src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1813
9f5b60a14736
child 1934
e9ff18c4ace7
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   382   __ delayed()->nop();
   383   debug_only(__ stop("should have gone to the caller");)
   384   assert(code_offset() - offset <= exception_handler_size, "overflow");
   385   __ end_a_stub();
   387   return offset;
   388 }
   391 // Emit the code to remove the frame from the stack in the exception
   392 // unwind path.
   393 int LIR_Assembler::emit_unwind_handler() {
   394 #ifndef PRODUCT
   395   if (CommentedAssembly) {
   396     _masm->block_comment("Unwind handler");
   397   }
   398 #endif
   400   int offset = code_offset();
   402   // Fetch the exception from TLS and clear out exception related thread state
   403   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   404   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   405   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   407   __ bind(_unwind_handler_entry);
   408   __ verify_not_null_oop(O0);
   409   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   410     __ mov(O0, I0);  // Preserve the exception
   411   }
   413   // Preform needed unlocking
   414   MonitorExitStub* stub = NULL;
   415   if (method()->is_synchronized()) {
   416     monitor_address(0, FrameMap::I1_opr);
   417     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   418     __ unlock_object(I3, I2, I1, *stub->entry());
   419     __ bind(*stub->continuation());
   420   }
   422   if (compilation()->env()->dtrace_method_probes()) {
   423     jobject2reg(method()->constant_encoding(), O0);
   424     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   425     __ delayed()->nop();
   426   }
   428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   429     __ mov(I0, O0);  // Restore the exception
   430   }
   432   // dispatch to the unwind logic
   433   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   434   __ delayed()->nop();
   436   // Emit the slow path assembly
   437   if (stub != NULL) {
   438     stub->emit_code(this);
   439   }
   441   return offset;
   442 }
   445 int LIR_Assembler::emit_deopt_handler() {
   446   // if the last instruction is a call (typically to do a throw which
   447   // is coming at the end after block reordering) the return address
   448   // must still point into the code area in order to avoid assertion
   449   // failures when searching for the corresponding bci => add a nop
   450   // (was bug 5/14/1999 - gri)
   451   __ nop();
   453   // generate code for deopt handler
   454   ciMethod* method = compilation()->method();
   455   address handler_base = __ start_a_stub(deopt_handler_size);
   456   if (handler_base == NULL) {
   457     // not enough space left for the handler
   458     bailout("deopt handler overflow");
   459     return -1;
   460   }
   462   int offset = code_offset();
   463   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   464   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   465   __ delayed()->nop();
   466   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   467   debug_only(__ stop("should have gone to the caller");)
   468   __ end_a_stub();
   470   return offset;
   471 }
   474 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   475   if (o == NULL) {
   476     __ set(NULL_WORD, reg);
   477   } else {
   478     int oop_index = __ oop_recorder()->find_index(o);
   479     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   480     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   481   }
   482 }
   485 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   486   // Allocate a new index in oop table to hold the oop once it's been patched
   487   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   488   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   490   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   491   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   492   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   493   // NULL will be dynamically patched later and the patched value may be large.  We must
   494   // therefore generate the sethi/add as a placeholders
   495   __ patchable_set(addrlit, reg);
   497   patching_epilog(patch, lir_patch_normal, reg, info);
   498 }
   501 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   502   Register Rdividend = op->in_opr1()->as_register();
   503   Register Rdivisor  = noreg;
   504   Register Rscratch  = op->in_opr3()->as_register();
   505   Register Rresult   = op->result_opr()->as_register();
   506   int divisor = -1;
   508   if (op->in_opr2()->is_register()) {
   509     Rdivisor = op->in_opr2()->as_register();
   510   } else {
   511     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   512     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   513   }
   515   assert(Rdividend != Rscratch, "");
   516   assert(Rdivisor  != Rscratch, "");
   517   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   519   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   520     // convert division by a power of two into some shifts and logical operations
   521     if (op->code() == lir_idiv) {
   522       if (divisor == 2) {
   523         __ srl(Rdividend, 31, Rscratch);
   524       } else {
   525         __ sra(Rdividend, 31, Rscratch);
   526         __ and3(Rscratch, divisor - 1, Rscratch);
   527       }
   528       __ add(Rdividend, Rscratch, Rscratch);
   529       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   530       return;
   531     } else {
   532       if (divisor == 2) {
   533         __ srl(Rdividend, 31, Rscratch);
   534       } else {
   535         __ sra(Rdividend, 31, Rscratch);
   536         __ and3(Rscratch, divisor - 1,Rscratch);
   537       }
   538       __ add(Rdividend, Rscratch, Rscratch);
   539       __ andn(Rscratch, divisor - 1,Rscratch);
   540       __ sub(Rdividend, Rscratch, Rresult);
   541       return;
   542     }
   543   }
   545   __ sra(Rdividend, 31, Rscratch);
   546   __ wry(Rscratch);
   547   if (!VM_Version::v9_instructions_work()) {
   548     // v9 doesn't require these nops
   549     __ nop();
   550     __ nop();
   551     __ nop();
   552     __ nop();
   553   }
   555   add_debug_info_for_div0_here(op->info());
   557   if (Rdivisor != noreg) {
   558     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   559   } else {
   560     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   561     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   562   }
   564   Label skip;
   565   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   566   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   567   __ bind(skip);
   569   if (op->code() == lir_irem) {
   570     if (Rdivisor != noreg) {
   571       __ smul(Rscratch, Rdivisor, Rscratch);
   572     } else {
   573       __ smul(Rscratch, divisor, Rscratch);
   574     }
   575     __ sub(Rdividend, Rscratch, Rresult);
   576   }
   577 }
   580 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   581 #ifdef ASSERT
   582   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   583   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   584   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   585 #endif
   586   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   588   if (op->cond() == lir_cond_always) {
   589     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   590   } else if (op->code() == lir_cond_float_branch) {
   591     assert(op->ublock() != NULL, "must have unordered successor");
   592     bool is_unordered = (op->ublock() == op->block());
   593     Assembler::Condition acond;
   594     switch (op->cond()) {
   595       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   596       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   597       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   598       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   599       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   600       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   601       default :                         ShouldNotReachHere();
   602     };
   604     if (!VM_Version::v9_instructions_work()) {
   605       __ nop();
   606     }
   607     __ fb( acond, false, Assembler::pn, *(op->label()));
   608   } else {
   609     assert (op->code() == lir_branch, "just checking");
   611     Assembler::Condition acond;
   612     switch (op->cond()) {
   613       case lir_cond_equal:        acond = Assembler::equal;                break;
   614       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   615       case lir_cond_less:         acond = Assembler::less;                 break;
   616       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   617       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   618       case lir_cond_greater:      acond = Assembler::greater;              break;
   619       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   620       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   621       default:                         ShouldNotReachHere();
   622     };
   624     // sparc has different condition codes for testing 32-bit
   625     // vs. 64-bit values.  We could always test xcc is we could
   626     // guarantee that 32-bit loads always sign extended but that isn't
   627     // true and since sign extension isn't free, it would impose a
   628     // slight cost.
   629 #ifdef _LP64
   630     if  (op->type() == T_INT) {
   631       __ br(acond, false, Assembler::pn, *(op->label()));
   632     } else
   633 #endif
   634       __ brx(acond, false, Assembler::pn, *(op->label()));
   635   }
   636   // The peephole pass fills the delay slot
   637 }
   640 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   641   Bytecodes::Code code = op->bytecode();
   642   LIR_Opr dst = op->result_opr();
   644   switch(code) {
   645     case Bytecodes::_i2l: {
   646       Register rlo  = dst->as_register_lo();
   647       Register rhi  = dst->as_register_hi();
   648       Register rval = op->in_opr()->as_register();
   649 #ifdef _LP64
   650       __ sra(rval, 0, rlo);
   651 #else
   652       __ mov(rval, rlo);
   653       __ sra(rval, BitsPerInt-1, rhi);
   654 #endif
   655       break;
   656     }
   657     case Bytecodes::_i2d:
   658     case Bytecodes::_i2f: {
   659       bool is_double = (code == Bytecodes::_i2d);
   660       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   661       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   662       FloatRegister rsrc = op->in_opr()->as_float_reg();
   663       if (rsrc != rdst) {
   664         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   665       }
   666       __ fitof(w, rdst, rdst);
   667       break;
   668     }
   669     case Bytecodes::_f2i:{
   670       FloatRegister rsrc = op->in_opr()->as_float_reg();
   671       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   672       Label L;
   673       // result must be 0 if value is NaN; test by comparing value to itself
   674       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   675       if (!VM_Version::v9_instructions_work()) {
   676         __ nop();
   677       }
   678       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   679       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   680       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   681       // move integer result from float register to int register
   682       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   683       __ bind (L);
   684       break;
   685     }
   686     case Bytecodes::_l2i: {
   687       Register rlo  = op->in_opr()->as_register_lo();
   688       Register rhi  = op->in_opr()->as_register_hi();
   689       Register rdst = dst->as_register();
   690 #ifdef _LP64
   691       __ sra(rlo, 0, rdst);
   692 #else
   693       __ mov(rlo, rdst);
   694 #endif
   695       break;
   696     }
   697     case Bytecodes::_d2f:
   698     case Bytecodes::_f2d: {
   699       bool is_double = (code == Bytecodes::_f2d);
   700       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   701       LIR_Opr val = op->in_opr();
   702       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   703       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   704       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   705       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   706       __ ftof(vw, dw, rval, rdst);
   707       break;
   708     }
   709     case Bytecodes::_i2s:
   710     case Bytecodes::_i2b: {
   711       Register rval = op->in_opr()->as_register();
   712       Register rdst = dst->as_register();
   713       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   714       __ sll (rval, shift, rdst);
   715       __ sra (rdst, shift, rdst);
   716       break;
   717     }
   718     case Bytecodes::_i2c: {
   719       Register rval = op->in_opr()->as_register();
   720       Register rdst = dst->as_register();
