src/share/vm/opto/runtime.cpp

Wed, 31 Aug 2011 16:46:11 -0700

author
never
date
Wed, 31 Aug 2011 16:46:11 -0700
changeset 3099
c124e2e7463e
parent 3002
263247c478c5
child 3157
a92cdbac8b9e
permissions
-rw-r--r--

7083786: dead various dead chunks of code
Reviewed-by: iveresov, kvn

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc
    87 # include "adfiles/ad_ppc.hpp"
    88 #endif
    91 // For debugging purposes:
    92 //  To force FullGCALot inside a runtime function, add the following two lines
    93 //
    94 //  Universe::release_fullgc_alot_dummy();
    95 //  MarkSweep::invoke(0, "Debugging");
    96 //
    97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   102 // Compiled code entry points
   103 address OptoRuntime::_new_instance_Java                           = NULL;
   104 address OptoRuntime::_new_array_Java                              = NULL;
   105 address OptoRuntime::_multianewarray2_Java                        = NULL;
   106 address OptoRuntime::_multianewarray3_Java                        = NULL;
   107 address OptoRuntime::_multianewarray4_Java                        = NULL;
   108 address OptoRuntime::_multianewarray5_Java                        = NULL;
   109 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   110 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   111 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   112 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   113 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   114 address OptoRuntime::_rethrow_Java                                = NULL;
   116 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   117 address OptoRuntime::_register_finalizer_Java                     = NULL;
   119 # ifdef ENABLE_ZAP_DEAD_LOCALS
   120 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   121 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   122 # endif
   124 ExceptionBlob* OptoRuntime::_exception_blob;
   126 // This should be called in an assertion at the start of OptoRuntime routines
   127 // which are entered from compiled code (all of them)
   128 #ifndef PRODUCT
   129 static bool check_compiled_frame(JavaThread* thread) {
   130   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   131 #ifdef ASSERT
   132   RegisterMap map(thread, false);
   133   frame caller = thread->last_frame().sender(&map);
   134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   135 #endif  /* ASSERT */
   136   return true;
   137 }
   138 #endif
   141 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   142   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   144 void OptoRuntime::generate(ciEnv* env) {
   146   generate_exception_blob();
   148   // Note: tls: Means fetching the return oop out of the thread-local storage
   149   //
   150   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   151   // -------------------------------------------------------------------------------------------------------------------------------
   152   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   153   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   154   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   155   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   156   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   157   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   158   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   159   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   160   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   161   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   162   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   164   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   165   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   167 # ifdef ENABLE_ZAP_DEAD_LOCALS
   168   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   169   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   170 # endif
   172 }
   174 #undef gen
   177 // Helper method to do generation of RunTimeStub's
   178 address OptoRuntime::generate_stub( ciEnv* env,
   179                                     TypeFunc_generator gen, address C_function,
   180                                     const char *name, int is_fancy_jump,
   181                                     bool pass_tls,
   182                                     bool save_argument_registers,
   183                                     bool return_pc ) {
   184   ResourceMark rm;
   185   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   186   return  C.stub_entry_point();
   187 }
   189 const char* OptoRuntime::stub_name(address entry) {
   190 #ifndef PRODUCT
   191   CodeBlob* cb = CodeCache::find_blob(entry);
   192   RuntimeStub* rs =(RuntimeStub *)cb;
   193   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   194   return rs->name();
   195 #else
   196   // Fast implementation for product mode (maybe it should be inlined too)
   197   return "runtime stub";
   198 #endif
   199 }
   202 //=============================================================================
   203 // Opto compiler runtime routines
   204 //=============================================================================
   207 //=============================allocation======================================
   208 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   209 // and try allocation again.
   211 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   212   // After any safepoint, just before going back to compiled code,
   213   // we inform the GC that we will be doing initializing writes to
   214   // this object in the future without emitting card-marks, so
   215   // GC may take any compensating steps.
   216   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   218   oop new_obj = thread->vm_result();
   219   if (new_obj == NULL)  return;
   221   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   222          "compiler must check this first");
   223   // GC may decide to give back a safer copy of new_obj.
   224   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   225   thread->set_vm_result(new_obj);
   226 }
   228 // object allocation
   229 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   230   JRT_BLOCK;
   231 #ifndef PRODUCT
   232   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   233 #endif
   234   assert(check_compiled_frame(thread), "incorrect caller");
   236   // These checks are cheap to make and support reflective allocation.
