
  2662       assert_clean_int(sco_temp, rax);
  2664       // the checkcast_copy loop needs two extra arguments:
  2665       assert(c_rarg3 == sco_temp, "#3 already in place");
  2666       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
  2667       __ jump(RuntimeAddress(checkcast_copy_entry));
  2670   __ BIND(L_failed);
  2671     __ xorptr(rax, rax);
  2672     __ notptr(rax); // return -1
  2673     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2674     __ ret(0);
  2676     return start;
  2679 #undef length_arg
  2681   void generate_arraycopy_stubs() {
  2682     // Call the conjoint generation methods immediately after
  2683     // the disjoint ones so that short branches from the former
  2684     // to the latter can be generated.
  2685     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2686     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2688     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2689     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2691     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
  2692     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
  2694     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
  2695     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
  2698     if (UseCompressedOops) {
  2699       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
  2700       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
  2701     } else {
  2702       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
  2703       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
  2706     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2707     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2708     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2710     // We don't generate specialized code for HeapWord-aligned source
  2711     // arrays, so just use the code we've already generated
  2712     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2713     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2715     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2716     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2718     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2719     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2721     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2722     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2724     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2725     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2728   void generate_math_stubs() {
  2730       StubCodeMark mark(this, "StubRoutines", "log");
  2731       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2733       __ subq(rsp, 8);
  2734       __ movdbl(Address(rsp, 0), xmm0);
  2735       __ fld_d(Address(rsp, 0));
  2736       __ flog();
  2737       __ fstp_d(Address(rsp, 0));
  2738       __ movdbl(xmm0, Address(rsp, 0));
  2739       __ addq(rsp, 8);
  2740       __ ret(0);
  2743       StubCodeMark mark(this, "StubRoutines", "log10");
  2744       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2746       __ subq(rsp, 8);
  2747       __ movdbl(Address(rsp, 0), xmm0);
  2748       __ fld_d(Address(rsp, 0));
  2749       __ flog10();
  2750       __ fstp_d(Address(rsp, 0));
  2751       __ movdbl(xmm0, Address(rsp, 0));
  2752       __ addq(rsp, 8);
  2753       __ ret(0);
  2756       StubCodeMark mark(this, "StubRoutines", "sin");
  2757       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2759       __ subq(rsp, 8);
  2760       __ movdbl(Address(rsp, 0), xmm0);
  2761       __ fld_d(Address(rsp, 0));
  2762       __ trigfunc('s');
  2763       __ fstp_d(Address(rsp, 0));
  2764       __ movdbl(xmm0, Address(rsp, 0));
  2765       __ addq(rsp, 8);
  2766       __ ret(0);
  2769       StubCodeMark mark(this, "StubRoutines", "cos");
  2770       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2772       __ subq(rsp, 8);
  2773       __ movdbl(Address(rsp, 0), xmm0);
  2774       __ fld_d(Address(rsp, 0));
  2775       __ trigfunc('c');
  2776       __ fstp_d(Address(rsp, 0));
  2777       __ movdbl(xmm0, Address(rsp, 0));
  2778       __ addq(rsp, 8);
  2779       __ ret(0);
  2782       StubCodeMark mark(this, "StubRoutines", "tan");
  2783       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2785       __ subq(rsp, 8);
  2786       __ movdbl(Address(rsp, 0), xmm0);
  2787       __ fld_d(Address(rsp, 0));
  2788       __ trigfunc('t');
  2789       __ fstp_d(Address(rsp, 0));
  2790       __ movdbl(xmm0, Address(rsp, 0));
  2791       __ addq(rsp, 8);
  2792       __ ret(0);
  2795     // The intrinsic version of these seem to return the same value as
  2796     // the strict version.
  2797     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2798     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2801 #undef __
  2802 #define __ masm->
  2804   // Continuation point for throwing of implicit exceptions that are
  2805   // not handled in the current activation. Fabricates an exception
  2806   // oop and initiates normal exception dispatching in this
  2807   // frame. Since we need to preserve callee-saved values (currently
  2808   // only for C2, but done for C1 as well) we need a callee-saved oop
  2809   // map and therefore have to make these stubs into RuntimeStubs
  2810   // rather than BufferBlobs.  If the compiler needs all registers to
  2811   // be preserved between the fault point and the exception handler
  2812   // then it must assume responsibility for that in
  2813   // AbstractCompiler::continuation_for_implicit_null_exception or
  2814   // continuation_for_implicit_division_by_zero_exception. All other
  2815   // implicit exceptions (e.g., NullPointerException or
  2816   // AbstractMethodError on entry) are either at call sites or
  2817   // otherwise assume that stack unwinding will be initiated, so
  2818   // caller saved registers were assumed volatile in the compiler.
  2819   address generate_throw_exception(const char* name,
  2820                                    address runtime_entry,
  2821                                    bool restore_saved_exception_pc) {
  2822     // Information about frame layout at time of blocking runtime call.
  2823     // Note that we only have to preserve callee-saved registers since
  2824     // the compilers are responsible for supplying a continuation point
  2825     // if they expect all registers to be preserved.