   721       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   722       __ sll (rval, shift, rdst);
   723       __ srl (rdst, shift, rdst);
   724       break;
   725     }
   727     default: ShouldNotReachHere();
   728   }
   729 }
   732 void LIR_Assembler::align_call(LIR_Code) {
   733   // do nothing since all instructions are word aligned on sparc
   734 }
   737 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   738   __ call(op->addr(), rtype);
   739   // the peephole pass fills the delay slot
   740 }
   743 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   744   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   745   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   746   __ relocate(rspec);
   747   __ call(op->addr(), relocInfo::none);
   748   // the peephole pass fills the delay slot
   749 }
   752 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   753   add_debug_info_for_null_check_here(op->info());
   754   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   755   if (__ is_simm13(op->vtable_offset())) {
   756     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   757   } else {
   758     // This will generate 2 instructions
   759     __ set(op->vtable_offset(), G5_method);
   760     // ld_ptr, set_hi, set
   761     __ ld_ptr(G3_scratch, G5_method, G5_method);
   762   }
   763   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   764   __ callr(G3_scratch, G0);
   765   // the peephole pass fills the delay slot
   766 }
   769 void LIR_Assembler::preserve_SP(LIR_OpJavaCall* op) {
   770   Unimplemented();
   771 }
   774 void LIR_Assembler::restore_SP(LIR_OpJavaCall* op) {
   775   Unimplemented();
   776 }
   779 // load with 32-bit displacement
   780 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   781   int load_offset = code_offset();
   782   if (Assembler::is_simm13(disp)) {
   783     if (info != NULL) add_debug_info_for_null_check_here(info);
   784     switch(ld_type) {
   785       case T_BOOLEAN: // fall through
   786       case T_BYTE  : __ ldsb(s, disp, d); break;
   787       case T_CHAR  : __ lduh(s, disp, d); break;
   788       case T_SHORT : __ ldsh(s, disp, d); break;
   789       case T_INT   : __ ld(s, disp, d); break;
   790       case T_ADDRESS:// fall through
   791       case T_ARRAY : // fall through
   792       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   793       default      : ShouldNotReachHere();
   794     }
   795   } else {
   796     __ set(disp, O7);
   797     if (info != NULL) add_debug_info_for_null_check_here(info);
   798     load_offset = code_offset();
   799     switch(ld_type) {
   800       case T_BOOLEAN: // fall through
   801       case T_BYTE  : __ ldsb(s, O7, d); break;
   802       case T_CHAR  : __ lduh(s, O7, d); break;
   803       case T_SHORT : __ ldsh(s, O7, d); break;
   804       case T_INT   : __ ld(s, O7, d); break;
   805       case T_ADDRESS:// fall through
   806       case T_ARRAY : // fall through
   807       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   808       default      : ShouldNotReachHere();
   809     }
   810   }
   811   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   812   return load_offset;
   813 }
   816 // store with 32-bit displacement
   817 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   818   if (Assembler::is_simm13(offset)) {
   819     if (info != NULL)  add_debug_info_for_null_check_here(info);
   820     switch (type) {
   821       case T_BOOLEAN: // fall through
   822       case T_BYTE  : __ stb(value, base, offset); break;
   823       case T_CHAR  : __ sth(value, base, offset); break;
   824       case T_SHORT : __ sth(value, base, offset); break;
   825       case T_INT   : __ stw(value, base, offset); break;
   826       case T_ADDRESS:// fall through
   827       case T_ARRAY : // fall through
   828       case T_OBJECT: __ st_ptr(value, base, offset); break;
   829       default      : ShouldNotReachHere();
   830     }
   831   } else {
   832     __ set(offset, O7);
   833     if (info != NULL) add_debug_info_for_null_check_here(info);
   834     switch (type) {
   835       case T_BOOLEAN: // fall through
   836       case T_BYTE  : __ stb(value, base, O7); break;
   837       case T_CHAR  : __ sth(value, base, O7); break;
   838       case T_SHORT : __ sth(value, base, O7); break;
   839       case T_INT   : __ stw(value, base, O7); break;
   840       case T_ADDRESS:// fall through
   841       case T_ARRAY : //fall through
   842       case T_OBJECT: __ st_ptr(value, base, O7); break;
   843       default      : ShouldNotReachHere();
   844     }
   845   }
   846   // Note: Do the store before verification as the code might be patched!
   847   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   848 }
   851 // load float with 32-bit displacement
   852 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   853   FloatRegisterImpl::Width w;
   854   switch(ld_type) {
   855     case T_FLOAT : w = FloatRegisterImpl::S; break;
   856     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   857     default      : ShouldNotReachHere();
   858   }
   860   if (Assembler::is_simm13(disp)) {
   861     if (info != NULL) add_debug_info_for_null_check_here(info);
   862     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   863       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   864       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   865     } else {
   866       __ ldf(w, s, disp, d);
   867     }
   868   } else {
   869     __ set(disp, O7);
   870     if (info != NULL) add_debug_info_for_null_check_here(info);
   871     __ ldf(w, s, O7, d);
   872   }
   873 }
   876 // store float with 32-bit displacement
   877 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   878   FloatRegisterImpl::Width w;
   879   switch(type) {
   880     case T_FLOAT : w = FloatRegisterImpl::S; break;
   881     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   882     default      : ShouldNotReachHere();
   883   }
   885   if (Assembler::is_simm13(offset)) {
   886     if (info != NULL) add_debug_info_for_null_check_here(info);
   887     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   888       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   889       __ stf(FloatRegisterImpl::S, value             , base, offset);
   890     } else {
   891       __ stf(w, value, base, offset);
   892     }
   893   } else {
   894     __ set(offset, O7);
   895     if (info != NULL) add_debug_info_for_null_check_here(info);
   896     __ stf(w, value, O7, base);
   897   }
   898 }
   901 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   902   int store_offset;
   903   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   904     assert(!unaligned, "can't handle this");
   905     // for offsets larger than a simm13 we setup the offset in O7
   906     __ set(offset, O7);
   907     store_offset = store(from_reg, base, O7, type);
   908   } else {
   909     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   910     store_offset = code_offset();
   911     switch (type) {
   912       case T_BOOLEAN: // fall through
   913       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   914       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   915       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   916       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   917       case T_LONG  :
   918 #ifdef _LP64
   919         if (unaligned || PatchALot) {
   920           __ srax(from_reg->as_register_lo(), 32, O7);
   921           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   922           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   923         } else {
   924           __ stx(from_reg->as_register_lo(), base, offset);
   925         }
   926 #else
   927         assert(Assembler::is_simm13(offset + 4), "must be");
   928         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   929         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   930 #endif
   931         break;
   932       case T_ADDRESS:// fall through
   933       case T_ARRAY : // fall through
   934       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   935       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   936       case T_DOUBLE:
   937         {
   938           FloatRegister reg = from_reg->as_double_reg();
   939           // split unaligned stores
   940           if (unaligned || PatchALot) {
   941             assert(Assembler::is_simm13(offset + 4), "must be");
   942             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   943             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   944           } else {
   945             __ stf(FloatRegisterImpl::D, reg, base, offset);
   946           }
   947           break;
   948         }
   949       default      : ShouldNotReachHere();
   950     }
   951   }
   952   return store_offset;
   953 }
   956 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   957   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   958   int store_offset = code_offset();
   959   switch (type) {
   960     case T_BOOLEAN: // fall through
   961     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   962     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   963     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   964     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   965     case T_LONG  :
   966 #ifdef _LP64
   967       __ stx(from_reg->as_register_lo(), base, disp);
   968 #else
   969       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   970       __ std(from_reg->as_register_hi(), base, disp);
   971 #endif
   972       break;
   973     case T_ADDRESS:// fall through
   974     case T_ARRAY : // fall through
   975     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   976     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   977     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   978     default      : ShouldNotReachHere();
   979   }
   980   return store_offset;
   981 }
   984 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   985   int load_offset;
   986   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   987     assert(base != O7, "destroying register");
   988     assert(!unaligned, "can't handle this");
   989     // for offsets larger than a simm13 we setup the offset in O7
   990     __ set(offset, O7);
   991     load_offset = load(base, O7, to_reg, type);
   992   } else {
   993     load_offset = code_offset();
   994     switch(type) {
   995       case T_BOOLEAN: // fall through
   996       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   997       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   998       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   999       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
  1000       case T_LONG  :
  1001         if (!unaligned) {
  1002 #ifdef _LP64
  1003           __ ldx(base, offset, to_reg->as_register_lo());
  1004 #else
  1005           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1006                  "must be sequential");
  1007           __ ldd(base, offset, to_reg->as_register_hi());
  1008 #endif
  1009         } else {
  1010 #ifdef _LP64
  1011           assert(base != to_reg->as_register_lo(), "can't handle this");
  1012           assert(O7 != to_reg->as_register_lo(), "can't handle this");
  1013           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
  1014           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
  1015           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
  1016           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
  1017 #else
  1018           if (base == to_reg->as_register_lo()) {
  1019             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1020             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1021           } else {
  1022             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1023             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1025 #endif
  1027         break;
  1028       case T_ADDRESS:// fall through
  1029       case T_ARRAY : // fall through
  1030       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
  1031       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1032       case T_DOUBLE:
  1034           FloatRegister reg = to_reg->as_double_reg();
  1035           // split unaligned loads
  1036           if (unaligned || PatchALot) {
  1037             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1038             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1039           } else {
  1040             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1042           break;
  1044       default      : ShouldNotReachHere();
  1046     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1048   return load_offset;
  1052 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
  1053   int load_offset = code_offset();