   237   int lh = Klass::cast(klass)->layout_helper();
   238   if (Klass::layout_helper_needs_slow_path(lh)
   239       || !instanceKlass::cast(klass)->is_initialized()) {
   240     KlassHandle kh(THREAD, klass);
   241     kh->check_valid_for_instantiation(false, THREAD);
   242     if (!HAS_PENDING_EXCEPTION) {
   243       instanceKlass::cast(kh())->initialize(THREAD);
   244     }
   245     if (!HAS_PENDING_EXCEPTION) {
   246       klass = kh();
   247     } else {
   248       klass = NULL;
   249     }
   250   }
   252   if (klass != NULL) {
   253     // Scavenge and allocate an instance.
   254     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   255     thread->set_vm_result(result);
   257     // Pass oops back through thread local storage.  Our apparent type to Java
   258     // is that we return an oop, but we can block on exit from this routine and
   259     // a GC can trash the oop in C's return register.  The generated stub will
   260     // fetch the oop from TLS after any possible GC.
   261   }
   263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   264   JRT_BLOCK_END;
   266   if (GraphKit::use_ReduceInitialCardMarks()) {
   267     // inform GC that we won't do card marks for initializing writes.
   268     new_store_pre_barrier(thread);
   269   }
   270 JRT_END
   273 // array allocation
   274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   275   JRT_BLOCK;
   276 #ifndef PRODUCT
   277   SharedRuntime::_new_array_ctr++;            // new array requires GC
   278 #endif
   279   assert(check_compiled_frame(thread), "incorrect caller");
   281   // Scavenge and allocate an instance.
   282   oop result;
   284   if (Klass::cast(array_type)->oop_is_typeArray()) {
   285     // The oopFactory likes to work with the element type.
   286     // (We could bypass the oopFactory, since it doesn't add much value.)
   287     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   288     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   289   } else {
   290     // Although the oopFactory likes to work with the elem_type,
   291     // the compiler prefers the array_type, since it must already have
   292     // that latter value in hand for the fast path.
   293     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   294     result = oopFactory::new_objArray(elem_type, len, THREAD);
   295   }
   297   // Pass oops back through thread local storage.  Our apparent type to Java
   298   // is that we return an oop, but we can block on exit from this routine and
   299   // a GC can trash the oop in C's return register.  The generated stub will
   300   // fetch the oop from TLS after any possible GC.
   301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   302   thread->set_vm_result(result);
   303   JRT_BLOCK_END;
   305   if (GraphKit::use_ReduceInitialCardMarks()) {
   306     // inform GC that we won't do card marks for initializing writes.
   307     new_store_pre_barrier(thread);
   308   }
   309 JRT_END
   311 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   313 // multianewarray for 2 dimensions
   314 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   315 #ifndef PRODUCT
   316   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   317 #endif
   318   assert(check_compiled_frame(thread), "incorrect caller");
   319   assert(oop(elem_type)->is_klass(), "not a class");
   320   jint dims[2];
   321   dims[0] = len1;
   322   dims[1] = len2;
   323   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   324   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   325   thread->set_vm_result(obj);
   326 JRT_END
   328 // multianewarray for 3 dimensions
   329 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   330 #ifndef PRODUCT
   331   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   332 #endif
   333   assert(check_compiled_frame(thread), "incorrect caller");
   334   assert(oop(elem_type)->is_klass(), "not a class");
   335   jint dims[3];
   336   dims[0] = len1;
   337   dims[1] = len2;
   338   dims[2] = len3;
   339   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   340   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   341   thread->set_vm_result(obj);
   342 JRT_END
   344 // multianewarray for 4 dimensions
   345 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   346 #ifndef PRODUCT
   347   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   348 #endif
   349   assert(check_compiled_frame(thread), "incorrect caller");
   350   assert(oop(elem_type)->is_klass(), "not a class");
   351   jint dims[4];
   352   dims[0] = len1;
   353   dims[1] = len2;
   354   dims[2] = len3;
   355   dims[3] = len4;
   356   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   358   thread->set_vm_result(obj);
   359 JRT_END
   361 // multianewarray for 5 dimensions
   362 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   363 #ifndef PRODUCT
   364   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   365 #endif
   366   assert(check_compiled_frame(thread), "incorrect caller");
   367   assert(oop(elem_type)->is_klass(), "not a class");
   368   jint dims[5];
   369   dims[0] = len1;
   370   dims[1] = len2;
   371   dims[2] = len3;
   372   dims[3] = len4;
   373   dims[4] = len5;
   374   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   376   thread->set_vm_result(obj);