  2826     enum layout {
  2827       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2828       rbp_off2,
  2829       return_off,
  2830       return_off2,
  2831       framesize // inclusive of return address
  2832     };
  2834     int insts_size = 512;
  2835     int locs_size  = 64;
  2837     CodeBuffer code(name, insts_size, locs_size);
  2838     OopMapSet* oop_maps  = new OopMapSet();
  2839     MacroAssembler* masm = new MacroAssembler(&code);
  2841     address start = __ pc();
  2843     // This is an inlined and slightly modified version of call_VM
  2844     // which has the ability to fetch the return PC out of
  2845     // thread-local storage and also sets up last_Java_sp slightly
  2846     // differently than the real call_VM
  2847     if (restore_saved_exception_pc) {
  2848       __ movptr(rax,
  2849                 Address(r15_thread,
  2850                         in_bytes(JavaThread::saved_exception_pc_offset())));
  2851       __ push(rax);
  2854     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2856     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2858     // return address and rbp are already in place
  2859     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2861     int frame_complete = __ pc() - start;
  2863     // Set up last_Java_sp and last_Java_fp
  2864     __ set_last_Java_frame(rsp, rbp, NULL);
  2866     // Call runtime
  2867     __ movptr(c_rarg0, r15_thread);
  2868     BLOCK_COMMENT("call runtime_entry");
  2869     __ call(RuntimeAddress(runtime_entry));
  2871     // Generate oop map
  2872     OopMap* map = new OopMap(framesize, 0);
  2874     oop_maps->add_gc_map(__ pc() - start, map);
  2876     __ reset_last_Java_frame(true, false);
  2878     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2880     // check for pending exceptions
  2881 #ifdef ASSERT
  2882     Label L;
  2883     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  2884             (int32_t) NULL_WORD);
  2885     __ jcc(Assembler::notEqual, L);
  2886     __ should_not_reach_here();
  2887     __ bind(L);
  2888 #endif // ASSERT
  2889     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2892     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  2893     RuntimeStub* stub =
  2894       RuntimeStub::new_runtime_stub(name,
  2895                                     &code,
  2896                                     frame_complete,
  2897                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  2898                                     oop_maps, false);
  2899     return stub->entry_point();
  2902   // Initialization
  2903   void generate_initial() {
  2904     // Generates all stubs and initializes the entry points
  2906     // This platform-specific stub is needed by generate_call_stub()
  2907     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  2909     // entry points that exist in all platforms Note: This is code
  2910     // that could be shared among different platforms - however the
  2911     // benefit seems to be smaller than the disadvantage of having a
  2912     // much more complicated generator structure. See also comment in
  2913     // stubRoutines.hpp.
  2915     StubRoutines::_forward_exception_entry = generate_forward_exception();
  2917     StubRoutines::_call_stub_entry =
  2918       generate_call_stub(StubRoutines::_call_stub_return_address);
  2920     // is referenced by megamorphic call
  2921     StubRoutines::_catch_exception_entry = generate_catch_exception();
  2923     // atomic calls
  2924     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2925     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  2926     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2927     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2928     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2929     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  2930     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  2932     StubRoutines::_handler_for_unsafe_access_entry =
  2933       generate_handler_for_unsafe_access();
  2935     // platform dependent
  2936     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  2938     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  2941   void generate_all() {
  2942     // Generates all stubs and initializes the entry points
  2944     // These entry points require SharedInfo::stack0 to be set up in
  2945     // non-core builds and need to be relocatable, so they each
  2946     // fabricate a RuntimeStub internally.
  2947     StubRoutines::_throw_AbstractMethodError_entry =
  2948       generate_throw_exception("AbstractMethodError throw_exception",
  2949                                CAST_FROM_FN_PTR(address,
  2950                                                 SharedRuntime::
  2951                                                 throw_AbstractMethodError),
  2952                                false);
  2954     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  2955       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  2956                                CAST_FROM_FN_PTR(address,
  2957                                                 SharedRuntime::
  2958                                                 throw_IncompatibleClassChangeError),
  2959                                false);
  2961     StubRoutines::_throw_ArithmeticException_entry =
  2962       generate_throw_exception("ArithmeticException throw_exception",
  2963                                CAST_FROM_FN_PTR(address,
  2964                                                 SharedRuntime::
  2965                                                 throw_ArithmeticException),
  2966                                true);
  2968     StubRoutines::_throw_NullPointerException_entry =
  2969       generate_throw_exception("NullPointerException throw_exception",
  2970                                CAST_FROM_FN_PTR(address,
  2971                                                 SharedRuntime::
  2972                                                 throw_NullPointerException),
  2973                                true);
  2975     StubRoutines::_throw_NullPointerException_at_call_entry =
  2976       generate_throw_exception("NullPointerException at call throw_exception",
  2977                                CAST_FROM_FN_PTR(address,
  2978                                                 SharedRuntime::
  2979                                                 throw_NullPointerException_at_call),
  2980                                false);
  2982     StubRoutines::_throw_StackOverflowError_entry =
  2983       generate_throw_exception("StackOverflowError throw_exception",
  2984                                CAST_FROM_FN_PTR(address,
  2985                                                 SharedRuntime::
  2986                                                 throw_StackOverflowError),
  2987                                false);
  2989     // entry points that are platform specific
  2990     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  2991     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  2992     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  2993     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  2995     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  2996     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  2997     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  2998     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3000     // support for verify_oop (must happen after universe_init)
  3001     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3003     // arraycopy stubs used by compilers
  3004     generate_arraycopy_stubs();
  3006     generate_math_stubs();
  3009  public:
  3010   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3011     if (all) {
  3012       generate_all();
  3013     } else {
  3014       generate_initial();
  3017 }; // end class declaration
  3019 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3020 address StubGenerator::disjoint_short_copy_entry = NULL;
  3021 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3022 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3023 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3025 address StubGenerator::byte_copy_entry  = NULL;
  3026 address StubGenerator::short_copy_entry = NULL;
  3027 address StubGenerator::int_copy_entry   = NULL;
  3028 address StubGenerator::long_copy_entry  = NULL;
  3029 address StubGenerator::oop_copy_entry   = NULL;
  3031 address StubGenerator::checkcast_copy_entry = NULL;
  3033 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3034   StubGenerator g(code, all);

mercurial