  1054   switch(type) {
  1055     case T_BOOLEAN: // fall through
  1056     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1057     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1058     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1059     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1060     case T_ADDRESS:// fall through
  1061     case T_ARRAY : // fall through
  1062     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1063     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1064     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1065     case T_LONG  :
  1066 #ifdef _LP64
  1067       __ ldx(base, disp, to_reg->as_register_lo());
  1068 #else
  1069       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1070              "must be sequential");
  1071       __ ldd(base, disp, to_reg->as_register_hi());
  1072 #endif
  1073       break;
  1074     default      : ShouldNotReachHere();
  1076   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1077   return load_offset;
  1081 // load/store with an Address
  1082 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1083   load(a.base(), a.disp() + offset, d, ld_type, info);
  1087 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1088   store(value, dest.base(), dest.disp() + offset, type, info);
  1092 // loadf/storef with an Address
  1093 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1094   load(a.base(), a.disp() + offset, d, ld_type, info);
  1098 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1099   store(value, dest.base(), dest.disp() + offset, type, info);
  1103 // load/store with an Address
  1104 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1105   load(as_Address(a), d, ld_type, info);
  1109 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1110   store(value, as_Address(dest), type, info);
  1114 // loadf/storef with an Address
  1115 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1116   load(as_Address(a), d, ld_type, info);
  1120 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1121   store(value, as_Address(dest), type, info);
  1125 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1126   LIR_Const* c = src->as_constant_ptr();
  1127   switch (c->type()) {
  1128     case T_INT:
  1129     case T_FLOAT:
  1130     case T_ADDRESS: {
  1131       Register src_reg = O7;
  1132       int value = c->as_jint_bits();
  1133       if (value == 0) {
  1134         src_reg = G0;
  1135       } else {
  1136         __ set(value, O7);
  1138       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1139       __ stw(src_reg, addr.base(), addr.disp());
  1140       break;
  1142     case T_OBJECT: {
  1143       Register src_reg = O7;
  1144       jobject2reg(c->as_jobject(), src_reg);
  1145       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1146       __ st_ptr(src_reg, addr.base(), addr.disp());
  1147       break;
  1149     case T_LONG:
  1150     case T_DOUBLE: {
  1151       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1153       Register tmp = O7;
  1154       int value_lo = c->as_jint_lo_bits();
  1155       if (value_lo == 0) {
  1156         tmp = G0;
  1157       } else {
  1158         __ set(value_lo, O7);
  1160       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1161       int value_hi = c->as_jint_hi_bits();
  1162       if (value_hi == 0) {
  1163         tmp = G0;
  1164       } else {
  1165         __ set(value_hi, O7);
  1167       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1168       break;
  1170     default:
  1171       Unimplemented();
  1176 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1177   LIR_Const* c = src->as_constant_ptr();
  1178   LIR_Address* addr     = dest->as_address_ptr();
  1179   Register base = addr->base()->as_pointer_register();
  1181   if (info != NULL) {
  1182     add_debug_info_for_null_check_here(info);
  1184   switch (c->type()) {
  1185     case T_INT:
  1186     case T_FLOAT:
  1187     case T_ADDRESS: {
  1188       LIR_Opr tmp = FrameMap::O7_opr;
  1189       int value = c->as_jint_bits();
  1190       if (value == 0) {
  1191         tmp = FrameMap::G0_opr;
  1192       } else if (Assembler::is_simm13(value)) {
  1193         __ set(value, O7);
  1195       if (addr->index()->is_valid()) {
  1196         assert(addr->disp() == 0, "must be zero");
  1197         store(tmp, base, addr->index()->as_pointer_register(), type);
  1198       } else {
  1199         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1200         store(tmp, base, addr->disp(), type);
  1202       break;
  1204     case T_LONG:
  1205     case T_DOUBLE: {
  1206       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1207       assert(Assembler::is_simm13(addr->disp()) &&
  1208              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1210       Register tmp = O7;
  1211       int value_lo = c->as_jint_lo_bits();
  1212       if (value_lo == 0) {
  1213         tmp = G0;
  1214       } else {
  1215         __ set(value_lo, O7);
  1217       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1218       int value_hi = c->as_jint_hi_bits();
  1219       if (value_hi == 0) {
  1220         tmp = G0;
  1221       } else {
  1222         __ set(value_hi, O7);
  1224       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1225       break;
  1227     case T_OBJECT: {
  1228       jobject obj = c->as_jobject();
  1229       LIR_Opr tmp;
  1230       if (obj == NULL) {
  1231         tmp = FrameMap::G0_opr;
  1232       } else {
  1233         tmp = FrameMap::O7_opr;
  1234         jobject2reg(c->as_jobject(), O7);
  1236       // handle either reg+reg or reg+disp address
  1237       if (addr->index()->is_valid()) {
  1238         assert(addr->disp() == 0, "must be zero");
  1239         store(tmp, base, addr->index()->as_pointer_register(), type);
  1240       } else {
  1241         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1242         store(tmp, base, addr->disp(), type);
  1245       break;
  1247     default:
  1248       Unimplemented();
  1253 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1254   LIR_Const* c = src->as_constant_ptr();
  1255   LIR_Opr to_reg = dest;
  1257   switch (c->type()) {
  1258     case T_INT:
  1259     case T_ADDRESS:
  1261         jint con = c->as_jint();
  1262         if (to_reg->is_single_cpu()) {
  1263           assert(patch_code == lir_patch_none, "no patching handled here");
  1264           __ set(con, to_reg->as_register());
  1265         } else {
  1266           ShouldNotReachHere();
  1267           assert(to_reg->is_single_fpu(), "wrong register kind");
  1269           __ set(con, O7);
  1270           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1271           __ st(O7, temp_slot);
  1272           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1275       break;
  1277     case T_LONG:
  1279         jlong con = c->as_jlong();
  1281         if (to_reg->is_double_cpu()) {
  1282 #ifdef _LP64
  1283           __ set(con,  to_reg->as_register_lo());
  1284 #else
  1285           __ set(low(con),  to_reg->as_register_lo());
  1286           __ set(high(con), to_reg->as_register_hi());
  1287 #endif
  1288 #ifdef _LP64
  1289         } else if (to_reg->is_single_cpu()) {
  1290           __ set(con, to_reg->as_register());
  1291 #endif
  1292         } else {
  1293           ShouldNotReachHere();
  1294           assert(to_reg->is_double_fpu(), "wrong register kind");
  1295           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1296           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1297           __ set(low(con),  O7);
  1298           __ st(O7, temp_slot_lo);
  1299           __ set(high(con), O7);
  1300           __ st(O7, temp_slot_hi);
  1301           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1304       break;
  1306     case T_OBJECT:
  1308         if (patch_code == lir_patch_none) {
  1309           jobject2reg(c->as_jobject(), to_reg->as_register());
  1310         } else {
  1311           jobject2reg_with_patching(to_reg->as_register(), info);
  1314       break;
  1316     case T_FLOAT:
  1318         address const_addr = __ float_constant(c->as_jfloat());
  1319         if (const_addr == NULL) {
  1320           bailout("const section overflow");
  1321           break;
  1323         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1324         AddressLiteral const_addrlit(const_addr, rspec);
  1325         if (to_reg->is_single_fpu()) {
  1326           __ patchable_sethi(const_addrlit, O7);
  1327           __ relocate(rspec);
  1328           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1330         } else {
  1331           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1333           __ set(const_addrlit, O7);
  1334           load(O7, 0, to_reg->as_register(), T_INT);
  1337       break;
  1339     case T_DOUBLE:
  1341         address const_addr = __ double_constant(c->as_jdouble());
  1342         if (const_addr == NULL) {
  1343           bailout("const section overflow");
  1344           break;
  1346         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1348         if (to_reg->is_double_fpu()) {
  1349           AddressLiteral const_addrlit(const_addr, rspec);
  1350           __ patchable_sethi(const_addrlit, O7);
  1351           __ relocate(rspec);
  1352           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1353         } else {
  1354           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1355 #ifdef _LP64
  1356           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1357 #else
  1358           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1359           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1360 #endif
  1364       break;
  1366     default:
  1367       ShouldNotReachHere();
  1371 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1372   Register reg = addr->base()->as_register();
  1373   return Address(reg, addr->disp());
  1377 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1378   switch (type) {
  1379     case T_INT:
  1380     case T_FLOAT: {
  1381       Register tmp = O7;
  1382       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1383       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1384       __ lduw(from.base(), from.disp(), tmp);
  1385       __ stw(tmp, to.base(), to.disp());
  1386       break;
  1388     case T_OBJECT: {
  1389       Register tmp = O7;
  1390       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1391       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1392       __ ld_ptr(from.base(), from.disp(), tmp);
  1393       __ st_ptr(tmp, to.base(), to.disp());
  1394       break;
  1396     case T_LONG:
  1397     case T_DOUBLE: {
  1398       Register tmp = O7;
  1399       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1400       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1401       __ lduw(from.base(), from.disp(), tmp);
  1402       __ stw(tmp, to.base(), to.disp());
  1403       __ lduw(from.base(), from.disp() + 4, tmp);
  1404       __ stw(tmp, to.base(), to.disp() + 4);
  1405       break;
  1408     default:
  1409       ShouldNotReachHere();
  1414 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1415   Address base = as_Address(addr);
  1416   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1420 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1421   Address base = as_Address(addr);
  1422   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1426 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1427                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1429   LIR_Address* addr = src_opr->as_address_ptr();
  1430   LIR_Opr to_reg = dest;
  1432   Register src = addr->base()->as_pointer_register();
  1433   Register disp_reg = noreg;
  1434   int disp_value = addr->disp();
  1435   bool needs_patching = (patch_code != lir_patch_none);
  1437   if (addr->base()->type() == T_OBJECT) {
  1438     __ verify_oop(src);
  1441   PatchingStub* patch = NULL;
  1442   if (needs_patching) {
  1443     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1444     assert(!to_reg->is_double_cpu() ||
  1445            patch_code == lir_patch_none ||
  1446            patch_code == lir_patch_normal, "patching doesn't match register");
  1449   if (addr->index()->is_illegal()) {
  1450     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1451       if (needs_patching) {
  1452         __ patchable_set(0, O7);
  1453       } else {
  1454         __ set(disp_value, O7);
  1456       disp_reg = O7;
  1458   } else if (unaligned || PatchALot) {
  1459     __ add(src, addr->index()->as_register(), O7);
  1460     src = O7;
  1461   } else {
  1462     disp_reg = addr->index()->as_pointer_register();
  1463     assert(disp_value == 0, "can't handle 3 operand addresses");
  1466   // remember the offset of the load.  The patching_epilog must be done
  1467   // before the call to add_debug_info, otherwise the PcDescs don't get
  1468   // entered in increasing order.