   377 JRT_END
   379 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread))
   380   assert(check_compiled_frame(thread), "incorrect caller");
   381   assert(oop(elem_type)->is_klass(), "not a class");
   382   assert(oop(dims)->is_typeArray(), "not an array");
   384   ResourceMark rm;
   385   jint len = dims->length();
   386   assert(len > 0, "Dimensions array should contain data");
   387   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   388   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   389   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   391   oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   392   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   393   thread->set_vm_result(obj);
   394 JRT_END
   397 const TypeFunc *OptoRuntime::new_instance_Type() {
   398   // create input type (domain)
   399   const Type **fields = TypeTuple::fields(1);
   400   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   401   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   403   // create result type (range)
   404   fields = TypeTuple::fields(1);
   405   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   407   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   409   return TypeFunc::make(domain, range);
   410 }
   413 const TypeFunc *OptoRuntime::athrow_Type() {
   414   // create input type (domain)
   415   const Type **fields = TypeTuple::fields(1);
   416   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   417   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   419   // create result type (range)
   420   fields = TypeTuple::fields(0);
   422   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   424   return TypeFunc::make(domain, range);
   425 }
   428 const TypeFunc *OptoRuntime::new_array_Type() {
   429   // create input type (domain)
   430   const Type **fields = TypeTuple::fields(2);
   431   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   432   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   433   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   435   // create result type (range)
   436   fields = TypeTuple::fields(1);
   437   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   439   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   441   return TypeFunc::make(domain, range);
   442 }
   444 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   445   // create input type (domain)
   446   const int nargs = ndim + 1;
   447   const Type **fields = TypeTuple::fields(nargs);
   448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   449   for( int i = 1; i < nargs; i++ )
   450     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   451   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   453   // create result type (range)
   454   fields = TypeTuple::fields(1);
   455   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   458   return TypeFunc::make(domain, range);
   459 }
   461 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   462   return multianewarray_Type(2);
   463 }
   465 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   466   return multianewarray_Type(3);
   467 }
   469 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   470   return multianewarray_Type(4);
   471 }
   473 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   474   return multianewarray_Type(5);
   475 }
   477 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   478   // create input type (domain)
   479   const Type **fields = TypeTuple::fields(2);
   480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   481   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   484   // create result type (range)
   485   fields = TypeTuple::fields(1);
   486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   489   return TypeFunc::make(domain, range);
   490 }
   492 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   493   const Type **fields = TypeTuple::fields(2);
   494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   495   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   498   // create result type (range)
   499   fields = TypeTuple::fields(0);
   500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   502   return TypeFunc::make(domain, range);
   503 }
   505 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   507   const Type **fields = TypeTuple::fields(2);
   508   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   509   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   510   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   512   // create result type (range)
   513   fields = TypeTuple::fields(0);
   514   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   516   return TypeFunc::make(domain, range);
   517 }
   519 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   520   // create input type (domain)
   521   const Type **fields = TypeTuple::fields(1);
   522   // Symbol* name of class to be loaded
   523   fields[TypeFunc::Parms+0] = TypeInt::INT;
   524   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   526   // create result type (range)
   527   fields = TypeTuple::fields(0);
   528   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   530   return TypeFunc::make(domain, range);
   531 }
   533 # ifdef ENABLE_ZAP_DEAD_LOCALS
   534 // Type used for stub generation for zap_dead_locals.