  1469   int offset = code_offset();
  1471   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1472   if (disp_reg == noreg) {
  1473     offset = load(src, disp_value, to_reg, type, unaligned);
  1474   } else {
  1475     assert(!unaligned, "can't handle this");
  1476     offset = load(src, disp_reg, to_reg, type);
  1479   if (patch != NULL) {
  1480     patching_epilog(patch, patch_code, src, info);
  1483   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1487 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1488   LIR_Address* addr = src->as_address_ptr();
  1489   Address from_addr = as_Address(addr);
  1491   if (VM_Version::has_v9()) {
  1492     __ prefetch(from_addr, Assembler::severalReads);
  1497 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1498   LIR_Address* addr = src->as_address_ptr();
  1499   Address from_addr = as_Address(addr);
  1501   if (VM_Version::has_v9()) {
  1502     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1507 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1508   Address addr;
  1509   if (src->is_single_word()) {
  1510     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1511   } else if (src->is_double_word())  {
  1512     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1515   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1516   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1520 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1521   Address addr;
  1522   if (dest->is_single_word()) {
  1523     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1524   } else if (dest->is_double_word())  {
  1525     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1527   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1528   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1532 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1533   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1534     if (from_reg->is_double_fpu()) {
  1535       // double to double moves
  1536       assert(to_reg->is_double_fpu(), "should match");
  1537       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1538     } else {
  1539       // float to float moves
  1540       assert(to_reg->is_single_fpu(), "should match");
  1541       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1543   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1544     if (from_reg->is_double_cpu()) {
  1545 #ifdef _LP64
  1546       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1547 #else
  1548       assert(to_reg->is_double_cpu() &&
  1549              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1550              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1551              "should both be long and not overlap");
  1552       // long to long moves
  1553       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1554       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1555 #endif
  1556 #ifdef _LP64
  1557     } else if (to_reg->is_double_cpu()) {
  1558       // int to int moves
  1559       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1560 #endif
  1561     } else {
  1562       // int to int moves
  1563       __ mov(from_reg->as_register(), to_reg->as_register());
  1565   } else {
  1566     ShouldNotReachHere();
  1568   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1569     __ verify_oop(to_reg->as_register());
  1574 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1575                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1576                             bool unaligned) {
  1577   LIR_Address* addr = dest->as_address_ptr();
  1579   Register src = addr->base()->as_pointer_register();
  1580   Register disp_reg = noreg;
  1581   int disp_value = addr->disp();
  1582   bool needs_patching = (patch_code != lir_patch_none);
  1584   if (addr->base()->is_oop_register()) {
  1585     __ verify_oop(src);
  1588   PatchingStub* patch = NULL;
  1589   if (needs_patching) {
  1590     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1591     assert(!from_reg->is_double_cpu() ||
  1592            patch_code == lir_patch_none ||
  1593            patch_code == lir_patch_normal, "patching doesn't match register");
  1596   if (addr->index()->is_illegal()) {
  1597     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1598       if (needs_patching) {
  1599         __ patchable_set(0, O7);
  1600       } else {
  1601         __ set(disp_value, O7);
  1603       disp_reg = O7;
  1605   } else if (unaligned || PatchALot) {
  1606     __ add(src, addr->index()->as_register(), O7);
  1607     src = O7;
  1608   } else {
  1609     disp_reg = addr->index()->as_pointer_register();
  1610     assert(disp_value == 0, "can't handle 3 operand addresses");
  1613   // remember the offset of the store.  The patching_epilog must be done
  1614   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1615   // entered in increasing order.
  1616   int offset;
  1618   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1619   if (disp_reg == noreg) {
  1620     offset = store(from_reg, src, disp_value, type, unaligned);
  1621   } else {
  1622     assert(!unaligned, "can't handle this");
  1623     offset = store(from_reg, src, disp_reg, type);
  1626   if (patch != NULL) {
  1627     patching_epilog(patch, patch_code, src, info);
  1630   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1634 void LIR_Assembler::return_op(LIR_Opr result) {
  1635   // the poll may need a register so just pick one that isn't the return register
  1636 #ifdef TIERED
  1637   if (result->type_field() == LIR_OprDesc::long_type) {
  1638     // Must move the result to G1
  1639     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1640     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1641     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1642     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1644 #endif // TIERED
  1645   __ set((intptr_t)os::get_polling_page(), L0);
  1646   __ relocate(relocInfo::poll_return_type);
  1647   __ ld_ptr(L0, 0, G0);
  1648   __ ret();
  1649   __ delayed()->restore();
  1653 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1654   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1655   if (info != NULL) {
  1656     add_debug_info_for_branch(info);
  1657   } else {
  1658     __ relocate(relocInfo::poll_type);
  1661   int offset = __ offset();
  1662   __ ld_ptr(tmp->as_register(), 0, G0);
  1664   return offset;
  1668 void LIR_Assembler::emit_static_call_stub() {
  1669   address call_pc = __ pc();
  1670   address stub = __ start_a_stub(call_stub_size);
  1671   if (stub == NULL) {
  1672     bailout("static call stub overflow");
  1673     return;
  1676   int start = __ offset();
  1677   __ relocate(static_stub_Relocation::spec(call_pc));
  1679   __ set_oop(NULL, G5);
  1680   // must be set to -1 at code generation time
  1681   AddressLiteral addrlit(-1);
  1682   __ jump_to(addrlit, G3);
  1683   __ delayed()->nop();
  1685   assert(__ offset() - start <= call_stub_size, "stub too big");
  1686   __ end_a_stub();
  1690 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1691   if (opr1->is_single_fpu()) {
  1692     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1693   } else if (opr1->is_double_fpu()) {
  1694     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1695   } else if (opr1->is_single_cpu()) {
  1696     if (opr2->is_constant()) {
  1697       switch (opr2->as_constant_ptr()->type()) {
  1698         case T_INT:
  1699           { jint con = opr2->as_constant_ptr()->as_jint();
  1700             if (Assembler::is_simm13(con)) {
  1701               __ cmp(opr1->as_register(), con);
  1702             } else {
  1703               __ set(con, O7);
  1704               __ cmp(opr1->as_register(), O7);
  1707           break;
  1709         case T_OBJECT:
  1710           // there are only equal/notequal comparisions on objects
  1711           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1712             if (con == NULL) {
  1713               __ cmp(opr1->as_register(), 0);
  1714             } else {
  1715               jobject2reg(con, O7);
  1716               __ cmp(opr1->as_register(), O7);
  1719           break;
  1721         default:
  1722           ShouldNotReachHere();
  1723           break;
  1725     } else {
  1726       if (opr2->is_address()) {
  1727         LIR_Address * addr = opr2->as_address_ptr();
  1728         BasicType type = addr->type();
  1729         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1730         else                    __ ld(as_Address(addr), O7);
  1731         __ cmp(opr1->as_register(), O7);
  1732       } else {
  1733         __ cmp(opr1->as_register(), opr2->as_register());
  1736   } else if (opr1->is_double_cpu()) {
  1737     Register xlo = opr1->as_register_lo();
  1738     Register xhi = opr1->as_register_hi();
  1739     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1740       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1741 #ifdef _LP64
  1742       __ orcc(xhi, G0, G0);
  1743 #else
  1744       __ orcc(xhi, xlo, G0);
  1745 #endif
  1746     } else if (opr2->is_register()) {
  1747       Register ylo = opr2->as_register_lo();
  1748       Register yhi = opr2->as_register_hi();
  1749 #ifdef _LP64
  1750       __ cmp(xlo, ylo);
  1751 #else
  1752       __ subcc(xlo, ylo, xlo);
  1753       __ subccc(xhi, yhi, xhi);
  1754       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1755         __ orcc(xhi, xlo, G0);
  1757 #endif
  1758     } else {
  1759       ShouldNotReachHere();
  1761   } else if (opr1->is_address()) {
  1762     LIR_Address * addr = opr1->as_address_ptr();
  1763     BasicType type = addr->type();
  1764     assert (opr2->is_constant(), "Checking");
  1765     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1766     else                    __ ld(as_Address(addr), O7);
  1767     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1768   } else {
  1769     ShouldNotReachHere();
  1774 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1775   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1776     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1777     if (left->is_single_fpu()) {
  1778       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1779     } else if (left->is_double_fpu()) {
  1780       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1781     } else {
  1782       ShouldNotReachHere();
  1784   } else if (code == lir_cmp_l2i) {
  1785 #ifdef _LP64
  1786     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1787 #else
  1788     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1789             right->as_register_hi(), right->as_register_lo(),
  1790             dst->as_register());
  1791 #endif
  1792   } else {
  1793     ShouldNotReachHere();
  1798 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1800   Assembler::Condition acond;
  1801   switch (condition) {
  1802     case lir_cond_equal:        acond = Assembler::equal;        break;
  1803     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1804     case lir_cond_less:         acond = Assembler::less;         break;
  1805     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1806     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1807     case lir_cond_greater:      acond = Assembler::greater;      break;
  1808     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1809     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1810     default:                         ShouldNotReachHere();
  1811   };
  1813   if (opr1->is_constant() && opr1->type() == T_INT) {
  1814     Register dest = result->as_register();
  1815     // load up first part of constant before branch
  1816     // and do the rest in the delay slot.
  1817     if (!Assembler::is_simm13(opr1->as_jint())) {
  1818       __ sethi(opr1->as_jint(), dest);
  1820   } else if (opr1->is_constant()) {
  1821     const2reg(opr1, result, lir_patch_none, NULL);
  1822   } else if (opr1->is_register()) {
  1823     reg2reg(opr1, result);
  1824   } else if (opr1->is_stack()) {
  1825     stack2reg(opr1, result, result->type());
  1826   } else {
  1827     ShouldNotReachHere();
  1829   Label skip;
  1830   __ br(acond, false, Assembler::pt, skip);
  1831   if (opr1->is_constant() && opr1->type() == T_INT) {
  1832     Register dest = result->as_register();
  1833     if (Assembler::is_simm13(opr1->as_jint())) {
  1834       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1835     } else {
  1836       // the sethi has been done above, so just put in the low 10 bits
  1837       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1839   } else {
  1840     // can't do anything useful in the delay slot
  1841     __ delayed()->nop();
  1843   if (opr2->is_constant()) {
  1844     const2reg(opr2, result, lir_patch_none, NULL);
  1845   } else if (opr2->is_register()) {
  1846     reg2reg(opr2, result);
  1847   } else if (opr2->is_stack()) {
  1848     stack2reg(opr2, result, result->type());
  1849   } else {
  1850     ShouldNotReachHere();
  1852   __ bind(skip);
  1856 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1857   assert(info == NULL, "unused on this code path");
  1858   assert(left->is_register(), "wrong items state");
  1859   assert(dest->is_register(), "wrong items state");
  1861   if (right->is_register()) {
  1862     if (dest->is_float_kind()) {
  1864       FloatRegister lreg, rreg, res;
  1865       FloatRegisterImpl::Width w;
  1866       if (right->is_single_fpu()) {
  1867         w = FloatRegisterImpl::S;
  1868         lreg = left->as_float_reg();
  1869         rreg = right->as_float_reg();
  1870         res  = dest->as_float_reg();
  1871       } else {
  1872         w = FloatRegisterImpl::D;
  1873         lreg = left->as_double_reg();
  1874         rreg = right->as_double_reg();
  1875         res  = dest->as_double_reg();
  1878       switch (code) {
  1879         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1880         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1881         case lir_mul: // fall through
  1882         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1883         case lir_div: // fall through
  1884         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1885         default: ShouldNotReachHere();
  1888     } else if (dest->is_double_cpu()) {
  1889 #ifdef _LP64
  1890       Register dst_lo = dest->as_register_lo();
  1891       Register op1_lo = left->as_pointer_register();
  1892       Register op2_lo = right->as_pointer_register();
  1894       switch (code) {
  1895         case lir_add:
  1896           __ add(op1_lo, op2_lo, dst_lo);
  1897           break;
  1899         case lir_sub:
  1900           __ sub(op1_lo, op2_lo, dst_lo);
  1901           break;
  1903         default: ShouldNotReachHere();
  1905 #else
  1906       Register op1_lo = left->as_register_lo();
  1907       Register op1_hi = left->as_register_hi();
  1908       Register op2_lo = right->as_register_lo();
  1909       Register op2_hi = right->as_register_hi();
  1910       Register dst_lo = dest->as_register_lo();
  1911       Register dst_hi = dest->as_register_hi();
  1913       switch (code) {
  1914         case lir_add:
  1915           __ addcc(op1_lo, op2_lo, dst_lo);
  1916           __ addc (op1_hi, op2_hi, dst_hi);
  1917           break;
  1919         case lir_sub:
  1920           __ subcc(op1_lo, op2_lo, dst_lo);
  1921           __ subc (op1_hi, op2_hi, dst_hi);
  1922           break;
  1924         default: ShouldNotReachHere();
  1926 #endif
  1927     } else {
  1928       assert (right->is_single_cpu(), "Just Checking");
  1930       Register lreg = left->as_register();
  1931       Register res  = dest->as_register();
  1932       Register rreg = right->as_register();
  1933       switch (code) {
  1934         case lir_add:  __ add  (lreg, rreg, res); break;
  1935         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1936         case lir_mul:  __ mult (lreg, rreg, res); break;
  1937         default: ShouldNotReachHere();
  1940   } else {
  1941     assert (right->is_constant(), "must be constant");
  1943     if (dest->is_single_cpu()) {
  1944       Register lreg = left->as_register();
  1945       Register res  = dest->as_register();
  1946       int    simm13 = right->as_constant_ptr()->as_jint();
  1948       switch (code) {
  1949         case lir_add:  __ add  (lreg, simm13, res); break;
  1950         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1951         case lir_mul:  __ mult (lreg, simm13, res); break;
  1952         default: ShouldNotReachHere();
  1954     } else {
  1955       Register lreg = left->as_pointer_register();
  1956       Register res  = dest->as_register_lo();
  1957       long con = right->as_constant_ptr()->as_jlong();
  1958       assert(Assembler::is_simm13(con), "must be simm13");
  1960       switch (code) {
  1961         case lir_add:  __ add  (lreg, (int)con, res); break;
  1962         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1963         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1964         default: ShouldNotReachHere();
  1971 void LIR_Assembler::fpop() {
  1972   // do nothing
  1976 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1977   switch (code) {
  1978     case lir_sin:
  1979     case lir_tan:
  1980     case lir_cos: {
  1981       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1982       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1983       break;
  1985     case lir_sqrt: {
  1986       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1987       FloatRegister src_reg = value->as_double_reg();
  1988       FloatRegister dst_reg = dest->as_double_reg();
  1989       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1990       break;
  1992     case lir_abs: {
  1993       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1994       FloatRegister src_reg = value->as_double_reg();
  1995       FloatRegister dst_reg = dest->as_double_reg();
  1996       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1997       break;
  1999     default: {
  2000       ShouldNotReachHere();
  2001       break;
  2007 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  2008   if (right->is_constant()) {
  2009     if (dest->is_single_cpu()) {
  2010       int simm13 = right->as_constant_ptr()->as_jint();
  2011       switch (code) {
  2012         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  2013         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  2014         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  2015         default: ShouldNotReachHere();
  2017     } else {
  2018       long c = right->as_constant_ptr()->as_jlong();
  2019       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  2020       int simm13 = (int)c;
  2021       switch (code) {
  2022         case lir_logic_and:
  2023 #ifndef _LP64
  2024           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2025 #endif
  2026           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2027           break;
  2029         case lir_logic_or:
  2030 #ifndef _LP64
  2031           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2032 #endif
  2033           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2034           break;
  2036         case lir_logic_xor:
  2037 #ifndef _LP64
  2038           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2039 #endif
  2040           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2041           break;
  2043         default: ShouldNotReachHere();
  2046   } else {
  2047     assert(right->is_register(), "right should be in register");
  2049     if (dest->is_single_cpu()) {
  2050       switch (code) {
  2051         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2052         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2053         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2054         default: ShouldNotReachHere();
  2056     } else {
  2057 #ifdef _LP64
  2058       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2059                                                                         left->as_register_lo();
  2060       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2061                                                                           right->as_register_lo();
  2063       switch (code) {
  2064         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2065         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2066         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2067         default: ShouldNotReachHere();
  2069 #else
  2070       switch (code) {
  2071         case lir_logic_and:
  2072           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2073           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2074           break;
  2076         case lir_logic_or:
  2077           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2078           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2079           break;
  2081         case lir_logic_xor:
  2082           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2083           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2084           break;
  2086         default: ShouldNotReachHere();
  2088 #endif
  2094 int LIR_Assembler::shift_amount(BasicType t) {
  2095   int elem_size = type2aelembytes(t);
  2096   switch (elem_size) {
  2097     case 1 : return 0;
  2098     case 2 : return 1;
  2099     case 4 : return 2;
  2100     case 8 : return 3;
  2102   ShouldNotReachHere();
  2103   return -1;
  2107 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2108   assert(exceptionOop->as_register() == Oexception, "should match");
  2109   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2111   info->add_register_oop(exceptionOop);
  2113   // reuse the debug info from the safepoint poll for the throw op itself
  2114   address pc_for_athrow  = __ pc();
  2115   int pc_for_athrow_offset = __ offset();
  2116   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2117   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2118   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2120   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2121   __ delayed()->nop();
  2125 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2126   assert(exceptionOop->as_register() == Oexception, "should match");
  2128   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2129   __ delayed()->nop();
  2133 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2134   Register src = op->src()->as_register();
  2135   Register dst = op->dst()->as_register();
  2136   Register src_pos = op->src_pos()->as_register();
  2137   Register dst_pos = op->dst_pos()->as_register();
  2138   Register length  = op->length()->as_register();
  2139   Register tmp = op->tmp()->as_register();
  2140   Register tmp2 = O7;
  2142   int flags = op->flags();
  2143   ciArrayKlass* default_type = op->expected_type();
  2144   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2145   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2147   // set up the arraycopy stub information
  2148   ArrayCopyStub* stub = op->stub();
  2150   // always do stub if no type information is available.  it's ok if
  2151   // the known type isn't loaded since the code sanity checks
  2152   // in debug mode and the type isn't required when we know the exact type
  2153   // also check that the type is an array type.
  2154   // We also, for now, always call the stub if the barrier set requires a
  2155   // write_ref_pre barrier (which the stub does, but none of the optimized
  2156   // cases currently does).
  2157   if (op->expected_type() == NULL ||
  2158       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2159     __ mov(src,     O0);
  2160     __ mov(src_pos, O1);
  2161     __ mov(dst,     O2);
  2162     __ mov(dst_pos, O3);
  2163     __ mov(length,  O4);
  2164     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2166     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2167     __ delayed()->nop();
  2168     __ bind(*stub->continuation());
  2169     return;
  2172   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2174   // make sure src and dst are non-null and load array length
  2175   if (flags & LIR_OpArrayCopy::src_null_check) {
  2176     __ tst(src);
  2177     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2178     __ delayed()->nop();
  2181   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2182     __ tst(dst);
  2183     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2184     __ delayed()->nop();
  2187   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2188     // test src_pos register
  2189     __ tst(src_pos);
  2190     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2191     __ delayed()->nop();
  2194   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2195     // test dst_pos register
  2196     __ tst(dst_pos);
  2197     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2198     __ delayed()->nop();
  2201   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2202     // make sure length isn't negative
  2203     __ tst(length);
  2204     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2205     __ delayed()->nop();
  2208   if (flags & LIR_OpArrayCopy::src_range_check) {
  2209     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2210     __ add(length, src_pos, tmp);
  2211     __ cmp(tmp2, tmp);
  2212     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2213     __ delayed()->nop();
  2216   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2217     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2218     __ add(length, dst_pos, tmp);
  2219     __ cmp(tmp2, tmp);
  2220     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2221     __ delayed()->nop();
  2224   if (flags & LIR_OpArrayCopy::type_check) {
  2225     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2226     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2227     __ cmp(tmp, tmp2);
  2228     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2229     __ delayed()->nop();
  2232 #ifdef ASSERT
  2233   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2234     // Sanity check the known type with the incoming class.  For the
  2235     // primitive case the types must match exactly with src.klass and
  2236     // dst.klass each exactly matching the default type.  For the
  2237     // object array case, if no type check is needed then either the
  2238     // dst type is exactly the expected type and the src type is a
  2239     // subtype which we can't check or src is the same array as dst
  2240     // but not necessarily exactly of type default_type.