   535 // No inputs or outputs
   536 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   537   // create input type (domain)
   538   const Type **fields = TypeTuple::fields(0);
   539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   541   // create result type (range)
   542   fields = TypeTuple::fields(0);
   543   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   545   return TypeFunc::make(domain,range);
   546 }
   547 # endif
   550 //-----------------------------------------------------------------------------
   551 // Monitor Handling
   552 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   553   // create input type (domain)
   554   const Type **fields = TypeTuple::fields(2);
   555   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   556   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   559   // create result type (range)
   560   fields = TypeTuple::fields(0);
   562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   564   return TypeFunc::make(domain,range);
   565 }
   568 //-----------------------------------------------------------------------------
   569 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   570   // create input type (domain)
   571   const Type **fields = TypeTuple::fields(2);
   572   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   573   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   576   // create result type (range)
   577   fields = TypeTuple::fields(0);
   579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   581   return TypeFunc::make(domain,range);
   582 }
   584 const TypeFunc* OptoRuntime::flush_windows_Type() {
   585   // create input type (domain)
   586   const Type** fields = TypeTuple::fields(1);
   587   fields[TypeFunc::Parms+0] = NULL; // void
   588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   590   // create result type
   591   fields = TypeTuple::fields(1);
   592   fields[TypeFunc::Parms+0] = NULL; // void
   593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   595   return TypeFunc::make(domain, range);
   596 }
   598 const TypeFunc* OptoRuntime::l2f_Type() {
   599   // create input type (domain)
   600   const Type **fields = TypeTuple::fields(2);
   601   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   602   fields[TypeFunc::Parms+1] = Type::HALF;
   603   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   605   // create result type (range)
   606   fields = TypeTuple::fields(1);
   607   fields[TypeFunc::Parms+0] = Type::FLOAT;
   608   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   610   return TypeFunc::make(domain, range);
   611 }
   613 const TypeFunc* OptoRuntime::modf_Type() {
   614   const Type **fields = TypeTuple::fields(2);
   615   fields[TypeFunc::Parms+0] = Type::FLOAT;
   616   fields[TypeFunc::Parms+1] = Type::FLOAT;
   617   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   619   // create result type (range)
   620   fields = TypeTuple::fields(1);
   621   fields[TypeFunc::Parms+0] = Type::FLOAT;
   623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   625   return TypeFunc::make(domain, range);
   626 }
   628 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   629   // create input type (domain)
   630   const Type **fields = TypeTuple::fields(2);
   631   // Symbol* name of class to be loaded
   632   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   633   fields[TypeFunc::Parms+1] = Type::HALF;
   634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   636   // create result type (range)
   637   fields = TypeTuple::fields(2);
   638   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   639   fields[TypeFunc::Parms+1] = Type::HALF;
   640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   642   return TypeFunc::make(domain, range);
   643 }
   645 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   646   const Type **fields = TypeTuple::fields(4);
   647   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   648   fields[TypeFunc::Parms+1] = Type::HALF;
   649   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   650   fields[TypeFunc::Parms+3] = Type::HALF;
   651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   653   // create result type (range)
   654   fields = TypeTuple::fields(2);
   655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   656   fields[TypeFunc::Parms+1] = Type::HALF;
   657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   659   return TypeFunc::make(domain, range);
   660 }
   662 //-------------- currentTimeMillis
   664 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   665   // create input type (domain)
   666   const Type **fields = TypeTuple::fields(0);
   667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   669   // create result type (range)
   670   fields = TypeTuple::fields(2);
   671   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   672   fields[TypeFunc::Parms+1] = Type::HALF;
   673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   675   return TypeFunc::make(domain, range);
   676 }
   678 // arraycopy stub variations:
   679 enum ArrayCopyType {
   680   ac_fast,                      // void(ptr, ptr, size_t)
   681   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   682   ac_slow,                      // void(ptr, int, ptr, int, int)
   683   ac_generic                    //  int(ptr, int, ptr, int, int)
   684 };
   686 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   687   // create input type (domain)
   688   int num_args      = (act == ac_fast ? 3 : 5);
   689   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   690   int argcnt = num_args;
   691   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   692   const Type** fields = TypeTuple::fields(argcnt);
   693   int argp = TypeFunc::Parms;
   694   fields[argp++] = TypePtr::NOTNULL;    // src
   695   if (num_size_args == 0) {
   696     fields[argp++] = TypeInt::INT;      // src_pos
   697   }
   698   fields[argp++] = TypePtr::NOTNULL;    // dest
   699   if (num_size_args == 0) {
   700     fields[argp++] = TypeInt::INT;      // dest_pos
   701     fields[argp++] = TypeInt::INT;      // length
   702   }
   703   while (num_size_args-- > 0) {
   704     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   705     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   706   }
   707   if (act == ac_checkcast) {
   708     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   709   }
   710   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   711   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   713   // create result type if needed
   714   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   715   fields = TypeTuple::fields(1);
   716   if (retcnt == 0)
   717     fields[TypeFunc::Parms+0] = NULL; // void
   718   else
   719     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   720   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   721   return TypeFunc::make(domain, range);
   722 }
   724 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   725   // This signature is simple:  Two base pointers and a size_t.
   726   return make_arraycopy_Type(ac_fast);
   727 }
   729 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   730   // An extension of fast_arraycopy_Type which adds type checking.
   731   return make_arraycopy_Type(ac_checkcast);
   732 }
   734 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   735   // This signature is exactly the same as System.arraycopy.
   736   // There are no intptr_t (int/long) arguments.
   737   return make_arraycopy_Type(ac_slow);
   738 }
   740 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   741   // This signature is like System.arraycopy, except that it returns status.
   742   return make_arraycopy_Type(ac_generic);
   743 }
   746 const TypeFunc* OptoRuntime::array_fill_Type() {
   747   // create input type (domain): pointer, int, size_t
   748   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   749   int argp = TypeFunc::Parms;
   750   fields[argp++] = TypePtr::NOTNULL;
   751   fields[argp++] = TypeInt::INT;
   752   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   753   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   754   const TypeTuple *domain = TypeTuple::make(argp, fields);
   756   // create result type
   757   fields = TypeTuple::fields(1);
   758   fields[TypeFunc::Parms+0] = NULL; // void
   759   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   761   return TypeFunc::make(domain, range);
   762 }
   764 //------------- Interpreter state access for on stack replacement
   765 const TypeFunc* OptoRuntime::osr_end_Type() {
   766   // create input type (domain)
   767   const Type **fields = TypeTuple::fields(1);
   768   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   769   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   771   // create result type
   772   fields = TypeTuple::fields(1);
   773   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   774   fields[TypeFunc::Parms+0] = NULL; // void
   775   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   776   return TypeFunc::make(domain, range);
   777 }
   779 //-------------- methodData update helpers
   781 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   782   // create input type (domain)
   783   const Type **fields = TypeTuple::fields(2);
   784   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   785   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   786   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   788   // create result type
   789   fields = TypeTuple::fields(1);
   790   fields[TypeFunc::Parms+0] = NULL; // void
   791   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   792   return TypeFunc::make(domain,range);
   793 }
   795 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   796   if (receiver == NULL) return;
   797   klassOop receiver_klass = receiver->klass();
   799   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   800   int empty_row = -1;           // free row, if any is encountered
   802   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   803   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   804     // if (vc->receiver(row) == receiver_klass)
   805     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   806     intptr_t row_recv = *(mdp + receiver_off);
   807     if (row_recv == (intptr_t) receiver_klass) {
   808       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   809       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   810       *(mdp + count_off) += DataLayout::counter_increment;
   811       return;
   812     } else if (row_recv == 0) {
   813       // else if (vc->receiver(row) == NULL)
   814       empty_row = (int) row;
   815     }
   816   }
   818   if (empty_row != -1) {
   819     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   820     // vc->set_receiver(empty_row, receiver_klass);
   821     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   822     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   823     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   824     *(mdp + count_off) = DataLayout::counter_increment;
   825   } else {
   826     // Receiver did not match any saved receiver and there is no empty row for it.
   827     // Increment total counter to indicate polymorphic case.
   828     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   829     *count_p += DataLayout::counter_increment;
   830   }
   831 JRT_END
   833 //-----------------------------------------------------------------------------
   834 // implicit exception support.