  2241     Label known_ok, halt;
  2242     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2243     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2244     if (basic_type != T_OBJECT) {
  2245       __ cmp(tmp, tmp2);
  2246       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2247       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2248       __ cmp(tmp, tmp2);
  2249       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2250       __ delayed()->nop();
  2251     } else {
  2252       __ cmp(tmp, tmp2);
  2253       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2254       __ delayed()->cmp(src, dst);
  2255       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2256       __ delayed()->nop();
  2258     __ bind(halt);
  2259     __ stop("incorrect type information in arraycopy");
  2260     __ bind(known_ok);
  2262 #endif
  2264   int shift = shift_amount(basic_type);
  2266   Register src_ptr = O0;
  2267   Register dst_ptr = O1;
  2268   Register len     = O2;
  2270   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2271   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2272   if (shift == 0) {
  2273     __ add(src_ptr, src_pos, src_ptr);
  2274   } else {
  2275     __ sll(src_pos, shift, tmp);
  2276     __ add(src_ptr, tmp, src_ptr);
  2279   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2280   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2281   if (shift == 0) {
  2282     __ add(dst_ptr, dst_pos, dst_ptr);
  2283   } else {
  2284     __ sll(dst_pos, shift, tmp);
  2285     __ add(dst_ptr, tmp, dst_ptr);
  2288   if (basic_type != T_OBJECT) {
  2289     if (shift == 0) {
  2290       __ mov(length, len);
  2291     } else {
  2292       __ sll(length, shift, len);
  2294     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2295   } else {
  2296     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2297     __ mov(length, len);
  2298     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2301   __ bind(*stub->continuation());
  2305 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2306   if (dest->is_single_cpu()) {
  2307 #ifdef _LP64
  2308     if (left->type() == T_OBJECT) {
  2309       switch (code) {
  2310         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2311         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2312         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2313         default: ShouldNotReachHere();
  2315     } else
  2316 #endif
  2317       switch (code) {
  2318         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2319         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2320         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2321         default: ShouldNotReachHere();
  2323   } else {
  2324 #ifdef _LP64
  2325     switch (code) {
  2326       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2327       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2328       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2329       default: ShouldNotReachHere();
  2331 #else
  2332     switch (code) {
  2333       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2334       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2335       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2336       default: ShouldNotReachHere();
  2338 #endif
  2343 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2344 #ifdef _LP64
  2345   if (left->type() == T_OBJECT) {
  2346     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2347     Register l = left->as_register();
  2348     Register d = dest->as_register_lo();
  2349     switch (code) {
  2350       case lir_shl:  __ sllx  (l, count, d); break;
  2351       case lir_shr:  __ srax  (l, count, d); break;
  2352       case lir_ushr: __ srlx  (l, count, d); break;
  2353       default: ShouldNotReachHere();
  2355     return;
  2357 #endif
  2359   if (dest->is_single_cpu()) {
  2360     count = count & 0x1F; // Java spec
  2361     switch (code) {
  2362       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2363       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2364       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2365       default: ShouldNotReachHere();
  2367   } else if (dest->is_double_cpu()) {
  2368     count = count & 63; // Java spec
  2369     switch (code) {
  2370       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2371       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2372       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2373       default: ShouldNotReachHere();
  2375   } else {
  2376     ShouldNotReachHere();
  2381 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2382   assert(op->tmp1()->as_register()  == G1 &&
  2383          op->tmp2()->as_register()  == G3 &&
  2384          op->tmp3()->as_register()  == G4 &&
  2385          op->obj()->as_register()   == O0 &&
  2386          op->klass()->as_register() == G5, "must be");
  2387   if (op->init_check()) {
  2388     __ ld(op->klass()->as_register(),
  2389           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2390           op->tmp1()->as_register());
  2391     add_debug_info_for_null_check_here(op->stub()->info());
  2392     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2393     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2394     __ delayed()->nop();
  2396   __ allocate_object(op->obj()->as_register(),
  2397                      op->tmp1()->as_register(),
  2398                      op->tmp2()->as_register(),
  2399                      op->tmp3()->as_register(),
  2400                      op->header_size(),
  2401                      op->object_size(),
  2402                      op->klass()->as_register(),
  2403                      *op->stub()->entry());
  2404   __ bind(*op->stub()->continuation());
  2405   __ verify_oop(op->obj()->as_register());
  2409 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2410   assert(op->tmp1()->as_register()  == G1 &&
  2411          op->tmp2()->as_register()  == G3 &&
  2412          op->tmp3()->as_register()  == G4 &&
  2413          op->tmp4()->as_register()  == O1 &&
  2414          op->klass()->as_register() == G5, "must be");
  2415   if (UseSlowPath ||
  2416       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2417       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2418     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2419     __ delayed()->nop();
  2420   } else {
  2421     __ allocate_array(op->obj()->as_register(),
  2422                       op->len()->as_register(),
  2423                       op->tmp1()->as_register(),
  2424                       op->tmp2()->as_register(),
  2425                       op->tmp3()->as_register(),
  2426                       arrayOopDesc::header_size(op->type()),
  2427                       type2aelembytes(op->type()),
  2428                       op->klass()->as_register(),
  2429                       *op->stub()->entry());
  2431   __ bind(*op->stub()->continuation());
  2435 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2436   LIR_Code code = op->code();
  2437   if (code == lir_store_check) {
  2438     Register value = op->object()->as_register();
  2439     Register array = op->array()->as_register();
  2440     Register k_RInfo = op->tmp1()->as_register();
  2441     Register klass_RInfo = op->tmp2()->as_register();
  2442     Register Rtmp1 = op->tmp3()->as_register();
  2444     __ verify_oop(value);
  2446     CodeStub* stub = op->stub();
  2447     Label done;
  2448     __ cmp(value, 0);
  2449     __ br(Assembler::equal, false, Assembler::pn, done);
  2450     __ delayed()->nop();
  2451     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2452     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2454     // get instance klass
  2455     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2456     // perform the fast part of the checking logic
  2457     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2459     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2460     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2461     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2462     __ delayed()->nop();
  2463     __ cmp(G3, 0);
  2464     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2465     __ delayed()->nop();
  2466     __ bind(done);
  2467   } else if (op->code() == lir_checkcast) {
  2468     // we always need a stub for the failure case.
  2469     CodeStub* stub = op->stub();
  2470     Register obj = op->object()->as_register();
  2471     Register k_RInfo = op->tmp1()->as_register();
  2472     Register klass_RInfo = op->tmp2()->as_register();
  2473     Register dst = op->result_opr()->as_register();
  2474     Register Rtmp1 = op->tmp3()->as_register();
  2475     ciKlass* k = op->klass();
  2477     if (obj == k_RInfo) {
  2478       k_RInfo = klass_RInfo;
  2479       klass_RInfo = obj;
  2481     if (op->profiled_method() != NULL) {
  2482       ciMethod* method = op->profiled_method();
  2483       int bci          = op->profiled_bci();
  2485       // We need two temporaries to perform this operation on SPARC,
  2486       // so to keep things simple we perform a redundant test here
  2487       Label profile_done;
  2488       __ cmp(obj, 0);
  2489       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2490       __ delayed()->nop();
  2491       // Object is null; update methodDataOop
  2492       ciMethodData* md = method->method_data();
  2493       if (md == NULL) {
  2494         bailout("out of memory building methodDataOop");
  2495         return;
  2497       ciProfileData* data = md->bci_to_data(bci);
  2498       assert(data != NULL,       "need data for checkcast");
  2499       assert(data->is_BitData(), "need BitData for checkcast");
  2500       Register mdo      = k_RInfo;
  2501       Register data_val = Rtmp1;
  2502       jobject2reg(md->constant_encoding(), mdo);
  2504       int mdo_offset_bias = 0;
  2505       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2506         // The offset is large so bias the mdo by the base of the slot so
  2507         // that the ld can use simm13s to reference the slots of the data
  2508         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2509         __ set(mdo_offset_bias, data_val);
  2510         __ add(mdo, data_val, mdo);
  2514       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2515       __ ldub(flags_addr, data_val);
  2516       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2517       __ stb(data_val, flags_addr);
  2518       __ bind(profile_done);
  2521     Label done;
  2522     // patching may screw with our temporaries on sparc,
  2523     // so let's do it before loading the class
  2524     if (k->is_loaded()) {
  2525       jobject2reg(k->constant_encoding(), k_RInfo);
  2526     } else {
  2527       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2529     assert(obj != k_RInfo, "must be different");
  2530     __ cmp(obj, 0);
  2531     __ br(Assembler::equal, false, Assembler::pn, done);
  2532     __ delayed()->nop();
  2534     // get object class
  2535     // not a safepoint as obj null check happens earlier
  2536     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2537     if (op->fast_check()) {
  2538       assert_different_registers(klass_RInfo, k_RInfo);
  2539       __ cmp(k_RInfo, klass_RInfo);
  2540       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2541       __ delayed()->nop();
  2542       __ bind(done);
  2543     } else {
  2544       bool need_slow_path = true;
  2545       if (k->is_loaded()) {
  2546         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2547           need_slow_path = false;
  2548         // perform the fast part of the checking logic
  2549         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2550                                          (need_slow_path ? &done : NULL),
  2551                                          stub->entry(), NULL,
  2552                                          RegisterOrConstant(k->super_check_offset()));
  2553       } else {
  2554         // perform the fast part of the checking logic
  2555         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2556                                          &done, stub->entry(), NULL);