   836 static void report_null_exception_in_code_cache(address exception_pc) {
   837   ResourceMark rm;
   838   CodeBlob* n = CodeCache::find_blob(exception_pc);
   839   if (n != NULL) {
   840     tty->print_cr("#");
   841     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   842     tty->print_cr("#");
   843     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   845     if (n->is_nmethod()) {
   846       methodOop method = ((nmethod*)n)->method();
   847       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   848       tty->print_cr("#");
   849       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   850         const char* title    = "HotSpot Runtime Error";
   851         const char* question = "Do you want to exclude compilation of this method in future runs?";
   852         if (os::message_box(title, question)) {
   853           CompilerOracle::append_comment_to_file("");
   854           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   855           CompilerOracle::append_comment_to_file("");
   856           CompilerOracle::append_exclude_to_file(method);
   857           tty->print_cr("#");
   858           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   859           tty->print_cr("#");
   860         }
   861       }
   862       fatal("Implicit null exception happened in compiled method");
   863     } else {
   864       n->print();
   865       fatal("Implicit null exception happened in generated stub");
   866     }
   867   }
   868   fatal("Implicit null exception at wrong place");
   869 }
   872 //-------------------------------------------------------------------------------------
   873 // register policy
   875 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   876   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   877   switch (register_save_policy[reg]) {
   878     case 'C': return false; //SOC
   879     case 'E': return true ; //SOE
   880     case 'N': return false; //NS
   881     case 'A': return false; //AS
   882   }
   883   ShouldNotReachHere();
   884   return false;
   885 }
   887 //-----------------------------------------------------------------------
   888 // Exceptions
   889 //
   891 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   893 // The method is an entry that is always called by a C++ method not
   894 // directly from compiled code. Compiled code will call the C++ method following.
   895 // We can't allow async exception to be installed during  exception processing.
   896 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   898   // Do not confuse exception_oop with pending_exception. The exception_oop
   899   // is only used to pass arguments into the method. Not for general
   900   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   901   // the runtime stubs checks this on exit.
   902   assert(thread->exception_oop() != NULL, "exception oop is found");
   903   address handler_address = NULL;
   905   Handle exception(thread, thread->exception_oop());
   907   if (TraceExceptions) {
   908     trace_exception(exception(), thread->exception_pc(), "");
   909   }
   910   // for AbortVMOnException flag
   911   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   913   #ifdef ASSERT
   914     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   915       // should throw an exception here
   916       ShouldNotReachHere();
   917     }
   918   #endif
   921   // new exception handling: this method is entered only from adapters
   922   // exceptions from compiled java methods are handled in compiled code
   923   // using rethrow node
   925   address pc = thread->exception_pc();
   926   nm = CodeCache::find_nmethod(pc);
   927   assert(nm != NULL, "No NMethod found");
   928   if (nm->is_native_method()) {
   929     fatal("Native mathod should not have path to exception handling");
   930   } else {
   931     // we are switching to old paradigm: search for exception handler in caller_frame
   932     // instead in exception handler of caller_frame.sender()
   934     if (JvmtiExport::can_post_on_exceptions()) {
   935       // "Full-speed catching" is not necessary here,
   936       // since we're notifying the VM on every catch.
   937       // Force deoptimization and the rest of the lookup
   938       // will be fine.
   939       deoptimize_caller_frame(thread, true);
   940     }
   942     // Check the stack guard pages.  If enabled, look for handler in this frame;
   943     // otherwise, forcibly unwind the frame.
   944     //
   945     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   946     bool force_unwind = !thread->reguard_stack();
   947     bool deopting = false;
   948     if (nm->is_deopt_pc(pc)) {
   949       deopting = true;
   950       RegisterMap map(thread, false);
   951       frame deoptee = thread->last_frame().sender(&map);
   952       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   953       // Adjust the pc back to the original throwing pc
   954       pc = deoptee.pc();
   955     }
   957     // If we are forcing an unwind because of stack overflow then deopt is
   958     // irrelevant sice we are throwing the frame away anyway.
   960     if (deopting && !force_unwind) {
   961       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   962     } else {
   964       handler_address =
   965         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   967       if (handler_address == NULL) {
   968         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
   969         assert (handler_address != NULL, "must have compiled handler");
   970         // Update the exception cache only when the unwind was not forced.
   971         if (!force_unwind) {
   972           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
   973         }
   974       } else {
   975         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
   976       }
   977     }
   979     thread->set_exception_pc(pc);
   980     thread->set_exception_handler_pc(handler_address);
   982     // Check if the exception PC is a MethodHandle call site.
   983     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
   984   }
   986   // Restore correct return pc.  Was saved above.
   987   thread->set_exception_oop(exception());
   988   return handler_address;
   990 JRT_END
   992 // We are entering here from exception_blob
   993 // If there is a compiled exception handler in this method, we will continue there;
   994 // otherwise we will unwind the stack and continue at the caller of top frame method
   995 // Note we enter without the usual JRT wrapper. We will call a helper routine that
   996 // will do the normal VM entry. We do it this way so that we can see if the nmethod
   997 // we looked up the handler for has been deoptimized in the meantime. If it has been
   998 // we must not use the handler and instread return the deopt blob.
   999 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1000 //
  1001 // We are in Java not VM and in debug mode we have a NoHandleMark
  1002 //
  1003 #ifndef PRODUCT
  1004   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1005 #endif
  1006   debug_only(NoHandleMark __hm;)
  1007   nmethod* nm = NULL;
  1008   address handler_address = NULL;
  1010     // Enter the VM
  1012     ResetNoHandleMark rnhm;
  1013     handler_address = handle_exception_C_helper(thread, nm);
  1016   // Back in java: Use no oops, DON'T safepoint
  1018   // Now check to see if the handler we are returning is in a now
  1019   // deoptimized frame
  1021   if (nm != NULL) {
  1022     RegisterMap map(thread, false);
  1023     frame caller = thread->last_frame().sender(&map);
  1024 #ifdef ASSERT
  1025     assert(caller.is_compiled_frame(), "must be");
  1026 #endif // ASSERT
  1027     if (caller.is_deoptimized_frame()) {
  1028       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1031   return handler_address;
  1034 //------------------------------rethrow----------------------------------------
  1035 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1036 // is either throwing or rethrowing an exception.  The callee-save registers
  1037 // have been restored, synchronized objects have been unlocked and the callee
  1038 // stack frame has been removed.  The return address was passed in.
  1039 // Exception oop is passed as the 1st argument.  This routine is then called
  1040 // from the stub.  On exit, we know where to jump in the caller's code.
  1041 // After this C code exits, the stub will pop his frame and end in a jump
  1042 // (instead of a return).  We enter the caller's default handler.
  1043 //
  1044 // This must be JRT_LEAF:
  1045 //     - caller will not change its state as we cannot block on exit,
  1046 //       therefore raw_exception_handler_for_return_address is all it takes
  1047 //       to handle deoptimized blobs
  1048 //
  1049 // However, there needs to be a safepoint check in the middle!  So compiled
  1050 // safepoints are completely watertight.
  1051 //
  1052 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1053 //
  1054 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1055 //
  1056 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1057 #ifndef PRODUCT
  1058   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1059 #endif
  1060   assert (exception != NULL, "should have thrown a NULLPointerException");
  1061 #ifdef ASSERT
  1062   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1063     // should throw an exception here
  1064     ShouldNotReachHere();
  1066 #endif
  1068   thread->set_vm_result(exception);
  1069   // Frame not compiled (handles deoptimization blob)
  1070   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1074 const TypeFunc *OptoRuntime::rethrow_Type() {
  1075   // create input type (domain)
  1076   const Type **fields = TypeTuple::fields(1);
  1077   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1078   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1080   // create result type (range)
  1081   fields = TypeTuple::fields(1);
  1082   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1083   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1085   return TypeFunc::make(domain, range);
  1089 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1090   // Deoptimize frame
  1091   if (doit) {
  1092     // Called from within the owner thread, so no need for safepoint
  1093     RegisterMap reg_map(thread);
  1094     frame stub_frame = thread->last_frame();
  1095     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1096     frame caller_frame = stub_frame.sender(&reg_map);
  1098     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
  1099     Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1104 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1105   // create input type (domain)
  1106   const Type **fields = TypeTuple::fields(1);
  1107   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1108   // // The JavaThread* is passed to each routine as the last argument
  1109   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1110   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1112   // create result type (range)
  1113   fields = TypeTuple::fields(0);
  1115   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1117   return TypeFunc::make(domain,range);
  1121 //-----------------------------------------------------------------------------
  1122 // Dtrace support.  entry and exit probes have the same signature
  1123 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1124   // create input type (domain)
  1125   const Type **fields = TypeTuple::fields(2);
  1126   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1127   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1128   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1130   // create result type (range)
  1131   fields = TypeTuple::fields(0);
  1133   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1135   return TypeFunc::make(domain,range);
  1138 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1139   // create input type (domain)
  1140   const Type **fields = TypeTuple::fields(2);
  1141   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1142   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1144   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1146   // create result type (range)
  1147   fields = TypeTuple::fields(0);
  1149   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1151   return TypeFunc::make(domain,range);
  1155 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1156   assert(obj->is_oop(), "must be a valid oop");
  1157   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1158   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1159 JRT_END
  1161 //-----------------------------------------------------------------------------
  1163 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1165 //
  1166 // dump the collected NamedCounters.