  2558       if (need_slow_path) {
  2559         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2560         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2561         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2562         __ delayed()->nop();
  2563         __ cmp(G3, 0);
  2564         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2565         __ delayed()->nop();
  2567       __ bind(done);
  2569     __ mov(obj, dst);
  2570   } else if (code == lir_instanceof) {
  2571     Register obj = op->object()->as_register();
  2572     Register k_RInfo = op->tmp1()->as_register();
  2573     Register klass_RInfo = op->tmp2()->as_register();
  2574     Register dst = op->result_opr()->as_register();
  2575     Register Rtmp1 = op->tmp3()->as_register();
  2576     ciKlass* k = op->klass();
  2578     Label done;
  2579     if (obj == k_RInfo) {
  2580       k_RInfo = klass_RInfo;
  2581       klass_RInfo = obj;
  2583     // patching may screw with our temporaries on sparc,
  2584     // so let's do it before loading the class
  2585     if (k->is_loaded()) {
  2586       jobject2reg(k->constant_encoding(), k_RInfo);
  2587     } else {
  2588       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2590     assert(obj != k_RInfo, "must be different");
  2591     __ cmp(obj, 0);
  2592     __ br(Assembler::equal, true, Assembler::pn, done);
  2593     __ delayed()->set(0, dst);
  2595     // get object class
  2596     // not a safepoint as obj null check happens earlier
  2597     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2598     if (op->fast_check()) {
  2599       __ cmp(k_RInfo, klass_RInfo);
  2600       __ br(Assembler::equal, true, Assembler::pt, done);
  2601       __ delayed()->set(1, dst);
  2602       __ set(0, dst);
  2603       __ bind(done);
  2604     } else {
  2605       bool need_slow_path = true;
  2606       if (k->is_loaded()) {
  2607         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2608           need_slow_path = false;
  2609         // perform the fast part of the checking logic
  2610         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2611                                          (need_slow_path ? &done : NULL),
  2612                                          (need_slow_path ? &done : NULL), NULL,
  2613                                          RegisterOrConstant(k->super_check_offset()),
  2614                                          dst);
  2615       } else {
  2616         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2617         // perform the fast part of the checking logic
  2618         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2619                                          &done, &done, NULL,
  2620                                          RegisterOrConstant(-1),
  2621                                          dst);
  2623       if (need_slow_path) {
  2624         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2625         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2626         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2627         __ delayed()->nop();
  2628         __ mov(G3, dst);
  2630       __ bind(done);
  2632   } else {
  2633     ShouldNotReachHere();
  2639 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2640   if (op->code() == lir_cas_long) {
  2641     assert(VM_Version::supports_cx8(), "wrong machine");
  2642     Register addr = op->addr()->as_pointer_register();
  2643     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2644     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2645     Register new_value_lo = op->new_value()->as_register_lo();
  2646     Register new_value_hi = op->new_value()->as_register_hi();
  2647     Register t1 = op->tmp1()->as_register();
  2648     Register t2 = op->tmp2()->as_register();
  2649 #ifdef _LP64
  2650     __ mov(cmp_value_lo, t1);
  2651     __ mov(new_value_lo, t2);
  2652 #else
  2653     // move high and low halves of long values into single registers
  2654     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2655     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2656     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2657     __ sllx(new_value_hi, 32, t2);
  2658     __ srl(new_value_lo, 0, new_value_lo);
  2659     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2660 #endif
  2661     // perform the compare and swap operation
  2662     __ casx(addr, t1, t2);
  2663     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2664     // overwritten with the original value in "addr" and will be equal to t1.
  2665     __ cmp(t1, t2);
  2667   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2668     Register addr = op->addr()->as_pointer_register();
  2669     Register cmp_value = op->cmp_value()->as_register();
  2670     Register new_value = op->new_value()->as_register();
  2671     Register t1 = op->tmp1()->as_register();
  2672     Register t2 = op->tmp2()->as_register();
  2673     __ mov(cmp_value, t1);
  2674     __ mov(new_value, t2);
  2675 #ifdef _LP64
  2676     if (op->code() == lir_cas_obj) {
  2677       __ casx(addr, t1, t2);
  2678     } else
  2679 #endif
  2681         __ cas(addr, t1, t2);
  2683     __ cmp(t1, t2);
  2684   } else {
  2685     Unimplemented();
  2689 void LIR_Assembler::set_24bit_FPU() {
  2690   Unimplemented();
  2694 void LIR_Assembler::reset_FPU() {
  2695   Unimplemented();
  2699 void LIR_Assembler::breakpoint() {
  2700   __ breakpoint_trap();
  2704 void LIR_Assembler::push(LIR_Opr opr) {
  2705   Unimplemented();
  2709 void LIR_Assembler::pop(LIR_Opr opr) {
  2710   Unimplemented();
  2714 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2715   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2716   Register dst = dst_opr->as_register();
  2717   Register reg = mon_addr.base();
  2718   int offset = mon_addr.disp();
  2719   // compute pointer to BasicLock
  2720   if (mon_addr.is_simm13()) {
  2721     __ add(reg, offset, dst);
  2722   } else {
  2723     __ set(offset, dst);
  2724     __ add(dst, reg, dst);
  2729 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2730   Register obj = op->obj_opr()->as_register();
  2731   Register hdr = op->hdr_opr()->as_register();
  2732   Register lock = op->lock_opr()->as_register();
  2734   // obj may not be an oop
  2735   if (op->code() == lir_lock) {
  2736     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2737     if (UseFastLocking) {
  2738       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2739       // add debug info for NullPointerException only if one is possible
  2740       if (op->info() != NULL) {
  2741         add_debug_info_for_null_check_here(op->info());
  2743       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2744     } else {
  2745       // always do slow locking
  2746       // note: the slow locking code could be inlined here, however if we use
  2747       //       slow locking, speed doesn't matter anyway and this solution is
  2748       //       simpler and requires less duplicated code - additionally, the
  2749       //       slow locking code is the same in either case which simplifies
  2750       //       debugging
  2751       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2752       __ delayed()->nop();
  2754   } else {
  2755     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2756     if (UseFastLocking) {
  2757       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2758       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2759     } else {
  2760       // always do slow unlocking
  2761       // note: the slow unlocking code could be inlined here, however if we use
  2762       //       slow unlocking, speed doesn't matter anyway and this solution is
  2763       //       simpler and requires less duplicated code - additionally, the
  2764       //       slow unlocking code is the same in either case which simplifies
  2765       //       debugging
  2766       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2767       __ delayed()->nop();
  2770   __ bind(*op->stub()->continuation());
  2774 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2775   ciMethod* method = op->profiled_method();
  2776   int bci          = op->profiled_bci();
  2778   // Update counter for all call types
  2779   ciMethodData* md = method->method_data();
  2780   if (md == NULL) {
  2781     bailout("out of memory building methodDataOop");
  2782     return;
  2784   ciProfileData* data = md->bci_to_data(bci);
  2785   assert(data->is_CounterData(), "need CounterData for calls");
  2786   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2787   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2788   Register mdo  = op->mdo()->as_register();
  2789   Register tmp1 = op->tmp1()->as_register();
  2790   jobject2reg(md->constant_encoding(), mdo);
  2791   int mdo_offset_bias = 0;
  2792   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2793                             data->size_in_bytes())) {
  2794     // The offset is large so bias the mdo by the base of the slot so
  2795     // that the ld can use simm13s to reference the slots of the data
  2796     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2797     __ set(mdo_offset_bias, O7);
  2798     __ add(mdo, O7, mdo);
  2801   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2802   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2803   // Perform additional virtual call profiling for invokevirtual and
  2804   // invokeinterface bytecodes
  2805   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2806       Tier1ProfileVirtualCalls) {
  2807     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2808     Register recv = op->recv()->as_register();
  2809     assert_different_registers(mdo, tmp1, recv);
  2810     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2811     ciKlass* known_klass = op->known_holder();
  2812     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2813       // We know the type that will be seen at this call site; we can
  2814       // statically update the methodDataOop rather than needing to do
  2815       // dynamic tests on the receiver type
  2817       // NOTE: we should probably put a lock around this search to
  2818       // avoid collisions by concurrent compilations
  2819       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2820       uint i;
  2821       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2822         ciKlass* receiver = vc_data->receiver(i);
  2823         if (known_klass->equals(receiver)) {
  2824           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2825                                                          VirtualCallData::receiver_count_offset(i)) -
  2826                             mdo_offset_bias);
  2827           __ lduw(data_addr, tmp1);
  2828           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2829           __ stw(tmp1, data_addr);
  2830           return;
  2834       // Receiver type not found in profile data; select an empty slot
  2836       // Note that this is less efficient than it should be because it
  2837       // always does a write to the receiver part of the
  2838       // VirtualCallData rather than just the first time
  2839       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2840         ciKlass* receiver = vc_data->receiver(i);
  2841         if (receiver == NULL) {
  2842           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2843                             mdo_offset_bias);
  2844           jobject2reg(known_klass->constant_encoding(), tmp1);
  2845           __ st_ptr(tmp1, recv_addr);
  2846           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2847                             mdo_offset_bias);
  2848           __ lduw(data_addr, tmp1);
  2849           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2850           __ stw(tmp1, data_addr);
  2851           return;
  2854     } else {
  2855       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2856       Label update_done;
  2857       uint i;
  2858       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2859         Label next_test;
  2860         // See if the receiver is receiver[n].