  1167 //
  1168 void OptoRuntime::print_named_counters() {
  1169   int total_lock_count = 0;
  1170   int eliminated_lock_count = 0;
  1172   NamedCounter* c = _named_counters;
  1173   while (c) {
  1174     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1175       int count = c->count();
  1176       if (count > 0) {
  1177         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1178         if (Verbose) {
  1179           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1181         total_lock_count += count;
  1182         if (eliminated) {
  1183           eliminated_lock_count += count;
  1186     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1187       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1188       if (blc->nonzero()) {
  1189         tty->print_cr("%s", c->name());
  1190         blc->print_on(tty);
  1193     c = c->next();
  1195   if (total_lock_count > 0) {
  1196     tty->print_cr("dynamic locks: %d", total_lock_count);
  1197     if (eliminated_lock_count) {
  1198       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1199                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1204 //
  1205 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1206 //  name which consists of method@line for the inlining tree.
  1207 //
  1209 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1210   int max_depth = youngest_jvms->depth();
  1212   // Visit scopes from youngest to oldest.
  1213   bool first = true;
  1214   stringStream st;
  1215   for (int depth = max_depth; depth >= 1; depth--) {
  1216     JVMState* jvms = youngest_jvms->of_depth(depth);
  1217     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1218     if (!first) {
  1219       st.print(" ");
  1220     } else {
  1221       first = false;
  1223     int bci = jvms->bci();
  1224     if (bci < 0) bci = 0;
  1225     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1226     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1228   NamedCounter* c;
  1229   if (tag == NamedCounter::BiasedLockingCounter) {
  1230     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1231   } else {
  1232     c = new NamedCounter(strdup(st.as_string()), tag);
  1235   // atomically add the new counter to the head of the list.  We only
  1236   // add counters so this is safe.
  1237   NamedCounter* head;
  1238   do {
  1239     head = _named_counters;
  1240     c->set_next(head);
  1241   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1242   return c;
  1245 //-----------------------------------------------------------------------------
  1246 // Non-product code
  1247 #ifndef PRODUCT
  1249 int trace_exception_counter = 0;
  1250 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1251   ttyLocker ttyl;
  1252   trace_exception_counter++;
  1253   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1254   exception_oop->print_value();
  1255   tty->print(" in ");
  1256   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1257   if (blob->is_nmethod()) {
  1258     ((nmethod*)blob)->method()->print_value();
  1259   } else if (blob->is_runtime_stub()) {
  1260     tty->print("<runtime-stub>");
  1261   } else {
  1262     tty->print("<unknown>");
  1264   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1265   tty->print_cr("]");
  1268 #endif  // PRODUCT
  1271 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1272 // Called from call sites in compiled code with oop maps (actually safepoints)
  1273 // Zaps dead locals in first java frame.
  1274 // Is entry because may need to lock to generate oop maps
  1275 // Currently, only used for compiler frames, but someday may be used
  1276 // for interpreter frames, too.
  1278 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1280 // avoid pointers to member funcs with these helpers
  1281 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1282 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1285 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1286                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1287   assert(JavaThread::current() == thread, "is this needed?");
  1289   if ( !ZapDeadCompiledLocals )  return;
  1291   bool skip = false;
  1293        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1294   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1295   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1296     warning("starting zapping after skipping");
  1298        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1299   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1300   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1301     warning("about to zap last zap");
  1303   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1305   if ( skip )  return;
  1307   // find java frame and zap it
  1309   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1310     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1311       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1312       return;
  1315   warning("no frame found to zap in zap_dead_Java_locals_C");
  1318 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1319   zap_dead_java_or_native_locals(thread, is_java_frame);
  1320 JRT_END
  1322 // The following does not work because for one thing, the
  1323 // thread state is wrong; it expects java, but it is native.
  1324 // Also, the invariants in a native stub are different and
  1325 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1326 // in there.
  1327 // So for now, we do not zap in native stubs.
  1329 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1330   zap_dead_java_or_native_locals(thread, is_native_frame);
  1331 JRT_END
  1333 # endif

mercurial