  2861         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2862                               mdo_offset_bias);
  2863         __ ld_ptr(receiver_addr, tmp1);
  2864         __ verify_oop(tmp1);
  2865         __ cmp(recv, tmp1);
  2866         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2867         __ delayed()->nop();
  2868         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2869                           mdo_offset_bias);
  2870         __ lduw(data_addr, tmp1);
  2871         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2872         __ stw(tmp1, data_addr);
  2873         __ br(Assembler::always, false, Assembler::pt, update_done);
  2874         __ delayed()->nop();
  2875         __ bind(next_test);
  2878       // Didn't find receiver; find next empty slot and fill it in
  2879       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2880         Label next_test;
  2881         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2882                           mdo_offset_bias);
  2883         load(recv_addr, tmp1, T_OBJECT);
  2884         __ tst(tmp1);
  2885         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2886         __ delayed()->nop();
  2887         __ st_ptr(recv, recv_addr);
  2888         __ set(DataLayout::counter_increment, tmp1);
  2889         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2890                   mdo_offset_bias);
  2891         __ br(Assembler::always, false, Assembler::pt, update_done);
  2892         __ delayed()->nop();
  2893         __ bind(next_test);
  2895       // Receiver did not match any saved receiver and there is no empty row for it.
  2896       // Increment total counter to indicate polymorphic case.
  2897       __ lduw(counter_addr, tmp1);
  2898       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2899       __ stw(tmp1, counter_addr);
  2901       __ bind(update_done);
  2903   } else {
  2904     // Static call
  2905     __ lduw(counter_addr, tmp1);
  2906     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2907     __ stw(tmp1, counter_addr);
  2912 void LIR_Assembler::align_backward_branch_target() {
  2913   __ align(OptoLoopAlignment);
  2917 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2918   // make sure we are expecting a delay
  2919   // this has the side effect of clearing the delay state
  2920   // so we can use _masm instead of _masm->delayed() to do the
  2921   // code generation.
  2922   __ delayed();
  2924   // make sure we only emit one instruction
  2925   int offset = code_offset();
  2926   op->delay_op()->emit_code(this);
  2927 #ifdef ASSERT
  2928   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2929     op->delay_op()->print();
  2931   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2932          "only one instruction can go in a delay slot");
  2933 #endif
  2935   // we may also be emitting the call info for the instruction
  2936   // which we are the delay slot of.
  2937   CodeEmitInfo * call_info = op->call_info();
  2938   if (call_info) {
  2939     add_call_info(code_offset(), call_info);
  2942   if (VerifyStackAtCalls) {
  2943     _masm->sub(FP, SP, O7);
  2944     _masm->cmp(O7, initial_frame_size_in_bytes());
  2945     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2950 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2951   assert(left->is_register(), "can only handle registers");
  2953   if (left->is_single_cpu()) {
  2954     __ neg(left->as_register(), dest->as_register());
  2955   } else if (left->is_single_fpu()) {
  2956     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2957   } else if (left->is_double_fpu()) {
  2958     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2959   } else {
  2960     assert (left->is_double_cpu(), "Must be a long");
  2961     Register Rlow = left->as_register_lo();
  2962     Register Rhi = left->as_register_hi();
  2963 #ifdef _LP64
  2964     __ sub(G0, Rlow, dest->as_register_lo());
  2965 #else
  2966     __ subcc(G0, Rlow, dest->as_register_lo());
  2967     __ subc (G0, Rhi,  dest->as_register_hi());
  2968 #endif
  2973 void LIR_Assembler::fxch(int i) {
  2974   Unimplemented();
  2977 void LIR_Assembler::fld(int i) {
  2978   Unimplemented();
  2981 void LIR_Assembler::ffree(int i) {
  2982   Unimplemented();
  2985 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2986                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2988   // if tmp is invalid, then the function being called doesn't destroy the thread
  2989   if (tmp->is_valid()) {
  2990     __ save_thread(tmp->as_register());
  2992   __ call(dest, relocInfo::runtime_call_type);
  2993   __ delayed()->nop();
  2994   if (info != NULL) {
  2995     add_call_info_here(info);
  2997   if (tmp->is_valid()) {
  2998     __ restore_thread(tmp->as_register());
  3001 #ifdef ASSERT
  3002   __ verify_thread();
  3003 #endif // ASSERT
  3007 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3008 #ifdef _LP64
  3009   ShouldNotReachHere();
  3010 #endif
  3012   NEEDS_CLEANUP;
  3013   if (type == T_LONG) {
  3014     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3016     // (extended to allow indexed as well as constant displaced for JSR-166)
  3017     Register idx = noreg; // contains either constant offset or index
  3019     int disp = mem_addr->disp();
  3020     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3021       if (!Assembler::is_simm13(disp)) {
  3022         idx = O7;
  3023         __ set(disp, idx);
  3025     } else {
  3026       assert(disp == 0, "not both indexed and disp");
  3027       idx = mem_addr->index()->as_register();
  3030     int null_check_offset = -1;
  3032     Register base = mem_addr->base()->as_register();
  3033     if (src->is_register() && dest->is_address()) {
  3034       // G4 is high half, G5 is low half
  3035       if (VM_Version::v9_instructions_work()) {
  3036         // clear the top bits of G5, and scale up G4
  3037         __ srl (src->as_register_lo(),  0, G5);
  3038         __ sllx(src->as_register_hi(), 32, G4);
  3039         // combine the two halves into the 64 bits of G4
  3040         __ or3(G4, G5, G4);
  3041         null_check_offset = __ offset();
  3042         if (idx == noreg) {
  3043           __ stx(G4, base, disp);
  3044         } else {
  3045           __ stx(G4, base, idx);
  3047       } else {
  3048         __ mov (src->as_register_hi(), G4);
  3049         __ mov (src->as_register_lo(), G5);
  3050         null_check_offset = __ offset();
  3051         if (idx == noreg) {
  3052           __ std(G4, base, disp);
  3053         } else {
  3054           __ std(G4, base, idx);
  3057     } else if (src->is_address() && dest->is_register()) {
  3058       null_check_offset = __ offset();
  3059       if (VM_Version::v9_instructions_work()) {
  3060         if (idx == noreg) {
  3061           __ ldx(base, disp, G5);
  3062         } else {
  3063           __ ldx(base, idx, G5);
  3065         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3066         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3067       } else {
  3068         if (idx == noreg) {
  3069           __ ldd(base, disp, G4);
  3070         } else {
  3071           __ ldd(base, idx, G4);
  3073         // G4 is high half, G5 is low half
  3074         __ mov (G4, dest->as_register_hi());
  3075         __ mov (G5, dest->as_register_lo());
  3077     } else {
  3078       Unimplemented();
  3080     if (info != NULL) {
  3081       add_debug_info_for_null_check(null_check_offset, info);
  3084   } else {
  3085     // use normal move for all other volatiles since they don't need
  3086     // special handling to remain atomic.
  3087     move_op(src, dest, type, lir_patch_none, info, false, false);
  3091 void LIR_Assembler::membar() {
  3092   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3093   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3096 void LIR_Assembler::membar_acquire() {
  3097   // no-op on TSO
  3100 void LIR_Assembler::membar_release() {
  3101   // no-op on TSO
  3104 // Macro to Pack two sequential registers containing 32 bit values
  3105 // into a single 64 bit register.
  3106 // rs and rs->successor() are packed into rd
  3107 // rd and rs may be the same register.
  3108 // Note: rs and rs->successor() are destroyed.
  3109 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3110   __ sllx(rs, 32, rs);
  3111   __ srl(rs->successor(), 0, rs->successor());
  3112   __ or3(rs, rs->successor(), rd);
  3115 // Macro to unpack a 64 bit value in a register into
  3116 // two sequential registers.
  3117 // rd is unpacked into rd and rd->successor()
  3118 void LIR_Assembler::unpack64( Register rd ) {
  3119   __ mov(rd, rd->successor());
  3120   __ srax(rd, 32, rd);
  3121   __ sra(rd->successor(), 0, rd->successor());
  3125 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3126   LIR_Address* addr = addr_opr->as_address_ptr();
  3127   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3128   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3132 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3133   assert(result_reg->is_register(), "check");
  3134   __ mov(G2_thread, result_reg->as_register());
  3138 void LIR_Assembler::peephole(LIR_List* lir) {
  3139   LIR_OpList* inst = lir->instructions_list();
  3140   for (int i = 0; i < inst->length(); i++) {
  3141     LIR_Op* op = inst->at(i);
  3142     switch (op->code()) {
  3143       case lir_cond_float_branch:
  3144       case lir_branch: {
  3145         LIR_OpBranch* branch = op->as_OpBranch();
  3146         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3147         LIR_Op* delay_op = NULL;
  3148         // we'd like to be able to pull following instructions into
  3149         // this slot but we don't know enough to do it safely yet so
  3150         // only optimize block to block control flow.
  3151         if (LIRFillDelaySlots && branch->block()) {
  3152           LIR_Op* prev = inst->at(i - 1);
  3153           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3154             // swap previous instruction into delay slot
  3155             inst->at_put(i - 1, op);
  3156             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3157 #ifndef PRODUCT
  3158             if (LIRTracePeephole) {
  3159               tty->print_cr("delayed");
  3160               inst->at(i - 1)->print();
  3161               inst->at(i)->print();
  3163 #endif
  3164             continue;
  3168         if (!delay_op) {
  3169           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3171         inst->insert_before(i + 1, delay_op);
  3172         break;
  3174       case lir_static_call:
  3175       case lir_virtual_call:
  3176       case lir_icvirtual_call:
  3177       case lir_optvirtual_call: {
  3178         LIR_Op* delay_op = NULL;
  3179         LIR_Op* prev = inst->at(i - 1);
  3180         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3181             (op->code() != lir_virtual_call ||
  3182              !prev->result_opr()->is_single_cpu() ||
  3183              prev->result_opr()->as_register() != O0) &&
  3184             LIR_Assembler::is_single_instruction(prev)) {
  3185           // Only moves without info can be put into the delay slot.
  3186           // Also don't allow the setup of the receiver in the delay
  3187           // slot for vtable calls.
  3188           inst->at_put(i - 1, op);
  3189           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3190 #ifndef PRODUCT
  3191           if (LIRTracePeephole) {
  3192             tty->print_cr("delayed");
  3193             inst->at(i - 1)->print();
  3194             inst->at(i)->print();
  3196 #endif
  3197           continue;
  3200         if (!delay_op) {
  3201           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3202           inst->insert_before(i + 1, delay_op);
  3204         break;
  3213 #undef __

mercurial